WO2012004421A1 - Dispositivo de excitacion tactil basado en elastomeros dielectricos y procedimiento de fabricacion. - Google Patents

Dispositivo de excitacion tactil basado en elastomeros dielectricos y procedimiento de fabricacion. Download PDF

Info

Publication number
WO2012004421A1
WO2012004421A1 PCT/ES2010/070464 ES2010070464W WO2012004421A1 WO 2012004421 A1 WO2012004421 A1 WO 2012004421A1 ES 2010070464 W ES2010070464 W ES 2010070464W WO 2012004421 A1 WO2012004421 A1 WO 2012004421A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
matrix
layer
dielectric
passive
Prior art date
Application number
PCT/ES2010/070464
Other languages
English (en)
French (fr)
Inventor
José Luis CORDOBA MATILLA
Original Assignee
Vision Tactil Portable, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vision Tactil Portable, S.L. filed Critical Vision Tactil Portable, S.L.
Priority to PCT/ES2010/070464 priority Critical patent/WO2012004421A1/es
Priority to EP10854364.6A priority patent/EP2592613A4/en
Priority to US13/808,396 priority patent/US9000317B2/en
Priority to PCT/ES2011/070029 priority patent/WO2011089296A1/es
Publication of WO2012004421A1 publication Critical patent/WO2012004421A1/es

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B21/00Teaching, or communicating with, the blind, deaf or mute
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B21/00Teaching, or communicating with, the blind, deaf or mute
    • G09B21/001Teaching or communicating with blind persons
    • G09B21/003Teaching or communicating with blind persons using tactile presentation of the information, e.g. Braille displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B21/00Teaching, or communicating with, the blind, deaf or mute
    • G09B21/02Devices for Braille writing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/84Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback
    • H01H13/85Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback characterised by tactile feedback features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to a technique for the manufacture of a tactile matrix optimized for the tactile transfer of information without interference between taxales (taxel is a touch pixel, a touch element), of small size, easily scalable in resolution (number of rows and columns), flexible and low production complexity.
  • the elastomer-based touch matrix and activated by the method and device described in International Patent Application No. PCT / ES20 0/000019 can be applied, for example, to generate tactile visual images in a tactile visual system, such as the touch system. tactile vision disclosed in Spanish patent application N 0 200900991.
  • This optimization in energy transfer allows to reduce the area of the individual actuators in the matrix thus achieving devices with a density of taxales in tune with the density of receiving nerve endings in the skin with forces in each of the actuators that make up the matrix sufficient for the correct perception of the desired stimulus.
  • the matrix is addressed by the selection of an element, such as pixels for visual screens or taxel for actuators, at the intersection of a particular row and column. Multiplexing is the term applied to the division in time by which pixels are excited or activated. It is an object of the present invention to provide a method of manufacturing a passive matrix of high efficiency in mechanical transfer and high isolation between taxa.
  • a first aspect of the present invention is a touch excitation device based on dielectric elastomers comprising:.
  • top and bottom passive layer preferably of silicone, which respectively cover the dielectric actuator elastomer matrix upper and lower;
  • a matrix of actuator pins partially embedded in a pin support layer, preferably of silicone, located on the upper passive layer, the base of said actuator pins facing the upper electrodes and the head of said actuator pins of the layer protruding of pin support.
  • the touch excitation device comprises a matrix of lower supports, preferably hemispherical, arranged on the printed circuit board and facing the lower electrodes, and are responsible for generating a compression of the lower passive layer in a compression zone substantially centered with respect to the lower electrode. ;
  • each electrical terminal of the printed circuit board with the row or column of electrodes is preferably carried out through a connection termination located at one end of the corresponding row or column.
  • the passive layers are preferably arranged stretched over the printed circuit board.
  • the rows of upper electrodes and the columns of lower electrodes are arranged perpendicularly.
  • the base and the head of the actuator pins are preferably circular, the diameter of the base being greater than the diameter of the head.
  • the finer the pin head the more pressure it exerts on the skin (for the same pin acting force, the pin's pressure on the skin is inversely proportional to the diameter of the pin exerting the force).
  • Another aspect of the present invention is a method of manufacturing a touch excitation device based on dielectric elastomers.
  • the procedure includes: - Stretch a layer of dielectric elastomer (1), preferably until a thickness of less than 20 or 30 ⁇ is obtained. There is no maximum thickness, although the thicker the greater the voltage is needed to produce the same mechanical result. The finer the elastomers, the simpler the electronics used.
  • the thickness of the elastomer also influences the mechanical response, but being the passive layers that are used of very elastic materials, these passive layers are predominant in the mechanical response. Therefore, the finer the elastomer used, a worse mechanical result would be obtained, but electrically it would be more advantageous, with the passive layers facilitating the mechanical response.
  • the actuator pins are placed on the upper electrodes prior to the placement of the pin support layer.
  • the actuator pins are preferably embedded in the pin support layer prior to the placement of said pin support layer on the upper passive layer.
  • the printed circuit board preferably has an array of lower supports arranged on said board so that, once the manufacturing process is finished, they face the lower electrodes generating a compression of the lower passive layer in a compression zone substantially centered with respect to the lower electrode.
  • This lower plate could be a printed circuit whose manufacture includes circles where you can later deposit tin hemispheres in an automated way (wave solder or tin supply with stencil). It could also be a plastic support with the desired shape including hemispheres and behind this plastic the printed connection circuit.
  • each electrical terminal of the printed circuit board with the row or column of electrodes is preferably carried out through a connection termination located at one end of the corresponding row or column.
  • Figures 1A and 1 B represent the principle of operation of a dielectric elastomer actuator, according to the existing technique.
  • Figures 2A and 2B show the dielectric elastomer elements in a matrix arrangement (elastomer matrix).
  • Figures 3A and 3B represent a side section of the matrix of elastomer actuators in 2D and 3D, respectively.
  • Figure 4 shows in more detail a side section of the matrix of elastomer actuators.
  • the invention relates to a method for optimizing the transfer of mechanical energy generated by means of a dielectric elastomer.
  • FIG. 1A and 1B The principle of operation of a dielectric elastomer actuator 3 is shown in Figure 1A and 1B.
  • a continuous high voltage U is applied between both faces of a thin film of dielectric elastomer 1, by means of an upper electrode 2 and a lower electrode 2 ', it expands in the direction of the plane due to the pressure p in the direction of the thickness induced by an electric field.
  • the applied voltage disappears, the elastomer film recovers the original form.
  • This effect can be created, for example, tactile sensations in a small area of the skin surface (the area of application) when the matrix of The elastomer is applied or fixed to a human body, preferably in a sensitive region (for example, the abdomen or the lower part of the back).
  • E r is the relative permittivity of the elastomers
  • E 0 8854 ⁇ 10 2
  • U the applied voltage
  • d the thickness of the elastomer film at rest.
  • the pressure increases quadratically with the electric field and is therefore the main relationship that regulates the response of the actuator. It is important to note that the elastomer behavior is the same regardless of the positive or negative sign of the applied voltage U.
  • the equivalent electrical model for an elastomeric element is a parallel capacitor and resistance configuration, in which the capacitance is e! result of two electrodes applied on the elastomer film, and the resistance is the resistance of losses caused by the conductivity of the elastomer film.
  • the coarse mode technique is a recent embodiment of EPAM (Electroactive Polymer Artificial Muscle).
  • the "active" polymer film is coated with a thicker passive layer, so that changes in the thickness of the polymer during EPAM are transferred, at least partially, to the passive layer.
  • This passive layer can be considered as passive, in relation to the polymer film in that it does not respond to the application of an electric field changing area or thickness as does the EPAM layer.
  • the passive layer is coupled to the EPAM film so that changes in area and thickness of the EPAM film induce shear forces in the passive layer that change the thickness of this layer. Therefore, this change in thickness of the passive layer can be used to extend, in absolute terms, the displacement produced by the change in thickness of the EPAM polymer film.
  • FIG 1A A schematic diagram of this type of device and the results of the shear mode operation is shown in Figure 1A.
  • EPAM is shown during shear mode actuation, showing a schematic diagram of a proposed shear mode device.
  • Figure 2A shows the arrangement of the electrodes (2.2 ') in the dielectric elastomer 1, in an array arrangement (elastomer matrix).
  • Figure 2B represents a detail of the elastomer matrix, in which it can be seen how the upper electrodes (2) are electrically connected by rows (20) and the lower electrodes (2 ') are electrically connected by columns (21). The figure shows that rows (20) and columns (21) are perpendicular; However, this is not essential, since they could be arranged at any angle (even parallel), although for greater ease of excitation of the electrodes it is recommended that they be perpendicular.
  • the electrodes are preferably circular, as shown in Figure 2B, but could take other forms (for example, square, rhomboidal, rectangular, etc.)
  • FIG. 3A and 3B The structure of the elastomer actuator matrix is shown in Fig. 3A and 3B, where the various components in several layers can be seen.
  • Figure 3A shows a 2D side section
  • Figure 3B represents a 3D side section.
  • Each of the elements described here contributes to a better performance of the taxel.
  • the built-in elements are:
  • Lower support 4 with functions of acting concentrator and. prestressing element of the upper 8 and lower 8 'passive layers.
  • the lower support 4 is preferably hemispherical so that the tension is distributed uniformly and does not produce material ruptures
  • Actuator pins 5 embedded in a pin support layer 6 for direct capture of the energy generated in the taxel by the base of pin 5a, which is in contact with the upper passive layer 8, and for concentration of the pressure exerted on the opposite end of the pin (pin head 5b) with a diameter much smaller than the base, so that the pressure is increased in quadratic relation to the ratio of base diameter / pin head.
  • a ratio of 1.8 / 0.6 is used, 0.6 mm being the diameter of the pin in contact with the skin and 1.8 mm the size of the pin base, smaller than the diameter of the actuator which is 2.5 mm. All these parameters can be modified and optimized based on experimental results and simulations.
  • Printed circuit board 7 with support and electrical connection functions.
  • Pre-tensioning of the passive layers of the dielectric elastomer in coarse mode It can be achieved by various techniques, such as lower-scale or pressure-tensioning of the lower support 4 on the plate.
  • connection termination 10 the same used for the electrodes, which is used to connect the elastomer matrix with the electrical terminal 9 on the PCB 7, by means of connection elements 12. In this way the connections can be made once the matrix manufacturing process is finished, which is very convenient to simplify said process.
  • the other part of the enhancer device formed by an embedded pin 5.
  • the head of the pin must be close enough to the focus of the actuator to capture most of the energy generated. This pin 5 captures and channels the energy of the actuator to bring it to the outer end in contact with the skin.
  • these pins are held by an additional silicone layer, pin support layer 6, which keeps them in contact with the upper passive layer 8 of the elastomer in all time
  • the proportions between the diameter of the electrodes (2.2 ') of the actuator, the thickness of the upper passive layers 8 (distance from pin 5 to the actuator) and lower 8' and the height of the lower hemispherical support 4 will determine the behavioral parameters of the response of the taxel, having to look for a compromise based on the parameter to be optimized, such as vertical displacement, actuation force, response time, etc.
  • the relationship between the thicknesses of the passive layers (8.8 ') has an impact on the actuation properties of the pin and the insulation between adjacent pins.
  • the greater the thickness the greater the vertical displacement in a model where the diameter of the pin 5 is much greater than the thickness of the passive layer 8.
  • this vertical displacement decreases due to the deformation of the total volume of the passive layer.
  • actuator diameters of about 2.5 mm are used to allow a distance of 3 mm between actuators, the lower passive layer 8 'is 1 mm thick, the upper passive layer 8 on which the pin 5 rests is 0.5mm thick and the pin support layer 6 is another 0.5 to 0.7mm thick.
  • the diameter of the pin head is 1.8mm and the tip 0.6mm.
  • different measures could be used.
  • the manufacturing process of the device begins with the stretching 'of the elastomer until it is left in 20um thickness, -application of the electrodes (2.2') by means of a mask and deposition of conductive paste. Subsequently, the silicone is deposited to form the two passive layers, the lower one 8 'of 1 mm thick and the upper one 0.5 mm thick.
  • connection of the PCB to each of the endings in the elastomer is made by inserting a thin conductive wire, the connecting element 12, (of the order of 0.1 mm in diameter) (which runs perpendicular to the passive layers and the elastomer at the connection point prepared for it (connection termination 10), also passing through the hole in the PCB that exists in each electrical terminal (9) .
  • the wire will be welded on the back of the PCB and cut just above the passive layer (8) so that by adding the pin support layer 6 the connections are covered and electrically insulated.
  • the pins 5 are placed on each of the upper electrodes 2 and covered with the last silicone layer 0.5 to 0.7mm thick, the pin support layer 6.
  • This last step can also be carried out separately, manufacturing a mat from 0.5 to 0.7mm thick with the embedded pins, for subsequent adhesion of this mat on the rest of the actuator matrix, simplifying the manufacturing process.
  • the pin support layer 6 and the upper passive layer 8 once finished are fused and form a single one with the embedded pins 5.
  • the dielectric elastomer layer (1) is always stretched.
  • passive layers (8.8 ') can be stretched to improve pressure transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacture Of Switches (AREA)
  • Push-Button Switches (AREA)

Abstract

Dispositivo de excitación táctil basado en elastómeros dieléctricos y procedimiento de fabricación. El dispositivo comprende: - matriz de elastómeros dieléctricos actuadores (3) con: • matriz de electrodos superiores (2) conectados en filas (20); • matriz de electrodos inferiores (21) conectados en columnas (21); • capa de elastómero dieléctrico (1 ) entre Ia matriz de electrodos superiores (2) e inferiores (2'); - capa pasiva superior (8) e inferior (8') que recubren Ia matriz de elastómeros (3); - placa de circuito impreso (7) con una pluralidad de terminales eléctricos (9) conectados eléctricamente con las filas (20) y, columnas (21 ) de electrodos (2,2') de Ia matriz de elastómeros (3); - matriz de pines actuadores (5) parcialmente embebidos en una capa de soporte de pines (6) sobre Ia capa pasiva superior (8), estando !a base de dichos pines actuadores (5a) enfrentados a los electrodos superiores (2). Empleado para generar imágenes visuales táctiles.

Description

Dispositivo de excitación táctil basado en elastómeros dieléctricos y
procedimiento de fabricación
Campo de la invención
La presente invención se refiere a una técnica para la fabricación de una matriz táctil optimizada para la transferencia táctil de información sin interferencias entre taxeles (taxel es un píxel táctil, un elemento táctil), de pequeño tamaño, fácilmente escalable en resolución (número de filas y columnas), flexible y baja complejidad de producción. i
La matriz táctil basada en elastómero y activada por el método y dispositivo descritos en la solicitud de patente internacional N° PCT/ES20 0/000019 se puede aplicar, por ejemplo, para generar imágenes visuales táctiles en un sistema visual táctil, como el sistema de visión táctil divulgado en la solicitud de patente española N 0 200900991.
Antecedentes de la invención
Está recogido en la literatura técnica el desarrollo y aplicación de elastómeros dieléctricos para actuadores mecánicos [1].
Actualmente existen invenciones de matrices para aplicaciones parecidas al braille [3] o para uso en un dedo [5], donde o ,bien usan varas capas de elastómero para ser capaces de obtener actuaciones suficientemente intensas para notarlas, o métodos neumáticos combinados con elastómeros, todo ello bastante complicado, costoso y difícil de industrializar. Además ninguna de las invenciones conocidas resuelve el problema de las interferencias tanto mecánicas como eléctricas entre taxeles.
Referencias bibliográficas
[1] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, "High-Speed Electrically Actuated Elastomers with Over 100% Strain", Science, Vol. 287, No. 5454, pp. 836-839, 2000.
[2] R. Kornbluh, R. Pelrine, Q. Pei, R. Heydt, S. Stanford, S. Oh, and J. Eckerle, "Electroelastomers: Applications of Dielectric Elastomer Transducers for Actuation, Generation and Smart Structures", Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, ed. A. McGowan, Proc. SPIE, Vol. 4698, pp. 254-270, 2002. [3] R. Heydt and S. Chhokar, "Refreshable Braille Display Based on Electroactive Polymers", Proc. 23rd Intl. Display Research Conf., Phoenix, Arizona, 15-18 September 2003.
[4] H. Prahlad et al., "Programmable Surface Deformation: Thickness-Mode Electroactive Polymer Actuators and their Applications", Proc. SPIE's Conference on Smart Structures and Materials, 5759, Vol. 102, 2005.
[5] lg Mo Koo et al., "Development of Soft-Actuator-Based Wearable Tactile Display", IEEE Transactions on Robotics, Vol. 24, No. 3, June 2008 Descripción de la invención
Basado en este principio de actuación mecánica, lo que aquí presentamos es un nuevo método para optimizar la transferencia de la energía mecánica producida en el núcleo del elastómero dieléctrico al punto externo de actuación mecánica, introduciendo al mismo tiempo aislamiento mecánico entre taxeles adyacentes. Esto se hace además, sin partes mecánicas móviles, que dificultarían el mantenimiento del dispositivo y encarecerían su fabricación, pudiendo considerarse esta técnica apta incluso para dispositivos desechables.
Esta optimización en transferencia de energía permite reducir el área de los actuadores individuales en la matriz consiguiendo así dispositivos con una densidad de taxeles en sintonía con la densidad de terminaciones nerviosas receptoras en la piel con fuerzas en cada uno de los actuadores que componen la matriz suficientes para la correcta percepción del estimulo deseado.
La matriz es direccionada por la selección de un elemento, como los píxeles para pantallas visuales o taxel para los actuadores, en la intersección de una determinada fila y columna. Multiplexado es el término aplicado a la división en el tiempo por el que los píxeles se excitan o se activan. Es objeto de la presente invención proporcionar un método de fabricación de una matriz pasiva de alta eficiencia en transferencia mecánica y alto aislamiento entre taxeles.
Un primer aspecto de la presente invención es un dispositivo de excitación táctil basado en elastómeros dieléctricos que comprende: .
- una matriz de elastómeros dieléctricos actuadores formada por:
• una matriz de electrodos superiores, preferiblemente circulares, conectados en filas;
• una matriz de electrodos inferiores, preferiblemente circulares, enfrentados a los electrodos superiores y conectados en columnas; y • una capa de elastómero dieléctrico situado entre la matriz de electrodos superiores y la matriz de electrodos inferiores;
- una capa pasiva superior e inferior, preferentemente de silicona, que respectivamente recubren superior e inferiormente la matriz de elastomeros dieléctricos actuadores;
- una placa de circuito impreso que dispone de una pluralidad de terminales eléctricos conectados eléctricamente con las filas y columnas de electrodos de la matriz de elastomeros dieléctricos actuadores;
- una matriz de pines actuadores parcialmente embebidos en una capa de soporte de pines, preferentemente de silicona, situada sobre la capa pasiva superior, estando la base de dichos pines actuadores enfrentados a los electrodos superiores y sobresaliendo la cabeza de dichos pines actuadores de la capa de soporte de pines.
En una realización preferida el dispositivo de excitación táctil comprende una matriz de soportes inferiores, preferentemente semiesféricos, dispuestos sobre la placa de circuito impreso y enfrentados a los electrodos inferiores, y están encargados de generar una compresión de la capa pasiva inferior en una zona de compresión sustancialmente centrada con respecto al electrodo inferior. ;
La conexión eléctrica de cada terminal eléctrico de la placa de circuito impreso con la fila o columna de electrodos se realiza preferiblemente a través de una terminación de conexión situada en un extremo de la fila o columna correspondiente.
Las capas pasivas están preferentemente dispuestas estiradas sobre la placa de circuito impreso.
En una realización preferente las filas de electrodos superiores y las columnas de electrodos inferiores están dispuestas perpendicularmente.
La base y la cabeza de los pines actuadores son preferentemente circulares, siendo el diámetro de la basé mayor que el diámetro de la cabeza. Cuanto más fino sea la cabeza del pin, más presión ejerce en la piel (para una misma fuerza de actuación del pin, la presión de éste en la piel es inversamente proporcional al diámetro del pin que ejerce la fuerza).
'
Otro aspecto de la presente invención es un procedimiento de fabricación de un dispositivo de excitación táctil basado en elastomeros dieléctricos. El procedimiento comprende: - Estirar una capa de elastómero dieléctrico (1 ), preferentemente hasta obtener un grosor menor de 20 ó 30 μητι. No hay un grosor máximo, aunque a mayor grosor mayor voltaje se necesita para producir el mismo resultado mecánico. Cuanto más finos sean los elastómeros, más sencilla es la electrónica empleada. El grosor del elastómero también influye en la respuesta mecánica, pero al ser las capas pasivas que se utilizan de materiales muy elásticos, estas capas pasivas son predominantes en la respuesta mecánica. Por ello, cuanto más fino sea el elastómero empleado, se obtendría un peor resultado mecánico pero eléctricamente sería mas ventajoso, siendo las capas pasivas las que facilitan la respuesta mecánica.
- Aplicar pasta conductora sobre la cara superior de la capa de elastómero dieléctrico para formar una matriz de electrodos superiores conectados en filas y sobre la cara inferior para formar una matriz de electrodos inferiores conectados en columnas, formando el conjunto una matriz de elastómeros dieléctricos actuadores.
- Depositar silicona sobre la parte superior de la matriz de elastómeros dieléctricos actuadores para formar una capa pasiva superior y sobre la parte inferior de la matriz de elastómeros dieléctricos actuadores para formar una capa pasiva inferior.
- Cubrir la parte pasiva superior con una capa de soporte de pines, compuesta de silicona y encargada de embeber parcialmente una matriz de pines actuadores cuyas bases quedan enfrentadas a los electrodos superiores y cuyas cabezas sobresalen de la capa de soporte de pines.
- Disponer sobre la capa pasiva inferior una placa de circuito impreso que. dispone de una pluralidad de terminales eléctricos.
- Conectar eléctricamente los terminales eléctricos con las filas y columnas de electrodos de la matriz de elastómeros dieléctricos actuadores.
En una realización preferente del procedimiento de fabricación, los pines actuadores son colocados sobre los electrodos superiores con anterioridad a la colocación dé la capa de soporte de pines.
Los pines actuadores están preferentemente embebidos en la capa de soporte de pines con anterioridad a la colocación de dicha capa de soporte de pines sobre la capa pasiva superior.
La placa de circuito impreso dispone preferentemente de una matriz de soportes inferiores dispuestos sobre dicha placa de forma que, una vez terminado el proceso de fabricación, quedan enfrentados a los electrodos inferiores generando una compresión de la capa pasiva inferior en una zona de compresión sustancialmente centrada con respecto al electrodo inferior. Esta placa inferior pude ser un circuito impreso en cuya fabricación se incluyen los círculos donde más tarde se puede depositar semiesferas de estaño de forma automatizada (soldadura por ola o aporte de estaño con esténcil). También podría ser un soporte plástico con la forma deseada incluyendo semiesferas y detrás de este plástico el circuito impreso de conexión.
La conexión eléctrica de cada terminal eléctrico de la placa de circuito impreso con la fila o columna de electrodos se realiza preferentemente a través de una terminación de conexión situada en un extremo de la fila o columna correspondiente.
Breve descripción de los dibujos
Una serie de dibujos que ayudan a comprender mejor la invención y que están expresamente relacionados con una realización de dicha invención, presentados como un ejemplo no limitativo del mismo, son brevemente descritos a continuación.
Las Figuras 1A y 1 B representan el principio de funcionamiento de un actuador de elastomero dieléctrico, de acuerdo a la técnica existente.
Las Figuras 2A y 2B muestran los elementos de elastomero dieléctrico en una disposición de matriz (matriz de elastomero).
Las Figuras 3A y 3B representan una sección lateral de la matriz de actuadores de elastómeros en 2D y en 3D, respectivamente.
La Figura 4 muestra con más detalle una sección lateral de la matriz de actuadores de elastómeros.
Descripción de una realización preferida de la invención
La invención se refiere a un método' para la optimización de transferencia de energía mecánica generada por medio de un elastomero dieléctrico.
El principio de funcionamiento de un elastomero dieléctrico actuador 3 se muestra en la Figura 1A y 1B. Cuando un alto voltaje continuo U se aplica entre ambas caras de una fina película de elastomero dieléctrico 1 , por medio de por un electrodo superior 2 y un electrodo inferior 2', se expande en la dirección del plano debido a la presión p en la dirección del espesor inducida por un campo eléctrico. Cuando desaparece el voltaje aplicado, la película de elastomero recupera la forma original. Este efecto se puede crear, por ejemplo, las sensaciones táctiles en una pequeña área de la superficie de la piel (la zona de aplicación) cuando la matriz de elastómero se aplica o fija a un cuerpo humano, preferentemente en una región sensible (por ejemplo, el abdomen o la parte inferior de !a espalda).
Suponiendo que el volumen permanece constante, la presión efectiva es la siguiente:
p =E,EoU/d
donde Er caso es la permitividad relativa de los elastómeros, E0 = 8854 · 10 2As/Vm es la permitividad en el vacío, U es el voltaje aplicado y d es el espesor de la película de elastómero en posición de reposo. La presión aumenta de forma cuadrática con el campo eléctrico y por lo tanto es la relación principal que regula la respuesta del actuador. Es importante señalar que el comportamiento de elastómero es el mismo independientemente del signo positivo o negativo de la tensión aplicada U.
El modelo eléctrico equivalente para un elemento elastómero es una configuración de condensador y resistencia en paralelo, en la que la capacitancia es e! resultado de dos electrodos aplicados sobre la película de elastómero, y la resistencia es la resistencia de pérdidas originada por la conductividad de la película de elastómero.
La técnica de modo grueso es una realización reciente de EPAM (Músculo Artificial de Polímero Electroactivo). En esta realización, se recubre la película de polímero "activo" con una capa pasiva más espesa, de modo que los cambios en el espesor del polímero durante la actuación de EPAM se transfieren, al menos parcialmente, a la capa pasiva. Esta capa pasiva puede considerarse como pasiva, en relación la película de polímero en cuanto a que no responde a la aplicación de un ' campo eléctrico cambiando de área ni de espesor como hace la capa de EPAM. Sin embargo, la capa pasiva se acopla a la película de EPAM de modo que los cambios de área y de espesor de la película de EPAM inducen fuerzas de cisión en la capa pasiva que cambian el espesor de esta capa. Por lo tanto, este cambio de espesor de ia capa pasiva puede utilizarse para ampliar, en términos absolutos, el desplazamiento producido por el cambio de espesor de la película de polímero EPAM. En la Figura 1A se muestra un diagrama esquemático de este tipo de dispositivo y de los resultados de la actuación del modo de cizalla. En la Figura 1 B se muestra EPAM durante la actuación del modo de cizalla, mostrando un diagrama esquemático de un dispositivo de modo de cizalla propuesto.
Para aplicaciones de transmisión táctil este esquema presenta varios problemas, como acoplamiento entre taxeles a través de la misma piel, transmisión débil de energía. Estos problemas que se pretende resolver con al presente invención, al tiempo que se potencia la transmisión mecánica de las deformaciones ejecutadas en el elastómero.
La Figura 2A muestra la disposición de los electrodos (2,2') en el elastómero dieléctrico 1 , en una disposición de la matriz (matriz de elastómero). La Figura 2B representa un detalle de la matriz de elastómero, en el cual se aprecian cómo los electrodos superiores (2) están conectados eléctricamente por filas (20) y los electrodos inferiores (2') están conectados eléctricamente por columnas (21). En la figura se aprecia que las filas (20) y las columnas (21 ) son perpendiculares; sin embargo, esto no es esencial, ya que podrían estar dispuestas formando cualquier ángulo (incluso paralelas), aunque para una mayor facilidad para la excitación de los electrodos es recomendable que sean perpendiculares. Los electrodos son preferentemente circulares, tal como se muestra en la Figura 2B, pero podrían adoptar otras formas (por ejemplo, cuadrada, romboidal, rectangular, etc.)
La estructura de la matriz de actuadores de elastómeros está representada en la Fig. 3A y 3B, donde se aprecian los distintos componentes en varias capas. La Figura 3A muestra una sección lateral en 2D, mientras que la Figura 3B representa una sección lateral en 3D. Cada uno de los elementos aquí descritos contribuye a una mejor actuación del taxel. Básicamente los elementos incorporados son:
Soporte inferior 4 con funciones de concentrador de actuación y. elemento de pre-tensado de las capas pasivas superior 8 e inferior 8'. El soporte inferior 4 es preferentemente semiesférico para que la tensión se reparta de forma uniforme y no produzca rupturas del material
Pines actuadores 5 embebidos en una capa de soporte de pines 6 para captura directa de la energía generada en el taxel por la base del pin 5a, la cual está en contacto con la capa pasiva superior 8, y para concentración de la presión ejercida en el extremo opuesto del pin (cabeza dei pin 5b) con un diámetro mucho menor que la base, por lo que la presión es aumentada en relación cuadrática respecto al ratio de diámetro base/cabeza pin. En una realización preferente se emplea una relación 1.8/0.6, siendo 0.6 mm el diámetro del pin en contacto con la piel y 1.8 mm el tamaño de la base del pin, menor que el diámetro del actuador que es de 2.5 mm. Todos estos parámetros se pueden modificar y optimizar basado en resultados experimentales y simulaciones. Placa, de circuito impreso 7 con funciones de soporte y de conexionado eléctrico.
Pre-tensado de las capas pasivas del elastómero dieléctrico en modo grueso. Se puede conseguir por varias técnicas, como realización a escala inferior o tensado por presión del soporte inferior 4 en la placa.
Empezando por la parte inferior tenemos una PCB, placa de circuito impreso 7, que sirve de soporte y sujeción del resto elementos, así como soporte para las conexiones eléctricas (terminales eléctricos 9) necesarias para la actuación de la matriz. Este PCB 7 puede ser muy fino, ofreciendo así flexibilidad al dispositivo final, lo cual es conveniente para una mejor adaptación a la parte del cuerpo con la que estará en contacto. Como se aprecia en la Figura 3B en los extremos de las filas y columnas de electrodos existe un pequeño volumen de pasta conductora (terminación de conexión 10), la misma usada para los electrodos, que sirve para conexionar la matriz de elastómero con el terminal eléctrico 9 en el PCB 7, mediante unos elementos de conexión 12. De esta manera las conexiones se pueden realizar una vez terminado el proceso de fabricación de la matriz, lo cual es muy conveniente para simplificar dicho proceso.
Sobre este PCB y localizados justo debajo de cada taxel tenemos un soporte inferior semiesférico 4 cuya función es concentrar la actuación del taxel en el centro de éste. Este apoyo en forma semiesférica cumple una segunda función, la de pre-tensar las capas pasivas (8,8') de silicona del elastómero en modo grueso, consiguiendo con este pre-estiramiento una respuesta de actuación más intensa, ya que esta actuación no solo depende de la fuerza que sea capaz de generar el taxel en sí, sino de parte de esta fuerza que la capa pasiva es capaz de transmitir. Como se aprecia en la Figura 3A, si partimos de una elastómero con una capa pasiva inferior 8' uniforme, al colocarlo contra la placa base 7 con las semiesferas debajo de los taxeles, se produce una compresión de la capa pasiva en unos puntos o zonas de compresión 11 centrados debajo del taxel, lo que equivale a un estiramiento de la silicona sobre la semiesfera produciendo una tensión en estado de reposo que ayuda a mejorar la intensidad y rapidez de la respuesta mecánica del taxel. Otros métodos de pre- estiramiento pueden ser la elaboración de la matriz a una escala inferior para mediante un estirado adherirla a la placa base en escala original. Las semiesferas inferiores 4 ayudan a canalizar y concentrar la energía en el punto central del pin. En la parte superior del elastómero se encuentran la otra parte del dispositivo potenciador, formado por un pin embebido 5. La cabeza del pin debe estar lo suficientemente cerca del foco de actuación para que capture la mayor parte de la energía generada. Este pin 5 captura y canaliza la energía del actuador para llevarla al extremo exterior en contacto con la piel. Con la idea de minimizar los componentes mecánicos y simplificar el proceso de fabricación de la matriz, estos pines quedan sujetos por una capa adicional de silicona, capa de soporte de pines 6, que los mantiene en contacto con la capa pasiva superior 8 del elastómero en todo momento. Las proporciones entre el diámetro de los electrodos (2,2') del actuador, el grosor de las capas pasivas superior 8 (distancia del pin 5 al actuador) e inferior 8' y la altura del soporte inferior semiesférico 4 determinarán los parámetros del comportamiento de la respuesta del taxel, habiendo de buscar un compromiso en función del parámetro a optimizar, como desplazamiento vertical, fuerza de actuación, tiempo de respuesta, etc.
Si bien en un actuador en modo grueso la deformación en la capa pasiva de silicona es mayor a mayor grosor de esta capa para aproximaciones donde el diámetro de! actuador es mucho mayor que el grosor de la capa, también es cierto que la energía se expande en forma esférica dentro del núcleo de silicona (conjunto de elastómero en modo grueso) de modo que la energía por unidad de superficie es menor a medida que nos alejamos del foco de actuación (en proporción cubica), de aquí el compromiso entre grosor de la capa pasiva sobre la que descansa la cabeza del pin para obtener resultado óptimos de actuación en el pin por la energía captada por éste.
Al quedar el actuador taxel comprendido entre el soporte inferior 4, sujeto a la placa 7 de soporte común y el propio pin 5, toda la actuación mecánica queda trasladada al pin actuador 5. ^
La relación entre los grosores de las capas pasivas (8,8') repercute en las propiedades de actuación del pin y del aislamiento entre pines 5 adyacentes. Por un lado a mayor grosor mayor desplazamiento vertical en un modelo donde el diámetro del pin 5 es mucho mayor que el grosor de la capa pasiva 8. A medida que el diámetro es comparable al grosor de la capa pasiva este desplazamiento vertical disminuye debido a la deformación del volumen total de la capa pasiva.- En una realización preferida se emplean diámetros de actuadores de unos 2,5mm para permitir una distancia de 3mm entre actuadores, la capa pasiva inferior 8' es de 1 mm de grosor, la capa pasiva superior 8 sobre la que descansa el pin 5 es de 0,5mm de grosor y la capa de soporte de pines 6 es de otros 0,5 a 0,7mm de grosor. El diámetro de la cabeza del pin es de 1,8mm y la punta de 0,6mm. Sin embargo, distintas medidas se podrían emplear.
El proceso de fabricación del dispositivo empieza con el estiramiento' del elastómero hasta dejarlo en 20um de grosor, -aplicación de los electrodos (2,2') mediante máscara y deposición de pasta conductora. Posteriormente se deposita la silicona para formar las dos capas pasivas, la inferior 8' de 1 mm de grosor y la superior de 0,5mm de grosor.
En este punto se realiza la conexión del PCB a cada una de las terminaciones en el elastómero mediante la inserción de un hilo conductor fino, el elemento de conexión 12, (del orden de 0,1 mm de diámetro) (que atraviesa en perpendicular las capas pasivas y el elastómero en el punto de conexión preparado para ello (terminación de conexión 10), atravesando también el orificio en el PCB que existe en cada terminal eléctrico (9). El hilo será soldado en la parte posterior del PCB y cortado justo por encima de la capa pasiva (8) de modo que al añadir la capa de soporte de pines 6 las conexiones quedan cubiertas y eléctricamente aisladas.
A continuación de colocan los pines 5 sobre cada uno de los electrodos superiores 2 y se cubren con la última capa de silicona de 0,5 a 0,7mm de espesor, la capa de soporte de pines 6.
Este último paso también se puede realizar por separado, fabricando una alfombrilla de 0,5 a 0,7mm de espesor con los pines embebidos, para posterior adhesión de esta alfombrilla sobre el resto de la matriz-actuador, simplificando el proceso de fabricación.
Aunque están descritas como dos capas en el proceso de fabricación, la capa de soporte de pines 6 y la capa pasiva superior 8 una vez terminadas están fundidas y forman una sola con ios pines 5 embebidos.
En el proceso de fabricación la capa de elastómero dieléctrico (1 ) siempre esta estirada. Además, y de manera opcional, se pueden estirar las capas pasivas (8,8') para mejorar la transmisión de la presión.
REIVINDICACIONES

Claims

REIVINDICACIONES
1 . - Dispositivo de excitación táctil basado en elastómeros dieléctricos, que comprende:
5 - una matriz de elastómeros dieléctricos actuadores (3) formada por:
• una matriz de electrodos superiores (2) conectados en filas (20);
• una matriz de electrodos inferiores (2') enfrentados a los electrodos superiores (2) y conectados en columnas (21 ); y
• una capa de elastómero dieléctrico (1 ) situado entreJa matriz de 10 electrodos superiores (2) y la matriz de electrodos inferiores (2');
- una capa pasiva superior (8) e inferior (8') que respectivamente recubren superior e inferiormente la matriz de elastómeros dieléctricos actuadores (3);
caracterizado por que el dispositivo adicionalmente comprende:
- una placa de circuito impreso (7) que dispone de una pluralidad de terminales 15. eléctricos (9) conectados eléctricamente con las filas (20) y columnas (21 ) de electrodos (2,2') de la matriz de elastómeros dieléctricos actuadores (3);
- una matriz de pines actuadores (5) parcialmente embebidos en una capa de soporte de pines (6) situada sobre la capa pasiva superior (8), estando la base de dichos pines actuadores (5a) enfrentados a los electrodos superiores (2) y
20 sobresaliendo la cabeza de dichos pines actuadores (5b). de la capa de soporte de pines (6).
2. - Dispositivo de excitación táctil según la reivindicación 1 , que comprende una matriz de soportes inferiores (4) dispuestos sobre la placa de circuito impreso (7) y
25 enfrentados a los electrodos inferiores (2'), y encargados de generar una compresión de la capa pasiva inferior (8') en una zona de compresión (11 ) sustancialmente centrada con respecto al electrodo inferior (2').
3. - Dispositivo de excitación táctil según la reivindicación 2, donde los soportes 30 inferiores (4) son semiesféricos.
4. - Dispositivo de excitación táctil según cualquiera de las reivindicaciones anteriores, donde la conexión eléctrica de cada terminal eléctrico (9) de !a placa de circuito impreso (7) con la fila (20) o columna (21 ) de electrodos (2,2') se realiza a través de una terminación de conexión (10) situada en un extremo de la fila (20) o columna (21 ) correspondiente.
5. - Dispositivo de excitación táctil según cualquiera de las reivindicaciones anteriores, donde las capas pasivas (8,8') están dispuestas estiradas sobre la placa de circuito impreso (7).
6. - Dispositivo de excitación táctil según cualquiera de las reivindicaciones anteriores, donde los electrodos (2,2') son circulares.
7. - Dispositivo de excitación táctil según cualquiera de las reivindicaciones anteriores, donde la capa de soporte de pines (6) es de silicona.
8. - Dispositivo de excitación táctil según cualquiera de las reivindicaciones anteriores, donde las capas pasivas (8,8') son de silicona. .
9.- Dispositivo de excitación táctil según cualquiera de las reivindicaciones anteriores, donde las filas (20) de electrodos superiores (2) y las columnas (21) de electrodos inferiores (2') están dispuestas perpendicularmente.
10. - Dispositivo de excitación táctil según cualquiera de las reivindicaciones anteriores, donde la base (5a) y la cabeza (5b) de los pines actuadores son circulares, siendo el diámetro de la base (5a) mayor que el diámetro de la cabeza (5b).
11. - Procedimiento de fabricación de un dispositivo de excitación táctil basado en elastómeros dieléctricos, caracterizado por que comprende:
- estirar una capa de elastómero dieléctrico (1 );
- aplicar pasta conductora sobre la cara superior de la capa de elastómero dieléctrico (1) para formar una matriz de electrodos superiores (2) conectados en filas (20) y sobre la cara inferior para formar una matriz de electrodos inferiores (2') conectados en columnas (21 ), formando el conjunto una matriz de elastómeros dieléctricos actuadores (3);
- depositar silicona sobre la parte superior de la matriz de elastómeros dieléctricos actuadores (3) para formar una capa pasiva superior (8) y sobre la parte inferior de la matriz de elastómeros dieléctricos actuadores (3) para formar una capa pasiva inferior (8');
- cubrir la parte pasiva superior (8) con una capa de soporte de pines (6), compuesta de silicona y encargada de embeber parcialmente una matriz de pines actuadores (5) cuyas bases (5a) quedan enfrentadas a los electrodos superiores (2) y cuyas cabezas (5b) sobresalen de la capa de soporte de pines (6);
- disponer sobre la capa pasiva inferior (8') una placa de circuito impreso (7) que dispone de una pluralidad de terminales eléctricos;
- conectar eléctricamente los terminales eléctricos con las filas (20) y columnas (21 ) de electrodos (2,2') de la matriz de elastómeros dieléctricos actuadores (3).
12. - Procedimiento de fabricación según la reivindicación 11, donde los pines actuadores (5) son colocados sobre los electrodos superiores (2) con anterioridad a la colocación de la capa de soporte de pines (6).
13. - Procedimiento de fabricación según la reivindicación 11 , donde los pines actuadores (5) están embebidos en la capa de soporte de pines (6) con anterioridad a la colocación de dicha capa de soporte de pines (6) sobre la capa pasiva superior (8).
14.- Procedimiento de fabricación según cualquiera de las reivindicaciones 11 a
13, donde la placa de circuito impreso (7) dispone de una matriz de soportes inferiores (4) dispuestos sobre dicha placa (7) de forma que una vez terminado el proceso de fabricación quedan enfrentados a los electrodos inferiores (2') generando una compresión de la capa pasiva inferior (8') en una zona de compresión (11) sustancialmente centrada con respecto al electrodo inferior (2').
15.- Procedimiento de fabricación según cualquiera de las reivindicaciones 11 a
14, donde la conexión eléctrica de cada termina! eléctrico (9) de la placa de circuito impreso (7) con la fila (20) o columna (21 ) de electrodos (2,2') se realiza a través de una terminación de conexión (10) situada en un extremo de la fila (20) o columna (21) correspondiente.
PCT/ES2010/070464 2010-01-22 2010-07-06 Dispositivo de excitacion tactil basado en elastomeros dielectricos y procedimiento de fabricacion. WO2012004421A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/ES2010/070464 WO2012004421A1 (es) 2010-07-06 2010-07-06 Dispositivo de excitacion tactil basado en elastomeros dielectricos y procedimiento de fabricacion.
EP10854364.6A EP2592613A4 (en) 2010-07-06 2010-07-06 TOUCH-ACTIVATED DEVICE BASED ON DIELECTRIC ELASTOMERS AND METHOD OF MANUFACTURING THEREOF
US13/808,396 US9000317B2 (en) 2010-07-06 2010-07-06 Touch-activated device based on dielectric elastomers and method of manufacture
PCT/ES2011/070029 WO2011089296A1 (es) 2010-01-22 2011-01-19 Sistema de visión táctil portable y dispositivo de estimulacion táctil para el mismo.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070464 WO2012004421A1 (es) 2010-07-06 2010-07-06 Dispositivo de excitacion tactil basado en elastomeros dielectricos y procedimiento de fabricacion.

Publications (1)

Publication Number Publication Date
WO2012004421A1 true WO2012004421A1 (es) 2012-01-12

Family

ID=45440788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070464 WO2012004421A1 (es) 2010-01-22 2010-07-06 Dispositivo de excitacion tactil basado en elastomeros dielectricos y procedimiento de fabricacion.

Country Status (3)

Country Link
US (1) US9000317B2 (es)
EP (1) EP2592613A4 (es)
WO (1) WO2012004421A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030418A1 (es) 2017-08-08 2019-02-14 Visión Tactil Portable, S. L. Dispositivo de excitación táctil basado en elastómeros dieléctricos y procedimiento de fabricación del mismo

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014028819A1 (en) 2012-08-16 2014-02-20 Bayer Intellectual Property Gmbh Machine and methods for making rolled dielectric elastomer transducers
KR102211497B1 (ko) 2014-11-28 2021-02-05 한국전자통신연구원 촉각 디스플레이 장치
US11734477B2 (en) * 2018-03-08 2023-08-22 Concurrent Technologies Corporation Location-based VR topological extrusion apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580251A (en) * 1993-07-21 1996-12-03 Texas Instruments Incorporated Electronic refreshable tactile display for Braille text and graphics
US20080122589A1 (en) * 2006-11-28 2008-05-29 Ivanov Yuri A Tactile Output Device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793101A3 (en) * 2001-11-01 2015-04-29 Immersion Corporation Method and apparatus for providing tactile feedback sensations
US7009595B2 (en) * 2002-01-03 2006-03-07 United States Of America Extended refreshable tactile graphic array for scanned tactile display
JP4875982B2 (ja) * 2003-09-03 2012-02-15 エスアールアイ インターナショナル 表面変形電気活性ポリマートランスデューサ
KR100851279B1 (ko) * 2006-12-07 2008-08-08 한국전자통신연구원 전기 유변 유체를 이용한 점자 디스플레이 장치 및 그 제조방법
ES2353781B1 (es) 2009-04-15 2012-01-11 Vision Tactil Portable, S.L. Sistema de visión táctil portable.
WO2011089274A1 (es) 2010-01-22 2011-07-28 Vision Tactil Portable, S.L Método y aparato para controlar una matriz de elastómeros dieléctricos evitando interferencias
FR2976110B1 (fr) * 2011-05-30 2014-01-17 Commissariat Energie Atomique Dispositif d'affichage a surface deformable et a capteurs de position
KR101238210B1 (ko) * 2011-06-30 2013-03-04 엘지전자 주식회사 이동 단말기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580251A (en) * 1993-07-21 1996-12-03 Texas Instruments Incorporated Electronic refreshable tactile display for Braille text and graphics
US20080122589A1 (en) * 2006-11-28 2008-05-29 Ivanov Yuri A Tactile Output Device

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHOI, H.R. ET AL.: "Tactile display as a Braille display for the visually disabled", INTELLIGENT ROBOTS AND SYSTEMS, 2004. (IROS 2004). PROCEEDINGS. 2004 IEEE/RSJ INTERNATIONAL CONFERENCE ON, vol. 2, no. 28, 28 September 2004 (2004-09-28), pages 1985 - 1990, XP010765390, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1389689&isnumber=30276> *
H. PRAHLAD: "Programmable Surface Deformation: Thickness-Mode Electroactive Polymer Actuators and their Applications", PROC. SPIE'S CONFERENCE ON SMART STRUCTURES AND MATERIALS, vol. 102, 2005, pages 5759
IG MO KOO ET AL.: "Development of Soft-Actuator-Based Wearable Tactile Display", IEEE TRANSACTIONS ON ROBOTICS, vol. 24, no. 3, June 2008 (2008-06-01), XP011332741, DOI: doi:10.1109/TRO.2008.921561
R. HEYDT; S. CHHOKAR: "Refreshable Braille Display Based on Electroactive Polymers", PROC. 23RD INTL. DISPLAY RESEARCH CONF., 15 September 2003 (2003-09-15)
R. KORNBLUH; R. PELRINE; Q. PEI; R. HEYDT; S. STANFORD; S. OH; J. ECKERLE: "Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies", vol. 4698, 2002, article "Electroelastomers: Applications of Dielectric Elastomer Transducers for Actuation, Generation and Smart Structures", pages: 254 - 270
R. PELRINE; R. KORNBLUH; Q. PEI; J. JOSEPH: "High-Speed Electrically Actuated Elastomers with Over 100% Strain", SCIENCE, vol. 287, no. 5454, 2000, pages 836 - 839
See also references of EP2592613A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030418A1 (es) 2017-08-08 2019-02-14 Visión Tactil Portable, S. L. Dispositivo de excitación táctil basado en elastómeros dieléctricos y procedimiento de fabricación del mismo

Also Published As

Publication number Publication date
US20130175151A1 (en) 2013-07-11
EP2592613A1 (en) 2013-05-15
US9000317B2 (en) 2015-04-07
EP2592613A4 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
CN109417127B (zh) 形状改变装置
KR102380212B1 (ko) 자극 장치 및 이를 이용한 자극 방법
US10229564B2 (en) Apparatus and methods for providing tactile stimulus incorporating tri-layer actuators
KR101742240B1 (ko) 커패시터형 촉각센서 및 그 제조방법
JP4780556B2 (ja) 触覚ディスプレイ及びその製造方法
JP5864440B2 (ja) 集合体及び集合体を提供する方法
WO2012004421A1 (es) Dispositivo de excitacion tactil basado en elastomeros dielectricos y procedimiento de fabricacion.
TW200901113A (en) Method of manufacturing addressable and static electronic displays
JP5472539B2 (ja) 指刺激呈示装置
JP2015521303A5 (es)
CN106484096B (zh) 平行板致动器
US20180068759A1 (en) Stretchable Electrode Conductor Arrangement and Medical Implant
WO2004095535A3 (en) Improved transparent electrode, optoelectronic apparatus and devices
CN110767350B (zh) 应用于可延展电子器件中的导线的制备方法
WO2011075480A3 (en) Cochlear electrode array
US20130257219A1 (en) Energy harvesting device
CN105163797A (zh) 三维多电极阵列
WO2011089274A9 (es) Método y aparato para controlar una matriz de elastómeros dieléctricos evitando interferencias
Bar-Cohen Refreshable Braille displays using EAP actuators
KR101303329B1 (ko) 고집적 및 고성능 촉감제공 액추에이터, 고집적 및 고성능 촉감 액추에이터 어레이 및 촉감 감성피드백 제공장치
CN207108472U (zh) 新型的电极结构和多功能传感器阵列及使用他们的多功能传感装置
KR102356352B1 (ko) 접촉 감응 소자 및 접촉 감응 소자를 포함하는 표시 장치
CN207768925U (zh) 一种可拉伸超声辅助面膜
WO2019030418A1 (es) Dispositivo de excitación táctil basado en elastómeros dieléctricos y procedimiento de fabricación del mismo
US20210126182A1 (en) Low frequency vibrating actuator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010854364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010854364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13808396

Country of ref document: US