WO2012002409A1 - 管用ねじ継手 - Google Patents

管用ねじ継手 Download PDF

Info

Publication number
WO2012002409A1
WO2012002409A1 PCT/JP2011/064862 JP2011064862W WO2012002409A1 WO 2012002409 A1 WO2012002409 A1 WO 2012002409A1 JP 2011064862 W JP2011064862 W JP 2011064862W WO 2012002409 A1 WO2012002409 A1 WO 2012002409A1
Authority
WO
WIPO (PCT)
Prior art keywords
threaded joint
nose
peripheral surface
curve
pin member
Prior art date
Application number
PCT/JP2011/064862
Other languages
English (en)
French (fr)
Inventor
園部 治
拓也 長濱
吉川 正樹
順 高野
孝将 川井
高橋 一成
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to AU2011272607A priority Critical patent/AU2011272607B2/en
Priority to RU2013103811/06A priority patent/RU2522756C1/ru
Priority to EP17156626.8A priority patent/EP3196524B1/en
Priority to US13/807,883 priority patent/US9194190B2/en
Priority to MX2012014880A priority patent/MX336628B/es
Priority to EP11800871.3A priority patent/EP2589846B1/en
Priority to BR112012033452-2A priority patent/BR112012033452B1/pt
Priority to CA2801204A priority patent/CA2801204C/en
Publication of WO2012002409A1 publication Critical patent/WO2012002409A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/004Screw-threaded joints; Forms of screw-threads for such joints with conical threads with axial sealings having at least one plastically deformable sealing surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/06Screw-threaded joints; Forms of screw-threads for such joints characterised by the shape of the screw-thread

Definitions

  • the present invention relates to a threaded joint for pipe, and in particular, includes a tubing and casing generally used for exploration and production of oil wells and gas wells. Excellent sealability and compression resistance suitable for connecting pipes such as OCTG (oil country tubular goods), riser pipes, and line pipes.
  • the present invention relates to a threaded joint for pipes.
  • Threaded joints are widely used for connecting steel pipes used for oil and gas production, such as oil well pipes.
  • API American Petroleum Institute
  • standard threaded joints defined in the API (American Petroleum Institute) standard have been used for connecting steel pipes used for searching and producing oil and gas.
  • wells for crude oil and natural gas have been deepened, and vertical wells and directional wells have increased from vertical wells. For this reason, the drilling and production environment has become severe.
  • screws such as compression resistance, bending resistance, external pressure resistance, etc.
  • the required performance for joints is diversified. Therefore, the use of high-performance special threaded joints called premium joints is increasing.
  • Premium joints usually have a pinned thread, a seal part (specifically a metal touch seal part (specifically, metal to metal seal), a shoulder part (specifically, a torque shoulder part (specifically, a torque shoulder part)). (Pin component) and a box member (box component) .
  • the taper screw is important for firmly fixing the tube joint, and the seal part is composed of the box member and the pin member.
  • the metal portion makes contact with the metal to ensure a sealing property, and the shoulder portion becomes a bearing surface that acts as a stopper during tightening of the joint.
  • FIGS. 2 to 4 are schematic explanatory views of premium joints for oil well pipes, which are longitudinal sectional views of threaded joints of circular pipes.
  • the threaded joint includes a pin member 3 and a box member 1 corresponding to the pin member 3.
  • the pin member 3 (pin 3) has a male screw 7 on the outer surface thereof and a male screw 7 on the tip side of the pin 3.
  • It has an unthreaded part called a nose part 8 (pin nose 8) provided adjacently.
  • the nose part 8 has a seal part 11 on its outer peripheral surface and a torque shoulder part 12 on its end face.
  • the opposing box member 1 has, on its inner surface, a female member 5, a seal, which is a part that can be screwed or brought into contact with the male screw 7, the seal portion 11, and the shoulder portion 12 of the pin 3. It has a part 13 and a shoulder part 14.
  • Patent Documents 1 to 6 can be cited as conventional techniques related to the premium joint.
  • the metal touch seal portion is at the tip of the pin nose 8, but in Patent Document 1, the metal touch is close to the screw portion of the pin nose 8 in order to increase the external pressure resistance.
  • a seal portion is provided and the nose portion is extended from the seal portion to the shoulder portion.
  • the pin nose that is not in contact with the box member is configured to be elongated so as to be discontinuous with the seal portion so that the thickness of the pin nose is not reduced.
  • the axial compression resistance is also improved.
  • an appendix is provided from the seal portion to the pin nose tip, which also has a discontinuous shape with the seal portion to ensure radial rigidity and axial rigidity. It is described that the appendix is deformed at the time of tightening and the tensile resistance is improved by recovering the appendix when it is loaded.
  • placing the seal portion near the screw portion of the pin and separating it from the tip of the pin nose is an external pressure resistance and a tension resistance. This is effective in giving stable performance to the screw as well as improving the above, and this can be confirmed from FEM simulations or the like.
  • the pin nose that is discontinuous with the seal part deforms itself when a strong axial compression force is applied, reducing plastic deformation of the torque shoulder part of the box member. There is also an effect. However, on the other hand, incorrect deformation may occur in the pin nose, which is considered to depend on the tightening torque.
  • Tightening torque is affected by lubrication conditions, surface properties, etc.
  • the radial seal contact pressure is made stronger by making the radial component of the seal contact pressure relatively stronger.
  • a radial seal method discloses an example of a radial seal method having a large pin seal R shape and a small seal taper angle.
  • the problem with the radial seal method with such a small seal taper angle is that goling is likely to occur during tightening, and the amount of seal interference is particularly high in order to ensure sealing performance and seal stability. When it is necessary to make it larger, the ease of occurrence of goling is further increased.
  • the radius of the toroidal pin sealing surface (toroidal sealing surface) is specified to be large so that the seal contact area is increased and the contact pressure (contact pressure) is increased. ).
  • This measure is effective, and can greatly reduce the goling risk of the metal touch seal part.
  • a large R is taken and the contact pressure is reduced, the contact pressure will drop with some slight trouble, and if a small leak path is formed in the metal touch seal part, the leak will not stop easily. There is a problem.
  • an object of the present invention is to provide a threaded joint for pipes that has improved sealing performance, compression resistance, and further, galling resistance.
  • the present invention is as follows. (1) a pin member having a male screw part, a nose part extending from the male screw part toward the tube end side, and a shoulder part provided at the tip of the nose part; A female screw part that is screw-coupled to the male screw part, an inner peripheral surface that faces the outer peripheral surface of the nose part of the pin member, and a box member that has a shoulder part that contacts the shoulder part of the pin member;
  • the screw member is a pipe threaded joint in which the pin member and the box member are connected by the screw connection so that the outer peripheral surface of the nose portion of the pin member and the inner peripheral surface of the box member are in metal-metal contact, and the contact interface forms a seal surface.
  • the outer peripheral surface of the nose portion of the pin member has an outwardly convex curve in the axial sectional view of the pin member, and the convex curve has a radius of curvature R different from the generatrix of the cylindrical portion adjacent to the external thread portion.
  • the radius of curvature R of the arc increases as the distance from the male thread portion increases, and the tangent line on the connection point of the arc is the connection partner's arc.
  • the inner peripheral surface of the box member is a tapered surface that interferes with the outer peripheral surface of the nose portion of the pin member when coupled to the pin member. Screw joint.
  • the male screw portion and the female screw portion have a load flank angle within a range of ⁇ 5 degrees to 4 degrees. Threaded joint for pipes.
  • the male threaded portion and the female threaded portion have a thread gap within a range of 0.01 to 0.1 mm, according to any one of (1) to (8), Threaded joint for pipes.
  • the male screw portion Threaded joint for pipes characterized in that it is a composite R curve in which a plurality of circular arcs having different curvature radii R are sequentially connected to a generatrix of a cylindrical portion adjacent to each other directly or via a line segment having a length of 2.5 mm or less .
  • the pin member 3 of sectional drawing which shows the nose part of the threaded joint for pipes which concerns on embodiment of this invention is shown.
  • the box member 1 of sectional drawing which shows the nose part of the threaded joint for pipes which concerns on embodiment of this invention is shown.
  • Sectional view showing a conventional threaded joint for pipes Enlarged sectional view showing the vicinity of the pin nose in FIG.
  • the expanded sectional view which shows the screw part in FIG.
  • a chart (figure) showing a load history in a leak test simulation (simulation of the leak test)
  • the outer peripheral surface of the nose portion of the pin member has a surface shape that forms an outwardly convex curve in the axial sectional view of the pin member
  • the inner peripheral surface of the box member that faces the outer peripheral surface of the nose portion of the pin member Is a tapered surface shape that intersects the convex curve of the pin member at two points in the axial sectional view of the box member, and the outer peripheral surface of the nose portion of the pin member and the inner periphery of the box member facing the outer peripheral surface of the nose portion
  • a metal touch seal part is formed by a surface (hereinafter also referred to as a taper surface)
  • each interface on the pin member side and box member side of the seal part is a seal surface of the same member
  • a convex curve of the pin member Is a compound R curve in which a plurality of arcs having different curvature radii R are sequentially connected to the generatrix of the cylindrical part adjacent to the male thread part, and the radius of curvature R of the
  • FIG. 1 (a), 1 (b), and 1 (c) are cross-sectional views showing a nose portion of a threaded joint for pipes according to an embodiment of the present invention.
  • FIG. 1 (a) shows a pin member 3; ) Shows the box member 1, and (c) shows a state in which the pin member 3 and the box member 1 are coupled.
  • the pin member 3 is provided at an end portion of the steel pipe, and includes a male screw portion 7, a nose portion 8 connected to the pipe end side from the male screw portion 7, and a torque shoulder portion 12 provided at the tip of the nose portion 8.
  • the box member 1 includes a female screw portion 5 that is screw-coupled with the male screw portion 7 of the pin member 3, and an outer peripheral surface (nose portion) of the nose portion 8 in a coupled state of the pin member 3 and the box member 1 by the screw coupling. It has a tapered surface 20 that is an inner peripheral surface of the box member 1 that faces the outer peripheral surface 30) and a shoulder portion 14 that abuts against the shoulder portion 12.
  • the outer peripheral surface 30 of the nose portion has an outwardly convex curve in the axial sectional view of the pin member 3.
  • the inner peripheral surface of the box member 1 facing the outer peripheral surface 30 of the nose portion is a tapered surface 20 (conical surface) having a constant inclination angle (referred to as a taper angle) ⁇ with respect to the axial direction of the threaded joint.
  • the taper angle ⁇ is defined by the convex curve and the generatrix of the taper surface 20 in a sectional view in the axial direction of a threaded joint in a virtual non-interference connection state between the pin member 3 and the box member 1 (imaginary make up stage without interference). Are actually set to intersect at two points, and the seal portion 40 is actually formed within a range (interference area 40a) sandwiched between the two intersections.
  • the convex curve formed on the outer peripheral surface 30 of the nose portion will be described using the case of a composite R curve with three arcs shown in FIG.
  • This curve, composite obtained by sequentially connecting the circular arc N 1, N 2, N 3 having a curvature radius R 1, R 2, R 3 of different line segment N 0 is a generating line of the cylindrical portion adjacent to the male screw portion 7
  • the R curve N has a curved shape in which the radius of curvature of the arc increases as the distance from the male thread 7 increases, that is, R 1 ⁇ R 2 ⁇ R 3 .
  • the thickness (shoulder thickness) t of the shoulder portion 12 at the tip of the pin nose 8 can be increased.
  • the composite R curve N has a curved shape in which the tangent line at the connection point of the arc coincides with that of the connection partner arc. For example, at the connection point between the arcs N 1 and N 2 and at the connection point between the arcs N 2 and N 3 , the tangents of both connected arcs are made to coincide. Therefore, the convex curve has a continuous curve shape with no inflection point on the curve, and unauthorized deformation of the nose portion is suppressed.
  • the arcs to be connected may be directly connected to each other, or a line segment that overlaps a common tangent line between the arcs, or an arc having a sufficiently large radius that does not require substantial change in angle (the radius is It may be connected via 250 mm or more and 3 times or more of the adjacent arc.
  • the length of the arc having a sufficiently large line segment or radius is preferably 2.5 mm or less.
  • angles ⁇ 1 , ⁇ 2 , and ⁇ 3 formed by the arcs N 1 , N 2 , and N 3 are larger as the arc is closer to the male screw portion 7, that is, ⁇ 1 > ⁇ 2 > ⁇ 3. It is preferable that Otherwise, the length of the nose portion 8 of the limited pin member 3 (the pin nose length L in FIG. 1 (a)) or the length of the limited interference zone 40a (the seal contact length). It becomes difficult to design a composite R curve.
  • connection point of the circular arc in the composite R curve for example, the connection point of the circular arcs N 1 and N 2 or the connection point of the circular arcs N 2 and N 3 is one of the tapered surface 20 of the box member 1. It is preferable to coincide with a contact start point that means a point to be contacted first.
  • the contact surface pressure distribution of the seal portion includes a portion where R is large, the surface pressure is low, and the contact length is long, and R is small. A portion having a high contact pressure and a short contact length can be formed, and a leak path is hardly formed, and the sealing performance is improved.
  • the inclination of the tangent line at the connection point of the arc is preferably made smaller than the inclination of the tapered surface of the box member in a range up to 0.5 degrees.
  • deformation that causes the tip of the pin to taper due to radial interference between the pin and the box occurs, and the tangential slope of the pin surface at the time of tightening is greater than the design value. .
  • the contact start point is preferably set to a distance x from the front end of the male screw portion (see FIG. 1C) of 0.7 L from the viewpoint of separating the seal portion from the front end of the nose.
  • L is a pin nose length, and when the distance from the tip of the male screw portion at the contact start point is less than 0.2 L, interference between the seal portion and the screw portion is likely to occur during tightening, so 0.2 L or more. Is good. Furthermore, 0.3L or more is good for safety.
  • the taper angle ⁇ (see FIG. 1B) of the tapered surface 20 of the box member 1 is preferably within 10 degrees. By making the taper angle ⁇ within 10 degrees, more preferably within 5 degrees, the radial seal method can be suitably realized, and the tightening torque dependency of the seal performance becomes relatively low.
  • the pin nose length L (see FIG. 1A) is preferably 20 mm or more. According to this, the seal part is sufficiently separated from the tip of the pin nose, and as a result, damage (damage) to the seal part can be greatly reduced by elastic deformation within this separation distance range, which is effective in stabilizing the seal performance. Is. Since the seal performance is stabilized, the seal interference amount S (see FIG. 1C) can be relatively small as a radial seal method, and the galling risk is small.
  • two or more types of R in the composite R curve are preferably 1 inch or less for a relatively small R, 2 inches or more for a relatively large R, and more preferably 3 inches or more.
  • at least one of a plurality of Rs in the composite R curve is 2 inches or more (more preferably 3 inches or more), and at least one R is less than 2 inches (more preferably 1 inch or less). Is preferred.
  • the number of arcs in the composite R curve may be two, may be three illustrated in FIG. 1A, or may be four or more.
  • the seal contact length becomes larger and it is easier to improve the sealing performance.
  • the load and dimension confirmation in actual manufacturing may increase, so the number of arcs is actually a threaded joint. It is better to design according to the performance required for the system.
  • the cross-sectional area of the pin member at the contact start point is 35% or more of the cross-sectional area of the main body of the pipe that forms the joint at the tip (cross-sectional area of the unprocessed pin portion).
  • the rigidity in the contact start point of a pin member increases, and it becomes easy to obtain especially high external pressure-proof performance.
  • the cross-sectional area of the pin member at the contact start point is 40% or more of the cross-sectional area of the pipe body.
  • any one or two or more of the load flank angle, the stub flank angle, and the screw gap are defined in a preferable range. It was confirmed that the overall sealing performance was further improved by the combined effect.
  • the load flank angle is the load flank angle ⁇ shown in FIG. 5, that is, the angle ⁇ formed by the load flank surface 18 with respect to the joint axis orthogonal plane (meaning the plane orthogonal to the axial direction of the threaded joint; the same applies hereinafter). It is.
  • the stub flank angle is a stub flank angle ⁇ shown in FIG.
  • the screw gap is a screw gap G shown in FIG. 5, that is, a gap G between the thread 7a of the male screw and the screw groove 5a of the female screw meshing with the screw thread 7a.
  • the preferable range of the load flank angle ⁇ is -5 ° to 4 °.
  • the lower limit of the preferable range is determined from the viewpoint of galling resistance and tool life of the threaded portion, and the upper limit is determined from the viewpoint of bending resistance.
  • the preferred range of the stub flank angle ⁇ is 0 ° to 30 °.
  • the lower limit of the preferred range is from the viewpoint of the galling resistance and tool life of the threaded portion, the tightening property, and the upper limit is from the viewpoint of axial compression resistance. Respectively.
  • the preferable range of the screw gap G is 0.01 to 0.1 mm.
  • the lower limit of the preferable range is determined from the viewpoint of reducing the goring risk, and the upper limit is determined from the viewpoint of reducing the load on the pin tip during the axial compression load. It was.
  • the screw gap G is preferably about 0.03 mm at least. Moreover, since it discovered that the screw gap G was about 0.045 mm and can exhibit sufficient performance effectively, it is good also as about 0.045 mm according to a condition.
  • the overall effect of improving the sealing performance is particularly the axial tension + internal pressure or This is remarkable under conditions where external pressure is applied.
  • the shoulder angle of the shoulder portion (the angle formed by the end surface of the shoulder portion in the joint axis direction with respect to the joint axis orthogonal surface, and the pin outer peripheral side of the interface protruding from the pin inner peripheral side to the outer side in the joint axial direction)
  • the positive angle is preferably 0 to 20 degrees.
  • the shoulder angle is less than 0 degree, it is disadvantageous in terms of sealing performance and tightening characteristics, while if it exceeds 20 degrees, it is disadvantageous in that plastic deformation of the box shoulder part and local deformation of the seal part are likely to occur. It becomes. Preferably it is 15 degrees or less. Furthermore, depending on the situation, 7 degrees or less is preferable.
  • the contact area pressure is obtained by integrating the contact surface pressure in the seal contact area.
  • This leak test is conducted for a threaded joint for pipes, with a biaxial stress and internal pressure corresponding to 95% of the yield condition of the material, and a biaxial stress or material yield condition of 95 corresponding to the Collapse condition described in ISO 10400: 2007.
  • the load test based on the smaller biaxial stress of the biaxial stress corresponding to% and the external pressure is carried out, and the load is loaded with the history shown in FIG.
  • an index indicating the risk of goling during screw tightening it is defined as the product of sliding distance (inch) and contact surface pressure (psi) at each position in the axial direction of the seal portion from the start to the end of tightening.
  • the value of galling index (psi ⁇ inch) contact surface pressure ⁇ sliding distance was determined by FEM analysis. This is also obtained by integration calculation. It can be said that the smaller the Goring index, the smaller the Goring risk.
  • Comparative Examples 1, 3, and 4 When the bus bar on the outer peripheral surface of the pin nose 8 is a convex curve having a single R (single R curve M indicated by a broken line in FIG.
  • Table 1 shows the contact area pressure and goring index obtained by FEM calculation, and the maximum and minimum seal interference amounts obtained by actual physical tests and repeated tightening tests, together with the dimensions of each part of the threaded joint, for the inventive examples and comparative examples.
  • the amount of seal interference in Tables 1 and 2 is a value per diameter, and is a value corresponding to the amount of seal interference S ⁇ 2 shown in FIG.
  • the contact area pressure under the internal pressure condition in the FEM calculation is a minimum value (most leak occurs) in the vicinity of the load step (load step) _L3 and L18 (biaxial tensile stress + internal pressure) in the history of FIG. Equivalent to easy state).
  • the minimum values of L3 and L18 are expressed as ratios relative to the minimum value of 100 in all examples of L3 and L18.
  • the minimum value of L15 is expressed as a ratio with respect to the minimum value of 100 as the minimum value in all examples of L15.
  • Tables 1 and 2 display the maximum value of the Goring index of each example as a relative maximum value (representing the maximum maximum value as 100 in all examples, and the other maximum values). did.
  • the evaluation results at other sizes are shown in Table 3.
  • the target materials have an outer diameter of 139.7 mm, a wall thickness of 7.72 mm, and 5 TPI, and an outer diameter of 346.08 mm, a wall thickness of 15.88 mm, and 4 TPI.
  • the inventive examples showed excellent sealing properties after compression history and excellent galling resistance during tightening.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Earth Drilling (AREA)

Abstract

 シール性と耐圧縮性、さらには、耐ゴーリング性を向上させた、管用ねじ継手を提供する。具体的には、ピンノーズ外周面30は、軸方向断面視で外側に凸状の曲線をなし、該凸状の曲線は、雄ねじ部5に隣接する円筒形状部の母線に相異なる曲率半径Rを有する外側に凸状の複数の円弧を順次接続してなる複合R曲線Nを、雄ねじ部5から遠ざかるにつれて円弧の曲率半径Rが大きくなり、かつ、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状としてなり、ボックス部材1のピンノーズ30に相対する内周面は、ピン部材3との結合時にピンノーズ外周面30と干渉するテーパ面20とした。

Description

管用ねじ継手
 本発明は、管用ねじ継手(threaded joint for pipe)に関し、詳しくは一般に油井(oil well)やガス井(gas well)の探査や生産に使用されるチュービング(tubing)およびケーシング(casing)を包含するOCTG(oil country tubular goods)、ライザー管(riser pipe)、ならびにラインパイプ(line pipe)などの管の接続に用いるのに好適な、シール性(sealability)と耐圧縮性(compression resistance)に優れた管用ねじ継手に関する。
 ねじ継手は、油井管など油およびガスの生産(oil and gas production)に使用される鋼管の接続に広く使用されている。オイルやガスの探索や生産に使用される鋼管の接続には、従来API(米国石油協会(American Petroleum Institute))規格に規定された標準的なねじ継手が使用されてきた。しかし、近年、原油(crude oil)や天然ガス(natural gas)の井戸は深井戸化が進み、垂直井(vertical well)から水平井(horizontal well)や傾斜井(directional well)が増加していることから、掘削・生産環境は苛酷化している。また、海洋や極地(polar region)など劣悪な環境での井戸の開発が増加していることなどから、耐圧縮性能、耐曲げ性能(bending resistance)、耐外圧性能(External pressure resistance)など、ねじ継手への要求性能は多様化している。そのため、プレミアムジョイント(premium joint)と呼ばれる高性能の特殊ねじ継手(threaded joint)を使用することが増加している。
 プレミアムジョイントは、通常、テーパねじ(tapered thread)、シール部(詳しくはメタルタッチシール部(metal to metal seal)、ショルダ部(shoulder)(詳しくはトルクショルダ部(torque shoulder))をそれぞれ備えるピン部材(pin component)とボックス部材(box component)とを結合した継手である。テーパねじは管継手(tubular joint)を強固に固定するために重要であり、シール部はボックス部材とピン部材とがこの部分でメタル接触することでシール性を確保する役目を担い、ショルダ部は継手の締付け中にストッパ(abutment)の役目を担う受け面(bearing face)となる。
 図2~図4は、油井管用プレミアムジョイントの模式的説明図であり、これらは、円管のねじ継手の縦断面図である。ねじ継手は、ピン部材3とこれに対応するボックス部材1とを備えており、ピン部材3(ピン3)は、その外面に雄ねじ(male member)7と、ピン3の先端側に雄ねじ7に隣接して設けられたノーズ部8(ピンノーズ8)と呼ばれるねじ無し部とを有する。ノーズ部(nose)8は、その外周面にシール部11を、その端面にはトルクショルダ部12を有する。相対するボックス部材1は、その内面に、それぞれピン3の雄ねじ7、シール部11、およびショルダ部12と螺合するか、または接触することができる部分である、雌ねじ(female member)5、シール部13、および、ショルダ部14を有している。
 前記プレミアムジョイントに関する従来技術として、特許文献1~6が挙げられる。
特許第4535064号公報 特許第4208192号公報 実公昭61−44068号公報 特許第4300187号公報 特開2001−124253号公報 特許第2705506号公報
 図2~図4の例では、メタルタッチシール部はピンノーズ(pin nose)8の先端部にあるが、特許文献1には、耐外圧性能を増すために、ピンノーズ8のねじ部近くにメタルタッチシール部を設け、ノーズ部をシール部からショルダ部まで長く伸ばすものも提案されている。この特許文献1に開示されるねじ継手においては、ボックス部材と非接触なピンノーズを、シール部とは不連続な形状となるように長く伸ばしてピンノーズの厚みが薄くならないように構成されており、前述の耐外圧性能の他に、耐軸圧縮性能の向上も実現している。
 また、特許文献2には、同様にシール部からピンノーズ先端にアペンディックス(appendix)なる、これもシール部と不連続な形状を有する部位を設けて、半径方向の剛性を確保し軸方向の剛性を下げて、締付け時にこのアペンディックスを変形させ、引張力の負荷時にその回復により、耐引張性能を向上させることが記載されている。
 これら、特許文献1,2に記載されるように、シール部位置をピンのねじ部位置近くに置き、ピンノーズ先端から離すことは、耐外圧性能(external pressure resistance)、耐引張性能(tension resistance)の向上とともに、ねじに対して安定的な性能を持たせる上で有効であり、それはFEMシミュレーション等からも確認できる。またシール部と不連続な形状となるピンノーズは、強い軸圧縮力(axial compression)が負荷された場合に、それ自体が変形し、ボックス部材のトルクショルダ部の塑性変形(plastic deformation)を軽減させる効果もある。しかし、一方で、ピンノーズ(pin nose)に不正な変形が入ることもあり、これは締付けトルク(make up torque)に依存すると考えられる。
 締付けトルクは潤滑条件(lubrication condition)、表面性状等に影響されるので、これに大きくは依存しない設計として、シール接触圧力の半径方向成分を相対的に強くした半径方向のシール接触圧力を強くした半径方向シール方式がある。例えば、特許文献3には、大きなピンシールR形状を持ち、シールテーパ角(seal taper angle)を小さくした半径方向シール方式の例が開示されている。しかし、このようにシールテーパ角を小さくした、半径方向シール方式の問題点は、締付け時にゴーリングが発生し易い点にあり、特にシール性能の確保およびシールの安定性のために、シール干渉量を大きくとる必要がある場合には、ゴーリングの発生のし易さは更に大きくなる。
 特許文献4には、これらの問題を解決するために、トロイド状ピンシール面(toroidal sealing surface)の半径を大きく規定することで、シール接触領域(seal contact area)を大きくし、接触圧力(contact pressure)を低下させている。この対策は有効であり、メタルタッチシール部のゴーリングリスクを大きく軽減できる。しかし、大きなRをとり接触圧力を低下させることで、何らかの僅かなトラブルで接触圧力の低下が生じ、メタルタッチシール部に微小なリークパス(leak path)が出来た場合、リークが容易には止まらないという問題がある。また、大きなRであるが故に、メタルタッチシール部をノーズ先端から離すことが物理的に困難であり、メタルタッチシール部とピンノーズ先端の長さをある程度以上に確保する場合、ピンノーズ先端の厚みが小さくなりすぎることにも繋がる。
 耐軸圧縮性能に関しては、特許文献5や特許文献6に記載されるように、ねじ部におけるスタブフランク(stab flank)側の隙間を小さくすることが有効である。但し、この隙間が小さすぎる場合には、ねじ部にゴーリング(galling)が発生し易くなるため、適切な隙間をとる必要がある。
 以上説明したように、従来提案されているねじ継手においては、未だ何らかの問題を有しており、上述した耐圧縮性能、耐曲げ性能、外圧シール性能など、ねじ継手への要求性能の多様化に十分応えるためには、更なる改良の余地がある。本発明は、このような事情に鑑みて、シール性と耐圧縮性、さらには、耐ゴーリング性(galling resistance)を向上させた、管用ねじ継手を提供することを目的とする。
 前述した課題を解決するための手段を見出すべく、発明者らは鋭意検討を重ね、以下の要旨構成になる本発明をなすに至った。すなわち、本発明は以下のとおりである。
(1) 雄ねじ部と、該雄ねじ部より管端側に延在するノーズ部と、該ノーズ部の先端に設けられたショルダ部とを有するピン部材と、
前記雄ねじ部とねじ結合される雌ねじ部と、前記ピン部材のノーズ部外周面に相対する内周面と、前記ピン部材のショルダ部に当接するショルダ部とを有するボックス部材とを有し、
前記ねじ結合により前記ピン部材とボックス部材とが結合されてピン部材のノーズ部外周面とボックス部材の前記内周面とがメタル‐メタル接触しその接触界面がシール面をなす管用ねじ継手であって、
前記ピン部材のノーズ部外周面は、ピン部材の軸方向断面視で外側に凸状の曲線をなし、該凸状の曲線は、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する外側に凸状の複数の円弧を順次接続してなる複合R曲線を、雄ねじ部から遠ざかるにつれて円弧の曲率半径Rが大きくなり、かつ、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状としたものであり、前記ボックス部材の前記内周面は、ピン部材との結合時にピン部材のノーズ部外周面と干渉するテーパ面とした
ことを特徴とする、管用ねじ継手。
(2) 前記複合R曲線内の各円弧がなす角度は、前記雄ねじ部に近い円弧のものほど大きいことを特徴とする前記(1)に記載の管用ねじ継手。
(3) 前記複合R曲線内の前記接続点のいずれかが前記テーパ面との接触開始点になることを特徴とする前記(1)又は(2)に記載の管用ねじ継手。
(4) 前記テーパ面は、継手の軸方向となす角度が10度以内であることを特徴とする前記(1)~(3)のいずれかに記載の管用ねじ継手。
(5) 前記ピン部材のノーズ部の長さが20mm以上であることを特徴とする前記(1)~(4)のいずれかに記載の管用ねじ継手。
(6) 前記雄ねじ部と前記雌ねじ部とは、スタブフランク角度(stab flank)が0度~30度の範囲内であることを特徴とする前記(1)~(5)のいずれかに記載の管用ねじ継手。
(7) 前記雄ねじ部と前記雌ねじ部とは、ロードフランク角度(load flank)が−5度~4度の範囲内であることを特徴とする前記(1)~(6)のいずれかに記載の管用ねじ継手。
(8) 前記ショルダ部のショルダ角度(shoulder angle)が0度~20度の範囲内であることを特徴とする前記(1)~(7)のいずれかに記載の管用ねじ継手。
(9) 前記雄ねじ部と前記雌ねじ部とは、ねじ隙間(thread gap)が0.01~0.1mmの範囲内であることを特徴とする前記(1)~(8)のいずれかに記載の管用ねじ継手。
(10) 前記(1)~(9)のいずれかにおいて、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を順次接続した複合R曲線に代えて、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を直接もしくは長さ2.5mm以下の線分を介して順次接続した複合R曲線としたことを特徴とする管用ねじ継手。
(11) 前記(1)~(9)のいずれかにおいて、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を順次接続した複合R曲線に代えて、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を長さ2.5mm以下で、半径が250mm以上かつ隣接する円弧の半径の3倍以上となる円弧を介して順次接続した複合R曲線としたことを特徴とする管用ねじ継手。
 本発明によれば、シール性と耐圧縮性、さらには、耐ゴーリング性を向上させた、管用ねじ継手を得ることが可能となる。
本発明の実施形態に係る管用ねじ継手のノーズ部を示す断面図のピン部材3を示す。 本発明の実施形態に係る管用ねじ継手のノーズ部を示す断面図のボックス部材1を示す。 本発明の実施形態に係る管用ねじ継手のノーズ部を示す断面図のピン部材3とボックス部材1とを結合した状態を示す。 従来の管用ねじ継手を示す断面図 図2におけるピンノーズ付近を示す拡大断面図 図2におけるねじ部分を示す拡大断面図 ねじ隙間、ロードフランク角度、スタブフランク角度の定義を示す断面図 リークテストシミュレーション(simulation of the leak test)における負荷履歴(load schedule)を示すチャート図(figure)
 上述のとおり、ノーズ先端から離れた位置にシール部を設け、ノーズ部をシール部からショルダ部まで長く伸ばすことは、耐外圧性能、耐引張性能の向上とともに、ねじに対して安定的な性能を持たせる上で有効である。そこでさらに、発明者らは、シール部をノーズ先端(あるいはショルダ)から離すことができ、かつ、ピンノーズ先端の厚みが小さくなり過ぎないようにするための、シール部周辺の形状について検討した。
 その結果、ピン部材のノーズ部外周面が、ピン部材の軸方向断面視で外側に凸状の曲線をなす面形状とされ、このピン部材のノーズ部外周面と相対するボックス部材の内周面が、ボックス部材の軸方向断面視でピン部材の凸状の曲線と二点で交わるテーパ面形状とされ、前記ピン部材のノーズ部外周面とこのノーズ部外周面に相対するボックス部材の内周面(以下テーパ面ともいう)とでメタルタッチシール部が形成され、該シール部のピン部材側、ボックス部材側の各界面がそれぞれ同部材のシール面となる場合、ピン部材の凸状の曲線は、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を順次接続した複合R曲線を、雄ねじ部から遠ざかるにつれて前記円弧の曲率半径Rが大きくなり、かつ、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状としたものとすることで、ピンノーズ先端の厚みを小さくせずに、シール部をノーズ先端から離すことが可能であるとの発想に至った。
 図1(a)、図1(b)および図1(c)は、本発明の実施形態に係る管用ねじ継手のノーズ部を示す断面図であり、(a)はピン部材3を、(b)はボックス部材1を、(c)はピン部材3とボックス部材1とを結合した状態を示す。ピン部材3は、鋼管の端部に設けられるものであり、雄ねじ部7と、該雄ねじ部7より管端側に連なるノーズ部8と、該ノーズ部8の先端に設けたトルクショルダ部12とを有する。一方、ボックス部材1は、ピン部材3の雄ねじ部7とねじ結合される雌ねじ部5と、前記ねじ結合によるピン部材3とボックス部材1との結合状態下でノーズ部8の外周面(ノーズ部外周面30)に対向するボックス部材1の内周面であるテーパ面20と、ショルダ部12に当接されるショルダ部14とを有している。
 ノーズ部外周面30は、ピン部材3の軸方向断面視で外側に凸状の曲線をなしている。一方、ノーズ部外周面30に対向するボックス部材1の内周面はねじ継手の軸方向に対して一定の傾角(テーパ角という)αを持つテーパ面20(円錐形状面)とされている。そして、ピン部材3とボックス部材1とを結合させると、テーパ面20とノーズ部外周面30とが干渉してシール部40を形成する。前記テーパ角αは、ピン部材3とボックス部材1との仮想的無干渉結合状態(imaginary make up stage without interference)におけるネジ継手の軸方向断面視で前記凸状の曲線とテーパ面20の母線とが二点で交わるように設定され、実際にはその二交点で挟まれた範囲(干渉域(interference area)40a)内にシール部40は形成される。
 ノーズ部外周面30に形成される前記凸状の曲線を、図1(a)に示す3つの円弧による複合R曲線の場合を用いて説明する。この曲線は、雄ねじ部7に隣接する円筒形状部の母線である線分Nに相異なる曲率半径R,R,Rを持つ円弧N,N,Nを順次接続した複合R曲線Nであり、この複合R曲線Nは、雄ねじ部7から遠ざかるにつれて円弧の曲率半径が大きくなる、すなわち、R<R<Rである曲線形状とされている。これによりピンノーズ8先端のショルダ部12の厚み(ショルダ厚み)tを大きくとることが可能となる。比較として凸状の曲線を単一R曲線M(曲率半径Rの単一円弧)とし、そのシール部の干渉域を複合R曲線Nのシール部40の干渉域40aと同等とした場合を図1(c)中に破線で示したが、かかる単一R曲線Mでは複合R曲線Nの場合に比較してショルダ厚みが小さくなってしまうことがわかる。ショルダ厚みが小さくなると、ピンノーズ8の剛性が不足し、シール部40の接触面圧(contact pressure)を適正に確保できなくなる。逆に、単一R曲線でショルダ厚みを確保しようとすると、シール部40の位置が雄ねじ部7から遠ざかることとなり、耐外圧性能、耐引張性能の確保の観点から好ましくない。
 また、複合R曲線Nは、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状とされている。例えば、円弧NとNとの接続点、円弧NとNとの接続点ではそれぞれ、接続される両円弧の接線を一致させてある。したがって、凸状の曲線は当該曲線上に屈曲点が存在しない連続的な曲線形状となり、ノーズ部の不正な変形が抑制される。尚、前記接続される両円弧同士は、直接接続してもよく、又、前記円弧同士の共通接線と重なる線分、または、角度変化を実質考えなくても良い半径が十分大きな円弧(半径が250mm以上、かつ、隣接する円弧の3倍以上)を介して接続してもよい。リークパスができないような接触面圧を確保するためには、上記の線分または半径が十分大きな円弧の長さは2.5mm以下とすることが好ましい。
 ここで、円弧N,N,Nの各円弧のなす角度θ,θ,θは、雄ねじ部7に近い円弧の
ものほど大きいこと、すなわち、θ>θ>θであることが好ましい。さもないと、限られたピン部材3のノーズ部8の長さ(図1(a)中のピンノーズ長さL)あるいは限られた干渉域40aの長さ(シール接触長さ(seal contact length)という)の中で複合R曲線を設計するのが困難となる。
 さらに、複合R曲線における円弧の接続点、例えば、円弧NとNとの接続点、及び、円弧NとNとの接続点、のいずれかが、ボックス部材1のテーパ面20と最初に接触する点を意味する接触開始点と一致していることが好ましい。複合R曲線内の円弧の接続点のいずれかを接触開始点にすることで、シール部の接触面圧分布には、Rが大きくて面圧が低く接触長が長い部位と、Rが小さくて面圧が高く接触長が短い部位とができ、リークパスができにくくシール性能(sealability)が向上する。
 しかし、実際には、ねじ切り装置の製作公差の関係で、円弧の接続点をボックス部材のテーパ面との接触開始点と完全に一致させることは難しい場合がある。この場合、円弧の接続点における接線の傾きをボックス部材のテーパ面の傾きより最大0.5度までの範囲で小さくするとよい。実際のねじ締付においては、ピンとボックスとの半径方向の干渉に起因して、ピンの先端が先細りするような変形が起こり、締付完了時点におけるピン表面の接線の傾きは設計値より大きくなる。このため、円弧の接続点における接線の傾きがボックス部材のテーパの傾きよりも0.5度以下の範囲で小さくすれば、実質的に双方の傾きが一致するのと同様な効果がある。
 なお、接触開始点は、シール部をノーズ先端から離す観点から、雄ねじ部先端からの距離x(図1(c)参照)が0.7Lとするのが望ましい。また、上述のとおりLはピンノーズ長さで接触開始点の雄ねじ部先端からの距離が0.2L未満となると、締め付けの際、シール部とねじ部の干渉が生じ易くなるため、0.2L以上が良い。更に安全のためには0.3L以上が良い。
 ボックス部材1のテーパ面20のテーパ角α(図1(b)参照)は10度以内であることが好ましい。テーパ角αを10度以内、更に好ましくは5度以内とすることで、半径方向シール方式が好適に実現でき、シール性能の締付けトルク依存性(make up torque dependence)が比較的低くなる。
 ピンノーズ長さL(図1(a)参照)は、20mm以上であることが好ましい。これによれば、シール部がピンノーズ先端から十分離間し、その結果、この離間距離範囲内の弾性変形により、シール部へのダメージ(damage)をより大きく軽減できるため、シール性能の安定化に効果的である。
 シール性能が安定化するため、シール干渉量S(図1(c)参照)は、半径方向シール方式としては比較的小さくとることが可能であり、ゴーリングリスク(galling tendency)が小さい。
 なお、複合R曲線内の2種類以上のRは、比較的小さいRについては1インチ以下、比較的大きいRについては2インチ以上、さらに3インチ以上にとるのが好ましい。詳しくは、複合R曲線の複数のRのうち少なくとも1つを2インチ以上(より好ましくは3インチ以上)、残りのRを少なくとも1つを2インチ未満(より好ましくは1インチ以下)とすることが好ましい。複合R曲線の複数のRのうち少なくとも1つを2インチ以上(より好ましくは3インチ以上)とすることで、シール部の接触長さを確保し易くなり、残りのRを少なくとも1つを2インチ未満(好ましくは1インチ以下)とすることで、高い面圧を達成し易くなる。
 また、複合R曲線内の円弧の個数(相異なるRを持つ円弧の個数)は、2個でもよく、図1(a)に例示した3個でもよく、あるいは4個以上でもよい。円弧の個数が増えるとシール接触長さがより大きくなり、よりシール性能を向上させやすいが、実際の製造における負荷や寸法確認などの手間が増えたりもするから、円弧の個数は実際にねじ継手に要求される性能に応じて設計するのがよい。
 さらに、上記接触開始点におけるピン部材の断面積を、継手を先端に形成させるパイプの本体の断面積(ピン未加工部断面積)の35%以上とすることがよい。このようなピンの断面積とすることで、ピン部材の接触開始点における剛性が増し、特に高い耐外圧性能が得られ易くなる。なお、好ましくは、接触開始点におけるピン部材の断面積をパイプ本体の断面積の40%以上とするとよい。
 上記のシール部周辺の形状限定に加えて、雄ねじ部と雌ねじ部とについて、ロードフランク角度、スタブフランク角度、ねじ隙間のいずれか1種又は2種以上を好適範囲に規定することで、それらの組み合わせ効果によって、よりシール性能が全体的に向上することが確認された。ここで、ロードフランク角度は、図5に示すロードフランク角度β、すなわち、ロードフランク面18が継手軸直交面(ねじ継手の軸方向と直交する面の意。以下同じ)に対してなす角度βである。また、スタブフランク角度は、図5に示すスタブフランク角度γ、すなわち、スタブフランク面19が継手軸直交面に対してなす角度γである。また、ねじ隙間は、図5に示すねじ隙間G、すなわち、雄ねじのねじ山7aとこれに噛み合う雌ねじのねじ溝5aとの隙間Gである。
 ロードフランク角度βの好適範囲は−5度~4度であり、該好適範囲の下限はねじ部の耐ゴーリング性と工具寿命の観点から、上限は耐曲げ性の観点から、それぞれ定められた。
 スタブフランク角度γの好適範囲は0度~30度であり、該好適範囲の下限はねじ部の耐ゴーリング性と工具寿命(tool life)、締め付け性の観点から、上限は耐軸圧縮性の観点から、それぞれ定められた。
 ねじ隙間Gの好適範囲は0.01~0.1mmであり、該好適範囲の下限はゴーリングリスクを軽減する観点から、上限は軸圧縮負荷時にピン先端の負担を軽減させる観点から、それぞれ定められた。なお、ねじ切り(threading)時のリード(lead)の誤差を考慮すると、ねじ隙間Gは小さくとも0.03mm程度が好ましい。また、ねじ隙間Gは0.045mm程度で十分な性能を効果的に発揮できることを見出したので、状況に応じて0.045mm程度としてもよい。
 ロードフランク角度、スタブフランク角度、ねじ隙間の1種又は2種以上を上記のとおりに規定することによるシール性能の全体的向上効果は、特に、一旦軸圧縮を負荷した後の軸引張+内圧もしくは外圧を負荷する条件下で顕著である。
 また、ショルダ部のショルダ角度(ショルダ部の継手軸方向の端面が継手軸直交面に対してなす角度であり、当該界面のピン外周側がピン内周側からみて継手軸方向外側に張り出す場合を正の角度とする)は、0度~20度であることが好ましい。ショルダ角度が0度未満ではシール性能や、締め付け特性の点で不利となり、一方、20度超ではボックスショルダ部の塑性変形や、シール部の局所変形(local deformation)が発生し易いという点で不利となる。好ましくは15度以下が良い。更に状況に応じては、7度以下が好ましい。
 発明例として、図1(a)に示した、あるいは図1(a)において複合R曲線の円弧のいずれか2つを線分を介して接続した形態とした、本発明に係る管用ねじ継手について評価を実施した。本発明の実施例および比較例の寸法形状と評価結果を表1および表2に示す。ピン部材は、いずれも外径244.48mm、肉厚13.84mmの鋼管の先端に形成させた。また、ねじは5TPI(1インチあたりのねじ山数が5つ)で形成させた。FEM解析による評価として、ISO13679:2002に準拠したリークテストをシミュレートし、この際のシール部での接触面積圧(ksi・inch)を評価した。なお、接触面積圧は接触面圧をシール接触領域にて積分計算することにより求める。このリークテストは、管用ねじ継手に対し、素材の降伏条件の95%に対応した2軸応力と内圧、および、ISO10400:2007に記載のCollapse条件に対応した2軸応力あるいは素材の降伏条件の95%に対応した2軸応力のうちの小さい方の2軸応力と外圧に基づく負荷試験を実施するものであり、図6に示す履歴で負荷させるものである。
 また、ねじ締付け時のゴーリングリスクを表す指標として、締付け開始から完了までのシール部の軸方向各位置における摺動距離(sliding distance)(inch)と接触面圧(psi)との積で定義した、ゴーリング指標(galling index)(psi・inch)=接触面圧×摺動距離、の値をFEM解析により求めた。これも積分計算(integration)で求める。ゴーリング指標が小さいほどゴーリングリスクは小さいといえる。
 また、比較として、
・比較例1,3,4:ピンノーズ8の外周面の母線を単一のRを有する凸状の曲線(図1(c)に破線で示した単一R曲線M)形状とした場合、
・比較例2:ピンノーズ8の外周面の母線を複合R曲線としたが、円弧のRが雄ねじ部7から遠ざかるほど大きくなるという要件を満たさないとした場合、
について、同様に接触面積圧およびゴーリング指標を求めた。
 さらに、これらの発明例および比較例について、ISO13679:2002に規定された試験方法にて、ねじ干渉量を直径あたり0.305mmとして、シール干渉量の異なる複数のサンプルを作製し、物理テストを実施した。また、ねじ干渉量を直径あたり0.127mmとしてシール干渉量を変更した複数のサンプルを作製し、13回繰り返し締付試験を実施した。これらの試験により、物理テストでリークの発生しなかった最小シール干渉量および繰り返し締付試験で13回の締付の間にゴーリングの発生しなかった最大シール干渉量を求め、その差をもって設定可能シール干渉量範囲とした。
 発明例および比較例について、ねじ継手の各部寸法と併せて、FEM計算で求めた接触面積圧およびゴーリング指標と、実際の物理テストおよび繰り返し締付試験により求めた最大および最小シール干渉量を表1に示す。ここで、表1および表2中のシール干渉量は直径あたりの値であり、図1(c)に示したシール干渉量S×2に相当する値である。 なお、FEM計算における内圧条件での接触面積圧は、いずれの例も図6の履歴中のロードステップ(load step)_L3、L18近傍(2軸引張応力+内圧)において極小値(最もリークが起こり易い状態に相当)を示した。このロードポイント(load point)は、ISO13679では規定が無いものであるが、内圧+引張り条件では、最も厳しい条件であり、必要とされることもあるため、ここでの比較とした。
 一方、FEM計算における外圧条件での接触面積圧は、いずれの例も図6の履歴中のロードステップL15近傍(2軸引張応力+外圧)で極小値を示した。表1および表2には各例の接触面積圧の極小値を相対極小値で表示した。ここで、内圧はガスで負荷し外圧は水で負荷するためにリークのしやすさが異なっており、内圧条件および外圧条件のそれぞれの極小値を基準として相対極少値を求めた。すなわち、L3とL18の極少値は、L3およびL18についての全例の中で最小の極小値を100とし、他はこれに対する比で表した。また、L15の極小値は、L15についての全例の中で最小の極小値を100とし、他はこれに対する比で表した。
 一度、圧縮履歴を受けた後であるロードステップL18は、圧縮履歴を受ける前の同じロードポイントであるロードステップL3よりシール性能が低下しており、特に十分なショルダ厚を有さない比較例3にて顕著な低下が見られる。いずれの結果においても、本発明例は圧縮履歴後のL18にて良好なシール性を示した。
 また、ゴーリング指標は、極大値(maximum value)(最もゴーリングリスクが高い状態に相当)を示す継手軸方向位置が例ごとに異なった。表1および表2には各例のゴーリング指標の極大値を相対極大値(relative maximum value)(全例の中で最大の極大値を100とし、他はこれに対する比で表したもの)で表示した。
 他サイズでの評価結果を表3に示す。対象材は外径139.7mm、肉厚7.72mm、5TPI、および、外径346.08mm、肉厚15.88mm、4TPIである。いずれのサイズにおいても、本発明例は圧縮履歴後の優れたシール性、および、締付け時の優れた耐ゴーリング性を示した。 [0034]
 表1、表2および表3に示した評価結果より、発明例ではいずれも、比較例に比べ、接触面積圧(contact pressure area)が高いにもかかわらずゴーリング指標が小さいか同程度であり、また、設定可能シール干渉量範囲が広く、シール性および耐ゴーリング性に優れたねじ継手が実現したことがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1 ボックス部材
3 ピン(ピン部材)
5 雌ねじ(雌ねじ部)
5a 雌ねじのねじ溝
7 雄ねじ(雄ねじ部)
7a 雄ねじのねじ山
8 ノーズ部(ピンノーズ)
11、13、40 シール部(詳しくはメタルタッチシール部)
12、14 ショルダ部(詳しくはトルクショルダ部)
18 ロードフランク面
19 スタブフランク面
20 ピン部材のノーズ部外周面に相対するボックス部材の内周面(テーパ面)
30 ピン部材のノーズ部外周面(ピンノーズ外周面)
40a 干渉域

Claims (11)

  1.  雄ねじ部と、該雄ねじ部より管端側に延在するノーズ部と、該ノーズ部の先端に設けられたショルダ部とを有するピン部材と、
    前記雄ねじ部とねじ結合される雌ねじ部と、前記ピン部材のノーズ部外周面に相対する内周面と、前記ピン部材のショルダ部に当接するショルダ部とを有するボックス部材とを有し、
    前記ねじ結合により前記ピン部材とボックス部材とが結合されてピン部材のノーズ部外周面とボックス部材の前記内周面とがメタル‐メタル接触しその接触界面がシール面をなす管用ねじ継手であって、
    前記ピン部材のノーズ部外周面は、ピン部材の軸方向断面視で外側に凸状の曲線をなし、該凸状の曲線は、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する外側に凸状の複数の円弧を順次接続してなる複合R曲線を、雄ねじ部から遠ざかるにつれて円弧の曲率半径Rが大きくなり、かつ、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状としたものであり、前記ボックス部材の前記内周面は、ピン部材との結合時にピン部材のノーズ部外周面と干渉するテーパ面とした管用ねじ継手。
  2.  前記複合R曲線内の各円弧がなす角度は、前記雄ねじ部に近い円弧のものほど大きい請求項1に記載の管用ねじ継手。
  3.  前記複合R曲線内の前記接続点のいずれかが前記テーパ面の接触開始点になる請求項1又は2に記載の管用ねじ継手。
  4.  前記テーパ面は、継手の軸方向となす角度が10度以内である請求項1~3のいずれかに記載の管用ねじ継手。
  5.  前記ピン部材のノーズ部の長さが20mm以上である請求項1~4のいずれかに記載の管用ねじ継手。
  6.  前記雄ねじ部と前記雌ねじ部とは、スタブフランク角度が0度~30度の範囲内である請求項1~5のいずれかに記載の管用ねじ継手。
  7.  前記雄ねじ部と前記雌ねじ部とは、ロードフランク角度が−5度~4度の範囲内である請求項1~6のいずれかに記載の管用ねじ継手。
  8.  前記ショルダ部のショルダ角度が0度~20度の範囲内である請求項1~7のいずれかに記載の管用ねじ継手。
  9.  前記雄ねじ部と前記雌ねじ部とは、ねじ隙間が0.01~0.1mmの範囲内である請求項1~8のいずれかに記載の管用ねじ継手。
  10.  請求項1~9のいずれかにおいて、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を順次接続した複合R曲線に代えて、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を直接もしくは長さ2.5mm以下の線分を介して順次接続した複合R曲線とした管用ねじ継手。
  11.  請求項1~9のいずれかにおいて、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を順次接続した複合R曲線に代えて、雄ねじ部に隣接する円筒形状部の母線に相異なる曲率半径Rを有する複数の円弧を長さ2.5mm以下で、半径が250mm以上かつ隣接する円弧の半径の3倍以上となる円弧を介して順次接続した複合R曲線とした管用ねじ継手。
PCT/JP2011/064862 2010-06-30 2011-06-22 管用ねじ継手 WO2012002409A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2011272607A AU2011272607B2 (en) 2010-06-30 2011-06-22 Threaded joint for pipe
RU2013103811/06A RU2522756C1 (ru) 2010-06-30 2011-06-22 Резьбовое соединение для труб
EP17156626.8A EP3196524B1 (en) 2010-06-30 2011-06-22 Threaded joint for pipe
US13/807,883 US9194190B2 (en) 2010-06-30 2011-06-22 Threaded joint for pipe
MX2012014880A MX336628B (es) 2010-06-30 2011-06-22 Junta roscada para tubo.
EP11800871.3A EP2589846B1 (en) 2010-06-30 2011-06-22 Pipe screw coupling
BR112012033452-2A BR112012033452B1 (pt) 2010-06-30 2011-06-22 Junta rosqueada para tubo
CA2801204A CA2801204C (en) 2010-06-30 2011-06-22 Threaded joint for pipe

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010149547 2010-06-30
JP2010-149547 2010-06-30
JP2010-289785 2010-12-27
JP2010289785 2010-12-27
JP2011101329A JP4930647B1 (ja) 2010-06-30 2011-04-28 管用ねじ継手
JP2011-101329 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012002409A1 true WO2012002409A1 (ja) 2012-01-05

Family

ID=45402114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064862 WO2012002409A1 (ja) 2010-06-30 2011-06-22 管用ねじ継手

Country Status (13)

Country Link
US (1) US9194190B2 (ja)
EP (2) EP3196524B1 (ja)
JP (1) JP4930647B1 (ja)
CN (2) CN102313085B (ja)
AR (1) AR081782A1 (ja)
AU (1) AU2011272607B2 (ja)
BR (1) BR112012033452B1 (ja)
CA (1) CA2801204C (ja)
MX (1) MX336628B (ja)
MY (1) MY156120A (ja)
RU (1) RU2522756C1 (ja)
SA (1) SA111320568B1 (ja)
WO (1) WO2012002409A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001820A (ja) * 2012-06-20 2014-01-09 Jfe Steel Corp 鋼管用ねじ継手
WO2014115191A1 (ja) * 2013-01-28 2014-07-31 Jfeスチール株式会社 鋼管用ねじ継手
WO2014092605A3 (en) * 2012-12-13 2014-08-07 Tmk-Premium Services Llc Sealed threaded joint for casing pipes (versions)
WO2017141538A1 (ja) * 2016-02-19 2017-08-24 Jfeスチール株式会社 油井管用ねじ継手

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930647B1 (ja) * 2010-06-30 2012-05-16 Jfeスチール株式会社 管用ねじ継手
EP2675274B1 (en) 2011-02-14 2017-05-03 The Regents of The University of California SORAFENIB DERIVATIVES AS sEH INHIBITORS
JP5849749B2 (ja) * 2011-02-28 2016-02-03 Jfeスチール株式会社 管用ねじ継手
JP5923911B2 (ja) * 2011-03-22 2016-05-25 Jfeスチール株式会社 鋼管用ねじ継手
JP5891700B2 (ja) * 2011-10-17 2016-03-23 Jfeスチール株式会社 管のねじ継手
RU2500875C1 (ru) * 2012-07-20 2013-12-10 Общество С Ограниченной Ответственностью "Тмк-Премиум Сервис" Высокогерметичное резьбовое соединение насосно-компрессорных труб (варианты)
JP6020087B2 (ja) * 2012-11-22 2016-11-02 Jfeスチール株式会社 管用ねじ継手
JP5803953B2 (ja) * 2013-02-18 2015-11-04 Jfeスチール株式会社 管接続用ねじ継手
RU2642922C2 (ru) 2013-09-06 2018-01-29 Ниппон Стил Энд Сумитомо Метал Корпорейшн Резьбовое соединение для стальных труб
US20180258709A1 (en) * 2015-01-15 2018-09-13 Jfe Steel Corporation Screw joint for pipe (as amended)
US10041307B2 (en) 2015-01-22 2018-08-07 National Oilwell Varco, L.P. Balanced thread form, tubulars employing the same, and methods relating thereto
UA122027C2 (uk) * 2016-08-24 2020-08-25 ДжФЕ СТІЛ КОРПОРЕЙШН Різьбове з'єднання для трубних виробів нафтопромислового сортаменту
FR3060701A1 (fr) * 2016-12-16 2018-06-22 Vallourec Oil And Gas France Joint filete pour composant tubulaire
JP6900470B2 (ja) * 2017-05-22 2021-07-07 日本製鉄株式会社 鋼管用ねじ継手
CA3080458C (en) * 2017-11-09 2022-06-21 Nippon Steel Corporation Threaded connection for steel pipe
CN112601908B (zh) * 2018-08-21 2022-10-21 日本制铁株式会社 钢管用螺纹接头
CN109915667B (zh) * 2019-04-15 2020-02-07 大连长之琳科技发展有限公司 一种内旋滚压式密封接头、轻型直通管接头及其应用
CN110608322B (zh) * 2019-09-11 2024-04-12 江苏璞腾油气装备有限公司 一种四线海洋隔水管接头
WO2021145162A1 (ja) 2020-01-17 2021-07-22 日本製鉄株式会社 管用ねじ継手
MX2022006279A (es) 2020-01-17 2022-06-08 Nippon Steel Corp Conexion roscada para tubo.
CN114867960B (zh) * 2020-01-17 2023-11-21 日本制铁株式会社 管用螺纹接头
CA3190633A1 (en) 2020-09-30 2022-04-07 Jfe Steel Corporation Threaded joint of pipe and method for connecting same
DE202020107520U1 (de) * 2020-12-23 2021-02-01 L.L.C. "Interpipe Management" Dichte Metallrohrgewindeverbindung
FR3121492B1 (fr) * 2021-03-31 2023-02-24 Vallourec Oil & Gas France Dimensionnement d’un jeu axial de filetage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144068A (ja) 1984-08-07 1986-03-03 三菱電機株式会社 鉄道車両の蛇行動防止装置
JPS6144068Y2 (ja) * 1982-04-16 1986-12-12
JP2705506B2 (ja) 1993-03-24 1998-01-28 住友金属工業株式会社 油井管用ねじ継手
JP2001124253A (ja) 1999-10-29 2001-05-11 Kawasaki Steel Corp 鋼管用ネジ継手
JP2002522713A (ja) * 1998-07-31 2002-07-23 マンネスマン・アクチエンゲゼルシャフト 管継手
JP4208192B2 (ja) 2001-12-07 2009-01-14 バローレック・マネスマン・オイル・アンド・ガス・フランス 端部リップを備える少なくとも1つのねじ部分を含む高品質なねじ付き管継手
WO2009083523A1 (en) * 2007-12-28 2009-07-09 Vallourec Mannesmann Oil & Gas France Sealed threaded tubular connection which is resistant to successive pressure loads
JP4300187B2 (ja) 2002-09-06 2009-07-22 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト ねじ管継手
JP4535064B2 (ja) 2003-06-06 2010-09-01 住友金属工業株式会社 鋼管用ねじ継手

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1533619B2 (ja) * 1967-04-28 1970-06-11
US4588213A (en) * 1983-10-05 1986-05-13 Thread Technology International, Inc. Threaded pipe connection
JPS6144068U (ja) 1984-08-27 1986-03-24 株式会社 コスモ計器 絞り装置
US5137310A (en) * 1990-11-27 1992-08-11 Vallourec Industries Assembly arrangement using frustoconical screwthreads for tubes
FR2725773B1 (fr) * 1994-10-13 1996-11-29 Vallourec Oil & Gas Assemblage filete pour tubes
FR2733570B1 (fr) * 1995-04-28 1997-06-20 Vallourec Oil & Gas Assemblage filete pour tubes
FR2761450B1 (fr) * 1997-03-27 1999-05-07 Vallourec Mannesmann Oil & Gas Joint filete pour tubes
CN1282843C (zh) * 2000-06-09 2006-11-01 住友金属工业株式会社 管接头
FR2863681B1 (fr) * 2003-12-11 2006-02-24 Vallourec Mannesmann Oil & Gas Joint tubulaire a filetages coniques resistant a la fatigue
JP2007205361A (ja) * 2004-08-27 2007-08-16 Sumitomo Metal Ind Ltd 鋼管用ねじ継手
FR2913746B1 (fr) * 2007-03-14 2011-06-24 Vallourec Mannesmann Oil & Gas Joint filete tubulaire etanche pour sollicitations de pression interieure et exterieure
JP5250990B2 (ja) * 2007-03-28 2013-07-31 新日鐵住金株式会社 油井管用ねじ継手
CN102187139B (zh) * 2008-10-20 2013-06-05 住友金属工业株式会社 钢管用螺纹接头
JP4930647B1 (ja) * 2010-06-30 2012-05-16 Jfeスチール株式会社 管用ねじ継手

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144068Y2 (ja) * 1982-04-16 1986-12-12
JPS6144068A (ja) 1984-08-07 1986-03-03 三菱電機株式会社 鉄道車両の蛇行動防止装置
JP2705506B2 (ja) 1993-03-24 1998-01-28 住友金属工業株式会社 油井管用ねじ継手
JP2002522713A (ja) * 1998-07-31 2002-07-23 マンネスマン・アクチエンゲゼルシャフト 管継手
JP2001124253A (ja) 1999-10-29 2001-05-11 Kawasaki Steel Corp 鋼管用ネジ継手
JP4208192B2 (ja) 2001-12-07 2009-01-14 バローレック・マネスマン・オイル・アンド・ガス・フランス 端部リップを備える少なくとも1つのねじ部分を含む高品質なねじ付き管継手
JP4300187B2 (ja) 2002-09-06 2009-07-22 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト ねじ管継手
JP4535064B2 (ja) 2003-06-06 2010-09-01 住友金属工業株式会社 鋼管用ねじ継手
WO2009083523A1 (en) * 2007-12-28 2009-07-09 Vallourec Mannesmann Oil & Gas France Sealed threaded tubular connection which is resistant to successive pressure loads

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2589846A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001820A (ja) * 2012-06-20 2014-01-09 Jfe Steel Corp 鋼管用ねじ継手
WO2014092605A3 (en) * 2012-12-13 2014-08-07 Tmk-Premium Services Llc Sealed threaded joint for casing pipes (versions)
EA031821B1 (ru) * 2012-12-13 2019-02-28 Общество С Ограниченной Ответственностью "Тмк-Премиум Сервис" Высокогерметичное резьбовое соединение обсадных труб
WO2014115191A1 (ja) * 2013-01-28 2014-07-31 Jfeスチール株式会社 鋼管用ねじ継手
JP5949953B2 (ja) * 2013-01-28 2016-07-13 Jfeスチール株式会社 鋼管用ねじ継手
US10202809B2 (en) 2013-01-28 2019-02-12 Jfe Steel Corporation Threaded joint for steel pipes
WO2017141538A1 (ja) * 2016-02-19 2017-08-24 Jfeスチール株式会社 油井管用ねじ継手
JP6187724B1 (ja) * 2016-02-19 2017-08-30 Jfeスチール株式会社 油井管用ねじ継手
AU2016393093B2 (en) * 2016-02-19 2019-05-02 Jfe Steel Corporation Threaded joint for oil well tubing
RU2692177C1 (ru) * 2016-02-19 2019-06-21 ДжФЕ СТИЛ КОРПОРЕЙШН Резьбовое соединение насосно-компрессорных труб для нефтяных скважин
US10900595B2 (en) 2016-02-19 2021-01-26 Jfe Steel Corporation Threaded joint for oil well tubing

Also Published As

Publication number Publication date
JP4930647B1 (ja) 2012-05-16
AR081782A1 (es) 2012-10-17
CN202469289U (zh) 2012-10-03
BR112012033452A2 (pt) 2016-12-13
JP2012149760A (ja) 2012-08-09
RU2522756C1 (ru) 2014-07-20
BR112012033452B1 (pt) 2020-09-29
EP2589846B1 (en) 2017-06-14
CN102313085A (zh) 2012-01-11
AU2011272607B2 (en) 2015-03-12
CA2801204C (en) 2016-08-09
CA2801204A1 (en) 2012-01-05
EP3196524B1 (en) 2021-06-09
MY156120A (en) 2016-01-15
MX2012014880A (es) 2013-01-24
EP2589846A4 (en) 2015-04-01
EP3196524A1 (en) 2017-07-26
AU2011272607A1 (en) 2012-12-20
CN102313085B (zh) 2015-10-14
SA111320568B1 (ar) 2014-05-21
US20130181442A1 (en) 2013-07-18
MX336628B (es) 2016-01-26
EP2589846A1 (en) 2013-05-08
US9194190B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
WO2012002409A1 (ja) 管用ねじ継手
JP5660308B2 (ja) 鋼管用ねじ継手
JP5849749B2 (ja) 管用ねじ継手
CN107101054B (zh) 油井管用螺纹接头
JP7120179B2 (ja) 油井管用ねじ継手
WO2012128015A1 (ja) 鋼管用ねじ継手
JP6103137B2 (ja) 管用ねじ継手
JP5978953B2 (ja) 管用ねじ継手
WO2020075342A1 (ja) ねじ継手
JP5673089B2 (ja) 鋼管用ねじ継手
JP6020087B2 (ja) 管用ねじ継手
JP5906588B2 (ja) 鋼管用ねじ継手の製造方法
JP5776222B2 (ja) 鋼管用ねじ継手
JP5673090B2 (ja) 鋼管用ねじ継手
JP6051811B2 (ja) 管用ねじ継手
WO2014125545A1 (ja) 管接続用ねじ継手
JP5906587B2 (ja) 鋼管用ねじ継手の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3667/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2801204

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/014880

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2011272607

Country of ref document: AU

Date of ref document: 20110622

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013103811

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011800871

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011800871

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13807883

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012033452

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012033452

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121227