WO2012002196A1 - Optical pick-up device - Google Patents

Optical pick-up device Download PDF

Info

Publication number
WO2012002196A1
WO2012002196A1 PCT/JP2011/064185 JP2011064185W WO2012002196A1 WO 2012002196 A1 WO2012002196 A1 WO 2012002196A1 JP 2011064185 W JP2011064185 W JP 2011064185W WO 2012002196 A1 WO2012002196 A1 WO 2012002196A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
diffraction grating
objective lens
optical
pickup device
Prior art date
Application number
PCT/JP2011/064185
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 阿久津
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012002196A1 publication Critical patent/WO2012002196A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly

Definitions

  • the present invention relates to an optical pickup device.
  • an inline DPP (Differential Push-Pull) system is known as a tracking error signal detection system for an optical pickup device.
  • the laser beam emitted from the laser light source is separated into a main beam and a sub beam by using a diffraction grating in which a predetermined periodic structure is provided in each divided region.
  • These light beams are condensed on the recording surface of the optical disk by the objective lens to form a main spot and a sub spot, and the reflected light of these spots is received by the photodetector.
  • a tracking error signal is obtained by performing an operation based on the detection signal detected by the photodetector.
  • a diffraction grating divided into at least two regions having a predetermined periodic structure is used.
  • the center of the entire periodic structure is placed at the center of the laser light so that the amount of laser light applied to the diffraction grating is uniform in each divided region of the diffraction grating. It is necessary to approximately match the axis. Therefore, an optical pickup device capable of adjusting the positioning of the diffraction grating is known (see, for example, Patent Document 1).
  • the diffraction grating is supported by the first holder, and the first holder is coupled to the second holder so as to be rotatable around the optical axis of the laser beam.
  • the first holder and the second holder are accommodated in an accommodation chamber provided in the housing.
  • the first holder can rotate with respect to the second holder, and the first and second holders can move in a second direction orthogonal to the first direction in which the periodic structure is repeated on the grating surface of the diffraction grating. It has become. That is, the grating surface of the diffraction grating is rotated and adjusted with respect to the laser beam by rotating the first holder using an adjustment jig or the like. Further, by moving the second holder in the second direction, the position of the diffraction grating in the second direction with respect to the laser light is adjusted independently of the rotation adjustment.
  • the optical pickup device for example, two parts of the first and second holders are required to attach the diffraction grating to the housing, and the optical pickup device may be increased in size.
  • an extra work step for coupling the first holder and the second holder is required, and the assembly work of the optical pickup device may be complicated.
  • a main invention for solving the above-described problem is a diffraction grating that is interposed on an optical axis between a laser light source and an objective lens and diffracts laser light emitted from the laser light source, and a housing in which the diffraction grating is housed.
  • a housing having a chamber, and the storage chamber has a shape that prohibits the diffraction grating from moving in a second direction orthogonal to a first direction in which a periodic structure is repeated on a grating surface of the diffraction grating.
  • the diffraction grating is interposed on the optical axis between the laser light source and the objective lens and diffracts the laser light emitted from the laser light source, and the diffraction grating, A reflection mirror interposed on the optical axis between the objective lens and reflecting the laser beam so that the laser beam is directed toward the objective lens; a first receiving chamber containing the diffraction grating; and the reflection A housing having a second housing chamber in which a mirror is housed, wherein the second housing chamber has the laser with respect to the reflecting surface of the reflecting mirror so that the laser light is transmitted through a substantial center of the objective lens.
  • An optical pickup device having a shape capable of adjusting a reflection angle of light.
  • Another main invention for solving the above-described problem is a reflection mirror that is interposed on the optical axis between the diffraction grating and the objective lens and reflects the laser light so that the laser light is directed toward the objective lens,
  • a housing having a housing chamber in which the reflecting mirror is housed, wherein the housing chamber has a reflection angle of the laser light with respect to a reflecting surface of the reflecting mirror so that the laser light passes through a substantially center of the objective lens.
  • an optical pickup device capable of reducing the number of parts and work processes for attaching the diffraction grating to the housing.
  • an optical pickup device capable of reducing the number of parts and the work process can be provided.
  • FIG. 6B is an enlarged view of a portion surrounded by a broken line of the optical pickup device shown in FIG.
  • FIG. 6A cut along a-a ′. It is a front view of the cross section of the optical pick-up apparatus shown to FIG. 6B.
  • FIG. 6B is an enlarged view of a portion surrounded by a broken line of the optical pickup device shown in FIG. 6A.
  • FIG. 6A It is a figure for demonstrating position adjustment of the reflective mirror of the optical pick-up apparatus shown in FIG.
  • FIG. 9A It is a side view of a gonio stage and a reflective mirror. It is a perspective view of a gonio stage and a reflective mirror shown to FIG. 9A. It is a perspective view at the time of attaching a gonio stage to the optical pick-up apparatus shown to FIG. 7A.
  • the focus direction F is, for example, the optical axis direction through which laser light passes through the objective lens 5.
  • the tracking direction Tr is, for example, orthogonal to the focus direction F and is the radial direction of an optical disk (not shown).
  • the tracking direction Tr is a moving direction of the optical pickup device 1 from the inner peripheral side to the outer peripheral side of the optical disc and / or a moving direction of the optical pickup device 1 applied from the outer peripheral side to the inner peripheral side of the optical disc.
  • the tangential direction Tn is, for example, orthogonal to the focus direction F, orthogonal to the tracking direction Tr which is the radial direction of the optical disc and the moving direction of the optical pickup device 1, and is substantially spiral / circumferential of the optical disc. It is considered to be a direction.
  • the side on which the objective lens 5 of the optical pickup device 1 approaches the optical disc is defined as the + side of the focus direction F.
  • the side on which the objective lens 5 moves away is defined as the minus side of the focus direction F.
  • the inner peripheral side of the optical disc is set to the + side of the tracking direction Tr, and the outer peripheral side of the optical disc is set to the tracking direction Tr. The negative side.
  • the clockwise direction side is the positive side of the tangential direction Tn
  • the counterclockwise direction side is the tangential side.
  • each direction and ⁇ side of each direction in the present invention are defined as each direction when viewing the optical disc with respect to the optical pickup device 1 and ⁇ side of each direction.
  • each direction and the definition of the ⁇ side of each direction are defined for convenience in describing the optical pickup device 1.
  • the optical pickup device 1 includes a housing 2, an objective lens holder 4, an objective lens 5, a laser light source 6, a holder 7, a diffraction grating 8, a polarization beam splitter 9, a quarter wavelength plate 10, and a collimator.
  • the lens 11, the reflection mirror 12, the parallel plates 13 and 14, the photodetector 15, and the light receiving element 16 are accommodated.
  • a cover 3 is attached to the housing 2 so as to cover the configuration other than the objective lens 5 and the objective lens holder 4 that supports the objective lens 5.
  • an information recording surface such as CD (Compact Disc), DVD (Digital Versatile Disc), Blu-ray (Blu-ray Disc) (registered trademark) is applied to the objective lens 5 exposed from the cover 3.
  • An optical disc having a signal layer is opposed to the optical disc.
  • the optical pickup device 1 records, reproduces, and erases information by irradiating the information recording surface of the optical disc with laser light.
  • An example of an optical system for laser light emitted from the laser light source 6 of the optical pickup device 1 will be described.
  • the laser light source 6 emits laser light in an infrared wavelength band (for example, 765 nm to 840 nm) for irradiating the information recording surface of the CD when a control voltage is applied from a laser driver (not shown). Further, the laser light source 6 emits laser light in a red wavelength band (for example, 630 nm to 685 nm) for irradiating the information recording surface of the DVD when a control voltage is applied from a laser driver. Further, the laser light source 6 emits laser light in a blue-violet wavelength band (for example, 400 nm to 450 nm) for irradiating the information recording surface of Blu-ray when a control voltage is applied from a laser driver.
  • an infrared wavelength band for example, 765 nm to 840 nm
  • a red wavelength band for example, 630 nm to 685 nm
  • the laser light source 6 emits laser light in a blue-violet wavelength band (for example, 400
  • optical pickup device 1 corresponds to, for example, at least one type of optical discs among the various types of optical discs.
  • the first to third optical disks are collectively referred to as optical disks.
  • the laser light source 6 emits a laser beam for irradiating the information recording surface of various optical discs when the control voltage is applied from the laser driver.
  • the optical pickup device 1 records, reproduces, and erases information by irradiating the information recording surface of various optical discs with the laser light from the laser light source 6 through the objective lens 5. Therefore, for each configuration of the optical system housed in the housing 2 of the optical pickup device 1, an optical path (forward path) until the laser light emitted from the laser light source 6 is irradiated onto the optical disk through the objective lens 5, and the optical disk A description will be given by dividing into the optical path (return path) until the laser beam reflected by is received by the photodetector 15.
  • the laser light emitted from the laser light source 6 is sequentially passed through the diffraction grating 8 supported by the holder 7, the polarization beam splitter 9, the quarter wavelength plate 10, the collimator lens 11, the reflection mirror 12, and the objective lens 5.
  • the information recording surface is irradiated.
  • the laser light emitted from the laser light source 6 is diffracted by the diffraction grating 8 and split into one main beam and at least two sub beams.
  • the diffraction grating 8 is housed in a first housing chamber 20 provided in the housing 2 in a state where the grating surface 82 is supported by the holder 7 so as to be orthogonal to the optical axis of the laser light.
  • a specific configuration of the diffraction grating 8 and a structure for attaching the holder 7 to the housing 2 will be described later.
  • the laser beam dispersed by the diffraction grating 8 is reflected by the polarizing beam splitter 9 toward the quarter wavelength plate 10.
  • the laser light incident on the quarter wavelength plate 10 is converted from linearly polarized light to circularly polarized light.
  • the laser beam converted into circularly polarized light is incident on the collimator lens 11 and converted into substantially parallel light.
  • the laser light converted into substantially parallel light is reflected toward the objective lens 5 by the reflection mirror 12.
  • the reflection mirror 12 is accommodated in a second accommodation chamber 21 provided in the housing 2. A structure for attaching the reflection mirror 12 to the housing 2 will be described later.
  • the laser light incident on the objective lens 5 is condensed on the information recording surface of the optical disk, and becomes at least three condensing spots.
  • the light receiving element 16 detects a component transmitted through the polarization beam splitter 9 from the laser light emitted from the laser light source 6 and outputs a signal corresponding thereto. Based on this signal, a signal for applying feedback to the laser light source 6 is generated.
  • the laser light reflected from at least three condensing spots formed on the information recording surface of the optical disc is sequentially an objective lens 5, a reflecting mirror 12, a collimator lens 11, a quarter wavelength plate 10, a polarizing beam splitter 9, and a parallel beam.
  • the light is received by the photodetector 15 after passing through the flat plate 13 and the parallel plate 14.
  • the laser light reflected from the optical disk is converted into substantially parallel light by the objective lens 5.
  • the laser light converted into substantially parallel light is reflected by the reflecting mirror 12 toward the collimator lens 11 and converted into convergent light by the collimator lens 11.
  • the laser light converted into convergent light is converted from circularly polarized light into linearly polarized light by the quarter wavelength plate 10.
  • the laser beam converted into linearly polarized light is transmitted toward the parallel plate 13 by the polarization beam splitter 9, and astigmatism is corrected by the parallel plate 13.
  • the astigmatism-corrected laser light is given astigmatism as a focus error component by the parallel plate 14, and the coma generated by the polarization beam splitter 9 and the parallel plate 13 is corrected, and then light detection is performed.
  • the light is received by the device 15.
  • the photodetector 15 that has received the laser light generates an electrical signal that is photoelectrically converted according to the amount of the main beam of the laser light, and outputs it to a processing circuit (not shown). As a result, information is reproduced from the information recording surface of the optical disc based on the electrical signal corresponding to the main beam. In addition, the photodetector 15 generates an electrical signal that is photoelectrically converted in accordance with the amount of laser beam sub-beams, and outputs the electrical signal to the processing circuit. As a result, a tracking error signal (TE signal), a focus error signal (FE signal), and the like are generated based on the electrical signals corresponding to the main beam and sub beam of the laser light. Based on these signals, the objective lens holder 4 of the optical pickup device 1 is displaced in the tracking direction Tr and the focus direction F.
  • TE signal tracking error signal
  • FE signal focus error signal
  • the diffraction grating 8 is formed using, for example, glass / plastic that transmits laser light from the laser light source 6 as a base material, and has a periodic structure in which the concave portions 80 and the convex portions 81 are alternately repeated by processing such as photoetching.
  • the lattice plane 82 is provided.
  • the lattice plane 82 includes a first region 8a and a second region 8b that are joined with the dividing line 8c as a boundary.
  • the periodic structure of the first region 8a and the second region 8b is repeated along the direction of the dividing line 8c, and the phase difference between them is 180 degrees.
  • the laser light is incident on the diffraction grating 8 so as to pass through the dividing line 8c, whereby the laser light is split into one main beam and at least two sub-beams that are 180 degrees out of phase with each other.
  • the diffraction grating 8 is configured as a multiple division type diffraction grating 8 including at least a plurality of regions of a first region 8a and a second region 8b.
  • the direction in which the periodic structure is repeated on the grating surface 82 of the diffraction grating 8 is defined as a first direction A, and the direction orthogonal to the first direction A is defined as a second direction B. That is, the dividing line 8c extends the center in the second direction B of the diffraction grating 8 along the first direction A and divides the first region 8a and the second region 8b.
  • At least three beams dispersed by the diffraction grating 8 are condensed on the information recording surface of the optical disk by the objective lens 5 as described above, and become at least three condensing spots.
  • the optical axis of the laser beam (the intensity center point of the laser beam) is a diffraction grating so as to increase the phase symmetry of at least two sub beams. It is preferable to pass through approximately the center of the objective lens 5 when passing through the eight dividing lines 8c and at the reference position.
  • the reference position is a position where the objective lens 5 is not displaced to the + side or the ⁇ side of the tracking direction Tr, and the amount of movement of the objective lens 5 in the tracking direction Tr (hereinafter simply referred to as the amount of movement) becomes zero. It is.
  • FIG. 5 is a visual field characteristic diagram showing the degree of deterioration of the amplitude of the TE signal with respect to the amount of movement of the objective lens 5 when the laser light passes through the approximate center of the objective lens 5 when the objective lens 5 is at the reference position. It is.
  • This visual field characteristic diagram shows the symmetry of the TE signal (the symmetry of the visual field characteristic) when the objective lens 5 moves from the reference position to the + side of the tracking direction Tr and to the ⁇ side. .
  • the higher the symmetry of the visual field characteristic the higher the accuracy of the TE signal.
  • a curve CP indicated by a solid line is a visual field characteristic of the TE signal when the optical axis of the laser light passes on the dividing line 8 c of the diffraction grating 8.
  • a curve CP shows a maximum value when the objective lens 5 is at the reference position, and is approximately symmetrical on the + side and the ⁇ side of the movement amount of the objective lens 5 around the maximum value.
  • the curve CQ indicated by the dotted line and the curve CR indicated by the alternate long and short dash line are respectively the case where the optical axis of the laser beam is shifted from the division line 8c of the diffraction grating 8 toward the first region 8a and the second region 8b.
  • the position of the optical axis of the laser light emitted from the laser light source 6 and the position of the dividing line 8c of the diffraction grating 8 are considered in advance. 2 is attached to the holder 7.
  • the holder is placed in the first storage chamber 20 provided in the housing 2 so that the diffraction grating 8 supported by the holder 7 is interposed on the optical axis between the laser light source 6 and the polarization beam splitter 9. 7 is accommodated.
  • the holder 7 sandwiches the outer edge side of the grating surface 82 from both sides in the direction orthogonal to the grating surface 82 so that the grating surface 82 of the diffraction grating 8 is exposed.
  • the holder 7 includes a cylindrical member 70 that protrudes toward the laser light source 6 in a direction orthogonal to the grating surface 82 of the diffraction grating 8 when accommodated in the first accommodation chamber 20.
  • the first accommodating chamber 20 has a shape that accommodates the holder 7 so that the optical axis of the laser beam passes the dividing line 8 c of the diffraction grating 8 and prohibits the accommodated holder 7 from moving in the second direction B. ing.
  • the first storage chamber 20 includes walls 20 a and 20 b that are orthogonal to the optical axis of the laser light emitted from the laser light source 6. Cutouts 20c and 20d through which laser light passes are formed in the walls 20a and 20b facing each other.
  • a cylindrical member 20e that is rotatably coupled to the cylindrical member 70 of the holder 7 is formed on the inner surface 20f of the first wall 20b on the laser light source 6 side of the first storage chamber 20.
  • the cylindrical member 20 e protrudes toward the holder 7 along the optical axis direction C (third direction) of the laser light, and has an inner diameter slightly longer than the outer diameter of the cylindrical member 70.
  • the diffraction grating 8 is disposed so that the grating surface 82 is orthogonal to the optical axis of the laser beam.
  • the holder 7 and the diffraction grating 8 are prohibited from moving in the second direction B in the first storage chamber 20.
  • the optical axis direction C is, for example, the axial direction of laser light that is emitted from the laser light source 6 and passes through the dividing line 8c of the diffraction grating 8 located in the first storage chamber 20.
  • a leaf spring 17 (plate spring / elastic body) that applies an elastic force to the holder 7 to prohibit the holder 7 from moving in the optical axis direction C of the laser light is provided in the holder. 7 is housed together.
  • the length L1 of the laser light in the first storage chamber 20 in the optical axis direction C is longer than the length L2 of the holder 7 in the same direction C. Therefore, the holder 7 is inserted from a position close to the second wall 20a of the first storage chamber 20, and the cylindrical member 70 is pushed into the interior 20g of the cylindrical member 20e, whereby the second wall 20a of the first storage chamber 20 is inserted.
  • the leaf spring 17 is accommodated in a space 20 h formed between the holder 7 and the holder 7.
  • the plate spring 17 has a notched surface 17 a facing the diffraction grating 8.
  • the holder 7 is pressed against the first wall 20b of the first storage chamber 20 by the leaf spring 17, so that the holder 7 can rotate around the optical axis of the laser light while moving the laser light in the optical axis direction C. Movement is prohibited. Therefore, the grating surface 82 of the diffraction grating 8 can be rotated and adjusted with respect to the optical axis of the laser beam by rotating the holder 7 around the optical axis using an adjustment jig (not shown).
  • the diffraction grating 8 moves in the second direction B or the laser beam as the diffraction grating 8 rotates. Can be prevented from moving in the optical axis direction C.
  • the first storage chamber 20 is provided with respect to the housing 2 so that the optical axis of the laser light emitted from the laser light source 6 passes on the dividing line 8 c of the diffraction grating 8. ing.
  • the holder 7 does not need to be composed of two parts in order to perform the rotation adjustment of the diffraction grating 8 and the position adjustment in the second direction B independently, and the diffraction grating 8 is attached to the housing 2.
  • the number of parts and the work process can be reduced.
  • the optical pickup device 1 can be reduced in size and the manufacturing cost can be reduced.
  • the movement in the second direction B is performed in the first storage chamber 20 provided in advance in consideration of the positional relationship between the laser light source 6 and the diffraction grating 8.
  • the holder 7 is accommodated in a state in which is prohibited.
  • the reflection angle of the laser beam with respect to the reflection surface 12 a of the reflection mirror 12 is adjusted according to the variation caused by the actual configuration or assembly, The position of the optical axis of the laser beam passing through the objective lens 5 is adjusted.
  • the reflection mirror 12 is accommodated in the second accommodation chamber 21 provided in the housing 2 so as to be interposed on the optical axis of the laser light between the collimator lens 11 and the objective lens 5.
  • the second storage chamber 21 has a reflection angle of the laser beam with respect to the reflection surface 12a of the stored reflection mirror 12, that is, an angle of the reflection surface 12a of the reflection mirror 12 with respect to the optical axis of the laser beam from the collimator lens 11 (hereinafter simply referred to as a reflection surface). (Referred to as the angle of 12a).
  • the second storage chamber 21 has a box shape in which the + side in the focus direction F and the side facing the collimator lens 11 are open.
  • the second storage chamber 21 has a shape slightly larger than that of the reflection mirror 12 so that a space (gap) 21 c is formed between the wall surfaces 21 a and 21 b and the reflection mirror 12.
  • the + side of the tracking direction Tr of the reflecting surface 12a of the reflecting mirror 12 is set to the + side of the focus direction F with respect to the ⁇ side (the direction indicated by the arrow b in FIG. 7B).
  • the optical axis of the laser beam reflected by the reflecting mirror 12 can be moved to the minus side of the tracking direction Tr.
  • the optical axis of the laser light can be moved to the negative side of the tangential direction Tn.
  • the optical axis of the laser light can be moved to the + side of the tracking direction Tr. Further, by moving the reflecting mirror 12 in the direction indicated by the arrow e in FIG. 7B, the optical axis of the laser light can be moved to the + side of the tangential direction Tn.
  • the reflection mirror 12 whose angle of the reflection surface 12a is adjusted is fixed to the negative side wall surface (bottom surface) 21b in the focus direction F of the second storage chamber 21 by an adhesive.
  • the adhesive is a UV (ultraviolet) curable adhesive that is cured by being irradiated with ultraviolet rays.
  • FIG. 8B at least three adhesive spots 22 a and 22 b on the bottom surface of the second storage chamber 21. 22c.
  • the reflection mirror 12 accommodated in the second storage chamber 21 is first placed on the adhesion spots 22a, 22b, 22c before UV irradiation.
  • the angle of the reflecting surface 12a of the reflecting mirror 12 is adjusted in the above-described direction in accordance with variations caused by the configuration and assembly in the optical system of the optical pickup device 1. Then, the adhesion spots 22a, 22b, and 22c are irradiated with UV while maintaining the adjusted angle of the reflecting surface 12a of the reflecting mirror 12. Since the adhesive is thereby cured, the reflection mirror 12 is attached to the housing 2 in a state where the angle of the reflection surface 12a is adjusted.
  • the reflecting mirror 12 is accommodated in the second accommodating chamber 21 using the gonio stage 30 and an autocollimator (not shown), and the reflecting mirror 12 is attached to the housing 2 while adjusting the angle of the reflecting surface 12a.
  • the laser light passing through the objective lens 5 is adjusted by adjusting the angle of the reflection surface 12a of the reflection mirror 12 in accordance with the variation occurring in the configuration from the laser light source 6 to the reflection mirror 12 in the forward path of the laser light. Adjust the position of the optical axis.
  • the gonio stage 30 includes a main body 34, adjustment knobs (adjustment knobs) 32 and 33 provided in the main body 34, and an adsorption member 31 provided in the main body 34.
  • adjustment knob 32 By rotating the adjustment knob 32, the stage 34a of the main body 34 can be moved in the direction indicated by the arrow g in FIG. 9B.
  • the adjustment knob 33 By rotating the adjustment knob 33, the stage 34a of the main body 34 can be moved in the direction indicated by the arrow f in FIG. 9A.
  • One end of the adsorption member 31 is attached to the stage 34a of the main body 34, and is linked to the stage 34a.
  • a suction pad (not shown) or the like is attached to the other end of the suction member 31, and the suction pad can be attached to and detached from the reflection surface 12a of the reflection mirror 12.
  • the autocollimator irradiates the reflection mirror 12 with laser light for adjustment, the position (measurement position) of the optical axis of the reflected light, and the optical axis of the reflected light obtained when the reflection mirror 12 is tilted to a target angle.
  • a target angle Are displayed on a monitor or the like (not shown). Therefore, for example, the angle of the reflecting surface 12a of the reflecting mirror 12 can be adjusted to a target angle by rotating the adjustment knobs 32 and 33 of the gonio stage 30 while confirming the display on the monitor of the autocollimator.
  • the angle of the reflecting surface 12a of the reflecting mirror 12 is adjusted by the gonio stage 30 and the autocollimator so that the optical axis of the laser light from the reflecting mirror 12 passes through the approximate center of the objective lens 5 at the reference position. explain.
  • an optical system excluding the reflecting mirror 12 and the objective lens 5 is incorporated in the housing 2. Then, laser light is emitted from the laser light source 6, and the focus direction of the optical axis of the laser light reflected from the reflection mirror 12 through the diffraction grating 8, the polarization beam splitter 9, the quarter wavelength plate 10, and the collimator lens 11. An angle with respect to F (detection optical axis angle) is detected. When the detection optical axis angle varies in the configuration from the laser light source 6 to the reflection mirror 12, the angle of the optical axis of the laser light passing through the center position of the objective lens 5 with respect to the focus direction F (target optical axis angle). ).
  • the target collimator is set to the autocollimator so that the position of the optical axis of the laser light from the reflecting mirror 12 substantially coincides with the center position of the objective lens 5. Set the position.
  • the main body 34 is parallel to the direction in which the objective lens 5 is attached with the reflection mirror 12 attached to the other end of the adsorption member 31. Install. Further, the adjustment mirror light is irradiated to the reflection mirror 12 of the autocollimator, and the measurement position and the set target position are displayed on the monitor. While checking this monitor, the adjustment knobs 32 and 33 of the gonio stage 30 are rotated so that the measurement position substantially coincides with the target position. In addition, by rotating the adjustment knob 32, the reflecting mirror 12 can be moved in the direction indicated by the arrow b or the arrow d in FIG. 7B. Further, by rotating the adjustment knob 33, the reflection mirror 12 can be moved in the direction indicated by the arrow c or the arrow e in FIG. 7B.
  • the angle of the reflecting surface 12a of the reflecting mirror 12 is adjusted to a target angle.
  • UV irradiation is performed on the adhesion spots 22a, 22b, and 22c in a state where the reflection mirror 12 is adsorbed to the adsorption member 31 of the goniometer 30.
  • the reflection surface 12a of the reflection mirror 12 is adjusted, and the reflection angle of the laser beam with respect to the reflection surface 12a is adjusted.
  • the reflection mirror 12 can be attached to the housing 2 so that the optical axis of the laser light from the reflection mirror 12 passes through the approximate center of the objective lens 5.
  • the angle of the reflecting surface 12a of the reflecting mirror 12 is adjusted so that the optical axis of the laser beam from the reflecting mirror 12 passes through the approximate center of the objective lens 5 has been described.
  • the position of the optical axis of the laser light emitted from the laser light source 6 and the position of the dividing line 8c of the diffraction grating 8 the position of the optical axis of the laser light passing through the diffraction grating 8 Depending on the angle, the angle of the reflecting surface 12a of the reflecting mirror 12 may be adjusted. Thereby, the accuracy of the TE signal can be further increased.
  • the curve CQ shown in FIG. 5 is the visual field characteristic of the TE signal when the optical axis of the laser beam is shifted to the first region 8a side from the dividing line 8c of the diffraction grating 8, but the objective lens 5 is tracking.
  • the maximum value is shown when the lens moves about -0.1 mm to the-side of the direction Tr.
  • the symmetry of the field characteristic of the curve CQ is improved by moving the position of the optical axis of the laser beam passing through the objective lens 5 at the reference position from the center position of the objective lens 5 to, for example, the + side of the tracking direction Tr.
  • the accuracy of the TE signal can be increased.
  • the position of the optical axis of the laser light passing through the objective lens 5 at the reference position is moved from the center position of the objective lens 5 to, for example, the minus side in the tracking direction Tr. Can be improved, and the accuracy of the TE signal can be improved.
  • the optical pickup device 1 includes at least the diffraction grating 8 that is interposed on the optical axis between the laser light source 6 and the objective lens 5 and diffracts the laser light emitted from the laser light source 6. And a housing 2 having a first storage chamber 20 in which the diffraction grating 8 is stored.
  • the first storage chamber 20 is orthogonal to a first direction A in which the periodic structure is repeated on the grating surface 82 of the diffraction grating 8.
  • the shape which prohibits the diffraction grating 8 moving to the two directions B should just be exhibited.
  • the positional relationship between the laser light source 6 and the diffraction grating 8 is considered in advance so that the optical axis of the laser light emitted from the laser light source 6 passes on the dividing line 8 c of the diffraction grating 8.
  • the first storage chamber 20 is provided in the housing 2.
  • the holder 7 is accommodated in the 1st storage chamber 20 in the state in which the movement to the 2nd direction B was prohibited.
  • the holder 7 does not need to be composed of two parts in order to perform the rotation adjustment of the diffraction grating 8 and the position adjustment in the second direction B independently, and the diffraction grating 8 is attached to the housing 2.
  • the number of parts and the work process can be reduced.
  • the optical pickup device 1 can be reduced in size and the manufacturing cost can be reduced.
  • the leaf spring 17 that applies an elastic force that prohibits the diffraction grating 8 from moving in the optical axis direction C to the diffraction grating 8 accommodated in the first accommodation chamber 20 is provided.
  • the diffraction grating 8 can be fixed in the first storage chamber 20 so as to be rotatable around the optical axis of the laser light and prohibited from moving in the optical axis direction C. Accordingly, it is possible to prevent the diffraction grating 8 from moving in the optical axis direction C with the rotation adjustment of the diffraction grating 8 with a simple configuration and to easily prevent a decrease in the accuracy of the TE signal. it can.
  • the optical pickup device 1 includes at least a diffraction grating 8 that is interposed on the optical axis between the laser light source 6 and the objective lens 5 and diffracts the laser light emitted from the laser light source 6.
  • a reflection mirror 12 interposed on the optical axis between the diffraction grating 8 and the objective lens 5 to reflect the laser light so that the laser light is directed toward the objective lens 5, and a first accommodation chamber 20 in which the diffraction grating 8 is accommodated.
  • a housing 2 having a second housing chamber 21 in which the reflecting mirror 12 is housed, and the second housing chamber 21 is configured so that the laser beam passes through the substantial center of the objective lens 5 so that the laser light passes through the center.
  • the shape which can adjust the reflection angle of the laser beam with respect to the reflective surface 12a should just be exhibited.
  • the optical axis of the laser light from the reflection mirror 12 is transmitted through substantially the center of the objective lens 5 in consideration of variations caused by the configuration and assembly of the optical system in the housing 2.
  • the angle of the reflecting surface 12a of the reflecting mirror 12 can be adjusted. That is, the reflection angle of the laser beam with respect to the reflection surface 12a of the reflection mirror 12 can be adjusted.
  • the number of parts and work steps for attaching the diffraction grating 8 to the housing 2 can be reduced, and the accuracy of the TE signal and the like can be increased.
  • the second storage chamber 21 has at least one of the first direction A in which the periodic structure is repeated on the grating surface 82 of the diffraction grating 8 and the second direction B orthogonal to the first direction A.
  • a shape in which the reflection angle of the laser beam with respect to the reflection surface 12a of the reflection mirror 12 can be adjusted in a direction corresponding to one of them is exhibited.
  • this optical pickup device 1 when there is a variation in the position of the optical axis of the laser light emitted from the laser light source 6 and the position of the dividing line 8 c of the diffraction grating 8, the laser that passes through the diffraction grating 8.
  • the angle of the reflecting surface 12a of the reflecting mirror 12 can be adjusted according to the position of the optical axis of the light.
  • the first direction A of the diffraction grating 8 optically corresponds to the tangential direction Tn
  • the second direction B of the diffraction grating 8 optically corresponds to the tracking direction Tr.
  • the optical axis of the laser beam from the reflection mirror 12 is tracked according to the amount of deviation.
  • the reflecting mirror 12 is moved in the direction indicated by the arrow b or the arrow d in FIG. 7B so as to move in the direction Tr.
  • the reflection angle of the laser beam with respect to the reflection surface 12a of the reflection mirror 12 is adjusted by the gonio stage 30.
  • the angle of the reflection surface 12 a of the reflection mirror 12 can be easily and easily adjusted using the gonio stage 30 and the autocollimator.
  • the objective lens holder 4 holds, for example, one objective lens 5 that focuses laser light on the first, second, and / or third optical disc. It is not limited.
  • the objective lens holder 4 includes a first objective lens (not shown) that focuses laser light on first and second optical disks, and a second objective lens (not shown) that focuses laser light on a third optical disk. These two objective lenses may be held, for example, in a state of being arranged substantially along the radial direction of the optical disk, here along the tracking direction Tr.
  • the objective lens holder 4 includes a first objective lens (not shown) for condensing the laser light on the first and second optical disks, and a second objective lens (not shown) for condensing the laser light on the third optical disk. These two objective lenses may be held in a state of being aligned substantially along the tangential direction Tn of the optical disk.
  • the optical pickup device 1 may not include the optical system for the first optical disc. Further, the optical pickup device 1 may not include the optical system for the second optical disc. Further, the optical pickup device 1 may not include the optical system for the third optical disc.
  • a three-divided type diffraction grating including three regions may be used.
  • a four-divided diffraction grating including four regions may be used.
  • a multi-partition type diffraction grating having a plurality of regions can be used.
  • SYMBOLS 1 Optical pick-up apparatus, 2 ... Housing, 3 ... Cover, 4 ... Objective lens holder, 5 ... Objective lens, 6 ... Laser light source, 7 ... Holder, 7a ... Outer surface, 8 ... Diffraction grating, 8a ... 1st area

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

Provided is an optical pick-up device which makes it possible to reduce the number of parts and operation steps for attaching a diffraction grating to a housing. An optical pick-up device (1) is provided with a diffraction grating (8) and a housing (2) on an optical axis between a laser light source (6) and an object lens (5). The diffraction grating (8) diffracts laser light emitted from the laser light source (6) and is housed in a housing chamber (20) in the housing (2). The housing chamber (20) has a shape which prevents the diffraction grating (8) from moving in a second direction perpendicular to a first direction in which a periodic structure repeats in the grating surface of the diffraction grating (8).

Description

光ピックアップ装置Optical pickup device
 本発明は、光ピックアップ装置に関する。 The present invention relates to an optical pickup device.
 例えば、光ピックアップ装置のトラッキングエラー信号の検出方式として、インライン型DPP(Differential Push-Pull:差動プッシュプル)方式が知られている。このインライン型DPP方式では、分割された領域に夫々所定の周期構造が設けられた回折格子を用いてレーザ光源から出射されたレーザ光をメインビームとサブビームとに分離する。そして、これらの光ビームを対物レンズにより光ディスクの記録面上に集光してメインスポットとサブスポットを形成し、これらのスポットの反射光を夫々光検出器で受光する。この光検出器で検出される検出信号に基づいて演算を行うことでトラッキングエラー信号が得られる。 For example, an inline DPP (Differential Push-Pull) system is known as a tracking error signal detection system for an optical pickup device. In the in-line DPP method, the laser beam emitted from the laser light source is separated into a main beam and a sub beam by using a diffraction grating in which a predetermined periodic structure is provided in each divided region. These light beams are condensed on the recording surface of the optical disk by the objective lens to form a main spot and a sub spot, and the reflected light of these spots is received by the photodetector. A tracking error signal is obtained by performing an operation based on the detection signal detected by the photodetector.
 このような、インライン型DPP方式では、所定の周期構造を有する少なくとも2つの領域に分割された回折格子を用いる。この場合、正確なトラッキング信号を得るためには、回折格子に照射されるレーザ光の光量が回折格子の分割された各領域で均等となるように、周期構造全体の中心を、レーザ光の光軸に略一致させる必要がある。そこで、回折格子の位置決め調整が可能な光ピックアップ装置が知られている(例えば特許文献1を参照)。 In such an inline DPP method, a diffraction grating divided into at least two regions having a predetermined periodic structure is used. In this case, in order to obtain an accurate tracking signal, the center of the entire periodic structure is placed at the center of the laser light so that the amount of laser light applied to the diffraction grating is uniform in each divided region of the diffraction grating. It is necessary to approximately match the axis. Therefore, an optical pickup device capable of adjusting the positioning of the diffraction grating is known (see, for example, Patent Document 1).
 この光ピックアップ装置では、第1ホルダに回折格子が支持され、第1ホルダはレーザ光の光軸回りに回動可能に第2ホルダに結合されている。この第1ホルダ及び第2ホルダは、ハウジングに設けられた収容室に収容されている。収容室内では、第2ホルダに対して第1ホルダが回動可能であり、第1及び第2ホルダが回折格子の格子面において周期構造が繰り返される第1方向と直交する第2方向に移動可能になっている。つまり、調整治具等を用いて、第1ホルダを回動させることで、レーザ光に対して回折格子の格子面が回動調整される。また、第2ホルダを第2方向に移動させることで、回動調整とは独立に、レーザ光に対する回折格子の第2方向の位置が調整される。 In this optical pickup device, the diffraction grating is supported by the first holder, and the first holder is coupled to the second holder so as to be rotatable around the optical axis of the laser beam. The first holder and the second holder are accommodated in an accommodation chamber provided in the housing. In the storage chamber, the first holder can rotate with respect to the second holder, and the first and second holders can move in a second direction orthogonal to the first direction in which the periodic structure is repeated on the grating surface of the diffraction grating. It has become. That is, the grating surface of the diffraction grating is rotated and adjusted with respect to the laser beam by rotating the first holder using an adjustment jig or the like. Further, by moving the second holder in the second direction, the position of the diffraction grating in the second direction with respect to the laser light is adjusted independently of the rotation adjustment.
特開2008-97667号公報JP 2008-97667 A
 しかしながら、従来の光ピックアップ装置においては、例えば回折格子をハウジングに取り付けるために第1及び第2ホルダの2つの部品が必要となり、光ピックアップ装置が大型化してしまう虞があった。また、例えば第1ホルダと第2ホルダを結合するための作業工程等が余分に必要となり、光ピックアップ装置の組み立て作業が煩雑となる虞があった。 However, in the conventional optical pickup device, for example, two parts of the first and second holders are required to attach the diffraction grating to the housing, and the optical pickup device may be increased in size. In addition, for example, an extra work step for coupling the first holder and the second holder is required, and the assembly work of the optical pickup device may be complicated.
 また、市場等においては、部品点数及び作業工程を減らした光ピックアップ装置が要求されている。 Also, in the market etc., there is a demand for an optical pickup device with a reduced number of parts and work processes.
 前述した課題を解決する主たる発明は、レーザ光源と対物レンズとの間の光軸上に介在し、前記レーザ光源から出射されるレーザ光を回折する回折格子と、前記回折格子が収容される収容室を有するハウジングと、を備え、前記収容室は、前記回折格子の格子面において周期構造が繰り返される第1方向と直交する第2方向へ前記回折格子が移動することを禁止する形状を呈することを特徴とする光ピックアップ装置である。 A main invention for solving the above-described problem is a diffraction grating that is interposed on an optical axis between a laser light source and an objective lens and diffracts laser light emitted from the laser light source, and a housing in which the diffraction grating is housed. A housing having a chamber, and the storage chamber has a shape that prohibits the diffraction grating from moving in a second direction orthogonal to a first direction in which a periodic structure is repeated on a grating surface of the diffraction grating. Is an optical pickup device.
 また、前述した課題を解決する他の主たる発明は、レーザ光源と対物レンズとの間の光軸上に介在し、前記レーザ光源から出射されるレーザ光を回折する回折格子と、前記回折格子と前記対物レンズとの間の光軸上に介在し、前記レーザ光が前記対物レンズに向かうように前記レーザ光を反射する反射ミラーと、前記回折格子が収容される第1収容室と、前記反射ミラーが収容される第2収容室と、を有するハウジングと、を備え、前記第2収容室は、前記レーザ光が前記対物レンズの略中心を透過するように前記反射ミラーの反射面に対する前記レーザ光の反射角度を調整可能な形状を呈することを特徴とする光ピックアップ装置である。 Further, another main invention for solving the above-described problem is that the diffraction grating is interposed on the optical axis between the laser light source and the objective lens and diffracts the laser light emitted from the laser light source, and the diffraction grating, A reflection mirror interposed on the optical axis between the objective lens and reflecting the laser beam so that the laser beam is directed toward the objective lens; a first receiving chamber containing the diffraction grating; and the reflection A housing having a second housing chamber in which a mirror is housed, wherein the second housing chamber has the laser with respect to the reflecting surface of the reflecting mirror so that the laser light is transmitted through a substantial center of the objective lens. An optical pickup device having a shape capable of adjusting a reflection angle of light.
 また、前述した課題を解決する別の主たる発明は、回折格子と対物レンズとの間の光軸上に介在し、レーザ光が前記対物レンズに向かうように前記レーザ光を反射する反射ミラーと、前記反射ミラーが収容される収容室を有するハウジングと、を備え、前記収容室は、前記レーザ光が前記対物レンズの略中心を透過するように前記反射ミラーの反射面に対する前記レーザ光の反射角度を調整可能な形状を呈することを特徴とする光ピックアップ装置である。 Another main invention for solving the above-described problem is a reflection mirror that is interposed on the optical axis between the diffraction grating and the objective lens and reflects the laser light so that the laser light is directed toward the objective lens, A housing having a housing chamber in which the reflecting mirror is housed, wherein the housing chamber has a reflection angle of the laser light with respect to a reflecting surface of the reflecting mirror so that the laser light passes through a substantially center of the objective lens. It is an optical pick-up apparatus characterized by exhibiting the shape which can be adjusted.
 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。 Other features of the present invention will become apparent from the accompanying drawings and the description of the present specification.
 本発明によれば、回折格子をハウジングに取り付けるための部品点数及び作業工程を減らすことが可能な光ピックアップ装置を提供できる。 According to the present invention, it is possible to provide an optical pickup device capable of reducing the number of parts and work processes for attaching the diffraction grating to the housing.
 また、本発明によれば、部品点数及び作業工程を減らすことが可能な光ピックアップ装置を提供できる。 Moreover, according to the present invention, an optical pickup device capable of reducing the number of parts and the work process can be provided.
本実施形態にかかる光ピックアップ装置の斜視図である。It is a perspective view of the optical pick-up apparatus concerning this embodiment. 図1に示す光ピックアップ装置のカバー及び対物レンズホルダを省略した斜視図である。It is the perspective view which abbreviate | omitted the cover and objective lens holder of the optical pick-up apparatus shown in FIG. 図1に示す光ピックアップ装置における光学系を説明するための斜視図である。It is a perspective view for demonstrating the optical system in the optical pick-up apparatus shown in FIG. 図1に示す光ピックアップ装置における回折格子の格子面を示す図である。It is a figure which shows the grating surface of the diffraction grating in the optical pick-up apparatus shown in FIG. 対物レンズのトラッキング方向の移動量に対するトラッキングエラー信号のレベル変化を示す視野特性図である。It is a visual field characteristic figure which shows the level change of the tracking error signal with respect to the moving amount | distance of the tracking direction of an objective lens. 図1に示す光ピックアップ装置の裏面側の斜視図である。It is a perspective view of the back surface side of the optical pick-up apparatus shown in FIG. 図6Aに示す光ピックアップ装置の破線で囲まれた部分をa-a’で切断した拡大図である。FIG. 6B is an enlarged view of a portion surrounded by a broken line of the optical pickup device shown in FIG. 6A cut along a-a ′. 図6Bに示す光ピックアップ装置の断面の正面図である。It is a front view of the cross section of the optical pick-up apparatus shown to FIG. 6B. 図6Aに示す光ピックアップ装置の破線で囲まれた部分の拡大図である。FIG. 6B is an enlarged view of a portion surrounded by a broken line of the optical pickup device shown in FIG. 6A. 図1に示す光ピックアップ装置の反射ミラーの位置調整を説明するための図である。It is a figure for demonstrating position adjustment of the reflective mirror of the optical pick-up apparatus shown in FIG. 図7Aに示す光ピックアップ装置の反射ミラーの拡大図である。It is an enlarged view of the reflective mirror of the optical pick-up apparatus shown to FIG. 7A. 図7Aに示す光ピックアップ装置のハウジングと反射ミラーとの接着について説明するための斜視図である。It is a perspective view for demonstrating adhesion | attachment with the housing and reflection mirror of the optical pick-up apparatus shown to FIG. 7A. 図8Aに示す光ピックアップ装置の破線で囲まれた部分の拡大図である。It is an enlarged view of the part enclosed with the broken line of the optical pick-up apparatus shown to FIG. 8A. ゴニオステージ及び反射ミラーの側面図である。It is a side view of a gonio stage and a reflective mirror. 図9Aに示すゴニオステージ及び反射ミラーの斜視図である。It is a perspective view of a gonio stage and a reflective mirror shown to FIG. 9A. 図7Aに示す光ピックアップ装置にゴニオステージが取り付けられた場合の斜視図である。It is a perspective view at the time of attaching a gonio stage to the optical pick-up apparatus shown to FIG. 7A.
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。 At least the following matters will become clear from the description of this specification and the accompanying drawings.
===光ピックアップ装置===
<<<全体構成について>>>
 図1乃至図3を参照して本実施形態にかかる光ピックアップ装置1の全体構成について説明する。
=== Optical pickup device ===
<<< Overall configuration >>>
With reference to FIG. 1 thru | or FIG. 3, the whole structure of the optical pick-up apparatus 1 concerning this embodiment is demonstrated.
 光ピックアップ装置1において、フォーカス方向Fは、例えば対物レンズ5においてレーザ光が透過する光軸方向とされている。また、トラッキング方向Trは、例えばフォーカス方向Fに直交し、不図示の光ディスクの半径方向とされている。このトラッキング方向Trは、光ディスクの内周側から外周側にかけた光ピックアップ装置1の移動方向、及び/又は、光ディスクの外周側から内周側にかけた光ピックアップ装置1の移動方向とされている。また、タンジェンシャル方向Tnは、例えばフォーカス方向Fに直交すると共に、光ディスクの半径方向とされ且つ光ピックアップ装置1の移動方向とされるトラッキング方向Trに直交し、光ディスクの略螺旋状/円周状方向とされている。 In the optical pickup device 1, the focus direction F is, for example, the optical axis direction through which laser light passes through the objective lens 5. The tracking direction Tr is, for example, orthogonal to the focus direction F and is the radial direction of an optical disk (not shown). The tracking direction Tr is a moving direction of the optical pickup device 1 from the inner peripheral side to the outer peripheral side of the optical disc and / or a moving direction of the optical pickup device 1 applied from the outer peripheral side to the inner peripheral side of the optical disc. Further, the tangential direction Tn is, for example, orthogonal to the focus direction F, orthogonal to the tracking direction Tr which is the radial direction of the optical disc and the moving direction of the optical pickup device 1, and is substantially spiral / circumferential of the optical disc. It is considered to be a direction.
 また、光ディスクの近傍に位置し、側面視された光ピックアップ装置1を基準としたときに、光ディスクに対し、光ピックアップ装置1の対物レンズ5が近づいてゆく側をフォーカス方向Fの+側とし、対物レンズ5が遠ざかってゆく側をフォーカス方向Fの-側とする。また、光ディスクの近傍に位置し、平面視された光ピックアップ装置1の対物レンズ5を基準としたときに、光ディスクの内周側をトラッキング方向Trの+側とし、光ディスクの外周側をトラッキング方向Trの-側とする。また、光ディスクの近傍に位置し、平面視された光ピックアップ装置1の対物レンズ5を基準としたときに、時計回り方向側をタンジェンシャル方向Tnの+側とし、反時計回り方向側をタンジェンシャル方向Tnの-側とする。 Further, when the optical pickup device 1 located in the vicinity of the optical disc and viewed from the side is used as a reference, the side on which the objective lens 5 of the optical pickup device 1 approaches the optical disc is defined as the + side of the focus direction F. The side on which the objective lens 5 moves away is defined as the minus side of the focus direction F. Further, when the objective lens 5 of the optical pickup device 1 that is located in the vicinity of the optical disc and is viewed in plan is used as a reference, the inner peripheral side of the optical disc is set to the + side of the tracking direction Tr, and the outer peripheral side of the optical disc is set to the tracking direction Tr. The negative side. Further, when the objective lens 5 of the optical pickup device 1 that is located in the vicinity of the optical disk and viewed in plan is used as a reference, the clockwise direction side is the positive side of the tangential direction Tn, and the counterclockwise direction side is the tangential side. The negative side of the direction Tn.
 尚、この発明における各方向ならびに各方向の±側は、光ピックアップ装置1を基準として光ディスクを眺めたときの各方向ならびに各方向の±側とされている。この明細書における各方向ならびに各方向の±側等の定義は、光ピックアップ装置1を説明するための便宜上の定義とされている。 In addition, each direction and ± side of each direction in the present invention are defined as each direction when viewing the optical disc with respect to the optical pickup device 1 and ± side of each direction. In this specification, each direction and the definition of the ± side of each direction are defined for convenience in describing the optical pickup device 1.
 光ピックアップ装置1は、ハウジング2に、対物レンズホルダ4と、対物レンズ5と、レーザ光源6と、ホルダ7と、回折格子8と、偏光ビームスプリッタ9と、1/4波長板10と、コリメータレンズ11と、反射ミラー12と、平行平板13、14と、光検出器15と、受光素子16とが収容されて構成されている。また、ハウジング2には、対物レンズ5及びこの対物レンズ5を支持する対物レンズホルダ4以外の構成を覆うように、カバー3が取り付けられている。そして、カバー3から露出する対物レンズ5に、CD(Compact Disc)、DVD(Digital Versatile Disc)、Blu-ray(Blu-ray Disc)(登録商標)等の単層または複層の情報記録面(信号層)等を有する光ディスクが対向するようになっている。光ピックアップ装置1は、光ディスクの情報記録面にレーザ光を照射することにより、情報の記録、再生、消去等を行う。そこで、光ピックアップ装置1のレーザ光源6から夫々出射されるレーザ光の光学系の一例について説明する。 The optical pickup device 1 includes a housing 2, an objective lens holder 4, an objective lens 5, a laser light source 6, a holder 7, a diffraction grating 8, a polarization beam splitter 9, a quarter wavelength plate 10, and a collimator. The lens 11, the reflection mirror 12, the parallel plates 13 and 14, the photodetector 15, and the light receiving element 16 are accommodated. A cover 3 is attached to the housing 2 so as to cover the configuration other than the objective lens 5 and the objective lens holder 4 that supports the objective lens 5. Then, an information recording surface (single layer or multiple layers) such as CD (Compact Disc), DVD (Digital Versatile Disc), Blu-ray (Blu-ray Disc) (registered trademark) is applied to the objective lens 5 exposed from the cover 3. An optical disc having a signal layer) is opposed to the optical disc. The optical pickup device 1 records, reproduces, and erases information by irradiating the information recording surface of the optical disc with laser light. An example of an optical system for laser light emitted from the laser light source 6 of the optical pickup device 1 will be described.
 レーザ光源6は、不図示のレーザドライバから制御電圧が印加されることで、CDの情報記録面に照射するための赤外波長帯(例えば765nm~840nm)のレーザ光を出射する。また、レーザ光源6は、レーザドライバから制御電圧が印加されることで、DVDの情報記録面に照射するための赤色波長帯(例えば630nm~685nm)のレーザ光を出射する。また、レーザ光源6は、レーザドライバから制御電圧が印加されることで、Blu-rayの情報記録面に照射するための青紫色波長帯(例えば400nm~450nm)のレーザ光を出射する。つまり、不図示のターンテーブルにCD規格の第1光ディスク(不図示)が装着された場合、レーザ光源6から赤外波長帯のレーザ光が出射される。また、ターンテーブルにDVD規格の第2光ディスク(不図示)が装着された場合、レーザ光源6から赤色波長帯のレーザ光が出射される。また、ターンテーブルにBlu-ray規格の第3光ディスク(不図示)が装着された場合、レーザ光源6から青紫色波長帯のレーザ光が出射される。この光ピックアップ装置1は、例えば前記各種規格の光ディスクのうち少なくとも一種以上の規格の光ディスクに対応する。尚、以下、第1乃至第3光ディスクを光ディスクと総称する。 The laser light source 6 emits laser light in an infrared wavelength band (for example, 765 nm to 840 nm) for irradiating the information recording surface of the CD when a control voltage is applied from a laser driver (not shown). Further, the laser light source 6 emits laser light in a red wavelength band (for example, 630 nm to 685 nm) for irradiating the information recording surface of the DVD when a control voltage is applied from a laser driver. Further, the laser light source 6 emits laser light in a blue-violet wavelength band (for example, 400 nm to 450 nm) for irradiating the information recording surface of Blu-ray when a control voltage is applied from a laser driver. That is, when a CD standard first optical disc (not shown) is mounted on a turntable (not shown), laser light in the infrared wavelength band is emitted from the laser light source 6. Further, when a DVD standard second optical disk (not shown) is mounted on the turntable, a laser beam in the red wavelength band is emitted from the laser light source 6. Further, when a Blu-ray standard third optical disc (not shown) is mounted on the turntable, a laser beam in the blue-violet wavelength band is emitted from the laser light source 6. The optical pickup device 1 corresponds to, for example, at least one type of optical discs among the various types of optical discs. Hereinafter, the first to third optical disks are collectively referred to as optical disks.
 このように、レーザ光源6は、レーザドライバから制御電圧が印加されることで、各種光ディスクの情報記録面に照射するためのレーザ光を出射する。光ピックアップ装置1は、このレーザ光源6からのレーザ光を、対物レンズ5を介して各種光ディスクの情報記録面に照射することで、情報の記録、再生、消去等を行う。そこで、光ピックアップ装置1のハウジング2に収容された光学系の各構成について、レーザ光源6から出射されたレーザ光が対物レンズ5を介して光ディスクに照射されるまでの光路(往路)と、光ディスクで反射されたレーザ光が光検出器15に受光されるまでの光路(復路)とにわけて説明する。 Thus, the laser light source 6 emits a laser beam for irradiating the information recording surface of various optical discs when the control voltage is applied from the laser driver. The optical pickup device 1 records, reproduces, and erases information by irradiating the information recording surface of various optical discs with the laser light from the laser light source 6 through the objective lens 5. Therefore, for each configuration of the optical system housed in the housing 2 of the optical pickup device 1, an optical path (forward path) until the laser light emitted from the laser light source 6 is irradiated onto the optical disk through the objective lens 5, and the optical disk A description will be given by dividing into the optical path (return path) until the laser beam reflected by is received by the photodetector 15.
<<<レーザ光の往路について>>>
 先ず、レーザ光の往路に介在する構成について説明する。レーザ光源6から出射されたレーザ光は順に、ホルダ7に支持される回折格子8、偏光ビームスプリッタ9、1/4波長板10、コリメータレンズ11、反射ミラー12、対物レンズ5を介した後に光ディスクの情報記録面に照射される。
<<< About the outgoing path of laser light >>>
First, a configuration interposed in the forward path of laser light will be described. The laser light emitted from the laser light source 6 is sequentially passed through the diffraction grating 8 supported by the holder 7, the polarization beam splitter 9, the quarter wavelength plate 10, the collimator lens 11, the reflection mirror 12, and the objective lens 5. The information recording surface is irradiated.
 レーザ光源6から出射されたレーザ光は、回折格子8によって回折され、1つのメインビームと少なくとも2つのサブビームとに分光される。尚、回折格子8は、格子面82がレーザ光の光軸と直交するようにホルダ7に支持された状態で、ハウジング2に設けられた第1収容室20に収容されている。回折格子8の具体的な構成と、ハウジング2に対するホルダ7の取り付け構造については後述する。 The laser light emitted from the laser light source 6 is diffracted by the diffraction grating 8 and split into one main beam and at least two sub beams. The diffraction grating 8 is housed in a first housing chamber 20 provided in the housing 2 in a state where the grating surface 82 is supported by the holder 7 so as to be orthogonal to the optical axis of the laser light. A specific configuration of the diffraction grating 8 and a structure for attaching the holder 7 to the housing 2 will be described later.
 回折格子8で分光されたレーザ光は、偏光ビームスプリッタ9によって1/4波長板10に向けて反射される。1/4波長板10に入射されたレーザ光は直線偏光から円偏光に変換される。円偏光に変換されたレーザ光はコリメータレンズ11に入射され略平行光に変換される。略平行光に変換されたレーザ光は、反射ミラー12によって対物レンズ5に向けて反射される。尚、反射ミラー12は、ハウジング2に設けられた第2収容室21に収容されている。ハウジング2に対する反射ミラー12の取り付け構造については後述する。対物レンズ5に入射されたレーザ光は、光ディスクの情報記録面に集光され、少なくとも3つの集光スポットとなる。 The laser beam dispersed by the diffraction grating 8 is reflected by the polarizing beam splitter 9 toward the quarter wavelength plate 10. The laser light incident on the quarter wavelength plate 10 is converted from linearly polarized light to circularly polarized light. The laser beam converted into circularly polarized light is incident on the collimator lens 11 and converted into substantially parallel light. The laser light converted into substantially parallel light is reflected toward the objective lens 5 by the reflection mirror 12. The reflection mirror 12 is accommodated in a second accommodation chamber 21 provided in the housing 2. A structure for attaching the reflection mirror 12 to the housing 2 will be described later. The laser light incident on the objective lens 5 is condensed on the information recording surface of the optical disk, and becomes at least three condensing spots.
 尚、受光素子16は、レーザ光源6から出射されたレーザ光のうち、偏光ビームスプリッタ9を透過した成分を検出して、これに応じた信号を出力する。この信号に基づいて、レーザ光源6に対するフィードバックをかけるための信号が生成される。 The light receiving element 16 detects a component transmitted through the polarization beam splitter 9 from the laser light emitted from the laser light source 6 and outputs a signal corresponding thereto. Based on this signal, a signal for applying feedback to the laser light source 6 is generated.
<<<レーザ光の復路について>>>
 次に、レーザ光の復路に介在する構成について説明する。光ディスクの情報記録面上に形成された少なくとも3つの集光スポットから反射されたレーザ光は順に、対物レンズ5、反射ミラー12、コリメータレンズ11、1/4波長板10、偏光ビームスプリッタ9、平行平板13、平行平板14を介した後に光検出器15に受光される。
<<< About the return path of laser light >>>
Next, the configuration interposed in the return path of the laser light will be described. The laser light reflected from at least three condensing spots formed on the information recording surface of the optical disc is sequentially an objective lens 5, a reflecting mirror 12, a collimator lens 11, a quarter wavelength plate 10, a polarizing beam splitter 9, and a parallel beam. The light is received by the photodetector 15 after passing through the flat plate 13 and the parallel plate 14.
 光ディスクから反射されたレーザ光は、対物レンズ5によって略平行光に変換される。略平行光に変換されたレーザ光は、反射ミラー12によってコリメータレンズ11に向けて反射され、コリメータレンズ11によって収束光に変換される。収束光に変換されたレーザ光は、1/4波長板10によって円偏光から直線偏光に変換される。直線偏光に変換されたレーザ光は、偏光ビームスプリッタ9によって平行平板13に向けて透過され、平行平板13によって非点収差が補正される。非点収差が補正されたレーザ光は、平行平板14によって、フォーカスエラー成分となる非点収差が与えられると共に、偏光ビームスプリッタ9及び平行平板13で発生したコマ収差が補正された後、光検出器15に受光される。 The laser light reflected from the optical disk is converted into substantially parallel light by the objective lens 5. The laser light converted into substantially parallel light is reflected by the reflecting mirror 12 toward the collimator lens 11 and converted into convergent light by the collimator lens 11. The laser light converted into convergent light is converted from circularly polarized light into linearly polarized light by the quarter wavelength plate 10. The laser beam converted into linearly polarized light is transmitted toward the parallel plate 13 by the polarization beam splitter 9, and astigmatism is corrected by the parallel plate 13. The astigmatism-corrected laser light is given astigmatism as a focus error component by the parallel plate 14, and the coma generated by the polarization beam splitter 9 and the parallel plate 13 is corrected, and then light detection is performed. The light is received by the device 15.
 尚、レーザ光を受光した光検出器15は、レーザ光のメインビームの光量に応じて光電変換した電気信号を生成して不図示の処理回路に出力する。この結果、メインビームに応じた電気信号に基づいて、光ディスクの情報記録面からの情報再生が行われる。また、光検出器15は、レーザ光のサブビームの光量に応じて光電変換した電気信号を生成し、処理回路に出力する。この結果、レーザ光のメインビーム及びサブビームに応じた電気信号に基づいて、トラッキングエラー信号(TE信号)やフォーカスエラー信号(FE信号)等が生成される。これらの信号に基づいて、光ピックアップ装置1の対物レンズホルダ4がトラッキング方向Trやフォーカス方向Fに変位する。 The photodetector 15 that has received the laser light generates an electrical signal that is photoelectrically converted according to the amount of the main beam of the laser light, and outputs it to a processing circuit (not shown). As a result, information is reproduced from the information recording surface of the optical disc based on the electrical signal corresponding to the main beam. In addition, the photodetector 15 generates an electrical signal that is photoelectrically converted in accordance with the amount of laser beam sub-beams, and outputs the electrical signal to the processing circuit. As a result, a tracking error signal (TE signal), a focus error signal (FE signal), and the like are generated based on the electrical signals corresponding to the main beam and sub beam of the laser light. Based on these signals, the objective lens holder 4 of the optical pickup device 1 is displaced in the tracking direction Tr and the focus direction F.
<<<回折格子について>>>
 図4を参照しつつ、回折格子8の具体的な構成について説明する。回折格子8は、例えばレーザ光源6からのレーザ光を透過させるガラス/プラスチックを基材として形成され、例えばフォトエッチング等の加工等によって凹部80と凸部81とを交互に繰り返す周期構造が形成された格子面82を有している。この格子面82は、分割線8cを境界として接合される第1領域8aと第2領域8bとを備えて構成されている。第1領域8a及び第2領域8bの周期構造は、夫々分割線8cの方向に沿って繰り返され、互いの位相差が180度となっている。これによって、分割線8cを通るように、回折格子8にレーザ光を入射することで、レーザ光が1つのメインビームと、少なくとも互いに位相が180度異なる2つのサブビームとに分光される。回折格子8は、少なくとも第1領域8aと第2領域8bとの複数の領域を備える複数分割タイプの回折格子8として構成されている。例えば少なくとも第1領域8aと第2領域8bとの領域を備える偶数分割タイプの回折格子8が用いられることが好ましい。尚、回折格子8の格子面82において周期構造が繰り返される方向を第1方向Aとし、第1方向Aと直交する方向を第2方向Bとする。つまり、分割線8cは、回折格子8の第2方向Bにおける中心を第1方向Aに沿って伸びて第1領域8aと第2領域8bとを分割している。
<<< About diffraction grating >>>
A specific configuration of the diffraction grating 8 will be described with reference to FIG. The diffraction grating 8 is formed using, for example, glass / plastic that transmits laser light from the laser light source 6 as a base material, and has a periodic structure in which the concave portions 80 and the convex portions 81 are alternately repeated by processing such as photoetching. The lattice plane 82 is provided. The lattice plane 82 includes a first region 8a and a second region 8b that are joined with the dividing line 8c as a boundary. The periodic structure of the first region 8a and the second region 8b is repeated along the direction of the dividing line 8c, and the phase difference between them is 180 degrees. Thus, the laser light is incident on the diffraction grating 8 so as to pass through the dividing line 8c, whereby the laser light is split into one main beam and at least two sub-beams that are 180 degrees out of phase with each other. The diffraction grating 8 is configured as a multiple division type diffraction grating 8 including at least a plurality of regions of a first region 8a and a second region 8b. For example, it is preferable to use an even-divided type diffraction grating 8 including at least a first region 8a and a second region 8b. The direction in which the periodic structure is repeated on the grating surface 82 of the diffraction grating 8 is defined as a first direction A, and the direction orthogonal to the first direction A is defined as a second direction B. That is, the dividing line 8c extends the center in the second direction B of the diffraction grating 8 along the first direction A and divides the first region 8a and the second region 8b.
 この回折格子8で分光された少なくとも3つのビームは、前述したように対物レンズ5によって光ディスクの情報記録面上に集光され、少なくとも3つの集光スポットとなる。インライン型DPP方式において、TE信号の精度を高めるためには、この少なくとも3つの集光スポットが、光ディスクの同一トラック上に形成される必要がある。少なくとも3つの集光スポットが光ディスクの同一トラック上に形成されるためには、少なくとも2つのサブビームの位相の対称性を高めるべく、レーザ光の光軸(レーザ光の強度中心点)が、回折格子8の分割線8c上を通り且つ基準位置にある場合の対物レンズ5の略中心を通ることが好ましい。基準位置とは、対物レンズ5がトラッキング方向Trの+側にも-側にも変位しておらず、対物レンズ5のトラッキング方向Trの移動量(以下単に移動量と称する)がゼロとなる位置である。 At least three beams dispersed by the diffraction grating 8 are condensed on the information recording surface of the optical disk by the objective lens 5 as described above, and become at least three condensing spots. In the in-line DPP method, in order to increase the accuracy of the TE signal, it is necessary to form these at least three focused spots on the same track of the optical disc. In order for at least three focused spots to be formed on the same track of the optical disc, the optical axis of the laser beam (the intensity center point of the laser beam) is a diffraction grating so as to increase the phase symmetry of at least two sub beams. It is preferable to pass through approximately the center of the objective lens 5 when passing through the eight dividing lines 8c and at the reference position. The reference position is a position where the objective lens 5 is not displaced to the + side or the − side of the tracking direction Tr, and the amount of movement of the objective lens 5 in the tracking direction Tr (hereinafter simply referred to as the amount of movement) becomes zero. It is.
 ここで、図5を参照しつつ、回折格子8を通るレーザ光の光軸の位置と、対物レンズ5の移動量と、TE信号のレベル変化との関係について説明する。尚、図5は、対物レンズ5が基準位置にあるときにレーザ光が対物レンズ5の略中心を通る場合の、対物レンズ5の移動量に対するTE信号の振幅の劣化の度合いを示す視野特性図である。この視野特性図には、対物レンズ5が基準位置からトラッキング方向Trの+側に移動した場合と-側に移動した場合でのTE信号の対称性(視野特性の対称性)が示されている。視野特性の対称性が高いほどTE信号の精度が高められる。 Here, the relationship between the position of the optical axis of the laser beam passing through the diffraction grating 8, the amount of movement of the objective lens 5, and the level change of the TE signal will be described with reference to FIG. FIG. 5 is a visual field characteristic diagram showing the degree of deterioration of the amplitude of the TE signal with respect to the amount of movement of the objective lens 5 when the laser light passes through the approximate center of the objective lens 5 when the objective lens 5 is at the reference position. It is. This visual field characteristic diagram shows the symmetry of the TE signal (the symmetry of the visual field characteristic) when the objective lens 5 moves from the reference position to the + side of the tracking direction Tr and to the − side. . The higher the symmetry of the visual field characteristic, the higher the accuracy of the TE signal.
 図5において、実線で示される曲線CPは、レーザ光の光軸が回折格子8の分割線8c上を通る場合のTE信号の視野特性である。曲線CPは、対物レンズ5が基準位置にあるときに極大値を示し、この極大値を中心に対物レンズ5の移動量の+側及び-側で略対称となっている。これに対して、点線で示す曲線CQ及び一点鎖線で示す曲線CRは夫々、レーザ光の光軸が回折格子8の分割線8c上から第1領域8a側にずれている場合及び第2領域8b側にずれている場合のTE信号の視野特性である。曲線CQ及び曲線CRはともに、対物レンズ5が基準位置にあるときに極大値を示さず、視野特性の対称性が曲線CRに比べて低下している。 5, a curve CP indicated by a solid line is a visual field characteristic of the TE signal when the optical axis of the laser light passes on the dividing line 8 c of the diffraction grating 8. A curve CP shows a maximum value when the objective lens 5 is at the reference position, and is approximately symmetrical on the + side and the − side of the movement amount of the objective lens 5 around the maximum value. On the other hand, the curve CQ indicated by the dotted line and the curve CR indicated by the alternate long and short dash line are respectively the case where the optical axis of the laser beam is shifted from the division line 8c of the diffraction grating 8 toward the first region 8a and the second region 8b. It is a visual field characteristic of TE signal when it has shifted to the side. Both the curve CQ and the curve CR do not show the maximum value when the objective lens 5 is at the reference position, and the symmetry of the visual field characteristics is lower than that of the curve CR.
 このため、光ピックアップ装置1では、TE信号の精度を高めるべく、レーザ光源6から出射されるレーザ光の光軸の位置と、回折格子8の分割線8cの位置とを予め考慮して、ハウジング2にホルダ7が取り付けられる。 For this reason, in the optical pickup device 1, in order to increase the accuracy of the TE signal, the position of the optical axis of the laser light emitted from the laser light source 6 and the position of the dividing line 8c of the diffraction grating 8 are considered in advance. 2 is attached to the holder 7.
<<<ハウジングに対するホルダの取り付け構造について>>>
 図6A乃至図6Dを参照しつつ、ハウジング2に対するホルダ7の取り付け構造について説明する。光ピックアップ装置1では、ホルダ7に支持される回折格子8がレーザ光源6と偏光ビームスプリッタ9との間の光軸上に介在するように、ハウジング2に設けられた第1収容室20にホルダ7が収容される。
<<< About the mounting structure of the holder to the housing >>>
A structure for attaching the holder 7 to the housing 2 will be described with reference to FIGS. 6A to 6D. In the optical pickup device 1, the holder is placed in the first storage chamber 20 provided in the housing 2 so that the diffraction grating 8 supported by the holder 7 is interposed on the optical axis between the laser light source 6 and the polarization beam splitter 9. 7 is accommodated.
 ホルダ7は、回折格子8の格子面82を露出させるように、この格子面82の外縁側を格子面82に直交する方向の両側から挟持している。また、ホルダ7は、第1収容室20に収容された際に、回折格子8の格子面82と直交する方向のレーザ光源6側に向かって突出する筒部材70を備えている。 The holder 7 sandwiches the outer edge side of the grating surface 82 from both sides in the direction orthogonal to the grating surface 82 so that the grating surface 82 of the diffraction grating 8 is exposed. The holder 7 includes a cylindrical member 70 that protrudes toward the laser light source 6 in a direction orthogonal to the grating surface 82 of the diffraction grating 8 when accommodated in the first accommodation chamber 20.
 第1収容室20は、レーザ光の光軸が回折格子8の分割線8cを通るようにホルダ7を収容すると共に、収容したホルダ7が第2方向Bへ移動することを禁止する形状を呈している。具体的には、第1収容室20は、レーザ光源6から出射されるレーザ光の光軸と直交する壁20a、20bを備えている。これらの互いに対向する壁20a、20bには夫々レーザ光が通過するための切欠き20c、20dが形成されている。また、第1収容室20のレーザ光源6側の第1の壁20bの内面20fには、ホルダ7の筒部材70と回動可能に結合される筒部材20eが形成されている。筒部材20eは、レーザ光の光軸方向C(第3方向)に沿ってホルダ7側に向かって突出し、筒部材70の外径より僅かに長い内径を有している。筒部材20eの内面20fに筒部材70の外面7aが対向するように、筒部材20eと筒部材70とが嵌合されることで、ホルダ7は第1収容室20にレーザ光の光軸回りに回動可能に収容され、回折格子8は格子面82がレーザ光の光軸と直交するように配置される。また、第1収容室20内において、ホルダ7及び回折格子8が第2方向Bへ移動することが禁止される。尚、光軸方向Cとは、例えばレーザ光源6から出射され第1収容室20内に位置する回折格子8の分割線8cを透過するレーザ光の軸方向とされている。 The first accommodating chamber 20 has a shape that accommodates the holder 7 so that the optical axis of the laser beam passes the dividing line 8 c of the diffraction grating 8 and prohibits the accommodated holder 7 from moving in the second direction B. ing. Specifically, the first storage chamber 20 includes walls 20 a and 20 b that are orthogonal to the optical axis of the laser light emitted from the laser light source 6. Cutouts 20c and 20d through which laser light passes are formed in the walls 20a and 20b facing each other. Further, a cylindrical member 20e that is rotatably coupled to the cylindrical member 70 of the holder 7 is formed on the inner surface 20f of the first wall 20b on the laser light source 6 side of the first storage chamber 20. The cylindrical member 20 e protrudes toward the holder 7 along the optical axis direction C (third direction) of the laser light, and has an inner diameter slightly longer than the outer diameter of the cylindrical member 70. By fitting the cylindrical member 20e and the cylindrical member 70 so that the outer surface 7a of the cylindrical member 70 faces the inner surface 20f of the cylindrical member 20e, the holder 7 moves around the optical axis of the laser beam in the first storage chamber 20. The diffraction grating 8 is disposed so that the grating surface 82 is orthogonal to the optical axis of the laser beam. In addition, the holder 7 and the diffraction grating 8 are prohibited from moving in the second direction B in the first storage chamber 20. The optical axis direction C is, for example, the axial direction of laser light that is emitted from the laser light source 6 and passes through the dividing line 8c of the diffraction grating 8 located in the first storage chamber 20.
 また、第1収容室20には、ホルダ7に対して、ホルダ7がレーザ光の光軸方向Cに移動することを禁止する弾性力を付与する板ばね17(板バネ/弾性体)がホルダ7と共に収容されている。尚、第1収容室20のレーザ光の光軸方向Cの長さL1は、同方向Cのホルダ7の長さL2よりも長くなっている。よって、第1収容室20の第2の壁20aに近い位置からホルダ7を挿入し、筒部材70を筒部材20eの内部20gに押し入れることで、第1収容室20の第2の壁20aとホルダ7との間に形成される空間20hに板ばね17が収容される。また、板ばね17は、回折格子8と対向する面17aが切り欠かれている。板ばね17によって、ホルダ7が第1収容室20の第1の壁20bに押し付けられることで、ホルダ7はレーザ光の光軸回りに回動可能なまま、レーザ光の光軸方向Cへの移動が禁止される。よって、不図示の調整治具等を用いて、ホルダ7を光軸回りに回動させることで、レーザ光の光軸に対する回折格子8の格子面82を回動調整することができる。この際、ホルダ7の第2方向B及びレーザ光の光軸方向Cへの移動は禁止されているため、回折格子8の回動調整にともなって、回折格子8が第2方向Bやレーザ光の光軸方向Cへ移動してしまうことを防止できる。 Further, in the first storage chamber 20, a leaf spring 17 (plate spring / elastic body) that applies an elastic force to the holder 7 to prohibit the holder 7 from moving in the optical axis direction C of the laser light is provided in the holder. 7 is housed together. The length L1 of the laser light in the first storage chamber 20 in the optical axis direction C is longer than the length L2 of the holder 7 in the same direction C. Therefore, the holder 7 is inserted from a position close to the second wall 20a of the first storage chamber 20, and the cylindrical member 70 is pushed into the interior 20g of the cylindrical member 20e, whereby the second wall 20a of the first storage chamber 20 is inserted. The leaf spring 17 is accommodated in a space 20 h formed between the holder 7 and the holder 7. Further, the plate spring 17 has a notched surface 17 a facing the diffraction grating 8. The holder 7 is pressed against the first wall 20b of the first storage chamber 20 by the leaf spring 17, so that the holder 7 can rotate around the optical axis of the laser light while moving the laser light in the optical axis direction C. Movement is prohibited. Therefore, the grating surface 82 of the diffraction grating 8 can be rotated and adjusted with respect to the optical axis of the laser beam by rotating the holder 7 around the optical axis using an adjustment jig (not shown). At this time, since the movement of the holder 7 in the second direction B and the optical axis direction C of the laser beam is prohibited, the diffraction grating 8 moves in the second direction B or the laser beam as the diffraction grating 8 rotates. Can be prevented from moving in the optical axis direction C.
 このように、光ピックアップ装置1では、レーザ光源6から出射されるレーザ光の光軸が、回折格子8の分割線8c上を通るように、ハウジング2に対して第1収容室20が設けられている。これによって、例えば、回折格子8の回動調整と、第2方向Bの位置調整とを独立に行うためにホルダ7を2つの部品から構成する必要がなく、回折格子8をハウジング2に取り付けるための部品点数や作業工程を減らすことができる。また、部品点数を削減できる分、光ピックアップ装置1を小型化すること及び製造コストを削減することができる。 As described above, in the optical pickup device 1, the first storage chamber 20 is provided with respect to the housing 2 so that the optical axis of the laser light emitted from the laser light source 6 passes on the dividing line 8 c of the diffraction grating 8. ing. As a result, for example, the holder 7 does not need to be composed of two parts in order to perform the rotation adjustment of the diffraction grating 8 and the position adjustment in the second direction B independently, and the diffraction grating 8 is attached to the housing 2. The number of parts and the work process can be reduced. In addition, since the number of parts can be reduced, the optical pickup device 1 can be reduced in size and the manufacturing cost can be reduced.
 ところで、光ピックアップ装置1では、TE信号の精度を高めるべく、予め、レーザ光源6と回折格子8との位置関係を考慮して設けられた第1収容室20に、第2方向Bへの移動が禁止された状態でホルダ7が収容される。しかし、TE信号の精度をより高めるためには、例えばハウジング2内の光学系における構成や組み立てによって生じたばらつきも考慮する必要がある。 By the way, in the optical pickup device 1, in order to increase the accuracy of the TE signal, the movement in the second direction B is performed in the first storage chamber 20 provided in advance in consideration of the positional relationship between the laser light source 6 and the diffraction grating 8. The holder 7 is accommodated in a state in which is prohibited. However, in order to further improve the accuracy of the TE signal, it is necessary to consider, for example, variations caused by the configuration and assembly of the optical system in the housing 2.
 そこで、光ピックアップ装置1では、ハウジング2に反射ミラー12を取り付ける際に、実際の構成や組み立てによって生じたばらつきに応じて、反射ミラー12の反射面12aに対するレーザ光の反射角度を調整して、対物レンズ5を通るレーザ光の光軸の位置を調整する。 Therefore, in the optical pickup device 1, when the reflection mirror 12 is attached to the housing 2, the reflection angle of the laser beam with respect to the reflection surface 12 a of the reflection mirror 12 is adjusted according to the variation caused by the actual configuration or assembly, The position of the optical axis of the laser beam passing through the objective lens 5 is adjusted.
<<<ハウジングに対する反射ミラーの取り付け構造について>>>
 以下、図7A乃至図9Dを参照しつつ、ハウジング2に対するホルダ7の取り付け構造について説明する。光ピックアップ装置1では、反射ミラー12が、コリメータレンズ11と対物レンズ5との間のレーザ光の光軸上に介在するように、ハウジング2に設けられた第2収容室21に収容される。
<<< About the reflection mirror mounting structure for the housing >>>
Hereinafter, the attachment structure of the holder 7 to the housing 2 will be described with reference to FIGS. 7A to 9D. In the optical pickup device 1, the reflection mirror 12 is accommodated in the second accommodation chamber 21 provided in the housing 2 so as to be interposed on the optical axis of the laser light between the collimator lens 11 and the objective lens 5.
 第2収容室21は、収容した反射ミラー12の反射面12aに対するレーザ光の反射角度、即ち、コリメータレンズ11からのレーザ光の光軸に対する反射ミラー12の反射面12aの角度(以下単に反射面12aの角度と称する)を調整することが可能な形状を呈している。具体的には、第2収容室21は、フォーカス方向Fの+側及びコリメータレンズ11と対向する側が開口する箱形状を呈している。また、第2収容室21は、壁面21a、21bと反射ミラー12との間に空間(隙間)21cが形成されるように、反射ミラー12よりも僅かに大きい形状を呈している。 The second storage chamber 21 has a reflection angle of the laser beam with respect to the reflection surface 12a of the stored reflection mirror 12, that is, an angle of the reflection surface 12a of the reflection mirror 12 with respect to the optical axis of the laser beam from the collimator lens 11 (hereinafter simply referred to as a reflection surface). (Referred to as the angle of 12a). Specifically, the second storage chamber 21 has a box shape in which the + side in the focus direction F and the side facing the collimator lens 11 are open. The second storage chamber 21 has a shape slightly larger than that of the reflection mirror 12 so that a space (gap) 21 c is formed between the wall surfaces 21 a and 21 b and the reflection mirror 12.
 これによって、第2収容室21の内部21dにおいて、反射ミラー12の反射面12aのトラッキング方向Trの+側を、-側に対してフォーカス方向Fの+側(図7Bに矢印bで示す方向)に移動させることで、反射ミラー12で反射されたレーザ光の光軸をトラッキング方向Trの-側に移動させることができる。同様にして、図7Bに矢印cで示す方向に反射ミラー12を移動させることで、レーザ光の光軸をタンジェンシャル方向Tnの-側に移動させることができる。また、図7Bに矢印dで示す方向に反射ミラー12を移動させることで、レーザ光の光軸をトラッキング方向Trの+側に移動させることができる。また、図7Bに矢印eで示す方向に反射ミラー12を移動させることで、レーザ光の光軸をタンジェンシャル方向Tnの+側に移動させることができる。 Accordingly, in the inside 21d of the second storage chamber 21, the + side of the tracking direction Tr of the reflecting surface 12a of the reflecting mirror 12 is set to the + side of the focus direction F with respect to the − side (the direction indicated by the arrow b in FIG. 7B). The optical axis of the laser beam reflected by the reflecting mirror 12 can be moved to the minus side of the tracking direction Tr. Similarly, by moving the reflecting mirror 12 in the direction indicated by the arrow c in FIG. 7B, the optical axis of the laser light can be moved to the negative side of the tangential direction Tn. Further, by moving the reflection mirror 12 in the direction indicated by the arrow d in FIG. 7B, the optical axis of the laser light can be moved to the + side of the tracking direction Tr. Further, by moving the reflecting mirror 12 in the direction indicated by the arrow e in FIG. 7B, the optical axis of the laser light can be moved to the + side of the tangential direction Tn.
 第2収容室21の内部21dにおいて、反射面12aの角度が調整された反射ミラー12は、接着剤によって第2収容室21のフォーカス方向Fの-側の壁面(底面)21bに対して固定される。接着剤は、紫外線が照射されることで硬化するUV(ultraviolet)硬化型の接着剤であり、例えば図8Bに示すように第2収容室21の底面上に少なくとも3つの接着スポット22a、22b、22cとして配置される。第2収容室21に収容された反射ミラー12は、先ず、UV照射前の接着スポット22a、22b、22cの上に載置される。次に、反射ミラー12は、光ピックアップ装置1の光学系における構成や組み立てによって生じたばらつきに応じて、前述した方向に反射面12aの角度が調整される。そして、調整された反射ミラー12の反射面12aの角度を維持したまま、接着スポット22a、22b、22cにUV照射を行う。これによって接着剤が硬化するため、反射面12aの角度が調整された状態で、ハウジング2に対して反射ミラー12が取り付けられる。 In the inside 21d of the second storage chamber 21, the reflection mirror 12 whose angle of the reflection surface 12a is adjusted is fixed to the negative side wall surface (bottom surface) 21b in the focus direction F of the second storage chamber 21 by an adhesive. The The adhesive is a UV (ultraviolet) curable adhesive that is cured by being irradiated with ultraviolet rays. For example, as shown in FIG. 8B, at least three adhesive spots 22 a and 22 b on the bottom surface of the second storage chamber 21. 22c. The reflection mirror 12 accommodated in the second storage chamber 21 is first placed on the adhesion spots 22a, 22b, 22c before UV irradiation. Next, the angle of the reflecting surface 12a of the reflecting mirror 12 is adjusted in the above-described direction in accordance with variations caused by the configuration and assembly in the optical system of the optical pickup device 1. Then, the adhesion spots 22a, 22b, and 22c are irradiated with UV while maintaining the adjusted angle of the reflecting surface 12a of the reflecting mirror 12. Since the adhesive is thereby cured, the reflection mirror 12 is attached to the housing 2 in a state where the angle of the reflection surface 12a is adjusted.
<<<反射ミラーの反射面に対するレーザ光の反射角度の調整について>>>
 以下、主に図9A乃至図9Cを参照して、光ピックアップ装置1の光学系における構成や組み立てによって生じたばらつきに応じて、反射ミラー12の反射面12aの角度を調整する方法の一例について説明する。
<<< Adjustment of the reflection angle of the laser beam to the reflection surface of the reflection mirror >>>
In the following, an example of a method for adjusting the angle of the reflecting surface 12a of the reflecting mirror 12 according to variations in the configuration and assembly of the optical system of the optical pickup device 1 will be described mainly with reference to FIGS. 9A to 9C. To do.
 本実施形態では、ゴニオステージ30及び不図示のオートコリメータを用いて第2収容室21に反射ミラー12を収容し、反射面12aの角度を調整しつつ、ハウジング2に反射ミラー12を取り付ける。この際に、レーザ光の往路において、レーザ光源6から反射ミラー12までの構成に生じたばらつきに応じて、反射ミラー12の反射面12aの角度を調整することで、対物レンズ5を通るレーザ光の光軸の位置を調整する。 In this embodiment, the reflecting mirror 12 is accommodated in the second accommodating chamber 21 using the gonio stage 30 and an autocollimator (not shown), and the reflecting mirror 12 is attached to the housing 2 while adjusting the angle of the reflecting surface 12a. At this time, the laser light passing through the objective lens 5 is adjusted by adjusting the angle of the reflection surface 12a of the reflection mirror 12 in accordance with the variation occurring in the configuration from the laser light source 6 to the reflection mirror 12 in the forward path of the laser light. Adjust the position of the optical axis.
 ゴニオステージ30は、本体34と、本体34に備えられる調節摘み(調節ツマミ)32、33と、本体34に備えられる吸着部材31とを備えている。調節摘み32を回動させることで、本体34のステージ34aを図9Bに矢印gで示す方向に移動させることができる。また、調節摘み33を回動させることで、本体34のステージ34aを図9Aに矢印fで示す方向に移動させることができる。吸着部材31は、一端が本体34のステージ34aに取り付けられ、ステージ34aに連動する。また、吸着部材31の他端は、不図示の吸着パッド等が取り付けられ、この吸着パッドによって反射ミラー12の反射面12aに対して着脱可能となっている。 The gonio stage 30 includes a main body 34, adjustment knobs (adjustment knobs) 32 and 33 provided in the main body 34, and an adsorption member 31 provided in the main body 34. By rotating the adjustment knob 32, the stage 34a of the main body 34 can be moved in the direction indicated by the arrow g in FIG. 9B. Further, by rotating the adjustment knob 33, the stage 34a of the main body 34 can be moved in the direction indicated by the arrow f in FIG. 9A. One end of the adsorption member 31 is attached to the stage 34a of the main body 34, and is linked to the stage 34a. Further, a suction pad (not shown) or the like is attached to the other end of the suction member 31, and the suction pad can be attached to and detached from the reflection surface 12a of the reflection mirror 12.
 オートコリメータは反射ミラー12に調整用のレーザ光を照射し、その反射光の光軸の位置(測定位置)と、目的とする角度に反射ミラー12を傾けたときに得られる反射光の光軸の位置(目標位置)とを不図示のモニタ等に表示する。よって、例えば、オートコリメータのモニタの表示を確認しつつ、ゴニオステージ30の調整摘み32、33を回動させることで、反射ミラー12の反射面12aの角度を目標とする角度へと調整できる。 The autocollimator irradiates the reflection mirror 12 with laser light for adjustment, the position (measurement position) of the optical axis of the reflected light, and the optical axis of the reflected light obtained when the reflection mirror 12 is tilted to a target angle. Are displayed on a monitor or the like (not shown). Therefore, for example, the angle of the reflecting surface 12a of the reflecting mirror 12 can be adjusted to a target angle by rotating the adjustment knobs 32 and 33 of the gonio stage 30 while confirming the display on the monitor of the autocollimator.
 以下、ゴニオステージ30及びオートコリメータによって、反射ミラー12からのレーザ光の光軸が、基準位置の対物レンズ5の略中心を通るように、反射ミラー12の反射面12aの角度を調整する場合について説明する。 Hereinafter, the angle of the reflecting surface 12a of the reflecting mirror 12 is adjusted by the gonio stage 30 and the autocollimator so that the optical axis of the laser light from the reflecting mirror 12 passes through the approximate center of the objective lens 5 at the reference position. explain.
 先ず、ハウジング2内に反射ミラー12及び対物レンズ5を除く光学系を組み込む。そして、レーザ光源6からレーザ光を出射させ、回折格子8、偏光ビームスプリッタ9、1/4波長板10、コリメートレンズ11を介して、反射ミラー12から反射されたレーザ光の光軸のフォーカス方向Fに対する角度(検出光軸角度)を検出する。この検出光軸角度には、レーザ光源6から反射ミラー12までの構成にばらつきが生じていた場合、対物レンズ5の中心位置を通るレーザ光の光軸のフォーカス方向Fに対する角度(目標光軸角度)との間にずれが生じている。よって、この検出光軸角度と目標光軸角度とのずれ量に応じて、反射ミラー12からのレーザ光の光軸の位置が対物レンズ5の中心位置と略一致するように、オートコリメータに目標位置を設定する。 First, an optical system excluding the reflecting mirror 12 and the objective lens 5 is incorporated in the housing 2. Then, laser light is emitted from the laser light source 6, and the focus direction of the optical axis of the laser light reflected from the reflection mirror 12 through the diffraction grating 8, the polarization beam splitter 9, the quarter wavelength plate 10, and the collimator lens 11. An angle with respect to F (detection optical axis angle) is detected. When the detection optical axis angle varies in the configuration from the laser light source 6 to the reflection mirror 12, the angle of the optical axis of the laser light passing through the center position of the objective lens 5 with respect to the focus direction F (target optical axis angle). ). Therefore, according to the deviation amount between the detected optical axis angle and the target optical axis angle, the target collimator is set to the autocollimator so that the position of the optical axis of the laser light from the reflecting mirror 12 substantially coincides with the center position of the objective lens 5. Set the position.
 次に、図9Cに示すように、光ピックアップ装置1に対して、吸着部材31の他端に反射ミラー12を取り付けた状態で、本体34を対物レンズ5が取り付けられる方向と平行になるように設置する。また、オートコリメータの反射ミラー12に調整用のレーザ光を照射し、測定位置と、設定した目標位置とをモニタに表示する。このモニタを確認しつつ、目標位置に測定位置が略一致するように、ゴニオステージ30の調整摘み32、33を回動させる。尚、調節摘み32を回動させることで、図7Bに矢印b又は矢印dで示す方向に反射ミラー12を移動させることができる。また、調節摘み33を回動させることで、図7Bに矢印c又は矢印eで示す方向に反射ミラー12を移動させることができる。 Next, as shown in FIG. 9C, with respect to the optical pickup device 1, the main body 34 is parallel to the direction in which the objective lens 5 is attached with the reflection mirror 12 attached to the other end of the adsorption member 31. Install. Further, the adjustment mirror light is irradiated to the reflection mirror 12 of the autocollimator, and the measurement position and the set target position are displayed on the monitor. While checking this monitor, the adjustment knobs 32 and 33 of the gonio stage 30 are rotated so that the measurement position substantially coincides with the target position. In addition, by rotating the adjustment knob 32, the reflecting mirror 12 can be moved in the direction indicated by the arrow b or the arrow d in FIG. 7B. Further, by rotating the adjustment knob 33, the reflection mirror 12 can be moved in the direction indicated by the arrow c or the arrow e in FIG. 7B.
 これによって、反射ミラー12の反射面12aの角度を目標とする角度に調整する。そして、ゴニオメータ30の吸着部材31に反射ミラー12が吸着されている状態で、接着スポット22a、22b、22cにUV照射を行う。これによって接着剤が硬化すると、反射ミラー12の反射面12aが調整され、この反射面12aに対するレーザ光の反射角度が調整される。このため、反射ミラー12からのレーザ光の光軸が対物レンズ5の略中心を通るように、ハウジング2に対して反射ミラー12を取り付けることができる。 Thereby, the angle of the reflecting surface 12a of the reflecting mirror 12 is adjusted to a target angle. Then, UV irradiation is performed on the adhesion spots 22a, 22b, and 22c in a state where the reflection mirror 12 is adsorbed to the adsorption member 31 of the goniometer 30. When the adhesive is cured by this, the reflection surface 12a of the reflection mirror 12 is adjusted, and the reflection angle of the laser beam with respect to the reflection surface 12a is adjusted. For this reason, the reflection mirror 12 can be attached to the housing 2 so that the optical axis of the laser light from the reflection mirror 12 passes through the approximate center of the objective lens 5.
 尚、ここでは、反射ミラー12からのレーザ光の光軸が対物レンズ5の略中心を通るように、反射ミラー12の反射面12aの角度を調整する場合について説明した。しかし、例えばレーザ光源6から出射されるレーザ光の光軸の位置と、回折格子8の分割線8cの位置とにばらつきが生じていた場合、この回折格子8を通るレーザ光の光軸の位置に応じて、反射ミラー12の反射面12aの角度を調整してもよい。これによって、よりTE信号の精度を高めることができる。 Here, the case where the angle of the reflecting surface 12a of the reflecting mirror 12 is adjusted so that the optical axis of the laser beam from the reflecting mirror 12 passes through the approximate center of the objective lens 5 has been described. However, for example, when there is a variation in the position of the optical axis of the laser light emitted from the laser light source 6 and the position of the dividing line 8c of the diffraction grating 8, the position of the optical axis of the laser light passing through the diffraction grating 8 Depending on the angle, the angle of the reflecting surface 12a of the reflecting mirror 12 may be adjusted. Thereby, the accuracy of the TE signal can be further increased.
 例えば、図5に示す曲線CQは、レーザ光の光軸が回折格子8の分割線8cよりも第1領域8a側にずれている場合のTE信号の視野特性であるが、対物レンズ5がトラッキング方向Trの-側に約-0.1mm移動したときに極大値を示している。このため、基準位置の対物レンズ5を通るレーザ光の光軸の位置を、対物レンズ5の中心位置からトラッキング方向Trの例えば+側に移動させることで、曲線CQの視野特性の対称性を向上させ、TE信号の精度を高めることができる。 For example, the curve CQ shown in FIG. 5 is the visual field characteristic of the TE signal when the optical axis of the laser beam is shifted to the first region 8a side from the dividing line 8c of the diffraction grating 8, but the objective lens 5 is tracking. The maximum value is shown when the lens moves about -0.1 mm to the-side of the direction Tr. For this reason, the symmetry of the field characteristic of the curve CQ is improved by moving the position of the optical axis of the laser beam passing through the objective lens 5 at the reference position from the center position of the objective lens 5 to, for example, the + side of the tracking direction Tr. Thus, the accuracy of the TE signal can be increased.
 同様に図5に示す曲線CRについては、基準位置の対物レンズ5を通るレーザ光の光軸の位置を、対物レンズ5の中心位置からトラッキング方向Trの例えば-側に移動させることで、視野特性の対称性を向上させ、TE信号の精度を高めることができる。 Similarly, with respect to the curve CR shown in FIG. 5, the position of the optical axis of the laser light passing through the objective lens 5 at the reference position is moved from the center position of the objective lens 5 to, for example, the minus side in the tracking direction Tr. Can be improved, and the accuracy of the TE signal can be improved.
 以上より、本実施形態に係る光ピックアップ装置1は、少なくとも、レーザ光源6と対物レンズ5との間の光軸上に介在し、レーザ光源6から出射されるレーザ光を回折する回折格子8と、回折格子8が収容される第1収容室20を有するハウジング2と、を備え、第1収容室20は、回折格子8の格子面82において周期構造が繰り返される第1方向Aと直交する第2方向Bへ回折格子8が移動することを禁止する形状を呈していればよい。 As described above, the optical pickup device 1 according to this embodiment includes at least the diffraction grating 8 that is interposed on the optical axis between the laser light source 6 and the objective lens 5 and diffracts the laser light emitted from the laser light source 6. And a housing 2 having a first storage chamber 20 in which the diffraction grating 8 is stored. The first storage chamber 20 is orthogonal to a first direction A in which the periodic structure is repeated on the grating surface 82 of the diffraction grating 8. The shape which prohibits the diffraction grating 8 moving to the two directions B should just be exhibited.
 この光ピックアップ装置1によれば、予め、レーザ光源6から出射されるレーザ光の光軸が回折格子8の分割線8c上を通るように、レーザ光源6と回折格子8との位置関係を考慮してハウジング2に第1収容室20を設けている。そして、第1収容室20に、第2方向Bへの移動が禁止された状態で、ホルダ7が収容される。これによって、例えば、回折格子8の回動調整と、第2方向Bの位置調整とを独立に行うためにホルダ7を2つの部品から構成する必要がなく、回折格子8をハウジング2に取り付けるための部品点数や作業工程を減らすことができる。また、部品点数を削減できる分、光ピックアップ装置1を小型化すること及び製造コストを削減することができる。 According to this optical pickup device 1, the positional relationship between the laser light source 6 and the diffraction grating 8 is considered in advance so that the optical axis of the laser light emitted from the laser light source 6 passes on the dividing line 8 c of the diffraction grating 8. Thus, the first storage chamber 20 is provided in the housing 2. And the holder 7 is accommodated in the 1st storage chamber 20 in the state in which the movement to the 2nd direction B was prohibited. As a result, for example, the holder 7 does not need to be composed of two parts in order to perform the rotation adjustment of the diffraction grating 8 and the position adjustment in the second direction B independently, and the diffraction grating 8 is attached to the housing 2. The number of parts and the work process can be reduced. In addition, since the number of parts can be reduced, the optical pickup device 1 can be reduced in size and the manufacturing cost can be reduced.
 また、前述した光ピックアップ装置1において、第1収容室20に収容されている回折格子8に対し、回折格子8が光軸方向Cに移動することを禁止する弾性力を付与する板ばね17を備えている。この光ピックアップ装置1によれば、第1収容室20内において、回折格子8を、レーザ光の光軸回りに回動可能且つ、光軸方向Cへの移動を禁止するように固定できる。これによって、回折格子8の回動調整にともなって、回折格子8が光軸方向Cへ移動してしまうことを簡単な構成で防止でき、TE信号の精度の低下等を容易に防止することができる。 Further, in the optical pickup device 1 described above, the leaf spring 17 that applies an elastic force that prohibits the diffraction grating 8 from moving in the optical axis direction C to the diffraction grating 8 accommodated in the first accommodation chamber 20 is provided. I have. According to the optical pickup device 1, the diffraction grating 8 can be fixed in the first storage chamber 20 so as to be rotatable around the optical axis of the laser light and prohibited from moving in the optical axis direction C. Accordingly, it is possible to prevent the diffraction grating 8 from moving in the optical axis direction C with the rotation adjustment of the diffraction grating 8 with a simple configuration and to easily prevent a decrease in the accuracy of the TE signal. it can.
 また、本実施形態にかかる光ピックアップ装置1は、少なくとも、レーザ光源6と対物レンズ5との間の光軸上に介在し、レーザ光源6から出射されるレーザ光を回折する回折格子8と、回折格子8と対物レンズ5との間の光軸上に介在し、レーザ光が対物レンズ5に向かうようにレーザ光を反射する反射ミラー12と、回折格子8が収容される第1収容室20と、反射ミラー12が収容される第2収容室21と、を有するハウジング2と、を備え、第2収容室21は、レーザ光が対物レンズ5の略中心を透過するように反射ミラー12の反射面12aに対するレーザ光の反射角度を調整可能な形状を呈していればよい。 The optical pickup device 1 according to the present embodiment includes at least a diffraction grating 8 that is interposed on the optical axis between the laser light source 6 and the objective lens 5 and diffracts the laser light emitted from the laser light source 6. A reflection mirror 12 interposed on the optical axis between the diffraction grating 8 and the objective lens 5 to reflect the laser light so that the laser light is directed toward the objective lens 5, and a first accommodation chamber 20 in which the diffraction grating 8 is accommodated. And a housing 2 having a second housing chamber 21 in which the reflecting mirror 12 is housed, and the second housing chamber 21 is configured so that the laser beam passes through the substantial center of the objective lens 5 so that the laser light passes through the center. The shape which can adjust the reflection angle of the laser beam with respect to the reflective surface 12a should just be exhibited.
 この光ピックアップ装置1によれば、ハウジング2内の光学系における構成や組み立てによって生じたばらつきを考慮して、反射ミラー12からのレーザ光の光軸が対物レンズ5の略中心を透過するように、反射ミラー12の反射面12aの角度を調整することができる。即ち反射ミラー12の反射面12aに対するレーザ光の反射角度を調整することができる。これによって、回折格子8をハウジング2に取り付けるための部品点数や作業工程を減らすことができると共に、TE信号等の精度を高めることができる。 According to the optical pickup device 1, the optical axis of the laser light from the reflection mirror 12 is transmitted through substantially the center of the objective lens 5 in consideration of variations caused by the configuration and assembly of the optical system in the housing 2. The angle of the reflecting surface 12a of the reflecting mirror 12 can be adjusted. That is, the reflection angle of the laser beam with respect to the reflection surface 12a of the reflection mirror 12 can be adjusted. As a result, the number of parts and work steps for attaching the diffraction grating 8 to the housing 2 can be reduced, and the accuracy of the TE signal and the like can be increased.
 また、前述した光ピックアップ装置1において、第2収容室21は、回折格子8の格子面82において周期構造が繰り返される第1方向A及び第1方向Aと直交する第2方向Bの少なくとも何れか一方に対応する方向へ、反射ミラー12の反射面12aに対するレーザ光の反射角度を調整可能な形状を呈している。 In the optical pickup device 1 described above, the second storage chamber 21 has at least one of the first direction A in which the periodic structure is repeated on the grating surface 82 of the diffraction grating 8 and the second direction B orthogonal to the first direction A. A shape in which the reflection angle of the laser beam with respect to the reflection surface 12a of the reflection mirror 12 can be adjusted in a direction corresponding to one of them is exhibited.
 この光ピックアップ装置1によれば、レーザ光源6から出射されるレーザ光の光軸の位置と、回折格子8の分割線8cの位置とにばらつきが生じていた場合、この回折格子8を通るレーザ光の光軸の位置に応じて、反射ミラー12の反射面12aの角度を調整できる。具体的には、回折格子8の第1方向Aは、タンジェンシャル方向Tnに光学的に対応し、回折格子8の第2方向Bは、トラッキング方向Trに光学的に対応している。そこで、例えば、回折格子8の第2方向Bにおいて、レーザ光の光軸が通る位置が分割線8cからずれた場合、このずれ量に応じて、反射ミラー12からのレーザ光の光軸がトラッキング方向Trに移動するように、反射ミラー12を図7Bに矢印b又は矢印dで示す方向に移動させる。これによって、TE信号の視野特性の対称性を高めることができ、TE信号の精度を高めることができる。 According to this optical pickup device 1, when there is a variation in the position of the optical axis of the laser light emitted from the laser light source 6 and the position of the dividing line 8 c of the diffraction grating 8, the laser that passes through the diffraction grating 8. The angle of the reflecting surface 12a of the reflecting mirror 12 can be adjusted according to the position of the optical axis of the light. Specifically, the first direction A of the diffraction grating 8 optically corresponds to the tangential direction Tn, and the second direction B of the diffraction grating 8 optically corresponds to the tracking direction Tr. Therefore, for example, when the position through which the optical axis of the laser beam passes in the second direction B of the diffraction grating 8 deviates from the dividing line 8c, the optical axis of the laser beam from the reflection mirror 12 is tracked according to the amount of deviation. The reflecting mirror 12 is moved in the direction indicated by the arrow b or the arrow d in FIG. 7B so as to move in the direction Tr. Thereby, the symmetry of the visual field characteristic of the TE signal can be increased, and the accuracy of the TE signal can be increased.
 また、前述した光ピックアップ装置1において、反射ミラー12の反射面12aに対するレーザ光の反射角度は、ゴニオステージ30により調整される。この光ピックアップ装置1では、ゴニオステージ30及びオートコリメータを用いて、簡易且つ容易に反射ミラー12の反射面12aの角度を調整できる。 In the optical pickup device 1 described above, the reflection angle of the laser beam with respect to the reflection surface 12a of the reflection mirror 12 is adjusted by the gonio stage 30. In the optical pickup device 1, the angle of the reflection surface 12 a of the reflection mirror 12 can be easily and easily adjusted using the gonio stage 30 and the autocollimator.
 前述した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更や改良等が可能であり、また本発明はその等価物も含むものである。 The embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
 前述した光ピックアップ装置1では、対物レンズホルダ4は、例えば、第1、第2及び/又は第3光ディスクにレーザ光を集光する対物レンズ5を1つ保持することとしたが、特にこれに限定されるものではない。例えば、対物レンズホルダ4は、第1及び第2光ディスクにレーザ光を集光する第1対物レンズ(不図示)と、第3光ディスクにレーザ光を集光する第2対物レンズ(不図示)との2つの対物レンズを、例えば光ディスクの半径方向ここではトラッキング方向Trに略沿って並んだ状態で保持していてもよい。また、対物レンズホルダ4は、第1及び第2光ディスクにレーザ光を集光する第1対物レンズ(不図示)と、第3光ディスクにレーザ光を集光する第2対物レンズ(不図示)との2つの対物レンズを、光ディスクのタンジェンシャル方向Tnに略沿って並んだ状態で保持していてもよい。 In the optical pickup device 1 described above, the objective lens holder 4 holds, for example, one objective lens 5 that focuses laser light on the first, second, and / or third optical disc. It is not limited. For example, the objective lens holder 4 includes a first objective lens (not shown) that focuses laser light on first and second optical disks, and a second objective lens (not shown) that focuses laser light on a third optical disk. These two objective lenses may be held, for example, in a state of being arranged substantially along the radial direction of the optical disk, here along the tracking direction Tr. The objective lens holder 4 includes a first objective lens (not shown) for condensing the laser light on the first and second optical disks, and a second objective lens (not shown) for condensing the laser light on the third optical disk. These two objective lenses may be held in a state of being aligned substantially along the tangential direction Tn of the optical disk.
 また、光ピックアップ装置1は、第1光ディスク用の光学系を備えていなくてもよい。また、光ピックアップ装置1は、第2光ディスク用の光学系を備えていなくてもよい。また、光ピックアップ装置1は、第3光ディスク用の光学系を備えていなくてもよい。 Further, the optical pickup device 1 may not include the optical system for the first optical disc. Further, the optical pickup device 1 may not include the optical system for the second optical disc. Further, the optical pickup device 1 may not include the optical system for the third optical disc.
 また、2つの第1領域8aおよび第2領域8bを備える2分割タイプの回折格子8に代えて、3つの領域を備える3分割タイプの回折格子(不図示)が用いられてもよい。また、例えば、2つの第1領域8aおよび第2領域8bを備える2分割タイプの回折格子8に代えて、4つの領域を備える4分割タイプの回折格子(不図示)が用いられてもよい。このように複数の領域を備える複数分割タイプの回折格子が使用可能とされている。 Further, instead of the two-divided type diffraction grating 8 including the two first regions 8a and the second region 8b, a three-divided type diffraction grating (not shown) including three regions may be used. Further, for example, instead of the two-divided diffraction grating 8 including the two first regions 8a and the second region 8b, a four-divided diffraction grating (not shown) including four regions may be used. As described above, a multi-partition type diffraction grating having a plurality of regions can be used.
1…光ピックアップ装置、2…ハウジング、3…カバー、4…対物レンズホルダ、5…対物レンズ、6…レーザ光源、7…ホルダ、7a…外面、8…回折格子、8a…第1領域、8b…第2領域、8c…分割線、9…偏光ビームスプリッタ、10…1/4波長板、11…コリメータレンズ、12…反射ミラー、12a…反射面、13,14…平行平板、15…光検出器、16…受光素子、17…板ばね、17a…面、20…第1収容室、20a…第2の壁、20b…第1の壁、20c,20d…切欠き、20e,70…筒部材、20f…内面、20g,21d…内部、20h,21c…空間、21…第2収容室、21a,21b…壁面、22a,22b,22c…接着スポット、30…ゴニオステージ、31…吸着部材、32,33…調節摘み、34…本体、34a…ステージ、80…凹部、81…凸部、82…格子面、A…第1方向、B…第2方向、C…光軸方向、F…フォーカス方向、L1,L2…長さ、Tn…タンジェンシャル方向、Tr…トラッキング方向 DESCRIPTION OF SYMBOLS 1 ... Optical pick-up apparatus, 2 ... Housing, 3 ... Cover, 4 ... Objective lens holder, 5 ... Objective lens, 6 ... Laser light source, 7 ... Holder, 7a ... Outer surface, 8 ... Diffraction grating, 8a ... 1st area | region, 8b 2nd region, 8c ... dividing line, 9 ... polarizing beam splitter, 10 ... 1/4 wavelength plate, 11 ... collimator lens, 12 ... reflecting mirror, 12a ... reflecting surface, 13, 14 ... parallel plate, 15 ... light detection 16 ... light receiving element, 17 ... leaf spring, 17a ... surface, 20 ... first accommodating chamber, 20a ... second wall, 20b ... first wall, 20c, 20d ... notch, 20e, 70 ... cylindrical member 20f ... inner surface, 20g, 21d ... inside, 20h, 21c ... space, 21 ... second storage chamber, 21a, 21b ... wall surface, 22a, 22b, 22c ... adhesion spot, 30 ... gonio stage, 31 ... adsorption member, 32 33 ... Adjustment knob 34 ... main body, 34a ... stage, 80 ... concave part, 81 ... convex part, 82 ... lattice plane, A ... first direction, B ... second direction, C ... optical axis direction, F ... focus direction, L1, L2 ... Length, Tn ... tangential direction, Tr ... tracking direction

Claims (7)

  1.  レーザ光源と対物レンズとの間の光軸上に介在し、前記レーザ光源から出射されるレーザ光を回折する回折格子と、
     前記回折格子が収容される収容室を有するハウジングと、
     を備え、
     前記収容室は、前記回折格子の格子面において周期構造が繰り返される第1方向と直交する第2方向へ前記回折格子が移動することを禁止する形状を呈する
     ことを特徴とする光ピックアップ装置。
    A diffraction grating interposed on the optical axis between the laser light source and the objective lens and diffracting the laser light emitted from the laser light source;
    A housing having a storage chamber in which the diffraction grating is stored;
    With
    The optical pickup device, wherein the storage chamber has a shape that prohibits the diffraction grating from moving in a second direction orthogonal to a first direction in which a periodic structure is repeated on a grating surface of the diffraction grating.
  2.  前記収容室に収容されている前記回折格子に対し、前記回折格子が前記光軸方向に移動することを禁止する弾性力を付与する弾性体、
     を備えたことを特徴とする請求項1に記載の光ピックアップ装置。
    An elastic body that applies elastic force to the diffraction grating accommodated in the accommodation chamber to prohibit the diffraction grating from moving in the optical axis direction;
    The optical pickup device according to claim 1, further comprising:
  3.  レーザ光源と対物レンズとの間の光軸上に介在し、前記レーザ光源から出射されるレーザ光を回折する回折格子と、
     前記回折格子と前記対物レンズとの間の光軸上に介在し、前記レーザ光が前記対物レンズに向かうように前記レーザ光を反射する反射ミラーと、
     前記回折格子が収容される第1収容室と、前記反射ミラーが収容される第2収容室と、
    を有するハウジングと、
     を備え、
     前記第2収容室は、前記レーザ光が前記対物レンズの略中心を透過するように前記反射ミラーの反射面に対する前記レーザ光の反射角度を調整可能な形状を呈する
     ことを特徴とする光ピックアップ装置。
    A diffraction grating interposed on the optical axis between the laser light source and the objective lens and diffracting the laser light emitted from the laser light source;
    A reflection mirror that is interposed on the optical axis between the diffraction grating and the objective lens and reflects the laser light so that the laser light is directed toward the objective lens;
    A first storage chamber in which the diffraction grating is stored; a second storage chamber in which the reflection mirror is stored;
    A housing having
    With
    The second storage chamber has a shape capable of adjusting a reflection angle of the laser light with respect to a reflection surface of the reflection mirror so that the laser light passes through a substantially center of the objective lens. .
  4.  前記第2収容室は、前記回折格子の格子面において周期構造が繰り返される第1方向及び前記第1方向と直交する第2方向の少なくとも何れか一方に対応する方向へ、前記反射ミラーの前記反射面に対する前記レーザ光の反射角度を調整可能な形状を呈する
     ことを特徴とする請求項3に記載の光ピックアップ装置。
    The second storage chamber has the reflection mirror reflected in a direction corresponding to at least one of a first direction in which a periodic structure is repeated on a grating surface of the diffraction grating and a second direction orthogonal to the first direction. The optical pickup device according to claim 3, wherein the optical pickup device has a shape capable of adjusting a reflection angle of the laser beam with respect to a surface.
  5.  前記反射ミラーの前記反射面に対する前記レーザ光の前記反射角度は、ゴニオステージにより調整される
     ことを特徴とする請求項3又は4に記載の光ピックアップ装置。
    The optical pickup device according to claim 3 or 4, wherein the reflection angle of the laser beam with respect to the reflection surface of the reflection mirror is adjusted by a gonio stage.
  6.  回折格子と対物レンズとの間の光軸上に介在し、レーザ光が前記対物レンズに向かうように前記レーザ光を反射する反射ミラーと、
     前記反射ミラーが収容される収容室を有するハウジングと、
     を備え、
     前記収容室は、前記レーザ光が前記対物レンズの略中心を透過するように前記反射ミラーの反射面に対する前記レーザ光の反射角度を調整可能な形状を呈する
     ことを特徴とする光ピックアップ装置。
    A reflection mirror that is interposed on the optical axis between the diffraction grating and the objective lens and reflects the laser light so that the laser light is directed toward the objective lens;
    A housing having a storage chamber in which the reflection mirror is stored;
    With
    The optical pickup device, wherein the storage chamber has a shape capable of adjusting a reflection angle of the laser beam with respect to a reflection surface of the reflection mirror so that the laser beam passes through a substantially center of the objective lens.
  7.  前記反射ミラーの前記反射面に対する前記レーザ光の前記反射角度は、ゴニオステージにより調整される
     ことを特徴とする請求項6に記載の光ピックアップ装置。
    The optical pickup device according to claim 6, wherein the reflection angle of the laser light with respect to the reflection surface of the reflection mirror is adjusted by a gonio stage.
PCT/JP2011/064185 2010-06-21 2011-06-22 Optical pick-up device WO2012002196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010140864A JP2013069353A (en) 2010-06-21 2010-06-21 Optical pickup device
JP2010-140864 2010-06-21

Publications (1)

Publication Number Publication Date
WO2012002196A1 true WO2012002196A1 (en) 2012-01-05

Family

ID=45401917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064185 WO2012002196A1 (en) 2010-06-21 2011-06-22 Optical pick-up device

Country Status (2)

Country Link
JP (1) JP2013069353A (en)
WO (1) WO2012002196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193504A1 (en) * 2011-01-28 2012-08-02 Funai Electric Co., Ltd. Optical Element Holder and Optical Pickup Provided with Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218028A (en) * 1989-02-20 1990-08-30 Matsushita Electric Ind Co Ltd Optical pickup
JP2004253019A (en) * 2003-02-18 2004-09-09 Pioneer Electronic Corp Astigmatism measuring method for optical pickup, astigmatism adjusting method and astigmatism measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218028A (en) * 1989-02-20 1990-08-30 Matsushita Electric Ind Co Ltd Optical pickup
JP2004253019A (en) * 2003-02-18 2004-09-09 Pioneer Electronic Corp Astigmatism measuring method for optical pickup, astigmatism adjusting method and astigmatism measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193504A1 (en) * 2011-01-28 2012-08-02 Funai Electric Co., Ltd. Optical Element Holder and Optical Pickup Provided with Same
US9299383B2 (en) * 2011-01-28 2016-03-29 Funai Electric Co., Ltd. Optical element holder and optical pickup provided with same

Also Published As

Publication number Publication date
JP2013069353A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP2004355790A (en) Hologram coupled member and its manufacturing method, hologram laser unit, and optical pickup apparatus
JP4587892B2 (en) Laser condensing device, optical pickup device, optical disc recording / reproducing device
US20060013110A1 (en) Optical pickup and disk drive apparatus
JP2011204336A (en) Laser device, optical pickup device and method for manufacturing the same
WO2012002196A1 (en) Optical pick-up device
US20070013984A1 (en) Active compensation device, and compatible optical pickup and optical recording and/or reproducing apparatus employing the active compensation device
JP4753769B2 (en) Objective lens holding device, optical pickup device
US20110255392A1 (en) Optical pickup device
JP2007305195A (en) Optical pickup device
JP2005174529A (en) Optical head
JP5370383B2 (en) Optical element holder and optical pickup having the same
JP2006066011A (en) Hologram laser unit and optical pickup device
JP2012003802A (en) Diffraction grating holder and optical pickup device including the same
JP4947940B2 (en) Optical pickup device
TWI308748B (en)
JP4121895B2 (en) Optical pickup
JP2006331475A (en) Optical pickup device, optical information reproducing device using the same and optical information recording and reproducing device
JP4339222B2 (en) Optical pickup device
WO2012060363A1 (en) Protective cover and optical pickup device
JP2005122778A (en) Light pickup device and method for adjusting spherical aberration correction section in the same
JP2010244606A (en) Assembly adjustment method of integrated optical module, and integrated optical module
JPH10283667A (en) Optical head
WO2013114748A1 (en) Optical pickup device and adjustment method of optical pickup device
WO2013132975A1 (en) Optical pickup apparatus
JP2013186929A (en) Optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP