WO2012004849A1 - Coating composition and laminate - Google Patents

Coating composition and laminate Download PDF

Info

Publication number
WO2012004849A1
WO2012004849A1 PCT/JP2010/061400 JP2010061400W WO2012004849A1 WO 2012004849 A1 WO2012004849 A1 WO 2012004849A1 JP 2010061400 W JP2010061400 W JP 2010061400W WO 2012004849 A1 WO2012004849 A1 WO 2012004849A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
mass
component
parts
composition according
Prior art date
Application number
PCT/JP2010/061400
Other languages
French (fr)
Japanese (ja)
Inventor
田坂 道久
弘康 管野
Original Assignee
リケンテクノス株式会社
ビーエーエスエフ ソシエタス・ヨーロピア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社, ビーエーエスエフ ソシエタス・ヨーロピア filed Critical リケンテクノス株式会社
Priority to PCT/JP2010/061400 priority Critical patent/WO2012004849A1/en
Publication of WO2012004849A1 publication Critical patent/WO2012004849A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • C03C17/324Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a coating composition and a laminate, and more specifically, has excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, and also has water resistance.
  • the present invention relates to a coating composition and a laminate having excellent properties and weather resistance.
  • the coating composition of the present invention is particularly useful as a coating composition for glass and a coating composition for solar battery backsheet.
  • Patent Document 1 discloses a technique in which a pressure-sensitive adhesive layer is provided on one side of a plastic film such as polyethylene terephthalate, and this is adhered to glass. In such a technique, various characteristics required for the window glass are disclosed. Therefore, improvement was demanded.
  • the conventional pressure-sensitive adhesive layer is usually a two-component room-temperature-curing pressure-sensitive adhesive in which an epoxy resin is diluted with a solvent, and takes a long time (for example, 1 hour or more) until volatile organic compound (VOC) and odor are generated and dried. There were problems such as.
  • a single photovoltaic element is not used as it is, and generally several to several tens of photovoltaic elements are wired in series or in parallel, and the element is extended over a long period of time.
  • various packaging is performed, and a unit is formed as a solar cell module.
  • a solar cell module has an upper transparent material made of glass or transparent plastic on the surface that is exposed to sunlight, and a sealing material layer made of a thermoplastic resin such as an ethylene vinyl acetate copolymer (hereinafter referred to as EVA).
  • EVA ethylene vinyl acetate copolymer
  • the solar battery backsheet has excellent mechanical strength and excellent properties such as weather resistance, heat resistance, water resistance, light resistance, and chemical resistance to protect the contents of solar cells and leads.
  • a high gas barrier property that prevents intrusion of moisture, oxygen and the like is required.
  • the adhesion and adhesion stability with a sealing material layer such as EVA are important. This is because separation of the sealing material layer, discoloration, and corrosion of the wiring occur due to moisture permeation from the interface, which may affect the output of the module itself.
  • the inner surface is required to be white because of its contribution to improving power generation efficiency.
  • a fluororesin having good weather resistance, flame retardancy, and EVA which is often used as a sealing material, such as polyvinyl fluoride (PVF) and polyvinylidene fluoride (PVDF).
  • PVDF polyvinyl fluoride
  • the fluororesin simplex sheet has problems such as water vapor barrier properties, transparency, weather resistance, and flame retardancy.
  • Patent Document 2 discloses a film for sealing a back surface of a solar cell, which is a laminate of a polybutylene terephthalate (PBT) film containing a titanium oxide produced by a chlorine method.
  • PBT polybutylene terephthalate
  • adhesiveness with a sealing material layer such as EVA is inferior.
  • the present invention has been made in view of the above problems, and its purpose is to provide excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer. It is providing the coating composition and laminated body which are excellent in water resistance and a weather resistance while having it.
  • the present invention is as follows. 1. (A) 45 to 90 parts by mass of a fluororesin, and (b) a block copolymer or polyvinyl acetal resin 10 comprising a block (A) mainly composed of a methacrylic ester and a block (B) mainly composed of an acrylate ester. 55 parts by mass (however, the total of the components (a) and (b) is 100 parts by mass)
  • a coating composition comprising: 2.
  • 3. 3 The coating composition as described in 1 or 2 above, wherein the (b) block copolymer has a triblock structure. 4).
  • the (b) block copolymer is a block copolymer having an ABA type triblock structure (provided that the A block component is a methacrylic ester and the B block component is an acrylate ester). 4.
  • the (b) block copolymer has the following general formula-(A1)-(B)-(A2)- (Wherein (A1) and (A2) each represent a block component composed of a methacrylic acid alkyl ester, and (B) represents a block component composed of an acrylic acid alkyl ester). 5.
  • a glass coating composition comprising the coating composition according to any one of 1 to 9 above.
  • a coating composition for a solar battery backsheet comprising the coating composition according to any one of 1 to 9 above.
  • 12 The solar cell backsheet coating composition as described in 11 above, wherein the backsheet substrate is a polyester resin or a polycarbonate resin.
  • 13 A laminate obtained by coating the substrate with the coating composition according to any one of 1 to 9 above.
  • 14 14. The laminate according to 13, wherein the substrate is at least one selected from glass, polycarbonate resin, polyester resin, cellulose resin, and liquid crystal polymer. 15.
  • An extrusion composition comprising the coating composition according to any one of 1 to 8 above.
  • the organic solvent (d) is at least one selected from N-methylpyrrolidone (NMP), propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK).
  • NMP N-methylpyrrolidone
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • the organic solvent (d) is at least one selected from N-methylpyrrolidone (NMP), propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK).
  • NMP N-methylpyrrolidone
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • the coating composition of the present invention since the components (a) and (b) are blended in a specific quantitative relationship, glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene- It has excellent adhesion to vinyl acetate copolymer and is excellent in water resistance and weather resistance. Since the coating composition of the present invention has the above properties, it is particularly useful as a glass coating composition and a solar battery backsheet coating composition.
  • a book containing (c) at least one functional material selected from (c) white light reflecting material, black material, infrared absorbing material, ultraviolet absorbing material, antistatic material and electromagnetic shielding material and / or (e) a flame retardant.
  • the coating composition of the present invention of the invention can effectively impart desired functionality to a glass or solar cell backsheet. Since the laminate of the present invention is formed by coating a substrate with a coating composition containing the components (a) and (b) in a specific quantitative relationship, glass, polycarbonate resin It has excellent adhesion to polyester resins, cellulose resins, liquid crystal polymers, and ethylene-vinyl acetate copolymers, as well as excellent water resistance and weather resistance. Since the laminated body of this invention has said property, it is especially useful as a window glass and a solar cell backsheet.
  • Fluorine-based resin Component (a) of the composition of the present invention is a fluorine-based resin.
  • fluororesins examples include polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), polyethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), and tetrafluoroethylene perfluoro.
  • PFA polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • EFE polyethylene tetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene perfluoro examples include polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), polyethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), and tetrafluoroethylene perfluoro.
  • solvent-soluble fluororesins include copolymers of fluoroolefins and hydrocarbon monomers such as vinyl ethers and vinyl esters, such as hydroxyl groups, carboxylic acid groups, hydrolyzable silyl groups, and epoxy groups.
  • the fluorine-containing polymer having the reactive group is employed.
  • the fluoropolymer include chlorotrifluoroethylene, cyclohexyl vinyl ether, alkyl vinyl ether, hydroxyalkyl vinyl ether copolymer, chlorotrifluoroethylene, alkyl vinyl ether, allyl alcohol copolymer, chlorotrifluoroethylene, and aliphatic carboxylic acid.
  • Examples include vinyl esters and copolymers of hydroxyalkyl vinyl esters. These are marketed under names such as Lumiflon (Asahi Glass) and Cefal Coat (Central Glass). For example, Lumiflon LF-550, LF-552, LF-554, LF-600, LF-601, LF-602, LF-100, LF-200, LF-302, LF-400, LF-700, LF-916 LF-936 and the like.
  • solvent solubility, adhesiveness to various substrates such as glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as specific substrate)
  • substrates such as glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as specific substrate)
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PVF polyvinyl fluoride
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • fluoroolefin / vinyl ether copolymer More preferred are polyvinylidene fluoride (PVDF) and fluoroolefin / vinyl ether copolymers.
  • Fluorine-based resin is a composition with properties such as heat resistance, cold resistance, chemical resistance, flame resistance, electrical properties, low friction, non-adhesiveness, weather resistance, UV-cutting properties, low refractive index properties, etc. Can be granted.
  • the (a) fluororesin having a melting point of 230 ° C. or lower is preferable in terms of solvent solubility, cold resistance, and flexibility.
  • a more preferable melting point is 100 to 200 ° C.
  • the component (b) used in the present invention is a block copolymer comprising a block (A) mainly composed of a methacrylic ester and a block (B) mainly composed of an acrylate ester, Either a linear structure or a radial structure may be used. Moreover, any of block structures, such as AB, ABA, and ABAB, may be sufficient.
  • the component (b) of the present invention has a function of imparting to the composition adhesiveness to a specific substrate, particularly glass, polycarbonate resin, polyester resin, and ethylene-vinyl acetate copolymer (EVA). From the viewpoint of adhesiveness, the block copolymer (b) preferably has a triblock structure (hereinafter, sometimes referred to as component (b-1)). Moreover, it is preferable that it is a linear structure.
  • the component (b-1) is an ABA type triblock copolymer in which the ABA type A block component is a methacrylic ester and the B block component is an acrylate ester, preferably the ABA type It is a block copolymer having a triblock structure.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-tert-butyl, methacrylic acid- n-pentyl, methacrylate-n-hexyl, cyclohexyl methacrylate, methacrylate-n-heptyl, methacrylate-n-octyl, methacrylate-2-ethylhexyl, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate, methacrylic acid Phenyl, toluyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, 3-methoxybutyl methacrylate, 2-
  • acrylic ester examples include methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-tert-butyl, acrylic acid- n-pentyl, acrylate-n-hexyl, cyclohexyl acrylate, acrylate-n-heptyl, acrylate-n-octyl, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, acrylic acid Phenyl, toluyl acrylate, benzyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, 3-methoxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, stearyl acrylate, A Glycidyl silylate, 2-a
  • the component (b-1) is preferably represented by the following general formula-(A1)-(B)-(A2)- (Wherein (A1) and (A2) each represent a block component composed of an alkyl methacrylate, and (B) represents a block component composed mainly of an alkyl acrylate ester). It is what has.
  • methacrylic acid alkyl ester examples include methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-tert-butyl, methacrylic acid.
  • acrylic acid alkyl ester examples include methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-tert-butyl, and acrylic acid.
  • an ABA type triblock copolymer comprising polymethyl methacrylate and polyacrylic acid-n-butyl is preferable in terms of heat-bonding with a polyester resin and flexibility.
  • An ABA type triblock copolymer in which the segment is polymethyl methacrylate and the soft segment is polyacrylic acid-n-butyl is preferable.
  • the weight average molecular weight (Mw) of the (b) block copolymer in the present invention is, for example, 10,000 to 1,000,000, preferably 30,000 to 500,000, and particularly 50,000 to 150. More preferably, it is 1,000.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the (b) block copolymer is preferably 1.0 to 1.8, particularly 1 It is preferably 1 to 1.5.
  • examples of the polymerization method of the block copolymer (b) in the present invention include living anion polymerization and living radical polymerization.
  • Examples of such an acrylic ABA triblock copolymer include LA polymers 2140E and 2250 manufactured by Kuraray, and NABSTAR manufactured by Kaneka. Among these, LA polymer manufactured by Kuraray Co., Ltd. synthesized by living anionic polymerization is preferable from the viewpoint of adhesion to the specific substrate.
  • Kuraray's LA polymers 2140E and 2250 have a triblock structure represented by the general formula-(A1)-(B)-(A2)-, and (A1) and (A2) are polymethyl methacrylates.
  • (B) is poly-n-butyl acrylate
  • the weight average molecular weight is 80,000
  • the JIS-A hardness is 32 and 65, respectively.
  • the component (b) used in the present invention is generally obtained by polymerizing a vinyl acetate monomer to produce a polyvinyl acetate resin, and then producing a polyvinyl alcohol obtained by saponification. Produced by reacting with an aldehyde. That is, the polyvinyl acetal resin is a resin having a vinyl acetal group, a vinyl alcohol group, and a vinyl acetate group, a reaction product with formaldehyde is a polyvinyl formal resin, and a reaction product with butyraldehyde is called a polyvinyl butyral resin.
  • polyvinyl acetal resin examples include polyvinyl acetoacetal, polyvinyl propyl acetal, and the like. Among them, a polyvinyl butyral resin is preferably used from the viewpoint of adhesion to the specific substrate. Furthermore, what made the polyvinyl acetal resin contain the carboxyl group is used suitably. The carboxyl group is desirably about 0.1 to 5 mol%, preferably about 0.2 to 3 mol% in the polyvinyl acetal resin.
  • a polyvinyl acetal resin containing a carboxyl group for example, a method of producing a polyvinyl acetal resin by a conventional method from copolymerization of vinyl acetate and an unsaturated carboxylic acid, or an aldehyde containing a carboxyl group when acetalizing polyvinyl alcohol It is obtained by reacting with.
  • the average degree of polymerization of the polyvinyl acetal resin used in the present invention is not particularly limited, but is preferably in the range of 300 to 5,000, particularly preferably 500 or more, from the viewpoint of adhesion to the specific substrate.
  • the hydroxyl group content is preferably 10 to 30% by mass.
  • the acetic acid group content is preferably 1 to 4% by mass.
  • the coating composition of the present invention may further contain (c) at least one functional material selected from a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material and an electromagnetic shielding material. it can. Thereby, a desired function can be effectively provided by coating the coating composition of the present invention on various substrates.
  • the white light reflecting material examples include inorganic pigment components.
  • inorganic pigment components For example, basic lead carbonate, basic lead sulfate, basic lead silicate, zinc white (specific gravity 5.47 to 5.61), zinc sulfide (specific gravity 4. 1), lithopone, antimony triacid antimony (specific gravity 5.5 to 5.6), diacid titanium (specific gravity 4.2), graphite (specific gravity 3.3). These components may be used alone or in combination of two or more.
  • the inorganic pigment component it is preferable to use titanium dioxide or zinc sulfide as a main component. Particularly preferred is titanium dioxide. Titanium dioxide is particularly preferable because it has a strong action of removing ultraviolet rays (light having a wavelength of 400 nm or less) and a function of removing visible light.
  • the shape of the inorganic pigment component may be a spherical structure, an elliptical structure, a needle-like structure, a polygonal structure, or an amorphous structure.
  • the particle diameter of the inorganic pigment component is not particularly limited as long as it is smaller than the coating thickness of the coating composition of the present invention.
  • the white light reflecting material which is an optional component, is contained, it is preferably blended in an amount of 5 to 40 parts by mass with respect to a total of 100 parts by mass of the components (a) and (b).
  • the blending amount is preferably 5 to 40 parts by mass with respect to 100 parts by mass in total of the component (a) and the component (b).
  • the compounding amount of the white light reflecting material exceeds 40 parts by mass, the film forming property and the adhesion to the specific substrate may be deteriorated. Moreover, there is a risk of deterioration of flexibility. If the blending amount of the white light reflecting material is less than 10 parts by mass, the addition amount is too small and the desired effect may not be exhibited.
  • a more preferable amount of the white light reflecting material is 10 to 20 parts by mass with respect to a total of 100 parts by mass of the component (a) and the component (b).
  • the black material has a function of absorbing ultraviolet rays, and examples thereof include carbon black. Examples thereof include furnace black, channel black, acetylene black, and thermal black. These components may be used alone or in combination of two or more.
  • the blending amount is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass as a total of the components (a) and (b). If the blending amount of the black material exceeds 5 parts by mass, the film forming property and the adhesion to the specific substrate may be deteriorated. Moreover, there is a risk of deterioration of flexibility. If the amount of the black material is less than 0.5 parts by mass, the amount added is too small to achieve the desired effect.
  • infrared absorbing materials include carbon nanotubes, zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, cesium-containing tungsten oxide, ATO (antimony-tin composite oxide or antimony-doped tin oxide), ITO (indium-tin composite oxide). Thing) etc. are mentioned.
  • the blending amount of the infrared absorbing material may be appropriately determined in consideration of a desired infrared absorptivity. A range of parts.
  • Examples of the ultraviolet absorbing material include salicylate-based, benzophenone-based, benzotriazole-based, substituted acrylonitrile-based, triazine-based organic compounds, the carbon nanotubes described above, zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, and titanium dioxide.
  • Inorganic compounds such as hybrid inorganic powder obtained by complexing cerium oxide and titanium dioxide fine particles with iron oxide, and hybrid inorganic powder obtained by coating the surface of cerium oxide fine particles with amorphous silica.
  • the blending amount of the ultraviolet absorbing material may be appropriately determined in consideration of the desired infrared absorptivity. A range of parts.
  • the antistatic material examples include metal oxides and metal salts.
  • the metal oxide include zinc oxide, aluminum doped zinc oxide, gallium doped zinc oxide, ATO, ITO, tin oxide, and antimony pentoxide described above. , Zirconium oxide, titanium oxide, aluminum oxide and the like.
  • the carbon nanotube mentioned above can also be utilized.
  • the blending amount of the antistatic material may be appropriately determined in consideration of a desired antistatic property, and examples thereof include a range of 0.1 to 30% by mass in the paint of the present invention.
  • the blending amount of the antistatic material may be appropriately determined in consideration of the desired infrared absorptivity. For example, 0.1 to 30 masses per 100 mass parts of the total of the component (a) and the component (b). A range of parts.
  • the electromagnetic shielding material examples include conductive particles such as (1) carbon particles or powder; (2) nickel, indium, chromium, gold, vanadium, tin, cadmium, silver, platinum, aluminum, copper, titanium, cobalt , Particles or powders of lead or other metals or alloys or conductive oxides thereof; (3) a coating layer of the conductive material (1) or (2) above is formed on the surface of plastic particles such as polystyrene or polyethylene; And the like.
  • the blending amount of the electromagnetic shielding material may be appropriately determined in consideration of desired electromagnetic shielding properties. For example, the blending amount is in the range of 60 to 90 parts by mass with respect to 100 parts by mass in total of the components (a) and (b). Is mentioned.
  • the coating composition of the present invention can further contain (d) an organic solvent.
  • organic solvents include aromatic hydrocarbons such as toluene, xylene, or benzene; aliphatic hydrocarbons such as n-heptane, n-hexane, or n-octane; petroleum benzine, petroleum ether, ligroin Hydrocarbon mixtures with a boiling point in the range of 30-300 ° C, such as mineral split, petroleum naphtha or kerosene; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane or ethylcyclohexane; methanol, ethanol, n- Propanol, isopropanol, n-butanol, isobutanol, tert-
  • preferred examples of the solvent (d-1) are those that are poorly volatile but easily dissolve the component (a).
  • N-methylpyrrolidone (NMP), ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC) N-methylpyrrolidone (NMP) and propylene carbonate (PC) are more preferable.
  • solvents that are excellent in volatility but slightly difficult to dissolve component (a) include methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK).
  • the coating composition of the present invention can further contain (e) a flame retardant.
  • a flame retardant include phosphorus flame retardant, bromine flame retardant, chlorine flame retardant, aluminum hydroxide, zinc borate and the like.
  • the coating composition of the present invention is further water resistant from the viewpoint of adhesion to the specific substrate when the total of (a) the fluororesin and (b) the block copolymer or the polyvinyl acetal resin is 100 parts by mass.
  • the component (a) is 45 to 90 parts by mass, and the component (b) is 10 to 55 parts by mass.
  • the component (a) is preferably 65 to 85 parts by mass, and the component (b) is 15 to 30 parts by mass.
  • the blending amount thereof is preferably 400 to 900 parts by mass with respect to 100 parts by mass in total of the component (a) and the component (b).
  • the blending amount of the component (d) exceeds 900 parts by mass, it becomes too thin so that it needs to be applied several times and work efficiency deteriorates.
  • the blending amount of the component (d) is less than 400 parts by mass, the viscosity becomes too high and the film forming property is deteriorated.
  • the blending amount thereof is preferably 1 to 20 parts by mass with respect to 100 parts by mass in total of the component (a) and the component (b).
  • the compounding quantity of a component exceeds 20 mass parts, leveling (smoothness) property will deteriorate.
  • the amount of component (e) is less than 1 part by mass, the amount added is too small to obtain the desired flame retardancy.
  • a more preferable blending amount of the component (e) is 3 to 10 parts by mass with respect to a total of 100 parts by mass of the component (a) and the component (b).
  • the coating composition of the present invention may contain various known additives such as a refractive index adjuster, a light stabilizer, a leveling agent, a viscosity adjuster, etc., if necessary. Is possible.
  • the coating composition of the present invention comprises the above components (a) and (b) or, if necessary, the above component (c) and various other additives in an ordinary plastic kneader (biaxial kneader or mixer type kneader). ) (Kneading temperature 180 ° C. to 220 ° C.), for example, pelletized.
  • said (d) component it can prepare by adding the obtained pellet to the container provided with the stirrer with (d) component, and mixing by a conventional method.
  • the said (d) component add said (a) and (b) or the said (c) component and other various additives as needed with (d) to the container provided with the stirrer, It can also be prepared by mixing by a conventional method.
  • the coating composition of the present invention has excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, and is excellent in water resistance and weather resistance. Since the coating composition of the present invention has the above properties, it is particularly useful as a glass coating composition and a solar battery backsheet coating composition.
  • the back sheet base material include polyester resins (particularly polyethylene terephthalate (PET) or polycarbonate resins) from the viewpoint of obtaining strong adhesiveness.
  • PET polyethylene terephthalate
  • the glass is not particularly limited, and examples thereof include hard and light soda lime glass, quartz glass having a high refractive index and transparency, and borosilicate glass having a low transparency but being hard and light.
  • polycarbonate resin examples include polycarbonate (PC) and modified polycarbonate.
  • polyester resin examples include polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate (PBT), and polyethylene naphthalate film.
  • cellulose resin examples include diacetyl cellulose and triacetyl cellulose.
  • Liquid crystal polymers include polycondensates of ethylene terephthalate and parahydroxybenzoic acid (type I), polycondensates of phenol and phthalic acid with parahydroxybenzoic acid (type II), 2,6-hydroxynaphthoic acid and para And polycondensates with hydroxybenzoic acid (type III). The thickness of these base materials is, for example, 0.5 mm to 3 mm.
  • the laminated body of this invention can be obtained through the process formed by coating the coating composition of this invention on a base material.
  • the substrate include substrates made of glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer as described above.
  • a coating method it is preferable to employ one of two methods of solvent coating and coating using an extruder.
  • the solvent coating a predetermined amount of the above-mentioned (d) organic solvent is added to the coating composition of the present invention, and the obtained coating material is applied on a base material by spin coating, (doctor) knife coating, or micro gravure coating.
  • the coating using the extruder include a method in which the coating composition of the present invention is charged into a commercially available hot melt extruder and extruded onto a substrate using, for example, a T-type die. In this form, the coating composition of the present invention can be used as an extrusion composition. As another form, a method in which the coating composition of the present invention is formed into a sheet, and then adhered to the substrate and thermally laminated using a heating roll can be exemplified.
  • the thickness of the layer of the coating composition of the present invention is preferably 10 ⁇ m to 200 ⁇ m, more preferably 15 ⁇ m to 100 ⁇ m, from the viewpoint of the effect of the present invention.
  • the laminate of the present invention is useful as a window glass from the viewpoint of excellent adhesion to glass, water resistance, weather resistance, transparency, surface smoothness, and flexibility.
  • the window glass is not particularly limited, and examples thereof include window glass for buildings such as ordinary houses and buildings, vehicles such as automobiles and railways, window glass for vehicles such as airplanes and ships, and viewing windows in mechanical equipment.
  • the window glass for buildings is preferable from a viewpoint that said various characteristics are excellent.
  • the laminate of the present invention is a solar cell from the viewpoint that it has excellent adhesion to polycarbonate resins and polyester resins and is excellent in water resistance, weather resistance, transparency, surface smoothness, and flexibility.
  • Useful as a backsheet when utilizing the laminated body in this invention as a solar cell backsheet, it is preferable to add said (c) functional material, especially white light reflection material to the coating composition of this invention.
  • the manufacturing method of the solar cell backsheet may be a conventional manufacturing method, and is not particularly limited. For example, first, a layer of the coating composition is applied on the substrate.
  • Coating methods include spin coating, (doctor) knife coating, micro gravure coating, direct gravure coating, offset gravure, reverse gravure, reverse roll coating, (Meyer) bar coating, and die coating
  • a method such as spray coating or dip coating can be preferably applied.
  • a manual spinner ASS-301 type manufactured by Able Co., Ltd.
  • the thickness of the coating composition layer is not particularly limited, but is about 2 ⁇ m to 50 ⁇ m, preferably about 5 ⁇ m to 30 ⁇ m, and more preferably about 8 ⁇ m to 20 ⁇ m.
  • Solar cells are included in the encapsulant layer.
  • the method for forming the sealing material layer may be a conventionally known method, and is not particularly limited, but is laminated in the order of tempered glass / EVA sheet / solar battery cell / EVA sheet / the above solar battery back sheet, and vacuum lamination. Heat bonding using the method.
  • the above solar cell backsheet preparation method and solar cell module preparation method are merely examples, and those skilled in the art can make various modifications.
  • Raw materials used The raw materials used in Examples and Comparative Examples are as follows. (1) (a) Fluorine resin (a-1) SOLEF21216 / 1001 (Product of Solvay Solexis Co., Ltd., Polyvinylidene fluoride (PVDF), high purity PVDF, melting point 160 ° C.) (A-2) Lumiflon LF-200 (Asahi Glass Co., Ltd.
  • Halar 6014 product of Solvay Solexis Co., Ltd., chlorotrifluoroethylene / ethylene copolymer (ECTFE), melting point 225 ° C.
  • Algoflon 25 CAR B product of Solvay Solexis, polytetrafluoroethylene (PTFE), melting point 190 ° C.
  • Block copolymer or polyvinyl acetal resin (b-1) LA polymer 2140E (Kuraray product, compound name: acrylic block copolymer, polymerization method: living anion polymerization, JIS-A hardness 32 ) (B-2) LA polymer 2250 (Kuraray Co., Ltd., compound name: acrylic block copolymer, polymerization method: living anion polymerization, JIS-A hardness 65) (B-3) NABSTAR F700KS (Kaneka Corporation, compound name: acrylic block copolymer, polymerization method: living radical polymerization, JIS-A hardness 22) (B-4) Mowital SB 70 HH (Kuraray Co., Ltd., polyvinyl butyral, non-volatile content: 97.5% by mass or more, hydroxyl group content: 12-14% by mass, acetate group content: 1-4% by mass (B-5) Parapet GF (Kuraray Co., Ltd., polymethyl methacrylate (PMMA),
  • each component except the component (d) was placed in a normal plastic kneader, kneaded at a kneading temperature of 180 ° C. to 220 ° C., and pelletized. Next, the pellet was added to a container equipped with a stirrer together with the component (d) and mixed by a conventional method to obtain a coating composition. The viscosity (mPa ⁇ s) at 25 ° C. of the obtained composition was measured.
  • composition was applied by spin coating (coating thickness: 15 to 20 ⁇ m) on each of the substrates (dimensions: 150 mm ⁇ 25 mm ⁇ thickness 1 mm) shown in Tables 1 to 8, dried, and coated on the substrate.
  • a laminate having a layer (A) of the composition was prepared.
  • Each base material used is as follows.
  • Adhesion test for different materials was performed by measuring the shear adhesive force as shown below.
  • layer (B1) of polyethylene terephthalate PET (trade name EMC307 manufactured by Toyobo Co., Ltd.) having dimensions of 150 mm ⁇ 1 mm thickness ⁇ 25 mm width
  • the above composition was applied by a spin coating method (application thickness: 15 to 20 ⁇ m).
  • a layer (A) is formed, and an ethylene-vinyl acetate copolymer EVA (trade name KA-30 manufactured by Sumitomo Chemical Co., Ltd., vinyl acetate content 28 having the same dimensions as (B1) shown in the table is formed thereon. %)
  • EVA ethylene-vinyl acetate copolymer
  • Layer (B2) was pressure-bonded to prepare a laminate. Thereafter, the layer (B2) was pulled in a direction parallel to the bonding surface of the layer (A), and the tensile strength at break was measured. The results are shown in the table as PET vs EVA (MPa).
  • the visible light transmittance was determined by the average transmittance for a D light source at a wavelength of 380 to 780 nm in a spectral transmittance curve by a U-4000 type self-recording spectrophotometer (manufactured by Hitachi, Ltd.) according to JIS R-3106.
  • the ultraviolet transmittance was obtained as an average transmittance at a wavelength of 300 to 380 nm by the same means as described above according to the ISO / DIS 13837 B method.
  • Infrared transmittance An average transmittance of 780 nm to 2000 nm was determined in the same manner as described above according to the ISO / DIS 13837 B method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This coating composition is characterized by comprising (a) 45 to 90 parts by mass of a fluororesin and (b) 10 to 55 parts by mass of a polyvinyl acetal resin or a block copolymer comprising a block (A) mainly containing a methacrylic ester and a block (B) mainly containing an acrylic ester (the total of (a) and (b) being 100 parts by mass).

Description

コーティング組成物および積層体Coating composition and laminate
 本発明は、コーティング組成物および積層体に関し、詳しくは、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性を有するとともに、耐水性、耐候性に優れるコーティング組成物および積層体に関する。
 本発明のコーティング組成物は、とくにガラス用のコーティング組成物および太陽電池バックシート用のコーティング組成物として有用である。
The present invention relates to a coating composition and a laminate, and more specifically, has excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, and also has water resistance. The present invention relates to a coating composition and a laminate having excellent properties and weather resistance.
The coating composition of the present invention is particularly useful as a coating composition for glass and a coating composition for solar battery backsheet.
 建物用の窓ガラス、車両や船舶等の乗物用の窓ガラスには、一般的に優れた透明性、表面平滑性、柔軟性、耐衝撃性、耐水性、耐候性が求められる。下記特許文献1には、ポリエチレンテレフタレートのようなプラスチックフィルムの片面に粘着剤層を設け、これをガラスに貼着する技術が開示されているが、係る技術では、上記窓ガラスに求められる各種特性を満足することができず、改善が求められていた。
 また従来の粘着剤層は、通常、エポキシ樹脂を溶剤希釈した2液常温硬化型の粘着剤であり、揮発性有機化合物(VOC)および臭気の発生、乾燥まで長時間(例えば1時間以上)かかる、等の問題点があった。
Window glass for buildings and window glass for vehicles such as vehicles and ships are generally required to have excellent transparency, surface smoothness, flexibility, impact resistance, water resistance, and weather resistance. Patent Document 1 below discloses a technique in which a pressure-sensitive adhesive layer is provided on one side of a plastic film such as polyethylene terephthalate, and this is adhered to glass. In such a technique, various characteristics required for the window glass are disclosed. Therefore, improvement was demanded.
The conventional pressure-sensitive adhesive layer is usually a two-component room-temperature-curing pressure-sensitive adhesive in which an epoxy resin is diluted with a solvent, and takes a long time (for example, 1 hour or more) until volatile organic compound (VOC) and odor are generated and dried. There were problems such as.
 一方、近年、石油や石炭などの化石エネルギー源の枯渇が問題とされ、加えて、それらの燃焼時に発生するCO2の増加に起因する地球温暖化現象等の環境破壊が重要な問題となっている。そのような状況の下、太陽光発電は、無尽蔵の太陽輻射エネルギーを利用するクリーンな代替エネルギー源として実用化されている。太陽電池は、太陽光のエネルギーを直接電気に変える太陽光発電システムの心臓部を構成するものであり、結晶シリコン、多結晶シリコン、アモルファスシリコン、銅インジウムセレナイド、化合物半導体等の光起電力素子からできている。その構造としては、光起電力素子単体をそのままの状態で使用することはなく、一般的に、数枚~数十枚の光起電力素子を直列、並列に配線し、長期間に亘って素子を保護するために種々パッケージングが行われ、太陽電池モジュールとしてユニット化されている。 On the other hand, in recent years, depletion of fossil energy sources such as oil and coal has been a problem, and in addition, environmental destruction such as global warming due to an increase in CO 2 generated during combustion has become an important issue. Yes. Under such circumstances, photovoltaic power generation has been put into practical use as a clean alternative energy source that uses inexhaustible solar radiation energy. Solar cells constitute the heart of a photovoltaic power generation system that converts sunlight energy directly into electricity. Photovoltaic elements such as crystalline silicon, polycrystalline silicon, amorphous silicon, copper indium selenide, and compound semiconductors Made from. As a structure, a single photovoltaic element is not used as it is, and generally several to several tens of photovoltaic elements are wired in series or in parallel, and the element is extended over a long period of time. In order to protect the battery, various packaging is performed, and a unit is formed as a solar cell module.
 太陽電池モジュールの基本的な機能は、太陽の輻射エネルギーを効率よく光起電力素子へと導くと共に、光起電力素子および内部配線を長期に亘って過酷な自然環境に耐え得るように保護することにある。太陽電池モジュールは一般的に、太陽光が当たる面のガラスや透明なプラスチック等からなる上部透明材料と、エチレン酢酸ビニル共重合体(以下EVAと称する)等の熱可塑性樹脂からなる封止材層と、光起電力素子としての複数枚の太陽電池セルと、前記封止材層と同様の封止材層と、太陽電池バックシートとがこの順に積層され、真空加熱ラミネーション法等により一体成形されている。 The basic function of the solar cell module is to efficiently guide the solar radiation energy to the photovoltaic device and to protect the photovoltaic device and the internal wiring so that they can withstand harsh natural environments over a long period of time. It is in. Generally, a solar cell module has an upper transparent material made of glass or transparent plastic on the surface that is exposed to sunlight, and a sealing material layer made of a thermoplastic resin such as an ethylene vinyl acetate copolymer (hereinafter referred to as EVA). A plurality of solar cells as photovoltaic elements, a sealing material layer similar to the sealing material layer, and a solar battery back sheet are laminated in this order, and are integrally formed by a vacuum heating lamination method or the like. ing.
 太陽電池バックシートには、太陽電池セルとリード等の内容物を保護するために、機械的強度に優れ、耐候性、耐熱性、耐水性、耐光性、耐薬品性等の諸特性に優れ、特に水分や酸素等の侵入を防止する高いガスバリア性が求められている。バリア性の維持には材質そのもののバリア性能と共に、EVA等の封止材層との密着性・接着安定性が重要である。これは界面からの水分の透過により封止材層の剥離、変色や、配線の腐食が起き、モジュールの出力そのものに影響を与える恐れがあるためである。さらには、発電効率向上への寄与から、内面が白色であることが求められている。 The solar battery backsheet has excellent mechanical strength and excellent properties such as weather resistance, heat resistance, water resistance, light resistance, and chemical resistance to protect the contents of solar cells and leads. In particular, a high gas barrier property that prevents intrusion of moisture, oxygen and the like is required. In order to maintain the barrier property, not only the barrier performance of the material itself but also the adhesion and adhesion stability with a sealing material layer such as EVA are important. This is because separation of the sealing material layer, discoloration, and corrosion of the wiring occur due to moisture permeation from the interface, which may affect the output of the module itself. Furthermore, the inner surface is required to be white because of its contribution to improving power generation efficiency.
 従来、太陽電池バックシートとしては、ポリフッ化ビニル(PVF)やポリフッ化ビニリデン(PVDF)などの耐候性、難燃性、そして封止材として良く使用されるEVAと良好な接着性を有するフッ素樹脂が用いられてきた。しかしながら、フッ素樹脂単体シートでは水蒸気バリア性、透明性、耐候性、難燃性などの課題を有している。 Conventionally, as a solar battery back sheet, a fluororesin having good weather resistance, flame retardancy, and EVA which is often used as a sealing material, such as polyvinyl fluoride (PVF) and polyvinylidene fluoride (PVDF). Has been used. However, the fluororesin simplex sheet has problems such as water vapor barrier properties, transparency, weather resistance, and flame retardancy.
 そこで、これらの課題を解決するために、太陽電池バックシートとしてポリエステル系フィルムを用いる技術が多く提案されている。例えば、特許文献2には、塩素法で製造された酸化チタンを含有したポリブチレンテレフタレート(PBT)フィルムの積層体からなる太陽電池用裏面封止用フィルムが開示されている。しかしながら、PETに比較して加水分解性が改善されてバランスの取れた物性を示すものの、EVA等の封止材層との接着性が劣るという問題点があった。このように従来技術では、EVAからなる封止材層と良好な接着性を有し、かつ、水蒸気バリア性、透明性、耐候性、難燃性に優れる太陽電池バックシートを得ることはできなかった。 Therefore, in order to solve these problems, many techniques using a polyester film as a solar battery back sheet have been proposed. For example, Patent Document 2 discloses a film for sealing a back surface of a solar cell, which is a laminate of a polybutylene terephthalate (PBT) film containing a titanium oxide produced by a chlorine method. However, although hydrolyzability is improved and balanced physical properties are exhibited as compared with PET, there is a problem that adhesiveness with a sealing material layer such as EVA is inferior. Thus, in the prior art, it is not possible to obtain a solar battery back sheet having good sealing properties with an EVA sealing material layer and excellent in water vapor barrier properties, transparency, weather resistance, and flame retardancy. It was.
特開2000-96009号公報JP 2000-96009 A 特開2007-129204号公報JP 2007-129204 A
 本発明は上記した問題点に鑑みなされたものであり、その目的は、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性を有するとともに、耐水性、耐候性に優れるコーティング組成物および積層体を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to provide excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer. It is providing the coating composition and laminated body which are excellent in water resistance and a weather resistance while having it.
 本発明者は鋭意研究を行った結果、下記(a)および(b)成分を特定の量的関係でもって含有する組成物が、前記課題を解決し得ることを見出し、本発明を完成した。 As a result of intensive studies, the present inventor has found that a composition containing the following components (a) and (b) with a specific quantitative relationship can solve the above problems, and has completed the present invention.
 すなわち本発明は、以下の通りである。
 1.(a)フッ素系樹脂45~90質量部、および
 (b)メタクリル酸エステルを主体とするブロック(A)およびアクリル酸エステルを主体とするブロック(B)からなるブロック共重合体またはポリビニルアセタール樹脂10~55質量部(ただし、前記(a)および(b)成分の合計は100質量部である)
を含有することを特徴とするコーティング組成物。
 2.前記(a)フッ素系樹脂の融点が230℃以下であることを特徴とする前記1に記載のコーティング組成物。
 3.前記(b)ブロック共重合体が、トリブロック構造を有することを特徴とする前記1または2に記載のコーティング組成物。
 4.前記(b)ブロック共重合体が、ABA型トリブロック構造を有するブロック共重合体(ただし、前記Aブロック成分がメタクリル酸エステルであり、Bブロック成分がアクリル酸エステルである)であることを特徴とする前記1~3のいずれかに記載のコーティング組成物。
 5.前記(b)ブロック共重合体が、下記一般式
-(A1)-(B)-(A2)-
(式中、(A1)および(A2)は、それぞれ、メタクリル酸アルキルエステルからなるブロック成分を表し、(B)は、アクリル酸アルキルエステルからなるブロック成分を表す)で表されるトリブロック構造を有することを特徴とする前記4に記載のコーティング組成物。
 6.前記(b)ブロック共重合体が、リビングアニオン重合法によって製造されたことを特徴とする前記5に記載のコーティング組成物。
 7.前記(b)ポリビニルアセタール樹脂がポリビニルブチラール樹脂であることを特徴とする前記1または2に記載のコーティング組成物。
 8.さらに(c)白色光反射材料、黒色材料、赤外線吸収材料、紫外線吸収材料、帯電防止材料および電磁波シールド材料から選ばれる少なくとも1種の機能性材料を含むことを特徴とする前記1~7のいずれかに記載のコーティング組成物。
 9.さらに(d)有機溶剤を、前記(a)成分および(b)成分の合計100質量部に対し、400~900質量部配合してなることを特徴とする前記1~8のいずれかに記載のコーティング組成物。
 10.前記1~9のいずれかに記載のコーティング組成物からなる、ガラス用コーティング組成物。
 11.前記1~9のいずれかに記載のコーティング組成物からなる、太陽電池バックシート用コーティング組成物。
 12.バックシート基材がポリエステル系樹脂またはポリカーボネート系樹脂であることを特徴とする前記11に記載の太陽電池バックシート用コーティング組成物。
 13.前記1~9のいずれかに記載のコーティング組成物を、基材上にコーティングしてなる積層体。
 14.前記基材が、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂および液晶ポリマーから選ばれる少なくとも1種であることを特徴とする前記13に記載の積層体。
 15.前記1~8のいずれかに記載のコーティング組成物からなる、押出成形用組成物。
That is, the present invention is as follows.
1. (A) 45 to 90 parts by mass of a fluororesin, and (b) a block copolymer or polyvinyl acetal resin 10 comprising a block (A) mainly composed of a methacrylic ester and a block (B) mainly composed of an acrylate ester. 55 parts by mass (however, the total of the components (a) and (b) is 100 parts by mass)
A coating composition comprising:
2. 2. The coating composition as described in 1 above, wherein the melting point of the (a) fluororesin is 230 ° C. or less.
3. 3. The coating composition as described in 1 or 2 above, wherein the (b) block copolymer has a triblock structure.
4). The (b) block copolymer is a block copolymer having an ABA type triblock structure (provided that the A block component is a methacrylic ester and the B block component is an acrylate ester). 4. The coating composition as described in any one of 1 to 3 above.
5. The (b) block copolymer has the following general formula-(A1)-(B)-(A2)-
(Wherein (A1) and (A2) each represent a block component composed of a methacrylic acid alkyl ester, and (B) represents a block component composed of an acrylic acid alkyl ester). 5. The coating composition as described in 4 above, which has a coating composition.
6). 6. The coating composition as described in 5 above, wherein the block copolymer (b) is produced by a living anion polymerization method.
7. 3. The coating composition as described in 1 or 2 above, wherein the (b) polyvinyl acetal resin is a polyvinyl butyral resin.
8). Any of the above 1 to 7, further comprising (c) at least one functional material selected from a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material and an electromagnetic shielding material A coating composition according to claim 1.
9. Further, (d) the organic solvent is blended in an amount of 400 to 900 parts by mass with respect to a total of 100 parts by mass of the component (a) and the component (b). Coating composition.
10. 10. A glass coating composition comprising the coating composition according to any one of 1 to 9 above.
11. A coating composition for a solar battery backsheet, comprising the coating composition according to any one of 1 to 9 above.
12 12. The solar cell backsheet coating composition as described in 11 above, wherein the backsheet substrate is a polyester resin or a polycarbonate resin.
13. A laminate obtained by coating the substrate with the coating composition according to any one of 1 to 9 above.
14 14. The laminate according to 13, wherein the substrate is at least one selected from glass, polycarbonate resin, polyester resin, cellulose resin, and liquid crystal polymer.
15. 9. An extrusion composition comprising the coating composition according to any one of 1 to 8 above.
 16.前記(d)有機溶剤が、N-メチルピロリドン(NMP)、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、メチルイソブチルケトン(MIBK)およびメチルエチルケトン(MEK)から選ばれる少なくとも1種であることを特徴とする前記9に記載のコーティング組成物。
 17.さらに(c)白色光反射材料を、前記(a)成分および(b)成分の合計100質量部に対し、5~40質量部配合してなることを特徴とする前記11に記載の太陽電池バックシート用コーティング組成物。
 18.さらに(e)難燃剤を、前記(a)および(b)成分の合計100質量部に対し、1~20質量部配合してなることを特徴とする前記11、12または17に記載の太陽電池バックシート用コーティング組成物。
 19.前記ポリエステル系樹脂が、ポリエチレンテレフタレートであることを特徴とする前記12に記載の太陽電池バックシート用コーティング組成物。
 20.前記9に記載のコーティング組成物を、基材上にコーティングしてなる工程を有することを特徴とする積層体の製造方法。
 21.前記基材が、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂および液晶ポリマーから選ばれる少なくとも1種であることを特徴とする前記20に記載の積層体の製造方法。
 22.前記(d)有機溶剤が、N-メチルピロリドン(NMP)、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、メチルイソブチルケトン(MIBK)およびメチルエチルケトン(MEK)から選ばれる少なくとも1種であることを特徴とする前記20に記載の積層体の製造方法。
 23.前記15に記載の押出成形用組成物を、加熱溶融押出機に投入し、基材上に該組成物を押し出す工程を有することを特徴とする積層体の製造方法。
 24.前記基材が、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂および液晶ポリマーから選ばれる少なくとも1種であることを特徴とする前記23に記載の積層体の製造方法。
 25.前記加熱溶融押出機のダイスがT型ダイスであることを特徴とする前記23に記載の積層体の製造方法。
 26.コーティング組成物の層の厚さが、10~200μmであることを特徴とする前記13に記載の積層体
 27.コーティング組成物の層の厚さが、10~200μmであることを特徴とする前記20に記載の積層体の製造方法。
 28.押出成形用組成物の層の厚さが、10~200μmであることを特徴とする前記23に記載の積層体の製造方法。
16. The organic solvent (d) is at least one selected from N-methylpyrrolidone (NMP), propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK). 10. The coating composition as described in 9 above, which is a seed.
17. 12. The solar cell bag according to 11 above, wherein (c) a white light reflecting material is blended in an amount of 5 to 40 parts by mass with respect to a total of 100 parts by mass of the components (a) and (b). Sheet coating composition.
18. 18. The solar cell as described in 11, 12, or 17, wherein (e) a flame retardant is blended in an amount of 1 to 20 parts by mass with respect to 100 parts by mass in total of the components (a) and (b). Backsheet coating composition.
19. 13. The solar cell backsheet coating composition as described in 12 above, wherein the polyester resin is polyethylene terephthalate.
20. 10. A method for producing a laminate, comprising a step of coating the substrate with the coating composition according to 9 above.
21. 21. The method for producing a laminate according to the above 20, wherein the substrate is at least one selected from glass, polycarbonate resin, polyester resin, cellulose resin, and liquid crystal polymer.
22. The organic solvent (d) is at least one selected from N-methylpyrrolidone (NMP), propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK). The method for producing a laminate according to the above 20, wherein the method is a seed.
23. A method for producing a laminate, comprising a step of feeding the composition for extrusion molding as described in 15 above into a heat-melting extruder and extruding the composition onto a substrate.
24. 24. The method for producing a laminate according to 23, wherein the substrate is at least one selected from glass, polycarbonate resin, polyester resin, cellulose resin, and liquid crystal polymer.
25. 24. The method for producing a laminate according to 23, wherein the die of the heat-melting extruder is a T-type die.
26. 26. The laminate as described in 13 above, wherein the thickness of the coating composition layer is 10 to 200 μm. 20. The method for producing a laminate as described in 20 above, wherein the thickness of the layer of the coating composition is 10 to 200 μm.
28. 24. The method for producing a laminate as described in 23 above, wherein the thickness of the layer of the composition for extrusion molding is 10 to 200 μm.
 本発明のコーティング組成物は、前記(a)および(b)成分を特定の量的関係でもって配合しているので、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性を有するとともに、耐水性、耐候性に優れる。
 本発明のコーティング組成物は、上記の性質を有することから、とくにガラス用コーティング組成物および太陽電池バックシート用コーティング組成物として有用である。
 とくに、(c)白色光反射材料、黒色材料、赤外線吸収材料、紫外線吸収材料、帯電防止材料および電磁波シールド材料から選ばれる少なくとも1種の機能性材料および/または(e)難燃剤を配合した本発明の本発明のコーティング組成物は、ガラスまたは太陽電池バックシートに所望の機能性を有効に付与することができる。
 本発明の積層体は、前記(a)および(b)成分を特定の量的関係でもって配合しているコーティング組成物を基材上にコーティングしてなるものであるので、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性を有するとともに、耐水性、耐候性に優れる。本発明の積層体は、上記の性質を有することから、とくに窓ガラス、太陽電池バックシートとして有用である。
In the coating composition of the present invention, since the components (a) and (b) are blended in a specific quantitative relationship, glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene- It has excellent adhesion to vinyl acetate copolymer and is excellent in water resistance and weather resistance.
Since the coating composition of the present invention has the above properties, it is particularly useful as a glass coating composition and a solar battery backsheet coating composition.
In particular, a book containing (c) at least one functional material selected from (c) white light reflecting material, black material, infrared absorbing material, ultraviolet absorbing material, antistatic material and electromagnetic shielding material and / or (e) a flame retardant. The coating composition of the present invention of the invention can effectively impart desired functionality to a glass or solar cell backsheet.
Since the laminate of the present invention is formed by coating a substrate with a coating composition containing the components (a) and (b) in a specific quantitative relationship, glass, polycarbonate resin It has excellent adhesion to polyester resins, cellulose resins, liquid crystal polymers, and ethylene-vinyl acetate copolymers, as well as excellent water resistance and weather resistance. Since the laminated body of this invention has said property, it is especially useful as a window glass and a solar cell backsheet.
 以下、本発明をさらに詳細に説明する。
(a)フッ素系樹脂
 本発明の組成物の成分(a)は、フッ素系樹脂である。
Hereinafter, the present invention will be described in more detail.
(A) Fluorine-based resin Component (a) of the composition of the present invention is a fluorine-based resin.
 フッ素系樹脂としては、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、ポリエチレンテトラフルオロエチレン(ETFE)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレンーヘキサフルオロプロピレン共重合体(FEP)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、フルオロオレフィン・ビニルエーテル共重合体あるいはこれらフッ素系樹脂のアクリル変性物から適宜選択できる。 Examples of fluororesins include polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), polyethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), and tetrafluoroethylene perfluoro. Alkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), chlorotrifluoroethylene / ethylene copolymer (ECTFE), fluoroolefin / vinyl ether copolymer or acrylics of these fluororesins It can be suitably selected from modified products.
 また、特に溶剤可溶型フッ素樹脂の例としては、フルオロオレフィンとビニルエーテル、ビニルエステルなどの炭化水素系モノマーの共重合体であって、水酸基、カルボン酸基、加水分解性シリル基、エポキシ基などの反応性基を有する含フッ素ポリマーが採用される。上記含フッ素ポリマーとしては、クロロトリフルオロエチレン、シクロヘキシルビニルエーテル、アルキルビニルエーテル、ヒドロキシアルキルビニルエーテルの共重合体、クロロトリフルオロエチレン、アルキルビニルエーテル、アリルアルコールの共重合体、クロロトリフルオロエチレン、脂肪族カルボン酸ビニルエステル、ヒドロキシアルキルビニルエステルの共重合体などがある。これらは、ルミフロン(旭硝子)、セフラルコート(セントラル硝子)などの名前で市販されている。例えば、ルミフロンLF-550、LF-552、LF-554、LF-600、LF-601、LF-602、 LF-100、LF-200、LF-302、LF-400、LF-700、LF-916、LF-936などが挙げられる。 Particularly, examples of solvent-soluble fluororesins include copolymers of fluoroolefins and hydrocarbon monomers such as vinyl ethers and vinyl esters, such as hydroxyl groups, carboxylic acid groups, hydrolyzable silyl groups, and epoxy groups. The fluorine-containing polymer having the reactive group is employed. Examples of the fluoropolymer include chlorotrifluoroethylene, cyclohexyl vinyl ether, alkyl vinyl ether, hydroxyalkyl vinyl ether copolymer, chlorotrifluoroethylene, alkyl vinyl ether, allyl alcohol copolymer, chlorotrifluoroethylene, and aliphatic carboxylic acid. Examples include vinyl esters and copolymers of hydroxyalkyl vinyl esters. These are marketed under names such as Lumiflon (Asahi Glass) and Cefal Coat (Central Glass). For example, Lumiflon LF-550, LF-552, LF-554, LF-600, LF-601, LF-602, LF-100, LF-200, LF-302, LF-400, LF-700, LF-916 LF-936 and the like.
 好ましくは、溶剤溶解性、各種基材、例えばガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体(以下、特定基材ということがある)に対する接着性、とくにEVA接着性の点からポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、フルオロオレフィン・ビニルエーテル共重合体であり、より好ましくはポリフッ化ビニリデン(PVDF)、フルオロオレフィン・ビニルエーテル共重合体である。 Preferably, solvent solubility, adhesiveness to various substrates such as glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as specific substrate) In particular, from the viewpoint of EVA adhesion, polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), fluoroolefin / vinyl ether copolymer More preferred are polyvinylidene fluoride (PVDF) and fluoroolefin / vinyl ether copolymers.
 (a)フッ素系樹脂は、耐熱性、耐寒性、耐薬品性、難燃性、電気特性、低摩擦性、非粘着性、耐候性、UVカット性、低屈折率性等の性質を組成物に付与することができる。
 中でも、融点が230℃以下である(a)フッ素系樹脂は、溶剤溶解性、耐寒性、柔軟性の点で好ましい。さらに好ましい融点は、100~200℃である。
(A) Fluorine-based resin is a composition with properties such as heat resistance, cold resistance, chemical resistance, flame resistance, electrical properties, low friction, non-adhesiveness, weather resistance, UV-cutting properties, low refractive index properties, etc. Can be granted.
Among them, the (a) fluororesin having a melting point of 230 ° C. or lower is preferable in terms of solvent solubility, cold resistance, and flexibility. A more preferable melting point is 100 to 200 ° C.
(b)ブロック共重合体
 本発明で用いられる(b)成分は、メタクリル酸エステルを主体とするブロック(A)およびアクリル酸エステルを主体とするブロック(B)からなるブロック共重合体であり、リニア構造、ラジアル構造のいずれであってもよい。また、AB、ABA、ABAB、等のブロック構造のいずれであってもよい。
 本発明の(b)成分は、特定基材、とくにガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、エチレン-酢酸ビニル共重合体(EVA)に対する接着性を組成物に付与する機能を有する。
 上記接着性の観点から、好ましくは、(b)ブロック共重合体は、トリブロック構造であるのがよい(以下、(b-1)成分ということがある)。また、リニア構造であるのが好ましい。
(B) Block copolymer The component (b) used in the present invention is a block copolymer comprising a block (A) mainly composed of a methacrylic ester and a block (B) mainly composed of an acrylate ester, Either a linear structure or a radial structure may be used. Moreover, any of block structures, such as AB, ABA, and ABAB, may be sufficient.
The component (b) of the present invention has a function of imparting to the composition adhesiveness to a specific substrate, particularly glass, polycarbonate resin, polyester resin, and ethylene-vinyl acetate copolymer (EVA).
From the viewpoint of adhesiveness, the block copolymer (b) preferably has a triblock structure (hereinafter, sometimes referred to as component (b-1)). Moreover, it is preferable that it is a linear structure.
(b-1)成分
(b-1)成分は、ABA型のAブロック成分がメタクリル酸エステルであり、Bブロック成分がアクリル酸エステルであるABA型トリブロック共重合体であり、好ましくはABA型トリブロック構造を有するブロック共重合体である。
Component (b-1) The component (b-1) is an ABA type triblock copolymer in which the ABA type A block component is a methacrylic ester and the B block component is an acrylate ester, preferably the ABA type It is a block copolymer having a triblock structure.
 上記のメタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-tert-ブチル、メタクリル酸-n-ペンチル、メタクリル酸-n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸-n-ヘプチル、メタクリル酸-n-オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸フェニル、メタクリル酸トルイル、メタクリル酸ベンジル、メタクリル酸イソボルニル、メタクリル酸-2-メトキシエチル、メタクリル酸-3-メトキシブチル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸ステアリル、メタクリル酸グリシジル、メタクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン、メタクリル酸のエチレンオキサイド付加物、メタクリル酸トリフルオロメチルメチル、メタクリル酸2-トリフルオロメチルエチル、メタクリル酸2-パーフルオロエチルエチル、メタクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、メタクリル酸2-パーフルオロエチル、メタクリル酸パーフルオロメチル、メタクリル酸ジパーフルオロメチルメチル、メタクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、メタクリル酸2-パーフルオロヘキシルエチル、メタクリル酸2-パーフルオロデシルエチル、メタクリル酸2-パーフルオロヘキサデシルエチル等の1種または2種以上の組合せを挙げることができ、中でも、メタクリル酸メチルが上記特定基材に対する接着性の点で好ましい。 Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-tert-butyl, methacrylic acid- n-pentyl, methacrylate-n-hexyl, cyclohexyl methacrylate, methacrylate-n-heptyl, methacrylate-n-octyl, methacrylate-2-ethylhexyl, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate, methacrylic acid Phenyl, toluyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, 3-methoxybutyl methacrylate, 2-hydroxyethyl methacrylate, methacrylic acid 2-hydroxypropyl, stearyl methacrylate, glycidyl methacrylate, 2-aminoethyl methacrylate, γ- (methacryloyloxypropyl) trimethoxysilane, γ- (methacryloyloxypropyl) dimethoxymethylsilane, ethylene oxide adduct of methacrylic acid, Trifluoromethyl methyl methacrylate, 2-trifluoromethyl ethyl methacrylate, 2-perfluoroethyl ethyl methacrylate, 2-perfluoroethyl 2-perfluorobutyl ethyl methacrylate, 2-perfluoroethyl methacrylate, methacrylic acid Perfluoromethyl, diperfluoromethyl methyl methacrylate, 2-perfluoromethyl-2-perfluoroethyl methyl methacrylate, 2-perfluorohexyl ethyl methacrylate, One or a combination of two or more of 2-perfluorodecylethyl crylate, 2-perfluorohexadecyl ethyl methacrylate, etc. can be mentioned. Among them, methyl methacrylate is preferred in terms of adhesion to the specific substrate. preferable.
 上記のアクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-tert-ブチル、アクリル酸-n-ペンチル、アクリル酸-n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸-n-ヘプチル、アクリル酸-n-オクチル、アクリル酸-2-エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸フェニル、アクリル酸トルイル、アクリル酸ベンジル、アクリル酸イソボルニル、アクリル酸-2-メトキシエチル、アクリル酸-3-メトキシブチル、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸ステアリル、アクリル酸グリシジル、アクリル酸2-アミノエチル、γ-(アクリロイルオキシプロピル)トリメトキシシラン、γ-(アクリロイルオキシプロピル)ジメトキシメチルシラン、アクリル酸のエチレンオキサイド付加物、アクリル酸トリフルオロメチルメチル、アクリル酸2-トリフルオロメチルエチル、アクリル酸2-パーフルオロエチルエチル、アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、アクリル酸2-パーフルオロエチル、アクリル酸パーフルオロメチル、アクリル酸ジパーフルオロメチルメチル、アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、アクリル酸2-パーフルオロヘキシルエチル、アクリル酸2-パーフルオロデシルエチル、アクリル酸2-パーフルオロヘキサデシルエチル等の1種または2種以上の組合せを挙げることができ、中でも、アクリル酸メチルが上記特定基材に対する接着性の点で好ましい。 Examples of the acrylic ester include methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-tert-butyl, acrylic acid- n-pentyl, acrylate-n-hexyl, cyclohexyl acrylate, acrylate-n-heptyl, acrylate-n-octyl, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, acrylic acid Phenyl, toluyl acrylate, benzyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, 3-methoxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, stearyl acrylate, A Glycidyl silylate, 2-aminoethyl acrylate, γ- (acryloyloxypropyl) trimethoxysilane, γ- (acryloyloxypropyl) dimethoxymethylsilane, ethylene oxide adduct of acrylic acid, trifluoromethylmethyl acrylate, acrylic acid 2-trifluoromethylethyl, 2-perfluoroethylethyl acrylate, 2-perfluoroethyl-2-perfluorobutylethyl acrylate, 2-perfluoroethyl acrylate, perfluoromethyl acrylate, diperfluoroacrylate Methylmethyl, 2-perfluoromethyl-2-perfluoroethylmethyl acrylate, 2-perfluorohexylethyl acrylate, 2-perfluorodecylethyl acrylate, 2-perfluorohexadecyl acrylate One or more combinations of equal. Of these, methyl acrylate is preferred in view of adhesion to the specific substrate.
 さらに、上記特定基材に対する接着性の点で好ましくは、(b-1)成分が
下記一般式
-(A1)-(B)-(A2)-
(式中、(A1)および(A2)は、それぞれ、メタクリル酸アルキルエステルからなるブロック成分を表し、(B)は、主としてアクリル酸アルキルエステルからなるブロック成分を表す)で表されるトリブロック構造を有するものである。
Further, from the viewpoint of adhesion to the specific substrate, the component (b-1) is preferably represented by the following general formula-(A1)-(B)-(A2)-
(Wherein (A1) and (A2) each represent a block component composed of an alkyl methacrylate, and (B) represents a block component composed mainly of an alkyl acrylate ester). It is what has.
 上記のメタクリル酸アルキルエステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-tert-ブチル、メタクリル酸-n-ペンチル、メタクリル酸-n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸-n-ヘプチル、メタクリル酸-n-オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸フェニル、メタクリル酸トルイル、メタクリル酸ベンジル、メタクリル酸イソボルニル、メタクリル酸-2-メトキシエチル、メタクリル酸-3-メトキシブチル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸ステアリル、メタクリル酸グリシジル、メタクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン、メタクリル酸のエチレンオキサイド付加物、メタクリル酸トリフルオロメチルメチル、メタクリル酸2-トリフルオロメチルエチル、メタクリル酸2-パーフルオロエチルエチル、メタクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、メタクリル酸2-パーフルオロエチル、メタクリル酸パーフルオロメチル、メタクリル酸ジパーフルオロメチルメチル、メタクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、メタクリル酸2-パーフルオロヘキシルエチル、メタクリル酸2-パーフルオロデシルエチル、メタクリル酸2-パーフルオロヘキサデシルエチル等の1種または2種以上の組合せを挙げることができ、中でも、メタクリル酸メチルが上記特定基材に対する接着性の点で好ましい。 Examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-tert-butyl, methacrylic acid. -N-pentyl, methacrylate-n-hexyl, cyclohexyl methacrylate, methacrylate-n-heptyl, methacrylate-n-octyl, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate, methacryl Acid phenyl, toluyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, 3-methoxybutyl methacrylate, 2-hydroxyethyl methacrylate, meta 2-hydroxypropyl silylate, stearyl methacrylate, glycidyl methacrylate, 2-aminoethyl methacrylate, γ- (methacryloyloxypropyl) trimethoxysilane, γ- (methacryloyloxypropyl) dimethoxymethylsilane, ethylene oxide of methacrylic acid Adducts, trifluoromethyl methyl methacrylate, 2-trifluoromethyl ethyl methacrylate, 2-perfluoroethyl ethyl methacrylate, 2-perfluoroethyl 2-perfluorobutyl ethyl methacrylate, 2-perfluoroethyl methacrylate Perfluoromethyl methacrylate, diperfluoromethyl methyl methacrylate, 2-perfluoromethyl 2-perfluoroethyl methyl methacrylate, 2-perfluorohexyl methacrylate , 2-perfluorodecylethyl methacrylate, 2-perfluorohexadecyl ethyl methacrylate, and the like. Among them, methyl methacrylate has an adhesive property to the specific substrate. This is preferable.
 上記のアクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-tert-ブチル、アクリル酸-n-ペンチル、アクリル酸-n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸-n-ヘプチル、アクリル酸-n-オクチル、アクリル酸-2-エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸フェニル、アクリル酸トルイル、アクリル酸ベンジル、アクリル酸イソボルニル、アクリル酸-2-メトキシエチル、アクリル酸-3-メトキシブチル、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸ステアリル、アクリル酸グリシジル、アクリル酸2-アミノエチル、γ-(アクリロイルオキシプロピル)トリメトキシシラン、γ-(アクリロイルオキシプロピル)ジメトキシメチルシラン、アクリル酸のエチレンオキサイド付加物、アクリル酸トリフルオロメチルメチル、アクリル酸2-トリフルオロメチルエチル、アクリル酸2-パーフルオロエチルエチル、アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、アクリル酸2-パーフルオロエチル、アクリル酸パーフルオロメチル、アクリル酸ジパーフルオロメチルメチル、アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、アクリル酸2-パーフルオロヘキシルエチル、アクリル酸2-パーフルオロデシルエチル、アクリル酸2-パーフルオロヘキサデシルエチル等の1種または2種以上の組合せを挙げることができ、中でも、アクリル酸-n-ブチルが上記特定基材に対する接着性の点で好ましい。 Examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-tert-butyl, and acrylic acid. -N-pentyl, acrylate-n-hexyl, cyclohexyl acrylate, acrylate-n-heptyl, acrylate-n-octyl, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, acrylic Phenyl acid, toluyl acrylate, benzyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, 3-methoxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, stear acrylate Glycidyl acrylate, 2-aminoethyl acrylate, γ- (acryloyloxypropyl) trimethoxysilane, γ- (acryloyloxypropyl) dimethoxymethylsilane, ethylene oxide adduct of acrylic acid, trifluoromethylmethyl acrylate, 2-trifluoromethylethyl acrylate, 2-perfluoroethylethyl acrylate, 2-perfluoroethyl-2-perfluorobutylethyl acrylate, 2-perfluoroethyl acrylate, perfluoromethyl acrylate, diacrylate Perfluoromethyl methyl, 2-perfluoromethyl-2-perfluoroethyl methyl acrylate, 2-perfluorohexyl ethyl acrylate, 2-perfluorodecylethyl acrylate, 2-perfluorohexade acrylate Mention may be made of one or more combinations of such Ruechiru, inter alia, butyl -n- acrylate is preferred in view of adhesion to the specific substrate.
 上記の中でも、ポリメタクリル酸メチルとポリアクリル酸-n-ブチルとからなる組合せのABA型トリブロック共重合体がポリエステル樹脂との熱融着性発現、柔軟性の点で好ましく、その中でも、ハードセグメントがポリメタクリル酸メチルと、ソフトセグメントがポリアクリル酸-n-ブチルとからなる組合せのABA型トリブロック共重合体が好ましい。 Among these, an ABA type triblock copolymer comprising polymethyl methacrylate and polyacrylic acid-n-butyl is preferable in terms of heat-bonding with a polyester resin and flexibility. An ABA type triblock copolymer in which the segment is polymethyl methacrylate and the soft segment is polyacrylic acid-n-butyl is preferable.
 本発明における(b)ブロック共重合体の重量平均分子量(Mw)は、例えば10,000~1,000,000であり、好ましくは30,000~500,000であり、特に50,000~150,000であるのがさらに好ましい。 The weight average molecular weight (Mw) of the (b) block copolymer in the present invention is, for example, 10,000 to 1,000,000, preferably 30,000 to 500,000, and particularly 50,000 to 150. More preferably, it is 1,000.
 また、本発明における(b)ブロック共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、1.0~1.8であるのが好ましく、特に1.1~1.5であるのが好ましい。 In the present invention, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the (b) block copolymer is preferably 1.0 to 1.8, particularly 1 It is preferably 1 to 1.5.
 また、本発明における(b)ブロック共重合体の重合法としてはリビングアニオン重合やリビングラジカル重合法が挙げられる。 In addition, examples of the polymerization method of the block copolymer (b) in the present invention include living anion polymerization and living radical polymerization.
 このようなアクリル系ABA型トリブロック共重合体として、クラレ社製LAポリマー2140E、2250、カネカ社製NABSTARを挙げることができる。中でもリビングアニオン重合で合成されるクラレ社製LAポリマーが上記特定基材に対する接着性の観点から好ましい。
 クラレ社製LAポリマー2140Eおよび2250は、上記一般式-(A1)-(B)-(A2)-で表されるトリブロック構造を有し、(A1)および(A2)が、ポリメタクリル酸メチル、(B)がポリアクリル酸-n-ブチルであり、重量平均分子量はいずれも80,000、JIS-A硬度はそれぞれ32および65である。
Examples of such an acrylic ABA triblock copolymer include LA polymers 2140E and 2250 manufactured by Kuraray, and NABSTAR manufactured by Kaneka. Among these, LA polymer manufactured by Kuraray Co., Ltd. synthesized by living anionic polymerization is preferable from the viewpoint of adhesion to the specific substrate.
Kuraray's LA polymers 2140E and 2250 have a triblock structure represented by the general formula-(A1)-(B)-(A2)-, and (A1) and (A2) are polymethyl methacrylates. , (B) is poly-n-butyl acrylate, the weight average molecular weight is 80,000, and the JIS-A hardness is 32 and 65, respectively.
(b)ポリビニルアセタール樹脂
 本発明に使用される(b)成分、すなわちポリビニルアセタール樹脂は、一般的に酢酸ビニルモノマーを重合し、ポリ酢酸ビニル樹脂を製造し、次いで鹸化により得られたポリビニルアルコールをアルデヒドと反応させることにより製造される。即ちポリビニルアセタール樹脂はビニルアセタールグループ、ビニルアルコールグループ、酢酸ビニルグループを有する樹脂であってホルムアルデヒドによる反応物はポリビニルホルマール樹脂であり、ブチルアルデヒドとの反応物はポリビニルブチラール樹脂と称されている。ポリビニルアセタール樹脂としては、ポリビニルアセトアセタール、ポリビニルプロピルアセタール等が挙げられ、中でも上記特定基材に対する接着性の観点からポリビニルブチラール樹脂が好ましく使用される。
 さらにポリビニルアセタール樹脂にカルボキシル基を含有せしめたものも好適に使用される。
 カルボキシル基はポリビニルアセタール樹脂の中に0.1~5モル%、好ましくは0.2~3モル%程度のものが望ましい。カルボキシル基を含んだポリビニルアセタール樹脂としては例えば酢酸ビニルと不飽和カルボン酸との共重合より、常法によってポリビニルアセタール樹脂を製造する方法、もしくはポリビニルアルコールをアセタール化する際にカルボキシル基を含んだアルデヒドと反応させることによって得られる。
 本発明に用いられるポリビニルアセタール樹脂の平均重合度は特に限度はないが、上記特定基材に対する接着性の観点から、300~5,000の範囲が好ましく、特に500以上が好ましい。
 また、上記特定基材に対する接着性の観点から、水酸基含有量は、10~30質量%が好ましい。酢酸基含有量は、1~4質量%が好ましい。
(B) Polyvinyl acetal resin The component (b) used in the present invention, that is, the polyvinyl acetal resin, is generally obtained by polymerizing a vinyl acetate monomer to produce a polyvinyl acetate resin, and then producing a polyvinyl alcohol obtained by saponification. Produced by reacting with an aldehyde. That is, the polyvinyl acetal resin is a resin having a vinyl acetal group, a vinyl alcohol group, and a vinyl acetate group, a reaction product with formaldehyde is a polyvinyl formal resin, and a reaction product with butyraldehyde is called a polyvinyl butyral resin. Examples of the polyvinyl acetal resin include polyvinyl acetoacetal, polyvinyl propyl acetal, and the like. Among them, a polyvinyl butyral resin is preferably used from the viewpoint of adhesion to the specific substrate.
Furthermore, what made the polyvinyl acetal resin contain the carboxyl group is used suitably.
The carboxyl group is desirably about 0.1 to 5 mol%, preferably about 0.2 to 3 mol% in the polyvinyl acetal resin. As a polyvinyl acetal resin containing a carboxyl group, for example, a method of producing a polyvinyl acetal resin by a conventional method from copolymerization of vinyl acetate and an unsaturated carboxylic acid, or an aldehyde containing a carboxyl group when acetalizing polyvinyl alcohol It is obtained by reacting with.
The average degree of polymerization of the polyvinyl acetal resin used in the present invention is not particularly limited, but is preferably in the range of 300 to 5,000, particularly preferably 500 or more, from the viewpoint of adhesion to the specific substrate.
From the viewpoint of adhesion to the specific substrate, the hydroxyl group content is preferably 10 to 30% by mass. The acetic acid group content is preferably 1 to 4% by mass.
 本発明のコーティング組成物は、さらに(c)白色光反射材料、黒色材料、赤外線吸収材料、紫外線吸収材料、帯電防止材料および電磁波シールド材料から選ばれる少なくとも1種の機能性材料を配合することができる。これにより、各種基材に本発明のコーティング組成物をコーティングすることにより、所望の機能を有効に付与することができる。 The coating composition of the present invention may further contain (c) at least one functional material selected from a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material and an electromagnetic shielding material. it can. Thereby, a desired function can be effectively provided by coating the coating composition of the present invention on various substrates.
 白色光反射材料としては、無機顔料成分が挙げられ、例えば、塩基性炭酸鉛、塩基性硫酸鉛、塩基性珪酸鉛、亜鉛華(比重5.47~5.61)、硫化亜鉛(比重4.1)、リトポン、三酸価アンチモン(比重5.5~5.6)、二酸価チタン(比重4.2)、黒鉛(比重3.3)を挙げることができる。これらの成分は1種を使用してもよいし、2種以上を混合して使用してもよい。
 無機顔料成分としては、二酸化チタンまたは硫化亜鉛を主成分として使用することが好ましい。とくに好ましくは二酸化チタンである。二酸化チタンは、紫外線(400nm以下の波長光)を除去する作用が強く、可視光線を除去する作用も有しているため特に好ましい。
 無機顔料成分の形状は、球状構造であってもよいし、楕円状構造、針状構造、多角形体構造、不定形構造であってもよい。無機顔料成分の粒子径は本発明のコーティング組成物のコーティングの厚さよりも小さいものであればよいのであって、特に制限されない。
 任意成分である白色光反射材料を含有する場合には、前記(a)成分および(b)成分の合計100質量部に対し、5~40質量部配合することが好ましい。
Examples of the white light reflecting material include inorganic pigment components. For example, basic lead carbonate, basic lead sulfate, basic lead silicate, zinc white (specific gravity 5.47 to 5.61), zinc sulfide (specific gravity 4. 1), lithopone, antimony triacid antimony (specific gravity 5.5 to 5.6), diacid titanium (specific gravity 4.2), graphite (specific gravity 3.3). These components may be used alone or in combination of two or more.
As the inorganic pigment component, it is preferable to use titanium dioxide or zinc sulfide as a main component. Particularly preferred is titanium dioxide. Titanium dioxide is particularly preferable because it has a strong action of removing ultraviolet rays (light having a wavelength of 400 nm or less) and a function of removing visible light.
The shape of the inorganic pigment component may be a spherical structure, an elliptical structure, a needle-like structure, a polygonal structure, or an amorphous structure. The particle diameter of the inorganic pigment component is not particularly limited as long as it is smaller than the coating thickness of the coating composition of the present invention.
When the white light reflecting material, which is an optional component, is contained, it is preferably blended in an amount of 5 to 40 parts by mass with respect to a total of 100 parts by mass of the components (a) and (b).
 また、白色光反射材料を使用する場合、その配合量は、前記(a)成分および(b)成分の合計100質量部に対し、5~40質量部が好ましい。
 白色光反射材料の配合量が40質量部を超えると、製膜性や、上記特定基材への接着性が悪化する場合がある。また、柔軟性の悪化の恐れがある。
 白色光反射材料の配合量が10質量部未満では、添加量が少な過ぎて、所望の効果を発揮できない恐れがある。
 さらに好ましい白色光反射材料の配合量は、前記(a)成分および(b)成分の合計100質量部に対し、10~20質量部である。
When a white light reflecting material is used, the blending amount is preferably 5 to 40 parts by mass with respect to 100 parts by mass in total of the component (a) and the component (b).
When the compounding amount of the white light reflecting material exceeds 40 parts by mass, the film forming property and the adhesion to the specific substrate may be deteriorated. Moreover, there is a risk of deterioration of flexibility.
If the blending amount of the white light reflecting material is less than 10 parts by mass, the addition amount is too small and the desired effect may not be exhibited.
A more preferable amount of the white light reflecting material is 10 to 20 parts by mass with respect to a total of 100 parts by mass of the component (a) and the component (b).
 黒色材料としては、紫外線吸収の機能を有し、例えばカーボンブラックが挙げられ、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラックを挙げることができる。これらの成分は1種を使用してもよいし、2種以上を混合して使用してもよい。
 また、黒色材料を使用する場合、その配合量は、前記(a)成分および(b)成分の合計100質量部に対し、0.5~5質量部が好ましい。
 黒色材料の配合量が5質量部を超えると、製膜性や、上記特定基材への接着性が悪化する場合がある。また、柔軟性の悪化の恐れがある。
 黒色材料の配合量が0.5質量部未満では、添加量が少な過ぎて、所望の効果を発揮できない。
The black material has a function of absorbing ultraviolet rays, and examples thereof include carbon black. Examples thereof include furnace black, channel black, acetylene black, and thermal black. These components may be used alone or in combination of two or more.
When a black material is used, the blending amount is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass as a total of the components (a) and (b).
If the blending amount of the black material exceeds 5 parts by mass, the film forming property and the adhesion to the specific substrate may be deteriorated. Moreover, there is a risk of deterioration of flexibility.
If the amount of the black material is less than 0.5 parts by mass, the amount added is too small to achieve the desired effect.
 赤外線吸収材料としては、例えばカーボンナノチューブ、酸化亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、セシウム含有酸化タングステン、ATO(アンチモン-錫複合酸化物又はアンチモンドープ酸化錫)、ITO(インジウム-錫複合酸化物)等が挙げられる。
 赤外線吸収材料の配合量は、所望の赤外線吸収性を考慮して適宜決定すればよいが、例えば、前記(a)成分および(b)成分の合計100質量部に対し、0.1~30質量部の範囲が挙げられる。
Examples of infrared absorbing materials include carbon nanotubes, zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, cesium-containing tungsten oxide, ATO (antimony-tin composite oxide or antimony-doped tin oxide), ITO (indium-tin composite oxide). Thing) etc. are mentioned.
The blending amount of the infrared absorbing material may be appropriately determined in consideration of a desired infrared absorptivity. A range of parts.
 紫外線吸収材料としては、例えば、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、置換アクリロニトリル系、トリアジン系等の有機系化合物、前述したカーボンナノチューブ、酸化亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、二酸化チタン、酸化セリウム、二酸化チタン微粒子を酸化鉄で複合化処理してなるハイブリッド無機粉体、酸化セリウム微粒子の表面を非結晶性シリカでコーティングしてなるハイブリッド無機粉体等の無機系化合物が挙げられる。
 紫外線吸収材料の配合量は、所望の赤外線吸収性を考慮して適宜決定すればよいが、例えば、前記(a)成分および(b)成分の合計100質量部に対し、0.1~30質量部の範囲が挙げられる。
Examples of the ultraviolet absorbing material include salicylate-based, benzophenone-based, benzotriazole-based, substituted acrylonitrile-based, triazine-based organic compounds, the carbon nanotubes described above, zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, and titanium dioxide. Inorganic compounds such as hybrid inorganic powder obtained by complexing cerium oxide and titanium dioxide fine particles with iron oxide, and hybrid inorganic powder obtained by coating the surface of cerium oxide fine particles with amorphous silica.
The blending amount of the ultraviolet absorbing material may be appropriately determined in consideration of the desired infrared absorptivity. A range of parts.
 帯電防止材料としては、例えば金属酸化物及び金属塩が挙げられ、該金属酸化物としては、例えば前述した酸化亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、ATO、ITO、酸化錫、五酸化アンチモン、酸化ジルコニウム、酸化チタン、酸化アルミニウム等が挙げられる。また、前述したカーボンナノチューブも利用できる。
帯電防止材料の配合量は、所望の帯電防止性を考慮して適宜決定すればよいが、例えば本発明の塗料中、0.1~30質量%の範囲が挙げられる。
 帯電防止材料の配合量は、所望の赤外線吸収性を考慮して適宜決定すればよいが、例えば、前記(a)成分および(b)成分の合計100質量部に対し、0.1~30質量部の範囲が挙げられる。
Examples of the antistatic material include metal oxides and metal salts. Examples of the metal oxide include zinc oxide, aluminum doped zinc oxide, gallium doped zinc oxide, ATO, ITO, tin oxide, and antimony pentoxide described above. , Zirconium oxide, titanium oxide, aluminum oxide and the like. Moreover, the carbon nanotube mentioned above can also be utilized.
The blending amount of the antistatic material may be appropriately determined in consideration of a desired antistatic property, and examples thereof include a range of 0.1 to 30% by mass in the paint of the present invention.
The blending amount of the antistatic material may be appropriately determined in consideration of the desired infrared absorptivity. For example, 0.1 to 30 masses per 100 mass parts of the total of the component (a) and the component (b). A range of parts.
 電磁波シールド材料としては、導電性粒子が挙げられ、例えば (1)カーボン粒子ないし粉末; (2)ニッケル、インジウム、クロム、金、バナジウム、すず、カドミウム、銀、プラチナ、アルミ、銅、チタン、コバルト、鉛等の金属又は合金或いはこれらの導電性酸化物の粒子ないし粉末;(3)ポリスチレン、ポリエチレン等のプラスチック粒子の表面に上記(1)、(2)の導電性材料のコーティング層を形成したもの等が挙げられる。
 電磁波シールド材料の配合量は、所望の電磁波シールド性を考慮して適宜決定すればよいが、例えば前記(a)成分および(b)成分の合計100質量部に対し、60~90質量部の範囲が挙げられる。
Examples of the electromagnetic shielding material include conductive particles such as (1) carbon particles or powder; (2) nickel, indium, chromium, gold, vanadium, tin, cadmium, silver, platinum, aluminum, copper, titanium, cobalt , Particles or powders of lead or other metals or alloys or conductive oxides thereof; (3) a coating layer of the conductive material (1) or (2) above is formed on the surface of plastic particles such as polystyrene or polyethylene; And the like.
The blending amount of the electromagnetic shielding material may be appropriately determined in consideration of desired electromagnetic shielding properties. For example, the blending amount is in the range of 60 to 90 parts by mass with respect to 100 parts by mass in total of the components (a) and (b). Is mentioned.
 本発明のコーティング組成物は、さらに(d)有機溶剤を配合することができる。(d)有機溶剤を配合することにより、組成物が低粘度化するとともに、塗布型のコーティング組成物が得られる。(d)有機溶剤としては、例えば、トルエン、キシレン、もしくはベンゼンの如き芳香族炭化水素類;n-ヘプタン、n-ヘキサンもしくはn-オクタンの如き脂肪族炭化水素類;石油ベンジン、石油エーテル、リグロイン、ミネラルスプリット、石油ナフサもしくはケロシンの如き、沸点が30~300℃なる範囲の炭化水素混合物類;シクロペンタン、シクロヘキサン、メチルシクロヘキサンもしくはエチルシクロヘキサンの如き脂環式炭化水素類;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、n-ペンタノール、イソペンタノール、n-ヘキサノール、n-オクタノール、2-エチルヘキサノール、シクロヘキサノール、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルもしくはプロピレングリコールモノエチルエーテルの如きアルコール類;ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジイソプロピルエーテルもしくはジ-n-ブチルエーテルの如きエーテル類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、イソブチルケトンもしくはイソホロンの如きケトン類;酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、エチレングリコールモノメチルエーテルアセテートもしくはエチレングリコールモノブチルエーテルアセテートの如きエステル類;またはクロロホルム、メチレンクロライド、四塩化炭素、トリクロルエタンもしくはテトラクロロエタンの如き塩素化炭化水素類などをはじめ、さらには、N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジエチルアセトアミドまたはエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)などがある。 The coating composition of the present invention can further contain (d) an organic solvent. (D) By mix | blending an organic solvent, while a composition becomes low-viscosity, a coating type coating composition is obtained. (D) Examples of organic solvents include aromatic hydrocarbons such as toluene, xylene, or benzene; aliphatic hydrocarbons such as n-heptane, n-hexane, or n-octane; petroleum benzine, petroleum ether, ligroin Hydrocarbon mixtures with a boiling point in the range of 30-300 ° C, such as mineral split, petroleum naphtha or kerosene; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane or ethylcyclohexane; methanol, ethanol, n- Propanol, isopropanol, n-butanol, isobutanol, tert-butanol, n-pentanol, isopentanol, n-hexanol, n-octanol, 2-ethylhexanol, cyclohexanol, ethylene glycol monoethyl Alcohols such as ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether or propylene glycol monoethyl ether; ethers such as dimethoxyethane, tetrahydrofuran, dioxane, diisopropyl ether or di-n-butyl ether; acetone, Ketones such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), isobutyl ketone or isophorone; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, ethylene glycol monomethyl ether acetate Or esters such as ethylene glycol monobutyl ether acetate; or chloroform , Chlorinated hydrocarbons such as methylene chloride, carbon tetrachloride, trichloroethane or tetrachloroethane, N-methylpyrrolidone (NMP), dimethylformamide, diethylacetamide or ethylene carbonate (EC), propylene carbonate ( PC) and dimethyl carbonate (DMC).
 中でも、好ましい例として(d-1)揮発性に劣るが(a)成分を溶解しやすい溶剤として、N-メチルピロリドン(NMP)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)が好ましく、さらに好ましくは、N-メチルピロリドン(NMP)、プロピレンカーボネート(PC)である。 Among them, preferred examples of the solvent (d-1) are those that are poorly volatile but easily dissolve the component (a). N-methylpyrrolidone (NMP), ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC) N-methylpyrrolidone (NMP) and propylene carbonate (PC) are more preferable.
 また、その他に好ましい例として(d-2)揮発性に優れるが成分(a)をやや溶解しにくい溶剤として、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)が挙げられる。 As other preferred examples, (d-2) Examples of solvents that are excellent in volatility but slightly difficult to dissolve component (a) include methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK).
 上記(d-1)揮発性に劣るが成分(a)を溶解しやすい溶剤と(d-2)揮発性に優れるが成分(a)をやや溶解しにくい溶剤を常温揮発性とレベリング(平滑)性の点で併用してもよい。 The above (d-1) a solvent that is poorly volatile but easily dissolves the component (a) and (d-2) a solvent that is excellent in volatility but slightly difficult to dissolve the component (a) is room temperature volatile and leveling (smooth) You may use together in terms of sex.
 本発明のコーティング組成物は、さらに(e)難燃剤を配合することができる。難燃剤としては、例えば、リン系難燃剤、臭素系難燃剤、塩素系難燃剤、その他水酸化アルミニウム、ホウ酸亜鉛等が挙げられる。 The coating composition of the present invention can further contain (e) a flame retardant. Examples of the flame retardant include phosphorus flame retardant, bromine flame retardant, chlorine flame retardant, aluminum hydroxide, zinc borate and the like.
 本発明のコーティング組成物は、(a)フッ素系樹脂および(b)ブロック共重合体またはポリビニルアセタール樹脂の合計を100質量部としたときに、上記特定基材に対する接着性の観点から、さらに耐水性、耐候性の観点から、(a)成分45~90質量部、(b)成分10~55質量部である。
 好ましくは、(a)成分65~85質量部、(b)成分15~30質量部である。
(a)成分の配合量が90質量部を超えると、上記特定基材に対する接着性が悪化する。また柔軟性も悪化する。
(a)成分の配合量が45質量部未満では、耐水性、耐候性が悪化する。
(b)成分の配合量が55質量部を超えると、耐水性、耐候性が悪化する。
(b)成分の配合量が10質量部未満では、上記特定基材に対する接着性が悪化する。また柔軟性も悪化する。
The coating composition of the present invention is further water resistant from the viewpoint of adhesion to the specific substrate when the total of (a) the fluororesin and (b) the block copolymer or the polyvinyl acetal resin is 100 parts by mass. From the viewpoints of properties and weather resistance, the component (a) is 45 to 90 parts by mass, and the component (b) is 10 to 55 parts by mass.
The component (a) is preferably 65 to 85 parts by mass, and the component (b) is 15 to 30 parts by mass.
(A) When the compounding quantity of a component exceeds 90 mass parts, the adhesiveness with respect to the said specific base material will deteriorate. Also, the flexibility deteriorates.
When the amount of component (a) is less than 45 parts by mass, the water resistance and weather resistance deteriorate.
(B) When the compounding quantity of a component exceeds 55 mass parts, water resistance and a weather resistance will deteriorate.
(B) If the compounding quantity of a component is less than 10 mass parts, the adhesiveness with respect to the said specific base material will deteriorate. Also, the flexibility deteriorates.
 また、(d)有機溶剤を使用する場合、その配合量は、前記(a)成分および(b)成分の合計100質量部に対し、400~900質量部が好ましい。
 (d)成分の配合量が900質量部を超えると、薄肉になりすぎるため数回塗布が必要となり作業効率が悪化する。
 (d)成分の配合量が400質量部未満では、粘度が高くなり過ぎ、製膜性が悪化する。
Further, when (d) an organic solvent is used, the blending amount thereof is preferably 400 to 900 parts by mass with respect to 100 parts by mass in total of the component (a) and the component (b).
When the blending amount of the component (d) exceeds 900 parts by mass, it becomes too thin so that it needs to be applied several times and work efficiency deteriorates.
When the blending amount of the component (d) is less than 400 parts by mass, the viscosity becomes too high and the film forming property is deteriorated.
 また、(e)難燃剤を使用する場合、その配合量は、前記(a)成分および(b)成分の合計100質量部に対し、1~20質量部が好ましい。
 (e)成分の配合量が20質量部を超えると、レベリング(平滑)性が悪化する。
 (e)成分の配合量が1質量部未満では、添加量が少な過ぎて所望の難燃性を得ることができない。
 さらに好ましい(e)成分の配合量は、前記(a)成分および(b)成分の合計100質量部に対し、3~10質量部である。
In addition, when (e) a flame retardant is used, the blending amount thereof is preferably 1 to 20 parts by mass with respect to 100 parts by mass in total of the component (a) and the component (b).
(E) When the compounding quantity of a component exceeds 20 mass parts, leveling (smoothness) property will deteriorate.
When the amount of component (e) is less than 1 part by mass, the amount added is too small to obtain the desired flame retardancy.
A more preferable blending amount of the component (e) is 3 to 10 parts by mass with respect to a total of 100 parts by mass of the component (a) and the component (b).
 なお、本発明のコーティング組成物は、上記の成分の他に、さらに必要に応じて、公知の各種添加剤、例えば屈折率調整剤、耐光安定剤、レベリング剤、粘度調整剤等を添加することが可能である。 In addition to the above-mentioned components, the coating composition of the present invention may contain various known additives such as a refractive index adjuster, a light stabilizer, a leveling agent, a viscosity adjuster, etc., if necessary. Is possible.
 本発明のコーティング組成物は、上記(a)および(b)成分、または必要に応じて上記(c)成分、その他の各種添加剤を通常のプラスチック混練機(2軸混練機やミキサータイプ混練機)(混練温度180℃~220℃)で混練し、例えばペレット化することにより得ることができる。上記(d)成分を使用する場合は、得られたペレットを、(d)成分と共に攪拌機を備えた容器に加え、常法により混合することにより調製することができる。また、上記(d)成分を使用する場合は、上記(a)及び(b)または必要に応じて上記(c)成分、その他の各種添加剤を(d)と共に攪拌機を備えた容器に加え、常法により混合することにより調製することもできる。 The coating composition of the present invention comprises the above components (a) and (b) or, if necessary, the above component (c) and various other additives in an ordinary plastic kneader (biaxial kneader or mixer type kneader). ) (Kneading temperature 180 ° C. to 220 ° C.), for example, pelletized. When using said (d) component, it can prepare by adding the obtained pellet to the container provided with the stirrer with (d) component, and mixing by a conventional method. Moreover, when using the said (d) component, add said (a) and (b) or the said (c) component and other various additives as needed with (d) to the container provided with the stirrer, It can also be prepared by mixing by a conventional method.
 本発明のコーティング組成物は、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性を有するとともに、耐水性、耐候性に優れる。本発明のコーティング組成物は、上記の性質を有することから、とくにガラス用コーティング組成物および太陽電池バックシート用コーティング組成物として有用である。バックシート基材としては、強固な接着性が得られる点から、ポリエステル系樹脂(とくにポリエチレンテレフタレート(PET)またはポリカーボネート系樹脂が挙げられる。
 なお、ガラスとしては、とくに制限されないが、例えば、硬く、軽いソーダライムガラス、屈折率・透明度が高い石英ガラス、透明度は低いが硬くて軽いホウ珪酸ガラス等が挙げられる。ポリカーボネート系樹脂としては、ポリカーボネート(PC)、変性ポリカーボネート等が挙げられる。ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレートフィルム等が挙げられる。セルロース系樹脂としては、ジアセチルセルロース、トリアセチルセルロース等が挙げられる。液晶ポリマーとしては、エチレンテレフタレートとパラヒドロキシ安息香酸との重縮合体(タイプI)、フェノールおよびフタル酸とパラヒドロキシ安息香酸との重縮合体(タイプII)、2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重縮合体(タイプIII)等が挙げられる。
 これらの基材の厚さは、例えば0.5mm~3mmである。
The coating composition of the present invention has excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, and is excellent in water resistance and weather resistance. Since the coating composition of the present invention has the above properties, it is particularly useful as a glass coating composition and a solar battery backsheet coating composition. Examples of the back sheet base material include polyester resins (particularly polyethylene terephthalate (PET) or polycarbonate resins) from the viewpoint of obtaining strong adhesiveness.
The glass is not particularly limited, and examples thereof include hard and light soda lime glass, quartz glass having a high refractive index and transparency, and borosilicate glass having a low transparency but being hard and light. Examples of the polycarbonate resin include polycarbonate (PC) and modified polycarbonate. Examples of the polyester resin include polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate (PBT), and polyethylene naphthalate film. Examples of the cellulose resin include diacetyl cellulose and triacetyl cellulose. Liquid crystal polymers include polycondensates of ethylene terephthalate and parahydroxybenzoic acid (type I), polycondensates of phenol and phthalic acid with parahydroxybenzoic acid (type II), 2,6-hydroxynaphthoic acid and para And polycondensates with hydroxybenzoic acid (type III).
The thickness of these base materials is, for example, 0.5 mm to 3 mm.
 また本発明の積層体は、本発明のコーティング組成物を、基材上にコーティングしてなる工程を経て得ることができる。基材としては、上述のように、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体からなる基材が挙げられる。
 コーティング方法としては、溶剤コーティングと押出機を用いたコーティングの2つの方法のいずれかを採用するのが好ましい。
 溶剤コーティングとしては、本発明のコーティング組成物に、前記(d)有機溶剤を所定量添加し、得られた塗料を基材上に、スピンコート法、(ドクター)ナイフコート法、マイクログラビヤコート法、ダイレクトグラビヤコート法、オフセットグラビヤ法、リバースグラビヤ法、リバースロールコート法、(マイヤー) バーコート法、ダイコート法、スプレーコート法、ディップコート法等(例えばスピンコート法の装置としてマニュアルスピナー(株)エイブル製ASS-301型))が挙げられる。)により塗布する方法が挙げられる。
 押出機を用いたコーティングとしては、商業的に入手可能な加熱溶融押出機に、本発明のコーティング組成物を投入し、例えばT型ダイスを用いて基材上に押し出す方法が挙げられる。この形態において、本発明のコーティング組成物は、押出成形用組成物として用いることができる。
 その他の形態として、本発明のコーティング組成物をシート化し、その後基材と密着して加熱ロールを用いて熱ラミネートする方法も例示することが出来る。
Moreover, the laminated body of this invention can be obtained through the process formed by coating the coating composition of this invention on a base material. Examples of the substrate include substrates made of glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer as described above.
As a coating method, it is preferable to employ one of two methods of solvent coating and coating using an extruder.
As the solvent coating, a predetermined amount of the above-mentioned (d) organic solvent is added to the coating composition of the present invention, and the obtained coating material is applied on a base material by spin coating, (doctor) knife coating, or micro gravure coating. , Direct gravure coat method, offset gravure method, reverse gravure method, reverse roll coat method, (Meyer) bar coat method, die coat method, spray coat method, dip coat method, etc. Able ASS-301 type)). ) To apply.
Examples of the coating using the extruder include a method in which the coating composition of the present invention is charged into a commercially available hot melt extruder and extruded onto a substrate using, for example, a T-type die. In this form, the coating composition of the present invention can be used as an extrusion composition.
As another form, a method in which the coating composition of the present invention is formed into a sheet, and then adhered to the substrate and thermally laminated using a heating roll can be exemplified.
 本発明の積層体において、本発明のコーティング組成物の層の厚さは、本発明の効果の点から、好ましくは10μm~200μmであり、さらに好ましくは15μm~100μmである。 In the laminate of the present invention, the thickness of the layer of the coating composition of the present invention is preferably 10 μm to 200 μm, more preferably 15 μm to 100 μm, from the viewpoint of the effect of the present invention.
 本発明の積層体は、ガラスに対する接着性、耐水性、耐候性、透明性、表面平滑性、柔軟性に優れるという観点から、窓ガラスとして有用である。窓ガラスとしては、とくに制限されず、一般住宅、ビルディング等の建物用窓ガラス、自動車、鉄道等の車両、飛行機や船舶等の乗物用窓ガラス、機械設備における覗き窓等が挙げられる。とくに本発明では、上記の各種特性が優れるという観点から、建物用窓ガラスが好ましい。
 なお、本発明における積層体を窓ガラスとして利用する際には、本発明のコーティング組成物に、上記の(c)機能性材料を添加するのが好ましい。
The laminate of the present invention is useful as a window glass from the viewpoint of excellent adhesion to glass, water resistance, weather resistance, transparency, surface smoothness, and flexibility. The window glass is not particularly limited, and examples thereof include window glass for buildings such as ordinary houses and buildings, vehicles such as automobiles and railways, window glass for vehicles such as airplanes and ships, and viewing windows in mechanical equipment. Especially in this invention, the window glass for buildings is preferable from a viewpoint that said various characteristics are excellent.
In addition, when utilizing the laminated body in this invention as a window glass, it is preferable to add said (c) functional material to the coating composition of this invention.
 一方、本発明の積層体は、ポリカーボネート系樹脂およびポリエステル系樹脂に対し優れた接着性を有し、かつ耐水性、耐候性、透明性、表面平滑性、柔軟性に優れるという観点から、太陽電池バックシートとして有用である。
 なお、本発明における積層体を太陽電池バックシートとして利用する際には、本発明のコーティング組成物に、上記の(c)機能性材料、とくに白色光反射材料を添加するのが好ましい。
 太陽電池バックシートの製造方法は、従来から公知の製造方法に従えばよく、とくに制限されないが、例えば、まず基材上に、コーティング組成物の層を塗工する。塗工方法としては、、スピンコート法、(ドクター)ナイフコート法、マイクログラビヤコート法、ダイレクトグラビヤコート法、オフセットグラビヤ法、リバースグラビヤ法、リバースロールコート法、(マイヤー) バーコート法、ダイコート法、スプレーコート法、ディップコート法等の方法が好ましく適用できる。例えばスピンコート法の装置としてマニュアルスピナー((株)エイブル製ASS-301型))が挙げられる。
 コーティング組成物の層の厚みは、特に限定されないが2μm~50μm 、好ましくは5μm~30μm 、更に好ましくは8μm~20μm程度である。
 続いて、太陽電池モジュールを作成する場合は、上記の太陽電池バックシート上に、EVAからなる封止材層を形成する。封止材層中には太陽電池セルが含まれる。封止材層の形成方法としては、従来から公知の方法に従えばよく、とくに制限されないが、強化ガラス/EVAシート/太陽電池セル/EVAシート/上記太陽電池バックシートの順に積層し、真空ラミネート法を用いて加熱接着させる。
 なお、上記の太陽電池バックシートの調製方法および太陽電池モジュールの調製方法は、単に一例を示すものであり、当業者であれば種々の変更が可能である。
On the other hand, the laminate of the present invention is a solar cell from the viewpoint that it has excellent adhesion to polycarbonate resins and polyester resins and is excellent in water resistance, weather resistance, transparency, surface smoothness, and flexibility. Useful as a backsheet.
In addition, when utilizing the laminated body in this invention as a solar cell backsheet, it is preferable to add said (c) functional material, especially white light reflection material to the coating composition of this invention.
The manufacturing method of the solar cell backsheet may be a conventional manufacturing method, and is not particularly limited. For example, first, a layer of the coating composition is applied on the substrate. Coating methods include spin coating, (doctor) knife coating, micro gravure coating, direct gravure coating, offset gravure, reverse gravure, reverse roll coating, (Meyer) bar coating, and die coating A method such as spray coating or dip coating can be preferably applied. For example, a manual spinner (ASS-301 type manufactured by Able Co., Ltd.) can be cited as an apparatus for spin coating.
The thickness of the coating composition layer is not particularly limited, but is about 2 μm to 50 μm, preferably about 5 μm to 30 μm, and more preferably about 8 μm to 20 μm.
Then, when producing a solar cell module, the sealing material layer which consists of EVA is formed on said solar cell backsheet. Solar cells are included in the encapsulant layer. The method for forming the sealing material layer may be a conventionally known method, and is not particularly limited, but is laminated in the order of tempered glass / EVA sheet / solar battery cell / EVA sheet / the above solar battery back sheet, and vacuum lamination. Heat bonding using the method.
The above solar cell backsheet preparation method and solar cell module preparation method are merely examples, and those skilled in the art can make various modifications.
 次に本発明を実施例および比較例によりさらに説明するが、本発明は、その要旨を逸脱しない限り、以下の例に限定されるものではない。 Next, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to the following examples without departing from the gist thereof.
1.使用原材料
 実施例および比較例で使用した原料は以下の通りである。
 (1)(a)フッ素系樹脂
 (a-1)SOLEF21216/1001(ソルベイソレクシス株式会社製品、ポリフッ化ビニリデン(PVDF)、高純度PVDF、融点160℃)
 (a-2)Lumiflon LF-200(旭硝子株式会社製品、フルオロオレフィン・ビニルエーテル共重合体、ガラス転移点35℃、融点148℃)
 (a-3)ヘイラー6014(ソルベイソレクシス株式会社製品、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、融点225℃)
 (a-4)アルゴフロン25CAR B(ソルベイソレクシス株式会社製品、ポリテトラフルオロエチレン(PTFE)、融点190℃)
1. Raw materials used The raw materials used in Examples and Comparative Examples are as follows.
(1) (a) Fluorine resin (a-1) SOLEF21216 / 1001 (Product of Solvay Solexis Co., Ltd., Polyvinylidene fluoride (PVDF), high purity PVDF, melting point 160 ° C.)
(A-2) Lumiflon LF-200 (Asahi Glass Co., Ltd. product, fluoroolefin / vinyl ether copolymer, glass transition point 35 ° C., melting point 148 ° C.)
(A-3) Halar 6014 (product of Solvay Solexis Co., Ltd., chlorotrifluoroethylene / ethylene copolymer (ECTFE), melting point 225 ° C.)
(A-4) Algoflon 25 CAR B (product of Solvay Solexis, polytetrafluoroethylene (PTFE), melting point 190 ° C.)
 (2)(b)ブロック共重合体またはポリビニルアセタール樹脂
 (b-1)LAポリマー2140E(株式会社クラレ製品、化合物名:アクリル系ブロック共重合体、重合法:リビングアニオン重合、JIS-A硬度32)
 (b-2)LAポリマー2250(株式会社クラレ製品、化合物名:アクリル系ブロック共重合体、重合法:リビングアニオン重合、JIS-A硬度65)
 (b-3)NABSTAR F700KS(株式会社カネカ製品、化合物名:アクリル系ブロック共重合体、重合法:リビングラジカル重合、JIS-A硬度22)
 (b-4)Mowital SB 70 HH(株式会社クラレ製品、ポリビニルブチラール、不揮発分97.5質量%以上、水酸基含量12-14質量%、酢酸基含量1-4質量%
 (b-5)パラペットGF(株式会社クラレ製品、ポリメチルメタクリレート(PMMA)、ビカット軟化点92℃、硬さ87D、比較成分)
 (b-6)VANAC G(デュポン株式会社製品、カルボキシル基を有するエチレン・アクリル三元系ランダム共重合体ゴム、JIS A硬度=15、比較成分)
(2) (b) Block copolymer or polyvinyl acetal resin (b-1) LA polymer 2140E (Kuraray product, compound name: acrylic block copolymer, polymerization method: living anion polymerization, JIS-A hardness 32 )
(B-2) LA polymer 2250 (Kuraray Co., Ltd., compound name: acrylic block copolymer, polymerization method: living anion polymerization, JIS-A hardness 65)
(B-3) NABSTAR F700KS (Kaneka Corporation, compound name: acrylic block copolymer, polymerization method: living radical polymerization, JIS-A hardness 22)
(B-4) Mowital SB 70 HH (Kuraray Co., Ltd., polyvinyl butyral, non-volatile content: 97.5% by mass or more, hydroxyl group content: 12-14% by mass, acetate group content: 1-4% by mass
(B-5) Parapet GF (Kuraray Co., Ltd., polymethyl methacrylate (PMMA), Vicat softening point 92 ° C., hardness 87D, comparative component)
(B-6) VANAC G (DuPont product, ethylene / acrylic terpolymer random copolymer rubber having carboxyl group, JIS A hardness = 15, comparative component)
(3)(c)機能性材料
 (c-1)白色光反射材料(酸化チタン 石原産業社製 CR-90(製品名))
 (c-2)カーボンナノチューブCNT:VGCF-S、昭和電工製、繊維径80nm、繊維長10μm
 (c-3)酸化亜鉛:23-K、ハクスイテック社製導電性酸化亜鉛、一次粒子径120~150μm、電磁波シールド剤)
 (c-4)三酸化アンチモン:PATOX-U、日本精鉱株式会社製、平均粒径0.02μmの超微粒子品、UV・IR吸収剤)
 (c-5)カーボンブラック:三菱カーボンブラック社製(RCF#45L)、粒子径:24nm
(3) (c) Functional material (c-1) White light reflecting material (titanium oxide CR-90 (product name) manufactured by Ishihara Sangyo Co., Ltd.)
(C-2) Carbon nanotube CNT: VGCF-S, Showa Denko, fiber diameter 80 nm, fiber length 10 μm
(C-3) Zinc oxide: 23-K, conductive zinc oxide manufactured by Hakusuitec, primary particle size 120 to 150 μm, electromagnetic wave shielding agent)
(C-4) Antimony trioxide: PATOX-U, manufactured by Nippon Seiko Co., Ltd., ultrafine particles with an average particle size of 0.02 μm, UV / IR absorber)
(C-5) Carbon black: Mitsubishi Carbon Black (RCF # 45L), particle size: 24 nm
(4)(d)有機溶剤
 (d-1)N-メチルピロリドン(NMP)
 (d-2)エチレンカーボネート(EC)
 (d-3)プロピレンカーボネート(PC)
 (d-4)ジメチルカーボネート(DMC)
 (d-5)メチルエチルケトン(MEK)
 (d-6)メチルイソブチルケトン(MIBK)
(4) (d) Organic solvent (d-1) N-methylpyrrolidone (NMP)
(D-2) Ethylene carbonate (EC)
(D-3) Propylene carbonate (PC)
(D-4) Dimethyl carbonate (DMC)
(D-5) Methyl ethyl ketone (MEK)
(D-6) Methyl isobutyl ketone (MIBK)
(5)(e)難燃剤
 リン系難燃剤 大八化学社製 PX-200(製品名)、縮合型リン酸エステル、リン酸エステルダイマー
(5) (e) Flame retardant Phosphorus flame retardant PX-200 (product name), condensed phosphate ester, phosphate ester dimer manufactured by Daihachi Chemical Co., Ltd.
実施例1~28、比較例1~6
 下記表1~9に示す配合割合(質量部)において、通常のプラスチック混練機中に(d)成分を除く各成分を入れ、混練温度180℃~220℃で混練し、ペレット化した。次に、ペレットを、(d)成分と共に攪拌機を備えた容器に加え、常法により混合し、コーティング組成物を得た。得られた組成物の25℃における粘度(mPa・s)を測定した。 すなわち、ハンディタイプのデジタル粘度計TVC-7形粘度計(東機産業社)を用いて、粘度に合わせた適当なロータ(0号~5号)を用いて、25℃粘度を測定した。結果を表1~9に併せて示す。
Examples 1 to 28, Comparative Examples 1 to 6
In the blending ratios (parts by mass) shown in Tables 1 to 9 below, each component except the component (d) was placed in a normal plastic kneader, kneaded at a kneading temperature of 180 ° C. to 220 ° C., and pelletized. Next, the pellet was added to a container equipped with a stirrer together with the component (d) and mixed by a conventional method to obtain a coating composition. The viscosity (mPa · s) at 25 ° C. of the obtained composition was measured. That is, using a handy type digital viscometer TVC-7 type viscometer (Toki Sangyo Co., Ltd.), the viscosity at 25 ° C. was measured using an appropriate rotor (No. 0 to No. 5) according to the viscosity. The results are also shown in Tables 1 to 9.
 次に、表1~8に示す各基材(寸法:150mm×25mm×厚さ1mm)上に、スピンコート法により組成物を塗布し(塗布厚15~20μm)、乾燥させ、基材上に組成物の層(A)を有する積層体を調製した。
 使用した各基材は、次の通りである。
・ガラス(顕微鏡プレパラート用スライドグラス)
・ポリエチレンテレフタレートPET(ユニチカ製 ユニチカポリエステル樹脂MA-2103)
・ポリブチレンテレフタレートPBT(三菱エンジニアリングプラスチックス社製、商品名ノバデュラン5010R5)
・ポリカーボネートPC(帝人化成社製、商品名パンライトL-1225L)
・液晶ポリマーLCP(住友化学社製、商品名スミカスーパーE5008L)
・トリアセチルセルロースTAC(富士フイルム社製、商品名フジタック(UV有り))
Next, the composition was applied by spin coating (coating thickness: 15 to 20 μm) on each of the substrates (dimensions: 150 mm × 25 mm × thickness 1 mm) shown in Tables 1 to 8, dried, and coated on the substrate. A laminate having a layer (A) of the composition was prepared.
Each base material used is as follows.
・ Glass (slide glass for microscope preparation)
・ Polyethylene terephthalate PET (Unitika Polyester MA-2103 made by Unitika)
・ Polybutylene terephthalate PBT (Mitsubishi Engineering Plastics, trade name Nova Duran 5010R5)
・ Polycarbonate PC (trade name Panlite L-1225L, manufactured by Teijin Chemicals Ltd.)
・ Liquid crystal polymer LCP (manufactured by Sumitomo Chemical Co., Ltd., trade name Sumika Super E5008L)
・ Triacetylcellulose TAC (Fuji Film Co., Ltd., trade name FUJITAC (with UV))
(密着性試験:碁盤目テープ試験)
 日本工業規格K5400に記載されている碁盤目テープ試験法に準拠して以下のように測定を行った。
 碁盤目テープ試験(Cross-cut  Test、塗布厚15~20μm(スピンコート法)):試験面(組成物の層(A)側)にカッターナイフを用いて、1×1mm四方の碁盤目の切り傷を入れる。カッターガイドを使用する。碁盤目の数は、縦10個×横10個=100個入れる。碁盤目を入れた所にセロハンテープを強く圧着させ、テープの端を45°の角度で急速に引き剥がし、碁盤目の状態(剥離しないで残った碁盤目の個数)を見る。
(Adhesion test: cross-cut tape test)
The measurement was performed as follows in accordance with the cross cut tape test method described in Japanese Industrial Standard K5400.
Cross-cut test (Cross-cut Test, coating thickness 15-20μm (spin coating method)): Using a cutter knife on the test surface (composition layer (A) side), a 1 x 1mm square cut Insert. Use the cutter guide. The number of grids is 10 vertical x 10 horizontal = 100. Strongly press the cellophane tape into the grid, and peel off the end of the tape rapidly at an angle of 45 ° to see the grid pattern (number of grids remaining without peeling).
(耐水性試験)
 上記で得られた積層体に対して、サンプルを沸騰水中(純水) に1時間浸せきした後に室内で自然乾燥させ、ハードコート層の外観の悪化の有無について目視観察した。
○:剥離やクラックの発生なし(1時間浸せき)
×:剥離やクラックの発生あり(1時間浸せき)
(Water resistance test)
The sample obtained above was immersed in boiling water (pure water) for 1 hour and then naturally dried indoors, and visually observed for the appearance of the hard coat layer.
○: No peeling or cracking (immersion for 1 hour)
×: Peeling or cracking occurred (immersion for 1 hour)
・異材質接着試験(ポリエステル系樹脂vsエチレン-酢酸ビニル共重合体)
 異材質間の接着試験を次に示すようなせん断接着力測定により行った。
 寸法150mm×1mm厚×25mm巾のポリエチレンテレフタレートPET(東洋紡績社製商品名EMC307)の層(B1)上に、スピンコート法で上記組成物を塗布し(塗布厚15~20μm)、組成物の層(A)を形成し、さらにその上に、表に示す、上記(B1)と同じ寸法の、エチレン-酢酸ビニル共重合体EVA(住友化学社製商品名KA-30、酢酸ビニル含有量28%)の層(B2)を圧着させ、積層体を調製した。その後、層(B2)を、層(A)の接合面と平行な方向に引張り、破断時の引張強さを測定した。その結果を、PET vs EVAとして、表に示す(MPa)。
・ Adhesion test for different materials (polyester resin vs ethylene-vinyl acetate copolymer)
The adhesion test between different materials was performed by measuring the shear adhesive force as shown below.
On the layer (B1) of polyethylene terephthalate PET (trade name EMC307 manufactured by Toyobo Co., Ltd.) having dimensions of 150 mm × 1 mm thickness × 25 mm width, the above composition was applied by a spin coating method (application thickness: 15 to 20 μm). A layer (A) is formed, and an ethylene-vinyl acetate copolymer EVA (trade name KA-30 manufactured by Sumitomo Chemical Co., Ltd., vinyl acetate content 28 having the same dimensions as (B1) shown in the table is formed thereon. %) Layer (B2) was pressure-bonded to prepare a laminate. Thereafter, the layer (B2) was pulled in a direction parallel to the bonding surface of the layer (A), and the tensile strength at break was measured. The results are shown in the table as PET vs EVA (MPa).
耐候性試験
 各積層体に対して、サンシャインウエザーメータを用いてブラックパネル温度63℃ で、降雨12分、乾燥48分のサイクルで1000時間暴露後、外観の評価を行った。
○:外観変化なし
×:白化、黄変、剥離あり
Weather resistance test Each laminate was exposed for 1000 hours in a cycle of 12 minutes of rain and 48 minutes of drying at a black panel temperature of 63 ° C. using a sunshine weather meter, and the appearance was evaluated.
○: No change in appearance ×: Whitening, yellowing, peeling
(難燃性試験)
 燃焼試験はUNDERWRITERS LABORATORIES社の安全標準UL94(○:燃焼侍間10秒以内、Δ:10秒以上燃焼、×:全焼)によって測定した。
(Flame retardancy test)
The combustion test was measured according to UNTERWRITERS LABORATORIES safety standard UL94 (O: burning within 10 seconds, Δ: burning for 10 seconds or more, x: burning).
(表面抵抗試験)
 表面抵抗は、サンプルとしてガラス基材(寸法:150mm×25mm×厚さ1mm)上に、スピンコート法により組成物を塗布し(塗布厚10μm)三菱化学(株)製 高抵抗率計ハイレスターUP(MCP―HT450型)にて、ASTM D257に準じて印加電圧500Vにて表面抵抗率(Ω/sq.)を測定した。各サンプルの抵抗率は5枚の測定値の平均値(n=5)とした。
(Surface resistance test)
The surface resistance is applied to a glass substrate (dimensions: 150 mm x 25 mm x thickness 1 mm) as a sample by applying the composition by spin coating (coating thickness 10 μm). (MCP-HT450 type), the surface resistivity (Ω / sq.) Was measured at an applied voltage of 500 V in accordance with ASTM D257. The resistivity of each sample was an average value (n = 5) of five measured values.
(各種透過率試験)
 可視光透過率は、JIS R-3106に則り、U-4000型自記分光光度計(日立製作所社製)による分光透過率曲線における波長 380~780nm におけるD光源に対する平均透過率で求めた。
 紫外線透過率は、ISO/DIS 13837 B法に則り上記同様の手段で、波長 300~380nm における平均透過率を求めた。
 赤外線透過率:ISO/DIS 13837 B法に則り上記同様の手段で、780nm~2000nmの平均透過率を求めた。
(Various transmittance tests)
The visible light transmittance was determined by the average transmittance for a D light source at a wavelength of 380 to 780 nm in a spectral transmittance curve by a U-4000 type self-recording spectrophotometer (manufactured by Hitachi, Ltd.) according to JIS R-3106.
The ultraviolet transmittance was obtained as an average transmittance at a wavelength of 300 to 380 nm by the same means as described above according to the ISO / DIS 13837 B method.
Infrared transmittance: An average transmittance of 780 nm to 2000 nm was determined in the same manner as described above according to the ISO / DIS 13837 B method.
実施例29~34、比較例7~10
 下記表10~12に示す配合割合(質量部)に従い、各成分を、T型ダイスを備えた加熱溶融押出機(株式会社東洋精機製作所社製商品名ラボプラストミルNo.655Mモデル)に投入し、200℃で加熱溶融混練し、基材(寸法:150mm×25mm×厚さ1mm)上に厚さ50μmとして押し出し、本発明の積層体を調製した。
 得られた積層体について、上記各種試験を行なった。
Examples 29 to 34, Comparative Examples 7 to 10
In accordance with the blending ratio (parts by mass) shown in Tables 10 to 12 below, each component was charged into a heat-melting extruder equipped with a T-shaped die (trade name Lab Plast Mill No. 655M model manufactured by Toyo Seiki Seisakusho Co., Ltd.). The mixture was heated and melt-kneaded at 200 ° C. and extruded onto a substrate (dimensions: 150 mm × 25 mm × thickness 1 mm) to a thickness of 50 μm to prepare a laminate of the present invention.
The above various tests were performed on the obtained laminate.
 結果を下記表1~12に示す。 The results are shown in Tables 1 to 12 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1~12に示す結果から、本発明の実施例のコーティング組成物は、前記(a)および(b)成分を特定の量的関係でもって配合しているので、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性を有するとともに、耐水性、耐候性に優れる。また、機能性材料を添加した系では、所望の機能性が付与されていることが確認された。
 これに対し、比較例1,2,5,6,7,8,9,10は、前記(a)および(b)成分の配合量が、本発明の規定する範囲外であるので、上記特定基材に対する接着性、耐水性、耐候性をすべて満足することはできなかった。
 比較例3および4は、(b)成分が本発明の範囲外の成分であるので、上記特定基材に対する接着性、耐水性が悪化した。
From the results shown in Tables 1 to 12, since the coating compositions of the examples of the present invention are blended with the components (a) and (b) in a specific quantitative relationship, glass, polycarbonate resin, polyester Excellent adhesion to water-based resin, cellulose-based resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, as well as excellent water resistance and weather resistance. Moreover, it was confirmed that the desired functionality was imparted to the system to which the functional material was added.
On the other hand, in Comparative Examples 1, 2, 5, 6, 7, 8, 9, and 10, the blending amounts of the components (a) and (b) are outside the range defined by the present invention. The adhesion to the substrate, water resistance, and weather resistance could not all be satisfied.
In Comparative Examples 3 and 4, since the component (b) is a component outside the scope of the present invention, the adhesion to the specific substrate and the water resistance deteriorated.

Claims (15)

  1.  (a)フッ素系樹脂45~90質量部、および
     (b)メタクリル酸エステルを主体とするブロック(A)およびアクリル酸エステルを主体とするブロック(B)からなるブロック共重合体またはポリビニルアセタール樹脂10~55質量部(ただし、前記(a)および(b)成分の合計は100質量部である)
    を含有することを特徴とするコーティング組成物。
    (A) 45 to 90 parts by mass of a fluororesin, and (b) a block copolymer or polyvinyl acetal resin 10 comprising a block (A) mainly composed of a methacrylic ester and a block (B) mainly composed of an acrylate ester. 55 parts by mass (however, the total of the components (a) and (b) is 100 parts by mass)
    A coating composition comprising:
  2.  前記(a)フッ素系樹脂の融点が230℃以下であることを特徴とする請求項1に記載のコーティング組成物。 The coating composition according to claim 1, wherein the melting point of the (a) fluororesin is 230 ° C or lower.
  3.  前記(b)ブロック共重合体が、トリブロック構造を有することを特徴とする請求項1または2に記載のコーティング組成物。 The coating composition according to claim 1 or 2, wherein the (b) block copolymer has a triblock structure.
  4.  前記(b)ブロック共重合体が、ABA型トリブロック構造を有するブロック共重合体(ただし、前記Aブロック成分がメタクリル酸エステルであり、Bブロック成分がアクリル酸エステルである)であることを特徴とする請求項1~3のいずれかに記載のコーティング組成物。 The (b) block copolymer is a block copolymer having an ABA type triblock structure (provided that the A block component is a methacrylic ester and the B block component is an acrylate ester). The coating composition according to any one of claims 1 to 3.
  5.  前記(b)ブロック共重合体が、下記一般式
    -(A1)-(B)-(A2)-
    (式中、(A1)および(A2)は、それぞれ、メタクリル酸アルキルエステルからなるブロック成分を表し、(B)は、アクリル酸アルキルエステルからなるブロック成分を表す)で表されるトリブロック構造を有することを特徴とする請求項4に記載のコーティング組成物。
    The (b) block copolymer has the following general formula-(A1)-(B)-(A2)-
    (Wherein (A1) and (A2) each represent a block component composed of a methacrylic acid alkyl ester, and (B) represents a block component composed of an acrylic acid alkyl ester). The coating composition according to claim 4, which has a coating composition.
  6.  前記(b)ブロック共重合体が、リビングアニオン重合法によって製造されたことを特徴とする請求項5に記載のコーティング組成物。 The coating composition according to claim 5, wherein the (b) block copolymer is produced by a living anion polymerization method.
  7.  前記(b)ポリビニルアセタール樹脂がポリビニルブチラール樹脂であることを特徴とする請求項1または2に記載のコーティング組成物。 The coating composition according to claim 1 or 2, wherein the (b) polyvinyl acetal resin is a polyvinyl butyral resin.
  8.  さらに(c)白色光反射材料、黒色材料、赤外線吸収材料、紫外線吸収材料、帯電防止材料および電磁波シールド材料から選ばれる少なくとも1種の機能性材料を含むことを特徴とする請求項1~7のいずれかに記載のコーティング組成物。 8. The method according to claim 1, further comprising (c) at least one functional material selected from a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material, and an electromagnetic shielding material. The coating composition according to any one of the above.
  9.  さらに(d)有機溶剤を、前記(a)成分および(b)成分の合計100質量部に対し、400~900質量部配合してなることを特徴とする請求項1~8のいずれかに記載のコーティング組成物。 9. The organic solvent according to claim 1, further comprising 400 to 900 parts by mass of (d) an organic solvent based on a total of 100 parts by mass of the component (a) and the component (b). Coating composition.
  10.  請求項1~9のいずれかに記載のコーティング組成物からなる、ガラス用コーティング組成物。 A glass coating composition comprising the coating composition according to any one of claims 1 to 9.
  11.  請求項1~9のいずれかに記載のコーティング組成物からなる、太陽電池バックシート用コーティング組成物。 A solar cell backsheet coating composition comprising the coating composition according to any one of claims 1 to 9.
  12.  バックシート基材がポリエステル系樹脂またはポリカーボネートであることを特徴とする請求項11に記載の太陽電池バックシート用コーティング組成物。 The coating composition for a solar battery backsheet according to claim 11, wherein the backsheet base material is a polyester resin or polycarbonate.
  13.  請求項1~9のいずれかに記載のコーティング組成物を、基材上にコーティングしてなる積層体。 A laminate obtained by coating the substrate with the coating composition according to any one of claims 1 to 9.
  14.  前記基材が、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂および液晶ポリマーから選ばれる少なくとも1種であることを特徴とする請求項13に記載の積層体。 The laminate according to claim 13, wherein the base material is at least one selected from glass, polycarbonate resin, polyester resin, cellulose resin, and liquid crystal polymer.
  15.  請求項1~8のいずれかに記載のコーティング組成物からなる、押出成形用組成物。 A composition for extrusion molding comprising the coating composition according to any one of claims 1 to 8.
PCT/JP2010/061400 2010-07-05 2010-07-05 Coating composition and laminate WO2012004849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061400 WO2012004849A1 (en) 2010-07-05 2010-07-05 Coating composition and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061400 WO2012004849A1 (en) 2010-07-05 2010-07-05 Coating composition and laminate

Publications (1)

Publication Number Publication Date
WO2012004849A1 true WO2012004849A1 (en) 2012-01-12

Family

ID=45440851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061400 WO2012004849A1 (en) 2010-07-05 2010-07-05 Coating composition and laminate

Country Status (1)

Country Link
WO (1) WO2012004849A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144746A (en) * 2012-01-13 2013-07-25 Hitachi Chemical Co Ltd Heat-emissive coating material and radiation member
WO2014024933A1 (en) * 2012-08-09 2014-02-13 旭硝子株式会社 Glass-sheet-fluorine-resin laminate
WO2014046119A1 (en) * 2012-09-18 2014-03-27 ダイキン工業株式会社 Coating composition, cured coating film, back sheet for solar cell module, and solar cell module
CN106867158A (en) * 2015-10-01 2017-06-20 三菱铅笔株式会社 The non-aqueous dispersoid of fluorine resin, containing the thermally curable resin composition of fluorine resin and its solidfied material and adhesive composite
JP2020122112A (en) * 2019-01-31 2020-08-13 株式会社クラレ Binder for ink or coating and use of the same
WO2022058690A1 (en) * 2020-09-17 2022-03-24 Ceva Sante Animale Surface-coating fluid composition for absorbing and diffusing volatile compounds
WO2022058689A1 (en) * 2020-09-17 2022-03-24 Melchior Material And Life Science France Surface-coating fluid composition for absorbing and diffusing volatile compounds

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311732A (en) * 1991-04-10 1992-11-04 Mitsubishi Petrochem Co Ltd Protective sheet for solar cell module
JPH0689611A (en) * 1992-09-04 1994-03-29 Toyota Motor Corp Electric wire covering material and manufacture of electric wire
JPH1012243A (en) * 1996-06-26 1998-01-16 Hitachi Maxell Ltd Lithium secondary battery
JP2002338707A (en) * 2001-05-18 2002-11-27 Kanegafuchi Chem Ind Co Ltd Film for covering metal plate and covered metal plate using the film
JP2007231072A (en) * 2006-02-28 2007-09-13 Three M Innovative Properties Co Coating composition and article using the same
JP2008205137A (en) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Solar cell and solar cell module
WO2009104423A1 (en) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション Polymer composition and molded article produced from the composition
WO2010073735A1 (en) * 2008-12-26 2010-07-01 リンテック株式会社 Protective sheet for back surface of solar cell module
JP2010147128A (en) * 2008-12-17 2010-07-01 Denki Kagaku Kogyo Kk Sheet and photovoltaic power generation module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311732A (en) * 1991-04-10 1992-11-04 Mitsubishi Petrochem Co Ltd Protective sheet for solar cell module
JPH0689611A (en) * 1992-09-04 1994-03-29 Toyota Motor Corp Electric wire covering material and manufacture of electric wire
JPH1012243A (en) * 1996-06-26 1998-01-16 Hitachi Maxell Ltd Lithium secondary battery
JP2002338707A (en) * 2001-05-18 2002-11-27 Kanegafuchi Chem Ind Co Ltd Film for covering metal plate and covered metal plate using the film
JP2007231072A (en) * 2006-02-28 2007-09-13 Three M Innovative Properties Co Coating composition and article using the same
JP2008205137A (en) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Solar cell and solar cell module
WO2009104423A1 (en) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション Polymer composition and molded article produced from the composition
JP2010147128A (en) * 2008-12-17 2010-07-01 Denki Kagaku Kogyo Kk Sheet and photovoltaic power generation module
WO2010073735A1 (en) * 2008-12-26 2010-07-01 リンテック株式会社 Protective sheet for back surface of solar cell module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144746A (en) * 2012-01-13 2013-07-25 Hitachi Chemical Co Ltd Heat-emissive coating material and radiation member
WO2014024933A1 (en) * 2012-08-09 2014-02-13 旭硝子株式会社 Glass-sheet-fluorine-resin laminate
JPWO2014024933A1 (en) * 2012-08-09 2016-07-25 旭硝子株式会社 Glass sheet fluoropolymer laminate
WO2014046119A1 (en) * 2012-09-18 2014-03-27 ダイキン工業株式会社 Coating composition, cured coating film, back sheet for solar cell module, and solar cell module
JP2015007208A (en) * 2012-09-18 2015-01-15 ダイキン工業株式会社 Coating composition, cured coating film, solar cell module back sheet, and solar cell module
CN106867158A (en) * 2015-10-01 2017-06-20 三菱铅笔株式会社 The non-aqueous dispersoid of fluorine resin, containing the thermally curable resin composition of fluorine resin and its solidfied material and adhesive composite
CN106867158B (en) * 2015-10-01 2021-01-26 三菱铅笔株式会社 Nonaqueous dispersion of fluorine-containing resin, thermosetting resin composition of fluorine-containing resin, cured product thereof, and adhesive composition
JP2020122112A (en) * 2019-01-31 2020-08-13 株式会社クラレ Binder for ink or coating and use of the same
WO2022058690A1 (en) * 2020-09-17 2022-03-24 Ceva Sante Animale Surface-coating fluid composition for absorbing and diffusing volatile compounds
WO2022058689A1 (en) * 2020-09-17 2022-03-24 Melchior Material And Life Science France Surface-coating fluid composition for absorbing and diffusing volatile compounds

Similar Documents

Publication Publication Date Title
WO2012004849A1 (en) Coating composition and laminate
TWI490261B (en) Polyvinylidene fluoride resin composition, film, back sheet and solar cell module
CN103502001B (en) Multilayer film and the photovoltaic module comprising this multilayer film
WO2010087085A1 (en) Back sheet for solar battery, and solar battery module comprising same
WO2010071032A1 (en) Solar cell backsheet and solar cell module provided with same
JP5937075B2 (en) Vinylidene fluoride resin composition, resin film, solar cell backsheet, and solar cell module
CN104220255B (en) Multilayer film and the photovoltaic module including this multilayer film
JP2015513478A (en) Weatherproof composite for flexible thin film photovoltaic and light emitting diode devices
CN102632668B (en) Solar battery encapsulating film and preparation method thereof
JP4734480B2 (en) Back protection sheet for solar cell and method for producing the same
TW201242068A (en) Resin composition, multi-layered film and photovoltaic module including the same
WO2011013638A1 (en) Method for improving weathering property of resinous member for solar light power generation, and resin-property improver for use therein
WO2012036046A1 (en) Base material for solar cell module and method for producing same
WO2014057933A1 (en) Vinylidene fluoride resin composition, resin film, solar cell backsheet, and solar cell module
JP6094865B2 (en) Easy-adhesive composition, laminated polyester resin film, and solar battery back sheet
JP2013545831A (en) Fluoropolymer-based film for photovoltaic applications
JP5173911B2 (en) Laminated sheet and solar cell module including the same
JP2010199552A (en) Solar cell backsheet and solar cell module provided with same
JP2010177386A (en) Backsheet for solar cell
EP3075799A1 (en) Ir-reflective material
WO2010087086A1 (en) Back sheet for solar battery, and solar battery module comprising same
WO2012017553A1 (en) Coating composition and laminate
JP6310858B2 (en) Fluorine resin film, method for producing the same, and solar cell module
KR101399422B1 (en) MONO-LAYER PVdF FILM AND PREPARATION METHOD THEREOF
JP2010177384A (en) Backsheet for solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10854404

Country of ref document: EP

Kind code of ref document: A1