WO2012002746A2 - Separator film for a lithium secondary battery, method for preparing same, and lithium secondary battery comprising same - Google Patents

Separator film for a lithium secondary battery, method for preparing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2012002746A2
WO2012002746A2 PCT/KR2011/004799 KR2011004799W WO2012002746A2 WO 2012002746 A2 WO2012002746 A2 WO 2012002746A2 KR 2011004799 W KR2011004799 W KR 2011004799W WO 2012002746 A2 WO2012002746 A2 WO 2012002746A2
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
group
separator
carbon atoms
Prior art date
Application number
PCT/KR2011/004799
Other languages
French (fr)
Korean (ko)
Other versions
WO2012002746A3 (en
Inventor
문승현
우중제
서석준
윤성현
남상훈
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2012002746A2 publication Critical patent/WO2012002746A2/en
Publication of WO2012002746A3 publication Critical patent/WO2012002746A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same, more specifically, a lithium secondary battery separator having excellent stability, cycle characteristics, and the like, and a method for manufacturing the same. It relates to a lithium secondary battery comprising the same.
  • a secondary battery is a chemical battery that can repeat layer discharge and discharge using reversible interconversion of chemical energy and electrical energy.
  • lithium secondary battery One of the most recent high-performance, next-generation high-tech batteries that are being used most recently in accordance with such a demand is a lithium secondary battery. Among them, lithium ion battery is excellent enough to occupy more than 60% share of the global secondary battery market, the development of their electrochemical performance is continuing, and many companies and research institutes The focus is on improving performance.
  • lithium secondary batteries were manufactured using lithium metal or a lithium alloy as a negative electrode.
  • a secondary battery using lithium metal or a lithium alloy has a problem in that a cycle characteristic is remarkably low because dendrite is formed on a negative electrode as layer discharge is repeated.
  • lithium ion battery To solve the problems associated with the formation of dendrites, a lithium ion battery is proposed.
  • lithium ion batteries commercially available worldwide are composed of a cathode active material cathode active material, an organic electrolyte and a separator.
  • the separator serves to prevent internal short circuit caused by the contact between the cathode and the anode of the lithium ion battery and to permeate the ions.
  • the separator is generally used as polyethylene (PE) or polypropylene ( polypropylene, PP) separator.
  • PE polyethylene
  • PP polypropylene
  • lithium ion batteries using PE or PP separators still have limitations on cell instability, difficulty in battery manufacturing, cell shape constraints, and high capacity. It has a problem such as. Efforts have been made to solve these problems, but no clear results have been made so far.
  • the present invention is to provide a lithium secondary battery separator having excellent stability, cycle characteristics and the like, a manufacturing method thereof, and a lithium secondary battery comprising the same.
  • It provides a separator for a lithium secondary battery comprising a compound represented by the formula (1).
  • Arl and Ar2 are each independently an arylene group having 6 to 30 carbon atoms substituted with one or more selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms and a haloalkyl group having 1 to 20 carbon atoms,
  • r is a number from 0 to 1
  • n is an integer of 1 to 5,000.
  • the present invention 1) preparing a composition comprising a compound represented by Chemical Formula 1 and an organic solvent, and
  • It provides a method for manufacturing a separator for a lithium secondary battery comprising a ⁇ 22>.
  • It provides a separator for a lithium secondary battery comprising a ⁇ 26>.
  • It provides a method for manufacturing a separator for a lithium secondary battery comprising a ⁇ 30>.
  • the present invention also provides a lithium secondary battery comprising the separator for a lithium secondary battery.
  • the separator for a lithium secondary battery according to the present invention includes the compound represented by Chemical Formula 1, the polarity may be increased, so that the lithium secondary battery separator is excellent in wettability to the electrolyte and excellent in thermal stability.
  • the lithium secondary battery including the separator not only has excellent performance but also excellent cycle characteristics.
  • FIG. 1 is a view schematically showing a lithium secondary battery according to one embodiment of the present invention.
  • FIG. 2 is a view schematically showing a form of an electrolyte of a conventional lithium secondary battery.
  • FIG. 3 is a diagram showing an electrophotographic photo of a separator for a lithium secondary battery according to one embodiment of the present invention.
  • FIG. 4 is a view schematically showing the electronic structure of the PP0 and BPP0 unit molecules according to one embodiment of the present invention.
  • 5 is a potential according to the capacity of a lithium secondary battery according to one embodiment of the present invention.
  • FIG. 6 illustrates cycle characteristics of a lithium secondary battery according to one embodiment of the present invention. It is also.
  • FIG. 7 is a diagram illustrating electron photographs of Celgard 2325 (PP / PE / PP), which is a conventional separator for lithium secondary batteries.
  • FIG. 8 is a diagram illustrating temperature resistance of Celgard 2325 (PP / PE / PP), which is a conventional separator for lithium secondary batteries.
  • FIG. 9 is a view showing the thermal shrinkage of the separator for a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 10 is a view showing the thermal stability of the separator for a lithium secondary battery according to an embodiment of the present invention.
  • the separator In the lithium secondary battery, the separator must satisfy various requirements as follows. High ion permeability and low electrical resistance at operating temperature, support for large amount of electrolyte solution and wettability for electrolyte, electrical insulator for positive and negative electrodes, chemical stability for electrolyte solution, electrochemical stability, battery assembly and use Layered physical, mechanical strength, affinity with electrodes, high workability, thin film thickness to enable high density charging for high capacity, Shutdown characteristics (or meltdown characteristics), where shutdown characteristics are short circuits in charged cells The potential difference between the positive and negative poles is sharply narrowed, which causes exothermic reactions and the decomposition of the electrolyte, which can lead to the generation and explosion of gases such as methane, hydrogen, and carbon dioxide. By delaying the battery reaction and heat reaction to ensure stability Say.
  • the separator preferably includes a porous material having a predetermined pore size.
  • the pores are connected to each other and filled with an electrolyte solution, thereby providing conductivity to charged ion particles.
  • an electrolyte solution thereby providing conductivity to charged ion particles.
  • FIG. 2 shows an electrolyte of a lithium solid polymer battery
  • (b) shows an electrolyte of a lithium hybrid polymer battery
  • (c) shows an electrolyte of a liquid lithium ion battery.
  • polypropylene, polyethylene, and polyvinylidene fluoride used as a separator for a conventional lithium secondary battery showed low thermal stability and required various additives.
  • one embodiment of the separator for a lithium secondary battery according to the present invention includes a compound represented by the following formula (1).
  • Arl and Ar2 are each independently an arylene group having 6 to 30 carbon atoms substituted with one or more selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms and a haloalkyl group having 1 to 20 carbon atoms, R is a number from 0 to I,
  • N is an integer from I to 5,000.
  • At least one of the functional groups substituted with Arl or Ar2 is more preferably a halogenated group or a halohaloalkylalkyl group having 2,200 carbon atoms.
  • At least one of R1 to R8 is a halogen group or a haloalkyl group
  • the rest are each independently selected from the group consisting of hydrogen, a halogen group, an alkyl group having 1 to 20 carbon atoms, and a haloalkyl group having 1 to 20 carbon atoms,
  • R is a number from 0 to 1
  • N is an integer of 1 to 5,000.
  • the compound represented by Chemical Formula 1 may be represented by the following Chemical Formula 3.
  • r is a number from 0 to 1
  • n is an integer of 1 to 5,000.
  • r is more preferably a number of 0.85 to 0.99.
  • specific examples of the halogen group include fluorine (F) and chlorine.
  • alkyl group examples include methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, nucleosil, heptyl, and jade.
  • specific examples of the haloalkyl group include fluorine (F) and chlorine.
  • Methyl group, ethyl group, propyl group, isobutyl group etc. which were substituted by (C1) or bromine (Br) are mentioned, It is not limited to this.
  • arylene group may include a phenylene group, a biphenylene group, a naphthalene group, an anthracene group, a phenanthrene group, and the like, and are preferably phenylene groups, but are limited thereto. It is not.
  • the separator for a lithium secondary battery according to the present invention may further include a layering agent to enhance porosity, mechanical strength, and the like, and examples thereof include Ti0 2 , BaTiOs, Li 2 0,
  • the content of the filler is preferably 20% by weight or less based on the total weight of the separation membrane.
  • one embodiment of a method for producing a separator for a lithium secondary battery according to the present invention is 1) preparing a composition comprising a compound represented by the formula (1) and an organic solvent, and 2) using the composition To form a separator.
  • the organic solvent of step 1) may be one known in the art, and more specifically, propylene carbonate, butylene carbonate, 1, 4- Butyrolactone, diethyl carbonate, dimethyl carbonate, 1,2-dimethicethane, 1,3-dimethyl-2-imidazole lidinone, dimethyl sulfoxide, ethylene carbonate, ethylmethyl carbonate, ⁇ , ⁇ -dimethylform Amides, ⁇ , ⁇ -dimethylacetamide, ⁇ -methyl-2-pyridone, polyethylenesulfuran, tetraethylene glycol dimethyl ether, acetone, alcohols, mixtures thereof, and the like, but are not limited thereto. Is not.
  • the separator of step 2) may be a method known in the art, and more specifically, a phase transfer method, a casting method, an extrusion molding method, Charge-induced radiation may be used, but is not limited thereto.
  • the porous polymer membrane is accomplished by the phase transition method. More specifically, the polymer solution dissolved in the organic solvent forming the polymer separator may be cast in the form of a film and then exposed to a non-solvent to prepare a solidified porous membrane.
  • the pore structure of the porous separator can be arbitrarily adjusted by changing the composition of the polymer solution and the contact conditions with the non-solvent.
  • Formation of the porous polymer membrane is usually accomplished by the charge induction radiation method. More specifically, a polymer solution dissolved in a molten polymer or an organic solvent forming a polymer separator is introduced into a barrel of a charge induction spinning device, a high voltage is applied to a nozzle, and then a metal plate or a mylar film is formed at a predetermined rate.
  • the porous polymer membrane can be prepared by discharging the same.
  • the thickness of the porous separator can be arbitrarily adjusted by changing the discharge speed and the discharge time, and the appropriate thickness is in the range of 1 to 100 / ⁇ as described above.
  • a conventional porous polyolefin resin may be further included. More specifically, the separator for a lithium secondary battery according to the present invention may be provided on both sides of a conventional porous polyolefin-based membrane.
  • one specific example of the separator for a lithium secondary battery according to the present invention is 1) a porous polyol-resin-based membrane, and 2) a coating membrane provided on both sides of the porous polyolefin-based membrane and containing the compound represented by Chemical Formula 1 Contains
  • the porous polyolefin-based membrane may be one known in the art, and more specifically, a polyethylene membrane, a polypropylene membrane, or the like may be used, and more preferably, it is a polyethylene membrane, but is not limited thereto.
  • the separation membrane of the three-layer structure including a polyethylene membrane which is one embodiment of the present invention. If the temperature rises while the battery is running, the polyethylene film in the middle melts and interferes with ion transfer, thereby allowing the battery to have a shutdown function at a high temperature. At this time, as the temperature difference between the intermediate melting polymer and the coated polymer increases, the battery has a high stability. Therefore, in the present invention, since the thermal stability of the coating film including the compound represented by Chemical Formula 1 is very excellent up to 200 ° C., it is possible to effectively prevent contact between both electrodes during melting of the polyethylene film at a rapid temperature rise.
  • the thickness of the coating film is preferably 1 ⁇ 30 / m, but is not limited thereto.
  • one embodiment of the method for manufacturing a separator for a lithium secondary battery according to the present invention includes the steps of 1) preparing a porous polyolefin-based membrane, and 2) a compound represented by Chemical Formula 1 on both sides of the porous polyolefin-based membrane; Coating a composition comprising an organic solvent to form a film.
  • the method for forming the polyolefin-based film of step 1), the organic solvent, and the film of step 2) is the same as described above.
  • the first phase transition by injecting nitrogen gas of 90% or more relative humidity, and the second phase transition by dipping in distilled water, to form a film can do.
  • the present invention provides a lithium secondary battery including the separator for a lithium secondary battery.
  • the lithium secondary battery may include a cathode, an electrolyte, a cathode, and the like known in the art, in addition to the separator for a lithium secondary battery according to the present invention.
  • Materials that can be used as the positive electrode material of the lithium secondary battery include the following conditions, for example, performing reversible electrochemical reaction with lithium ions, chemical stability with respect to electrolyte, low volume change during layer transfer and discharge, and fast layer. It is desirable to satisfy the discharge rate, a sufficiently high reduction potential with respect to lithium, and the like.
  • LixMn 2 0 4, LiNixCox0 and the second place the synthesis is easy and the potential change is gentle, and generally used is excellent in conductivity LiCo0 2 as a positive electrode material for a lithium secondary battery.
  • the basic requirement of the material used as the negative electrode of the lithium secondary battery should have a potential close to the standard electrode potential of lithium metal, energy density per volume, weight per weight Should be high, excellent cycle stability (high coolant efficiency) should be ensured, be able to withstand high rate charge and discharge capability, and stability should be guaranteed.
  • Lithium alloy or carbonaceous material is the best material that can satisfy all of these requirements, and carbonaceous material can be recognized as a suitable material because of its small volume change, reversibility, and price advantages.
  • Specific examples of the carbonaceous material include graphite, coke fiber, pitch, meso carbon, and the like.
  • the electrolyte is a non-aqueous electrolyte containing a lithium salt and an organic solvent.
  • Lithium salts include LiC10 4 , LiCF 3 S0 3) LiAsF 6 , LiBF 4 , LiN (CF 3 S0 2 ) 2 , LiPF 6 , LiSCN,
  • LiC (CF 3 S0 2 ) 3 , LiBOB and the like are used, and organic solvents include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and gamma butyrolactone (YBL).
  • EMC Ethylmethyl carbonate
  • DME dimethoxyethane
  • DEE diethoxyethane
  • 2-MeTHF 2-methyl tetrahydrofuran
  • DMS dimethyl sulfoxide
  • BPPO brominated poly (phenylene oxide)
  • FIG. 3 An electrophotograph of the prepared lithium secondary battery separator is shown in FIG. 3.
  • the separatorol prepared in 1) was placed between Li metal and LiFeP0 4 to form a CR2032 coin cell type battery.
  • the electrolyte solution was injected with an EC-DEC solution in which 1M LiPF 6 was dissolved. All of the cell assembly was performed in a glove box with Ar gas layered. ⁇ 107> ⁇ Comparative Example 1>
  • the potential according to the capacity of the lithium secondary battery of Example 1 and the potential according to the capacity of the lithium secondary battery including the conventional polypropylene separator are shown in FIG. 5. From the results of FIG. 5, it can be seen that the lithium secondary battery according to the present invention exhibits high energy efficiency and output.
  • the cycle characteristics of the lithium secondary battery of Example 1 and the cycle characteristics of the lithium secondary battery including a conventional polypropylene separator is shown in Figure 6 below. From the results of furnace 6, it can be seen that the lithium secondary battery according to the present invention has a high relative capacity ratio and a high cool cylinder efficiency.
  • the lithium secondary battery separator according to the present invention includes the compound represented by Chemical Formula 1, thereby increasing polarity, thereby providing excellent wettability to the electrolyte and excellent thermal stability. Can be.
  • the lithium secondary battery including the separator according to the present invention not only has excellent performance but also has excellent cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a separator film for a lithium secondary battery, to a method for preparing same, and to a lithium secondary battery comprising same, and more particularly, to a separator film for a lithium secondary battery, comprising the compound expressed in chemical formula 1. The separator film and the lithium secondary battery comprising same according to the present invention have superior stability, cycle properties, etc.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
리튬 이차전지용 분리막, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 【기술분야】  Separation membrane for lithium secondary battery, manufacturing method thereof, and lithium secondary battery comprising same
<1> 본 발명은 리튬 이차전지용 분리막, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것으로, 보다 구체적으로 안정성, 사이클 (cycle) 특성 등이 우수 한 리튬 이차전지 분리막, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다.  <1> The present invention relates to a separator for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same, more specifically, a lithium secondary battery separator having excellent stability, cycle characteristics, and the like, and a method for manufacturing the same. It relates to a lithium secondary battery comprising the same.
【배경기술】  Background Art
<2> 이차전지는 화학에너지와 전기에너지의 가역적 상호변환을 이용해 층전과 방 전을 반복할수 있는 화학전지를 말한다.  <2> A secondary battery is a chemical battery that can repeat layer discharge and discharge using reversible interconversion of chemical energy and electrical energy.
<3> 최근 이동통신 및 휴대용 전자기기의 사용이 지속적으로 증가되고 휴대용 전 자기기의 급속한 발전에 따라, 이차전지의 수요는 점차 증대되고 있으며 이들에 요 구되는 기능 또한 다변화 되어 이들의 전원을 유지할 수 있는 이차전지의 경량화, 소형화 그리고 고용량화가요구되고 있다. <3> With the recent increase in the use of mobile communication and portable electronic devices and the rapid development of portable electronic devices, the demand for secondary batteries is gradually increasing and the functions required for them are also diversified to maintain their power supply. It is required to reduce the weight, size and capacity of rechargeable batteries.
<4> 이와 같은 요구에 따라 최근 가장 많이 사용되고 있는 고성능 차세대 첨단 신형 전지 중의 하나가 리튬 이차전지이다. 그 중 리튬 이온전지 (Lithium Ion Battery)는 세계 이차전지 시장의 60% 이상의 점유율을 차지할 정도로 그 성능이 뛰어나며, 이들의 전기화학적 성능의 발전은 지속되고 있으며, 또한 많은 회사 및 연구기관에서 이차전지의 성능개선에 주력하고 있다. <4> One of the most recent high-performance, next-generation high-tech batteries that are being used most recently in accordance with such a demand is a lithium secondary battery. Among them, lithium ion battery is excellent enough to occupy more than 60% share of the global secondary battery market, the development of their electrochemical performance is continuing, and many companies and research institutes The focus is on improving performance.
<5> 초기의 리튬 이차전지는 리튬 금속 또는 리튬 합금을 음극으로 사용하여 제 조되었다. 그러나, 리튬 금속 또는 리튬 합금을 사용한 이차전지는 층방전올 거듭 함에 따라 음극 상에 덴드라이트 (dendrite)가 형성되어 사이클 특성이 현저히 낮다 는 문제점이 있다.  Early lithium secondary batteries were manufactured using lithium metal or a lithium alloy as a negative electrode. However, a secondary battery using lithium metal or a lithium alloy has a problem in that a cycle characteristic is remarkably low because dendrite is formed on a negative electrode as layer discharge is repeated.
<6> 덴드라이트 형성에 따른 문제점을 해결하기 위해 제시된 것이 리륨 이온 전 지이다. 현재, 전세계적으로 상용화되어 있는 리튬 이온 전지는 음극 활물질 양극 활물질, 유기 전해질 및 분리막으로 구성되어 있다.  To solve the problems associated with the formation of dendrites, a lithium ion battery is proposed. Currently, lithium ion batteries commercially available worldwide are composed of a cathode active material cathode active material, an organic electrolyte and a separator.
<7> 분리막은 리튬 이온 전지의 양극과 음극의 접촉에 의한 내부 단락을 방지하 고, 이온을 투과시키는 역할을 담당하고 있으며, 현재 일반적으로 사용되고 있는 분리막은 폴리에틸렌 (polyethylene, PE) 또는 폴리프로필렌 (polypropylene, PP) 분 리막이다. 그러나, PE 또는 PP 분리막을 사용하는 리륨 이온 전지는 아직까지 전지 의 불안정성, 전지 제조공정의 까다로움, 전지 모양의 제약, 고용량화에 대한 한계 등의 문제점을 안고 있다 . 이 러 한 문제점을 해결하고자 하는 노력 이 계속되고 있으 나, 현재까지 뚜렷한 성과를 거두지 못하고 있는 실정 이다. The separator serves to prevent internal short circuit caused by the contact between the cathode and the anode of the lithium ion battery and to permeate the ions. Currently, the separator is generally used as polyethylene (PE) or polypropylene ( polypropylene, PP) separator. However, lithium ion batteries using PE or PP separators still have limitations on cell instability, difficulty in battery manufacturing, cell shape constraints, and high capacity. It has a problem such as. Efforts have been made to solve these problems, but no clear results have been made so far.
리튬 이차전지의 성능 및 안전성에 중요한 역할을 하는 분리 막의 제조에 관 한 연구는 미국 특허 제 6, 413, 676호에서 이루어졌다 . 상기 문헌에 의해 개시된 폴 리비닐리 덴플루오라이드를 사용하여 제조된 분리 막은 액체 전해질과의 친화성 이 좋 은 장점 이 있어 높은 이온전도도를 보여주었으나, 반면 기계적 물성은 좋지 못하기 때문에 제조공정상에서 높은 기 계적 물성을 필요로 하는 리튬 이차전지용 분리막으 로서 상업화하기에는 한계가 있었다 .  Research on the preparation of separators that play an important role in the performance and safety of lithium secondary batteries has been made in US Pat. No. 6,413,676. Separation membranes prepared using the polyvinylidene fluoride disclosed by the above literature have high ionic conductivity because of their good affinity with liquid electrolytes, but high mechanical properties due to poor mechanical properties. There was a limit to commercialization as a separator for lithium secondary batteries requiring mechanical properties.
반면, 현재 상업화되어 있는 폴리에틸렌 분리막은 액체 전해질과 친화성 이 떨어지는 점 , 이축연신 공정의 도입으로 인한 가격의 상승 및 몇몇 회사의 독점으 로 인한 공급부족 등의 단점 이 있어 이를 위한 연구가 절실히 필요한 실정 이다. On the other hand, currently commercialized polyethylene membranes have disadvantages such as incompatibility with liquid electrolytes, price increases due to the introduction of a biaxial stretching process, and short supply due to the monopoly of some companies. to be.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
상기 종래기술의 문제점을 해결하기 위하여, 본 발명은 안정성, 사이클 (cycle) 특성 등이 우수한 리륨 이차전지용 분리막, 이의 제조방법, 및 이를 포함 하는 리튬 이차전지를 제공하고자 한다.  In order to solve the problems of the prior art, the present invention is to provide a lithium secondary battery separator having excellent stability, cycle characteristics and the like, a manufacturing method thereof, and a lithium secondary battery comprising the same.
【기술적 해결방법】  Technical Solution
이에 본 발명은,  In the present invention,
하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 분리막을 제 공한다.  It provides a separator for a lithium secondary battery comprising a compound represented by the formula (1).
[화학식 1]  [Formula 1]
-Ar1—— 0- Ar2——으 -Ar1—— 0- Ar2——
!1 상기 화학식 1에서,  ! 1 In Chemical Formula 1,
Arl 및 Ar2는 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기 및 탄 소수 1 내지 20의 할로알킬기로 이루어진 군으로부터 선택되는 1종 이상으로 치환 된 탄소수 6 내지 30의 아릴렌기 이고,  Arl and Ar2 are each independently an arylene group having 6 to 30 carbon atoms substituted with one or more selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms and a haloalkyl group having 1 to 20 carbon atoms,
r은 0 내지 1의 수이며,  r is a number from 0 to 1,
n은 1 내지 5, 000의 정수이다.  n is an integer of 1 to 5,000.
또한 , 본 발명은 <20> 1) 상기 화학식 1로 표시되는 화합물 및 유기용매를 포함하는 조성물올 준비 하는 단계, 및 In addition, the present invention 1) preparing a composition comprising a compound represented by Chemical Formula 1 and an organic solvent, and
<21> 2) 상기 조성물을 이용하여 분리막을 형성하는 단계  2) forming a separator using the composition
<22> 를 포함하는 리튬 이차전지용 분리막의 제조방법을 제공한다.  It provides a method for manufacturing a separator for a lithium secondary battery comprising a <22>.
<23> 또한, 본 발명은  <23> In addition, the present invention
<24> 1) 다공성 폴리올레핀계 막, 및  1) a porous polyolefin membrane, and
<25> 2) 상기 다공성 폴리올레핀계 막의 양면에 구비되고, 상기 화학식 1로 표시 되는 화합물을 포함하는 코팅막  2) a coating film provided on both sides of the porous polyolefin-based film, and containing the compound represented by Formula 1
<26> 을 포함하는 리튬 이차전지용 분리막을 제공한다. It provides a separator for a lithium secondary battery comprising a <26>.
<27> 또한, 본 발명은  In addition, the present invention
<28> 1) 다공성 폴리올레핀계 막을 준비하는 단계, 및  1) preparing a porous polyolefin-based membrane, and
<29> 2) 상기 다공성 폴리을레핀계 막의 양면에 상기 화학식 1로 표시되는 화합물 및 유기용매를 포함하는 조성물을 코팅하여 막을 형성하는 단계  2) forming a film by coating a composition including a compound represented by Chemical Formula 1 and an organic solvent on both surfaces of the porous polyolefin film;
<30> 를 포함하는 리튬 이차전지용 분리막의 제조방법을 제공한다.  It provides a method for manufacturing a separator for a lithium secondary battery comprising a <30>.
<31> 또한, 본 발명은 상기 리륨 이차전지용 분리막을 포함하는 리튬 이차전지를 제공한다.  The present invention also provides a lithium secondary battery comprising the separator for a lithium secondary battery.
【유리한 효과】  Advantageous Effects
<32> 본 발명에 따른 리튬 이차전지용 분리막은 상기 화학식 1로 표시되는 화합물 을 포함함으로써, 극성을 증가시킬 수 있어서 전해질에 대한 젖음성이 우수하고, 열적 안정성이 우수하다. 또한, 상기 분리막을 포함하는 리튬 이차전지는 성능이 우수할 뿐만 아니라, 사이클 특성이 우수하다.  Since the separator for a lithium secondary battery according to the present invention includes the compound represented by Chemical Formula 1, the polarity may be increased, so that the lithium secondary battery separator is excellent in wettability to the electrolyte and excellent in thermal stability. In addition, the lithium secondary battery including the separator not only has excellent performance but also excellent cycle characteristics.
【도면의 간단한설명】  【Brief Description of Drawings】
<33> 도 1은 본 발명의 일구체예에 따른 리튬 이차전지를 개략적으로 나타낸 도이 다.  1 is a view schematically showing a lithium secondary battery according to one embodiment of the present invention.
<34> 도 2는 종래의 리튬 이차전지의 전해질의 형태를 개략적으로 나타낸 도이다ᅳ FIG. 2 is a view schematically showing a form of an electrolyte of a conventional lithium secondary battery.
<35> 도 3은 본 발명의 일구체예에 따른 리튬 이차전지용 분리막의 전자사진올 나 타낸 도이다. 3 is a diagram showing an electrophotographic photo of a separator for a lithium secondary battery according to one embodiment of the present invention.
<36> 도 4는 본 발명의 일구체예에 따른 PP0및 BPP0유닛 분자의 전자 구조를 개 략적으로 나타낸 도이다.  4 is a view schematically showing the electronic structure of the PP0 and BPP0 unit molecules according to one embodiment of the present invention.
<37> 도 5는 본 발명의 일구체예에 따른 리튬 이차전지의 용량에 따른 전위  5 is a potential according to the capacity of a lithium secondary battery according to one embodiment of the present invention.
(potential)를 나타낸 도이다.  It is a figure which shows (potential).
<38> 도 6은 본 발명의 일구체예에 따른 리튬 이차전지의 사이클 특성을 나타낸 도이다. 6 illustrates cycle characteristics of a lithium secondary battery according to one embodiment of the present invention. It is also.
<39> 도 7은 종래의 리튬 이차전지용 분리막인 Celgard 2325(PP/PE/PP)의 전자사 진을 나타낸 도이다.  FIG. 7 is a diagram illustrating electron photographs of Celgard 2325 (PP / PE / PP), which is a conventional separator for lithium secondary batteries.
<40> 도 8은 종래의 리튬 이차전지용 분리막인 Celgard 2325(PP/PE/PP)의 온도에 대한 저항성을 나타낸 도이다.  FIG. 8 is a diagram illustrating temperature resistance of Celgard 2325 (PP / PE / PP), which is a conventional separator for lithium secondary batteries.
<41> 도 9는 본 발명의 일구체예에 따른 리튬 이차전지용 분리막의 열적 수축성올 나타낸 도이다. 9 is a view showing the thermal shrinkage of the separator for a lithium secondary battery according to an embodiment of the present invention.
<42> 도 10은 본 발명의 일구체예에 따른 리륨 이차전지용 분리막의 열적 안정성 을 나타낸 도이다.  10 is a view showing the thermal stability of the separator for a lithium secondary battery according to an embodiment of the present invention.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<43> 이하, 본 발명을 보다 구체적으로 설명하기로 한다. Hereinafter, the present invention will be described in more detail.
<44> 리튬 이차전지에 있어서, 분리막은 다음과 같은 다양한 요구조건을 만족하여 야 한다. 작동온도에서의 높은 이온투과도 및 낮은 전기적 저항, 다량의 전해질 용 액 담지능 및 전해액에 대한 젖음성, 양극과 음극에 대한 전기적인 절연체, 전해질 용액에 대한 화학적인 안정성, 전기화학적 안정성, 전지 조립 및 사용시 층분한 물 리적, 기계적 강도, 전극과의 친화성, 높은 가공도, 고용량화를 위해 고밀도 충전 이 가능하기 위한 얇은 막 두께, Shutdown 특성 (또는 meltdown 특성), 여기서 shutdown 특성이란, 충전된 전지의 단락시, 양극과 음극의 전위차가 급격히 좁혀져 발열반웅이 일어나며 전해액이 분해 되어 메탄, 수소, 이산화탄소 등의 가스가 발 생, 폭발이 일어날 가능성이 있는데, 이 경우 세퍼레이터가 용융되어 다공성 기공 을 막아 전류의 흐름을 지연시켜 전지반웅 및 발열반웅을 중지시킴으로 안정성을 확보하는 특성을 말한다.  In the lithium secondary battery, the separator must satisfy various requirements as follows. High ion permeability and low electrical resistance at operating temperature, support for large amount of electrolyte solution and wettability for electrolyte, electrical insulator for positive and negative electrodes, chemical stability for electrolyte solution, electrochemical stability, battery assembly and use Layered physical, mechanical strength, affinity with electrodes, high workability, thin film thickness to enable high density charging for high capacity, Shutdown characteristics (or meltdown characteristics), where shutdown characteristics are short circuits in charged cells The potential difference between the positive and negative poles is sharply narrowed, which causes exothermic reactions and the decomposition of the electrolyte, which can lead to the generation and explosion of gases such as methane, hydrogen, and carbon dioxide. By delaying the battery reaction and heat reaction to ensure stability Say.
<45> 또한, 높은 리튬 이온에 대한 투과도 및 전도도 확보를 위해서 분리막은 일 정한 기공 크기를 갖는 다공질을 포함하는 것이 바람직하다. In addition, in order to ensure high permeability and conductivity for lithium ions, the separator preferably includes a porous material having a predetermined pore size.
<46> 상기 기공은 각각 서로 연결되고 전해액으로 채워져 있어, 전하를 띤 이온 입자에 대한 전도성이 부여된다. 이 때, 기공 구조가 복잡하게 얽힌 경로라 할지라 도 높은 이온 기동성을 갖는 경우, 높은 전지 성능이 관찰된다. 따라서, 기공 구조 내에서 높은 확산도 (diffusivity)를 확보하기 위해서는 많은 전해액을 채울 수 있 는 높은 기공도 (porosity), 전하를 면 이온 입자 (예컨대, 리튬 이온)의 이동에 용 이한 연속된 기공 구조, 일정한 리튬 이온 확산계수를 나타내는 균일한 기공 크기 분포와 같은 물리적 인자들을 최적화시켜야 한다.  The pores are connected to each other and filled with an electrolyte solution, thereby providing conductivity to charged ion particles. At this time, even if the pore structure is a complicated intertwined path, high battery performance is observed when it has high ion mobility. Therefore, in order to secure high diffusivity within the pore structure, a high porosity that can fill a large amount of electrolyte, and a continuous pore structure that is easy to transfer charges to surface ion particles (eg, lithium ions). And physical factors such as uniform pore size distribution that exhibit a constant lithium ion diffusion coefficient should be optimized.
<47> 따라서, 리튬 이차전지용 분리막막의 연구는 수 A에서 수 범위의 기공 크기를 갖는 미세 다공성 고분자 박막을 제조하는데 그 핵심 이 있다고 할 수 있다。 Therefore, the study of the separator for lithium secondary batteries has shown that pores in the range of A to The key is to produce microporous polymer thin film with size.
<48> 종래의 리튬 이차전지의 전해질의 형 태를 하기 도 2에 개략적으로 나타내었 다 . 도 2의 (a)는 리튬 고체 고분자 전지의 전해질을 나타내고, (b)는 리튬 하이브 리드 고분자 전지의 전해질을 나타내며, (c)는 액상 리튬 이온 전지의 전해질을 나 타낸다 . The shape of the electrolyte of the conventional lithium secondary battery is schematically shown in FIG. 2. 2 shows an electrolyte of a lithium solid polymer battery, (b) shows an electrolyte of a lithium hybrid polymer battery, and (c) shows an electrolyte of a liquid lithium ion battery.
<49> 한편, 종래의 리륨 이차전지의 분리막의 대표적 인 예를 하기 표 1에 나타내 었다 .  Meanwhile, a representative example of a separator of a conventional lithium secondary battery is shown in Table 1 below.
<50> [표 1]  <50> [Table 1]
Figure imgf000007_0002
Figure imgf000007_0002
<51>  <51>
<52> 상기 표 1의 결과와 같이, 종래의 리튬 이차전지용 분리막으로 이용되는 폴 리프로필렌 , 폴리에틸렌 및 폴리비닐리 덴 플루오라이드는 낮은 열적 안정성을 나타 내고, 다양한 첨가제들을 필요로 하였다 .  As shown in Table 1, polypropylene, polyethylene, and polyvinylidene fluoride used as a separator for a conventional lithium secondary battery showed low thermal stability and required various additives.
<53> 이에, 본 발명에 따른 리튬 이차전지용 분리막의 일구체예는 하기 화학식 1 로 표시되는 화합물을 포함한다.  Thus, one embodiment of the separator for a lithium secondary battery according to the present invention includes a compound represented by the following formula (1).
<54> [화학식 1]  <54> [Formula 1]
Figure imgf000007_0001
상기 화학식 1에서,
Figure imgf000007_0001
In Chemical Formula 1,
Arl 및 Ar2는 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기 및 탄 소수 1 내지 20의 할로알킬기로 이루어진 군으로부터 선택되는 1종 이상으로 치환 된 탄소수 6 내지 30의 아릴렌기 이고, <58> r은 0 내지 I의 수이며, Arl and Ar2 are each independently an arylene group having 6 to 30 carbon atoms substituted with one or more selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms and a haloalkyl group having 1 to 20 carbon atoms, R is a number from 0 to I,
<59> n은 I 내지 5, 000의 정수이다.  N is an integer from I to 5,000.
<60> 상기 화학식 I에서, Arl 또는 Ar2에 치환되는 작용기 중 적어도 하나는 할로 겐겐기기 또또는는 탄탄소소수수 1I 내내지지 2200의의 할할로로알알킬킬기기 인인 것것이이 보다 바람직하다 .  In Formula I, at least one of the functional groups substituted with Arl or Ar2 is more preferably a halogenated group or a halohaloalkylalkyl group having 2,200 carbon atoms.
<6i> 본본 발발명명에에 따따른른 리리튬튬 이이차차전전지지용용 분분리리막막에에 있어서, 상기 화학식 I로 표시되 는는 화화합합물물은은 하하기기 화화학학식식 22로로 표표시시될될 수수 있있다다.. <6i> In the separation membrane for lithium lithium secondary battery according to the present invention, the compound represented by Chemical Formula I is represented by the following chemical formula 22 Could be ...
<62> [ Γ화화학한식식 22]1 <62> [Γ Chemical Formula 22] 1
Figure imgf000008_0001
Figure imgf000008_0001
상기 화학식 2에서,  In Chemical Formula 2,
<65> R1 내지 R8 중 적어도 하나는 할로겐기 또는 할로알킬기 이고 ,  At least one of R1 to R8 is a halogen group or a haloalkyl group,
<66> 나머지는 각각 독립적으로 수소, 할로겐기, 탄소수 1 내지 20의 알킬기 , 및 탄소수 1 내지 20의 할로알킬기로 이루어진 군으로부터 선택되며,  And the rest are each independently selected from the group consisting of hydrogen, a halogen group, an alkyl group having 1 to 20 carbon atoms, and a haloalkyl group having 1 to 20 carbon atoms,
<67> r은 0 내지 1의 수이고 , R is a number from 0 to 1,
<68> n은 1 내지 5, 000의 정수이다.  N is an integer of 1 to 5,000.
<69> 또한, 본 발명에 따른 리튬 이차전지용 분리막에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3으로 표시될 수 있다 .  In addition, in the separator for a lithium secondary battery according to the present invention, the compound represented by Chemical Formula 1 may be represented by the following Chemical Formula 3.
<70> 3] <70> 3]
Figure imgf000008_0002
Figure imgf000008_0002
<72> 상기 화학식 3에서, r은 0 내지 1의 수이고, n은 1 내지 5,000의 정수이다. <73> 상기 화학식 3에서, r은 0.85 내지 0.99의 수인 것이 보다 바람직하다 . <74> 본 발명에 있어서, 상기 할로겐기의 구체적 인 예로는 플루오르 (F) , 클로린 In Chemical Formula 3, r is a number from 0 to 1, n is an integer of 1 to 5,000. In Formula 3, r is more preferably a number of 0.85 to 0.99. In the present invention, specific examples of the halogen group include fluorine (F) and chlorine.
(C1 ) , 브롬 (Br) 둥을 들 수 있고, 브롬 (Br)인 것이 보다 바람직하나, 이에만 한정 되는 것은 아니다. (C1), bromine (Br), and more preferably bromine (Br), but only It doesn't happen.
<75> 본 발명에 있어서, 상기 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필 기, 이소부틸기, sec-부틸기, tert-부틸기, 펜틸기, iso—아밀기, 핵실기, 헵틸기, 옥틸기, 스테아릴기, 트리클로로메틸기, 트리플루오르메틸기 등을 들 수 있고, 메 틸기, 에틸기, 프로필기, 이소부틸기, sec-부틸기, tert-부틸기, 펜틸기, iso-아밀 기, 핵실기ᅳ 헵틸기 등인 것이 보다 바람직하나, 이에만 한정되는 것은 아니다. <76> 본 발명에 있어서, 상기 할로알킬기의 구체적인 예로는 플루오르 (F), 클로린  In the present invention, specific examples of the alkyl group include methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, nucleosil, heptyl, and jade. And a methyl group, a stearyl group, a trichloromethyl group, a trifluoromethyl group, etc .; a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, a nucleus It is more preferable that it is a real group heptyl group, etc., It is not limited only to this. In the present invention, specific examples of the haloalkyl group include fluorine (F) and chlorine.
(C1) 또는 브롬 (Br)으로 치환된 메틸기, 에틸기, 프로필기, 이소부틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  Methyl group, ethyl group, propyl group, isobutyl group etc. which were substituted by (C1) or bromine (Br) are mentioned, It is not limited to this.
<77> 본 발명에 있어서, 상기 아릴렌기의 구체적인 예로는 페닐렌기, 비페닐렌기, 나프탈렌기, 안트라센기, 페난트렌기 등을 들 수 있고, 페닐렌기인 것이 보다 바람 직하나, 이에만 한정되는 것은 아니다.  In the present invention, specific examples of the arylene group may include a phenylene group, a biphenylene group, a naphthalene group, an anthracene group, a phenanthrene group, and the like, and are preferably phenylene groups, but are limited thereto. It is not.
<78> 종래의 리튬 이차전지용 분리막은 소수성, 비극성의 특성에 기인하여 액상 전해질에 대하여 낮은 젖음성 (wettability)의 특성을 가지고 있었다. 그러나, 본 발명에 따른 상기 화학식 1로 표시되는 화합물은 하기 도 4에 나타낸 것과 같이 비 대칭성의 고분자 구조를 가질 수 있으므로, 고분자의 극성이 향상되며, 이에 따라 전해질에 대하여 높은 젖음성의 특성을 나타낼 수 있다.  Conventional separators for lithium secondary batteries have low wettability with respect to the liquid electrolyte due to hydrophobic and nonpolar characteristics. However, since the compound represented by Chemical Formula 1 according to the present invention may have a non-symmetric polymer structure as shown in FIG. 4, the polarity of the polymer may be improved, and thus, may exhibit high wettability characteristics with respect to the electrolyte. have.
<79> 본 발명에 따른 리튬 이차전지용 분리막은 다공성, 기계적 강도 등을 증진시 키기 위하여 층진제를 추가로 포함할 수 있으며, 그 예로는 Ti02, BaTiOs, Li20,The separator for a lithium secondary battery according to the present invention may further include a layering agent to enhance porosity, mechanical strength, and the like, and examples thereof include Ti0 2 , BaTiOs, Li 2 0,
LiF, LiOH, LisN, BaO, N 0, MgO, Li2C03l LiA102, Si02, A1203) PTFE, 이들의 흔합 물 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 충진제의 함량은 분리 막의 총중량을 기준으로 20중량 % 이하인 것이 바람직하다. LiF, LiOH, LisN, BaO, N 0, MgO, Li 2 C0 3L LiA10 2 , Si0 2 , A1 2 0 3) PTFE, a mixture thereof, and the like, but are not limited thereto. The content of the filler is preferably 20% by weight or less based on the total weight of the separation membrane.
<80> 또한, 본 발명에 따른 리튬 이차전지용 분리막의 제조방법의 일구체예는 1) 상기 화학식 1로 표시되는 화합물 및 유기용매를 포함하는 조성물을 준비하는 단 계, 및 2) 상기 조성물을 이용하여 분리막을 형성하는 단계를 포함한다.  In addition, one embodiment of a method for producing a separator for a lithium secondary battery according to the present invention is 1) preparing a composition comprising a compound represented by the formula (1) and an organic solvent, and 2) using the composition To form a separator.
<81> 본 발명에 따른 리튬 이차전지용 분리막의 제조방법에 있어서, 상기 1) 단계 의 유기용매는 당 기술분야에 알려진 것을 이용할 수 있고, 보다 구체적으로 프로 필렌 카보네이트, 부틸렌 카보네이트, 1, 4-부티로락톤, 디에틸 카보네이트, 디메틸 카보네이트, 1,2-디메특시에탄, 1, 3-디메틸 -2-이미다졸 리디논, 디메틸설폭사이드, 에틸렌 카보네이트, 에틸메틸 카보네이트, Ν,Ν-디메틸포름아미드, Ν,Ν-디메틸아세 트아미드, Ν-메틸 -2-피를리돈, 폴리에틸렌설포란, 테트라에틸렌 글리콜 디메틸 에 테르, 아세톤, 알코올, 이들의 흔합물 등올 이용할 수 있으나, 이에만 한정되는 것 은 아니다. In the method of manufacturing a separator for a lithium secondary battery according to the present invention, the organic solvent of step 1) may be one known in the art, and more specifically, propylene carbonate, butylene carbonate, 1, 4- Butyrolactone, diethyl carbonate, dimethyl carbonate, 1,2-dimethicethane, 1,3-dimethyl-2-imidazole lidinone, dimethyl sulfoxide, ethylene carbonate, ethylmethyl carbonate, Ν, Ν-dimethylform Amides, Ν, Ν-dimethylacetamide, Ν-methyl-2-pyridone, polyethylenesulfuran, tetraethylene glycol dimethyl ether, acetone, alcohols, mixtures thereof, and the like, but are not limited thereto. Is not.
<82> 본 발명에 따른 리륨 이차전지용 분리막의 제조방법에 있어서, 상기 2) 단계 의 분리막의 형성은 당 기술분야에 알려진 방법을 이용할 수 있고, 보다 구체적으 로 상전이법, 캐스팅법, 압출성형법, 전하유도방사법 등을 이용할 수 있으나, 이에 만 한정되는 것은 아니다.  In the method of manufacturing a separator for a lithium secondary battery according to the present invention, the separator of step 2) may be a method known in the art, and more specifically, a phase transfer method, a casting method, an extrusion molding method, Charge-induced radiation may be used, but is not limited thereto.
<83> 다공성 고분자 분리막의 형성은 상전이법에 의해 성취된다. 보다 구체적으로 는 고분자 분리막을 형성하는 유기 용매에 용해된 고분자 용액을 필름 형태로 캐스 팅 후 비용매에 노출시켜 고형화된 다공성막을 제조할 수 있다. 다공성 분리막의 공극 구조는 고분자 용액의 조성과 비용매와의 접촉 조건을 변화시킴으로서 임의로 조절할수 있다.  Formation of the porous polymer membrane is accomplished by the phase transition method. More specifically, the polymer solution dissolved in the organic solvent forming the polymer separator may be cast in the form of a film and then exposed to a non-solvent to prepare a solidified porous membrane. The pore structure of the porous separator can be arbitrarily adjusted by changing the composition of the polymer solution and the contact conditions with the non-solvent.
<84> 다공성 고분자 분리막의 형성은 통상 전하유도방사법에 의해 성취된다. 보다 구체적으로는 고분자 분리막을 형성하는 용융 고분자 또는 유기용매에 용해된 고분 자 용액을 전하유도 방사장치의 배럴 (barrel)에 투입하고 노즐에 고전압을 가한 다 음 일정량의 속도로 금속판 또는 마일러 필름 상에 토출시켜 다공성 고분자 분리막 을 제조할 수 있다. 다공성 분리막의 두께는 토출속도 및 토출시간을 변화시킴으로 써 임의로 조절할 수 있으며, 적절한 두께는 전술한 바와 같이 1 ~ 100/ΛΠ 범위 내 이다. 이 방법을 이용할 경우, 분리막을 형성하는 고분자가 섬유가 아니라 1 ~ 3000nm 직경의 섬유가 3차원적으로 적층된 분리막을 직접 제조할 수 있다. 필요한 경우 전극 상에 고다공성 분리막을 직접 형성시킬 수 있다. 따라서, 섬유상의 제조 방법임에도 불구하고 최종 제품을 섬유가 아니라 직접 막의 형태로 제조할 수 있으 므로 부가적 장치가 불필요하고, 제조공정이 단순화되어 경제성이 향상된다.  Formation of the porous polymer membrane is usually accomplished by the charge induction radiation method. More specifically, a polymer solution dissolved in a molten polymer or an organic solvent forming a polymer separator is introduced into a barrel of a charge induction spinning device, a high voltage is applied to a nozzle, and then a metal plate or a mylar film is formed at a predetermined rate. The porous polymer membrane can be prepared by discharging the same. The thickness of the porous separator can be arbitrarily adjusted by changing the discharge speed and the discharge time, and the appropriate thickness is in the range of 1 to 100 / ΛΠ as described above. When using this method, it is possible to directly prepare a separator in which the polymer forming the separator is not a fiber but three-dimensionally stacked fibers having a diameter of 1 to 3000 nm. If necessary, a highly porous separator may be directly formed on the electrode. Therefore, despite the fibrous manufacturing method, the final product can be manufactured directly in the form of a film instead of the fiber, so that no additional device is required, and the manufacturing process is simplified to improve economic efficiency.
<85> 본 발명에 있어서, 리튬 이차전지용 분리막의 기계적 강도 등을 보다 향상시 키기 위하여 종래의 다공성 폴리을레핀계 막올 추가로 포함할 수 있다. 보다 구체 적으로, 본 발명에 따른 리튬 이차전지용 분리막은 종래의 다공성 폴리을레핀계 막 의 양면에 구비될 수 있다.  In the present invention, in order to further improve the mechanical strength and the like of the separator for lithium secondary batteries, a conventional porous polyolefin resin may be further included. More specifically, the separator for a lithium secondary battery according to the present invention may be provided on both sides of a conventional porous polyolefin-based membrane.
<86> 즉, 본 발명에 따른 리튬 이차전지용 분리막의 일구체예는 1) 다공성 폴리올 레핀계 막, 및 2) 상기 다공성 폴리올레핀계 막의 양면에 구비되고, 상기 화학식 1 로 표시되는 화합물올 포함하는 코팅막을 포함한다ᅳ  That is, one specific example of the separator for a lithium secondary battery according to the present invention is 1) a porous polyol-resin-based membrane, and 2) a coating membrane provided on both sides of the porous polyolefin-based membrane and containing the compound represented by Chemical Formula 1 Contains
<87> 상기 다공성 폴리올레핀계 막은 당 기술분야에 알려진 것올 이용할 수 있고, 보다 구체적으로 폴리에틸렌막, 폴리프로필렌막 등을 이용할 수 있고, 폴리에틸렌 막인 것이 보다 바람직하나, 이에만 한정되는 것은 아니다.  The porous polyolefin-based membrane may be one known in the art, and more specifically, a polyethylene membrane, a polypropylene membrane, or the like may be used, and more preferably, it is a polyethylene membrane, but is not limited thereto.
<88> 즉, 본 발명의 일구체예인 폴리에틸렌막을 포함하는 3층 구조의 분리막은, 배터리 운전 중 온도가 상승하면 중간에 위치한 폴리에틸렌막이 녹아 이온전달을 방해하게 되고, 이에 따라 배터리가 고온에서 셧다운 (shutdown) 기능을 갖도록 할 수 있다. 이 때, 중간의 녹는 고분자와 코팅된 고분자의 온도 차이가 클수록 배터 리는 높은 안정성올 가지게 된다. 따라서, 본 발명에서는 상기 화학식 1로 표시되 는 화합물을 포함하는 코팅막의 열적 안정성이 200°C까지 매우 우수하므로, 급격한 온도 상승에서 폴리에틸렌막이 녹는 동안 양 전극간의 접촉을 효과적으로 방지할 수 있다. That is, the separation membrane of the three-layer structure including a polyethylene membrane which is one embodiment of the present invention, If the temperature rises while the battery is running, the polyethylene film in the middle melts and interferes with ion transfer, thereby allowing the battery to have a shutdown function at a high temperature. At this time, as the temperature difference between the intermediate melting polymer and the coated polymer increases, the battery has a high stability. Therefore, in the present invention, since the thermal stability of the coating film including the compound represented by Chemical Formula 1 is very excellent up to 200 ° C., it is possible to effectively prevent contact between both electrodes during melting of the polyethylene film at a rapid temperature rise.
<89> 상기 2) 코팅막의 두께는 1 ~ 30/m인 것이 바람직하나, 이에만 한정되는 것 은 아니다.  2) The thickness of the coating film is preferably 1 ~ 30 / m, but is not limited thereto.
<90> 또한, 본 발명에 따른 리튬 이차전지용 분리막의 제조방법의 일구체예는 1) 다공성 폴리을레핀계 막을 준비하는 단계, 및 2) 상기 다공성 폴리올레핀계 막의 양면에 상기 화학식 1로 표시되는 화합물 및 유기용매를 포함하는 조성물을 코팅하 여 막을 형성하는 단계를 포함한다.  In addition, one embodiment of the method for manufacturing a separator for a lithium secondary battery according to the present invention includes the steps of 1) preparing a porous polyolefin-based membrane, and 2) a compound represented by Chemical Formula 1 on both sides of the porous polyolefin-based membrane; Coating a composition comprising an organic solvent to form a film.
<9i> 상기 1) 단계의 폴리올레핀계 막, 유기용매, 상기 2) 단계의 막을 형성하는 방법 등은 전술한 바와 동일하다. 특히, 상기 화학식 1로 표시되는 화합물 및 유기 용매를 포함하는 조성물을 코팅한 후, 상대습도 90% 이상의 질소 가스를 주입하여 1차 상전이를 수행하고, 증류수에 담그어 2차 상전이를 수행함으로써, 막을 형성할 수 있다.  <9i> The method for forming the polyolefin-based film of step 1), the organic solvent, and the film of step 2) is the same as described above. In particular, after coating the composition comprising the compound represented by the formula (1) and the organic solvent, the first phase transition by injecting nitrogen gas of 90% or more relative humidity, and the second phase transition by dipping in distilled water, to form a film can do.
<92> 또한, 본 발명은 상기 리륨 이차전지용 분리막을 포함하는 리튬 이차전지를 제공한다.  In addition, the present invention provides a lithium secondary battery including the separator for a lithium secondary battery.
<93> 상기 리튬 이차전지는 본 발명에 따른 리튬 이차전지용 분리막 이외에는 당 기술분야에 알려진 양극, 전해질, 음극 등을 포함할 수 있다.  The lithium secondary battery may include a cathode, an electrolyte, a cathode, and the like known in the art, in addition to the separator for a lithium secondary battery according to the present invention.
<94> 상기 리튬 이차전지의 양극 재료로서 사용할 수 있는 물질들은 다음의 조건, 예컨대, 리륨 이온과의 가역적 전기화학반웅 수행, 전해질에 대해 화학적 안정성, 층전과 방전시 낮은 부피의 변화, 빠른 층 · 방전 속도, 리튬에 대한 층분히 높은 환원전위 등을 만족시키는 것이 바람직하다 .  Materials that can be used as the positive electrode material of the lithium secondary battery include the following conditions, for example, performing reversible electrochemical reaction with lithium ions, chemical stability with respect to electrolyte, low volume change during layer transfer and discharge, and fast layer. It is desirable to satisfy the discharge rate, a sufficiently high reduction potential with respect to lithium, and the like.
<95> 이같은 조건을 만족하는 것은 주로 전이금속 산화물로서 LixCo02, LixNi02, Satisfies these conditions are mainly transition metal oxides LixCo0 2 , LixNi0 2 ,
LixMn204, LiNixCox02 등이 있고, 합성이 용이하고 전위 변화가 완만하며 전도성이 우수한 LiCo02가 리튬 이차전지의 양극 재료로 주로 사용되고 있다. LixMn 2 0 4, LiNixCox0 and the second place, the synthesis is easy and the potential change is gentle, and generally used is excellent in conductivity LiCo0 2 as a positive electrode material for a lithium secondary battery.
<96> 상기 리튬 이차전지의 음극으로 사용되는 물질의 기본요건은, 예컨대 리튬 금속의 표준전극 전위에 근접한 전위를 가져야 하고, 부피당, 무게당 에너지 밀도 가 높아야 하며, 뛰어난 사이클 안정성 (높은 쿨통 효율)을 확보되어야 하고, 고속 충, 방전 (rate capability)에 견딜 수 있어야 하며, 안정성이 보장되어야 한다.The basic requirement of the material used as the negative electrode of the lithium secondary battery, for example, should have a potential close to the standard electrode potential of lithium metal, energy density per volume, weight per weight Should be high, excellent cycle stability (high coolant efficiency) should be ensured, be able to withstand high rate charge and discharge capability, and stability should be guaranteed.
<97> 이러한 요건들을 모두 층족시킬 수 있는 가장 좋은 재료가 바로 리튬 합금 또는 탄소질 재료이며, 탄소질 재료는 부피 변화가 적고 가역성이 뛰어나며 가격면 에서 유리한 점이 많아 적합한 물질로 인식될 수 있다. 상기 탄소질 재료의 구체적 인 예로는 그래파이트 (graphite), 코크 (coke) 파이버 (fiber), 피치 (pitch), 메조 카본 (meso carbon) 등을 들 수 있다. Lithium alloy or carbonaceous material is the best material that can satisfy all of these requirements, and carbonaceous material can be recognized as a suitable material because of its small volume change, reversibility, and price advantages. Specific examples of the carbonaceous material include graphite, coke fiber, pitch, meso carbon, and the like.
<98> 상기 전해질로은 리륨 염과 유기용매를 포함하는 비수 전해질으로써, 리튬 염으로는 LiC104, LiCF3S03) LiAsF6, LiBF4, LiN(CF3S02)2, LiPF6, LiSCN,The electrolyte is a non-aqueous electrolyte containing a lithium salt and an organic solvent. Lithium salts include LiC10 4 , LiCF 3 S0 3) LiAsF 6 , LiBF 4 , LiN (CF 3 S0 2 ) 2 , LiPF 6 , LiSCN,
LiC(CF3S02)3, LiBOB 등이 사용되고, 유기용매로는 에틸렌카보네이트 (EC), 프로필렌 카보네이트 (PC), 디메틸카보네이트 (DMC), 디에틸카보네이트 (DEC), 감마부틸로락톤( YBL), 에틸메틸카보네이트 (EMC), 디메록시에탄 (DME), 디에록시에탄 (DEE), 2-메틸 테트라하이드로퓨란 (2-MeTHF), 디메틸설폭사이드 (DMS) 등을 각각 또는 흔합하여 사 용할 수 있다. LiC (CF 3 S0 2 ) 3 , LiBOB and the like are used, and organic solvents include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and gamma butyrolactone (YBL). , Ethylmethyl carbonate (EMC), dimethoxyethane (DME), diethoxyethane (DEE), 2-methyl tetrahydrofuran (2-MeTHF), dimethyl sulfoxide (DMS), etc. can be used, respectively, or in combination. .
<99> 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의 해 본 발명의 내용이 한정되는 것은 아니다.  Hereinafter, preferred examples will be presented to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.
<100> <실시예>  <100> <Example>
<ιοι> <실시예 1>  <ιοι> <Example 1>
<102> 1) 분리막의 제조  1) Preparation of Separator
<103> BPPO(brominated poly(phenylene oxide)) 2g을 N-메틸 -2-피롤리돈 8ml 에 녹 이고 부탄을 2ml을 추가 교반하여 고분자 용액을 얻었다. 얻어진 고분자 용액을 유 리판에 캐스팅 후, 상대 습도 90% 이상의 질소 가스를 주입하여 10분간 1차 상전이 를 실시하였다. 그 후, 증류수에 12시간 보관하여 2차 상전이를 실시하여 다공성 고분자 분리막 필름을 제조하였다.  2 g of BPPO (brominated poly (phenylene oxide)) was dissolved in 8 ml of N-methyl-2-pyrrolidone and 2 ml of butane was further stirred to obtain a polymer solution. After the obtained polymer solution was cast on a glass plate, nitrogen gas was injected with a relative humidity of 90% or more, and the first phase transition was performed for 10 minutes. After that, the secondary phase transition was carried out by storing in distilled water for 12 hours to prepare a porous polymer membrane film.
<104> 상기 제조된 리륨 이차전지용 분리막의 전자사진을 하기 도 3에 나타내었다. An electrophotograph of the prepared lithium secondary battery separator is shown in FIG. 3.
<105> 2) 리튬 이차전지의 제조 2) Fabrication of Lithium Secondary Battery
<106> 상기 1)에서 제조된 분리막올 Li금속과 LiFeP04 사이에 넣고, CR2032코인셀 타입 전지를 구성하였다. 전해액은 1M LiPF6가 용해된 EC-DEC 용액을 주입하였다. 전지조립의 모든 과정은 Ar 가스가 층전되어 있는 글로브 박스 (glove box)에서 수 행되었다. <107> <비교예 1> The separatorol prepared in 1) was placed between Li metal and LiFeP0 4 to form a CR2032 coin cell type battery. The electrolyte solution was injected with an EC-DEC solution in which 1M LiPF 6 was dissolved. All of the cell assembly was performed in a glove box with Ar gas layered. <107><Comparative Example 1>
<io8> 시판중인 종래의 종래의 리튬 이차전지용 분리막인 Celgard 2325(PP/PE/PP) 의 전자사진을 하기 도 7에 나타내었다. 또한, 상기 Celgard 2325(PP/PE/PP)의 온 도에 대한 저항성을 하기 도 8에 나타내었다.  <io8> An electrophotograph of Celgard 2325 (PP / PE / PP), which is a conventional separator for a conventional lithium secondary battery, is shown in FIG. 7. In addition, the resistance to the temperature of the Celgard 2325 (PP / PE / PP) is shown in Figure 8 below.
<109> <실험예 >  <109> <Experimental Example>
<πο> 상기 실시예 1에 따른 리튬 이차전지용 분리막과 종래의 리튬 이차전지용 분 리막인 Celgard 2325(PP/PE/PP)의 전해질에 대한 친화도 및 이온전도도를 측정하여 하기 표 2에 나타내었다.  <πο> The affinity and ionic conductivity of the electrolyte of the separator for lithium secondary battery according to Example 1 and Celgard 2325 (PP / PE / PP), which is a conventional separator for lithium secondary batteries, were measured and shown in Table 2 below.
<ιιι> [표 2]  <ιιι> [Table 2]
Figure imgf000013_0001
Figure imgf000013_0001
<112>  <112>
<ιΐ3> 상기 실시예 1의 리튬 이차전지의 용량에 따른 전위 (potential)와 종래의 폴 리프로필렌 분리막을 포함하는 리튬 이차전지의 용량에 따른 전위 (potential)를 하 기 도 5에 나타내었다. 도 5의 결과로부터, 본 발명에 따른 리륨 이차전지는 높은 에너지 효율 및 출력을 나타냄올 알수 있다.  The potential according to the capacity of the lithium secondary battery of Example 1 and the potential according to the capacity of the lithium secondary battery including the conventional polypropylene separator are shown in FIG. 5. From the results of FIG. 5, it can be seen that the lithium secondary battery according to the present invention exhibits high energy efficiency and output.
<114> 또한, 상기 실시예 1의 리튬 이차전지의 사이클 특성과 종래의 폴리프로필렌 분리막을 포함하는 리튬 이차전지의 사이클 특성을 하기 도 6에 나타내었다. 노 6 의 결과로부터, 본 발명에 따른 리튬 이차전지는 상대적인 용량율이 높고, 쿨통 효 율이 높음을 알수 있다.  In addition, the cycle characteristics of the lithium secondary battery of Example 1 and the cycle characteristics of the lithium secondary battery including a conventional polypropylene separator is shown in Figure 6 below. From the results of furnace 6, it can be seen that the lithium secondary battery according to the present invention has a high relative capacity ratio and a high cool cylinder efficiency.
<115> 상기 실시예 1에 따른 리튬 이차전지용 분리막과 종래의 리튬 이차전지용 분 리막인 Celgard 2325(PP/PE/PP)의 열적 수축성을 하기 도 9에 나타내었고, 200°C로 가열한후의 열적 안정성을 하기 도 10에 나타내었다. Thermal shrinkage of the separator for a lithium secondary battery according to Example 1 and Celgard 2325 (PP / PE / PP), which is a separator for a conventional lithium secondary battery, is shown in FIG. 9, and after heating to 200 ° C. The stability is shown in FIG. 10.
<116> 상기 실험결과로부터, 본 발명에 따른 리튬 이차전지용 분리막은 상기 화학 식 1로 표시되는 화합물을 포함함으로써, 극성을 증가시킬 수 있어서 전해질에 대 한 젖음성이 우수하고, 열적 안정성이 우수함을 알 수 있다. 또한, 본 발명에 따른 분리막을 포함하는 리튬 이차전지는 성능이 우수할 뿐만 아니라, 사이클 특성이 우 수하다.  From the experimental results, it can be seen that the lithium secondary battery separator according to the present invention includes the compound represented by Chemical Formula 1, thereby increasing polarity, thereby providing excellent wettability to the electrolyte and excellent thermal stability. Can be. In addition, the lithium secondary battery including the separator according to the present invention not only has excellent performance but also has excellent cycle characteristics.

Claims

【청구의 범위】 【청구항 11 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 분리막: Claims Claim 11 Separation membrane for a lithium secondary battery containing a compound represented by the following formula (1):
[ 1]  [ One]
Figure imgf000014_0001
Figure imgf000014_0001
상기 화학식 1에서 ,  In Chemical Formula 1,
Arl 및 Ar2는 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기 및 탄 소수 1 내지 20의 할로알킬기로 이루어진 군으로부터 선택되는 1종 이상으로 치환 된 탄소수 6 내지 30의 아릴렌기이고,  Arl and Ar2 are each independently an arylene group having 6 to 30 carbon atoms substituted with one or more selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms and a haloalkyl group having 1 to 20 carbon atoms,
r은 0 내지 1의 수이며 ,  r is a number from 0 to 1,
n은 1 내지 5 ,000의 정수이다 .  n is an integer of 1 to 5,000.
【청구항 2]  [Claim 2]
제 1항에 있어서 ,  The method of claim 1,
상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 것올 특징으 로 하는 리튬 이차전지용 분리막 :  Compound represented by the formula (1) is a lithium secondary battery separator, characterized in that represented by the formula (2):
[화학식 2]  [Formula 2]
Figure imgf000014_0002
Figure imgf000014_0002
상기 화학식 2에서 ,  In Chemical Formula 2,
R1 내지 R8 중 적어도 하나는 할로겐기 또는 할로알킬기 이고,  At least one of R1 to R8 is a halogen group or a haloalkyl group,
나머지는 각각 독립적으로 수소, 할로겐기, 탄소수 1 내지 20의 알킬기, 및 탄소수 1 내지 20의 할로알킬기로 이루어진 군으로부터 선택되며,  The rest are each independently selected from the group consisting of hydrogen, a halogen group, an alkyl group having 1 to 20 carbon atoms, and a haloalkyl group having 1 to 20 carbon atoms,
r은 0 내지 1의 수이고,  r is a number from 0 to 1,
n은 1 내지 5,000의 정수이다.  n is an integer of 1-5,000.
【청구항 3】 제 1항에 있어서, [Claim 3] The method of claim 1,
상기 화학식 1로 표시되는 화합물은 하기 화학식 3으로 표시되는 것을 특징 으로 하는 리튬 이차전지용 분리막 :  Compound represented by the formula (1) is a lithium secondary battery separator, characterized in that represented by the formula (3):
[ 3]  [3]
Figure imgf000015_0001
Figure imgf000015_0001
상기 화학식 3에서, r은 0 내지 1의 수이고, n은 1 내지 5,000의 정수이다 .  In Formula 3, r is a number of 0 to 1, n is an integer of 1 to 5,000.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 리튬 이차전지용 분리막은 층진제를 추가로 포함하는 것을 특징으로 하 는 리튬 이차전지용 분리 막。  The lithium secondary battery separator is a lithium secondary battery separator, characterized in that it further comprises a layering agent.
【청구항 5】  [Claim 5]
제 4항에 있어서,  The method of claim 4,
상기 층진제는 Ti02, BaTi03 ) Li20, LiF, LiOH, L13N, BaO, Na20, MgO,The layering agent is Ti0 2 , BaTi0 3) Li 2 0, LiF, LiOH, L1 3 N, BaO, Na 2 0, MgO,
Li2C03 ) LiA102, Si02, A1203, PTFE 및 이들의 흔합물로 이루어진 군으로부터 선택되 는 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 분리막. Li 2 CO 3) LiA 10 2 , Si0 2 , A1 2 0 3 , PTFE and a separator for a lithium secondary battery comprising at least one selected from the group consisting of a mixture thereof.
【청구항 6]  [Claim 6]
1) 하기 화학식 1로 표시되는 화합물 및 유기용매를 포함하는 조성물올 준비 하는 단계, 및  1) preparing a composition comprising a compound represented by the following formula (1) and an organic solvent, and
2) 상기 조성물을 이용하여 분리막을 형성하는 단계  2) forming a separator using the composition
를 포함하는 리튬 이차전지용 분리막의 제조방법 :  Method for manufacturing a separator for a lithium secondary battery comprising:
[ 1]  [ One]
Figure imgf000015_0002
Figure imgf000015_0002
상기 화학식 1에서,  In Chemical Formula 1,
Arl 및 Ar2는 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기 및 탄 소수 1 내지 20의 할로알킬기로 이루어진 군으로부터 선택되는 1종 이상으로 치환 된 탄소수 6내지 30의 아릴렌기이고, Arl and Ar2 are each independently a halogen group, an alkyl group having 1 to 20 carbon atoms and carbon An arylene group having 6 to 30 carbon atoms substituted with one or more selected from the group consisting of a small number of 1 to 20 haloalkyl groups,
r은 0 내지 1의 수이며,  r is a number from 0 to 1,
n은 1 내지 5,000의 정수이다.  n is an integer from 1 to 5,000.
【청구항 7】  [Claim 7]
제 6항에 있어서,  The method of claim 6,
상기 1) 단계의 유기용매는 프로필렌 카보네이트, 부틸렌 카보네이트, 1,4- 부티로락톤, 디에틸 카보네이트, 디메틸 카보네이트, 1,2-디메톡시에탄, 1,3-디메 틸 -2-이미다졸 리디논, 디메틸설폭사이드, 에틸렌 카보네이트, 에틸메틸 카보네이 트, Ν,Ν-디메틸포름아미드, Ν,Ν-디메틸아세트아미드, Ν-메틸 -2-피를리돈, 폴리에틸 렌설포란, 테트라에틸렌 글리콜 디메틸 에테르, 아세톤, 알코을 및 이들의 흔합물 로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 분리막의 제조방법.  The organic solvent of step 1) is propylene carbonate, butylene carbonate, 1,4-butyrolactone, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,3-dimethyl-2-imidazole lididi Paddy, dimethyl sulfoxide, ethylene carbonate, ethylmethyl carbonate, Ν, Ν-dimethylformamide, Ν, Ν-dimethylacetamide, Ν-methyl-2-pyridone, polyethylene sulfolane, tetraethylene glycol dimethyl A method for producing a separator for a lithium secondary battery, characterized in that it comprises one or more selected from the group consisting of ether, acetone, alcohol and mixtures thereof.
【청구항 8]  [Claim 8]
제 6항에 있어서,  The method of claim 6,
상기 2) 단계의 분리막의 형성은 상전이법, 캐스팅법, 압출성형법 및 전하유 도방사법으로 이루어진 군으로부터 선택되는 방법을 이용하는 것을 특징으로 하는 리튬 이차전지용 분리막의 제조방법 .  Forming the separator of step 2) is a method of manufacturing a separator for a lithium secondary battery, characterized in that using a method selected from the group consisting of a phase transfer method, casting method, extrusion molding method and charge induction spinning method.
【청구항 9】  [Claim 9]
1) 다공성 폴리올레핀계 막, 및  1) porous polyolefin-based membrane, and
2) 상기 다공성 폴리올레핀계 막의 양면에 구비되고, 하기 화학식 1로 표시 되는 화합물을포함하는 코팅막  2) a coating film provided on both sides of the porous polyolefin-based film, and containing a compound represented by the following formula (1)
을 포함하는 리튬 이차전지용 분리막:  Separation membrane for a lithium secondary battery comprising:
[화학식 1]  [Formula 1]
Figure imgf000016_0001
Figure imgf000016_0001
상기 화학식 1에서,  In Chemical Formula 1,
Arl 및 Ar2는 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기 및 탄 소수 1 내지 20의 할로알킬기로 이루어진 군으로부터 선택되는 1종 이상으로 치환 된 탄소수 6내지 30의 아릴렌기이고, r은 0 내지 1의 수이며, Arl and Ar2 are each independently an arylene group having 6 to 30 carbon atoms substituted with one or more selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms and a haloalkyl group having 1 to 20 carbon atoms, r is a number from 0 to 1,
n은 1 내지 5, 000의 정수이다.  n is an integer of 1 to 5,000.
【청구항 10]  [Claim 10]
계 9항에 있어서,  The method according to claim 9,
상기 1) 다공성 폴리을레핀계 막은 폴리에 틸렌막 또는 폴리프로필렌막을 포 함하는 것올 특징으로 하는 리튬 이차전지용 분리막 .  1) The porous polyolefin-based membrane is a separator for a lithium secondary battery, characterized in that it comprises a polystyrene membrane or a polypropylene membrane.
【청구항 11】  [Claim 11]
거 19항에 있어서 ,  The method of claim 19,
상기 2) 코팅 막의 두께는 1 ~ 30/ m인 것을 특징으로 하는 리튬 이차전지용 분리막 .  2) The thickness of the coating membrane is a lithium secondary battery separator, characterized in that 1/30 / m.
【청구항 12]  [Claim 12]
1) 다공성 폴리을레핀계 막을 준비하는 단계, 및  1) preparing a porous polyolefin film, and
2) 상기 다공성 폴리올레핀계 막의 양면에 하기 화학식 1로 표시되는 화합물 및 유기용매를 포함하는 조성물을 코팅하여 막을 형성하는 단계  2) forming a membrane by coating a composition comprising a compound represented by the following formula (1) and an organic solvent on both sides of the porous polyolefin-based membrane
를 포함하는 리튬 이차전지용 분리막의 제조방법 :  Method for manufacturing a separator for a lithium secondary battery comprising:
[화학식 1]  [Formula 1]
-Ar1一 0- -Ar2ᅳ 0--Ar1 一 0- -Ar2 ᅳ 0-
(1 -Γ) 상기 화학식 1에서, (1 -Γ) in the formula 1,
Arl 및 Ar2는 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기 및 탄 소수 1 내지 20의 할로알킬기로 이루어진 군으로부터 선택되는 1종 이상으로 치환 된 탄소수 6 내지 30의 아릴렌기 이고,  Arl and Ar2 are each independently an arylene group having 6 to 30 carbon atoms substituted with one or more selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms and a haloalkyl group having 1 to 20 carbon atoms,
r은 0 내지 1의 수이며,  r is a number from 0 to 1,
n은 1 내지 5, 000의 정수이다 .  n is an integer of 1 to 5,000.
【청구항 13]  [Claim 13]
제 1항 내지 제 5항, 및 제 9항 내지 제 11항 중 어느 한 항의 리튬 이차전지용 분리 막을 포함하는 리튬 이차전지 .  A lithium secondary battery comprising the separator for a lithium secondary battery of any one of claims 1 to 5 and 9 to 11.
PCT/KR2011/004799 2010-07-02 2011-06-30 Separator film for a lithium secondary battery, method for preparing same, and lithium secondary battery comprising same WO2012002746A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0063936 2010-07-02
KR1020100063936A KR101235172B1 (en) 2010-07-02 2010-07-02 Separator for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
WO2012002746A2 true WO2012002746A2 (en) 2012-01-05
WO2012002746A3 WO2012002746A3 (en) 2012-04-12

Family

ID=45402579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004799 WO2012002746A2 (en) 2010-07-02 2011-06-30 Separator film for a lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR101235172B1 (en)
WO (1) WO2012002746A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229447A (en) * 2016-08-10 2016-12-14 东莞永蓝电子科技有限公司 A kind of lithium ion battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041329B1 (en) 2015-12-04 2019-11-06 주식회사 엘지화학 Method and apparatus for testing performance of separator for secondary battery
KR102501467B1 (en) 2017-11-16 2023-02-20 삼성전자주식회사 Composite separator, preparing method thereof, and secondary battery including the same
US11094998B2 (en) 2019-06-19 2021-08-17 GM Global Technology Operations LLC Ceramic-coated separators for lithium-containing electrochemical cells and methods of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618629A1 (en) * 1993-04-01 1994-10-05 W.R. Grace & Co.-Conn. Battery separator
KR100325877B1 (en) * 2000-07-24 2002-03-07 김순택 Lithium secondary battery comprising polymer electrolyte of gel-type
JP2002075317A (en) * 2000-08-25 2002-03-15 Sanyo Electric Co Ltd High polymer material for battery, separator for battery, and insulating packing for battery and lithium battery
KR20040099606A (en) * 2003-05-19 2004-12-02 주식회사 코캄엔지니어링 Gel-formable electrolyte composition and lithium secondary batteries manufactured using the same and Preparation process thereof
KR20100058243A (en) * 2008-11-24 2010-06-03 광주과학기술원 Ploymer membrane, method for manufacturing the membrane and membrane electrode assembly including the membrane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049479B2 (en) * 1981-03-19 1985-11-01 東レ株式会社 Glucose isomerase deactivation prevention material and glucose isomerization reaction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618629A1 (en) * 1993-04-01 1994-10-05 W.R. Grace & Co.-Conn. Battery separator
KR100325877B1 (en) * 2000-07-24 2002-03-07 김순택 Lithium secondary battery comprising polymer electrolyte of gel-type
JP2002075317A (en) * 2000-08-25 2002-03-15 Sanyo Electric Co Ltd High polymer material for battery, separator for battery, and insulating packing for battery and lithium battery
KR20040099606A (en) * 2003-05-19 2004-12-02 주식회사 코캄엔지니어링 Gel-formable electrolyte composition and lithium secondary batteries manufactured using the same and Preparation process thereof
KR20100058243A (en) * 2008-11-24 2010-06-03 광주과학기술원 Ploymer membrane, method for manufacturing the membrane and membrane electrode assembly including the membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229447A (en) * 2016-08-10 2016-12-14 东莞永蓝电子科技有限公司 A kind of lithium ion battery

Also Published As

Publication number Publication date
WO2012002746A3 (en) 2012-04-12
KR20120003203A (en) 2012-01-10
KR101235172B1 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP6187458B2 (en) Lithium secondary battery
WO2021004151A1 (en) Lithium ion battery and powered device comprising same
CN101202364B (en) Electrolyte and battery
US8399127B2 (en) Nonaqueous electrolyte secondary battery
US20090253044A1 (en) Nonaqueous Electrolyte and Lithium ion Secondary Battery Using Same
CN105794035B (en) Secondary cell electrolyte and the secondary cell for using it
WO2022105614A1 (en) Lithium metal negative electrode, preparation method therefor and related lithium metal battery thereof, and device
US11522214B2 (en) Lithium-ion batteries and related battery modules, battery packs and devices
US20230098496A1 (en) All solid-state electrolyte composite based on functionalized metal-organic framework materials for lithium secondary battery and method for manufacturing the same
CN105440010B (en) New compound and the lithium secondary cell electrolyte for including it
CN112349961B (en) Electrolyte solution, electrochemical device and electronic apparatus including the same
CN102473966A (en) Polymer gel electrolyte and polymer secondary battery using same
JP2021516858A (en) A method for manufacturing an electrode containing a polymer-based solid electrolyte and an electrode manufactured by this method.
KR20220033455A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2012002746A2 (en) Separator film for a lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JP2007335170A (en) Nonaqueous electrolyte, and nonaqueous electrolyte battery
KR100592235B1 (en) Organic electrolyte and lithium battery employing the same
EP3244472A1 (en) Composites comprising hollow microspheres of a vanadium oxide for lithium sulfur cells
CN114204118A (en) PVDF (polyvinylidene fluoride) -based composite solid electrolyte and preparation method thereof
KR102278992B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP5107118B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
CN116435707B (en) Electrochemical device and electronic device
WO2023216051A1 (en) Secondary battery containing cyclic siloxane and electric device
JP7249990B2 (en) Method for manufacturing electrode, method for manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2023087168A1 (en) Electrolyte, secondary battery, battery module, battery pack, and electric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11801152

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11801152

Country of ref document: EP

Kind code of ref document: A2