WO2012002494A1 - Posture determination device - Google Patents

Posture determination device Download PDF

Info

Publication number
WO2012002494A1
WO2012002494A1 PCT/JP2011/065057 JP2011065057W WO2012002494A1 WO 2012002494 A1 WO2012002494 A1 WO 2012002494A1 JP 2011065057 W JP2011065057 W JP 2011065057W WO 2012002494 A1 WO2012002494 A1 WO 2012002494A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
determination
unit
determined
support
Prior art date
Application number
PCT/JP2011/065057
Other languages
French (fr)
Japanese (ja)
Inventor
克行 荻原
寛明 中林
Original Assignee
北陸電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北陸電気工業株式会社 filed Critical 北陸電気工業株式会社
Priority to CN201180032143.5A priority Critical patent/CN102959357B/en
Priority to JP2012522693A priority patent/JP5161396B2/en
Publication of WO2012002494A1 publication Critical patent/WO2012002494A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation

Definitions

  • the present invention relates to a posture identifying device using a three-axis acceleration sensor.
  • Japanese Patent Application Laid-Open No. 2009-276282 discloses an attitude specifying device that calculates an angle of a device using acceleration components in orthogonal three-dimensional coordinates detected by a three-axis acceleration sensor, and specifies the posture of the device itself based on the calculated angle. It is disclosed.
  • a conventional posture specifying device using a three-axis acceleration sensor requires a complicated calculation to specify the posture. Therefore, for example, when the posture specifying device is used for a mobile communication terminal device or the like, the amount of calculation required for specifying the posture increases, causing a problem that the load on the CPU of the mobile communication terminal device increases remarkably.
  • An object of the present invention is to provide an attitude specifying device that can easily specify an attitude without requiring complicated calculation.
  • the posture specifying apparatus of the present invention includes a triaxial acceleration sensor supported by a support, first to third determination units, and a posture specifying unit.
  • the triaxial acceleration sensor is supported by a support, and the acceleration acting on the support is expressed by a first axis X, a second axis Y orthogonal to the first axis X, a first axis X, and a second axis.
  • the first determination unit sets ⁇ as a positive number, and the first axial component Gx is in any range of Gx ⁇ , ⁇ ⁇ Gx ⁇ 0, 0 ⁇ Gx ⁇ , and ⁇ ⁇ Gx. Judgment is made and the judgment result is output as a digital value.
  • the second determination unit sets ⁇ as a positive number, and the second axial component Gy is in any range of Gy ⁇ , ⁇ ⁇ Gy ⁇ 0, 0 ⁇ Gy ⁇ , and ⁇ ⁇ Gy. Judgment is made and the judgment result is output as a digital value.
  • the third determination unit sets ⁇ as a positive number and the component Gz in the third axial direction falls within any of the ranges of Gz ⁇ , ⁇ ⁇ Gz ⁇ 0, 0 ⁇ Gz ⁇ , and ⁇ ⁇ Gz. Judgment is made and the judgment result is output as a digital value. More specifically, ⁇ , ⁇ and ⁇ are preferably the same number. Further practically, ⁇ , ⁇ and ⁇ are preferably 0.5.
  • the posture specifying unit determines the gravitational acceleration direction in which the gravitational acceleration acts on the support based on the combination of the determination results of the digital values determined by the first to third determination units, and the posture of the support from the gravitational acceleration direction. Is identified.
  • the posture specifying unit stores an acceleration direction data storage unit that stores data indicating a correspondence relationship between a combination of results determined by the first to third determination units in advance and the gravitational acceleration direction acting on the support; From the data stored in the acceleration direction data storage unit, the gravitational acceleration direction acting on the support corresponding to the combination of the determination results is input using the combination of the determination results of the digital values determined by the first to third determination units. And a search unit for searching and outputting.
  • the search unit receives as input the combination of the determination results of the digital values determined by the first to third determination units, and stores the gravitational acceleration direction acting on the support corresponding to the combination of the determination results in the acceleration direction data storage unit. Search and output from stored data. In this way, it is possible to specify the posture of the device on which the three-axis acceleration sensor is mounted without requiring a complicated calculation based on a small amount of information input (6 bits) and a small amount of stored data. it can.
  • any format and It may be content.
  • the sphere is divided into four equal parts by a first virtual plane parallel to the first and second axes, and the sphere is divided into the second axis and The sphere is divided into four equal parts by a second imaginary plane parallel to the third axis, and the sphere is divided into four equal parts by a third imaginary plane parallel to the first axis and the third axis.
  • 56 are assigned identification codes.
  • the identification code of the virtual region located in the direction of gravitational acceleration determined by the combination of results determined by the first to third determination units is associated with the combination of results determined by the first to third determination units, and the acceleration You may memorize
  • the search unit outputs the gravitational acceleration direction using the identification code.
  • the orientation of the device on which the orientation specifying device is mounted can be indicated by 56 direction information. With this level of information, the burden on the CPU in many mobile communication terminal devices is hardly increased.
  • FIG. 1 It is a block diagram which shows the structure of an example of embodiment of the attitude
  • FIG. 6 is a diagram illustrating an example of digital data stored in an attitude information register in an acceleration direction data storage unit in a range of 5; It is the figure which displayed the example of provision of the identification code of FIG. 4 in three dimensions.
  • FIG. 1 is a block diagram showing a configuration of an example of an embodiment of a posture identifying device of the present invention.
  • the posture specifying device of the present embodiment includes a triaxial acceleration sensor 1 and a support 3 that supports the triaxial acceleration sensor 1.
  • the support 3 may be a casing in which the triaxial acceleration sensor is housed and fixed, or may be a substrate on which the triaxial acceleration sensor is fixed.
  • These casing or substrate may be, for example, a portable communication terminal device. It is fixed with respect to the apparatus which requires such an attitude
  • the three-axis acceleration sensor 1 is configured such that the acceleration acting on the support 3 is a first axis X, a second axis Y that is orthogonal to the first axis X, a first axis X, and a second axis.
  • the acceleration acting on the support 3 is a first axis X, a second axis Y that is orthogonal to the first axis X, a first axis X, and a second axis.
  • Gx, Gy, and Gz in the axial direction of the third axis Z that is orthogonal to the axis Y.
  • a semiconductor acceleration sensor that can output an acceleration component for detecting the gravitational acceleration G even when the device is stationary is used.
  • the triaxial acceleration sensor 1 is normalized so that the components Gx, Gy, and Gz are in the range of ⁇ 1 ⁇ Gx ⁇ 1, ⁇ 1 ⁇ Gy ⁇ 1, and ⁇ 1 ⁇ Gz ⁇ 1.
  • the detected value is output.
  • the normalized first to third axial acceleration components Gx to Gz output from the triaxial acceleration sensor 1 are input to the first to third determination units 5 to 9.
  • the first determination unit 5 sets ⁇ as a positive number, and the first axial component Gx has any range of Gx ⁇ , ⁇ ⁇ Gx ⁇ 0, 0 ⁇ Gx ⁇ , and ⁇ ⁇ Gx. And the determination result is output as a digital value.
  • 0.5 is adopted as ⁇ . Therefore, the first determination unit 5 specifically determines that the first axial component Gx has Gx ⁇ 0.5, ⁇ 0.5 ⁇ Gx ⁇ 0, 0 ⁇ Gx ⁇ 0.5, and 0.
  • the range of 5 ⁇ Gx is determined, and the determination result is output as a digital value.
  • the second determination unit 7 sets ⁇ as a positive number, and the second axial component Gy is any of Gy ⁇ , ⁇ ⁇ Gy ⁇ 0, 0 ⁇ Gy ⁇ , and ⁇ ⁇ Gy. It is determined whether it is within the range and the determination result is output as a digital value. Specifically, 0.5 is adopted as ⁇ . Therefore, the second determination unit 7 specifically determines that the second axial component Gy has Gy ⁇ 0.5, ⁇ 0.5 ⁇ Gy ⁇ 0, 0 ⁇ Gy ⁇ 0.5, and 0. The range of 5 ⁇ Gy is determined, and the determination result is output as a digital value.
  • the third determination unit 9 sets ⁇ as a positive number, and the third axial component Gz has any range of Gz ⁇ , ⁇ ⁇ Gz ⁇ 0, 0 ⁇ Gz ⁇ , and ⁇ ⁇ Gz. And the determination result is output as a digital value. Specifically, 0.5 is adopted as ⁇ . Therefore, the third determination unit 9 specifically determines that the third axial component Gz has Gz ⁇ 0.5, ⁇ 0.5 ⁇ Gz ⁇ 0, 0 ⁇ Gz ⁇ 0.5, and 0. The range of 5 ⁇ Gz is determined, and the determination result is output as a digital value.
  • Outputs (determination results) of the first to third determination units 5 to 9 are input to the posture specifying unit 11, and the posture specifying unit 11 determines the posture of the support (or device) to which the three-axis acceleration sensor 1 is fixed. judge.
  • the posture specifying unit 11 is based on the combination of the determination results of the digital values determined by the first to third determination units 5 to 9, and the gravitational acceleration direction in which the gravitational acceleration G acts on the support 3. And the posture of the support 3 is specified from the direction of gravitational acceleration.
  • the posture specifying unit 11 includes an acceleration direction data storage unit 13 and a search unit 15.
  • the acceleration direction data storage unit 13 stores data indicating a correspondence relationship between a combination of results determined by the first to third determination units 5 to 9 and the gravitational acceleration direction acting on the support 3 in advance.
  • the search unit 15 receives the combination of the determination results of the digital values determined by the first to third determination units 5 to 9, and determines the gravitational acceleration direction acting on the support 3 corresponding to the determination result combination as the acceleration direction.
  • the data stored in the data storage unit 13 is searched and output.
  • the data stored in the acceleration direction data storage unit 13 is data indicating the correspondence between the combination of results determined by the first to third determination units 5 to 9 and the direction of gravity acceleration acting on the support 3, Any format and content may be used.
  • the sphere S is represented by a first axis X and a second axis Y.
  • the sphere S is divided into four equal parts by a second virtual surface parallel to the second axis Y and the third axis Z, and the sphere S is divided into the first axis X.
  • FIG. 3 shows that the triaxial acceleration sensor 1 and the sphere S are viewed from the viewpoint from the XZ axis plane and from the XY axis plane when the triaxial acceleration sensor 1 is horizontally placed and tilted. It is a figure which shows the relationship.
  • FIG. 4 is a diagram showing an example of giving an identification code.
  • the sphere S is divided into cases where the gravitational acceleration G is in the ranges of G ⁇ 0.5, ⁇ 0.5 ⁇ G ⁇ 0, 0 ⁇ G ⁇ 0.5 and 0.5 ⁇ G.
  • subjected to 56 virtual regions divided into the surface of is shown.
  • the posture specifying unit 11 is a combination of the results of the first to third determination units determining the identification code of the virtual region located in the gravitational acceleration direction determined by the combination of the results of the determinations of the first to third determination units. And stored in the acceleration direction data storage unit 13.
  • FIGS. 6A and 6B show examples of digital data stored in the attitude information register in the acceleration direction data storage unit 13.
  • 5A shows that the digital value output of the third axis (Z axis) component Gz output by the third determination unit 9 is 0.5 ⁇ Gz
  • FIG. 5B shows the digital value of the component Gz.
  • the output is 0 ⁇ Gz ⁇ 0.5
  • FIG. 6A shows the digital value output of the component Gz is ⁇ 0.5 ⁇ Gz ⁇ 0
  • FIG. 6B shows the digital value output of the component Gz is Gz.
  • An example of digital data in the case of ⁇ 0.5 is shown.
  • the address numbers in FIGS. 5A and 5B and FIGS. 6A and 6B are the address numbers of the attitude information register.
  • the attitude information register has eight channels assigned channel numbers D0 to D7, respectively.
  • the first and second axes (X, Y) are represented by 2 bits.
  • XSU to ZSL are assigned to D7 to D2, respectively. Therefore, the attitude information register value of each address is expressed by an 8-bit binary number. Since D1 and D2 are not used, the value may be 0, 1 or blank.
  • the identification code (CAL) is a value obtained by shifting the attitude information register value of each address to the right by 2 bits and converting it to a decimal number.
  • identification code corresponds to the identification code assigned to the 56 virtual regions divided on the surface of the sphere S, and indicates the position in the direction of gravity acceleration.
  • FIG. 7 shows an example in which the identification code shown in FIG. 4 is displayed three-dimensionally.
  • the search unit 15 receives the combination of the digital value determination results XSU to ZSL determined by the first to third determination units 5 to 9, and identifies the address number to which the combination of the determination results belongs.
  • the code (CAL) is searched from the data stored in the acceleration direction data storage unit 13. Then, the search unit 15 outputs the gravitational acceleration direction using an identification code (numbers 1 to 56). In this way, the orientation of the device on which the orientation specifying device is mounted can be indicated by 56 direction information. With this level of information, the burden on the CPU in many mobile communication terminal devices is hardly increased.
  • the search unit receives as input the combination of the determination results of the digital values determined by the first to third determination units, and stores the gravitational acceleration direction acting on the support corresponding to the combination of the determination results in the acceleration direction data storage unit. Search and output from stored data. In this way, it is possible to specify the posture of the device on which the three-axis acceleration sensor is mounted without requiring a complicated calculation based on a small amount of information input (6 bits) and a small amount of stored data. it can.

Abstract

Disclosed is a posture determination device that can easily determine posture without complicated calculations. Acceleration compositions (Gx to Gz) in normalized first to third axes directions output from a three-axis acceleration sensor (1) are input into first to third judgment units (5 to 9). The first judgment unit (5) judges which of the following ranges the first axis direction component (Gx) is in: Gx< -0.5, -0.5≦Gx<0, 0≦Gx<0.5, or 0.5≦Gx. The second judgment unit (7) judges which of the following ranges the second axis direction component (Gy) is in: Gy< -0.5, -0.5≦Gy<0, 0≦Gy<0.5, or 0.5≦Gy. The third judgment unit (9) judges which of the following ranges the third axis direction component (Gz) is in: Gz< -0.5, -0.5≦Gz<0, 0≦Gz<0.5, or 0.5≦Gz. Outputs from the first to third judgment units (5 to 9) are input into the posture determination unit (11) and the posture determination unit (11) judges the posture of a supporting body to which the three-axis acceleration sensor (1) is fixed.

Description

姿勢特定装置Posture identification device
 本発明は、三軸加速度センサを用いた姿勢特定装置に関するものである。 The present invention relates to a posture identifying device using a three-axis acceleration sensor.
 特開2009-276282号公報には、三軸加速度センサで検出した直交三次元座標での加速度成分を用いて装置の角度を算出し、算出した角度により装置自身の姿勢を特定する姿勢特定装置が開示されている。 Japanese Patent Application Laid-Open No. 2009-276282 discloses an attitude specifying device that calculates an angle of a device using acceleration components in orthogonal three-dimensional coordinates detected by a three-axis acceleration sensor, and specifies the posture of the device itself based on the calculated angle. It is disclosed.
特開2009-276282号公報JP 2009-276282 A
 従来の三軸加速度センサを用いた姿勢特定装置は、姿勢を特定するために複雑な演算を必要とする。そのため例えば、携帯通信端末装置等に姿勢特定装置を使用する場合には、姿勢の特定に要する演算量が多くなって、携帯通信端末装置のCPUの負担が著しく増加する問題が発生する。 A conventional posture specifying device using a three-axis acceleration sensor requires a complicated calculation to specify the posture. Therefore, for example, when the posture specifying device is used for a mobile communication terminal device or the like, the amount of calculation required for specifying the posture increases, causing a problem that the load on the CPU of the mobile communication terminal device increases remarkably.
 本発明の目的は、複雑な演算を必要とすることなく、簡単に姿勢を特定できる姿勢特定装置を提供することにある。 An object of the present invention is to provide an attitude specifying device that can easily specify an attitude without requiring complicated calculation.
 本発明の姿勢特定装置は、支持体に支持された三軸加速度センサと、第1乃至第3の判定部と、姿勢特定部とを備えている。三軸加速度センサは、支持体に支持されて、支持体に作用する加速度を第1の軸X、第1の軸Xに直交する第2の軸Y、第1の軸X及び第2の軸Yと直交する第3の軸Zのそれぞれの軸方向の成分Gx,Gy及びGzに分解して検知し、各成分Gx,Gy及びGzが-1≦Gx≦1、-1≦Gy≦1及び-1≦Gz≦1の範囲の値になるように出力する。第1の判定部は、αを正の数として、第1の軸方向の成分Gxが、Gx<-α、-α≦Gx<0、0≦Gx<α及びα≦Gxのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。第2の判定部は、βを正の数として、第2の軸方向の成分Gyが、Gy<-β、-β≦Gy<0、0≦Gy<β及びβ≦Gyのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。第3の判定部は、γを正の数として、第3の軸方向の成分Gzが、Gz<-γ、-γ≦Gz<0、0≦Gz<γ及びγ≦Gzのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。より具体的には、α、β及びγが同じ数であるのが好ましい。さらに実用的には、α、β及びγが、0.5であるのが好ましい。姿勢特定部は、第1乃至第3の判定部が判定したデジタル値の判定結果の組合せに基づいて、重力加速度が支持体に作用する重力加速度方向を決定し、重力加速度方向から支持体の姿勢を特定する。本発明では、姿勢特定部が、予め第1乃至第3の判定部が判定する結果の組合せと支持体に作用する重力加速度方向との対応関係を示すデータを記憶した加速度方向データ記憶部と、第1乃至第3の判定部が判定したデジタル値の判定結果の組合せを入力として、該判定結果の組合せに対応する支持体に作用する重力加速度方向を加速度方向データ記憶部に記憶されたデータから検索して出力する検索部とを備えている。 The posture specifying apparatus of the present invention includes a triaxial acceleration sensor supported by a support, first to third determination units, and a posture specifying unit. The triaxial acceleration sensor is supported by a support, and the acceleration acting on the support is expressed by a first axis X, a second axis Y orthogonal to the first axis X, a first axis X, and a second axis. The components Gx, Gy and Gz of the third axis Z orthogonal to Y are decomposed and detected, and the components Gx, Gy and Gz are −1 ≦ Gx ≦ 1, −1 ≦ Gy ≦ 1 and It outputs so that it may become the value of the range of -1 <= Gz <= 1. The first determination unit sets α as a positive number, and the first axial component Gx is in any range of Gx <−α, −α ≦ Gx <0, 0 ≦ Gx <α, and α ≦ Gx. Judgment is made and the judgment result is output as a digital value. The second determination unit sets β as a positive number, and the second axial component Gy is in any range of Gy <−β, −β ≦ Gy <0, 0 ≦ Gy <β, and β ≦ Gy. Judgment is made and the judgment result is output as a digital value. The third determination unit sets γ as a positive number and the component Gz in the third axial direction falls within any of the ranges of Gz <−γ, −γ ≦ Gz <0, 0 ≦ Gz <γ, and γ ≦ Gz. Judgment is made and the judgment result is output as a digital value. More specifically, α, β and γ are preferably the same number. Further practically, α, β and γ are preferably 0.5. The posture specifying unit determines the gravitational acceleration direction in which the gravitational acceleration acts on the support based on the combination of the determination results of the digital values determined by the first to third determination units, and the posture of the support from the gravitational acceleration direction. Is identified. In the present invention, the posture specifying unit stores an acceleration direction data storage unit that stores data indicating a correspondence relationship between a combination of results determined by the first to third determination units in advance and the gravitational acceleration direction acting on the support; From the data stored in the acceleration direction data storage unit, the gravitational acceleration direction acting on the support corresponding to the combination of the determination results is input using the combination of the determination results of the digital values determined by the first to third determination units. And a search unit for searching and outputting.
 本発明によれば、1つの判定部において2ビットのデジタル値で判定結果を出力する。そのため第1乃至第3の判定部からは、2ビット×3=6ビットの情報が出力される。そして事前に、第1乃至第3の判定部から出力される判定結果の組合せと、支持体に作用する重力加速度方向との対応関係を示すデータを取得して、加速度方向データ記憶部に記憶しておく。そして検索部は、第1乃至第3の判定部が判定したデジタル値の判定結果の組合せを入力として、該判定結果の組合せに対応する支持体に作用する重力加速度方向を加速度方向データ記憶部に記憶されたデータから検索して出力する。このようにすれば、少ない情報量の入力(6ビット)と少ない記憶データとに基づいて、複雑な演算を必要とすることなく、三軸加速度センサが装着された装置の姿勢を特定することができる。 According to the present invention, one determination unit outputs a determination result as a 2-bit digital value. Therefore, information of 2 bits × 3 = 6 bits is output from the first to third determination units. In advance, data indicating a correspondence relationship between the combination of the determination results output from the first to third determination units and the gravitational acceleration direction acting on the support is acquired and stored in the acceleration direction data storage unit. Keep it. The search unit receives as input the combination of the determination results of the digital values determined by the first to third determination units, and stores the gravitational acceleration direction acting on the support corresponding to the combination of the determination results in the acceleration direction data storage unit. Search and output from stored data. In this way, it is possible to specify the posture of the device on which the three-axis acceleration sensor is mounted without requiring a complicated calculation based on a small amount of information input (6 bits) and a small amount of stored data. it can.
 加速度方向データ記憶部に記憶するデータは、第1乃至第3の判定部が判定する結果の組合せと支持体に作用する重力加速度方向との対応関係を示すデータであれば、どのような形式及び内容であってもよい。例えば、三軸加速度センサの軸中心を中心とする球体を仮定したときに、球体を第1及び第2の軸に平行な第1の仮想面で4等分し、球体を第2の軸及び第3の軸に平行な第2の仮想面で4等分し、球体を第1の軸及び第3の軸に平行な第3の仮想面で4等分して、球体の表面に区分けされる56の仮想領域に識別符号を付す。そして第1乃至第3の判定部が判定する結果の組合せにより決まる重力加速度方向に位置する仮想領域の識別符号を前記第1乃至第3の判定部が判定する結果の組合せと対応付けて、加速度方向データ記憶部に記憶してもよい。この場合、検索部は、重力加速度方向を識別符号を用いて出力するようにする。このようにすれば、姿勢特定装置を実装した装置の姿勢を56の方向情報で示すことができる。このレベルの情報であれば、多くの携帯通信端末装置におけるCPUの負担を殆ど増大させることがない。 As long as the data stored in the acceleration direction data storage unit is data indicating the correspondence between the combination of the results determined by the first to third determination units and the gravitational acceleration direction acting on the support, any format and It may be content. For example, assuming a sphere centered on the axial center of the triaxial acceleration sensor, the sphere is divided into four equal parts by a first virtual plane parallel to the first and second axes, and the sphere is divided into the second axis and The sphere is divided into four equal parts by a second imaginary plane parallel to the third axis, and the sphere is divided into four equal parts by a third imaginary plane parallel to the first axis and the third axis. 56 are assigned identification codes. The identification code of the virtual region located in the direction of gravitational acceleration determined by the combination of results determined by the first to third determination units is associated with the combination of results determined by the first to third determination units, and the acceleration You may memorize | store in a direction data memory | storage part. In this case, the search unit outputs the gravitational acceleration direction using the identification code. In this way, the orientation of the device on which the orientation specifying device is mounted can be indicated by 56 direction information. With this level of information, the burden on the CPU in many mobile communication terminal devices is hardly increased.
本発明の姿勢特定装置の実施の形態の一例の構成を示すブロック図である。It is a block diagram which shows the structure of an example of embodiment of the attitude | position identification apparatus of this invention. 第1乃至第3の軸を示す図である。It is a figure which shows the 1st thru | or 3rd axis | shaft. 三軸加速度センサを水平に置いた場合と、傾斜させた場合において、X-Z軸平面からの視点とX-Y軸平面からの視点で、三軸加速度センサと球体の関係を示す図である。It is a figure which shows the relationship between a triaxial acceleration sensor and a spherical body from the viewpoint from an XZ-axis plane and the viewpoint from an XY-axis plane, when the triaxial acceleration sensor is placed horizontally and tilted. . 識別符号の付与の例を示す図である。It is a figure which shows the example of provision of an identification code. (A)及び(B)は加速度方向データ記憶部に記憶する第3の判定部が出力する第3の軸(Z軸)の出力が、0.5≦Gzの範囲にある場合及び0≦Gz<0.5の範囲にある場合において、加速度方向データ記憶部内の姿勢情報レジスタに記憶するデジタル・データの例を示す図である。(A) and (B) are the cases where the output of the third axis (Z axis) output by the third determination unit stored in the acceleration direction data storage unit is in the range of 0.5 ≦ Gz, and 0 ≦ Gz It is a figure which shows the example of the digital data memorize | stored in the attitude | position information register | resistor in an acceleration direction data storage part, when it exists in the range of <0.5. (A)及び(B)は加速度方向データ記憶部に記憶する第3の判定部が出力する第3の軸(Z軸)の出力が、-0.5≦Gz<0及びGz<-0.5の範囲にある場合において、加速度方向データ記憶部内の姿勢情報レジスタに記憶するデジタル・データの例を示す図である。(A) and (B) are outputs of the third axis (Z-axis) output by the third determination unit stored in the acceleration direction data storage unit when −0.5 ≦ Gz <0 and Gz <−0. FIG. 6 is a diagram illustrating an example of digital data stored in an attitude information register in an acceleration direction data storage unit in a range of 5; 図4の識別符号の付与の例を立体的に表示した図である。It is the figure which displayed the example of provision of the identification code of FIG. 4 in three dimensions.
 以下、図面を参照して本発明の姿勢特定装置の実施の形態の一例について詳細に説明する。図1は、本発明の姿勢特定装置の実施の形態の一例の構成を示すブロック図である。図1に示すように、本実施の形態の姿勢特定装置は、三軸加速度センサ1と、三軸加速度センサ1を支持する支持体3とを備えている。ここで支持体3は、三軸加速度センサが収納固定されるケーシングであっても、また三軸加速度センサが固定される基板であってもよく、これらケーシングまたは基板は、例えば携帯通信端末装置のような姿勢特定装置を必要とする機器に対して固定される。したがって三軸加速度センサ1は、この機器に作用する加速度を検出することになる。図2に示すように、三軸加速度センサ1は、支持体3に作用する加速度を第1の軸X、第1の軸Xに直交する第2の軸Y、第1の軸X及び第2の軸Yと直交する第3の軸Zのそれぞれの軸方向の成分(加速度成分)Gx,Gy及びGzに分解して検知する。本実施の形態では、機器が静止しているときにも重力加速度Gを検出するための加速度成分を出力することができる半導体加速度センサを用いている。本実施の形態の三軸加速度センサ1は、各成分Gx,Gy及びGzが-1≦Gx≦1、-1≦Gy≦1及び-1≦Gz≦1の範囲の値になるように正規化された検出値を出力する。 Hereinafter, an example of an embodiment of the posture specifying device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an example of an embodiment of a posture identifying device of the present invention. As shown in FIG. 1, the posture specifying device of the present embodiment includes a triaxial acceleration sensor 1 and a support 3 that supports the triaxial acceleration sensor 1. Here, the support 3 may be a casing in which the triaxial acceleration sensor is housed and fixed, or may be a substrate on which the triaxial acceleration sensor is fixed. These casing or substrate may be, for example, a portable communication terminal device. It is fixed with respect to the apparatus which requires such an attitude | position identification apparatus. Therefore, the triaxial acceleration sensor 1 detects the acceleration acting on this device. As shown in FIG. 2, the three-axis acceleration sensor 1 is configured such that the acceleration acting on the support 3 is a first axis X, a second axis Y that is orthogonal to the first axis X, a first axis X, and a second axis. Are detected by being decomposed into components (acceleration components) Gx, Gy, and Gz in the axial direction of the third axis Z that is orthogonal to the axis Y. In this embodiment, a semiconductor acceleration sensor that can output an acceleration component for detecting the gravitational acceleration G even when the device is stationary is used. The triaxial acceleration sensor 1 according to the present embodiment is normalized so that the components Gx, Gy, and Gz are in the range of −1 ≦ Gx ≦ 1, −1 ≦ Gy ≦ 1, and −1 ≦ Gz ≦ 1. The detected value is output.
 三軸加速度センサ1から出力される正規化された第1乃至第3の軸方向の加速度成分Gx乃至Gzは、第1乃至第3の判定部5乃至9に入力される。第1の判定部5は、αを正の数として、第1の軸方向の成分Gxが、Gx<-α、-α≦Gx<0、0≦Gx<α及びα≦Gxのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。本実施の形態では、具体的に、αとして0.5を採用している。したがって、第1の判定部5は、具体的に、第1の軸方向の成分Gxが、Gx<-0.5、-0.5≦Gx<0、0≦Gx<0.5及び0.5≦Gxのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。また第2の判定部7は、βを正の数として、第2の軸方向の成分Gyが、Gy<-β、-β≦Gy<0、0≦Gy<β及びβ≦Gyのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。具体的に、βとして0.5を採用している。したがって、第2の判定部7は、具体的に、第2の軸方向の成分Gyが、Gy<-0.5、-0.5≦Gy<0、0≦Gy<0.5及び0.5≦Gyのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。第3の判定部9は、γを正の数として、第3の軸方向の成分Gzが、Gz<-γ、-γ≦Gz<0、0≦Gz<γ及びγ≦Gzのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。具体的に、γとして0.5を採用している。したがって、第3の判定部9は、具体的に、第3の軸方向の成分Gzが、Gz<-0.5、-0.5≦Gz<0、0≦Gz<0.5及び0.5≦Gzのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する。 The normalized first to third axial acceleration components Gx to Gz output from the triaxial acceleration sensor 1 are input to the first to third determination units 5 to 9. The first determination unit 5 sets α as a positive number, and the first axial component Gx has any range of Gx <−α, −α ≦ Gx <0, 0 ≦ Gx <α, and α ≦ Gx. And the determination result is output as a digital value. In the present embodiment, specifically, 0.5 is adopted as α. Therefore, the first determination unit 5 specifically determines that the first axial component Gx has Gx <−0.5, −0.5 ≦ Gx <0, 0 ≦ Gx <0.5, and 0. The range of 5 ≦ Gx is determined, and the determination result is output as a digital value. The second determination unit 7 sets β as a positive number, and the second axial component Gy is any of Gy <−β, −β ≦ Gy <0, 0 ≦ Gy <β, and β ≦ Gy. It is determined whether it is within the range and the determination result is output as a digital value. Specifically, 0.5 is adopted as β. Therefore, the second determination unit 7 specifically determines that the second axial component Gy has Gy <−0.5, −0.5 ≦ Gy <0, 0 ≦ Gy <0.5, and 0. The range of 5 ≦ Gy is determined, and the determination result is output as a digital value. The third determination unit 9 sets γ as a positive number, and the third axial component Gz has any range of Gz <−γ, −γ ≦ Gz <0, 0 ≦ Gz <γ, and γ ≦ Gz. And the determination result is output as a digital value. Specifically, 0.5 is adopted as γ. Therefore, the third determination unit 9 specifically determines that the third axial component Gz has Gz <−0.5, −0.5 ≦ Gz <0, 0 ≦ Gz <0.5, and 0. The range of 5 ≦ Gz is determined, and the determination result is output as a digital value.
 第1乃至第3の判定部5乃至9の出力(判定結果)は、姿勢特定部11に入力され、姿勢特定部11は三軸加速度センサ1が固定された支持体(または機器)の姿勢を判定する。本実施の形態では、姿勢特定部11は、第1乃至第3の判定部5乃至9が判定したデジタル値の判定結果の組合せに基づいて、重力加速度Gが支持体3に作用する重力加速度方向を決定し、重力加速度方向から支持体3の姿勢を特定する。姿勢特定部11は、加速度方向データ記憶部13と、検索部15とを備えている。加速度方向データ記憶部13は、予め第1乃至第3の判定部5乃至9が判定する結果の組合せと支持体3に作用する重力加速度方向との対応関係を示すデータを記憶する。検索部15は、第1乃至第3の判定部5乃至9が判定したデジタル値の判定結果の組合せを入力として、この判定結果の組合せに対応する支持体3に作用する重力加速度方向を加速度方向データ記憶部13に記憶されたデータから検索して出力する。 Outputs (determination results) of the first to third determination units 5 to 9 are input to the posture specifying unit 11, and the posture specifying unit 11 determines the posture of the support (or device) to which the three-axis acceleration sensor 1 is fixed. judge. In the present embodiment, the posture specifying unit 11 is based on the combination of the determination results of the digital values determined by the first to third determination units 5 to 9, and the gravitational acceleration direction in which the gravitational acceleration G acts on the support 3. And the posture of the support 3 is specified from the direction of gravitational acceleration. The posture specifying unit 11 includes an acceleration direction data storage unit 13 and a search unit 15. The acceleration direction data storage unit 13 stores data indicating a correspondence relationship between a combination of results determined by the first to third determination units 5 to 9 and the gravitational acceleration direction acting on the support 3 in advance. The search unit 15 receives the combination of the determination results of the digital values determined by the first to third determination units 5 to 9, and determines the gravitational acceleration direction acting on the support 3 corresponding to the determination result combination as the acceleration direction. The data stored in the data storage unit 13 is searched and output.
 加速度方向データ記憶部13に記憶するデータは、第1乃至第3の判定部5乃至9が判定する結果の組合せと支持体3に作用する重力加速度方向との対応関係を示すデータであれば、どのような形式及び内容であってもよい。本実施の形態では、図3及び図4に示すように、三軸加速度センサ1の軸中心を中心とする球体Sを仮定したときに、球体Sを第1の軸X及び第2の軸Yに平行な第1の仮想面で4等分し、球体Sを第2の軸Y及び第3の軸Zに平行な第2の仮想面で4等分し、球体Sを第1の軸X及び第3の軸Zに平行な第3の仮想面で4等分して、球体Sの表面を56の仮想領域に区分けして識別符号(1~56)を付ける。図3は、三軸加速度センサ1を水平に置いた場合と、傾斜させた場合において、X-Z軸平面からの視点とX-Y軸平面からの視点で、三軸加速度センサ1と球体Sの関係を示す図である。 If the data stored in the acceleration direction data storage unit 13 is data indicating the correspondence between the combination of results determined by the first to third determination units 5 to 9 and the direction of gravity acceleration acting on the support 3, Any format and content may be used. In the present embodiment, as shown in FIGS. 3 and 4, assuming a sphere S centered on the axial center of the triaxial acceleration sensor 1, the sphere S is represented by a first axis X and a second axis Y. The sphere S is divided into four equal parts by a second virtual surface parallel to the second axis Y and the third axis Z, and the sphere S is divided into the first axis X. Then, the surface of the sphere S is divided into four equal parts by a third virtual plane parallel to the third axis Z, and identification codes (1 to 56) are attached. FIG. 3 shows that the triaxial acceleration sensor 1 and the sphere S are viewed from the viewpoint from the XZ axis plane and from the XY axis plane when the triaxial acceleration sensor 1 is horizontally placed and tilted. It is a figure which shows the relationship.
 図4は、識別符号の付与の例を示す図である。図4においては、重力加速度Gが、G<-0.5、-0.5≦G<0、0≦G<0.5及び0.5≦Gの範囲にある場合に分けて、球体Sの表面に区分けされた56の仮想領域に付された識別符号の例を示している。そして姿勢特定部11は、第1乃至第3の判定部が判定する結果の組合せにより決まる重力加速度方向に位置する仮想領域の識別符号を、第1乃至第3の判定部が判定する結果の組合せと対応付けて、加速度方向データ記憶部13に記憶している。 FIG. 4 is a diagram showing an example of giving an identification code. In FIG. 4, the sphere S is divided into cases where the gravitational acceleration G is in the ranges of G <−0.5, −0.5 ≦ G <0, 0 ≦ G <0.5 and 0.5 ≦ G. The example of the identification code | symbol attached | subjected to 56 virtual regions divided into the surface of is shown. Then, the posture specifying unit 11 is a combination of the results of the first to third determination units determining the identification code of the virtual region located in the gravitational acceleration direction determined by the combination of the results of the determinations of the first to third determination units. And stored in the acceleration direction data storage unit 13.
 図5(A)及び(B)並びに図6(A)及び(B)には、加速度方向データ記憶部13内の姿勢情報レジスタに記憶するデジタル・データの例を示している。図5(A)は第3の判定部9が出力する第3の軸(Z軸)の成分Gzのデジタル値出力が0.5≦Gzであり、図5(B)は成分Gzのデジタル値出力が0≦Gz<0.5であり、図6(A)は成分Gzのデジタル値出力が-0.5≦Gz<0であり、図6(B)は成分Gzのデジタル値出力がGz<-0.5の範囲にある場合におけるデジタル・データの例を示している。図5(A)及び(B)並びに図6(A)及び(B)におけるアドレス番号とは、姿勢情報レジスタのアドレス番号である。姿勢情報レジスタは、チャンネル番号D0乃至D7がそれぞれ付された8つのチャンネルを有している。XSUからZSLは、第1の軸(X軸)の出力~第3の軸(Z軸)を2ビットで表現したデータを示している。例えば第3の軸(Z軸)の出力が、0.5≦Gzの場合は、ZSU=0,ZSL=1で表現され、第3の軸(Z軸)の出力が、0≦Gz<0.5の場合は、ZSU=0,ZSL=0で表現され、第3の軸(Z軸)の出力が、-0.5≦Gz<0の場合は、ZSU=1,ZSL=1で表現され、第3の軸(Z軸)の出力が、Gz<-0.5の場合は、ZSU=1,ZSL=0で表現される。第1及び第2の軸(X、Y)軸の場合も同様にして2ビットで表現される。本実施の形態では、D7からD2にそれぞれXSUからZSLを割り当てている。従って、各アドレスの姿勢情報レジスタ値は、8ビットの2進数で表現される。なお、D1及びD2は使用していないため、値は0でも1でもよく、ブランクでもよい。そして本実施の形態では、識別符号(CAL)を、各アドレスの姿勢情報レジスタ値を2ビット右にシフトさせて10進数に換算した値としている。具体的には、例えばアドレス番号1の場合には、姿勢情報レジスタ値を2ビット右にシフトさせると「010101」となり、この値を10進数に換算した21が識別符号(CAL)となっている。この識別符号は、球体Sの表面に区分けされた56の仮想領域に付された識別符号に対応するものであり、重力加速度方向の位置を示す。 5A and 5B and FIGS. 6A and 6B show examples of digital data stored in the attitude information register in the acceleration direction data storage unit 13. 5A shows that the digital value output of the third axis (Z axis) component Gz output by the third determination unit 9 is 0.5 ≦ Gz, and FIG. 5B shows the digital value of the component Gz. The output is 0 ≦ Gz <0.5, FIG. 6A shows the digital value output of the component Gz is −0.5 ≦ Gz <0, and FIG. 6B shows the digital value output of the component Gz is Gz. An example of digital data in the case of <−0.5 is shown. The address numbers in FIGS. 5A and 5B and FIGS. 6A and 6B are the address numbers of the attitude information register. The attitude information register has eight channels assigned channel numbers D0 to D7, respectively. XSU to ZSL indicate data in which the output from the first axis (X axis) to the third axis (Z axis) are expressed by 2 bits. For example, when the output of the third axis (Z axis) is 0.5 ≦ Gz, it is expressed as ZSU = 0, ZSL = 1, and the output of the third axis (Z axis) is 0 ≦ Gz <0. .5 is expressed by ZSU = 0, ZSL = 0, and when the output of the third axis (Z-axis) is −0.5 ≦ Gz <0, it is expressed by ZSU = 1, ZSL = 1. When the output of the third axis (Z axis) is Gz <−0.5, it is expressed as ZSU = 1 and ZSL = 0. Similarly, the first and second axes (X, Y) are represented by 2 bits. In the present embodiment, XSU to ZSL are assigned to D7 to D2, respectively. Therefore, the attitude information register value of each address is expressed by an 8-bit binary number. Since D1 and D2 are not used, the value may be 0, 1 or blank. In this embodiment, the identification code (CAL) is a value obtained by shifting the attitude information register value of each address to the right by 2 bits and converting it to a decimal number. Specifically, in the case of address number 1, for example, when the attitude information register value is shifted to the right by 2 bits, “010101” is obtained, and 21 obtained by converting this value into a decimal number is the identification code (CAL). . This identification code corresponds to the identification code assigned to the 56 virtual regions divided on the surface of the sphere S, and indicates the position in the direction of gravity acceleration.
 図4の下段の各図中の番号が、この識別符号に相当する。図7は、図4に示した識別符号を立体的に表示した例を示している。 The number in each figure in the lower part of FIG. 4 corresponds to this identification code. FIG. 7 shows an example in which the identification code shown in FIG. 4 is displayed three-dimensionally.
 本実施の形態では、検索部15は、第1乃至第3の判定部5乃至9が判定したデジタル値の判定結果XSUからZSLの組合せを入力として、この判定結果の組合せが属するアドレス番号の識別符号(CAL)を、加速度方向データ記憶部13に記憶されたデータから検索する。そして検索部15が、重力加速度方向を識別符号(1~56の番号)を用いて出力する。このようにすれば、姿勢特定装置を実装した機器の姿勢を56の方向情報で示すことができる。このレベルの情報であれば、多くの携帯通信端末装置におけるCPUの負担を殆ど増大させることはない。 In the present embodiment, the search unit 15 receives the combination of the digital value determination results XSU to ZSL determined by the first to third determination units 5 to 9, and identifies the address number to which the combination of the determination results belongs. The code (CAL) is searched from the data stored in the acceleration direction data storage unit 13. Then, the search unit 15 outputs the gravitational acceleration direction using an identification code (numbers 1 to 56). In this way, the orientation of the device on which the orientation specifying device is mounted can be indicated by 56 direction information. With this level of information, the burden on the CPU in many mobile communication terminal devices is hardly increased.
 本発明によれば、1つの判定部において2ビットのデジタル値で判定結果を出力する。そのため第1乃至第3の判定部からは、2ビット×3=6ビットの情報が出力される。そして事前に、第1乃至第3の判定部から出力される判定結果の組合せと、支持体に作用する重力加速度方向との対応関係を示すデータを取得して、加速度方向データ記憶部に記憶しておく。そして検索部は、第1乃至第3の判定部が判定したデジタル値の判定結果の組合せを入力として、該判定結果の組合せに対応する支持体に作用する重力加速度方向を加速度方向データ記憶部に記憶されたデータから検索して出力する。このようにすれば、少ない情報量の入力(6ビット)と少ない記憶データとに基づいて、複雑な演算を必要とすることなく、三軸加速度センサが装着された装置の姿勢を特定することができる。 According to the present invention, one determination unit outputs a determination result as a 2-bit digital value. Therefore, information of 2 bits × 3 = 6 bits is output from the first to third determination units. In advance, data indicating a correspondence relationship between the combination of the determination results output from the first to third determination units and the gravitational acceleration direction acting on the support is acquired and stored in the acceleration direction data storage unit. Keep it. The search unit receives as input the combination of the determination results of the digital values determined by the first to third determination units, and stores the gravitational acceleration direction acting on the support corresponding to the combination of the determination results in the acceleration direction data storage unit. Search and output from stored data. In this way, it is possible to specify the posture of the device on which the three-axis acceleration sensor is mounted without requiring a complicated calculation based on a small amount of information input (6 bits) and a small amount of stored data. it can.
 1 三軸加速度センサ
 3 支持体
 5 第1の判定部
 7 第2の判定部
 9 第3の判定部
 11 姿勢特定部
 13 加速度方向データ記憶部
 15 検索部
DESCRIPTION OF SYMBOLS 1 Triaxial acceleration sensor 3 Support body 5 1st determination part 7 2nd determination part 9 3rd determination part 11 Posture determination part 13 Acceleration direction data storage part 15 Search part

Claims (5)

  1.  支持体に支持されて、前記支持体に作用する加速度を第1の軸X、前記第1の軸Xに直交する第2の軸Y、前記第1の軸X及び第2の軸Yと直交する第3の軸Zのそれぞれの軸方向の成分Gx,Gy及びGzに分解して検知し、各成分Gx,Gy及びGzが-1≦Gx≦1、-1≦Gy≦1及び-1≦Gz≦1の範囲の値になるように出力する三軸加速度センサと、
     前記第1の軸方向の成分Gxが、Gx<-0.5、-0.5≦Gx<0、0≦Gx<0.5及び0.5≦Gxのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する第1の判定部と、
     前記第2の軸方向の成分Gyが、Gy<-0.5、-0.5≦Gy<0、0≦Gy<0.5及び0.5≦Gyのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する第2の判定部と、
     前記第3の軸方向の成分Gzが、Gz<-0.5、-0.5≦Gz<0、0≦Gz<0.5及び0.5≦Gzのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する第3の判定部と、
     前記第1乃至第3の判定部が判定したデジタル値の前記判定結果の組合せに基づいて、重力加速度が前記支持体に作用する重力加速度方向を決定し、前記重力加速度方向から前記支持体の姿勢を特定する姿勢特定部とを備え、
     前記姿勢特定部は、予め前記第1乃至第3の判定部が判定する結果の組合せと前記支持体に作用する前記重力加速度方向との対応関係を示すデータを記憶した加速度方向データ記憶部と、前記第1乃至第3の判定部が判定したデジタル値の判定結果の組合せを入力として、該判定結果の組合せに対応する前記支持体に作用する重力加速度方向を前記加速度方向データ記憶部に記憶された前記データから検索して出力する検索部とを備えていることを特徴とする姿勢特定装置。
    The acceleration that is supported by the support and acts on the support is orthogonal to the first axis X, the second axis Y orthogonal to the first axis X, the first axis X, and the second axis Y. The components Gx, Gy, and Gz are detected by being decomposed into the respective axial components Gx, Gy, and Gz of the third axis Z, and -1 ≦ Gx ≦ 1, −1 ≦ Gy ≦ 1, and −1 ≦ A triaxial acceleration sensor that outputs a value in a range of Gz ≦ 1,
    It is determined whether the first axial component Gx is in a range of Gx <−0.5, −0.5 ≦ Gx <0, 0 ≦ Gx <0.5, and 0.5 ≦ Gx. A first determination unit that outputs a determination result as a digital value;
    It is determined whether the second axial component Gy is in a range of Gy <−0.5, −0.5 ≦ Gy <0, 0 ≦ Gy <0.5, and 0.5 ≦ Gy. A second determination unit that outputs the determination result as a digital value;
    It is determined whether the third axial component Gz is in a range of Gz <−0.5, −0.5 ≦ Gz <0, 0 ≦ Gz <0.5, and 0.5 ≦ Gz. A third determination unit that outputs the determination result as a digital value;
    Based on the combination of the determination results of the digital values determined by the first to third determination units, a gravitational acceleration direction acting on the support is determined, and the posture of the support is determined from the gravitational acceleration direction. A posture identifying unit for identifying
    The posture specifying unit is an acceleration direction data storage unit storing data indicating a correspondence relationship between a combination of results determined by the first to third determination units and the gravity acceleration direction acting on the support; The combination of the determination results of the digital values determined by the first to third determination units is input, and the gravitational acceleration direction acting on the support corresponding to the combination of the determination results is stored in the acceleration direction data storage unit. And a retrieval unit that retrieves and outputs from the data.
  2.  支持体に支持されて、前記支持体に作用する加速度を第1の軸X、前記第1の軸Xに直交する第2の軸Y、前記第1の軸X及び第2の軸Yと直交する第3の軸Zのそれぞれの軸方向の成分Gx,Gy及びGzに分解して検知し、各成分Gx,Gy及びGzが-1≦Gx≦1、-1≦Gy≦1及び-1≦Gz≦1の範囲の値になるように出力する三軸加速度センサと、
     αを正の数として、前記第1の軸方向の成分Gxが、Gx<-α、-α≦Gx<0、0≦Gx<α及びα≦Gxのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する第1の判定部と、
     βを正の数として、前記第2の軸方向の成分Gyが、Gy<-β、-β≦Gy<0、0≦Gy<β及びβ≦Gyのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する第2の判定部と、
     γを正の数として、前記第3の軸方向の成分Gzが、Gz<-γ、-γ≦Gz<0、0≦Gz<γ及びγ≦Gzのいずれの範囲にあるかを判定して判定結果をデジタル値で出力する第3の判定部と、
     前記第1乃至第3の判定部が判定したデジタル値の前記判定結果の組合せに基づいて、重力加速度が前記支持体に作用する重力加速度方向を決定し、前記重力加速度方向から前記支持体の姿勢を特定する姿勢特定部とを備え、
     前記姿勢特定部は、予め前記データを記憶した加速度方向データ記憶部と、前記第1乃至第3の判定部が判定したデジタル値の判定結果の組合せを入力として、該判定結果の組合せに対応する前記支持体に作用する重力加速度方向を前記加速度方向データ記憶部に記憶された前記データから検索して出力する検索部とを備えていることを特徴とする姿勢特定装置。
    The acceleration that is supported by the support and acts on the support is orthogonal to the first axis X, the second axis Y orthogonal to the first axis X, the first axis X, and the second axis Y. The components Gx, Gy, and Gz are detected by being decomposed into the respective axial components Gx, Gy, and Gz of the third axis Z, and -1 ≦ Gx ≦ 1, −1 ≦ Gy ≦ 1, and −1 ≦ A triaxial acceleration sensor that outputs a value in a range of Gz ≦ 1,
    With α being a positive number, it is determined whether the first axial component Gx is in a range of Gx <−α, −α ≦ Gx <0, 0 ≦ Gx <α, and α ≦ Gx. A first determination unit that outputs a determination result as a digital value;
    With β as a positive number, it is determined whether the second axial component Gy is in a range of Gy <−β, −β ≦ Gy <0, 0 ≦ Gy <β, and β ≦ Gy. A second determination unit that outputs a determination result as a digital value;
    It is determined whether the third axial component Gz is in a range of Gz <−γ, −γ ≦ Gz <0, 0 ≦ Gz <γ and γ ≦ Gz, where γ is a positive number. A third determination unit that outputs the determination result as a digital value;
    Based on the combination of the determination results of the digital values determined by the first to third determination units, a gravitational acceleration direction acting on the support is determined, and the posture of the support is determined from the gravitational acceleration direction. A posture identifying unit for identifying
    The posture specifying unit receives a combination of an acceleration direction data storage unit that stores the data in advance and a digital value determination result determined by the first to third determination units, and corresponds to the combination of the determination results. A posture identifying apparatus comprising: a search unit that searches and outputs the gravitational acceleration direction acting on the support from the data stored in the acceleration direction data storage unit.
  3.  前記姿勢特定部は、前記三軸加速度センサの軸中心を中心とする球体を仮定したときに、前記球体を前記第1及び第2の軸に平行な第1の仮想面で4等分し、前記球体を前記第2の軸及び第3の軸に平行な第2の仮想面で4等分し、前記球体を前記第1の軸及び第3の軸に平行な第3の仮想面で4等分して、前記球体の表面に区分けされる56の仮想領域に識別符号を付し、前記第1乃至第3の判定部が判定する結果の組合せにより決まる前記重力加速度方向に位置する前記仮想領域の前記識別符号を前記第1乃至第3の判定部が判定する結果の組合せと対応付けて、前記加速度方向データ記憶部に記憶しており、
     前記検索部は、前記重力加速度方向を前記識別符号を用いて出力する請求項1に記載の姿勢特定装置。
    The posture specifying unit divides the sphere into four equal parts by a first virtual plane parallel to the first and second axes, assuming a sphere centered on the axial center of the triaxial acceleration sensor, The sphere is divided into four equal parts by a second imaginary plane parallel to the second axis and the third axis, and the sphere is divided into four parts by a third imaginary plane parallel to the first axis and the third axis. The virtual regions located in the direction of gravitational acceleration determined by the combination of the results determined by the first to third determination units are provided with identification codes for 56 virtual regions equally divided into the surface of the sphere. The identification code of the region is stored in the acceleration direction data storage unit in association with the combination of results determined by the first to third determination units,
    The posture specifying apparatus according to claim 1, wherein the search unit outputs the gravitational acceleration direction using the identification code.
  4.  前記α、β及びγが、同じ数である請求項2に記載の姿勢特定装置。 The posture specifying device according to claim 2, wherein α, β, and γ are the same number.
  5.  前記α、β及びγが、0.5である請求項4に記載の姿勢特定装置。 The posture specifying device according to claim 4, wherein α, β, and γ are 0.5.
PCT/JP2011/065057 2010-06-30 2011-06-30 Posture determination device WO2012002494A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180032143.5A CN102959357B (en) 2010-06-30 2011-06-30 Posture determination device
JP2012522693A JP5161396B2 (en) 2010-06-30 2011-06-30 Posture identification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010149610 2010-06-30
JP2010-149610 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012002494A1 true WO2012002494A1 (en) 2012-01-05

Family

ID=45402197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065057 WO2012002494A1 (en) 2010-06-30 2011-06-30 Posture determination device

Country Status (3)

Country Link
JP (1) JP5161396B2 (en)
CN (1) CN102959357B (en)
WO (1) WO2012002494A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260055A (en) * 1997-03-19 1998-09-29 Honda Motor Co Ltd Device for detecting traveling speed and direction of pedestrian
JP2003329705A (en) * 2002-05-13 2003-11-19 Casio Comput Co Ltd Method and apparatus for analyzing motion and program thereof
JP2009276282A (en) * 2008-05-16 2009-11-26 Sumitomo Electric Ind Ltd Attitude determination apparatus and method, movement direction determination apparatus, position determination apparatus, and computer program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016671A1 (en) * 2004-08-12 2006-02-16 Asahi Kasei Emd Corporation Acceleration measuring device
JP4552658B2 (en) * 2005-01-13 2010-09-29 日立金属株式会社 Attitude detection method using two-axis magnetic sensor and program thereof
US7805275B2 (en) * 2005-03-28 2010-09-28 Asahi Kasei Emd Corporation Traveling direction measuring apparatus and traveling direction measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260055A (en) * 1997-03-19 1998-09-29 Honda Motor Co Ltd Device for detecting traveling speed and direction of pedestrian
JP2003329705A (en) * 2002-05-13 2003-11-19 Casio Comput Co Ltd Method and apparatus for analyzing motion and program thereof
JP2009276282A (en) * 2008-05-16 2009-11-26 Sumitomo Electric Ind Ltd Attitude determination apparatus and method, movement direction determination apparatus, position determination apparatus, and computer program

Also Published As

Publication number Publication date
CN102959357A (en) 2013-03-06
JP5161396B2 (en) 2013-03-13
CN102959357B (en) 2015-11-25
JPWO2012002494A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP4168407B2 (en) Fall detection device
US8537110B2 (en) Virtual device buttons
JP4663738B2 (en) Accelerometer speed device
US8239153B2 (en) Dynamic compass calibration in a portable device
JP3848941B2 (en) Geomagnetic sensor attitude error compensation apparatus and method
US8770023B2 (en) Acceleration sensor module with attitude determining function
Cismas et al. Crash detection using imu sensors
JP4890660B2 (en) Geomagnetic detector
JP5923605B2 (en) Automatic calibration of accelerometers on mobile devices
JP5161396B2 (en) Posture identification device
CN108507567A (en) Attitude quaternion determines method, apparatus and user towards determining method, apparatus
US20140067305A1 (en) Stabilizing orientation values of an electronic device
US20090281739A1 (en) Magnetic field sensor
JP5017527B2 (en) Electronic compass system
JP5144701B2 (en) Magnetic field detector
JP2005265414A (en) Electronic azimuth meter and recording medium
JP5498209B2 (en) Magnetic field detector
JP5176537B2 (en) Motion sensing device, motion sensing method, and motion sensing circuit
CN116608881A (en) Equipment calibration method, device, equipment and medium
CN107656095A (en) Scaling method, device and the electronic equipment of accelerometer
JP2008541041A (en) Device comprising sensor device and estimator
CN112421712A (en) Method and device for eliminating compass charging interference, storage medium and terminal
JP4551661B2 (en) Electronic compass, recording medium, and compass program
EP2703779B1 (en) Stabilizing Orientation Values Of An Electronic Device
US8285504B2 (en) Method of obtaining measurement data using a sensor application interface

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032143.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522693

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800956

Country of ref document: EP

Kind code of ref document: A1