WO2012005017A1 - Object detection system - Google Patents

Object detection system Download PDF

Info

Publication number
WO2012005017A1
WO2012005017A1 PCT/JP2011/052119 JP2011052119W WO2012005017A1 WO 2012005017 A1 WO2012005017 A1 WO 2012005017A1 JP 2011052119 W JP2011052119 W JP 2011052119W WO 2012005017 A1 WO2012005017 A1 WO 2012005017A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
value
data
level value
detection level
Prior art date
Application number
PCT/JP2011/052119
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤善胤
錦戸憲治
Original Assignee
株式会社エニイワイヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エニイワイヤ filed Critical 株式会社エニイワイヤ
Priority to CN201180032691.8A priority Critical patent/CN103109206B/en
Priority to JP2011514915A priority patent/JP4757964B1/en
Publication of WO2012005017A1 publication Critical patent/WO2012005017A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/20Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current

Definitions

  • the present invention relates to an object detection system that detects the presence / absence of a detection target using an electromagnetic wave, a magnetic field, or a reflection phenomenon of a sound wave.
  • the retroreflective photoelectric sensor is suitable for detecting a translucent object (hereinafter referred to as a transparent body), but has an object that reflects light (hereinafter referred to as a specular reflector).
  • a specular reflector an object that reflects light
  • a specular reflector an object that reflects light
  • a retroreflective photoelectric sensor there are, for example, a reflective photoelectric switch disclosed in Japanese Patent Laid-Open No. 61-203522, a retroreflective photoelectric switch disclosed in Japanese Patent Laid-Open No. 2-27632, and the like. In these photoelectric switches, by using the difference in the type of polarized light reaching the light receiving unit, it is possible to identify whether the reflected light is from the specular reflector or the reflected light from the reflective unit. The presence or absence of is detected.
  • a retroreflective photoelectric sensor disclosed in Japanese Patent Application Laid-Open No. 2008-112629, which detects a PET bottle having a complex shape with high transmittance.
  • a light projecting system that projects circularly polarized light
  • a light receiving system that selectively receives reverse circularly polarized light when mixed light of reverse circularly polarized light and circularly polarized light is incident.
  • the sensor body formed of PET utilizes the birefringence of the PET bottle that has caused the malfunction, and converts the polarization state disturbance due to the birefringence into the attenuation of light.
  • the bottle can be detected.
  • an object of the present invention is to provide an object detection system capable of detecting various detection objects including a specular reflector and a transparent body while having a simple configuration and being easy to set and adjust.
  • a first object detection system includes electromagnetic wave, magnetic field or sound wave generation means, first detection means, and second detection means.
  • the angle formed by the detection axes of the first detection means and the second detection means becomes significant in the detection of the electromagnetic wave, the magnetic field, or the sound wave reflected by the detection target, and from the target region for determining the presence or absence of the detection target.
  • the size of the electromagnetic wave, the magnetic field, or the acoustic wave that reaches the first detection unit or the second detection unit through a distant area is not affected. Then, the sum of the first detection level value by the first detection means and the second detection level value by the second detection means, or either the first detection level value or the second detection level value is determined.
  • the detection object is Judge that there is.
  • a second object detection system includes first generation means, second generation means, and detection means for electromagnetic waves, magnetic fields, or sound waves generated by the first generation means and the second generation means. . Then, the detection level of the electromagnetic wave, magnetic field, or sound wave that reaches the detection unit through the target region for determining the presence or absence of the detection target from the first generation unit is set as a first detection level value, and the target from the second generation unit The detection level of the electromagnetic wave, magnetic field, or sound wave that reaches the detection means through a region is set as a second detection level value, or the sum of the first detection level value and the second detection level value, or the first detection level value and One of the second detection level values is set as a determination level value, and when the determination level value is larger than the first threshold value or smaller than the second threshold value smaller than the first threshold value, it is determined that there is a detection target. Further, when the determination level value is larger than the second threshold value and less than the first threshold value, and the difference between the first detection level value and the second detection level value
  • a time-division detection level generated by receiving the electromagnetic wave, magnetic field or sound wave generated by the first generation unit is set as the first detection level value, and is generated by the second generation unit.
  • Another time division light reception level generated by receiving the electromagnetic wave, magnetic field or sound wave may be used as the second detection level value.
  • a plurality of sets of the generation means, the first detection means, and the second detection means are installed, and each of the sets is connected to a common data signal line via a slave station. It may be what was done.
  • a master station connected to the control unit is connected to the common data signal line.
  • the master station has timing generation means for generating a predetermined timing signal synchronized with a transmission clock having a predetermined cycle, and according to the value of control data from the control unit under the control of the timing signal And outputting a series of pulse signals as control data signals to the common data signal line, and under the control of the timing signal, the series of pulse signals via the slave station for each cycle of the transmission clock.
  • the data value of the detection data signal superimposed on is extracted and delivered to the control unit. Further, each of the slave stations extracts a value of each data of the control data signal under the control of the timing signal, and corresponds to the data corresponding to the own station in the value of each data.
  • the second object detection system includes a plurality of sets of the first generation means, the second generation means, and the reception means, and each of the sets is connected to a common data signal line via a slave station. It may be what was done.
  • a master station connected to the control unit is connected to the common data signal line.
  • the master station has timing generation means for generating a predetermined timing signal synchronized with a transmission clock having a predetermined cycle, and according to the value of control data from the control unit under the control of the timing signal And outputting a series of pulse signals as control data signals to the common data signal line, and under the control of the timing signal, the series of pulse signals via the slave station for each cycle of the transmission clock.
  • the data value of the detection data signal superimposed on is extracted and delivered to the control unit. Further, each of the slave stations extracts a value of each data of the control data signal under the control of the timing signal, and corresponds to the data corresponding to the own station in the value of each data.
  • the detection data signal according to the value of the detection data of the corresponding detection means for each cycle of the transmission clock under the control of the timing signal, and delivered to one generation means or the second generation means, It is superimposed on the series of pulse signals.
  • the first threshold value, the second threshold value, and the reference value may be transmitted via the common data signal line.
  • the threshold level (the first threshold value or the second threshold value) is set on each of the detection level when the detection target is not present (the detection level when there is no detection object) and on the smaller side.
  • two detection levels (first detection level value and second detection level value) obtained from two different detections are set as a set, and the difference between these levels is compared with a reference different from the above threshold value.
  • the detection level of the electromagnetic wave, magnetic field, or sound wave that reaches the detection means through the region where the detection target exists is, for example, a detection light beam in the order of specular reflector, reflector, transparent body, opaque body, and black body (non-reflector).
  • the detection level changes step by step in accordance with the properties of the detection target so that the detection level decreases.
  • there are two detection levels one that is higher than the detection level when the detection target is not present (the detection level when no object is present) and one that is smaller than the detection level. In this case, it is impossible to determine the presence or absence of the detection target.
  • the detection level is compared with the threshold value (first threshold value or second threshold value) on each of the increase side and the decrease side with respect to the detection level in the absence,
  • the presence / absence of the detection target can be determined from the detection level that changes step by step.
  • the condition for determining that there is an object to be detected is that it is greater than the first threshold value on the side that is greater than the detection level when there is no detection, and that it is less than the second threshold value on the side that is smaller than the detection level when there is no presence Therefore, when the detection level is a level between two threshold values, it is impossible to determine the presence or absence of the detection target. Therefore, two detection levels (first detection level value and second detection level value) obtained from two different detections are set as a set, and the difference between these levels is compared with the above threshold and a reference different from the above threshold. It is decided to determine whether there is any.
  • the two different detections are significant in the detection of the electromagnetic wave, magnetic field, or sound wave reflected by the detection target, with the angle formed by the detection axes of the first detection unit and the second detection unit. This can be achieved by setting the size so as not to affect the detection of the electromagnetic wave, magnetic field or sound wave that reaches the first detection means or the second detection means through a region away from the target region for determining the presence or absence of the detection target.
  • the first generation means, the second generation means, and the electromagnetic wave, magnetic field, or sound wave detection means generated by the first generation means and the second generation means can be provided. .
  • a transmission method is preferable in which a control data signal and a detection data signal are exchanged for each cycle of the transmission clock according to the value of control data from the control unit. In this case, by obtaining the operation timing of the generating means for each cycle of the transmission clock, detection in a plurality of areas can be performed while preventing mutual interference between the generating means.
  • the detection principle of the sensor part in the other Example of the object detection system which concerns on this invention is shown typically, (a) is an enlarged plan view of the object area
  • this object detection system detects the presence or absence of a transported object on a conveyor 7 as a detection object 6, and includes a plurality of sensor units 4 arranged along the moving direction of the conveyor 7. I have. Each of the sensor units 4 is connected to the common data signal lines DP and DN via the corresponding slave stations 5, and the master station 2 connected to the control unit 1 is also connected to the common data signal lines DP and DN. Has been.
  • the control unit 1 is, for example, a programmable controller, a computer, and the like, and includes an output unit 11 that transmits control data 13 for the sensor unit 4 and an input unit 12 that receives monitoring data 14 as a detection result in the sensor unit 4.
  • the master station 2 is connected to the output unit 11 and the input unit 12.
  • the master station 2 includes an output data unit 22, a timing generator 23, a master station output unit 24, a master station input unit 25, and an input data unit 26.
  • the parallel data received as control data 13 from the output unit 11 of the control unit 1 is connected to the common data signal lines DP and DN, and is sent to the common data signal lines DP and DN as control signals. 4 is converted into parallel data and sent as monitoring data 14 to the input unit 12 of the control unit 1.
  • the control signals sent to the common data signal lines DP and DN correspond to a series of pulse signals in the present invention, but hereinafter, control signals flowing through the common data signal lines DP and DN are transmitted. This is called a clock signal.
  • the output data unit 22 delivers the parallel data received as the control data 13 from the output unit 11 of the control unit 1 to the master station output unit 24 as serial data.
  • the timing generation unit 23 includes an oscillation circuit (OSC) 31, a master station address setting unit 32, and a timing generation unit 33. Based on the OSC 31, the timing generation unit 33 generates a timing clock of this system and generates a master station output unit 24. To hand over.
  • OSC oscillation circuit
  • the master station output unit 24 includes a control data generation unit 34 and a line driver 35. Based on the data received from the output data unit 22 and the timing clock received from the timing generation unit 23, a common data signal is transmitted via the line driver 35. A transmission clock signal is sent as a series of pulse signals to the lines DP and DN.
  • the data value (control data) of the transmission clock signal transmitted from the master station output unit 24 to the common data signal lines DP and DN is expressed by the pulse width of a period with a high voltage level in one cycle of the transmission clock signal.
  • the transmission clock signal has a high potential level (+ 24V in this embodiment) in the second half of one cycle and a low potential level (0V or + 12V in this embodiment) in the first half.
  • the width of the high potential level is expanded according to the value of each data of the control data 13 input from the control unit 1, and in this embodiment, the width shown by the broken line in FIG. 9, that is, 1 of the transmission clock signal.
  • the period is t0
  • the period is extended to (3/4) t0.
  • a start signal (StartBit) and an end signal (not shown) are formed at the beginning and end of the transmission clock signal in order to determine the beginning and the end for counting addresses.
  • the start signal is a signal having the same potential level as the high potential level of the transmission clock signal and longer than one cycle of the transmission clock signal.
  • the end signal is the same level as the low potential level of the transmission clock signal and is longer than one cycle of the transmission clock signal and shorter than the start signal. This end signal is formed at the time point when it matches the address assigned to the master station 2 held in the master station address setting means 32.
  • the sensor unit 4 includes a generating unit 41 having two light projecting units 41a and 41b for emitting a detection light beam, a detection unit 42 having a light receiving unit 42a for receiving the detection light beam, and a detection light beam.
  • Reflection means 43 The reflection means 43 is disposed opposite to the generation means 41 and the detection means 42 with the target region 3 for determining the presence or absence of the detection target 6 interposed therebetween, and constitutes a regressive reflection type sensor.
  • the predetermined transport distance range on the conveyor 7 is the target area 3.
  • the generation means 41 and the detection means 42 are connected to the slave station 5, and the slave station 5 includes a microcomputer control unit (MCU) 51, an address setting means 52, and an A / D converter 53 as shown in FIG. Is provided.
  • the MCU 51 includes a CPU, a RAM, and a ROM, and a program (PRG) necessary for detection processing is stored in the ROM. Then, detection data, parameters, and address data are stored in the RAM, and processing for obtaining information necessary for detection is performed using the arithmetic function of the CPU.
  • the light projecting sections 41a and 41b of the generating means 41 are connected to the output terminals La and Lb of the MCU 51, and the light projecting timing is controlled.
  • the detection level value of the light receiving unit 42 a of the detection unit 42 is input from the input terminal ADAT to the MCU 51 via the A / D converter 53.
  • the MCU 51 also receives the address information set by the address setting means 52 from the input terminal ADRS, and the divided signal obtained by dividing the potential difference between the common data signal lines DP and DN by the dividing resistors R1 and R2. Is input from the input terminal CK. Further, an out signal for transmitting the detection data signal to the common data signal lines DP and DN is output from the output terminal OUT, and an enable signal en for the A / D converter 53 is output from the output terminal EN. The contents of processing in this MCU 51 will be described later.
  • the detection light beams projected by the light projecting portions 41a and 41b reach different parts of the detection target 6, and are reflected there.
  • the reflected light from the detection object 6 is the strongest when the angle (reflection angle) with respect to the reflection surface (the surface of the detection object 6) is equal to the incident angle (reflected light D in FIG. 6A). As the value increases, it becomes weaker.
  • the reflected light from the light projecting unit 41b to the light receiving unit 42a is the strongest when the reflection angle A1 is 0, and becomes weaker as the reflection angle A1 becomes larger.
  • the reflected light from 41a to the light receiving unit 42a is the strongest when the reflection angle A2 is equal to the incident angle A0, and becomes weaker as the reflection angle A2 increases.
  • the reflection angle of the reflected light from the reflection point to the light receiving unit 42a becomes larger and weaker.
  • the reflection angle A1 of the reflected light from the light projecting unit 41b to the light receiving unit 42a is larger than the reflection angle A2 of the reflected light from the light projecting unit 41a to the light receiving unit 42a.
  • the detection light beam from the light projecting unit 41a to the light receiving unit 42a is stronger than that from the light projecting unit 41b. Accordingly, the detection levels of the detection light beams projected by the light projecting units 41a and 41b, reflected from the surface of the detection target 6 and reaching the light receiving unit 42a are those from the light projecting unit 41a and those from the light projecting unit 41b. Then it will be different.
  • the detection light beam projected from each of the light projecting portions 41a and 41b when there is no detection target 6 reaches the reflection means 43 and is reflected there.
  • the reflecting unit 43 is arranged at a sufficient distance from the projecting unit 41 so that the difference between the angles of the optical axes of the projecting unit 41a and the projecting unit 41b is negligible.
  • the detection level of the detection light beam projected from the light parts 41a and 41b and reflected by the reflecting means 43 to reach the light receiving part 42a is not different between the light level from the light projecting part 41a and the light level from the light projecting part 41b. This phenomenon will be described with reference to FIG. FIG.
  • FIG. 7 is a graph showing the relationship between the detection level and the distance from the light projecting units 41a and 41b to the reflection point of the detection light beam.
  • a detection level value first detection level value
  • Pana input from the input terminal ADAT upon receiving a detection light beam from the light projecting unit 41 a
  • detection value from the light projecting unit 41 b A detection level value (second detection level value) Panb, a sum (Pana + Panb), and a difference (Pana ⁇ Panb) of the detection level value (second detection level value) received from the input terminal ADAT upon receiving the light beam are detected from the light projecting units 41a and 41b.
  • the distance to the reflection point of the light beam changes as shown in FIG. However, in FIG. 7, the change in the detection level value is emphasized in order to facilitate understanding of the detection principle, and the relationship between the value itself and the distance is not accurate.
  • the detection level of the detection light beam projected from the light projecting units 41a and 41b and reflected from the surface of the detection target 6 to reach the light receiving unit 42a is that of the light projecting unit 41a and that of the light projecting unit 41b. In any case, it changes stepwise according to the properties of the detection object 6. Specifically, the detection level when the detection target 6 is a specular reflector is large, and the detection level when the detection target 6 is a non-reflector that hardly reflects the detection light beam is extremely low, and the detection light beam can be transmitted. In the case of a transparent body, the detection level is between these detection levels.
  • the detection level (detection level when absent) is higher than that when the detection object 6 is a transparent body. Will also be big. Therefore, first, the first threshold value S1 smaller than the detection level of the specular reflector is provided on the side larger than the detection level in the absence, and the second threshold value S2 larger than the detection level of the transparent body is provided on the smaller side. The presence / absence of the detection target 6 can be determined by comparing the threshold value with the detection level.
  • the total change (Pana + Panb) of the first detection level value and the second detection level value is taken as a judgment level value, and the change with time is shown in FIG.
  • time t ⁇ b> 1 is when the detection target 6 has entered the target area 3
  • time t ⁇ b> 2 is when the detection target 6 has left the target area 3. Therefore, the determination level value (Pana + Panb) changes according to the property of the detection target object 6 between time t1 and time t2. Since the judgment level value P1 of the solid line is larger than the first threshold value S1, it can be seen that the specular reflector is present in the target region 3 as the detection target 6. Further, since the imaginary line judgment level values P2 and P3 are smaller than the second threshold value S2 in any case, it can be seen that a transparent body or a non-reflecting body is present in the target area 3 as the detection target 6.
  • the determination level value is the first threshold value S1 and the second threshold value S2. It is not possible to judge the presence or absence. Therefore, in this case, a determination is made based on the difference between the first detection level value and the second detection level value. As described above, when the detection target 6 is in the target region 3, the first detection level value and the second detection level value are different, so that the difference is larger than a predetermined reference value considering an error. In this case, it is determined that the first detection level value and the second detection level value are different, and it can be determined that the detection target 6 is present.
  • the determination level value to be compared with the first threshold value and the second threshold value is Only one of the first detection level value and the second detection level value may be used.
  • the start signal in the transmission clock signal is made long (S4), and the slave station 5 can recognize that the parameter value is transmitted.
  • the short start signal causes the slave station 5 to recognize that the detection data is transmitted.
  • the slave station 5 that has recognized that the transmission clock signal transmits the detection data by the short start signal modulates the voltage level of the first half of one cycle in the pulse of the address corresponding to the local station in the transmission clock signal as described above. Then, the detection data signal is superimposed on the transmission clock signal (broken line in FIG. 10). Therefore, in the master station 2, when a start signal having a short transmission clock signal is transmitted, the address in the transmission clock signal is subsequently incremented (S8), and detection data superimposed on the pulse of the transmission clock signal corresponding to the address is detected. Is received (S9). Then, the process returns to step S1 to repeat the above series of processing.
  • the slave station 5 is based on processing mainly for data input / output (input / output processing), processing for obtaining information necessary for detection of the detection target 6 (detection processing), and information obtained by the detection processing. Processing for determining the presence or absence of the detection target 6 (determination processing) is performed.
  • the flowchart in FIG. 11 shows data input / output processing
  • the flowchart in FIG. 12 shows detection processing
  • the flowchart in FIG. 13 shows determination processing.
  • the input / output process shown in FIG. 11 is performed.
  • the power is turned on and the program is started (S21).
  • the initial process (S22) it is determined whether or not the start signal of the transmission clock signal is a long start signal (S23). If it is a long start signal, the local station address set by the address setting means 52 is read (S24). Then, the address of the transmission clock signal is obtained by counting the period of the transmission clock signal, and the address is compared with the local station address (S25). If it is the address of the own station, the data at that time is received as parameter data (S26).
  • each slave station 5 For each parameter data, constants used for the determination, that is, Kun (first threshold value), Kdn (second threshold value), Kcn (reference value) are defined in advance, and each slave station 5 is shown in FIG. Stored as a table. Then, the slave station 5 that has received the parameter data stores constants (Kun, Kdn, Kcn) corresponding to the parameter data in the RAM of the MCU 51 (S27).
  • the parameter data of this embodiment has four types in 2-bit expression, the number is not limited and may be changed as appropriate.
  • the cycle is counted until the address of the own station is reached, and the address is incremented (S28).
  • the process returns to step S23, and the determination as to whether the signal is a long start signal is repeated. If it is not a long start signal, it is subsequently determined whether it is a short start signal (S29). If it is not a short start signal, the same determination is repeated until it becomes a short start signal. If it is a short start signal, the local station address set by the address setting means 52 is read (S30). Subsequently, the address of the transmission clock signal is obtained by counting the period of the transmission clock signal, and the address is compared with the local station address (S31).
  • a signal corresponding to the detection data stored in the RAM of the MCU 51 at that time is output from the output terminal OUT to the base of the transistor TR.
  • the detection data is on (indicating that the detection target 6 is present)
  • the transistor TR is turned on, the current flows, the voltage drops, the voltage level becomes 0V, and the signal is It is transmitted on the common data signal lines DP and DN. That is, as shown in FIG. 10, the voltage of the low voltage period in one cycle of the transmission clock signal is sent out as a detection data signal on the common data signal lines DP and DN in a form that is lowered as shown by a broken line. . (S33).
  • the cycle is counted until the address of the own station is reached, and the address is incremented (S32).
  • the detection process is performed next.
  • the light projecting unit 41a is turned on.
  • the output terminal La of the MCU 51 is set to “on” (S41). Since the processing in the slave station 5 is common to all sensor units 4, that is, all channels (CH), the CH number is represented by n in FIGS. Therefore, Lan in step S41 means the output terminal La at CHn.
  • the light projecting timing of the light unit 41a (the timing when La1 is turned “on”) and the start of the next cycle are the light projecting timing of the light projecting unit 41b of CH1 (the timing when Lb1 is turned “on”).
  • the light projecting unit 41a and the light projecting unit 41b can be operated without causing mutual interference.
  • the sensor units 4 when viewed as the sensor unit 4, the sensor units 4 can be operated without causing the sensor units 4 to interfere with each other.
  • step S42 means data based on the detection level signal of the light receiving unit 42a that has received the detection light beam from the light projecting unit 41a in CHn, and corresponds to the first detection level value of the present invention.
  • the output terminal EN of the MCU 51 is set to “on” (S43), the enable signal en is output, and data is read from the input terminal ADAT (S44). ). Then, the read data is stored in the RAM as a first detection level value (Pana) (S45).
  • the output terminal Lan is set to “off” (S46)
  • the light projecting unit 41a is turned off
  • the output terminal EN is set to “off” (S47).
  • 1 is added to the own station address (S48). Note that, in the method of counting the addresses, it is determined by the addition in step S48 that the next cycle pulse also corresponds to the own station. However, the determination is not essential in this detection process, and the description is omitted.
  • the output terminal EN of the MCU 51 is set to “on” (S53), the enable signal en is output, and data is read from the input terminal ADAT (S54). . Then, the read data is stored in the RAM as the second detection level value (Panb) (S55).
  • the second detection level value is stored, the output terminal Lbn is set to “off” (S56), the light projecting unit 41b is turned off, the output terminal EN is set to “off” (S57), and the detection process ends.
  • the determination process shown in FIG. 13 is performed using the obtained first detection level value (Pana) and second detection level value (Panb).
  • the sum of Pana and Panb is used as a judgment level value and compared with the first threshold (Kun) (S61). If it is larger than Kun, it is determined that the detection target 6 exists, the detection data is set to “on” (S65), and the determination process ends. If it is smaller than Kun, then it is compared with the second threshold (Kdn) (S62). If it is smaller than Kdn, it is determined that there is the detection object 6, the detection data is set to “on” (S65), and the determination process ends.
  • Kdn the difference between Pana and Panb is subsequently compared with a reference value (Kcn) (S63). If it is larger than Kcn, it is determined that the detection target 6 exists, the detection data is set to “on” (S65), and the determination process ends. If it is smaller than Kcn, it is determined that there is no detection object 6, the detection data is set to "off” (S64), and the determination process ends.
  • step S64 or step S65 of the determination process is sent to the common data signal lines DP and DN in step S33 of the input / output process.
  • the detection light beam projected by the light projecting unit 41a reaches the detection object 6 and is reflected there.
  • the reflected light at this time is reflected on the reflection surface (detection object 6).
  • the angle (reflection angle) with respect to the surface of the light is equal to the incident angle (reflected light D in FIG. 16A) is the strongest, and becomes weaker as the reflection angle increases.
  • the farther the light receiving unit 42a or 42b is from the point where the detection light beam is reflected (referred to as a reflection point), the greater the reflection angle of the reflected light reaching them, and the weaker it becomes.
  • FIG. 16A the detection light beam projected by the light projecting unit 41a reaches the detection object 6 and is reflected there.
  • the reflected light at this time is reflected on the reflection surface (detection object 6).
  • the angle (reflection angle) with respect to the surface of the light is equal to the incident angle (reflected light D in FIG. 16A) is the strongest, and becomes weaker as the reflection angle increases.
  • the reflection angle A1 of the reflected light Da from the light projecting unit 41a to the light receiving unit 42a is smaller than the reflection angle A2 of the reflected light Db from the light projecting unit 41a to the light receiving unit 42b.
  • the detection light beam from the light projecting unit 41a to the light receiving unit 42a is stronger than that from the light receiving unit 42b. Therefore, the detection level of the detection light beam that is projected by the light projecting unit 41a and reflected by the surface of the detection target 6 and reaches the light receiving unit 42a is different from the detection level of the detection light beam that reaches the light projecting unit 41b. Detection can be performed in the same manner as in the embodiment shown in FIGS.
  • each of the light receiving parts 42a and 42b performs different detection, it is not necessary to time-divide the detection level as in the sensor part 4 shown in FIG. Further, since the light projecting means 41 is only a single light projecting unit 41a, the light projecting timing is also single. Therefore, only one cycle of pulses in the transmission clock signal allocated to each channel is required.

Abstract

Provided is an object detection system that has a simple structure, is easy to set and adjust, and is capable of detecting various target objects that include specular reflectors and transparent bodies. The sum of a first detection level and a second detection level, which are acquired by a detection means for electromagnetic waves, magnetic fields or sound waves, or the first detection level value and the second detection level value are taken as a determination level value and an object is determined as present when the determination level value is greater than a first threshold value or when the the determination level value is less than the first threshold value and a second threshold value. Further, when the determination level value is greater than the second threshold value but does not meet the first threshold value and the difference between the first threshold value and the second threshold value is greater than a designated standard value, a target object is determined as present.

Description

物体検出システムObject detection system
 本発明は、電磁波、磁界または音波の反射現象を利用して検出対象物の有無を検出する物体検出システムに関するものである。 The present invention relates to an object detection system that detects the presence / absence of a detection target using an electromagnetic wave, a magnetic field, or a reflection phenomenon of a sound wave.
 反射型光電センサは、投光部から発せられた光を受光部で受け、受光レベルの変化により検出対象物の有無などを検出するものであるが、この反射型光電センサのうち、投光部から発せられた光を反射部(リフレクタなど)で反射させ受光部に到達させる型式のものは、回帰反射型光電センサなどと称されている。 The reflection type photoelectric sensor receives light emitted from the light projecting unit at the light receiving unit, and detects the presence or absence of a detection object by a change in the light receiving level. Among the reflection type photoelectric sensors, the light projecting unit The type that reflects the light emitted from the light by a reflecting part (reflector or the like) and reaches the light receiving part is called a regressive reflection type photoelectric sensor or the like.
 この回帰反射型光電センサは、透光性を有する対象物(以下、透明体という)の検出に適するものとされている反面、光を反射させる表面を有する対象物(以下、鏡面反射体という)を正確に検知することが難しいという問題があった。そこで、回帰反射型光電センサを使用して、鏡面反射体を正確に検出する試みがなされ、様々な提案がなされている。そして、そのようなものとして、例えば、特開昭61-203522号公報に開示されている反射形光電スイッチ、特開平2-27632号公報に開示されている回帰反射型光電スイッチなどがある。これらの光電スイッチでは、受光部に到達する偏光の種類の違いを利用することで鏡面反射体からの反射光であるのか、反射部からの反射光であるかを識別することで、鏡面反射体の有無を検出するものとなっている。 The retroreflective photoelectric sensor is suitable for detecting a translucent object (hereinafter referred to as a transparent body), but has an object that reflects light (hereinafter referred to as a specular reflector). There was a problem that it was difficult to detect accurately. Therefore, attempts have been made to accurately detect a specular reflector using a retroreflective photoelectric sensor, and various proposals have been made. As such, there are, for example, a reflective photoelectric switch disclosed in Japanese Patent Laid-Open No. 61-203522, a retroreflective photoelectric switch disclosed in Japanese Patent Laid-Open No. 2-27632, and the like. In these photoelectric switches, by using the difference in the type of polarized light reaching the light receiving unit, it is possible to identify whether the reflected light is from the specular reflector or the reflected light from the reflective unit. The presence or absence of is detected.
 また、近年流通している新たな商品に対処する試みもなされている。例えば、透過率の高い複雑な形状のPETボトルの検出を行なうものとして、特開2008-112629号公報に開示されている回帰反射型光電センサがある。この回帰反射型光電センサによれば、円偏光を投光する投光系と、逆円偏光と円偏光とが混在する光が入射された場合に逆円偏光を選択的に受光する受光系とが形成されたセンサ本体が、誤動作の原因となっていたPETボトルの複屈折を利用し、複屈折による偏光状態の乱れを光の減衰へ変換することで、透過率の高い複雑な形状のPETボトルの検出を可能としている。 Also, attempts have been made to deal with new products that have been distributed in recent years. For example, there is a retroreflective photoelectric sensor disclosed in Japanese Patent Application Laid-Open No. 2008-112629, which detects a PET bottle having a complex shape with high transmittance. According to this retroreflective photoelectric sensor, a light projecting system that projects circularly polarized light, and a light receiving system that selectively receives reverse circularly polarized light when mixed light of reverse circularly polarized light and circularly polarized light is incident. The sensor body formed of PET utilizes the birefringence of the PET bottle that has caused the malfunction, and converts the polarization state disturbance due to the birefringence into the attenuation of light. The bottle can be detected.
特開昭61-203522号公報JP-A-61-203522 特開平2-27632号公報JP-A-2-27632 特開2008-112629号公報JP 2008-112629 A
 しかしながら、上記従来の光電センサのように、偏光の種類の違いを利用するためには、光軸の調整が難しく、また、多種多数のフィルタや偏光板が必要となり、設定や調整が難しいという問題があった。 However, as in the conventional photoelectric sensor, in order to use the difference in the type of polarization, it is difficult to adjust the optical axis, and a large number of filters and polarizing plates are required, which makes setting and adjustment difficult. was there.
 そこで本発明は、簡単な構成で、設定や調整も容易でありながら、鏡面反射体や透明体を含む様々な検出対象物の検出を可能とする物体検出システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an object detection system capable of detecting various detection objects including a specular reflector and a transparent body while having a simple configuration and being easy to set and adjust.
 本発明に係る第一の物体検出システムは、電磁波、磁界または音波の発生手段と、第一検出手段と、第二検出手段とを備える。前記第一検出手段と前記第二検出手段の検出軸のなす角は、検出対象物で反射された前記電磁波、磁界または音波の検出において有意となり、前記検出対象物の有無を判断する対象領域から離れた領域を経て前記第一検出手段または前記第二検出手段に至る前記電磁波、磁界または音波の検出において影響の無い大きさとする。そして、前記第一検出手段による第一検出レベル値と、前記第二検出手段による前記第二検出レベル値の和、または、前記第一検出レベル値および前記第二検出レベル値のいずれかを判断レベル値とし、前記判断レベル値が第一閾値より大きいとき、または前記第一閾値より小さい第二閾値より小さいときに前記検出対象物が有ると判断する。また、前記判断レベル値が前記第二閾値より大きく前記第一閾値に満たず、前記第一検出レベル値と前記第二検出レベル値の差が所定の基準値より大きいときに前記検出対象物が有ると判断する。 A first object detection system according to the present invention includes electromagnetic wave, magnetic field or sound wave generation means, first detection means, and second detection means. The angle formed by the detection axes of the first detection means and the second detection means becomes significant in the detection of the electromagnetic wave, the magnetic field, or the sound wave reflected by the detection target, and from the target region for determining the presence or absence of the detection target. The size of the electromagnetic wave, the magnetic field, or the acoustic wave that reaches the first detection unit or the second detection unit through a distant area is not affected. Then, the sum of the first detection level value by the first detection means and the second detection level value by the second detection means, or either the first detection level value or the second detection level value is determined. It is determined as a level value, and when the determination level value is larger than the first threshold value or smaller than the second threshold value smaller than the first threshold value, it is determined that the detection object is present. Further, when the determination level value is larger than the second threshold value and less than the first threshold value, and the difference between the first detection level value and the second detection level value is larger than a predetermined reference value, the detection object is Judge that there is.
 本発明に係る第二の物体検出システムは、第一発生手段と、第二発生手段と、前記第一発生手段および前記第二発生手段で発生させた電磁波、磁界または音波の検出手段とを備える。そして、前記第一発生手段から検出対象物の有無を判断する対象領域を経て前記検出手段に至る前記電磁波、磁界または音波の検出レベルを第一検出レベル値とし、前記第二発生手段から前記対象領域を経て前記検出手段に至る前記電磁波、磁界または音波の検出レベルを第二検出レベル値とし、前記第一検出レベル値と前記第二検出レベル値の和、または、前記第一検出レベル値および前記第二検出レベル値のいずれかを判断レベル値とし、前記判断レベル値が第一閾値より大きいとき、または前記第一閾値より小さい第二閾値より小さいときに検知対象物が有ると判断する。また、前記判断レベル値が前記第二閾値より大きく前記第一閾値に満たず、前記第一検出レベル値と前記第二検出レベル値の差が所定の基準値より大きいときに前記検出対象物が有ると判断する。 A second object detection system according to the present invention includes first generation means, second generation means, and detection means for electromagnetic waves, magnetic fields, or sound waves generated by the first generation means and the second generation means. . Then, the detection level of the electromagnetic wave, magnetic field, or sound wave that reaches the detection unit through the target region for determining the presence or absence of the detection target from the first generation unit is set as a first detection level value, and the target from the second generation unit The detection level of the electromagnetic wave, magnetic field, or sound wave that reaches the detection means through a region is set as a second detection level value, or the sum of the first detection level value and the second detection level value, or the first detection level value and One of the second detection level values is set as a determination level value, and when the determination level value is larger than the first threshold value or smaller than the second threshold value smaller than the first threshold value, it is determined that there is a detection target. Further, when the determination level value is larger than the second threshold value and less than the first threshold value, and the difference between the first detection level value and the second detection level value is larger than a predetermined reference value, the detection object is Judge that there is.
 第二の物体検出システムにおいて、前記第一発生手段で発生させた前記電磁波、磁界または音波を受けて生成された時分割検出レベルを前記第一検出レベル値とし、前記第二発生手段で発生させた前記電磁波、磁界または音波を受けて生成されたもう一つの時分割受光レベルを前記第二検出レベル値としてもよい。 In the second object detection system, a time-division detection level generated by receiving the electromagnetic wave, magnetic field or sound wave generated by the first generation unit is set as the first detection level value, and is generated by the second generation unit. Another time division light reception level generated by receiving the electromagnetic wave, magnetic field or sound wave may be used as the second detection level value.
 第一の物体検出システムは、前記発生手段と、前記第一検出手段と、前記第二検出手段の組が複数ならべて設置され、前記組の各々が子局を介して共通データ信号線に接続されたものであってもよい。この場合、前記共通データ信号線には、制御部に接続された親局が接続される。前記親局は、所定の周期の伝送クロックに同期した所定のタイミング信号を発生するためのタイミング発生手段を有し、前記タイミング信号の制御下で、前記制御部からの制御データの値に応じて、制御データ信号として一連のパルス状信号を前記共通データ信号線に出力すると共に、前記タイミング信号の制御下で、前記伝送クロックの1周期毎に、前記子局を介して前記一連のパルス状信号に重畳された検出データ信号のデータ値を抽出し、これを前記制御部に引き渡す。また、前記子局の各々は、前記タイミング信号の制御下で、前記制御データ信号の各データの値を抽出して、前記各データの値の中の自局に対応するデータを対応する前記第一発生手段または前記第二発生手段に引き渡し、および、前記タイミング信号の制御下で、前記伝送クロックの1周期毎に、対応する前記第一検出手段および前記第二検出手段の検出データの値に応じた前記検出データ信号を、前記一連のパルス状信号に重畳する。 In the first object detection system, a plurality of sets of the generation means, the first detection means, and the second detection means are installed, and each of the sets is connected to a common data signal line via a slave station. It may be what was done. In this case, a master station connected to the control unit is connected to the common data signal line. The master station has timing generation means for generating a predetermined timing signal synchronized with a transmission clock having a predetermined cycle, and according to the value of control data from the control unit under the control of the timing signal And outputting a series of pulse signals as control data signals to the common data signal line, and under the control of the timing signal, the series of pulse signals via the slave station for each cycle of the transmission clock. The data value of the detection data signal superimposed on is extracted and delivered to the control unit. Further, each of the slave stations extracts a value of each data of the control data signal under the control of the timing signal, and corresponds to the data corresponding to the own station in the value of each data. One generation means or the second generation means, and under the control of the timing signal, the detection data values of the first detection means and the second detection means corresponding to each cycle of the transmission clock. The corresponding detection data signal is superimposed on the series of pulse signals.
 第二の物体検出システムは、前記第一発生手段と、前記第二発生手段と、前記受信手段の組が複数ならべて設置され、前記組の各々が子局を介して共通データ信号線に接続されたものであってもよい。この場合、前記共通データ信号線には、制御部に接続された親局が接続される。前記親局は、所定の周期の伝送クロックに同期した所定のタイミング信号を発生するためのタイミング発生手段を有し、前記タイミング信号の制御下で、前記制御部からの制御データの値に応じて、制御データ信号として一連のパルス状信号を前記共通データ信号線に出力すると共に、前記タイミング信号の制御下で、前記伝送クロックの1周期毎に、前記子局を介して前記一連のパルス状信号に重畳された検出データ信号のデータ値を抽出し、これを前記制御部に引き渡す。また、前記子局の各々は、前記タイミング信号の制御下で、前記制御データ信号の各データの値を抽出して、前記各データの値の中の自局に対応するデータを対応する前記第一発生手段または前記第二発生手段に引き渡し、および、前記タイミング信号の制御下で、前記伝送クロックの1周期毎に、対応する前記検出手段の検出データの値に応じた前記検出データ信号を、前記一連のパルス状信号に重畳する。 The second object detection system includes a plurality of sets of the first generation means, the second generation means, and the reception means, and each of the sets is connected to a common data signal line via a slave station. It may be what was done. In this case, a master station connected to the control unit is connected to the common data signal line. The master station has timing generation means for generating a predetermined timing signal synchronized with a transmission clock having a predetermined cycle, and according to the value of control data from the control unit under the control of the timing signal And outputting a series of pulse signals as control data signals to the common data signal line, and under the control of the timing signal, the series of pulse signals via the slave station for each cycle of the transmission clock. The data value of the detection data signal superimposed on is extracted and delivered to the control unit. Further, each of the slave stations extracts a value of each data of the control data signal under the control of the timing signal, and corresponds to the data corresponding to the own station in the value of each data. The detection data signal according to the value of the detection data of the corresponding detection means for each cycle of the transmission clock under the control of the timing signal, and delivered to one generation means or the second generation means, It is superimposed on the series of pulse signals.
 第一および第二の物体検出システムにおいて、前記第一閾値と、前記第二閾値と、前記基準値が、前記共通データ信号線を介して伝送されてもよい。 In the first and second object detection systems, the first threshold value, the second threshold value, and the reference value may be transmitted via the common data signal line.
 本発明に係る物体検出システムでは、検出レベルを、検出対象物が存在しない場合の検出レベル(不存在時検出レベル)に対し大きくなる側と小さくなる側のそれぞれにおいて閾値(第一閾値または第二閾値)と比較し、更に、二つの異なる検出から得られる2通りの検出レベル(第一検出レベル値と第二検出レベル値)を一組とし、これらのレベル差を上記閾値と異なる基準と比較して検出対象物の有無を判断することにより、鏡面反射体や透明体を含む様々な検知対象物の検出が可能となる。 In the object detection system according to the present invention, the threshold level (the first threshold value or the second threshold value) is set on each of the detection level when the detection target is not present (the detection level when there is no detection object) and on the smaller side. In addition, two detection levels (first detection level value and second detection level value) obtained from two different detections are set as a set, and the difference between these levels is compared with a reference different from the above threshold value. By determining the presence / absence of the detection object, various detection objects including a specular reflector and a transparent body can be detected.
 検出対象物の存在する領域を経て検出手段に至る電磁波、磁界または音波の検出レベルは、例えば、鏡面反射体、反射体、透明体、不透明体、黒体(非反射体)の順に検出用光線の検出レベルが弱くなっていくように、検出対象物の性状に応じて段階的に変化する。ところが、この検出レベルは、検出対象物が存在しない場合の検出レベル(不存在時検出レベル)よりも大きくなるものと小さくなるものとの2通りがあるため、不存在時検出レベルとの単なる比較では、検出対象物の有無を判断することができない。これに対し、本発明では、検出レベルを、不存在時検出レベルに対し大きくなる側と小さくなる側のそれぞれにおいて閾値(第一閾値または第二閾値)と比較するため、不存在時検出レベルを挟んで段階的に変化する検出レベルから検出対象物の有無を判断することができる。 The detection level of the electromagnetic wave, magnetic field, or sound wave that reaches the detection means through the region where the detection target exists is, for example, a detection light beam in the order of specular reflector, reflector, transparent body, opaque body, and black body (non-reflector). The detection level changes step by step in accordance with the properties of the detection target so that the detection level decreases. However, there are two detection levels, one that is higher than the detection level when the detection target is not present (the detection level when no object is present) and one that is smaller than the detection level. In this case, it is impossible to determine the presence or absence of the detection target. On the other hand, in the present invention, since the detection level is compared with the threshold value (first threshold value or second threshold value) on each of the increase side and the decrease side with respect to the detection level in the absence, The presence / absence of the detection target can be determined from the detection level that changes step by step.
 ただし、不存在時検出レベルに対し大きくなる側では第一閾値より大きいことが、不存在時検出レベルに対し小さくなる側では第二閾値より小さいことが、検出対象物を有ると判断する条件となるため、検出レベルが2つの閾値の間のレベルとなる場合には、検出対象物の有無を判断できないことになる。そこで、二つの異なる検出から得られる2通りの検出レベル(第一検出レベル値と第二検出レベル値)を一組とし、これらのレベル差を上記閾値と異なる基準との比較において、検出対象物の有無を判断することとしている。 However, the condition for determining that there is an object to be detected is that it is greater than the first threshold value on the side that is greater than the detection level when there is no detection, and that it is less than the second threshold value on the side that is smaller than the detection level when there is no presence Therefore, when the detection level is a level between two threshold values, it is impossible to determine the presence or absence of the detection target. Therefore, two detection levels (first detection level value and second detection level value) obtained from two different detections are set as a set, and the difference between these levels is compared with the above threshold and a reference different from the above threshold. It is decided to determine whether there is any.
 なお、二つの異なる検出は、第一の物体検出システムでは、第一検出手段と第二検出手段の検出軸のなす角を、検出対象物で反射された電磁波、磁界または音波の検出において有意となり、検出対象物の有無を判断する対象領域から離れた領域を経て第一検出手段または第二検出手段に至る電磁波、磁界または音波の検出において影響の無い大きさとすることで可能となる。また、第二の物体検出システムでは、第一発生手段と、第二発生手段と、第一発生手段および第二発生手段で発生させた電磁波、磁界または音波の検出手段を備えることで可能となる。 In the first object detection system, the two different detections are significant in the detection of the electromagnetic wave, magnetic field, or sound wave reflected by the detection target, with the angle formed by the detection axes of the first detection unit and the second detection unit. This can be achieved by setting the size so as not to affect the detection of the electromagnetic wave, magnetic field or sound wave that reaches the first detection means or the second detection means through a region away from the target region for determining the presence or absence of the detection target. In the second object detection system, the first generation means, the second generation means, and the electromagnetic wave, magnetic field, or sound wave detection means generated by the first generation means and the second generation means can be provided. .
 また、複数の領域で検出を行なうために、発生手段と検出手段の組の複数を並べて設置する必要がある場合には、所定の周期の伝送クロックに同期した所定のタイミング信号の制御下で、前記制御部からの制御データの値に応じて、前記伝送クロックの1周期毎に、制御データ信号と検出データ信号を授受する伝送方式が好ましい。この場合、伝送クロックの1周期毎に、発生手段の作動タイミングを得ることで、発生手段どうしの相互干渉を防ぎながら、複数の領域での検出を行なうことができる。 In addition, in order to perform detection in a plurality of areas, when it is necessary to install a plurality of sets of generating means and detecting means side by side, under the control of a predetermined timing signal synchronized with a transmission clock of a predetermined period, A transmission method is preferable in which a control data signal and a detection data signal are exchanged for each cycle of the transmission clock according to the value of control data from the control unit. In this case, by obtaining the operation timing of the generating means for each cycle of the transmission clock, detection in a plurality of areas can be performed while preventing mutual interference between the generating means.
本発明に係る物体検出システムの実施例における判断レベル値の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the judgment level value in the Example of the object detection system which concerns on this invention. 同システムの構成図である。It is a block diagram of the system. 制御部および親局の機能ブロック図である。It is a functional block diagram of a control part and a master station. 子局の機能ブロック図である。It is a functional block diagram of a slave station. 子局のシステムブロック図である。It is a system block diagram of a slave station. センサ部の検出原理を模式的に示し、(a)は検出対象物が有る場合の対象領域近傍の拡大平面図、(b)は検出対象物が無い場合の平面図である。The detection principle of a sensor part is shown typically, (a) is an enlarged plan view in the vicinity of the target area when there is a detection target, and (b) is a plan view when there is no detection target. 投光部から検出用光線の反射点までの距離と検出レベル値との関係を示すグラフである。It is a graph which shows the relationship between the distance from a light projection part to the reflective point of the light ray for a detection, and a detection level value. 親局のプログラムフローチャートである。It is a program flowchart of a master station. パラメータ送信時の伝送クロック信号の基本信号を模式的に示すタイムチャートである。It is a time chart which shows typically the basic signal of the transmission clock signal at the time of parameter transmission. 検出データ送信時の伝送クロック信号の基本信号を模式的に示すタイムチャートである。It is a time chart which shows typically the basic signal of the transmission clock signal at the time of detection data transmission. 子局の入出力処理プログラムフローチャートである。It is an input / output processing program flowchart of a slave station. 子局の検出処理プログラムフローチャートである。It is a detection processing program flowchart of a slave station. 子局の判断処理プログラムフローチャートである。6 is a flowchart of a slave station determination processing program. 子局に記憶されるパラメータを示すテーブルである。It is a table which shows the parameter memorized by a child station. 子局において生成される信号を伝送クロック信号と対比して示すタイムチャート図である。It is a time chart which shows the signal produced | generated in a slave station in contrast with a transmission clock signal. 本発明に係る物体検出システムの他の実施例におけるセンサ部の検出原理を模式的に示し、(a)は検出対象物が有る場合の対象領域近傍の拡大平面図、(b)は検出対象物が無い場合の平面図である。The detection principle of the sensor part in the other Example of the object detection system which concerns on this invention is shown typically, (a) is an enlarged plan view of the object area | region vicinity in case there exists a detection target object, (b) is a detection target object. It is a top view when there is no.
 図を参照しながら、本発明に係る物体検出システムの実施例を説明する。
 図2に示すように、この物体検出システムは、コンベア7上の搬送物を検出対象物6としてその有無を検出するもので、コンベア7の移動方向に沿って配置された複数のセンサ部4を備えている。センサ部4の各々は、対応する子局5を介して共通データ信号線DP、DNに接続され、共通データ信号線DP、DNには、また、制御部1に接続された親局2が接続されている。
An embodiment of the object detection system according to the present invention will be described with reference to the drawings.
As shown in FIG. 2, this object detection system detects the presence or absence of a transported object on a conveyor 7 as a detection object 6, and includes a plurality of sensor units 4 arranged along the moving direction of the conveyor 7. I have. Each of the sensor units 4 is connected to the common data signal lines DP and DN via the corresponding slave stations 5, and the master station 2 connected to the control unit 1 is also connected to the common data signal lines DP and DN. Has been.
 制御部1は、例えばプログラマブルコントローラ、コンピュータ等であり、センサ部4に対する制御データ13を送出する出力ユニット11と、センサ部4における検出結果としての監視データ14を受け取る入力ユニット12を有し、これら出力ユニット11と入力ユニット12には親局2が接続されている。 The control unit 1 is, for example, a programmable controller, a computer, and the like, and includes an output unit 11 that transmits control data 13 for the sensor unit 4 and an input unit 12 that receives monitoring data 14 as a detection result in the sensor unit 4. The master station 2 is connected to the output unit 11 and the input unit 12.
 親局2は、図3に示すように、出力データ部22、タイミング発生部23、親局出力部24、親局入力部25、および入力データ部26を備える。そして、共通データ信号線DP、DNに接続され、制御部1の出力ユニット11から制御データ13として受けた並列(パラレル)データを制御信号として共通データ信号線DP、DNに送出するとともに、センサ部4に対応する子局5から送出された検出データ信号を並列データに変換し、監視データ14として制御部1の入力ユニット12へ送出する。ここで、共通データ信号線DP、DNに送出される制御信号は、本発明における、一連のパルス状信号に相当するものであるが、以下、共通データ信号線DP、DNを流れる制御信号を伝送クロック信号というものとする。 As shown in FIG. 3, the master station 2 includes an output data unit 22, a timing generator 23, a master station output unit 24, a master station input unit 25, and an input data unit 26. The parallel data received as control data 13 from the output unit 11 of the control unit 1 is connected to the common data signal lines DP and DN, and is sent to the common data signal lines DP and DN as control signals. 4 is converted into parallel data and sent as monitoring data 14 to the input unit 12 of the control unit 1. Here, the control signals sent to the common data signal lines DP and DN correspond to a series of pulse signals in the present invention, but hereinafter, control signals flowing through the common data signal lines DP and DN are transmitted. This is called a clock signal.
 出力データ部22は、制御部1の出力ユニット11から制御データ13として受けた並列データをシリアルデータとして親局出力部24へ引き渡す。 The output data unit 22 delivers the parallel data received as the control data 13 from the output unit 11 of the control unit 1 to the master station output unit 24 as serial data.
 タイミング発生部23は、発振回路(OSC)31、親局アドレス設定手段32、タイミング発生手段33からなり、OSC31を基にタイミング発生手段33が、このシステムのタイミングクロックを生成し親局出力部24に引き渡す。 The timing generation unit 23 includes an oscillation circuit (OSC) 31, a master station address setting unit 32, and a timing generation unit 33. Based on the OSC 31, the timing generation unit 33 generates a timing clock of this system and generates a master station output unit 24. To hand over.
 親局出力部24は、制御データ発生手段34とラインドライバ35からなり、出力データ部22から受けたデータと、タイミング発生部23から受けたタイミングクロックに基づき、ラインドライバ35を介して共通データ信号線DP、DNに一連のパルス状信号として伝送クロック信号を送出する。 The master station output unit 24 includes a control data generation unit 34 and a line driver 35. Based on the data received from the output data unit 22 and the timing clock received from the timing generation unit 23, a common data signal is transmitted via the line driver 35. A transmission clock signal is sent as a series of pulse signals to the lines DP and DN.
 親局出力部24から共通データ信号線DP、DNに送出される伝送クロック信号のデータ値(制御データ)は、伝送クロック信号の1周期における電圧レベルの高い期間のパルス幅により表現される。伝送クロック信号は、図9に示すように、1周期の後半が高電位レベル(この実施例では+24V)と、前半が低電位レベル(この実施例では0Vまたは+12V)とされる。そして、高電位レベルの幅は、制御部1から入力される制御データ13の各データの値に応じて拡張され、この実施例では図9の破線で示す幅まで、すなわち、伝送クロック信号の1周期をt0とした時に(3/4)t0まで拡張される。ただし、その幅に制限はなく、伝送条件等により適宜調整すればよい。また、伝送クロック信号の1周期毎にはアドレスが割り当てられ、後述する子局5は、このアドレスをカウントする方式により、自局が受信すべき制御データを取り込む。そして、アドレスのカウントを行うための最初及び最後を決定するために、伝送クロック信号の最初と最後にはスタート信号(StartBit)及びエンド信号(図示は省略されている)が形成される。スタート信号は、伝送クロック信号の高電位レベルと同じ電位レベルであって、伝送クロック信号の1周期より長い信号とされる。一方、エンド信号は、伝送クロック信号の低電位レベルと同じレベルであって、伝送クロック信号の1周期より長くスタート信号より短い信号とされる。このエンド信号は、親局アドレス設定手段32に保持されている親局2に割り当てられたアドレスと一致した時点で形成される。 The data value (control data) of the transmission clock signal transmitted from the master station output unit 24 to the common data signal lines DP and DN is expressed by the pulse width of a period with a high voltage level in one cycle of the transmission clock signal. As shown in FIG. 9, the transmission clock signal has a high potential level (+ 24V in this embodiment) in the second half of one cycle and a low potential level (0V or + 12V in this embodiment) in the first half. The width of the high potential level is expanded according to the value of each data of the control data 13 input from the control unit 1, and in this embodiment, the width shown by the broken line in FIG. 9, that is, 1 of the transmission clock signal. When the period is t0, the period is extended to (3/4) t0. However, the width is not limited and may be adjusted as appropriate according to transmission conditions and the like. In addition, an address is assigned for each cycle of the transmission clock signal, and the slave station 5 described later takes in control data to be received by the local station by a method of counting this address. A start signal (StartBit) and an end signal (not shown) are formed at the beginning and end of the transmission clock signal in order to determine the beginning and the end for counting addresses. The start signal is a signal having the same potential level as the high potential level of the transmission clock signal and longer than one cycle of the transmission clock signal. On the other hand, the end signal is the same level as the low potential level of the transmission clock signal and is longer than one cycle of the transmission clock signal and shorter than the start signal. This end signal is formed at the time point when it matches the address assigned to the master station 2 held in the master station address setting means 32.
 親局入力部25は検出データ信号検出手段36と検出データ抽出手段37で構成され、入力データ部26へ入力データ信号を送出する。検出データ信号検出手段36は、共通データ信号線DP、DNを経由して子局5から送出された検出データ信号を検出する。子局5から送出される検出データ信号のデータ値は、伝送クロック信号における1周期の前半(低電位レベルの期間)の電圧レベルで表わされており、スタート信号が送信された後、子局5の各々から順次受け取るものとなっている。検出データ信号のデータ(検出データ)は、タイミング発生手段33の信号に同期して検出データ抽出手段37で抽出され、直列の入力データ信号として入力データ部26に送出される。入力データ部26は、親局入力部25から受け取った直列の入力データ信号を並列(パラレル)データに変換し、監視データ14として制御部1の入力ユニット12へ送出する。 The master station input unit 25 includes a detection data signal detection unit 36 and a detection data extraction unit 37, and transmits an input data signal to the input data unit 26. The detection data signal detection means 36 detects a detection data signal sent from the slave station 5 via the common data signal lines DP and DN. The data value of the detection data signal transmitted from the slave station 5 is represented by the voltage level of the first half (period of low potential level) of one cycle in the transmission clock signal. After the start signal is transmitted, the slave station Each of 5 is received sequentially. Data (detection data) of the detection data signal is extracted by the detection data extraction unit 37 in synchronization with the signal of the timing generation unit 33 and sent to the input data unit 26 as a serial input data signal. The input data unit 26 converts the serial input data signal received from the master station input unit 25 into parallel data, and sends it as monitoring data 14 to the input unit 12 of the control unit 1.
 図6のようにセンサ部4は、検出用光線を発光させる2つの投光部41a、41bを有する発生手段41と、検出用光線を受ける受光部42aを有する検出手段42と、検出用光線の反射手段43とを備える。反射手段43は、検知対象物6の有無を判断する対象領域3を挟んで、発生手段41および検出手段42に対向して配置され、回帰反射型センサを構成している。なお、この実施例においては、コンベア7上の所定搬送距離範囲が対象領域3となる。 As shown in FIG. 6, the sensor unit 4 includes a generating unit 41 having two light projecting units 41a and 41b for emitting a detection light beam, a detection unit 42 having a light receiving unit 42a for receiving the detection light beam, and a detection light beam. Reflection means 43. The reflection means 43 is disposed opposite to the generation means 41 and the detection means 42 with the target region 3 for determining the presence or absence of the detection target 6 interposed therebetween, and constitutes a regressive reflection type sensor. In this embodiment, the predetermined transport distance range on the conveyor 7 is the target area 3.
 発生手段41および検出手段42は子局5に接続され、子局5は、図4に示すように、マイクロコンピュータ・コントロール・ユニット(MCU)51、アドレス設定手段52、およびA/D変換器53を備える。MCU51は、図4、図5に示すように、CPU、RAM、ROMを備え、ROMには検出処理に必要なプログラム(PRG)が記憶されている。そして、検出データ、パラメータ、アドレスデータをRAMに記憶し、CPUの演算機能を用いて、検出に必要な情報を得るための処理が行なわれるものとなっている。発生手段41の投光部41a、41bは、このMCU51の出力端子La、Lbに接続され、投光タイミングの制御がなされている。一方、検出手段42の受光部42aの検出レベル値は、A/D変換器53を介して、入力端子ADATからMCU51へ入力される。 The generation means 41 and the detection means 42 are connected to the slave station 5, and the slave station 5 includes a microcomputer control unit (MCU) 51, an address setting means 52, and an A / D converter 53 as shown in FIG. Is provided. As shown in FIGS. 4 and 5, the MCU 51 includes a CPU, a RAM, and a ROM, and a program (PRG) necessary for detection processing is stored in the ROM. Then, detection data, parameters, and address data are stored in the RAM, and processing for obtaining information necessary for detection is performed using the arithmetic function of the CPU. The light projecting sections 41a and 41b of the generating means 41 are connected to the output terminals La and Lb of the MCU 51, and the light projecting timing is controlled. On the other hand, the detection level value of the light receiving unit 42 a of the detection unit 42 is input from the input terminal ADAT to the MCU 51 via the A / D converter 53.
 MCU51には、また、アドレス設定手段52で設定されたアドレス情報が入力端子ADRSから入力され、共通データ信号線DP、DNの間の電位差を分割抵抗R1、R2で分割して得られた分割信号が入力端子CKから入力される。更に、共通データ信号線DP、DNに検出データ信号を送出するためのout信号が出力端子OUTから出力され、A/D変換器53のイネーブル信号enが出力端子ENから出力される。このMCU51における処理の内容は後述する。 The MCU 51 also receives the address information set by the address setting means 52 from the input terminal ADRS, and the divided signal obtained by dividing the potential difference between the common data signal lines DP and DN by the dividing resistors R1 and R2. Is input from the input terminal CK. Further, an out signal for transmitting the detection data signal to the common data signal lines DP and DN is output from the output terminal OUT, and an enable signal en for the A / D converter 53 is output from the output terminal EN. The contents of processing in this MCU 51 will be described later.
 次に、センサ部4の検出原理について説明する。投光部41a、41bの各々が投光した検出用光線は、図6(a)に示すように、検出対象物6の異なる部位に到達し、そこで反射される。検出対象物6からの反射光は、反射面(検出対象物6の表面)に対する角度(反射角)が入射角と等しくなる場合(図6(a)の反射光D)が最も強く、反射角が大きくなるに従って弱くなる。具体的には、図6(a)の場合、投光部41bから受光部42aに至る反射光は反射角A1が0の場合に最も強く、反射角A1が大きくなるに従って弱くなり、投光部41aから受光部42aに至る反射光は反射角A2が入射角A0と等しい場合に最も強く、反射角A2が大きくなるに従って弱くなる。一方、検出用光線が反射される地点(反射点とする)が受光部42aから離れるほど、その反射点から受光部42aに至る反射光の反射角が大きくなり弱いものとなる。具体的には、図6(a)の場合、投光部41bから受光部42aに至る反射光の反射角A1は、投光部41aから受光部42aに至る反射光の反射角A2よりも大きいものとなり、投光部41aから受光部42aに至る検出用光線の方が投光部41bからのものより強くなる。従って、投光部41a、41bで投光され検出対象物6の表面で反射して受光部42aに至る検出用光線の検出レベルは、投光部41aからのものと投光部41bからのものでは異なることになる。 Next, the detection principle of the sensor unit 4 will be described. As shown in FIG. 6A, the detection light beams projected by the light projecting portions 41a and 41b reach different parts of the detection target 6, and are reflected there. The reflected light from the detection object 6 is the strongest when the angle (reflection angle) with respect to the reflection surface (the surface of the detection object 6) is equal to the incident angle (reflected light D in FIG. 6A). As the value increases, it becomes weaker. Specifically, in the case of FIG. 6A, the reflected light from the light projecting unit 41b to the light receiving unit 42a is the strongest when the reflection angle A1 is 0, and becomes weaker as the reflection angle A1 becomes larger. The reflected light from 41a to the light receiving unit 42a is the strongest when the reflection angle A2 is equal to the incident angle A0, and becomes weaker as the reflection angle A2 increases. On the other hand, as the point where the detection light beam is reflected (referred to as a reflection point) is further away from the light receiving unit 42a, the reflection angle of the reflected light from the reflection point to the light receiving unit 42a becomes larger and weaker. Specifically, in the case of FIG. 6A, the reflection angle A1 of the reflected light from the light projecting unit 41b to the light receiving unit 42a is larger than the reflection angle A2 of the reflected light from the light projecting unit 41a to the light receiving unit 42a. Thus, the detection light beam from the light projecting unit 41a to the light receiving unit 42a is stronger than that from the light projecting unit 41b. Accordingly, the detection levels of the detection light beams projected by the light projecting units 41a and 41b, reflected from the surface of the detection target 6 and reaching the light receiving unit 42a are those from the light projecting unit 41a and those from the light projecting unit 41b. Then it will be different.
 また、検出対象物6が無い場合における投光部41a、41bの各々から投光された検出用光線は、図6(b)に示すように、反射手段43に到達し、そこで反射される。このとき、投光部41aと投光部41bの光軸のなす角の差が無視できる程度となるように、反射手段43を投光手段41から十分な距離を保って配置することで、投光部41a、41bから投光され反射手段43で反射して受光部42aに至る検出用光線の検出レベルは、投光部41aからのものと投光部41bからのものとで差が無くなる。その現象を、図7を参照しながら説明する。図7は、検出レベルと、投光部41a、41bから検出用光線の反射点までの距離との関係を示すグラフである。子局5のMCU51への入力値として、投光部41aからの検出用光線を受けて入力端子ADATから入力される検出レベル値(第一検出レベル値)Pana、投光部41bからの検出用光線を受けて入力端子ADATから入力される検出レベル値(第二検出レベル値)Panb、それらの和(Pana+Panb)、およびそれらの差(Pana-Panb)は、投光部41a、41bから検出用光線の反射点までの距離に対し、図7に示すように変化する。ただし、図7では、検出原理の理解を容易にするため、検出レベル値の変化が強調されており、値そのものと距離との関係は正確ではない。 Further, as shown in FIG. 6B, the detection light beam projected from each of the light projecting portions 41a and 41b when there is no detection target 6 reaches the reflection means 43 and is reflected there. At this time, the reflecting unit 43 is arranged at a sufficient distance from the projecting unit 41 so that the difference between the angles of the optical axes of the projecting unit 41a and the projecting unit 41b is negligible. The detection level of the detection light beam projected from the light parts 41a and 41b and reflected by the reflecting means 43 to reach the light receiving part 42a is not different between the light level from the light projecting part 41a and the light level from the light projecting part 41b. This phenomenon will be described with reference to FIG. FIG. 7 is a graph showing the relationship between the detection level and the distance from the light projecting units 41a and 41b to the reflection point of the detection light beam. As an input value to the MCU 51 of the slave station 5, a detection level value (first detection level value) Pana input from the input terminal ADAT upon receiving a detection light beam from the light projecting unit 41 a, and a detection value from the light projecting unit 41 b A detection level value (second detection level value) Panb, a sum (Pana + Panb), and a difference (Pana−Panb) of the detection level value (second detection level value) received from the input terminal ADAT upon receiving the light beam are detected from the light projecting units 41a and 41b. The distance to the reflection point of the light beam changes as shown in FIG. However, in FIG. 7, the change in the detection level value is emphasized in order to facilitate understanding of the detection principle, and the relationship between the value itself and the distance is not accurate.
 一方、投光部41a、41bから投光され検出対象物6の表面で反射して受光部42aに至る検出用光線の検出レベルは、投光部41aからのものと投光部41bからのもののいずれであっても、検出対象物6の性状に応じて段階的に変化する。具体的には、検出対象物6が鏡面反射体である場合の検出レベルは大きくなり、検出用光線を殆ど反射させない非反射体である場合の検出レベルは極めて小さく、検出用光線の透過を許容する透明体である場合の検出レベルはこれらの検出レベルの間となる。更に、検出対象物6が無い場合の検出用光線は反射手段43で反射して受光部42aに至るため、その検出レベル(不存在時検出レベル)は検出対象物6が透明体である場合よりも大きいものとなる。そこで、まず、不存在時検出レベルに対し大きくなる側には鏡面反射体の検出レベルより小さい第一閾値S1を設け、小さくなる側には透明体の検出レベルより大きい第二閾値S2を設け、これら閾値と検出レベルとの比較により、検出対象物6の有無を判断することができる。 On the other hand, the detection level of the detection light beam projected from the light projecting units 41a and 41b and reflected from the surface of the detection target 6 to reach the light receiving unit 42a is that of the light projecting unit 41a and that of the light projecting unit 41b. In any case, it changes stepwise according to the properties of the detection object 6. Specifically, the detection level when the detection target 6 is a specular reflector is large, and the detection level when the detection target 6 is a non-reflector that hardly reflects the detection light beam is extremely low, and the detection light beam can be transmitted. In the case of a transparent body, the detection level is between these detection levels. Furthermore, since the detection light beam when there is no detection object 6 is reflected by the reflecting means 43 and reaches the light receiving unit 42a, the detection level (detection level when absent) is higher than that when the detection object 6 is a transparent body. Will also be big. Therefore, first, the first threshold value S1 smaller than the detection level of the specular reflector is provided on the side larger than the detection level in the absence, and the second threshold value S2 larger than the detection level of the transparent body is provided on the smaller side. The presence / absence of the detection target 6 can be determined by comparing the threshold value with the detection level.
 第一検出レベル値と第二検出レベル値の合計(Pana+Panb)を判断レベル値として、その経時変化を図1に示す。図1において、時刻t1は検出対象物6が対象領域3に進入したときであり、時刻t2は検出対象物6が対象領域3から出て行ったときとなる。そのため、時刻t1と時刻t2の間で、判断レベル値(Pana+Panb)は検出対象物6の性状に応じ変化している。実線の判断レベル値P1は第一閾値S1より大きいことから、検出対象物6として鏡面反射体が対象領域3の中に有ることがわかる。また、想像線の判断レベル値P2、P3は何れの場合も第二閾値S2よりも小さいことから、検出対象物6として透明体あるいは非反射体が対象領域3の中に有ることがわかる。 The total change (Pana + Panb) of the first detection level value and the second detection level value is taken as a judgment level value, and the change with time is shown in FIG. In FIG. 1, time t <b> 1 is when the detection target 6 has entered the target area 3, and time t <b> 2 is when the detection target 6 has left the target area 3. Therefore, the determination level value (Pana + Panb) changes according to the property of the detection target object 6 between time t1 and time t2. Since the judgment level value P1 of the solid line is larger than the first threshold value S1, it can be seen that the specular reflector is present in the target region 3 as the detection target 6. Further, since the imaginary line judgment level values P2 and P3 are smaller than the second threshold value S2 in any case, it can be seen that a transparent body or a non-reflecting body is present in the target area 3 as the detection target 6.
 ところが、検出対象物6が、鏡面反射体よりも小さく透明体よりも大きい検出レベル値となるような反射をさせる反射体であった場合、判断レベル値は第一閾値S1と第二閾値S2の間となり、その有無を判断することができない。そこで、この場合は、第一検出レベル値と第二検出レベル値の差による判断を行なう。上記のように、検出対象物6が対象領域3に有る場合、第一検出レベル値と第二検出レベル値とは異なるものとなるため、その差が、誤差を考慮した所定の基準値より大きい場合は、第一検出レベル値と第二検出レベル値が異なっていると判断し、検出対象物6が有ると判断できる。 However, when the detection target 6 is a reflector that makes a reflection that is smaller than the specular reflector and larger than the transparent body, the determination level value is the first threshold value S1 and the second threshold value S2. It is not possible to judge the presence or absence. Therefore, in this case, a determination is made based on the difference between the first detection level value and the second detection level value. As described above, when the detection target 6 is in the target region 3, the first detection level value and the second detection level value are different, so that the difference is larger than a predetermined reference value considering an error. In this case, it is determined that the first detection level value and the second detection level value are different, and it can be determined that the detection target 6 is present.
 なお、検出対象物6の性状に応じて段階的に変化する傾向は、第一検出レベル値と第二検出レベル値のどちらも同じため、第一閾値および第二閾値と比較する判断レベル値は、第一検出レベル値または第二検出レベル値のどちらかのみをとしてもよい。 In addition, since the tendency which changes in steps according to the property of the detection target object 6 is the same for both the first detection level value and the second detection level value, the determination level value to be compared with the first threshold value and the second threshold value is Only one of the first detection level value and the second detection level value may be used.
 次に、この物体検出システムの親局2および子局5で実行される処理内容について、フローチャート図を参照しながら説明する。
 親局2では、図8に示すように、電源ONとされプログラムがスタートし(S1)、イニシャル処理(S2)が終了すると、パラメータの変更の有無の判断がなされる(S3)。このパラメータは、後述のように、上記第一閾値、第二閾値、および基準値(第一検出レベル値と第二検出レベル値の差と比較される値)の組の複数に付与される識別番号である。この物体検出システムでは、これらパラメータを適宜変更することで、コンベア7の搬送物が変わり、検出対象物6の性状が変わった場合への適応を可能としている。
Next, processing contents executed in the master station 2 and the slave station 5 of this object detection system will be described with reference to a flowchart.
In the master station 2, as shown in FIG. 8, when the power is turned on and the program is started (S1) and the initial process (S2) is completed, it is determined whether or not there is a parameter change (S3). As will be described later, this parameter is an identification given to a plurality of sets of the first threshold value, the second threshold value, and a reference value (a value to be compared with the difference between the first detection level value and the second detection level value). Number. In this object detection system, by appropriately changing these parameters, it is possible to adapt to the case where the conveyed item on the conveyor 7 changes and the property of the detection target 6 changes.
 パラメータの変更が有る場合は、伝送クロック信号におけるスタート信号を長いものとし(S4)、子局5において、パラメータ値の伝送であることの認識を可能とする。なお、短いスタート信号は、後述のように、検出データの伝送であることを子局5に認識させるものとなる。 If there is a parameter change, the start signal in the transmission clock signal is made long (S4), and the slave station 5 can recognize that the parameter value is transmitted. As will be described later, the short start signal causes the slave station 5 to recognize that the detection data is transmitted.
 長スタート信号を送出したら、それに続いて伝送クロック信号におけるアドレスを歩進し(S5)、そのアドレスに対応する伝送クロック信号のパルスの幅を変調した信号(図9参照)で各チャネルCHへパラメータデータを送信する(S6)。なお、チャネルCHは、センサ部4の各々に対し割り振られた識別番号となる。 When the long start signal is transmitted, the address in the transmission clock signal is incremented thereafter (S5), and a parameter (see FIG. 9) obtained by modulating the pulse width of the transmission clock signal corresponding to the address is set to each channel CH. Data is transmitted (S6). The channel CH is an identification number assigned to each of the sensor units 4.
 パラメータデータの送信が完了したら、続いて、短いスタート信号を送出し(S7)、検出データの受信を開始する。なお、パラメータの変更が無い場合、すなわち、上記ステップS3において無しと判断された場合は、ステップS3からこのステップS7に進むことになる。 When the transmission of the parameter data is completed, a short start signal is subsequently sent (S7), and reception of the detection data is started. If there is no change in the parameter, that is, if it is determined that there is no parameter in step S3, the process proceeds from step S3 to step S7.
 短いスタート信号により、伝送クロック信号が検出データを伝送するものと認識した子局5は、上記のように、伝送クロック信号において自局に対応するアドレスのパルスにおける1周期の前半の電圧レベルを変調して、検出データ信号を伝送クロック信号に重畳する(図10の破線)。そこで、親局2では、伝送クロック信号の短いスタート信号を送出したら、それに続いて伝送クロック信号におけるアドレスを歩進し(S8)、そのアドレスに対応する伝送クロック信号のパルスに重畳された検出データを受信する(S9)。そして、ステップS1に戻り上記一連の処理を繰り返し行なう。 The slave station 5 that has recognized that the transmission clock signal transmits the detection data by the short start signal modulates the voltage level of the first half of one cycle in the pulse of the address corresponding to the local station in the transmission clock signal as described above. Then, the detection data signal is superimposed on the transmission clock signal (broken line in FIG. 10). Therefore, in the master station 2, when a start signal having a short transmission clock signal is transmitted, the address in the transmission clock signal is subsequently incremented (S8), and detection data superimposed on the pulse of the transmission clock signal corresponding to the address is detected. Is received (S9). Then, the process returns to step S1 to repeat the above series of processing.
 子局5では、データの入出力を主に行なう処理(入出力処理)、検出対象物6の検出に必要な情報を得るための処理(検出処理)および検出処理で得られた情報に基づいて検出対象物6の有無を判断する処理(判断処理)を行なう。図11のフローチャートはデータ入出力処理を、図12のフローチャートは検出処理を、図13のフローチャートは判断処理を、それぞれ示すものである。 The slave station 5 is based on processing mainly for data input / output (input / output processing), processing for obtaining information necessary for detection of the detection target 6 (detection processing), and information obtained by the detection processing. Processing for determining the presence or absence of the detection target 6 (determination processing) is performed. The flowchart in FIG. 11 shows data input / output processing, the flowchart in FIG. 12 shows detection processing, and the flowchart in FIG. 13 shows determination processing.
 子局5での最初の処理として図11に示す入出力処理が行なわれる。この処理では、まず、電源ONとされプログラムがスタートし(S21)、イニシャル処理(S22)が終了すると、伝送クロック信号のスタート信号が長スタート信号であるかどうかの判断を行なう(S23)。長スタート信号である場合は、アドレス設定手段52で設定されている自局アドレスを読込む(S24)。そして、伝送クロック信号の周期をカウントすることで伝送クロック信号のアドレスを得て、そのアドレスを自局アドレスと比較する(S25)。そして、自局のアドレスであれば、そのときのデータをパラメータデータとして受信する(S26)。各パラメータデータに対しては、判断に使用する定数、すなわち、Kun(第一閾値)、Kdn(第二閾値)、Kcn(基準値)が予め定義され、各子局5に、図14に示すテーブルとして記憶されている。そして、パラメータデータを受信した子局5は、そのパラメータデータに対応する定数(Kun、Kdn、Kcn)をMCU51のRAMに記憶する(S27)。なお、この実施例のパラメータデータは2ビットの表現で4種類とされているが、その数に制限はなく、適宜変更してもよい。一方、自局のアドレスでない場合は、自局のアドレスとなるまで周期をカウントしアドレスを歩進する(S28)。 As the first process in the slave station 5, the input / output process shown in FIG. 11 is performed. In this process, first, the power is turned on and the program is started (S21). When the initial process (S22) is completed, it is determined whether or not the start signal of the transmission clock signal is a long start signal (S23). If it is a long start signal, the local station address set by the address setting means 52 is read (S24). Then, the address of the transmission clock signal is obtained by counting the period of the transmission clock signal, and the address is compared with the local station address (S25). If it is the address of the own station, the data at that time is received as parameter data (S26). For each parameter data, constants used for the determination, that is, Kun (first threshold value), Kdn (second threshold value), Kcn (reference value) are defined in advance, and each slave station 5 is shown in FIG. Stored as a table. Then, the slave station 5 that has received the parameter data stores constants (Kun, Kdn, Kcn) corresponding to the parameter data in the RAM of the MCU 51 (S27). Although the parameter data of this embodiment has four types in 2-bit expression, the number is not limited and may be changed as appropriate. On the other hand, if it is not the address of the own station, the cycle is counted until the address of the own station is reached, and the address is incremented (S28).
 Kun、Kdn、Kcnを記憶したら、ステップS23に戻り、再び、長スタート信号であるかどうかの判断を繰り返す。長スタート信号でない場合には、続いて短スタート信号であるかどうかの判断をする(S29)。短スタート信号でない場合には、短スタート信号となるまで同じ判断を繰り返し、短スタート信号の場合は、アドレス設定手段52で設定されている自局アドレスを読込む(S30)。続いて、伝送クロック信号の周期をカウントすることで伝送クロック信号のアドレスを得て、そのアドレスを自局アドレスと比較する(S31)。そして、自局のアドレスであれば、そのときにMCU51のRAMに記憶されている検出データに相応する信号を出力端子OUTからトランジスタTRのベースへ出力する。具体的には、検出データがon(検出対象物6の有ることを示すもの)であれば、トランジスタTRがONとなり、電流が流れることで電圧が降下し、電圧レベルが0Vとなり、その信号が共通データ信号線DP、DN上に伝送される。すなわち、図10に示すように、伝送クロック信号の1周期における低電圧期間の電圧が破線で示すように下がった形で共通データ信号線DP、DN上に検出データ信号として送出されることになる。(S33)。一方、自局のアドレスでない場合は、自局のアドレスとなるまで周期をカウントしアドレスを歩進する(S32)。 When Kun, Kdn, and Kcn are stored, the process returns to step S23, and the determination as to whether the signal is a long start signal is repeated. If it is not a long start signal, it is subsequently determined whether it is a short start signal (S29). If it is not a short start signal, the same determination is repeated until it becomes a short start signal. If it is a short start signal, the local station address set by the address setting means 52 is read (S30). Subsequently, the address of the transmission clock signal is obtained by counting the period of the transmission clock signal, and the address is compared with the local station address (S31). If it is the address of its own station, a signal corresponding to the detection data stored in the RAM of the MCU 51 at that time is output from the output terminal OUT to the base of the transistor TR. Specifically, if the detection data is on (indicating that the detection target 6 is present), the transistor TR is turned on, the current flows, the voltage drops, the voltage level becomes 0V, and the signal is It is transmitted on the common data signal lines DP and DN. That is, as shown in FIG. 10, the voltage of the low voltage period in one cycle of the transmission clock signal is sent out as a detection data signal on the common data signal lines DP and DN in a form that is lowered as shown by a broken line. . (S33). On the other hand, if it is not the address of the own station, the cycle is counted until the address of the own station is reached, and the address is incremented (S32).
 検出データを送出したら、次に、検出処理を行なう。この処理では、まず、投光部41aを点灯させるが、投光部41aの点灯にあたっては、MCU51の出力端子Laを”on”とする(S41)。なお、子局5における処理は、全てのセンサ部4、すなわち全てのチャネル(CH)において共通するため、図12および図13においてCH番号をnで表すものとする。従って、ステップS41のLanは、CHnにおける出力端子Laを意味する。 After sending the detection data, the detection process is performed next. In this processing, first, the light projecting unit 41a is turned on. When the light projecting unit 41a is turned on, the output terminal La of the MCU 51 is set to “on” (S41). Since the processing in the slave station 5 is common to all sensor units 4, that is, all channels (CH), the CH number is represented by n in FIGS. Therefore, Lan in step S41 means the output terminal La at CHn.
 ステップS41における、出力端子Laを”on”とするタイミングは、前記伝送クロック信号から得ることができる。すなわち、各チャネルのセンサ部4に対応する子局5が、伝送クロック信号において自局に割り当てられたアドレスが到来したとき、そのアドレスのパルス信号から、自局における投光部41a、41bの投光タイミングを得る。例えば、図15に示す例では、短スタート信号に続く最初の1周期とその次の1周期がCH1に割り当てられているため、最初の周期の開始(短スタート信号の立下り)がCH1の投光部41aの投光タイミング(La1を”on”とするタイミング)と、次の周期の開始がCH1の投光部41bの投光タイミング(Lb1を”on”とするタイミング)となる。CH2の投光部41aの投光タイミング(La2を”on”とするタイミング)、およびCH2の投光部41bの投光タイミング(Lb2を”on”とするタイミング)も同様である。このように、伝送クロック信号の各パルスにより投光タイミングを得ることで、投光部41aと投光部41bを、相互干渉させることなく作動させることができる。センサ部4としてみても同様に、各センサ部4どうしを相互干渉させることなく、各センサ部4を作動させることができる。 The timing at which the output terminal La is turned “on” in step S41 can be obtained from the transmission clock signal. That is, when the slave station 5 corresponding to the sensor unit 4 of each channel receives the address assigned to the local station in the transmission clock signal, the slave unit 5 transmits the light of the light projecting units 41a and 41b in the local station from the pulse signal of the address. Get light timing. For example, in the example shown in FIG. 15, since the first period following the short start signal and the next one period are allocated to CH1, the start of the first period (falling of the short start signal) is performed by CH1. The light projecting timing of the light unit 41a (the timing when La1 is turned “on”) and the start of the next cycle are the light projecting timing of the light projecting unit 41b of CH1 (the timing when Lb1 is turned “on”). The same applies to the light projecting timing of the CH2 light projecting unit 41a (the timing when La2 is "on") and the light projecting timing of the CH2 light projecting unit 41b (the timing when Lb2 is "on"). Thus, by obtaining the light projection timing from each pulse of the transmission clock signal, the light projecting unit 41a and the light projecting unit 41b can be operated without causing mutual interference. Similarly, when viewed as the sensor unit 4, the sensor units 4 can be operated without causing the sensor units 4 to interfere with each other.
 投光部41aが点灯し検出用光線が投光されると、その検出用光線を受けた受光部42aから検出レベル信号が出力され、その信号のAD変換が開始される(S42)。なお、ステップS42のPanaは、CHnにおける投光部41aからの検出用光線を受けた受光部42aの検出レベル信号によるデータを意味し、本発明の第一検出レベル値に相当する。 When the light projecting unit 41a is turned on and a detection light beam is projected, a detection level signal is output from the light receiving unit 42a that has received the detection light beam, and AD conversion of the signal is started (S42). Note that Pana in step S42 means data based on the detection level signal of the light receiving unit 42a that has received the detection light beam from the light projecting unit 41a in CHn, and corresponds to the first detection level value of the present invention.
 投光部41aを点灯させた後、所定時間が経過したら、MCU51の出力端子ENを”on”とし(S43)、前記イネーブル信号enを出力し、入力端子ADATからのデータの読み込みを行なう(S44)。そして、その読み込みデータを第一検出レベル値(Pana)としてRAMに記憶する(S45)。 When a predetermined time elapses after the light emitting unit 41a is turned on, the output terminal EN of the MCU 51 is set to “on” (S43), the enable signal en is output, and data is read from the input terminal ADAT (S44). ). Then, the read data is stored in the RAM as a first detection level value (Pana) (S45).
 第一検出レベル値が記憶されたら、出力端子Lanを”off”とし(S46)、投光部41aを消灯し、出力端子ENを”off”とする(S47)。そして、自局アドレスに1を加算する(S48)。なお、このステップS48の加算により、上記アドレスをカウントする方式において、次の周期のパルスも自局に対応するものであることの判断がなされることになる。ただし、その判断は、この検出処理においては本質ではないため、説明は省略する。 When the first detection level value is stored, the output terminal Lan is set to “off” (S46), the light projecting unit 41a is turned off, and the output terminal EN is set to “off” (S47). Then, 1 is added to the own station address (S48). Note that, in the method of counting the addresses, it is determined by the addition in step S48 that the next cycle pulse also corresponds to the own station. However, the determination is not essential in this detection process, and the description is omitted.
 投光部41aを用いた検出処理(ステップS41からステップS48)が終了したら、次に、投光部41bを用いた検出処理が行なわれる。この処理も、投光部41aを用いた検出処理と同様で、まず、MCU51の出力端子Lbを”on”とし(S51)、投光部41bを点灯する。投光部41bが点灯したら、その検出用光線を受けた受光部42aから検出レベル信号が出力され、その信号のAD変換が開始される(S52)。投光部41bを点灯させた後、所定時間が経過したら、MCU51の出力端子ENを”on”とし(S53)、イネーブル信号enを出力し、入力端子ADATからのデータの読み込みを行なう(S54)。そして、その読み込みデータを第二検出レベル値(Panb)としてRAMに記憶する(S55)。第二検出レベル値が記憶されたら、出力端子Lbnを”off”とし(S56)、投光部41bを消灯し、出力端子ENを”off”とし(S57)、検出処理が終了となる。 After the detection process using the light projecting unit 41a (from step S41 to step S48) is completed, the detection process using the light projecting unit 41b is performed. This process is the same as the detection process using the light projecting unit 41a. First, the output terminal Lb of the MCU 51 is set to “on” (S51), and the light projecting unit 41b is turned on. When the light projecting unit 41b is turned on, a detection level signal is output from the light receiving unit 42a that has received the detection light beam, and AD conversion of the signal is started (S52). When a predetermined time elapses after the light emitting unit 41b is turned on, the output terminal EN of the MCU 51 is set to “on” (S53), the enable signal en is output, and data is read from the input terminal ADAT (S54). . Then, the read data is stored in the RAM as the second detection level value (Panb) (S55). When the second detection level value is stored, the output terminal Lbn is set to “off” (S56), the light projecting unit 41b is turned off, the output terminal EN is set to “off” (S57), and the detection process ends.
 なお、上記検出処理において、第一検出レベル値と第二検出レベル値は、出力端子ENの”on”と”off”を適宜切り替えることで、二つの投光部41a、41bのそれぞれから投光される検出用光線を混同することなく区別された検出レベル値として得られているが、このようにして得られる検出レベル値が、本発明の時分割検出レベルである。 In the above detection processing, the first detection level value and the second detection level value are projected from each of the two light projecting units 41a and 41b by appropriately switching between “on” and “off” of the output terminal EN. The detected light beam is obtained as a distinguished detection level value without confusion. The detection level value thus obtained is the time-division detection level of the present invention.
 検出処理が終了したら、続いて、得られた第一検出レベル値(Pana)と第二検出レベル値(Panb)を利用した、図13に示す判断処理を行なう。この処理では、まず、PanaとPanbの和を判断レベル値とし、第一閾値(Kun)と比較する(S61)。Kunよりも大きければ検出対象物6が有ると判断し、検出データを”on”とし(S65)、判断処理終了となる。Kunよりも小さければ、続いて、第二閾値(Kdn)と比較する(S62)。そして、Kdnよりも小さければ検出対象物6が有ると判断し、検出データを”on”とし(S65)、判断処理終了となる。Kdnよりも大きければ、続いて、PanaとPanbの差を基準値(Kcn)と比較する(S63)。そして、Kcnよりも大きければ検出対象物6が有ると判断し、検出データを”on”とし(S65)、判断処理終了となる。Kcnよりも小さければ検出対象物6が無いと判断し、検出データを”off”とし(S64)、判断処理終了となる。 When the detection process is completed, the determination process shown in FIG. 13 is performed using the obtained first detection level value (Pana) and second detection level value (Panb). In this process, first, the sum of Pana and Panb is used as a judgment level value and compared with the first threshold (Kun) (S61). If it is larger than Kun, it is determined that the detection target 6 exists, the detection data is set to “on” (S65), and the determination process ends. If it is smaller than Kun, then it is compared with the second threshold (Kdn) (S62). If it is smaller than Kdn, it is determined that there is the detection object 6, the detection data is set to “on” (S65), and the determination process ends. If it is larger than Kdn, the difference between Pana and Panb is subsequently compared with a reference value (Kcn) (S63). If it is larger than Kcn, it is determined that the detection target 6 exists, the detection data is set to “on” (S65), and the determination process ends. If it is smaller than Kcn, it is determined that there is no detection object 6, the detection data is set to "off" (S64), and the determination process ends.
 判断処理終了後は、入出力処理のステップS23に戻り、同様の処理が繰り返し行なわれる。なお、判断処理のステップS64またはステップS65で確定された検出データは、入出力処理のステップS33で共通データ信号線DP、DNに送出されることになる。 After completion of the determination process, the process returns to step S23 of the input / output process, and the same process is repeated. The detection data determined in step S64 or step S65 of the determination process is sent to the common data signal lines DP and DN in step S33 of the input / output process.
 この実施例において、投光手段41は二つの投光部41a、41bを備え、受光手段42は単一の受光部42aを備えるものとなっているが、投光部を単一とし、受光部を二つとしても、同様の検出を行なうことができる。その場合の、検出原理を図16に模式的に示す。なお、図16において、図6に示す検出原理と本質的に同じ部分には同符号を付すものとする。 In this embodiment, the light projecting means 41 is provided with two light projecting parts 41a and 41b, and the light receiving means 42 is provided with a single light receiving part 42a. Even if two are used, the same detection can be performed. FIG. 16 schematically shows the detection principle in that case. Note that, in FIG. 16, the same reference numerals are given to components that are essentially the same as the detection principle illustrated in FIG. 6.
 投光部41aが投光した検出用光線は、図16(a)に示すように、検出対象物6に到達しそこで反射されるが、このときの反射光は、反射面(検出対象物6の表面)に対する角度(反射角)が入射角と等しくなる場合(図16(a)の反射光D)が最も強く、反射角が大きくなるに従って弱くなる。一方、検出用光線が反射される地点(反射点とする)から受光部42a或いは42bが離れるほど、それらに至る反射光の反射角が大きくなり弱いものとなる。図16(a)の場合、投光部41aから受光部42aに至る反射光Daの反射角A1は、投光部41aから受光部42bに至る反射光Dbの反射角A2よりも小さいものとなり、投光部41aから受光部42aに至る検出用光線の方が受光部42bに至るものより強くなる。従って、投光部41aで投光され検出対象物6の表面で反射して受光部42aに至る検出用光線の検出レベルと、投光部41bに至る検出用光線の検出レベルは異なるものとなり、図1~図15に示す実施例と同様に検出することができる。 As shown in FIG. 16A, the detection light beam projected by the light projecting unit 41a reaches the detection object 6 and is reflected there. The reflected light at this time is reflected on the reflection surface (detection object 6). When the angle (reflection angle) with respect to the surface of the light is equal to the incident angle (reflected light D in FIG. 16A) is the strongest, and becomes weaker as the reflection angle increases. On the other hand, the farther the light receiving unit 42a or 42b is from the point where the detection light beam is reflected (referred to as a reflection point), the greater the reflection angle of the reflected light reaching them, and the weaker it becomes. In the case of FIG. 16A, the reflection angle A1 of the reflected light Da from the light projecting unit 41a to the light receiving unit 42a is smaller than the reflection angle A2 of the reflected light Db from the light projecting unit 41a to the light receiving unit 42b. The detection light beam from the light projecting unit 41a to the light receiving unit 42a is stronger than that from the light receiving unit 42b. Therefore, the detection level of the detection light beam that is projected by the light projecting unit 41a and reflected by the surface of the detection target 6 and reaches the light receiving unit 42a is different from the detection level of the detection light beam that reaches the light projecting unit 41b. Detection can be performed in the same manner as in the embodiment shown in FIGS.
 なお、この実施例では、各々の受光部42a、42bにおいて異なる検出を行なうため、図6に示すセンサ部4のように検出レベルを時分割する必要がない。また、投光手段41は、単一の投光部41aのみであることから、投光タイミングも単一となる。従って、各チャネルに割り当てる、伝送クロック信号におけるパルスは1周期のみでよい。 In this embodiment, since each of the light receiving parts 42a and 42b performs different detection, it is not necessary to time-divide the detection level as in the sensor part 4 shown in FIG. Further, since the light projecting means 41 is only a single light projecting unit 41a, the light projecting timing is also single. Therefore, only one cycle of pulses in the transmission clock signal allocated to each channel is required.
1  制御部
2  親局
3  対象領域
4  センサ部
5  子局
6  検出対象物
7  コンベア
11 出力ユニット
12 入力ユニット
13 制御データ
14 監視データ
22 出力データ部
23 タイミング発生部
24 親局出力部
25 親局入力部
26 入力データ部
32 タイミング発生手段
33 親局アドレス設定手段
34 制御データ発生手段
35 ラインドライバ
36 検出データ信号検出手段
37 検出データ抽出手段
41 発生手段
41a、41b 投光部
42 検出手段
42a、42b 受光部
43 反射手段
51 MCU
52 アドレス設定手段
53 A/D変換器
DP、DN 共通データ信号線
R1、R2 抵抗
TR トランジスタ
 
DESCRIPTION OF SYMBOLS 1 Control part 2 Master station 3 Target area 4 Sensor part 5 Slave station 6 Detection target 7 Conveyor 11 Output unit 12 Input unit 13 Control data 14 Monitoring data 22 Output data part 23 Timing generation part 24 Parent station output part 25 Parent station input Unit 26 input data unit 32 timing generation unit 33 master station address setting unit 34 control data generation unit 35 line driver 36 detection data signal detection unit 37 detection data extraction unit 41 generation unit 41a, 41b light projecting unit 42 detection unit 42a, 42b light reception Part 43 Reflecting means 51 MCU
52 Address setting means 53 A / D converter DP, DN Common data signal line R1, R2 Resistor TR Transistor

Claims (6)

  1.  電磁波、磁界または音波の発生手段と、第一検出手段と、第二検出手段とを備え、前記第一検出手段と前記第二検出手段の検出軸のなす角を、検出対象物で反射された前記電磁波、磁界または音波の検出において有意となり、前記検出対象物の有無を判断する対象領域から離れた領域を経て前記第一検出手段または前記第二検出手段に至る前記電磁波、磁界または音波の検出において影響の無い大きさとし、
     前記第一検出手段による第一検出レベル値と、前記第二検出手段による前記第二検出レベル値の和、または、前記第一検出レベル値および前記第二検出レベル値のいずれかを判断レベル値とし、前記判断レベル値が第一閾値より大きいとき、または前記第一閾値より小さい第二閾値より小さいときに前記検出対象物が有ると判断し、
     前記判断レベル値が前記第二閾値より大きく前記第一閾値に満たず、前記第一検出レベル値と前記第二検出レベル値の差が所定の基準値より大きいときに前記検出対象物が有ると判断することを特徴とする物体検出システム。
    An electromagnetic wave, a magnetic field, or a sound wave generating means, a first detecting means, and a second detecting means are provided, and an angle formed by the detection axes of the first detecting means and the second detecting means is reflected by a detection object. Detection of the electromagnetic wave, magnetic field, or sound wave that becomes significant in the detection of the electromagnetic wave, magnetic field, or sound wave, and that reaches the first detection means or the second detection means through a region away from the target region for determining the presence or absence of the detection object The size has no effect on
    The sum of the first detection level value by the first detection means and the second detection level value by the second detection means, or a determination level value for either the first detection level value or the second detection level value And when the determination level value is larger than the first threshold value or smaller than the second threshold value smaller than the first threshold value, it is determined that the detection object is present,
    The detection object is present when the determination level value is greater than the second threshold value and less than the first threshold value, and the difference between the first detection level value and the second detection level value is greater than a predetermined reference value. An object detection system characterized by judging.
  2.  第一発生手段と、第二発生手段と、前記第一発生手段および前記第二発生手段で発生させた電磁波、磁界または音波の検出手段とを備え、
     前記第一発生手段から検出対象物の有無を判断する対象領域を経て前記検出手段に至る前記電磁波、磁界または音波の検出レベルを第一検出レベル値とし、前記第二発生手段から前記対象領域を経て前記検出手段に至る前記電磁波、磁界または音波の検出レベルを第二検出レベル値とし、
     前記第一検出レベル値と前記第二検出レベル値の和、または、前記第一検出レベル値および前記第二検出レベル値のいずれかを判断レベル値とし、前記判断レベル値が第一閾値より大きいとき、または前記第一閾値より小さい第二閾値より小さいときに検知対象物が有ると判断し、
     前記判断レベル値が前記第二閾値より大きく前記第一閾値に満たず、前記第一検出レベル値と前記第二検出レベル値の差が所定の基準値より大きいときに前記検出対象物が有ると判断することを特徴とする物体検出システム。
    A first generating means; a second generating means; and an electromagnetic wave, magnetic field or sound wave detecting means generated by the first generating means and the second generating means,
    The detection level of the electromagnetic wave, magnetic field, or sound wave that reaches the detection unit through the target region for determining the presence or absence of the detection target from the first generation unit is set as a first detection level value, and the target region is determined from the second generation unit. The detection level of the electromagnetic wave, magnetic field or sound wave that reaches the detection means via the second detection level value,
    The sum of the first detection level value and the second detection level value or one of the first detection level value and the second detection level value is set as a determination level value, and the determination level value is larger than the first threshold value. Or when it is smaller than the second threshold smaller than the first threshold,
    The detection object is present when the determination level value is greater than the second threshold value and less than the first threshold value, and the difference between the first detection level value and the second detection level value is greater than a predetermined reference value. An object detection system characterized by judging.
  3.  前記第一発生手段で発生させた前記電磁波、磁界または音波を受けて生成された時分割検出レベルを前記第一検出レベル値とし、前記第二発生手段で発生させた前記電磁波、磁界または音波を受けて生成されたもう一つの時分割検出レベルを前記第二検出レベル値とする請求項2に記載の物体検出システム。 The time division detection level generated by receiving the electromagnetic wave, magnetic field or sound wave generated by the first generation means is set as the first detection level value, and the electromagnetic wave, magnetic field or sound wave generated by the second generation means is The object detection system according to claim 2, wherein the second detection level value is another time-division detection level generated in response.
  4.  前記発生手段と、前記第一検出手段と、前記第二検出手段の組が複数ならべて設置され、前記組の各々が子局を介して共通データ信号線に接続され、
     前記共通データ信号線には、制御部に接続された親局が接続され、
     前記親局は、所定の周期の伝送クロックに同期した所定のタイミング信号を発生するためのタイミング発生手段を有し、前記タイミング信号の制御下で、前記制御部からの制御データの値に応じて、制御データ信号として一連のパルス状信号を前記共通データ信号線に出力すると共に、前記タイミング信号の制御下で、前記伝送クロックの1周期毎に、前記子局を介して前記一連のパルス状信号に重畳された検出データ信号のデータ値を抽出し、これを前記制御部に引き渡し、
     前記子局の各々は、前記タイミング信号の制御下で、前記制御データ信号の各データの値を抽出して、前記各データの値の中の自局に対応するデータを対応する前記発生手段に引き渡し、および、前記タイミング信号の制御下で、前記伝送クロックの1周期毎に、対応する前記第一検出手段および前記第二検出手段の検出データの値に応じた前記検出データ信号を、前記一連のパルス状信号に重畳する請求項1に記載の物体検出システム。
    A plurality of sets of the generating means, the first detecting means, and the second detecting means are installed, and each of the sets is connected to a common data signal line via a slave station,
    A master station connected to the control unit is connected to the common data signal line,
    The master station has timing generation means for generating a predetermined timing signal synchronized with a transmission clock having a predetermined cycle, and according to the value of control data from the control unit under the control of the timing signal And outputting a series of pulse signals as control data signals to the common data signal line, and under the control of the timing signal, the series of pulse signals via the slave station for each cycle of the transmission clock. The data value of the detection data signal superimposed on is extracted and delivered to the control unit,
    Each of the slave stations extracts the value of each data of the control data signal under the control of the timing signal, and sends the data corresponding to the own station in the value of each data to the corresponding generation unit. Under the control of the delivery and the timing signal, the detection data signal corresponding to the value of the detection data of the first detection means and the second detection means corresponding to each cycle of the transmission clock is sent to the series. The object detection system according to claim 1, wherein the object detection system is superimposed on the pulse signal.
  5.  前記第一発生手段と、前記第二発生手段と、前記受信手段の組が複数ならべて設置され、前記組の各々が子局を介して共通データ信号線に接続され、
     前記共通データ信号線には、制御部に接続された親局が接続され、
     前記親局は、所定の周期の伝送クロックに同期した所定のタイミング信号を発生するためのタイミング発生手段を有し、前記タイミング信号の制御下で、前記制御部からの制御データの値に応じて、制御データ信号として一連のパルス状信号を前記共通データ信号線に出力すると共に、前記タイミング信号の制御下で、前記伝送クロックの1周期毎に、前記子局を介して前記一連のパルス状信号に重畳された検出データ信号のデータ値を抽出し、これを前記制御部に引き渡し、
     前記子局の各々は、前記タイミング信号の制御下で、前記制御データ信号の各データの値を抽出して、前記各データの値の中の自局に対応するデータを対応する前記第一発生手段または前記第二発生手段に引き渡し、および、前記タイミング信号の制御下で、前記伝送クロックの1周期毎に、対応する前記検出手段の検出データの値に応じた前記検出データ信号を、前記一連のパルス状信号に重畳する請求項2または3に記載の物体検出システム。
    A plurality of sets of the first generating means, the second generating means, and the receiving means are installed, and each of the sets is connected to a common data signal line via a slave station,
    A master station connected to the control unit is connected to the common data signal line,
    The master station has timing generation means for generating a predetermined timing signal synchronized with a transmission clock having a predetermined cycle, and according to the value of control data from the control unit under the control of the timing signal And outputting a series of pulse signals as control data signals to the common data signal line, and under the control of the timing signal, the series of pulse signals via the slave station for each cycle of the transmission clock. The data value of the detection data signal superimposed on is extracted and delivered to the control unit,
    Each of the slave stations extracts the value of each data of the control data signal under the control of the timing signal, and the first generation corresponding to the data corresponding to the own station in the value of each data The detection data signal corresponding to the value of the detection data of the detection means corresponding to each cycle of the transmission clock under the control of the timing signal. The object detection system according to claim 2 or 3, wherein the object detection system is superimposed on the pulse signal.
  6.  前記第一閾値と、前記第二閾値と、前記基準値が、前記共通データ信号線を介して伝送される請求項4または5に記載の物体検出システム。
     
    The object detection system according to claim 4 or 5, wherein the first threshold value, the second threshold value, and the reference value are transmitted via the common data signal line.
PCT/JP2011/052119 2010-07-03 2011-02-02 Object detection system WO2012005017A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180032691.8A CN103109206B (en) 2010-07-03 2011-02-02 Object detecting system
JP2011514915A JP4757964B1 (en) 2010-07-03 2011-02-02 Object detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-152549 2010-07-03
JP2010152549 2010-07-03

Publications (1)

Publication Number Publication Date
WO2012005017A1 true WO2012005017A1 (en) 2012-01-12

Family

ID=45441005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052119 WO2012005017A1 (en) 2010-07-03 2011-02-02 Object detection system

Country Status (2)

Country Link
CN (1) CN103109206B (en)
WO (1) WO2012005017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137264A1 (en) * 2018-12-26 2020-07-02 独立行政法人石油天然ガス・金属鉱物資源機構 Investigation system, magnetism detection device, and investigation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871477A (en) * 1981-10-05 1983-04-28 エルヴイ−ン・ズイツク・ゲ−エムベ−ハ−・オプテツク・エレクトロニ−ク V-shaped optical obstacle
JPS61127472U (en) * 1985-01-29 1986-08-09
JPH10186050A (en) * 1996-12-24 1998-07-14 Omron Corp Photoelectric sensor, and paper feeding device using the photoelectric sensor
JP2005257464A (en) * 2004-03-11 2005-09-22 Matsushita Electric Ind Co Ltd Protective tape detecting method, battery manufacturing method using it, protective tape detector and battery manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203522A (en) * 1985-03-06 1986-09-09 オムロン株式会社 Reflection type photoelectric switch
JP4158828B2 (en) * 2006-10-30 2008-10-01 オムロン株式会社 Retroreflective photoelectric sensor, sensor body and retroreflective part of retroreflective photoelectric sensor
CN100573613C (en) * 2007-02-15 2009-12-23 中国石油化工股份有限公司 A kind of analog ultrasonic wave earthquake signal physical excitation, receiving system and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871477A (en) * 1981-10-05 1983-04-28 エルヴイ−ン・ズイツク・ゲ−エムベ−ハ−・オプテツク・エレクトロニ−ク V-shaped optical obstacle
JPS61127472U (en) * 1985-01-29 1986-08-09
JPH10186050A (en) * 1996-12-24 1998-07-14 Omron Corp Photoelectric sensor, and paper feeding device using the photoelectric sensor
JP2005257464A (en) * 2004-03-11 2005-09-22 Matsushita Electric Ind Co Ltd Protective tape detecting method, battery manufacturing method using it, protective tape detector and battery manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137264A1 (en) * 2018-12-26 2020-07-02 独立行政法人石油天然ガス・金属鉱物資源機構 Investigation system, magnetism detection device, and investigation method
JPWO2020137264A1 (en) * 2018-12-26 2021-09-30 独立行政法人石油天然ガス・金属鉱物資源機構 Exploration system, magnetic detector, and exploration method
JP7011272B2 (en) 2018-12-26 2022-01-26 独立行政法人石油天然ガス・金属鉱物資源機構 Exploration systems, magnetic detectors, and exploration methods

Also Published As

Publication number Publication date
CN103109206B (en) 2016-04-20
CN103109206A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
US20080304039A1 (en) Sensor array and sensor device for a sensor array
KR101165943B1 (en) Photo electric sensor and photo electric sensor system
US20080156968A1 (en) Light grid
US10901064B2 (en) Ultrasonic beacon tracking
CN104237962B (en) For making the optical unit of photoelectric barrier synchronous method and light curtain
JP5064197B2 (en) Photoelectric sensor
US7260657B2 (en) Serial data transferring apparatus
US20130214124A1 (en) Light curtain
CN105230129A (en) Lighting apparatus
JP2003207569A (en) Photoelectric proximity switch
CN101414004B (en) Method and system for presence detection
WO2012005017A1 (en) Object detection system
JP6838532B2 (en) Sensor device and measurement method
JP4757964B1 (en) Object detection system
US20140110571A1 (en) Motion sensor and method of operating the same
JP3678292B2 (en) Radiation pulse mediated sensor
CN100385341C (en) Scanning line alignment compensator and method for laser printer
JP3945813B1 (en) Photoelectric sensor
JP4860323B2 (en) Photoelectric sensor and photoelectric sensor system
WO2012111136A1 (en) Sensor head structure
JP2016080397A (en) User detection method, user detection device, and image forming apparatus
JP5826232B2 (en) Photoelectric sensor and sensor setting changing method
KR102198238B1 (en) Detection error prevention device of ultrasonic sensor
CN110265110B (en) Infusion consumable anti-counterfeiting device and anti-counterfeiting method
JP3471060B2 (en) Synchronous signal generator for image forming apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032691.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011514915

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803353

Country of ref document: EP

Kind code of ref document: A1