WO2012000219A1 - Ofdm系统的发射装置及提高循环延迟分集性能的方法 - Google Patents

Ofdm系统的发射装置及提高循环延迟分集性能的方法 Download PDF

Info

Publication number
WO2012000219A1
WO2012000219A1 PCT/CN2010/076354 CN2010076354W WO2012000219A1 WO 2012000219 A1 WO2012000219 A1 WO 2012000219A1 CN 2010076354 W CN2010076354 W CN 2010076354W WO 2012000219 A1 WO2012000219 A1 WO 2012000219A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
subcarrier
signal
exp
jth
Prior art date
Application number
PCT/CN2010/076354
Other languages
English (en)
French (fr)
Inventor
陈侃浩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012000219A1 publication Critical patent/WO2012000219A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas

Definitions

  • the present invention relates to the field of wireless digital communications, and more particularly to a transmitting apparatus for an Orthogonal Frequency Division Multiplexing (OFDM) system and a method for improving cyclic delay diversity performance.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Cyclic Delay Diversity is a multi-antenna transmit diversity technique. As shown in Fig. 1, in the CDD technique, the useful symbol (Tu) is first cyclically shifted ( ⁇ ), and the last 1/8 symbol length (Tg) is copied to the beginning of the symbol as a cyclic prefix (CP). Due to the cyclic shift, and the actual multipath propagation environment has a certain degree of irrelevance, the signal transmitted by the multiplex antenna of the base station is hard to be cancelled by the inversion on the terminal side, so that the terminal obtains the diversity gain of the signal power. Since the cyclic delay diversity CDD technology is simple to implement and does not need to modify the protocol, it is widely used in Orthogonal Frequency-Division Multiplexing (OFDM) systems, especially in WIMAX systems.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • the cyclic delay diversity CDD can be described either by time domain signal processing or by frequency domain signal processing. As an example, the following is a conceptual description of a time domain implementation.
  • the cyclic displacement is recorded as ⁇ , ⁇ , where ⁇ is the transmit antenna number, indicating that the cyclic delay of the transmit antenna ⁇ is, meaning that although all antennas transmit the same OFDM symbol, the time domain samples of the Nth antenna are lengthened. Cyclic displacement.
  • phase delay ⁇ is applied to the antenna N, which is equivalent to multiplying the frequency domain signal by the form
  • phase factor of ⁇ , e ⁇ .
  • P 0 , P 4 , P 8 and P 12 be 4 pilots in one cluster of the downlink WIMAX signal.
  • the general terminal obtains the time offset by the following formula:
  • the m-th tuple i-subcarrier received by the receiver can be written as:
  • ⁇ ( ⁇ , ⁇ ) 2 1 ⁇ * S mi ⁇ 6 ⁇ [(14 ⁇ + ⁇ ) ⁇ ⁇ . - t a + ⁇ ⁇ )]
  • the related protocol stipulates that the maximum cyclic delay diversity CDD delay does not exceed 1.4% of the useful symbol time, and it is recommended that this delay is preferably less than 1% of the useful symbol time.
  • This delay limitation also helps the terminal to approximate
  • the pilot (PRAMBLE) also performs cyclic delay diversity CDD, it can also help the terminal to perform channel estimation, which is relatively accurate (rather than absolutely accurate). However, this approach may cause the terminal to make a base station start time. Misjudgment.
  • the technical problem to be solved by the present invention is to provide a transmitting apparatus for an OFDM system and a method for improving the performance of cyclic delay diversity.
  • the present invention proposes a method for improving the performance of cyclic delay diversity, including:
  • the information corresponding to the subcarrier signal is modulated with the corresponding subcarrier; And summing all modulated subcarriers of one antenna to obtain a transmission signal of the antenna;
  • the transmit signal of the antenna is transmitted from the antenna to the terminal.
  • the subcarrier signal generated by the transmitting end for the first subcarrier in the mth cluster of the jth antenna is:
  • the modulating the information corresponding to the subcarrier signal and the corresponding subcarrier is to modulate the information Sm corresponding to the i th subcarrier in the mth cluster and the i th subcarrier in the mth cluster of the jth antenna to obtain:
  • TX j ⁇ ⁇ exp [( 14m + i) iy(t - t a ) + 14miyTj ].
  • the method further includes: receiving, by the terminal, a signal transmitted by the jth antenna, the received signal is:
  • 13 ⁇ 4 is the channel response of the jth antenna.
  • the present invention also provides a transmitting apparatus, comprising a plurality of antennas, the transmitting apparatus further comprising: a subcarrier generating module configured to generate a subcarrier signal that applies a cyclic delay in units of clusters; and an information generating module configured to generate Information corresponding to the subcarrier signal;
  • a modulation module configured to modulate information corresponding to the subcarrier signal with the corresponding subcarrier
  • a subcarrier summation module configured to sum all the modulated subcarriers of an antenna to obtain a transmit signal of the antenna, where the transmit signal of the antenna is used to transmit from the antenna to the terminal.
  • the subcarrier signal generated by the subcarrier generation module for the first subcarrier in the mth cluster of the jth antenna is:
  • the information generated by the information generating module for the i-th subcarrier in the mth cluster of the jth antenna is Sm; the modulation module is configured to set information corresponding to the first subcarrier in the mth cluster of the jth antenna Sm is modulated with the first subcarrier signal in the mth cluster of the jth antenna to obtain:
  • the subcarrier summation module is configured to sum the modulated sub-carriers for the jth antenna to obtain the transmit signal of the Jth antenna:
  • TX j ⁇ ⁇ exp [( 14m + i) ft t - t a) + 14miyTj].
  • the transmitting device is further configured to transmit the transmission signal of the jth antenna to the terminal through the jth antenna, and the signal received by the terminal is:
  • 13 ⁇ 4 is the channel response of the jth antenna.
  • the transmitting apparatus of the Orthogonal Frequency Division Multiplexing OFDM system and the method for improving the cyclic delay diversity performance of the present invention can be arbitrarily large CDD without using the auxiliary pilot (PRAMBLE) CDD compared with the prior art.
  • the delay allows the terminal to obtain accurate channel estimation without changing the original algorithm.
  • Figure 1 is a schematic diagram of the principle of cyclic delay diversity CDD technology
  • FIG. 2 is a schematic structural diagram of a base station CDD implementation
  • Figure 3 is a schematic illustration of a launching device of the present invention for improving CDD performance. Preferred embodiment of the invention
  • the present invention proposes a new technical solution for improving the performance of the cyclic delay diversity CDD of the OFDM system, especially the WIMAX system, and the technical solution of the present invention can be used without the auxiliary pilot cyclic delay diversity (PREAMBLE CDD).
  • PREAMBLE CDD auxiliary pilot cyclic delay diversity
  • the base station has J transmit antennas, and the transmit antenna number is j, then 0 j J.
  • the signals transmitted by each antenna are divided into M clusters, each of which is numbered m, then 0 m M.
  • each cluster has a total of 14 subcarriers, and each subcarrier is numbered i, then 0 i 13.
  • the method for improving cyclic delay diversity performance of the present invention comprises the following steps:
  • a subcarrier is generated, so that the first subcarrier in the mth cluster of the jth antenna is:
  • the i-th subcarrier is: exp[(14m + i)iy(t - t a ) + (14m + ⁇ ) ⁇ ].
  • the second step is modulated, the information of the first subcarrier in the first cluster corresponding to 8 m "1, j-1 is modulated with the antenna in the i th sub-carrier m-th cluster, to give:
  • the subcarriers are summed to obtain the signal transmitted by the jth antenna:
  • 13 ⁇ 4 is the channel response of the jth antenna
  • the method for improving the cyclic delay diversity performance of the present invention can obtain accurate transmission without limiting the size of each antenna delay or using pilot cyclic delay diversity (PREAMBLE CDD) for channel estimation.
  • PREAMBLE CDD pilot cyclic delay diversity
  • the present invention may also provide a method
  • a transmitting device of an OFDM system which may be a macro base station having multiple antennas, a home base station (Femtocell), or a pico base station, or a relay base station.
  • the transmitting device has J transmitting antennas, and the transmitting antenna is numbered j, then 0 j J.
  • the signals transmitted by each antenna are divided into M clusters, each of which is numbered m, then 0 m M.
  • each cluster has a total of 14 subcarriers, and each subcarrier is numbered i, then (13.
  • the transmitting device further includes:
  • the subcarrier generation module 31 is configured to generate the i th subcarrier in the mth cluster of the jth antenna as:
  • An information generating module 32 configured to generate information Sm carried by the first subcarrier in the mth cluster of the jth antenna
  • the modulation module 33 is configured to modulate the information 8 grease 1 , 1 corresponding to the first subcarrier in the mth cluster and the ith subcarrier in the mth cluster of the jth antenna to obtain: S m ⁇ exp. [(L 4m + i) ⁇ y (t - t a) + 14mm i]
  • the subcarrier summation module 34 is configured to sum each subcarrier to obtain a signal transmitted by the jth antenna:
  • TX j ⁇ ⁇ exp [( 14m + i) iy(t - t a ) + 14miyTj ]
  • the transmitting device transmits the signal transmitted by the jth antenna from the jth antenna to the terminal, and the signal received by the terminal is:
  • 13 ⁇ 4 is the channel response of the jth antenna.
  • the simulation shows that the average maximum signal-to-noise ratio of the 4-antenna CDD scheme can still be kept at infinity without using the Preamble CDD, in a noise-free environment, arbitrary path phase combination, and the technical solution of the present invention;
  • the average maximum signal-to-noise ratio of the CDD scheme can only reach about 45 dB.
  • the 4-antenna new CDD scheme of the present invention has an average gain of about 3 dB, while the 4-ant conventional CDD scheme has an average gain of only 0 dB.
  • the transmitting apparatus of the OFDM system and the method for improving the cyclic delay diversity performance of the present invention generate a subcarrier signal that applies a cyclic delay in a cluster unit at a transmitting end, so that the terminal does not change the original algorithm after receiving the transmitting signal. Based on the accurate channel estimation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了OFDM系统的发射装置及提高循环延迟分集性能的方法,属于无线通信技术领域,所述发射装置,包括多根天线,还包括:子载波生成模块,其设置为生成以簇为单元施加循环延迟的子载波信号;信息生成模块,其设置为生成子载波信号对应的信息;调制模块,其设置为将子载波信号对应的信息与对应子载波进行调制;以及子载波求和模块,其设置为对一天线的调制后的所有子载波进行求和,得到该天线的发射信号,所述该天线的发射信号用于从该天线发射至终端。本发明的发射装置及对应方法,在发射端生成以簇为单元施加循环延迟的子载波信号,可以使得终端在接收到发射信号后,在不改变原有算法的基础上得到精确的信道估计。

Description

OFDM系统的发射装置及提高循环延迟分集性能的方法
技术领域
本发明涉及无线数字通讯领域, 尤其涉及正交频分复用 (OFDM ) 系统 的发射装置及提高循环延迟分集性能的方法。
背景技术
循环延迟分集 CDD( Cyclic Delay Diversity )是一种多天线发射分集技术。 如图 1所示, 在 CDD技术中, 首先对有用符号 (Tu )进行循环位移 ( τ ) , 再将最后 1/8符号长度(Tg )拷贝到符号的开始作为循环前缀(CP ) 。 由于 进行了循环位移, 且实际的多径传播环境具有一定的不相关性, 基站的多路 天线发射的信号在终端侧很难因反相而抵消, 从而使终端获得信号功率的分 集增益。 由于循环延迟分集 CDD技术实现简单又不必修改协议, 所以在正交 频分复用 OFDM ( Orthogonal Frequency-Division Multiplexing ) 系统得到广泛 应用, 特别是 WIMAX系统中得到广泛的应用。
循环延迟分集 CDD既可以用时域信号处理来描述,也可以用频域信号处 理来描述。 作为一个例子, 下面是一种时域实现的概念描述。 把循环位移记 为 δ ,Ν , 其中 Ν为发射天线编号, 表示发射天线 Ν的循环延迟为 , 意指 尽管所有的天线发射同样的 OFDM符号, 但第 N个天线的时域样点进行了 时长的循环位移。
如图 2所示,给出了基站的循环延迟分集 CDD具体实现的一种可能的原 理框图, 其中, 对天线 N施加相位延迟^ ^, 相当于对频域信号乘以形式为
Φ, = e ^ 的相位因子。 这种传统的循环延迟分集 CDD方法通常会对终端 的信道估计造成损伤, 影响信号的解调质量, 下面具体说明其原因。
设 P0、 P4、 P8、 P12为下行 WIMAX信号的一个簇内的 4个导频, 一般终 端通过下式得到时偏:
Figure imgf000003_0001
对单天线下行 WIMAX信号,接收机收到的第 m簇第 i路子载波可写为: RX(m, i) = h * Sm i · exp[(14m + i)iy(t。 - ta )]
其中, m=簇号; i=簇内子载波号, 取值 0~13; Sm,^!!制在第 m簇第 1个 子载波上的信息; 00 =子载波间隔 =2 π /符号周期; ^=符号周期 /8; t=0 〜 (1+1/8)* 符号周期。 利用接收机收到的第 m簇第 i路子载波可比较容易得到精确的信 息 Sny, 对于传统的多天线循环延迟分集 CDD信号, 接收机收到的第 m簇第 i路子载波可写为:
ΚΧ(ηι,ί) = 2 1^ * Sm i · 6χρ[(14ηι+ί)Λ ί。 - ta + τ})]
= Sm i · exp [( 14m + i) iy(t0 - 1 a )] · h · [ exp( 14m + i) ] } 其中, τ」为第 j根天线的时延, hj为第 j根天线的信道响应。
对不同的子载波, {∑hj * [exp(14m+i) oo τ」]}的值不相同, 这样就很难由 簇内的 4个导频相约处理得到各个子载波精确的信道估计, 较难得到精确的
½息 Sm,i。
为了使循环延迟分集 CDD更具实用性,相关协议又规定最大循环延迟分 集 CDD时延不超过 1.4%有用符号时间,又推荐这个时延最好小于 1%有用符 号时间。 这种时延限定也有助于终端得到近似的
Figure imgf000004_0001
另外如果对导频 ( PREAMBLE )也进行循环延迟分集 CDD , 也可以帮助终端进行信道评估, 得到相对较精确 (而非绝对精确 )的 但这种做法却有可能导致终端对基 站的起始时刻作出误判。
因此,如何能够有效提高循环延迟分集 CDD性能,获得更佳的发射分集 效果, 进而可获得更精确的发射信息成为需要解决的技术问题。
发明内容
本发明所要解决的技术问题在于,提供一种正交频分复用 OFDM系统的 发射装置及提高循环延迟分集性能的方法。
为了解决上述问题, 本发明提出了一种提高循环延迟分集性能的方法, 包括:
在发射端生成以簇为单元施加循环延迟的子载波信号;
将子载波信号对应的信息与对应子载波进行调制; 对一天线的调制后的所有子载波进行求和, 得到该天线的发射信号; 以 及
将该天线的发射信号从该天线发射至终端。
其中, 所述发射端针对第 j根天线第 m簇内的第 1个子载波所生成的子 载波信号为:
exp[(l 4m + i)<y(t - ta ) + 14m<2Wj ] . 其中, ω=子载波间隔 =2 π/符号周期; t=符号周期; ^=循环前缀周期; τ」为第 j根天线的时延。
所述将子载波信号对应的信息与对应子载波进行调制是, 将第 m簇内的 第 i个子载波对应的信息 Sm与第 j根天线第 m簇内的第 i个子载波进行调制, 得到:
Sm. · exp[(l 4m + i)<y(t - ta ) + 1 Amco - ] 所述对一天线的调制后的所有子载波进行求和, 得到该天线的发射信号 是: 对第 j根天线对调制后的的所有子载波进行求和, 得到第 j根天线的发射 信号为:
TXj =∑ · exp [( 14m + i) iy(t - ta ) + 14miyTj ]。
m,i
所述方法还包括: 终端接收所述第 j根天线发射的信号, 接收信号为:
RX(m,i) = 2hj ^S^ ·βχρ[(14ηι+ϊ)«(ΐ-ΐ3) + 14ηι^]
j
= Smi•exp[(14m+i)iy(t-ta)]*[^hj exp(14miyTj)]
j
其中, 1¾为第 j根天线的信道响应。
本发明还提供一种发射装置, 包括多根天线, 所述发射装置还包括: 子载波生成模块,其设置为生成以簇为单元施加循环延迟的子载波信号; 信息生成模块, 其设置为生成子载波信号对应的信息;
调制模块, 其设置为将子载波信号对应的信息与对应子载波进行调制; 以及
子载波求和模块, 其设置为对一天线的调制后的所有子载波进行求和, 得到该天线的发射信号, 所述该天线的发射信号用于从该天线发射至终端。 其中, 所述子载波生成模块针对第 j根天线第 m簇内的第 1个子载波生 成的子载波信号为:
exp [( 14m + i) <y(t - ta ) + 14m ijWj ],
其中, ω=子载波间隔 =2 π/符号周期; t=符号周期; ^=循环前缀周期; 为 第 j根天线的时延。
所述信息生成模块针对第 j根天线第 m簇内的第 i个子载波生成的信息 为 Sm ; 所述调制模块是设置为, 将第 j根天线第 m簇内的第 1个子载波对应 的信息 Sm 与第 j根天线第 m簇内的第 1个子载波信号进行调制, 得到:
Sm . · exp[(l 4m + i)<y(t - ta ) + 1 Amco - ]。
所述子载波求和模块是设置为, 针对第 j根天线对调制后的所有子载波 求和得到第 J根天线的发射信号为:
TXj =∑ · exp [( 14m + i) ft t - ta ) + 14miyTj ]。
m,i
所述发射装置还设置为,通过第 j根天线将第 j根天线的发射信号发射至 终端, 所述终端接收到的信号为:
RX(m,i) = 2hj ^S^ ·βχρ[(14ηι+ϊ)«(ΐ-ΐ3) + 14ηι^]
j
= Smi•exp[(14m+i)iy(t-ta)]*[^hj exp(14miyTj)]
j
其中, 1¾为第 j根天线的信道响应。
本发明的正交频分复用 OFDM系统的发射装置及提高循环延迟分集性能 的方法, 与现有技术相比, 可在不使用辅助导频( PREAMBLE ) CDD的情况 下,对任意大的 CDD时延,让终端在不改变原有算法的基础上得到精确的信 道估计。
附图概述
图 1是循环延迟分集 CDD技术原理示意图;
图 2是基站 CDD实现的原理结构图;
图 3是本发明用于提高 CDD性能的发射装置示意图。 本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发明 作进一步地详细说明。
本发明针对 OFDM系统, 尤其是 WIMAX系统的循环延迟分集 CDD性 能的提高, 提出了一种新的技术方案, 本发明的技术方案, 可在不使用辅助 导频循环延迟分集( PREAMBLE CDD )的情况下, 针对任意大的循环延迟分 集 CDD时延, 可让终端在不改变原有算法的基础上得到精确的
Figure imgf000007_0001
4叚设基站有 J个发射天线, 发射天线的编号为 j , 那么 0 j J。 每个天 线发射的信号共分为 M个簇,每个簇的编号为 m,那么 0 m M。按 WIMAX 协议, 每个簇共有 14个子载波, 设每个子载波的编号为 i, 那么 0 i 13。
本发明的提高循环延迟分集性能的方法, 包括如下步骤:
第一步, 生成子载波, 令第 j根天线第 m簇内的第 1个子载波为:
Figure imgf000007_0002
其中: ω =子载波间隔 =2 π /符号周期; t=符号周期; ^=循环前缀周期; τ」为第 j根天线的时延; 而传统 CDD方法中, 第 j根天线第 m簇内的第 i 个子载波为: exp[(14m + i)iy(t - ta) + (14m + ϊ)οπ^ ]。
在 第 j 根天线 第 m 簇 内 的 第 i 个子 载 波的 表达式 exp[(l 4m + i)iy(t - ta ) + 14ηι^ ]中, 整个表达式的含义是以条为单位进行循环延 迟, 具体的说就是 14n yTj相当于对原始信号施加一个初始相位角, 该初始相 位角是以簇为单元的, 与子载波间隔和天线的延迟时间成正比, 每个簇具有 统一的一个初始相位角。 而在传统 CCD方法中, (14m+i)iyTj是与子载波相关 的, 即是按照子载波为单元进行循环延迟的。 因而, 本发明的子载波表达式 中, 忽略了子载波的影响, 而是以簇为一个单元施加统一的循环延迟。
第二步, 进行调制, 将第 m簇内的第 1个子载波对应的信息 8„1,1与第 j 根天线第 m簇内的第 i个子载波进行调制, 得到:
Sm . · exp[(l 4m + i)<y(t - ta ) + 14m<2 rj ]
第三步, 对各子载波求和, 得到第 j根天线发射的信号为:
TXj =∑ · exp [( 14m + i) iy(t - ta ) + 14miyTj ] 在终端侧, 终端收到的信号为:
RX(m,i) = 2hj ^S^ ·βχρ[(14ηι+ϊ)«(ΐ-ΐ3) + 14ηι^]
j
= Smi•exp[(14m+i)iy(t-ta)]*[^hj exp(14miyTj)]
j
其中, 1¾为第 j根天线的信道响应;
由于对每一确定的援 m而言, [Ζ *exp(14miyfj)]为一常量,
j 终端在求时偏时
Figure imgf000008_0001
这样就可以得到各子载波 的精确估计, 从而得到精确的信息
从上面的推导可以看出, 本发明的提高循环延迟分集性能的方法既不用 限制各天线延迟 ^的大小 ,也不用借助导频循环延迟分集( PREAMBLE CDD ) 进行信道估计, 就可以得到精确的发射信息
依据本发明的提高循环延迟分集性能的方法, 本发明还可提供一种
OFDM系统的发射装置, 该发射装置可以是具有多天线的宏基站、 家庭基站 ( Femtocell ) 、 或微微基站、 或中继基站。
^^定该发射装置具有 J个发射天线, 发射天线的编号为 j, 那么 0 j J。 每个天线发射的信号共分为 M各簇, 每个簇的编号为 m, 那么 0 m M。 按 WIMAX协议, 每个簇共有 14个子载波, 设每个子载波的编号为 i, 那么 ( 13。
如图 3所示, 所述发射装置, 还包括:
子载波生成模块 31, 其设置为生成第 j根天线第 m簇内的第 i个子载波 为:
exp[(14m + i)iy(t-ta) + 14miyTj], 其中, ω=子载波间隔 =2 π/符号周期; t=符号周 期; ^=循环前缀周期; τ」为第 j根天线的时延。
信息生成模块 32, 其设置为生成第 j根天线第 m簇内的第 1个子载波携 带的信息 Sm ;
调制模块 33, 其设置为将第 m簇内的第 1个子载波对应的信息 8„1,1与第 j根天线第 m簇内的第 i个子载波进行调制, 得到: Sm. · exp[(l 4m + i)<y(t - ta ) + 14mmi ]
子载波求和模块 34, 其设置为对各子载波求和, 得到第 j根天线发射的 信号为:
TXj =∑ · exp [( 14m + i) iy(t - ta ) + 14miyTj ]
m,i
所述发射装置, 将第 j根天线发射的信号从第 j根天线发射至终端, 终端 接收到的信号为:
RX(m,i) = 2hj ^S^ ·βχρ[(14ηι+ϊ)«(ΐ-ΐ3) + 14ηι^]
j
= Smi•exp[(14m+i)iy(t-ta)]*[^hj exp(14miyTj)]
j
其中, 1¾为第 j根天线的信道响应。
对每一确定的条 m而言, [Ζ *exp(14miyr ]为一常量,
j 终端在求时偏时
Figure imgf000009_0001
这样就可以得到各子载波 的精确估计, 从而得到精确的信息
仿真显示, 在不使用 Preamble CDD的情况下, 在无噪声环境, 任意路径 相位组合, 应用本发明的技术方案, 4天线 CDD方案的平均最大信噪比仍可 以保持在无穷大; 而 4天线的传统 CDD方案平均最大信噪比只能到 45dB左 右。 在噪声环境下, 任意路径相位组合, 本发明的 4天线新 CDD方案平均有 约 3dB增益, 而 4天线传统 CDD方案平均增益仅为 0dB。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。 工业实用性
本发明公开的 OFDM系统的发射装置及提高循环延迟分集性能的方法, 在发射端生成以簇为单元施加循环延迟的子载波信号, 从而使得终端在接收 到发射信号后, 在不改变原有算法的基础上得到精确的信道估计。

Claims

权 利 要 求 书
1、 一种提高循环延迟分集性能的方法, 包括:
在发射端生成以簇为单元施加循环延迟的子载波信号;
将子载波信号对应的信息与对应子载波进行调制;
对一天线的调制后的所有子载波进行求和, 得到该天线的发射信号; 以 及
将该天线的发射信号从该天线发射至终端。
2、 如权利要求 1所述的方法, 其中,
所述发射端针对第 j根天线第 m簇内的第 1个子载波所生成的子载波信 号为:
exp[(l 4m + i)<y(t - ta ) + 14m<2Wj ] . 其中, ω=子载波间隔 =2 π/符号周期; t=符号周期; ^=循环前缀周期; τ」为第 j根天线的时延。
3、 如权利要求 2所述的方法, 其中, 所述将子载波信号对应的信息与对 应子载波进行调制是,将第 m簇内的第 i个子载波对应的信息 Sm 与第 j根天 线第 m簇内的第 i个子载波进行调制, 得到:
Sm. · exp[(l 4m + i)<y(t - ta ) + 1 Amco - ]
4、 如权利要求 3所述的方法, 其中, 所述对一天线的调制后的所有子载 波进行求和, 得到该天线的发射信号是:
对第 j根天线的调制后的所有子载波进行求和,得到第 j根天线的发射信 号为:
TXj =∑ · exp [( 14m + i) iy(t - ta ) + 14miyTj ]。
m,i
5、 如权利要求 4所述的方法, 所述方法还包括:
终端接收所述第 j根天线发射的信号, 接收信号为:
RX(m,i) = 2hj ^S^ ·βχρ[(14ηι+ϊ)«(ΐ-ΐ3) + 14ηι^]
j
= Smi•exp[(14m+i)iy(t-ta)]*[^hj exp(14miyTj)] 其中, 1¾为第 j根天线的信道响应。
6、 一种发射装置, 包括多根天线, 所述发射装置还包括:
子载波生成模块,其设置为生成以簇为单元施加循环延迟的子载波信号; 信息生成模块, 其设置为生成子载波信号对应的信息;
调制模块, 其设置为将子载波信号对应的信息与对应子载波进行调制; 以及
子载波求和模块, 其设置为对一天线的调制后的所有子载波进行求和, 得到该天线的发射信号, 所述该天线的发射信号用于从该天线发射至终端。
7、 如权利要求 6所述的发射装置, 其中,
子载波生成模块针对第 j根天线第 m簇内的第 i个子载波生成的子载波 信号为:
exp [( 14m + i) <y(t - ta ) + 14m ijWj ],
其中, ω =子载波间隔 =2 π /符号周期; t=符号周期; ^=循环前缀周期; 为 第 j根天线的时延。
8、 如权利要求 7所述的发射装置, 其中,
信息生成模块针对第 j根天线第 m簇内的第 1个子载波生成的信息为 Sm ; 调制模块是设置为, 将第 j根天线第 m簇内的第 i个子载波对应的信息 Sm;1与第 J根天线第 m簇内的第 i个子载波信号进行调制, 得到:
Sm . · exp[(l 4m + i)<y(t - ta ) + 1 Amco - ]。
9、 如权利要求 8所述的发射装置, 其中,
子载波求和模块是设置为, 针对第 j根天线对调制后的所有子载波求和 得到第 j根天线的发射信号为:
TXj =∑ · exp [( 14m + i) ft t - ta ) + 14miyTj ]。
m,i
10、 如权利要求 9所述的发射装置,
所述发射装置还设置为,通过第 j根天线将第 j根天线的发射信号发射至 终端,
所述终端接收到的信号为:
Figure imgf000013_0001
= Smi•exp[(14m+i)iy(t-ta)]*[^hj exp(14miyTj)] j
其中, 1¾为第 j根天线的信道响应。
PCT/CN2010/076354 2010-06-28 2010-08-25 Ofdm系统的发射装置及提高循环延迟分集性能的方法 WO2012000219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010212430.1A CN102299731B (zh) 2010-06-28 2010-06-28 Ofdm系统的发射装置及提高循环延迟分集性能的方法
CN201010212430.1 2010-06-28

Publications (1)

Publication Number Publication Date
WO2012000219A1 true WO2012000219A1 (zh) 2012-01-05

Family

ID=45359924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076354 WO2012000219A1 (zh) 2010-06-28 2010-08-25 Ofdm系统的发射装置及提高循环延迟分集性能的方法

Country Status (2)

Country Link
CN (1) CN102299731B (zh)
WO (1) WO2012000219A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120925B (zh) * 2019-04-30 2021-03-30 电子科技大学 一种基于短波分集信号的时延估计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259567A1 (en) * 2004-05-20 2005-11-24 Conexant Systems, Inc. Cyclic diversity systems and methods
WO2007024935A2 (en) * 2005-08-22 2007-03-01 Qualcomm Incorporated Method and apparatus for antenna selection in a mimo system
CN101682453A (zh) * 2007-06-08 2010-03-24 三星电子株式会社 用于开环su mimo的cdd预编码

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170897B1 (en) * 2000-07-05 2020-01-15 Wi-Fi One Technologies International Limited Pilot pattern design for a STTD scheme in an OFDM system
KR100782627B1 (ko) * 2005-12-30 2007-12-06 포스데이타 주식회사 통신 단말기에서 반송파 주파수 오프셋을 추정하는 방법 및상기 방법을 수행하는 통신 단말기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259567A1 (en) * 2004-05-20 2005-11-24 Conexant Systems, Inc. Cyclic diversity systems and methods
WO2007024935A2 (en) * 2005-08-22 2007-03-01 Qualcomm Incorporated Method and apparatus for antenna selection in a mimo system
CN101682453A (zh) * 2007-06-08 2010-03-24 三星电子株式会社 用于开环su mimo的cdd预编码

Also Published As

Publication number Publication date
CN102299731B (zh) 2016-06-29
CN102299731A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
US10104666B2 (en) Method and system for compensating for doubly selective channel and related apparatus
JP4870096B2 (ja) マルチキャリア変調方法並びにその方法を用いた送信装置及び受信装置
US7844006B2 (en) Method of non-uniform doppler compensation for wideband orthogonal frequency division multiplexed signals
TW200952407A (en) Sub-carrier alignment mechanism for OFDM multi-carrier systems
CN108632189B (zh) 上行数据的发送方法、装置及用户设备
US10177941B2 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
TW201138390A (en) Method and apparatus for mutiplexing reference signal and data in a wireless communication system
JP2006295959A (ja) 多重伝送アンテナを備えた無線システムのためのチャネル推定法
CN101447962B (zh) 同步信息的发送与接收方法及装置、同步系统
WO2011147205A1 (zh) 正交频分复用系统频偏补偿和均衡的方法和装置
TW202112107A (zh) 載波相位測量值的偏差消除和獲取方法、裝置及接收器
CN105282078A (zh) 对频域ofdm符号的预处理方法及前导符号的生成方法
JP5579626B2 (ja) マルチアンテナOFDMシステムにおいて巡回遅延(cyclicdelays)を選択するための方法およびシステム
TW201234804A (en) Method of channel estimation, method of selecting pilot information, user equipment, and base station
CN111835669B (zh) 参考信号发送方法和装置
US7355958B2 (en) Blind OFDM channel estimation and identification using receiver diversity
Dziwoki et al. Iterative identification of sparse mobile channels for TDS-OFDM systems
WO2012000219A1 (zh) Ofdm系统的发射装置及提高循环延迟分集性能的方法
KR20080022390A (ko) 통신 시스템에서 릴레이 시스템 및 방법
Hsieh et al. LMMSE-based channel estimation for LTE-advanced MIMO downlink employing UE-specific reference signals
Han et al. Time-domain oversampled orthogonal signal-division multiplexing underwater acoustic communications
JP2012516581A (ja) 干渉の除去
CN103546416A (zh) Ofdm符号同步方法
JP2007335973A (ja) 移動通信システム及び受信装置
KR20140059929A (ko) 다중 반송파 시스템에서 압축 센싱 기반으로 채널을 추정하는 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853924

Country of ref document: EP

Kind code of ref document: A1