WO2012001989A1 - Rotary compressor - Google Patents
Rotary compressor Download PDFInfo
- Publication number
- WO2012001989A1 WO2012001989A1 PCT/JP2011/003773 JP2011003773W WO2012001989A1 WO 2012001989 A1 WO2012001989 A1 WO 2012001989A1 JP 2011003773 W JP2011003773 W JP 2011003773W WO 2012001989 A1 WO2012001989 A1 WO 2012001989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piston
- rotary compressor
- cylinder
- end surface
- refrigerant
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/028—Means for improving or restricting lubricant flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2250/00—Geometry
- F04C2250/30—Geometry of the stator
Definitions
- the present invention relates to a rotary compressor used in devices such as an air conditioner, a refrigeration device, a blower device, and a hot water supply device.
- devices such as an air conditioner use a rotary compressor that sucks in gas refrigerant evaporated by an evaporator and compresses the sucked gas refrigerant.
- a rotary compressor is known as one of such rotary compressors (see, for example, Patent Document 1).
- FIG. 15 is a cross-sectional view of an essential part showing an example of a rotary compressor.
- the electric motor 2 and the compression mechanism unit 3 are connected and stored by a crankshaft 31.
- An oil reservoir 6 is formed at the bottom of the sealed container 1.
- the compression mechanism unit 3 includes a cylinder 30 that forms a cylindrical internal space, a piston 32 that is disposed in the internal space of the cylinder 30, an end plate 34 of an upper bearing 34 a that closes the upper end surface of the cylinder 30, and the cylinder 30.
- the end plate 35 of the lower bearing 35a that closes the lower end surface of the lower bearing 35 and the vane 33 that partitions the inside of the compression chamber 39 into a low-pressure part and a high-pressure part.
- the compression chamber 39 is formed by the internal space of the cylinder 30, the piston 32, the end plate 34, and the end plate 35.
- the crankshaft 31 is supported by an upper bearing 34a and a lower bearing 35a.
- An eccentric portion 31 a is formed on the crankshaft 31.
- the eccentric portion 31 a is disposed between the end plate 34 and the end plate 35.
- the piston 32 is fitted to the eccentric portion 31a.
- the vane 33 reciprocates in a slot provided in the cylinder 30.
- the tip of the vane 33 is in pressure contact with the outer periphery of the piston 32, and the vane 33 reciprocates following the eccentric rotation of the piston 32 to partition the inside of the compression chamber 39 into a low pressure portion and a high pressure portion.
- An oil hole 41 is provided in the axial portion of the crankshaft 31. Oil (lubricating oil) in the oil reservoir 6 is supplied to the oil hole 41.
- oil supply holes 42 and 43 communicating with the oil hole 41 are provided in the wall portion of the crankshaft 31.
- the oil supply hole 42 is formed in a wall portion corresponding to the upper bearing 34a
- the oil supply hole 43 is formed in a wall portion corresponding to the lower bearing 35a.
- an oil supply hole (not shown) communicating with the oil hole 41 and an oil groove (not shown) are formed in the wall portion of the eccentric portion 31a.
- the cylinder 30 is formed with a suction port 40 for sucking low-pressure gas.
- the suction port 40 communicates with a low pressure portion (suction chamber) in the compression chamber 39.
- a discharge port 38 for discharging the high-pressure gas compressed in the compression chamber 39 is formed in the upper bearing 34a.
- the discharge port 38 communicates with a high pressure portion in the compression chamber 39.
- the discharge port 38 is formed as a circular hole passing through the upper bearing 34a in plan view.
- a discharge valve 36 is provided on the upper surface of the discharge port 38. The discharge valve 36 is released when it receives a pressure of a predetermined magnitude or more.
- the discharge valve 36 is covered with a cup muffler 37.
- the low pressure portion (suction chamber) of the compression chamber 39 gradually expands after the sliding contact portion between the piston 32 and the cylinder 30 passes through the suction port 40 and sucks gas from the suction port 40.
- the discharge valve 36 opens and the discharge port 38 is opened. Out of gas. The gas flowing out from the discharge port 38 is discharged into the sealed container 1 through the cup muffler 37.
- an upper piston inner space is formed by the eccentric portion 31a of the crankshaft 31, the end plate 34 of the upper bearing 34a, and the inner peripheral surface of the piston 32. 35 and the inner peripheral surface of the piston 32 form a lower piston inner space. Oil in the oil hole 41 leaks from the oil supply hole 42 to the upper space in the piston, and oil in the oil hole 41 leaks from the oil supply hole 43 to the lower space in the piston.
- the upper space in the piston and the lower space in the piston are almost always higher than the pressure in the compression chamber 39.
- the height of the cylinder 30 must be set slightly larger than the height of the piston 32 so that the piston 32 can slide inside.
- the upper and lower end surfaces of the piston 32, the end plate 34, the end A gap is generated between the plate 35 and the plate 35. Therefore, oil leaks into the compression chamber 39 from the upper space in the piston and the lower space in the piston through this gap. In order to achieve high efficiency, it is necessary to maintain reliability while suppressing this leakage.
- FIGS. 10 to 14 show a state in which the crankshaft 31 is removed for the sake of simplicity of explanation, and the gap between the piston 32 and the upper and lower end plates 34 and 35 (represented by exaggerating the vertical direction, actually It is a schematic diagram showing the relationship of several tens of ⁇ m. As shown in FIG. 10, chamfers having substantially the same size at the upper end portion and the lower end portion are provided at the end portion of the inner peripheral surface of the piston 32.
- the upper and lower chamfering difference of the piston 32 is set to BA> 0. Then, when an upward force is generated by providing a chamfering difference (BA> 0) that balances the weight of the piston 32, the piston 32 floats.
- BA> 0 a chamfering difference
- the space between the piston 32 and the upper and lower end plates 34 and 35 is reduced to about several ⁇ m.
- leakage can be suppressed and efficiency can be improved.
- the piston 32 behaves unstable during actual operation, problems such as specular wear and seizure are likely to occur particularly on the lower end plate 35 by reducing the gap. Therefore, as shown in FIG. 13, the chamfering of the lower end portion of the piston 32 is increased, the oil holding area between the piston 32 and the lower end plate 35 is increased, and the cooling effect by the oil is enhanced to increase the reliability. It is necessary to improve.
- the first problem is that when adjusting the vertical chamfering difference so as to balance the weight of the piston 32 as shown in FIG. It is very difficult to manage the dimensions.
- the second problem is that when the upper and lower gaps of the piston 32 are reduced, both the upper and lower chamfers of the piston 32 need to be increased.
- the inner surface of the piston 32 and the discharge port 38 are If the seal length is not secured, the efficiency of the return of the high-pressure gas to the suction will be reduced, so that the upper side surface cannot be made so large. In the end, only the lower side chamfer of the same size as the upper side chamfer can be set, so that the reliability cannot be greatly increased.
- the present invention solves such problems, and improves productivity, improves leakage by suppressing leakage of the upper and lower end faces of the piston, and improves reliability by suppressing wear and seizure of the end plate. It is for the purpose.
- the present invention provides a cylinder, an eccentric part of a shaft disposed in the cylinder, a piston fitted in the eccentric part, and following the eccentric rotation of the piston.
- a rotary compressor having a vane that reciprocates in a slot provided in the slot, and two end plates that close the upper and lower end surfaces of the cylinder, and a lower inner corner formed on the lower end surface of the piston,
- a second area surrounded by the end plate closing the lower end surface of the cylinder is surrounded by an upper inner surface corner formed on the upper end surface of the piston and the end plate closing the upper end surface of the cylinder.
- the angle between the lower end surface of the piston and the lower inner surface corner is smaller than the angle between the upper end surface of the piston and the upper inner surface corner.
- the longitudinal cross-sectional view of the rotary compressor in Embodiment 1 of this invention Enlarged sectional view of the compression mechanism of the rotary compressor Cross section of piston of the same rotary compressor
- the figure which shows the distribution of the pressure applied to the top and bottom of the piston of the rotary compressor Schematic diagram showing the positional relationship between the clearance between the piston and the upper and lower end plates and the discharge port when the upper and lower clearances of the piston of the rotary compressor are reduced.
- an upper inner surface corner portion formed on the upper end surface of the piston, and a second area surrounded by a lower inner surface corner portion formed on the lower end surface of the piston and an end plate closing the lower end surface of the cylinder.
- the angle between the lower end surface of the piston and the lower inner surface corner is made larger than the first area surrounded by the end plate closing the upper end surface of the cylinder, and the angle between the upper end surface of the piston and the upper inner surface corner It is a smaller one.
- the upper inner corner is formed by chamfering and the lower inner corner is formed by counterbore.
- the angle between the upper end surface of the piston and the upper inner surface corner is in the range of 132 to 138 degrees.
- the first area and the second area are set so as to balance the weight of the piston.
- the piston floats, and the two gaps between the upper and lower end surfaces of the piston and the end plate are made uniform.
- gas leakage is proportional to the cube of the gap, when the gaps above and below the piston are evenly distributed and when they are unevenly distributed, the latter has a larger amount of gas leakage.
- gas and oil leaking into the suction chamber through the gap between the upper and lower end surfaces of the piston are suppressed, so compression loss can be reduced, and it is equivalent to reducing the gap without reducing the upper and lower gaps.
- the efficiency is further improved, and the reliability is further improved as compared with the case where the efficiency is improved by reducing the gap.
- the differential pressure is particularly large, and sliding loss and leakage loss are large. Even CO 2 can be more effectively increased in efficiency.
- a single refrigerant comprising a refrigerant having a base component of a hydrofluoroolefin having a double bond between carbon and carbon as the working refrigerant, or A mixed refrigerant containing a refrigerant is used as a working refrigerant.
- This refrigerant has the property of being easily decomposed at high temperatures, but by reducing leakage loss and sliding loss, it is possible to improve the reliability of the compressor more effectively while suppressing high temperature decomposition of the refrigerant. Become. Moreover, since this refrigerant has no ozone destruction and a low global warming potential, it can contribute to the configuration of an air-conditioning cycle that is friendly to the earth.
- FIG. 1 is a longitudinal sectional view of a rotary compressor according to Embodiment 1 of the present invention
- FIG. 2 is an enlarged view of the compression mechanism section.
- An oil supply hole 44 communicating with the oil hole 41 and an oil groove 45 are formed in the wall portion of the eccentric portion 31 a of the crankshaft 31.
- the piston inner upper space 46 is formed by the eccentric portion 31a of the crankshaft 31, the end plate 34 of the upper bearing 34a, and the inner peripheral surface of the piston 32, and the ends of the eccentric portion 31a of the crankshaft 31 and the lower bearing 35a.
- a piston inner lower space 47 is formed by the plate 35 and the inner peripheral surface of the piston 32.
- Oil in the oil hole 41 leaks from the oil supply hole 42 into the piston upper space 46, and oil in the oil hole 41 leaks from the oil supply hole 43 into the piston lower space 47.
- the piston upper space 46 and the piston lower space 47 are almost always higher than the pressure inside the compression chamber 39.
- the height of the cylinder 30 must be set slightly larger than the height of the piston 32 so that the piston 32 can slide inside.
- the end surface of the piston 32 and the end plate of the upper bearing 34a. 34, and between the end face of the piston 32 and the end plate 35 of the lower bearing 35a Therefore, oil leaks from the upper piston inner space 46 and the lower piston inner space 47 to the compression chamber 39 through the gap.
- action are demonstrated below.
- the area is larger than the first area 32 a surrounded by the corners and the end plate 34.
- the angle D between the lower end surface of the piston 32 and the lower inner surface corner is made smaller than the angle C between the upper end surface of the piston 32 and the upper inner surface corner.
- the first embodiment is configured as described above to improve efficiency and reliability.
- FIG. 4 shows the pressure distribution applied to the piston 32 in the first embodiment.
- the high pressure is uniformly distributed on the inner surface side, and the end surface side is linearly distributed from the high pressure to the intermediate pressure.
- the high pressure is uniformly distributed on the inner surface side, but the end surface side is linearly distributed from the medium high pressure (pressure lower than the high pressure) to the intermediate pressure. That is, since the angle D between the lower end surface of the piston 32 and the lower inner surface corner is smaller than the angle C on the lower side of the piston 32, the oil flow becomes worse and a pressure drop occurs. Therefore, as shown in FIG.
- FIG. 7 is a cross-sectional view showing a piston of a rotary compressor according to Embodiment 2 of the present invention. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
- a second area 32 b surrounded by a lower inner surface corner formed on the lower end surface of the piston 32 and the end plate 35 is formed on the upper end surface of the piston 32. It is made larger than the first area 32 a surrounded by the upper inner corner and the end plate 34.
- the angle D between the lower end surface of the piston 32 and the lower inner surface corner is made smaller than the angle C between the upper end surface of the piston 32 and the upper inner surface corner.
- the upper inner surface corner portion is formed by chamfering the upper end surface and the upper inner surface of the piston 32
- the lower inner surface corner portion is formed by counterboring the lower end surface and the lower inner surface of the piston 32.
- the angle C between the upper end surface of the piston 32 and the upper inner corner is preferably in the range of 132 degrees to 138 degrees, and more preferably 135 degrees.
- the angle D between the lower end surface of the piston 32 and the lower inner corner portion is 90 degrees.
- the upper inner corner is formed by chamfering and the lower inner corner is formed by counterbore, so that it is possible to determine whether the piston 32 is up or down visually during assembly. Can be reduced.
- the BA when generating a force that balances the weight of the piston 32, when the upper and lower sides of the piston 32 are chamfered, the BA is about 0.1 mm, whereas if only the lower side is a counterbore, the BA is The tolerance range can be expanded to about 0.4 to 0.8 mm, which improves mass productivity.
- FIG. 8 shows a rotary compressor having a configuration different from that of the first embodiment of the present invention.
- symbol is attached
- the rotary compressor shown in FIG. 8 is connected to the outer peripheral portion of the piston 132 in a protruding manner, and partitions the compression chamber 39 into a low pressure side and a high pressure side, and the vane 133 is swingable and retractable.
- the swing bush 130 is supported. Also in the rotary compressor shown in FIG. 8, the configurations of the first embodiment and the second embodiment can be applied, and an equivalent effect can be obtained.
- FIG. 9 shows a rotary compressor having a further different configuration.
- symbol is attached
- the rotary compressor shown in FIG. 9 includes a piston 232 and a vane 233 that is swingably connected at the tip. Also in the rotary compressor shown in FIG. 9, the configurations of the first embodiment and the second embodiment can be applied, and an equivalent effect can be obtained.
- this refrigerant is easily decomposed at high temperatures and is unstable.
- the lubricity of the sliding portion between the end face of the piston 32 and the end plate 35 is improved, so that the temperature rise at the sliding portion can be efficiently suppressed, and the refrigerant can be decomposed. And the reliability can be improved more effectively.
- a mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is difluoromethane (HFC32) may be used as the working refrigerant.
- a mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is pentafluoroethane (HFC125) may be used as the working refrigerant.
- a three-component mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is pentafluoroethane (HFC125) and difluoromethane (HFC32) is the working refrigerant. It is good.
- a single-piston rotary compressor with one cylinder has been described as an example.
- a rotary compressor such as a rotary compressor having a plurality of cylinders may be used.
- the rotary compressor according to the present invention suppresses deterioration of reliability such as wear and seizure, and simultaneously reduces leakage loss and sliding loss, thereby improving the efficiency of the compressor. It becomes possible.
- the present invention can be applied to an application such as an air conditioner using a natural refrigerant CO 2 or a heat pump type hot water heater.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Disclosed is a rotary compressor wherein a second area surrounded by a lower internal surface corner portion formed in the bottom surface of a piston (32) and an end plate (35) blocking the bottom surface of a cylinder (30) is larger than a first area surrounded by an upper internal surface corner portion formed in the top surface of the piston (32) and an end plate (34) blocking the top surface of the cylinder (30); and the angle between the bottom surface of the piston (32) and the lower internal surface corner portion is smaller than the angle between the top surface of the piston (32) and the upper internal surface corner portion. Thus, oil can be reliably retained on the bottom surface of the piston (32) to improve the reliability, and the piston (32) can float even when a tolerance area is increased. Therefore, the efficiency and the productivity of the rotary compressor can be improved.
Description
本発明は、空気調和装置、冷凍装置、ブロワ装置、給湯装置等の装置に使用される回転式圧縮機に関する。
The present invention relates to a rotary compressor used in devices such as an air conditioner, a refrigeration device, a blower device, and a hot water supply device.
従来、空気調和装置などの装置には、蒸発器で蒸発したガス冷媒を吸入し、吸入したガス冷媒を圧縮する回転式圧縮機が使用されている。このような回転式圧縮機の一つとして、ロータリ圧縮機が知られている(例えば、特許文献1参照)。
Conventionally, devices such as an air conditioner use a rotary compressor that sucks in gas refrigerant evaporated by an evaporator and compresses the sucked gas refrigerant. A rotary compressor is known as one of such rotary compressors (see, for example, Patent Document 1).
図15は、ロータリ圧縮機の一例を示す要部断面図である。
密閉容器1内には、電動機2と圧縮機構部3とがクランク軸31で連結されて収納されている。密閉容器1内の底部には油溜6を形成している。圧縮機構部3は、円筒状の内部空間を形成するシリンダ30と、シリンダ30の内部空間に配置されるピストン32と、シリンダ30の上端面を閉塞する上軸受34aの端板34と、シリンダ30の下端面を閉塞する下軸受35aの端板35と、圧縮室39内を低圧部と高圧部とに仕切るベーン33とを備えている。
圧縮室39は、シリンダ30の内部空間と、ピストン32と、端板34と、端板35とで形成される。クランク軸31は、上軸受34aと下軸受35aで支持される。クランク軸31には偏芯部31aが形成されている。偏芯部31aは、端板34と端板35との間に配置される。ピストン32は偏芯部31aに嵌合されている。ベーン33は、シリンダ30に設けられたスロット内を往復運動する。ベーン33の先端はピストン32の外周に圧接し、ベーン33はピストン32の偏心回転に追従して往復運動することで圧縮室39内を低圧部と高圧部とに仕切る。
クランク軸31の軸線部には、油穴41が設けられている。油穴41には、油溜6の油(潤滑油)が供給される。また、クランク軸31の壁部には、油穴41に連通した給油穴42、43が設けられている。給油穴42は上軸受34aに対応する壁部、給油穴43は下軸受35aに対応する壁部に形成されている。また、偏芯部31aの壁部には、油穴41に連通した給油穴(図示せず)と、油溝(図示せず)とが形成されている。 FIG. 15 is a cross-sectional view of an essential part showing an example of a rotary compressor.
In the sealedcontainer 1, the electric motor 2 and the compression mechanism unit 3 are connected and stored by a crankshaft 31. An oil reservoir 6 is formed at the bottom of the sealed container 1. The compression mechanism unit 3 includes a cylinder 30 that forms a cylindrical internal space, a piston 32 that is disposed in the internal space of the cylinder 30, an end plate 34 of an upper bearing 34 a that closes the upper end surface of the cylinder 30, and the cylinder 30. The end plate 35 of the lower bearing 35a that closes the lower end surface of the lower bearing 35 and the vane 33 that partitions the inside of the compression chamber 39 into a low-pressure part and a high-pressure part.
Thecompression chamber 39 is formed by the internal space of the cylinder 30, the piston 32, the end plate 34, and the end plate 35. The crankshaft 31 is supported by an upper bearing 34a and a lower bearing 35a. An eccentric portion 31 a is formed on the crankshaft 31. The eccentric portion 31 a is disposed between the end plate 34 and the end plate 35. The piston 32 is fitted to the eccentric portion 31a. The vane 33 reciprocates in a slot provided in the cylinder 30. The tip of the vane 33 is in pressure contact with the outer periphery of the piston 32, and the vane 33 reciprocates following the eccentric rotation of the piston 32 to partition the inside of the compression chamber 39 into a low pressure portion and a high pressure portion.
Anoil hole 41 is provided in the axial portion of the crankshaft 31. Oil (lubricating oil) in the oil reservoir 6 is supplied to the oil hole 41. In addition, oil supply holes 42 and 43 communicating with the oil hole 41 are provided in the wall portion of the crankshaft 31. The oil supply hole 42 is formed in a wall portion corresponding to the upper bearing 34a, and the oil supply hole 43 is formed in a wall portion corresponding to the lower bearing 35a. Further, an oil supply hole (not shown) communicating with the oil hole 41 and an oil groove (not shown) are formed in the wall portion of the eccentric portion 31a.
密閉容器1内には、電動機2と圧縮機構部3とがクランク軸31で連結されて収納されている。密閉容器1内の底部には油溜6を形成している。圧縮機構部3は、円筒状の内部空間を形成するシリンダ30と、シリンダ30の内部空間に配置されるピストン32と、シリンダ30の上端面を閉塞する上軸受34aの端板34と、シリンダ30の下端面を閉塞する下軸受35aの端板35と、圧縮室39内を低圧部と高圧部とに仕切るベーン33とを備えている。
圧縮室39は、シリンダ30の内部空間と、ピストン32と、端板34と、端板35とで形成される。クランク軸31は、上軸受34aと下軸受35aで支持される。クランク軸31には偏芯部31aが形成されている。偏芯部31aは、端板34と端板35との間に配置される。ピストン32は偏芯部31aに嵌合されている。ベーン33は、シリンダ30に設けられたスロット内を往復運動する。ベーン33の先端はピストン32の外周に圧接し、ベーン33はピストン32の偏心回転に追従して往復運動することで圧縮室39内を低圧部と高圧部とに仕切る。
クランク軸31の軸線部には、油穴41が設けられている。油穴41には、油溜6の油(潤滑油)が供給される。また、クランク軸31の壁部には、油穴41に連通した給油穴42、43が設けられている。給油穴42は上軸受34aに対応する壁部、給油穴43は下軸受35aに対応する壁部に形成されている。また、偏芯部31aの壁部には、油穴41に連通した給油穴(図示せず)と、油溝(図示せず)とが形成されている。 FIG. 15 is a cross-sectional view of an essential part showing an example of a rotary compressor.
In the sealed
The
An
一方、シリンダ30には、低圧ガスを吸入する吸入ポート40が形成されている。吸入ポート40は圧縮室39内の低圧部(吸入室)に連通する。上軸受34aには、圧縮室39で圧縮された高圧ガスを吐出する吐出ポート38が形成されている。吐出ポート38は圧縮室39内の高圧部に連通する。吐出ポート38は上軸受34aを貫通する平面視円形の孔として形成されている。吐出ポート38の上面には、吐出弁36が設けられている。吐出弁36は、所定の大きさ以上の圧力を受けた場合に解放される。この吐出弁36は、カップマフラ-37で覆われている。
圧縮室39の低圧部(吸入室)は、ピストン32とシリンダ30との摺接部が吸入ポート40を通過した後、徐々に拡大し、吸入ポート40からガスを吸入する。一方、圧縮室39の高圧部は、ピストン32とシリンダ30との摺動部が吐出ポート38に近づき、徐々に縮小し、所定圧力以上に圧縮された時点で吐出弁36が開いて吐出ポート38からガスを流出する。吐出ポート38から流出したガスは、カップマフラ-37を経由して密閉容器1内に吐出される。 On the other hand, thecylinder 30 is formed with a suction port 40 for sucking low-pressure gas. The suction port 40 communicates with a low pressure portion (suction chamber) in the compression chamber 39. A discharge port 38 for discharging the high-pressure gas compressed in the compression chamber 39 is formed in the upper bearing 34a. The discharge port 38 communicates with a high pressure portion in the compression chamber 39. The discharge port 38 is formed as a circular hole passing through the upper bearing 34a in plan view. A discharge valve 36 is provided on the upper surface of the discharge port 38. The discharge valve 36 is released when it receives a pressure of a predetermined magnitude or more. The discharge valve 36 is covered with a cup muffler 37.
The low pressure portion (suction chamber) of thecompression chamber 39 gradually expands after the sliding contact portion between the piston 32 and the cylinder 30 passes through the suction port 40 and sucks gas from the suction port 40. On the other hand, in the high-pressure portion of the compression chamber 39, when the sliding portion between the piston 32 and the cylinder 30 approaches the discharge port 38 and is gradually reduced and compressed to a predetermined pressure or higher, the discharge valve 36 opens and the discharge port 38 is opened. Out of gas. The gas flowing out from the discharge port 38 is discharged into the sealed container 1 through the cup muffler 37.
圧縮室39の低圧部(吸入室)は、ピストン32とシリンダ30との摺接部が吸入ポート40を通過した後、徐々に拡大し、吸入ポート40からガスを吸入する。一方、圧縮室39の高圧部は、ピストン32とシリンダ30との摺動部が吐出ポート38に近づき、徐々に縮小し、所定圧力以上に圧縮された時点で吐出弁36が開いて吐出ポート38からガスを流出する。吐出ポート38から流出したガスは、カップマフラ-37を経由して密閉容器1内に吐出される。 On the other hand, the
The low pressure portion (suction chamber) of the
一方、クランク軸31の偏芯部31a、上軸受34aの端板34、及びピストン32の内周面によってピストン内上部空間が形成され、クランク軸31の偏芯部31a、下軸受35aの端板35、及びピストン32の内周面によってピストン内下部空間が形成される。ピストン内上部空間には給油穴42から油穴41内の油が漏れ込み、ピストン内下部空間には給油穴43から油穴41内の油が漏れ込む。ピストン内上部空間及びピストン内下部空間は、ほぼ常に圧縮室39内部の圧力より高い状態にある。
On the other hand, an upper piston inner space is formed by the eccentric portion 31a of the crankshaft 31, the end plate 34 of the upper bearing 34a, and the inner peripheral surface of the piston 32. 35 and the inner peripheral surface of the piston 32 form a lower piston inner space. Oil in the oil hole 41 leaks from the oil supply hole 42 to the upper space in the piston, and oil in the oil hole 41 leaks from the oil supply hole 43 to the lower space in the piston. The upper space in the piston and the lower space in the piston are almost always higher than the pressure in the compression chamber 39.
また、シリンダ30の高さはピストン32が内部で摺動できるようにピストン32の高さよりやや大きめに設定しなければならず、その結果として、このピストン32の上下の端面と端板34、端板35との間に隙間が生じる。そのため、この隙間を介してピストン内上部空間及びピストン内下部空間から圧縮室39に油が漏れる。高効率化を図るためには、この漏れを抑制しつつ、信頼性を維持しなければならない。
Further, the height of the cylinder 30 must be set slightly larger than the height of the piston 32 so that the piston 32 can slide inside. As a result, the upper and lower end surfaces of the piston 32, the end plate 34, the end A gap is generated between the plate 35 and the plate 35. Therefore, oil leaks into the compression chamber 39 from the upper space in the piston and the lower space in the piston through this gap. In order to achieve high efficiency, it is necessary to maintain reliability while suppressing this leakage.
ここで、ピストン内上部空間及びピストン内下部空間から圧縮室39への油漏れを抑制する方法について図10~図14を用いて説明する。
図10~図14では、説明を簡単にするために、クランク軸31を除いた状態を示しており、ピストン32と上下の端板34、35との隙間(上下方向を誇張して表現、実際は数10μm程度)の関係を示す模式図である。
図10に示すように、ピストン32の内周面端部には、上端部と下端部で略同等の大きさの面取りが設けられている。
ピストン32の内周面の上端部と下端部との面取りを同じとした場合には、ピストン32の自重により、ピストン32は下側の端板35と摺動する。そのため、ピストン32の上側の端面と上側の端板34の間には、数10μm程度の隙間ができ、その隙間を介して、圧縮室39へ油が漏れる。 Here, a method of suppressing oil leakage from the piston upper space and the piston lower space to thecompression chamber 39 will be described with reference to FIGS.
10 to 14 show a state in which thecrankshaft 31 is removed for the sake of simplicity of explanation, and the gap between the piston 32 and the upper and lower end plates 34 and 35 (represented by exaggerating the vertical direction, actually It is a schematic diagram showing the relationship of several tens of μm.
As shown in FIG. 10, chamfers having substantially the same size at the upper end portion and the lower end portion are provided at the end portion of the inner peripheral surface of thepiston 32.
If the chamfering of the upper end portion and the lower end portion of the inner peripheral surface of thepiston 32 is the same, the piston 32 slides with the lower end plate 35 due to its own weight. Therefore, a gap of about several tens of μm is formed between the upper end face of the piston 32 and the upper end plate 34, and oil leaks into the compression chamber 39 through the gap.
図10~図14では、説明を簡単にするために、クランク軸31を除いた状態を示しており、ピストン32と上下の端板34、35との隙間(上下方向を誇張して表現、実際は数10μm程度)の関係を示す模式図である。
図10に示すように、ピストン32の内周面端部には、上端部と下端部で略同等の大きさの面取りが設けられている。
ピストン32の内周面の上端部と下端部との面取りを同じとした場合には、ピストン32の自重により、ピストン32は下側の端板35と摺動する。そのため、ピストン32の上側の端面と上側の端板34の間には、数10μm程度の隙間ができ、その隙間を介して、圧縮室39へ油が漏れる。 Here, a method of suppressing oil leakage from the piston upper space and the piston lower space to the
10 to 14 show a state in which the
As shown in FIG. 10, chamfers having substantially the same size at the upper end portion and the lower end portion are provided at the end portion of the inner peripheral surface of the
If the chamfering of the upper end portion and the lower end portion of the inner peripheral surface of the
1つ目の高効率化手法は、図11に示すように、ピストン32の上下の面取り差を、B-A>0とする。
そして、ピストン32の自重に対して釣り合うような面取り差(B-A>0)を設けて上向きの力を発生させると、ピストン32は浮上する。
一般的にガス漏れは隙間の3乗に比例するため、ピストン32の上下の隙間が均等に配分された時と不均等に配分された時では後者の方がガス漏れ量としては多くなる。よって、ピストン32の上下端面の隙間を通じて吸入室へと漏れていたガスやオイルが抑制され、効率が向上する。 In the first high efficiency method, as shown in FIG. 11, the upper and lower chamfering difference of thepiston 32 is set to BA> 0.
Then, when an upward force is generated by providing a chamfering difference (BA> 0) that balances the weight of thepiston 32, the piston 32 floats.
In general, since gas leakage is proportional to the cube of the gap, when the upper and lower gaps of thepiston 32 are evenly distributed and when they are unevenly distributed, the latter increases as the amount of gas leakage. Therefore, gas and oil leaking into the suction chamber through the gap between the upper and lower end surfaces of the piston 32 are suppressed, and the efficiency is improved.
そして、ピストン32の自重に対して釣り合うような面取り差(B-A>0)を設けて上向きの力を発生させると、ピストン32は浮上する。
一般的にガス漏れは隙間の3乗に比例するため、ピストン32の上下の隙間が均等に配分された時と不均等に配分された時では後者の方がガス漏れ量としては多くなる。よって、ピストン32の上下端面の隙間を通じて吸入室へと漏れていたガスやオイルが抑制され、効率が向上する。 In the first high efficiency method, as shown in FIG. 11, the upper and lower chamfering difference of the
Then, when an upward force is generated by providing a chamfering difference (BA> 0) that balances the weight of the
In general, since gas leakage is proportional to the cube of the gap, when the upper and lower gaps of the
2つ目の高効率化手法は、図12に示すように、ピストン32と上下の端板34,35の間を数μm程度に縮小させる。
隙間を縮小することにより、漏れを抑制させて、効率を向上させることができる。
ただし、実際の運転中にはピストン32は不安定な挙動であるために、隙間を縮小させることにより、特に下側の端板35に鏡面磨耗、焼き付き等の問題が発生しやすくなる。
よって、図13に示すように、ピストン32の下端部の面取りを大きくして、ピストン32と下側の端板35の間の油保持面積を増加させ、油による冷却効果を高めて信頼性を向上させることが必要である。
ただし、ピストン32の下側の面取りのみ大きくすると、圧力差により上向きの力が発生するため、上側の端板34で強く摺動してしまう。
そのため、図14で示すようにピストン32の上下両方の面取りを大きくして、ピストン32に大きな上向きの力を発生させないようにする必要がある。 In the second high efficiency method, as shown in FIG. 12, the space between thepiston 32 and the upper and lower end plates 34 and 35 is reduced to about several μm.
By reducing the gap, leakage can be suppressed and efficiency can be improved.
However, since thepiston 32 behaves unstable during actual operation, problems such as specular wear and seizure are likely to occur particularly on the lower end plate 35 by reducing the gap.
Therefore, as shown in FIG. 13, the chamfering of the lower end portion of thepiston 32 is increased, the oil holding area between the piston 32 and the lower end plate 35 is increased, and the cooling effect by the oil is enhanced to increase the reliability. It is necessary to improve.
However, if only the lower chamfer of thepiston 32 is increased, an upward force is generated due to the pressure difference, and the upper end plate 34 slides strongly.
Therefore, as shown in FIG. 14, it is necessary to increase the chamfer on both the upper and lower sides of thepiston 32 so as not to generate a large upward force on the piston 32.
隙間を縮小することにより、漏れを抑制させて、効率を向上させることができる。
ただし、実際の運転中にはピストン32は不安定な挙動であるために、隙間を縮小させることにより、特に下側の端板35に鏡面磨耗、焼き付き等の問題が発生しやすくなる。
よって、図13に示すように、ピストン32の下端部の面取りを大きくして、ピストン32と下側の端板35の間の油保持面積を増加させ、油による冷却効果を高めて信頼性を向上させることが必要である。
ただし、ピストン32の下側の面取りのみ大きくすると、圧力差により上向きの力が発生するため、上側の端板34で強く摺動してしまう。
そのため、図14で示すようにピストン32の上下両方の面取りを大きくして、ピストン32に大きな上向きの力を発生させないようにする必要がある。 In the second high efficiency method, as shown in FIG. 12, the space between the
By reducing the gap, leakage can be suppressed and efficiency can be improved.
However, since the
Therefore, as shown in FIG. 13, the chamfering of the lower end portion of the
However, if only the lower chamfer of the
Therefore, as shown in FIG. 14, it is necessary to increase the chamfer on both the upper and lower sides of the
しかしながら、上記ロータリ圧縮機の高効率化と高信頼性化を図る方策には、2つの課題がある。
1つ目の課題は、図11に示すようにピストン32の自重と釣り合うように上下の面取り差を調整する時に、B-Aの値が0.1以下程度となり、生産性を考えたときに寸法管理することが非常に困難である。
2つ目の課題は、ピストン32の上下の隙間を縮小した時に、ピストン32の上下の面取りを両方とも大きくする必要があるが、特許文献1で示すようにピストン32の内面と吐出ポート38のシール長を確保しなければ、高圧ガスが吸入まで戻り効率が低下してしまうため、上側面取りをそれほど大きくすることができない。結局、上側面取りと略同等の大きさの下側面取りのみしか設定できないため、大きく信頼性を高めることができないことである。
しかし、ピストン32の上端部の面取りを大きくすると、吐出ポート38とピストン32の内面が連通してしまうため、高圧ガスが吸入まで戻り効率が低下してしまう。よって、ピストン32の内面と吐出ポート38のシール長を確保しなければならないため、上側の面取りと略同等の大きさの下側の面取りしか設定できず、大きく信頼性を高めることができない。 However, there are two problems in the measures for improving the efficiency and reliability of the rotary compressor.
The first problem is that when adjusting the vertical chamfering difference so as to balance the weight of thepiston 32 as shown in FIG. It is very difficult to manage the dimensions.
The second problem is that when the upper and lower gaps of thepiston 32 are reduced, both the upper and lower chamfers of the piston 32 need to be increased. However, as shown in Patent Document 1, the inner surface of the piston 32 and the discharge port 38 are If the seal length is not secured, the efficiency of the return of the high-pressure gas to the suction will be reduced, so that the upper side surface cannot be made so large. In the end, only the lower side chamfer of the same size as the upper side chamfer can be set, so that the reliability cannot be greatly increased.
However, if the chamfering of the upper end portion of thepiston 32 is increased, the discharge port 38 and the inner surface of the piston 32 communicate with each other, so that the high-pressure gas returns to suction and the efficiency is lowered. Therefore, since it is necessary to secure the seal length between the inner surface of the piston 32 and the discharge port 38, only the lower chamfer having the same size as the upper chamfer can be set, and the reliability cannot be greatly increased.
1つ目の課題は、図11に示すようにピストン32の自重と釣り合うように上下の面取り差を調整する時に、B-Aの値が0.1以下程度となり、生産性を考えたときに寸法管理することが非常に困難である。
2つ目の課題は、ピストン32の上下の隙間を縮小した時に、ピストン32の上下の面取りを両方とも大きくする必要があるが、特許文献1で示すようにピストン32の内面と吐出ポート38のシール長を確保しなければ、高圧ガスが吸入まで戻り効率が低下してしまうため、上側面取りをそれほど大きくすることができない。結局、上側面取りと略同等の大きさの下側面取りのみしか設定できないため、大きく信頼性を高めることができないことである。
しかし、ピストン32の上端部の面取りを大きくすると、吐出ポート38とピストン32の内面が連通してしまうため、高圧ガスが吸入まで戻り効率が低下してしまう。よって、ピストン32の内面と吐出ポート38のシール長を確保しなければならないため、上側の面取りと略同等の大きさの下側の面取りしか設定できず、大きく信頼性を高めることができない。 However, there are two problems in the measures for improving the efficiency and reliability of the rotary compressor.
The first problem is that when adjusting the vertical chamfering difference so as to balance the weight of the
The second problem is that when the upper and lower gaps of the
However, if the chamfering of the upper end portion of the
本発明はこのような課題を解決するもので、生産性の向上と、ピストンの上下の端面の漏れを抑制して効率の向上と、端板の磨耗や焼きつきを抑えて信頼性を向上することを目的としたものである。
The present invention solves such problems, and improves productivity, improves leakage by suppressing leakage of the upper and lower end faces of the piston, and improves reliability by suppressing wear and seizure of the end plate. It is for the purpose.
上記目的を達成するために、本発明は、シリンダと、前記シリンダ内に配置されるシャフトの偏心部と、前記偏心部に嵌合されるピストンと、前記ピストンの偏心回転に追従して前記シリンダに設けられたスロット内を往復運動するベーンと、前記シリンダの上下端面を閉塞する2つ端板を有する回転式圧縮機であって、前記ピストンの下端面に形成する下内面角部と、前記シリンダの前記下端面を閉塞する前記端板とで囲まれる第2の面積を、前記ピストンの上端面に形成する上内面角部と、前記シリンダの前記上端面を閉塞する前記端板とで囲まれる第1の面積より大きくし、かつ、前記ピストンの前記下端面と前記下内面角部との角度を、前記ピストンの前記上端面と前記上内面角部との角度より小さくしたものである。
In order to achieve the above object, the present invention provides a cylinder, an eccentric part of a shaft disposed in the cylinder, a piston fitted in the eccentric part, and following the eccentric rotation of the piston. A rotary compressor having a vane that reciprocates in a slot provided in the slot, and two end plates that close the upper and lower end surfaces of the cylinder, and a lower inner corner formed on the lower end surface of the piston, A second area surrounded by the end plate closing the lower end surface of the cylinder is surrounded by an upper inner surface corner formed on the upper end surface of the piston and the end plate closing the upper end surface of the cylinder. The angle between the lower end surface of the piston and the lower inner surface corner is smaller than the angle between the upper end surface of the piston and the upper inner surface corner.
上記構成によれば、ピストンの下端面では下内面角部から圧縮室に油が流れる時の圧力降下が大きくなるため、下内面角部による第2の面積を大きくしても、上向きには大きな力が発生しない。よって、ピストンの下端面とシリンダの下端面を閉塞する端板との間でのオイル保持量が増加し、かつ、ピストンと吐出ポートとの間のシール長も確保できるため、高信頼性と高効率化を実現できる。さらに、ピストン自重と釣り合うように、ピストンの上下内面角部と上下の端板とで囲まれる面積の公差範囲を大きく設定できるようになり、量産性が向上し、効率も向上する。
According to the above configuration, since the pressure drop when oil flows from the lower inner surface corner to the compression chamber at the lower end surface of the piston becomes large, even if the second area by the lower inner surface corner is increased, it is large upward. No power is generated. Therefore, the amount of oil retained between the lower end surface of the piston and the end plate that closes the lower end surface of the cylinder is increased, and the seal length between the piston and the discharge port can be secured. Efficiency can be realized. In addition, the tolerance range of the area surrounded by the upper and lower inner corners of the piston and the upper and lower end plates can be set large so as to balance with the piston's own weight, so that mass productivity is improved and efficiency is improved.
1 密閉容器
2 電動機
3 圧縮機構部
22 固定子
24 回転子
30 シリンダ
31 クランク軸
31a 偏芯部
32 ピストン
33 ベーン
34a 上軸受
34 端板
35a 下軸受
35 端板
36 吐出弁
37 カップマフラ-
38 吐出ポート
39 圧縮室
40 吸入ポート
41 油穴
42 給油穴
43 給油穴
44 給油穴
45 油溝
46 空間
47 空間 DESCRIPTION OFSYMBOLS 1 Airtight container 2 Electric motor 3 Compression mechanism part 22 Stator 24 Rotor 30 Cylinder 31 Crankshaft 31a Eccentric part 32 Piston 33 Vane 34a Upper bearing 34 End plate 35a Lower bearing 35 End plate 36 Discharge valve 37 Cup muffler
38discharge port 39 compression chamber 40 suction port 41 oil hole 42 oil supply hole 43 oil supply hole 44 oil supply hole 45 oil groove 46 space 47 space
2 電動機
3 圧縮機構部
22 固定子
24 回転子
30 シリンダ
31 クランク軸
31a 偏芯部
32 ピストン
33 ベーン
34a 上軸受
34 端板
35a 下軸受
35 端板
36 吐出弁
37 カップマフラ-
38 吐出ポート
39 圧縮室
40 吸入ポート
41 油穴
42 給油穴
43 給油穴
44 給油穴
45 油溝
46 空間
47 空間 DESCRIPTION OF
38
第1の発明は、ピストンの下端面に形成する下内面角部と、シリンダの下端面を閉塞する端板とで囲まれる第2の面積を、ピストンの上端面に形成する上内面角部と、シリンダの上端面を閉塞する端板とで囲まれる第1の面積より大きくし、かつ、ピストンの下端面と下内面角部との角度を、ピストンの上端面と上内面角部との角度より小さくしたものである。
この構成により、ピストンの下端面ではピストン内面から圧縮室に油が流れる時の圧力降下が大きくなるため、ピストンの下内面角部による第2の面積を大きくしても、ピストンには上向きに大きな力が発生しない。よって、ピストンの上下の隙間を縮小して高効率化を図っても、下側の端板の油保持量を増加させることができ、かつ、ピストンの上内面角部と吐出ポートとの間のシール長も確保できるため、高信頼性を維持できる。 According to a first aspect of the present invention, there is provided an upper inner surface corner portion formed on the upper end surface of the piston, and a second area surrounded by a lower inner surface corner portion formed on the lower end surface of the piston and an end plate closing the lower end surface of the cylinder. The angle between the lower end surface of the piston and the lower inner surface corner is made larger than the first area surrounded by the end plate closing the upper end surface of the cylinder, and the angle between the upper end surface of the piston and the upper inner surface corner It is a smaller one.
With this configuration, the pressure drop when oil flows from the piston inner surface to the compression chamber increases at the lower end surface of the piston. Therefore, even if the second area due to the lower inner surface corner of the piston is increased, the piston is large upward. No power is generated. Therefore, even if the upper and lower gaps of the piston are reduced to increase efficiency, the amount of oil retained in the lower end plate can be increased, and the gap between the upper inner corner of the piston and the discharge port can be increased. Since the seal length can be secured, high reliability can be maintained.
この構成により、ピストンの下端面ではピストン内面から圧縮室に油が流れる時の圧力降下が大きくなるため、ピストンの下内面角部による第2の面積を大きくしても、ピストンには上向きに大きな力が発生しない。よって、ピストンの上下の隙間を縮小して高効率化を図っても、下側の端板の油保持量を増加させることができ、かつ、ピストンの上内面角部と吐出ポートとの間のシール長も確保できるため、高信頼性を維持できる。 According to a first aspect of the present invention, there is provided an upper inner surface corner portion formed on the upper end surface of the piston, and a second area surrounded by a lower inner surface corner portion formed on the lower end surface of the piston and an end plate closing the lower end surface of the cylinder. The angle between the lower end surface of the piston and the lower inner surface corner is made larger than the first area surrounded by the end plate closing the upper end surface of the cylinder, and the angle between the upper end surface of the piston and the upper inner surface corner It is a smaller one.
With this configuration, the pressure drop when oil flows from the piston inner surface to the compression chamber increases at the lower end surface of the piston. Therefore, even if the second area due to the lower inner surface corner of the piston is increased, the piston is large upward. No power is generated. Therefore, even if the upper and lower gaps of the piston are reduced to increase efficiency, the amount of oil retained in the lower end plate can be increased, and the gap between the upper inner corner of the piston and the discharge port can be increased. Since the seal length can be secured, high reliability can be maintained.
第2の発明は、特に、第1の発明の回転式圧縮機において、上内面角部を面取りによって形成し、下内面角部をザグリによって形成するものである。
この構成により、組立て時に見た目で上下の判断ができるようになり、上下の方向の間違いによる効率低下や、ロスコストを低減できる。 In the second aspect of the invention, in particular, in the rotary compressor of the first aspect of the invention, the upper inner corner is formed by chamfering and the lower inner corner is formed by counterbore.
With this configuration, it is possible to make an up / down determination visually when assembling, and it is possible to reduce efficiency and loss cost due to an error in the up / down direction.
この構成により、組立て時に見た目で上下の判断ができるようになり、上下の方向の間違いによる効率低下や、ロスコストを低減できる。 In the second aspect of the invention, in particular, in the rotary compressor of the first aspect of the invention, the upper inner corner is formed by chamfering and the lower inner corner is formed by counterbore.
With this configuration, it is possible to make an up / down determination visually when assembling, and it is possible to reduce efficiency and loss cost due to an error in the up / down direction.
第3の発明は、特に、第2の発明の回転式圧縮機において、ピストンの上端面と上内面角部との角度を132度~138度の範囲としたものである。
この構成により、また、ピストンの自重と釣り合う力を発生させる時に、ピストンの上下が面取りの構成では、B-Aが0.1mm程度であったの対して、下側のみをザグリ形状とするとB-Aが0.4~0.8mm程度まで公差を拡大することができ、量産性が向上する。 According to a third aspect of the invention, in particular, in the rotary compressor of the second aspect of the invention, the angle between the upper end surface of the piston and the upper inner surface corner is in the range of 132 to 138 degrees.
With this configuration, when generating a force that balances the piston's own weight, if the upper and lower sides of the piston are chamfered, BA is about 0.1 mm, whereas if only the lower side has a counterbore shape, B -A can increase the tolerance to about 0.4 to 0.8 mm, improving the mass productivity.
この構成により、また、ピストンの自重と釣り合う力を発生させる時に、ピストンの上下が面取りの構成では、B-Aが0.1mm程度であったの対して、下側のみをザグリ形状とするとB-Aが0.4~0.8mm程度まで公差を拡大することができ、量産性が向上する。 According to a third aspect of the invention, in particular, in the rotary compressor of the second aspect of the invention, the angle between the upper end surface of the piston and the upper inner surface corner is in the range of 132 to 138 degrees.
With this configuration, when generating a force that balances the piston's own weight, if the upper and lower sides of the piston are chamfered, BA is about 0.1 mm, whereas if only the lower side has a counterbore shape, B -A can increase the tolerance to about 0.4 to 0.8 mm, improving the mass productivity.
第4の発明は、特に、第1から第3の発明の回転式圧縮機において、第1の面積と第2の面積とを、ピストンの自重に釣り合うように設定したものである。
この構成により、ピストンが浮上しピストンの上下端面と端板間の二つの隙間も均一化される。一般的にガス漏れは隙間の3乗に比例するため、ピストン上下の隙間が均等に配分された時と不均等に配分された時では後者の方がガス漏れ量としては多くなる。そのため、ピストンの上下端面の隙間を通じて吸入室へと漏れていたガスやオイルが抑制されることから、圧縮損失の低減も可能となり、上下の隙間を縮小しなくても隙間を縮小した時と同等の効率向上効果が得られ、かつ隙間を縮小して効率向上させた時と比べて信頼性はさらに向上する。 In the fourth aspect of the invention, in particular, in the rotary compressors of the first to third aspects of the invention, the first area and the second area are set so as to balance the weight of the piston.
With this configuration, the piston floats, and the two gaps between the upper and lower end surfaces of the piston and the end plate are made uniform. In general, since gas leakage is proportional to the cube of the gap, when the gaps above and below the piston are evenly distributed and when they are unevenly distributed, the latter has a larger amount of gas leakage. For this reason, gas and oil leaking into the suction chamber through the gap between the upper and lower end surfaces of the piston are suppressed, so compression loss can be reduced, and it is equivalent to reducing the gap without reducing the upper and lower gaps. The efficiency is further improved, and the reliability is further improved as compared with the case where the efficiency is improved by reducing the gap.
この構成により、ピストンが浮上しピストンの上下端面と端板間の二つの隙間も均一化される。一般的にガス漏れは隙間の3乗に比例するため、ピストン上下の隙間が均等に配分された時と不均等に配分された時では後者の方がガス漏れ量としては多くなる。そのため、ピストンの上下端面の隙間を通じて吸入室へと漏れていたガスやオイルが抑制されることから、圧縮損失の低減も可能となり、上下の隙間を縮小しなくても隙間を縮小した時と同等の効率向上効果が得られ、かつ隙間を縮小して効率向上させた時と比べて信頼性はさらに向上する。 In the fourth aspect of the invention, in particular, in the rotary compressors of the first to third aspects of the invention, the first area and the second area are set so as to balance the weight of the piston.
With this configuration, the piston floats, and the two gaps between the upper and lower end surfaces of the piston and the end plate are made uniform. In general, since gas leakage is proportional to the cube of the gap, when the gaps above and below the piston are evenly distributed and when they are unevenly distributed, the latter has a larger amount of gas leakage. For this reason, gas and oil leaking into the suction chamber through the gap between the upper and lower end surfaces of the piston are suppressed, so compression loss can be reduced, and it is equivalent to reducing the gap without reducing the upper and lower gaps. The efficiency is further improved, and the reliability is further improved as compared with the case where the efficiency is improved by reducing the gap.
第5の発明は、特に、第1から4の発明の回転式圧縮機において、作動流体として高圧冷媒であるCO2を用いることで、特に、差圧が大きく、摺動損失と漏れ損失が大きいCO2においても、より効果的に高効率化することが可能である。
In the fifth aspect of the invention, in particular, in the rotary compressors of the first to fourth aspects of the invention, by using CO 2 as a high-pressure refrigerant as the working fluid, the differential pressure is particularly large, and sliding loss and leakage loss are large. Even CO 2 can be more effectively increased in efficiency.
第6の発明は、特に第1から第5の発明の回転式圧縮機において、作動冷媒として炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を作動冷媒として用いたものである。
この冷媒は、高温で分解しやすい特性を有するが、漏れ損失と摺動損失を低減することにより、冷媒の高温分解を抑制しつつより効果的に圧縮機の信頼性を向上させることが可能となる。また、この冷媒に関しては、オゾン破壊が無く、地球温暖化係数が低いため、地球に優しい空調サイクルの構成に寄与することが可能となる。 In a sixth aspect of the invention, in particular, in the rotary compressors of the first to fifth aspects of the present invention, a single refrigerant comprising a refrigerant having a base component of a hydrofluoroolefin having a double bond between carbon and carbon as the working refrigerant, or A mixed refrigerant containing a refrigerant is used as a working refrigerant.
This refrigerant has the property of being easily decomposed at high temperatures, but by reducing leakage loss and sliding loss, it is possible to improve the reliability of the compressor more effectively while suppressing high temperature decomposition of the refrigerant. Become. Moreover, since this refrigerant has no ozone destruction and a low global warming potential, it can contribute to the configuration of an air-conditioning cycle that is friendly to the earth.
この冷媒は、高温で分解しやすい特性を有するが、漏れ損失と摺動損失を低減することにより、冷媒の高温分解を抑制しつつより効果的に圧縮機の信頼性を向上させることが可能となる。また、この冷媒に関しては、オゾン破壊が無く、地球温暖化係数が低いため、地球に優しい空調サイクルの構成に寄与することが可能となる。 In a sixth aspect of the invention, in particular, in the rotary compressors of the first to fifth aspects of the present invention, a single refrigerant comprising a refrigerant having a base component of a hydrofluoroolefin having a double bond between carbon and carbon as the working refrigerant, or A mixed refrigerant containing a refrigerant is used as a working refrigerant.
This refrigerant has the property of being easily decomposed at high temperatures, but by reducing leakage loss and sliding loss, it is possible to improve the reliability of the compressor more effectively while suppressing high temperature decomposition of the refrigerant. Become. Moreover, since this refrigerant has no ozone destruction and a low global warming potential, it can contribute to the configuration of an air-conditioning cycle that is friendly to the earth.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は本発明の実施の形態1における回転式圧縮機の縦断面図、図2は同圧縮機構部の拡大図面である。なお、図15を用いて説明した構成部材については同一符号を付して説明を省略する。
クランク軸31の偏芯部31aの壁部には、油穴41に連通した給油穴44と、油溝45とが形成されている。
一方、クランク軸31の偏芯部31a、上軸受34aの端板34、及びピストン32の内周面によってピストン内上部空間46が形成され、クランク軸31の偏芯部31a、下軸受35aの端板35、及びピストン32の内周面によってピストン内下部空間47が形成される。ピストン内上部空間46には給油穴42から油穴41内の油が漏れ込み、ピストン内下部空間47には給油穴43から油穴41内の油が漏れ込む。ピストン内上部空間46及びピストン内下部空間47は、ほぼ常に圧縮室39内部の圧力より高い状態にある。
また、シリンダ30の高さはピストン32が内部で摺動できるようにこのピストン32の高さよりやや大きめに設定しなければならず、その結果として、このピストン32の端面と上軸受34aの端板34との間、及びピストン32の端面と下軸受35aの端板35との間に隙間が生じる。そのため、この隙間を介してピストン内上部空間46及びピストン内下部空間47から圧縮室39へ油が漏れる。 (Embodiment 1)
FIG. 1 is a longitudinal sectional view of a rotary compressor according toEmbodiment 1 of the present invention, and FIG. 2 is an enlarged view of the compression mechanism section. In addition, about the structural member demonstrated using FIG. 15, the same code | symbol is attached | subjected and description is abbreviate | omitted.
Anoil supply hole 44 communicating with the oil hole 41 and an oil groove 45 are formed in the wall portion of the eccentric portion 31 a of the crankshaft 31.
On the other hand, the piston innerupper space 46 is formed by the eccentric portion 31a of the crankshaft 31, the end plate 34 of the upper bearing 34a, and the inner peripheral surface of the piston 32, and the ends of the eccentric portion 31a of the crankshaft 31 and the lower bearing 35a. A piston inner lower space 47 is formed by the plate 35 and the inner peripheral surface of the piston 32. Oil in the oil hole 41 leaks from the oil supply hole 42 into the piston upper space 46, and oil in the oil hole 41 leaks from the oil supply hole 43 into the piston lower space 47. The piston upper space 46 and the piston lower space 47 are almost always higher than the pressure inside the compression chamber 39.
Further, the height of thecylinder 30 must be set slightly larger than the height of the piston 32 so that the piston 32 can slide inside. As a result, the end surface of the piston 32 and the end plate of the upper bearing 34a. 34, and between the end face of the piston 32 and the end plate 35 of the lower bearing 35a. Therefore, oil leaks from the upper piston inner space 46 and the lower piston inner space 47 to the compression chamber 39 through the gap.
図1は本発明の実施の形態1における回転式圧縮機の縦断面図、図2は同圧縮機構部の拡大図面である。なお、図15を用いて説明した構成部材については同一符号を付して説明を省略する。
クランク軸31の偏芯部31aの壁部には、油穴41に連通した給油穴44と、油溝45とが形成されている。
一方、クランク軸31の偏芯部31a、上軸受34aの端板34、及びピストン32の内周面によってピストン内上部空間46が形成され、クランク軸31の偏芯部31a、下軸受35aの端板35、及びピストン32の内周面によってピストン内下部空間47が形成される。ピストン内上部空間46には給油穴42から油穴41内の油が漏れ込み、ピストン内下部空間47には給油穴43から油穴41内の油が漏れ込む。ピストン内上部空間46及びピストン内下部空間47は、ほぼ常に圧縮室39内部の圧力より高い状態にある。
また、シリンダ30の高さはピストン32が内部で摺動できるようにこのピストン32の高さよりやや大きめに設定しなければならず、その結果として、このピストン32の端面と上軸受34aの端板34との間、及びピストン32の端面と下軸受35aの端板35との間に隙間が生じる。そのため、この隙間を介してピストン内上部空間46及びピストン内下部空間47から圧縮室39へ油が漏れる。 (Embodiment 1)
FIG. 1 is a longitudinal sectional view of a rotary compressor according to
An
On the other hand, the piston inner
Further, the height of the
以上のように構成された回転式圧縮機について、以下その動作、作用を説明する。
図3に示すように、本実施の形態1は、ピストン32の下端面に形成する下内面角部と端板35で囲まれる第2の面積32bを、ピストン32の上端面に形成する上内面角部と端板34で囲まれる第1の面積32aより大きくする。
また、本実施の形態1は、ピストン32の下端面と下内面角部の角度Dを、ピストン32の上端面と上内面角部の角度Cより小さくする。
本実施の形態1は、上記のように構成することで高効率化と高信頼性を向上させている。 About the rotary compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
As shown in FIG. 3, in the first embodiment, an upper inner surface that forms asecond area 32 b surrounded by a lower inner surface corner portion and an end plate 35 formed on the lower end surface of the piston 32 on the upper end surface of the piston 32. The area is larger than the first area 32 a surrounded by the corners and the end plate 34.
In the first embodiment, the angle D between the lower end surface of thepiston 32 and the lower inner surface corner is made smaller than the angle C between the upper end surface of the piston 32 and the upper inner surface corner.
The first embodiment is configured as described above to improve efficiency and reliability.
図3に示すように、本実施の形態1は、ピストン32の下端面に形成する下内面角部と端板35で囲まれる第2の面積32bを、ピストン32の上端面に形成する上内面角部と端板34で囲まれる第1の面積32aより大きくする。
また、本実施の形態1は、ピストン32の下端面と下内面角部の角度Dを、ピストン32の上端面と上内面角部の角度Cより小さくする。
本実施の形態1は、上記のように構成することで高効率化と高信頼性を向上させている。 About the rotary compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
As shown in FIG. 3, in the first embodiment, an upper inner surface that forms a
In the first embodiment, the angle D between the lower end surface of the
The first embodiment is configured as described above to improve efficiency and reliability.
図4は、本実施の形態1におけるピストン32にかかる圧力分布を示している。
図4に示すように、ピストン32の上側では、内面側は高圧が均等に分布し、端面側は高圧から中間圧まで直線状に分布する。
一方、ピストン32の下側では、内面側は高圧が均等に分布するが、端面側は中高圧(高圧よりも低い圧力)から中間圧まで直線状に分布する。すなわち、ピストン32の下側ではピストン32の下端面と下内面角部との角度Dが、角度Cに比較して小さいため、油の流れが悪くなり、圧力降下が生じる。よって、図5に示すように、ピストン32の下側のBの幅を大きくしても、それほど大きな力が上向きに発生しない。
従って、下側の端板35でのオイル保持量が増加し、かつ、ピストン32と吐出ポート38のシール長Lも確保できるため、高信頼性と高効率化を実現できる。さらに、ピストン32の自重と釣り合うようにAとBを設定することにより、図6に示すように、ピストン32が浮上し上下の隙間を縮小しなくても上下の隙間を縮小した時と同等の効果が得られる。
(実施の形態2) FIG. 4 shows the pressure distribution applied to thepiston 32 in the first embodiment.
As shown in FIG. 4, on the upper side of thepiston 32, the high pressure is uniformly distributed on the inner surface side, and the end surface side is linearly distributed from the high pressure to the intermediate pressure.
On the other hand, on the lower side of thepiston 32, the high pressure is uniformly distributed on the inner surface side, but the end surface side is linearly distributed from the medium high pressure (pressure lower than the high pressure) to the intermediate pressure. That is, since the angle D between the lower end surface of the piston 32 and the lower inner surface corner is smaller than the angle C on the lower side of the piston 32, the oil flow becomes worse and a pressure drop occurs. Therefore, as shown in FIG. 5, even if the width of B on the lower side of the piston 32 is increased, so much force is not generated upward.
Accordingly, the amount of oil retained by thelower end plate 35 is increased, and the seal length L between the piston 32 and the discharge port 38 can be secured, so that high reliability and high efficiency can be realized. Further, by setting A and B so as to balance with the own weight of the piston 32, as shown in FIG. 6, even if the upper and lower gaps are reduced even if the piston 32 floats and the upper and lower gaps are not reduced. An effect is obtained.
(Embodiment 2)
図4に示すように、ピストン32の上側では、内面側は高圧が均等に分布し、端面側は高圧から中間圧まで直線状に分布する。
一方、ピストン32の下側では、内面側は高圧が均等に分布するが、端面側は中高圧(高圧よりも低い圧力)から中間圧まで直線状に分布する。すなわち、ピストン32の下側ではピストン32の下端面と下内面角部との角度Dが、角度Cに比較して小さいため、油の流れが悪くなり、圧力降下が生じる。よって、図5に示すように、ピストン32の下側のBの幅を大きくしても、それほど大きな力が上向きに発生しない。
従って、下側の端板35でのオイル保持量が増加し、かつ、ピストン32と吐出ポート38のシール長Lも確保できるため、高信頼性と高効率化を実現できる。さらに、ピストン32の自重と釣り合うようにAとBを設定することにより、図6に示すように、ピストン32が浮上し上下の隙間を縮小しなくても上下の隙間を縮小した時と同等の効果が得られる。
(実施の形態2) FIG. 4 shows the pressure distribution applied to the
As shown in FIG. 4, on the upper side of the
On the other hand, on the lower side of the
Accordingly, the amount of oil retained by the
(Embodiment 2)
図7は本発明の実施の形態2における回転式圧縮機のピストンを示す断面図である。他の構成は実施の形態1と同一であるため説明を省略する。
図7に示すように、本発明の実施の形態2は、ピストン32の下端面に形成する下内面角部と端板35で囲まれる第2の面積32bを、ピストン32の上端面に形成する上内面角部と端板34で囲まれる第1の面積32aより大きくする。
また、本実施の形態2は、ピストン32の下端面と下内面角部との角度Dを、ピストン32の上端面と上内面角部との角度Cより小さくする。
本実施の形態では、ピストン32の上端面と上内面とを面取りによって上内面角部を形成し、ピストン32の下端面と下内面とをザグリによって下内面角部を形成する。
ピストン32の上端面と上内面角部との角度Cは、132度~138度の範囲が好ましく、135度とすることが更に好ましい。
ピストン32の下内面角部をザグリとすることで、ピストン32の下端面と下内面角部との角度Dは90度となる。
本実施の形態では、上内面角部を面取りによって形成し、下内面角部をザグリによって形成することにより、組立て時に見た目で上下の判断ができ、ピストン32の上下の間違いによる効率低下や、ロスコストを低減できる。また、ピストン32の自重と釣り合う力を発生させる時に、ピストン32の上下が面取りの構成ではB-Aが0.1mm程度であったの対して、下側のみをザグリ形状とするとB-Aが0.4~0.8mm程度まで公差範囲を拡大することができ、量産性が向上する。 FIG. 7 is a cross-sectional view showing a piston of a rotary compressor according toEmbodiment 2 of the present invention. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
As shown in FIG. 7, in the second embodiment of the present invention, asecond area 32 b surrounded by a lower inner surface corner formed on the lower end surface of the piston 32 and the end plate 35 is formed on the upper end surface of the piston 32. It is made larger than the first area 32 a surrounded by the upper inner corner and the end plate 34.
In the second embodiment, the angle D between the lower end surface of thepiston 32 and the lower inner surface corner is made smaller than the angle C between the upper end surface of the piston 32 and the upper inner surface corner.
In the present embodiment, the upper inner surface corner portion is formed by chamfering the upper end surface and the upper inner surface of thepiston 32, and the lower inner surface corner portion is formed by counterboring the lower end surface and the lower inner surface of the piston 32.
The angle C between the upper end surface of thepiston 32 and the upper inner corner is preferably in the range of 132 degrees to 138 degrees, and more preferably 135 degrees.
By making the lower inner corner portion of thepiston 32 counterbore, the angle D between the lower end surface of the piston 32 and the lower inner corner portion is 90 degrees.
In the present embodiment, the upper inner corner is formed by chamfering and the lower inner corner is formed by counterbore, so that it is possible to determine whether thepiston 32 is up or down visually during assembly. Can be reduced. In addition, when generating a force that balances the weight of the piston 32, when the upper and lower sides of the piston 32 are chamfered, the BA is about 0.1 mm, whereas if only the lower side is a counterbore, the BA is The tolerance range can be expanded to about 0.4 to 0.8 mm, which improves mass productivity.
図7に示すように、本発明の実施の形態2は、ピストン32の下端面に形成する下内面角部と端板35で囲まれる第2の面積32bを、ピストン32の上端面に形成する上内面角部と端板34で囲まれる第1の面積32aより大きくする。
また、本実施の形態2は、ピストン32の下端面と下内面角部との角度Dを、ピストン32の上端面と上内面角部との角度Cより小さくする。
本実施の形態では、ピストン32の上端面と上内面とを面取りによって上内面角部を形成し、ピストン32の下端面と下内面とをザグリによって下内面角部を形成する。
ピストン32の上端面と上内面角部との角度Cは、132度~138度の範囲が好ましく、135度とすることが更に好ましい。
ピストン32の下内面角部をザグリとすることで、ピストン32の下端面と下内面角部との角度Dは90度となる。
本実施の形態では、上内面角部を面取りによって形成し、下内面角部をザグリによって形成することにより、組立て時に見た目で上下の判断ができ、ピストン32の上下の間違いによる効率低下や、ロスコストを低減できる。また、ピストン32の自重と釣り合う力を発生させる時に、ピストン32の上下が面取りの構成ではB-Aが0.1mm程度であったの対して、下側のみをザグリ形状とするとB-Aが0.4~0.8mm程度まで公差範囲を拡大することができ、量産性が向上する。 FIG. 7 is a cross-sectional view showing a piston of a rotary compressor according to
As shown in FIG. 7, in the second embodiment of the present invention, a
In the second embodiment, the angle D between the lower end surface of the
In the present embodiment, the upper inner surface corner portion is formed by chamfering the upper end surface and the upper inner surface of the
The angle C between the upper end surface of the
By making the lower inner corner portion of the
In the present embodiment, the upper inner corner is formed by chamfering and the lower inner corner is formed by counterbore, so that it is possible to determine whether the
本発明の実施の形態1と異なる構成による回転式圧縮機を図8に示す。なお、実施の形態1と同一構成には同一符号を付して説明を省略する。
図8に示す回転式圧縮機は、ピストン132の外周部に突出状に結合されて圧縮室39を低圧側と高圧側とに区画するベーン133と、ベーン133を揺動自在に且つ進退自在に支持する揺動ブッシュ130で構成されている。
図8に示す回転式圧縮機においても、実施の形態1及び実施の形態2の構成を適用することができ、同等の効果が得られる。 FIG. 8 shows a rotary compressor having a configuration different from that of the first embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure same asEmbodiment 1, and description is abbreviate | omitted.
The rotary compressor shown in FIG. 8 is connected to the outer peripheral portion of thepiston 132 in a protruding manner, and partitions the compression chamber 39 into a low pressure side and a high pressure side, and the vane 133 is swingable and retractable. The swing bush 130 is supported.
Also in the rotary compressor shown in FIG. 8, the configurations of the first embodiment and the second embodiment can be applied, and an equivalent effect can be obtained.
図8に示す回転式圧縮機は、ピストン132の外周部に突出状に結合されて圧縮室39を低圧側と高圧側とに区画するベーン133と、ベーン133を揺動自在に且つ進退自在に支持する揺動ブッシュ130で構成されている。
図8に示す回転式圧縮機においても、実施の形態1及び実施の形態2の構成を適用することができ、同等の効果が得られる。 FIG. 8 shows a rotary compressor having a configuration different from that of the first embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure same as
The rotary compressor shown in FIG. 8 is connected to the outer peripheral portion of the
Also in the rotary compressor shown in FIG. 8, the configurations of the first embodiment and the second embodiment can be applied, and an equivalent effect can be obtained.
更に異なる構成による回転式圧縮機を図9に示す。なお、実施の形態1と同一構成には同一符号を付して説明を省略する。
図9に示す回転式圧縮機は、ピストン232と先端部で揺動自由に接続されるベーン233で構成されている。
図9に示す回転式圧縮機においても、実施の形態1及び実施の形態2の構成を適用することができ、同等の効果が得られる。 FIG. 9 shows a rotary compressor having a further different configuration. In addition, the same code | symbol is attached | subjected to the structure same asEmbodiment 1, and description is abbreviate | omitted.
The rotary compressor shown in FIG. 9 includes apiston 232 and a vane 233 that is swingably connected at the tip.
Also in the rotary compressor shown in FIG. 9, the configurations of the first embodiment and the second embodiment can be applied, and an equivalent effect can be obtained.
図9に示す回転式圧縮機は、ピストン232と先端部で揺動自由に接続されるベーン233で構成されている。
図9に示す回転式圧縮機においても、実施の形態1及び実施の形態2の構成を適用することができ、同等の効果が得られる。 FIG. 9 shows a rotary compressor having a further different configuration. In addition, the same code | symbol is attached | subjected to the structure same as
The rotary compressor shown in FIG. 9 includes a
Also in the rotary compressor shown in FIG. 9, the configurations of the first embodiment and the second embodiment can be applied, and an equivalent effect can be obtained.
また、作動流体としてCO2を用いることで、特に、差圧が大きく、漏れ損失の影響と摺動損失が大きいCO2においても、ピストン32上下端面での流体の漏れを低減できるとともに、ピストン32を下に強く押さえつける力を回避できることから、より効果的に高効率化することが可能である。 また、作動流体として炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を作動冷媒として用いると、この種の冷媒特有の性質状の問題を抑制することができる。すなわち、この冷媒は、高温で分解しやすく不安定である。ところが、本発明の回転式圧縮機ではピストン32の端面と端板35の摺動部の潤滑性が向上するため、摺動部での温度上昇を効率よく抑制することができて冷媒の分解等を防止でき、より効果的に信頼性が向上する。
Further, by using CO 2 as the working fluid, fluid leakage at the upper and lower end surfaces of the piston 32 can be reduced, and even in the case of CO 2 where the differential pressure is large and the influence of leakage loss and sliding loss is large, the piston 32 can be reduced. Since it is possible to avoid the force that strongly presses down, it is possible to increase the efficiency more effectively. In addition, when a single refrigerant composed of a refrigerant based on a hydrofluoroolefin having a double bond between carbon and carbon as a working fluid or a mixed refrigerant containing the refrigerant is used as a working refrigerant as a working fluid, the characteristics peculiar to this kind of refrigerant. The problem of the state can be suppressed. That is, this refrigerant is easily decomposed at high temperatures and is unstable. However, in the rotary compressor of the present invention, the lubricity of the sliding portion between the end face of the piston 32 and the end plate 35 is improved, so that the temperature rise at the sliding portion can be efficiently suppressed, and the refrigerant can be decomposed. And the reliability can be improved more effectively.
なお、冷媒として、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)とし、ハイドロフルオロカーボンをジフルオロメタン(HFC32)とした、混合冷媒を作動冷媒としてもよい。
また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)とし、ハイドロフルオロカーボンをペンタフルオロエタン(HFC125)とした、混合冷媒を作動冷媒としてもよい。
また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)とし、ハイドロフルオロカーボンをペンタフルオロエタン(HFC125)、ジフルオロメタン(HFC32)とした、3成分からなる混合冷媒を作動冷媒としてもよい。 Note that a mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is difluoromethane (HFC32) may be used as the working refrigerant.
Alternatively, a mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is pentafluoroethane (HFC125) may be used as the working refrigerant.
Also, a three-component mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is pentafluoroethane (HFC125) and difluoromethane (HFC32) is the working refrigerant. It is good.
また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)とし、ハイドロフルオロカーボンをペンタフルオロエタン(HFC125)とした、混合冷媒を作動冷媒としてもよい。
また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)とし、ハイドロフルオロカーボンをペンタフルオロエタン(HFC125)、ジフルオロメタン(HFC32)とした、3成分からなる混合冷媒を作動冷媒としてもよい。 Note that a mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is difluoromethane (HFC32) may be used as the working refrigerant.
Alternatively, a mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is pentafluoroethane (HFC125) may be used as the working refrigerant.
Also, a three-component mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is pentafluoroethane (HFC125) and difluoromethane (HFC32) is the working refrigerant. It is good.
なお、上記実施の形態では、シリンダが一つの1ピストン型ロータリ圧縮機を例にして説明したが、シリンダが複数個あるロータリ圧縮機のような回転式圧縮機であってもよい。
In the above embodiment, a single-piston rotary compressor with one cylinder has been described as an example. However, a rotary compressor such as a rotary compressor having a plurality of cylinders may be used.
以上のように、本発明の回転式圧縮機は、磨耗や焼き付きなどの信頼性面の低下を抑制するとともに、漏れ損失と摺動損失を同時に低減し、圧縮機の高効率化を図ることが可能となる。これにより、HFC系冷媒やHCFC系冷媒を用いたエアーコンディショナー用圧縮機のほかに、自然冷媒CO2を用いたエアーコンディショナーやヒートポンプ式給湯機などの用途にも適用できる。
As described above, the rotary compressor according to the present invention suppresses deterioration of reliability such as wear and seizure, and simultaneously reduces leakage loss and sliding loss, thereby improving the efficiency of the compressor. It becomes possible. Thereby, in addition to the compressor for an air conditioner using an HFC-type refrigerant or an HCFC-type refrigerant, the present invention can be applied to an application such as an air conditioner using a natural refrigerant CO 2 or a heat pump type hot water heater.
Claims (6)
- シリンダと、前記シリンダ内に配置されるシャフトの偏心部と、前記偏心部に嵌合されるピストンと、前記ピストンの偏心回転に追従して前記シリンダに設けられたスロット内を往復運動するベーンと、前記シリンダの上下端面を閉塞する2つ端板を有する回転式圧縮機であって、前記ピストンの下端面に形成する下内面角部と、前記シリンダの前記下端面を閉塞する前記端板とで囲まれる第2の面積を、前記ピストンの上端面に形成する上内面角部と、前記シリンダの前記上端面を閉塞する前記端板とで囲まれる第1の面積より大きくし、かつ、前記ピストンの前記下端面と前記下内面角部との角度を、前記ピストンの前記上端面と前記上内面角部との角度より小さくしたことを特徴とする回転式圧縮機。 A cylinder, an eccentric part of a shaft disposed in the cylinder, a piston fitted to the eccentric part, and a vane reciprocating in a slot provided in the cylinder following the eccentric rotation of the piston. A rotary compressor having two end plates for closing the upper and lower end surfaces of the cylinder, a lower inner surface corner portion formed on the lower end surface of the piston, and the end plate for closing the lower end surface of the cylinder; A second area surrounded by an upper inner surface corner formed on the upper end surface of the piston and a first area surrounded by the end plate closing the upper end surface of the cylinder, and The rotary compressor characterized in that the angle between the lower end surface of the piston and the lower inner surface corner is smaller than the angle between the upper end surface of the piston and the upper inner surface corner.
- 前記上内面角部を面取りによって形成し、前記下内面角部をザグリによって形成することを特徴とする請求項1に記載の回転式圧縮機。 2. The rotary compressor according to claim 1, wherein the upper inner surface corner is formed by chamfering and the lower inner surface corner is formed by counterbore.
- 前記ピストンの前記上端面と前記上内面角部との角度を132度~138度の範囲としたことを特徴とする請求項2に記載の回転式圧縮機。 3. The rotary compressor according to claim 2, wherein an angle between the upper end surface of the piston and a corner portion of the upper inner surface is in a range of 132 degrees to 138 degrees.
- 前記第1の面積と前記第2の面積とを、前記ピストンの自重に釣り合うように設定したことを特徴とする請求項1から請求項3のいずれかに記載の回転式圧縮機。 The rotary compressor according to any one of claims 1 to 3, wherein the first area and the second area are set so as to balance the weight of the piston.
- 作動流体として、高圧冷媒であるCO2を用いたことを特徴とする請求項1から請求項4のいずれかに記載の回転式圧縮機。 The rotary compressor according to any one of claims 1 to 4, wherein CO 2 that is a high-pressure refrigerant is used as the working fluid.
- 作動流体として、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を使用したことを特徴とする請求項1から請求項5のいずれかに記載の回転式圧縮機。 6. The working fluid is a single refrigerant composed of a refrigerant composed of carbon and a hydrofluoroolefin having a double bond between carbons as a base component or a mixed refrigerant containing the refrigerant. A rotary compressor according to any one of the above.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180003212.XA CN102483066B (en) | 2010-07-02 | 2011-07-01 | Rotary compressor |
JP2011551339A JP4928016B2 (en) | 2010-07-02 | 2011-07-01 | Rotary compressor |
EP11800459.7A EP2589810B1 (en) | 2010-07-02 | 2011-07-01 | Rotary compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-151756 | 2010-07-02 | ||
JP2010151756 | 2010-07-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012001989A1 true WO2012001989A1 (en) | 2012-01-05 |
Family
ID=45401727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/003773 WO2012001989A1 (en) | 2010-07-02 | 2011-07-01 | Rotary compressor |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2589810B1 (en) |
JP (1) | JP4928016B2 (en) |
CN (1) | CN102483066B (en) |
WO (1) | WO2012001989A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7358674B1 (en) * | 2023-06-07 | 2023-10-10 | 日立ジョンソンコントロールズ空調株式会社 | Compressors and air conditioners |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113565761B (en) * | 2021-08-30 | 2023-04-25 | 广东美芝制冷设备有限公司 | Piston, rotary compressor and refrigeration equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0861276A (en) | 1994-08-12 | 1996-03-08 | Toshiba Corp | Rotary compressor |
JP2010031733A (en) * | 2008-07-29 | 2010-02-12 | Panasonic Corp | Rotary compressor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3702686B2 (en) * | 1999-01-21 | 2005-10-05 | ダイキン工業株式会社 | Rotary compressor |
JP2004225578A (en) * | 2003-01-21 | 2004-08-12 | Matsushita Electric Ind Co Ltd | Rotary compressor |
JP2005002832A (en) * | 2003-06-10 | 2005-01-06 | Daikin Ind Ltd | Rotary fluid machine |
JP2006177227A (en) * | 2004-12-22 | 2006-07-06 | Hitachi Home & Life Solutions Inc | Rotary two-stage compressor |
CN201301810Y (en) * | 2008-11-06 | 2009-09-02 | 松下·万宝(广州)压缩机有限公司 | Compressor |
-
2011
- 2011-07-01 WO PCT/JP2011/003773 patent/WO2012001989A1/en active Application Filing
- 2011-07-01 JP JP2011551339A patent/JP4928016B2/en active Active
- 2011-07-01 EP EP11800459.7A patent/EP2589810B1/en active Active
- 2011-07-01 CN CN201180003212.XA patent/CN102483066B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0861276A (en) | 1994-08-12 | 1996-03-08 | Toshiba Corp | Rotary compressor |
JP2010031733A (en) * | 2008-07-29 | 2010-02-12 | Panasonic Corp | Rotary compressor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7358674B1 (en) * | 2023-06-07 | 2023-10-10 | 日立ジョンソンコントロールズ空調株式会社 | Compressors and air conditioners |
Also Published As
Publication number | Publication date |
---|---|
EP2589810A4 (en) | 2016-05-18 |
JP4928016B2 (en) | 2012-05-09 |
EP2589810B1 (en) | 2018-05-02 |
CN102483066A (en) | 2012-05-30 |
EP2589810A1 (en) | 2013-05-08 |
JPWO2012001989A1 (en) | 2013-08-22 |
CN102483066B (en) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6156697B2 (en) | Rotary compressor with two cylinders | |
JP2010031785A (en) | Refrigerant compressor | |
JP5040934B2 (en) | Hermetic compressor | |
JP4928016B2 (en) | Rotary compressor | |
JP5540557B2 (en) | Rotary compressor | |
JP2014240634A (en) | Rotary type fluid machine | |
JP2010031732A (en) | Rotary compressor | |
JP5870246B2 (en) | Rotary compressor | |
JP2010031733A (en) | Rotary compressor | |
JP5263139B2 (en) | Rotary compressor | |
JP2011252475A (en) | Rotary compressor | |
JP5879474B2 (en) | Rotary compressor | |
WO2013080519A1 (en) | Rotary compressor | |
JP2011231663A (en) | Rotary compressor | |
JP6758422B2 (en) | Rotating compressor | |
JP5168169B2 (en) | Hermetic compressor | |
JP2011163257A (en) | Hermetic compressor | |
JP4973148B2 (en) | Rotary compressor | |
JP2005113865A (en) | Refrigerant compressor | |
JP2012225230A (en) | Compressor | |
JP5041057B2 (en) | Compressor | |
EP2857690B1 (en) | Compressor | |
JP5927407B2 (en) | Rotary compressor | |
JP2010242696A (en) | Rotary compressor | |
JP2008095633A (en) | Rotary fluid machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180003212.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011551339 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011800459 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11800459 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |