WO2012000329A1 - 一种传送多协议标签交换网络的子网保护方法及装置 - Google Patents

一种传送多协议标签交换网络的子网保护方法及装置 Download PDF

Info

Publication number
WO2012000329A1
WO2012000329A1 PCT/CN2011/071937 CN2011071937W WO2012000329A1 WO 2012000329 A1 WO2012000329 A1 WO 2012000329A1 CN 2011071937 W CN2011071937 W CN 2011071937W WO 2012000329 A1 WO2012000329 A1 WO 2012000329A1
Authority
WO
WIPO (PCT)
Prior art keywords
subnet
protection group
tunnel link
service data
protection
Prior art date
Application number
PCT/CN2011/071937
Other languages
English (en)
French (fr)
Inventor
宋新意
郭平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11800074.4A priority Critical patent/EP2573977A4/en
Priority to BR112012033332A priority patent/BR112012033332A2/pt
Publication of WO2012000329A1 publication Critical patent/WO2012000329A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]

Definitions

  • the present invention relates to a subnet protection technology in the field of communications, and in particular, to a subnet protection method and apparatus for transmitting a multi-protocol label switching (TMPLS) network.
  • TPLS multi-protocol label switching
  • TMPLS technology is widely used in the field of computer data communication, especially in data bearer networks.
  • the highlight of TMPLS technology is link protection and node protection.
  • One of the important technologies is tunnel protection.
  • Tunnel protection is divided into end-to-end linear protection and intermediate node subnet protection according to different application scenarios.
  • the tunnel protection consists of two tunnel links forming a protection group. One tunnel link is a working tunnel link, and the other tunnel link is a protection tunnel link.
  • the service data is implemented in two through the protection switching (APS) protocol. Switch between link links and maintain the working status of the protection group.
  • APS protection switching
  • the end-to-end linear protection is implemented as follows: When a link between any two nodes between two devices fails, the protection group is switched, that is, the current working tunnel link is switched. To the protection tunnel link; the method for implementing the subnet protection is the same as the method for implementing the end-to-end linear protection, that is, when the working tunnel link of the subnet protection group of a node in the link fails, the service data is Switch to the protection tunnel link of the subnet protection group.
  • the two existing protection methods have their own drawbacks: For the end-to-end linear protection method, the switching operation is performed because any link between the two devices fails, although the service data transmitted on the faulty link can Transferred to the protection tunnel link for transmission, but the service data is also transferred for the link that has not failed; and because there is a small amount of loss of service data during the link handover, no failure occurs. The service data transmitted on the link will also be lost, causing unnecessary loss to the service data transmitted on the normal link, that is, It is said that the local refinement protection of the faulty link is not realized, which affects the good operation of the service.
  • the subnet protection method of the intermediate node has the following disadvantages:
  • the transmission tunnel of the intermediate node device has two label switching paths (LSPs) for transmitting uplink service data and downlink service data, respectively.
  • LSPs label switching paths
  • the node device only implements the protection of the LSP in one direction. Therefore, once the LSP in the other direction of the working tunnel link fails, the service data flow will be interrupted, and the service cannot be operated normally.
  • the main purpose of the present invention is to provide a subnet protection method and device for a TMPLS network, which not only can protect the bidirectional LSP of the node device tunnel, but also achieve the protection of the working tunnel link refinement.
  • the present invention provides a subnet protection method for transmitting a TMPLS network, which is configured with two subnet protection groups for each intermediate node device to be protected between the two devices.
  • the method further includes:
  • the method further includes: if the original faulty working tunnel link is restored to normal, the service data is switched back to the working tunnel link of the subnet protection group in the same direction.
  • the intermediate node device performs the working state of the working tunnel link of the subnet protection group.
  • the working tunnel link is detected according to the operation, management and maintenance technology of TMPLS.
  • the directions of the two subnet protection groups are the same as the two directions corresponding to the bidirectional LSP of the transmission tunnel.
  • the performing the switching operation on the service data is performed according to the APS protocol.
  • the method further includes: the intermediate node device performing a handover operation on the service data when the subnet protection group is forced to perform the handover.
  • the present invention also provides a subnet protection device for a TMPLS network, which is located in each of the intermediate node devices to be protected in the two-way subnet protection group, and includes: a configuration module and a judgment processing module;
  • the configuration module is configured to separately configure a subnet protection group in two directions for each intermediate node device to be protected, and send the configuration result to the judgment processing module;
  • the determining processing module is configured to determine the working state of the working tunnel link of the two-direction subnet protection group configured by the configuration module, and determine that the service data passes the work of the subnet protection group in two directions when the working tunnel link is normal.
  • the tunnel link is transmitted.
  • the service data is switched to the protection tunnel link of the subnet protection group in the same direction.
  • the determining processing module is further configured to: when the original faulty working tunnel link is restored to be normal, the service data is switched back to the working tunnel link of the subnet protection group in the same direction.
  • the determining processing module performs a switching operation on the service data according to the APS protocol when performing the switching operation.
  • the determining processing module is further configured to perform a switching operation on the service data when the switching is forced to be performed.
  • the method and the device for protecting the subnet of the TMPLS network provided by the present invention are respectively configured with two sub-network protection groups for the intermediate node devices to be protected between the two devices; If the working tunnel link of the two-way subnet protection group is normal, the service data is transmitted through the working tunnel link of the two-way subnet protection group. Transmission; If the working tunnel link of the two-way subnet protection group fails, the service data is switched to the protection tunnel link of the subnet protection group in the same direction.
  • the sub-network protection group in the two directions is configured for the intermediate node device, and the working tunnel link of the subnet protection group in any one of the directions is faulty, and the service data of the subsequent transmission can be switched to the same direction.
  • the protection tunnel link of the subnet protection group can protect the bidirectional LSP of the node device tunnel.
  • the service data flow is not interrupted and the service is running normally.
  • the present invention is a subnet protection method. If a certain link fails, it is only necessary to switch the service data to the protection link of the corresponding subnet protection group, and does not need to perform switching operations on the service data transmitted on other links. Therefore, it does not affect the normal operation of other links, and the protection of the working tunnel link refinement is achieved.
  • FIG. 1 is a schematic flowchart of a method for implementing a subnet protection method for a TMPLS network according to the present invention
  • FIG. 2 to FIG. 5 are schematic diagrams showing service data transmission paths corresponding to various handover scenarios of a subnet protection group according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a subnet protection device of a TMPLS network according to the present invention. detailed description
  • the basic idea of the present invention is to: configure a subnet protection group in two directions for each intermediate node device to be protected between the two devices; determine the working state of the working tunnel link in the two direction subnet protection group, if two If the working tunnel link of the subnet protection group is normal, the service data is transmitted through the working tunnel link of the subnet protection group in two directions. If the working tunnel link of the subnet protection group in the two directions fails, Switch service data to the protection tunnel link of the subnet protection group in the same direction.
  • the subnet protection group in two directions may be configured for all intermediate node devices or partial intermediate node devices between the devices at both ends according to the requirements of the networking.
  • FIG. 1 is a schematic flowchart of implementing a subnet protection method for a TMPLS network according to the present invention. As shown in FIG. 1, the implementation steps of the method are as follows:
  • Step 101 Configure two subnet protection groups for each intermediate node device to be protected between the two devices.
  • the subnet protection group in two directions is configured for the part or all the intermediate nodes that need to be protected between the two devices, that is, the working tunnel chain in two directions is configured for each intermediate node device to be protected.
  • Road and protection tunnel links are configured for the part or all the intermediate nodes that need to be protected between the two devices, that is, the working tunnel chain in two directions is configured for each intermediate node device to be protected.
  • the two directions may be set to the east direction and the west direction.
  • the east working tunnel link and the east direction protection tunnel link, and the west direction working tunnel link and the west direction are respectively configured for each intermediate node device to be protected.
  • the configuration method of the subnet protection group is the same as that of the existing one-way subnet protection group, and is not detailed here.
  • the sub-node protection group in the P2 ⁇ P3 direction is configured for the intermediate node device P2, and the subnet protection group in the P2 ⁇ P1 direction is configured.
  • the two directions of the east and west corresponding to the subnet protection group are the same as the two directions corresponding to the two-way LSP of the transmission tunnel, and can also be understood as the uplink direction and the downlink direction.
  • Step 102 Determine the working state of the working tunnel link of the two-way subnet protection group, if the working tunnel link is faulty, go to step 103a; if the working tunnel link is normal, go to step 103b;
  • the working tunnel link when judging the working state of the working tunnel link of the two-way subnet protection group, the working tunnel link can be performed by the existing TMPLS operation, management, and maintenance (OAM) technology. Detecting, or periodically detecting, if it is detected that the working tunnel link is faulty, proceeding to step 103a; if the working tunnel link is normal, performing step 103b.
  • OAM TMPLS operation, management, and maintenance
  • Step 103a The service data is switched to the protection tunnel link of the same direction subnet protection group, and then step 104 is performed;
  • the intermediate node device switches the service data that is subsequently transmitted on the faulty working tunnel link to the protection tunnel link of the subnet protection group in the same direction, and then performs step 104.
  • the handover process may still be performed according to an existing APS protocol.
  • Step 103b Let the service data still be transmitted through the working tunnel link of the two-way subnet protection group;
  • the service data is still transmitted through the working tunnel link of the subnet protection group in the east and west directions.
  • Step 104 The working tunnel link protection process ends.
  • the present invention further includes: if the original faulty working tunnel link is restored to normal, the service data is switched back to the working tunnel link of the subnet protection group in the same direction;
  • the service data is switched from the protection tunnel link of the east to the protection group to the working tunnel link of the eastward protection group.
  • the TMPLS network is composed of two end devices PE1, PE2, and three intermediate node devices PI, P2, and P3, and the intermediate node device P2 is configured with two subnet protection groups in the east and west directions.
  • the subnet protection group in the P2 ⁇ P1 direction of the node device is the west subnet protection group; the subnet protection group in the P2 ⁇ P3 direction of the intermediate node device is the east subnet protection group.
  • the unidirectional or two-direction subnet protection group may be configured for the P2 and/or the P3. The method for implementing the method in this embodiment is described by the node device P2.
  • Step 201 The working tunnel link of the subnet protection group in the two directions is in a normal working state; specifically: the working data from the working tunnel link and the east subnet protection group of the west subnet protection group of the intermediate node device P2 The tunnel link is transmitted.
  • the transmission path of the service data in this step is as shown in FIG. 2.
  • the solid line shown in FIG. 2 is the path through which the service data is transmitted, and the dotted line indicates the path where there is no service data transmission at present, and FIG. 2(a) can represent
  • Step 202 When the working tunnel link of the west subnet protection group fails or is forcibly switched, the service data is switched to the protection tunnel link of the westward subnet protection group.
  • the service data is switched from the working tunnel link of the west subnet protection group to the protection tunnel link of the west subnet protection group, and the service data will be in the protection tunnel link and the eastward subnet of the west subnet protection group.
  • the protection group is transmitted on the working tunnel link.
  • Figure 3 The transmission path of the service data in this step is shown in Figure 3.
  • the solid line shown in Figure 3 is the path that the service data travels.
  • the dotted line shows the path where there is no service data transmission.
  • Figure 3 (a) can be expressed as the uplink direction, that is, the transmission path of the eastbound traffic data;
  • Figure 3 (b) can be expressed as the downlink direction, that is, the transmission path of the westbound traffic data.
  • Step 203 When the working tunnel link of the east subnet protection group fails or is forcibly switched, the service data is switched to the protection tunnel link of the eastward subnet protection group.
  • the service data is switched from the working tunnel link of the east subnet protection group to the protection tunnel link of the east subnet protection group, and the service data will be in the protection tunnel link and eastward direction of the westward subnet protection group.
  • the subnet protection group is transmitted on the protection tunnel link.
  • the transmission path of the service data in this step is as shown in FIG. 4.
  • the solid line shown in FIG. 4 is the path through which the service data is transmitted, and the dotted line indicates the path in which no service data is currently transmitted.
  • Figure 4 (a) can be expressed as the uplink direction, that is, the transmission path of the eastbound traffic data; and
  • Figure 4 (b) can be expressed as the downlink direction, that is, the transmission path of the westbound traffic data.
  • Step 204 When the working tunnel link of the west subnet protection group is restored to normal or forced to switch back, the service data is backed from the protection tunnel link of the west subnet protection group to the working tunnel link of the west subnet protection group. on;
  • the service data is switched from the protection tunnel link of the west subnet protection group to the working tunnel link of the west subnet protection group, and the service data will be in the working tunnel link and the eastward subnet of the westward subnet protection group.
  • the protection group is transmitted on the protection tunnel link.
  • the transmission path of the service data in this step is as shown in FIG. 5.
  • the solid line shown in FIG. 5 is the path through which the service data is transmitted, and the dotted line indicates the path in which no service data is currently transmitted.
  • Figure 5 (a) can be expressed as the uplink direction, that is, the transmission path of the eastbound traffic data;
  • Figure 5 (b) can be expressed as the downlink direction, that is, the transmission path of the westbound traffic data.
  • Step 205 When the working tunnel link of the eastward subnet protection group is restored to normal or forced to switch back, the service data is switched back from the protection tunnel link of the east subnet protection group to the work of the eastward subnet protection group. On the tunnel link;
  • the service data is switched from the protection tunnel link of the east subnet protection group to the working tunnel link of the east subnet protection group, and the service data will be in the working tunnel link and eastward direction of the westward subnet protection group.
  • the subnet protection group transmits on the working tunnel link, that is, returns to the initial state shown in step 201.
  • the transmission path of the service data in this step is as shown in FIG. 2, and is the same as step 201.
  • the present invention further provides a subnet protection device for a TMPLS network.
  • the device is located inside each intermediate node device to be protected in a two-direction subnet protection group, including : a configuration module and a judgment processing module; wherein
  • the configuration module is configured to separately configure a subnet protection group in two directions for each intermediate node device to be protected, and send the configuration result to the judgment processing module;
  • the determining processing module is configured to determine the working state of the working tunnel link of the two-direction subnet protection group configured by the configuration module, and determine that the service data passes the work of the subnet protection group in two directions when the working tunnel link is normal. Tunnel link transmission; determining that the working tunnel link is faulty When the service data is switched to the protection tunnel link of the subnet protection group in the same direction.
  • the determining processing module is further configured to: when the original faulty working tunnel link is restored to normal, the service data is switched back to the working tunnel link of the subnet protection group in the same direction.
  • the switching operation is performed on the service data according to the APS protocol.
  • the determining processing module is further configured to perform a switching operation on the service data when the subnet protection group is forced to perform the handover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种传送多协议标签交换网络的子网保护方法及装置 技术领域
本发明涉及通信领域中的子网保护技术, 尤其涉及一种传送多协议标 签交换(TMPLS ) 网络的子网保护方法及装置。 背景技术
TMPLS技术在计算机数据通信领域, 尤其在数据承载网中应用比较广 泛。 TMPLS技术的亮点主要是链路保护和节点保护, 其中一项重要的技术 是隧道保护, 隧道保护按照应用场景的不同分为: 端到端的线性保护和中 间节点的子网保护。 所述隧道保护是由两条隧道链路组成一个保护组, 其 中一条隧道链路为工作隧道链路, 另一条隧道链路为保护隧道链路, 通过 保护倒换( APS )协议实现业务数据在两条隧道链路间的切换, 并维护保护 组的工作状态。
基于所述隧道保护机制, 上述端到端的线性保护的实现方法为: 两端 设备之间任何两个节点间的一段链路发生故障, 都会切换保护组, 即: 从 当前的工作隧道链路切换到保护隧道链路; 所述子网保护的实现方法与端 到端的线性保护的实现方法相同, 即: 链路中某个节点的子网保护组的工 作隧道链路出现故障, 则将业务数据切换到子网保护组的保护隧道链路。
但是, 目前已有的两种保护方法均存在自身缺陷: 对于端到端的线性 保护方法, 由于两端设备之间任何一段链路出现故障均执行切换操作, 虽 然故障链路上传输的业务数据能转移到保护隧道链路上进行传输, 但对于 未发生故障的链路也需进行业务数据的转移; 又因为在链路切换的过程中, 业务数据均会有少量的丟失, 所以, 未发生故障的链路上传输的业务数据 也会有所丟失, 对正常链路上传输的业务数据造成不必要的损失, 也就是 说, 没能实现故障链路的局部细化保护, 影响业务的良好运行。 所述中间节点的子网保护方法存在的缺陷如下: 由于目前中间节点设 备的传输隧道均有两个方向的标签交换路径 (LSP ), 分别用于传输上行业 务数据和下行业务数据, 而现有的节点设备都只实现了一个方向 LSP的保 护, 这样, 一旦工作隧道链路的另一方向 LSP出现故障, 业务数据流将会 中断, 导致业务无法正常运行。 例如: TMPLS网络两端设备间依次有三个 中间节点设备 PI、 P2和 P3 , 针对节点设备 P2来说, 只能对 P2→P3方向 的 LSP进行保护、 或者只能对 P2→P1方向的 LSP进行保护, 那么, 一旦 P2→P1方向的 LSP出现故障、 或者 P2→P3方向的 LSP出现故障, 业务数 据流将会中断, 影响业务的正常运行。 发明内容
有鉴于此,本发明的主要目的在于提供一种 TMPLS网络的子网保护方 法及装置, 不仅能实现对节点设备隧道双向 LSP的保护, 还能达到对工作 隧道链路细化的保护。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种传送 TMPLS网络的子网保护方法,为两端设备之间 的各需保护的中间节点设备分别配置两个方向的子网保护组; 该方法还包 括:
判断两个方向子网保护组工作隧道链路的工作状态, 如果两个方向子 网保护组的工作隧道链路正常, 则令业务数据通过两个方向子网保护组的 工作隧道链路进行传输; 如果两个方向子网保护组的工作隧道链路出现故 障, 则将业务数据切换到相同方向子网保护组的保护隧道链路上。
该方法进一步包括: 如果原故障工作隧道链路恢复正常, 则再将业务 数据回切到相同方向子网保护组的工作隧道链路上。
其中, 所述中间节点设备对子网保护组工作隧道链路的工作状态进行 判断时, 依据 TMPLS的操作、 管理和维护技术对工作隧道链路进行检测。 其中, 所述两个子网保护组各自的方向与传输隧道双向 LSP对应的两 个方向相同。
其中, 所述对业务数据执行切换操作时, 依据 APS协议进行。
该方法进一步包括: 所述中间节点设备在子网保护组被强制执行切换 时, 对业务数据执行切换操作。
本发明还提供了一种 TMPLS网络的子网保护装置,该装置位于需配置 两个方向子网保护组的各需保护的中间节点设备内部, 包括: 配置模块和 判断处理模块; 其中,
所述配置模块, 用于为各需保护的中间节点设备分别配置两个方向的 子网保护组, 并将配置结果发送给判断处理模块;
所述判断处理模块, 用于判断配置模块所配置的两个方向子网保护组 工作隧道链路的工作状态, 确定工作隧道链路正常时, 令业务数据通过两 个方向子网保护组的工作隧道链路进行传输; 确定工作隧道链路出现故障 时, 将业务数据切换到相同方向子网保护组的保护隧道链路上。
其中, 所述判断处理模块, 进一步用于确定原故障工作隧道链路恢复 正常时, 再将业务数据回切到相同方向子网保护组的工作隧道链路上。
其中, 所述判断处理模块执行切换操作时, 依据 APS协议对业务数据 执行切换操作。
所述判断处理模块, 还用于被强制执行切换时, 对业务数据执行切换 操作。
本发明提供的 TMPLS网络的子网保护方法及装置,为两端设备之间的 各需保护的中间节点设备分别配置两个方向的子网保护组; 判断两个方向 子网保护组工作隧道链路的工作状态, 如果两个方向子网保护组的工作隧 道链路正常, 则令业务数据通过两个方向子网保护组的工作隧道链路进行 传输; 如果两个方向子网保护组的工作隧道链路出现故障, 则将业务数据 切换到相同方向子网保护组的保护隧道链路上。 本发明中, 为中间节点设 备配置两个方向的子网保护组, 那么, 其中任意一个方向上的子网保护组 的工作隧道链路出现故障, 均可将后续传输的业务数据切换到相同方向子 网保护组的保护隧道链路上, 可实现对节点设备隧道双向 LSP的保护, 业 务数据流不会中断, 保证业务正常运行。
此外, 本发明为子网保护方法, 如果某段链路出现故障, 只需将业务 数据切换到相应子网保护组的保护链路上, 不需对其它链路上传输的业务 数据执行切换操作, 因而不会影响其它链路的正常运行, 达到了对工作隧 道链路细化的保护。 附图说明
图 1为本发明 TMPLS网络的子网保护方法的实现流程示意图; 图 2至图 5为本发明具体实施例中子网保护组各种切换场景对应的业 务数据传输路径示意图;
图 6为本发明 TMPLS网络的子网保护装置的结构示意图。 具体实施方式
本发明的基本思想是: 为两端设备之间的各需保护的中间节点设备分 别配置两个方向的子网保护组; 判断两个方向子网保护组工作隧道链路的 工作状态, 如果两个方向子网保护组的工作隧道链路正常, 则令业务数据 通过两个方向子网保护组的工作隧道链路进行传输; 如果两个方向子网保 护组的工作隧道链路出现故障, 则将业务数据切换到相同方向子网保护组 的保护隧道链路上。
进一步地, 如果原故障工作隧道链路恢复正常, 则再将业务数据回切 到相同方向子网保护组的工作隧道链路上。 这里, 所述配置两个方向的子网保护组时, 可根据组网的需求为两端 设备之间的所有中间节点设备、 或部分中间节点设备配置两个方向的子网 保护组。
下面结合附图及具体实施例对本发明作进一步详细说明。
图 1为本发明 TMPLS网络的子网保护方法的实现流程示意图, 如图 1 所示, 该方法的实现步骤如下:
步骤 101 :为两端设备之间的各需保护的中间节点设备分别配置两个方 向的子网保护组;
具体为: 根据业务需求为两端设备之间需保护的部分或所有中间节点 设备配置两个方向的子网保护组, 即: 为各需保护的中间节点设备分别配 置两个方向的工作隧道链路和保护隧道链路。
这里, 所述两个方向可设为东向和西向, 相应的, 为各需保护的中间 节点设备分别配置东向工作隧道链路和东向保护隧道链路, 以及西向工作 隧道链路和西向保护隧道链路。 其中, 所述子网保护组的具体配置方法与 现有单方向子网保护组的配置方法相同, 此处不再详述。
例如: TMPLS网络两端设备间依次有三个中间节点设备 PI、 P2和 P3 , 为中间节点设备 P2配置 P2→P3方向的子网保护组,并配置 P2→P1方向的 子网保护组。
这里, 所述子网保护组对应的东、 西两个方向与传输隧道双向 LSP对 应的两个方向相同, 也可以理解为上行方向和下行方向。
步骤 102: 判断两个方向子网保护组工作隧道链路的工作状态, 如果工 作隧道链路出现故障, 则执行步骤 103a; 如果工作隧道链路正常, 则执行 步骤 103b;
这里, 在判断两个方向子网保护组工作隧道链路的工作状态时, 可通 过已有的 TMPLS 的操作、 管理和维护 (OAM )技术对工作隧道链路进行 检测、 或经定期检测, 如果检测到工作隧道链路出现故障, 则继续执行步 骤 103a; 如果工作隧道链路正常, 则执行步骤 103b。
步骤 103a:将业务数据切换到相同方向子网保护组的保护隧道链路上, 之后执行步骤 104;
具体为: 中间节点设备将故障工作隧道链路上后续传输的业务数据切 换到相同方向子网保护组的保护隧道链路上, 之后执行步骤 104。
其中, 所述的切换过程仍可依据已有的 APS协议进行。
本发明中, 所述切换操作也可在子网保护组被强制执行切换时进行。 步骤 103b: 令业务数据仍通过两个方向子网保护组的工作隧道链路进 行传输;
这里, 以步骤 101 中设置的为例, 业务数据仍然经东、 西两个方向子 网保护组的工作隧道链路进行传输。
步骤 104: 工作隧道链路保护过程结束。
进一步地, 本发明还包括: 如果原故障工作隧道链路恢复正常, 则再 将业务数据回切到相同方向子网保护组的工作隧道链路上; 具体的,
如果原来出现故障的东向保护组的工作隧道链路恢复正常, 则再将业 务数据从东向保护组的保护隧道链路上切换到东向保护组的工作隧道链路 上。
下面结合具体实施例对本发明进行详细描述。
本实施例中, TMPLS网络由两端设备 PE1、 PE2和三个中间节点设备 PI、 P2和 P3组成, 为中间节点设备 P2配置东、 西两个方向的子网保护组, 具体的, 设中间节点设备 P2→P1方向的子网保护组为西向子网保护组; 中 间节点设备 P2→P3 方向的子网保护组为东向子网保护组。 此外, 也可为 P2和 /或 P3配置单向或两个方向的子网保护组,下面仅以节点设备 P2为研 究对象对本实施例的方法实现过程进行描述, 具体包括如下步骤: 步骤 201 : 两个方向子网保护组的工作隧道链路处于正常工作状态; 具体为: 业务数据从中间节点设备 P2的西向子网保护组的工作隧道链 路和东向子网保护组的工作隧道链路进行传输。
该步骤业务数据的传输路径如图 2所示, 图 2中所示实线为业务数据 传输时经过的路径, 所示虚线为当前没有业务数据传输的路径, 图 2 ( a ) 所示可表示为上行方向, 即东向业务数据的传输路径, 图 2 ( b )所示可表 示为下行方向, 即西向业务数据的传输路径。
步骤 202:西向子网保护组的工作隧道链路出现故障、或被强制切换时, 将业务数据切换到西向子网保护组的保护隧道链路上;
此时, 将业务数据从西向子网保护组的工作隧道链路切换到西向子网 保护组的保护隧道链路上, 业务数据将在西向子网保护组的保护隧道链路 和东向子网保护组的工作隧道链路上传输。
本步骤业务数据的传输路径如图 3所示, 图 3中所示实线为业务数据 传输时经过的路径, 所示虚线为当前没有业务数据传输的路径。 图 3 ( a ) 所示可表示为上行方向, 即东向业务数据的传输路径; 图 3 ( b )所示可表 示为下行方向, 即西向业务数据的传输路径。
步骤 203:东向子网保护组的工作隧道链路出现故障、或被强制切换时, 将业务数据切换到东向子网保护组的保护隧道链路上;
此时, 将业务数据从东向子网保护组的工作隧道链路切换到东向子网 保护组的保护隧道链路上, 业务数据将在西向子网保护组的保护隧道链路 和东向子网保护组的保护隧道链路上传输。
本步骤业务数据的传输路径如图 4所示, 图 4中所示实线为业务数据 传输时经过的路径, 所示虚线为当前没有业务数据传输的路径。 图 4 ( a ) 所示可表示为上行方向, 即东向业务数据的传输路径; 图 4 ( b )所示可表 示为下行方向, 即西向业务数据的传输路径。 步骤 204:西向子网保护组的工作隧道链路恢复正常、或被强制回切时, 将业务数据从西向子网保护组的保护隧道链路回切到西向子网保护组的工 作隧道链路上;
此时, 将业务数据从西向子网保护组的保护隧道链路切换到西向子网 保护组的工作隧道链路上, 业务数据将在西向子网保护组的工作隧道链路 和东向子网保护组的保护隧道链路上传输。
本步骤业务数据的传输路径如图 5所示, 图 5中所示实线为业务数据 传输时经过的路径, 所示虚线为当前没有业务数据传输的路径。 图 5 ( a ) 所示可表示为上行方向, 即东向业务数据的传输路径; 图 5 ( b )所示可表 示为下行方向, 即西向业务数据的传输路径。
步骤 205:东向子网保护组的工作隧道链路恢复正常、或被强制回切时, 将业务数据从东向子网保护组的保护隧道链路回切到东向子网保护组的工 作隧道链路上;
此时, 将业务数据从东向子网保护组的保护隧道链路切换到东向子网 保护组的工作隧道链路上, 业务数据将在西向子网保护组的工作隧道链路 和东向子网保护组的工作隧道链路上传输, 即又回到步骤 201 所示的初始 状态。 本步骤业务数据的传输路径如图 2所示, 与步骤 201相同。
为实现上述方法, 本发明还提供了一种 TMPLS网络的子网保护装置, 如图 6所示, 所述装置位于需配置两个方向子网保护组的各需保护的中间 节点设备内部, 包括: 配置模块和判断处理模块; 其中,
所述配置模块, 用于为各需保护的中间节点设备分别配置两个方向的 子网保护组, 并将配置结果发送给判断处理模块;
所述判断处理模块, 用于判断配置模块所配置的两个方向子网保护组 工作隧道链路的工作状态, 确定工作隧道链路正常时, 令业务数据通过两 个方向子网保护组的工作隧道链路进行传输; 确定工作隧道链路出现故障 时, 将业务数据切换到相同方向子网保护组的保护隧道链路上。 所述判断处理模块, 进一步用于确定原故障工作隧道链路恢复正常时, 再将业务数据回切到相同方向子网保护组的工作隧道链路上。
所述判断处理模块执行切换操作时, 依据 APS协议对业务数据执行切 换操作。
所述判断处理模块, 还用于子网保护组被强制执行切换时, 对业务数 据执行切换操作。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种传送多协议标签交换 TMPLS网络的子网保护方法, 其特征在 于, 为两端设备之间的各需保护的中间节点设备分别配置两个方向的子网 保护组; 该方法还包括:
判断两个方向子网保护组工作隧道链路的工作状态, 如果两个方向子 网保护组的工作隧道链路正常, 则令业务数据通过两个方向子网保护组的 工作隧道链路进行传输; 如果两个方向子网保护组的工作隧道链路出现故 障, 则将业务数据切换到相同方向子网保护组的保护隧道链路上。
2、根据权利要求 1所述的 TMPLS网络的子网保护方法, 其特征在于, 该方法还包括: 如果原故障工作隧道链路恢复正常, 则再将业务数据回切 到相同方向子网保护组的工作隧道链路上。
3、 根据权利要求 1或 2所述的 TMPLS网络的子网保护方法, 其特征 在于, 所述中间节点设备对子网保护组工作隧道链路的工作状态进行判断 时, 依据 TMPLS的操作、 管理和维护技术对工作隧道链路进行检测。
4、 根据权利要求 1或 2所述的 TMPLS网络的子网保护方法, 其特征 在于, 所述两个子网保护组各自的方向与传输隧道双向标签交换路径 LSP 对应的两个方向相同。
5、 根据权利要求 1或 2所述的 TMPLS网络的子网保护方法, 其特征 在于, 所述对业务数据执行切换操作时, 依据保护倒换 APS协议进行。
6、 根据权利要求 1或 2所述的 TMPLS网络的子网保护方法, 其特征 在于, 该方法还包括: 在子网保护组被强制执行切换时, 所述中间节点设 备对业务数据执行切换操作。
7、 一种 TMPLS网络的子网保护装置, 其特征在于, 该装置位于需配 置两个方向子网保护组的各需保护的中间节点设备内部, 包括: 配置模块 和判断处理模块; 其中, 所述配置模块, 用于为各需保护的中间节点设备分别配置两个方向的 子网保护组, 并将配置结果发送给判断处理模块;
所述判断处理模块, 用于判断配置模块所配置的两个方向子网保护组 工作隧道链路的工作状态, 确定工作隧道链路正常时, 令业务数据通过两 个方向子网保护组的工作隧道链路进行传输; 确定工作隧道链路出现故障 时, 将业务数据切换到相同方向子网保护组的保护隧道链路上。
8、根据权利要求 7所述的 TMPLS网络的子网保护装置, 其特征在于, 所述判断处理模块, 还用于确定原故障工作隧道链路恢复正常时, 再将业 务数据回切到相同方向子网保护组的工作隧道链路上。
9、 根据权利要求 7或 8所述的 TMPLS网络的子网保护装置, 其特征 在于, 所述判断处理模块执行切换操作时, 依据 APS协议对业务数据执行 切换操作。
10、根据权利要求 7或 8所述的 TMPLS网络的子网保护装置, 其特征 在于, 所述判断处理模块, 还用于子网保护组被强制执行切换时, 对业务 数据执行切换操作。
PCT/CN2011/071937 2010-06-28 2011-03-17 一种传送多协议标签交换网络的子网保护方法及装置 WO2012000329A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11800074.4A EP2573977A4 (en) 2010-06-28 2011-03-17 Subnet protection method and device for transport multi-protocol label switching (tmpls) network
BR112012033332A BR112012033332A2 (pt) 2010-06-28 2011-03-17 "método e dispositivo para fornecer proteção á sub-rede em rede de comutação de rótulos multiprotocolo de transporte(tmpls)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010211003.1 2010-06-28
CN2010102110031A CN101883008A (zh) 2010-06-28 2010-06-28 一种传送多协议标签交换网络的子网保护方法及装置

Publications (1)

Publication Number Publication Date
WO2012000329A1 true WO2012000329A1 (zh) 2012-01-05

Family

ID=43054909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071937 WO2012000329A1 (zh) 2010-06-28 2011-03-17 一种传送多协议标签交换网络的子网保护方法及装置

Country Status (4)

Country Link
EP (1) EP2573977A4 (zh)
CN (1) CN101883008A (zh)
BR (1) BR112012033332A2 (zh)
WO (1) WO2012000329A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883008A (zh) * 2010-06-28 2010-11-10 中兴通讯股份有限公司 一种传送多协议标签交换网络的子网保护方法及装置
CN102487327B (zh) * 2010-12-01 2015-05-20 中兴通讯股份有限公司 业务切换方法及装置
CN102164085B (zh) * 2011-04-22 2015-08-12 中兴通讯股份有限公司 基于多协议标签交换网络的隧道组保护实现方法及装置
CN103516540B (zh) * 2012-06-29 2018-03-13 中兴通讯股份有限公司 一种环网保护倒换装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070183317A1 (en) * 2006-02-03 2007-08-09 Jean-Philippe Vasseur Technique for determining whether to reestablish fast rerouted primary tunnels based on backup tunnel path quality feedback
CN101404613A (zh) * 2008-11-20 2009-04-08 华为技术有限公司 一种数据保护的方法和设备
CN101599859A (zh) * 2009-06-30 2009-12-09 华为技术有限公司 一种双向隧道的保护方法、系统及节点
CN101883008A (zh) * 2010-06-28 2010-11-10 中兴通讯股份有限公司 一种传送多协议标签交换网络的子网保护方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3976397B2 (ja) * 1998-04-28 2007-09-19 株式会社日立コミュニケーションテクノロジー Blsrネットワークシステム
ITMI991276A1 (it) * 1999-06-09 2000-12-09 Cit Alcatel Metodo per il recupero dei path unidirezionali tra piu' nodi nel casodi anelli transoceanici tipo ms-sp ring per telecomunicazioni sdh
IL137082A (en) * 2000-06-29 2004-08-31 Eci Telecom Ltd Method for forwarding a data packet within an mpls domain
US6917759B2 (en) * 2002-01-31 2005-07-12 Nortel Networks Limited Shared mesh signaling algorithm and apparatus
US7509438B1 (en) * 2003-02-14 2009-03-24 Cisco Technology, Inc. Bi-directional line switched ring support for path trace monitoring on a protection path
CN100388708C (zh) * 2005-01-01 2008-05-14 华为技术有限公司 分组光通道共享保护方法及其系统
CN100407725C (zh) * 2005-04-15 2008-07-30 华为技术有限公司 多协议标签交换双向保护切换的实现方法
CN101193052B (zh) * 2006-11-22 2011-06-01 华为技术有限公司 在多协议标签交换中实现子网连接保护的方法和系统
CN101668235A (zh) * 2009-10-19 2010-03-10 国网信息通信有限公司 一种t-mpls网络中实现m:n保护的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070183317A1 (en) * 2006-02-03 2007-08-09 Jean-Philippe Vasseur Technique for determining whether to reestablish fast rerouted primary tunnels based on backup tunnel path quality feedback
CN101404613A (zh) * 2008-11-20 2009-04-08 华为技术有限公司 一种数据保护的方法和设备
CN101599859A (zh) * 2009-06-30 2009-12-09 华为技术有限公司 一种双向隧道的保护方法、系统及节点
CN101883008A (zh) * 2010-06-28 2010-11-10 中兴通讯股份有限公司 一种传送多协议标签交换网络的子网保护方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2573977A4 *

Also Published As

Publication number Publication date
CN101883008A (zh) 2010-11-10
EP2573977A1 (en) 2013-03-27
BR112012033332A2 (pt) 2016-12-13
EP2573977A4 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
EP2560326B1 (en) Ring network protection method, network node and ring network
CN101212400B (zh) 一种协商伪线的双向转发检测会话区分符的方法及系统
CN101610535B (zh) 多链路直连场景下保证bfd会话稳定性的方法、系统及装置
WO2010038624A1 (ja) 通信システム、ノード装置、通信システムの通信方法、およびプログラム
WO2008110083A1 (fr) Procédé, dispositif et système de transmission permettant une transmission de service d'interface iub sur ip
JP2017520997A (ja) 通信ネットワークにおける保護スイッチングの制御
EP2013996B1 (en) System and method of multi-nodal aps control protocol signalling
WO2008148296A1 (fr) Procédé de détection des anomalies, système de communication et routeur de commutation d'étiquettes
CN102752143B (zh) Mpls te双向隧道的bfd检测方法及路由设备
WO2006034639A1 (fr) Procede de commutation de protection destine a un reseau de commutation multiprotocole par etiquette
CN102025646A (zh) 链路倒换方法及其装置
CN102638389A (zh) 一种trill网络的冗余备份方法及系统
CN102857418B (zh) 一种基于vpn的快速重路由切换方法及设备
WO2012079418A1 (zh) 一种相交相切环网保护方法及系统
CN105227393A (zh) 一种双向转发检测方法
WO2012171378A1 (zh) 解决vpls接入l3故障切换导致断流的方法及路由器
CN101789879A (zh) 一种关联链路的动态维护方法及装置
WO2014206207A1 (zh) 一种路由撤销方法和网络设备
CN103490951A (zh) 基于bfd的多跳链路中双向转发检测方法
EP2658177B1 (en) Method for detecting tunnel faults and traffic engineering node
WO2013049981A1 (zh) 一种基于共享通道的混合环网保护方法及系统
WO2013040940A1 (zh) 环网的保护方法及装置
WO2007036101A1 (fr) Systeme et procede de protection de voie de service multidiffusion
WO2012000329A1 (zh) 一种传送多协议标签交换网络的子网保护方法及装置
EP2239956B1 (en) Method, apparatus and system for ip/optical convergence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011800074

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012033332

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012033332

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121227