WO2011162247A1 - Thin film silicon solar cell and process for production thereof - Google Patents

Thin film silicon solar cell and process for production thereof Download PDF

Info

Publication number
WO2011162247A1
WO2011162247A1 PCT/JP2011/064148 JP2011064148W WO2011162247A1 WO 2011162247 A1 WO2011162247 A1 WO 2011162247A1 JP 2011064148 W JP2011064148 W JP 2011064148W WO 2011162247 A1 WO2011162247 A1 WO 2011162247A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon layer
thin film
solar cell
type silicon
electrode
Prior art date
Application number
PCT/JP2011/064148
Other languages
French (fr)
Japanese (ja)
Inventor
桜井 直明
具道 中
一史 塩澤
弘康 近藤
下田 達也
松木 安生
貴史 増田
Original Assignee
株式会社 東芝
独立行政法人 科学技術振興機構
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 独立行政法人 科学技術振興機構, Jsr株式会社 filed Critical 株式会社 東芝
Publication of WO2011162247A1 publication Critical patent/WO2011162247A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film silicon solar cell and a method of manufacturing the same.
  • an electrode is formed on a thin film substrate, and a source gas such as cyclopentasilane (CPS) is deposited on the electrode using plasma chemical vapor deposition (PE-CVD) or the like.
  • PE-CVD plasma chemical vapor deposition
  • laser cutting has been performed to process cells and cells.
  • the silicon layer formed using the coating method has a problem that there are many dangling bonds and the photoconductivity is low. . Therefore, even when the silicon layer is formed using a coating method, a method for manufacturing a thin film silicon solar cell with less dangling bonds in the silicon layer has been desired.
  • PE-CVD plasma enhanced chemical vapor deposition
  • a first object of the present invention is to provide a method of manufacturing a thin film silicon solar cell using a coating method which can be easily manufactured while suppressing an increase in dangling bonds of a silicon layer.
  • a second object of the present invention is to provide a thin film silicon solar cell capable of improving the solar light uptake rate and a method of manufacturing the same.
  • an n-type is formed on a first electrode using a process of forming a first electrode on a substrate and a method of pattern-coating and drying a solution containing polysilane in an inert gas atmosphere.
  • Forming a silicon layer by laminating a silicon layer, an i-type silicon layer, and a p-type silicon layer, and forming a second electrode on the silicon layer;
  • a substrate a first electrode disposed on the substrate, and a method of pattern-coating and drying a solution containing polysilane in an inert gas atmosphere on the first electrode.
  • One layer is a thin film silicon solar cell in which dangling bonds are terminated using hydrogen.
  • the manufacturing method of the thin film silicon solar cell using the coating method which can be manufactured simply is provided, suppressing the increase in the dangling bond of a silicon layer.
  • the thin film silicon solar cell which can improve the uptake
  • the manufacturing-process figure (the 4) of the thin film silicon solar cell concerning 3rd embodiment It is a manufacturing-process figure (the 5) of the thin film silicon solar cell concerning 3rd embodiment. It is a manufacturing-process figure (the 6) of the thin film silicon solar cell concerning 3rd embodiment. It is a manufacturing-process figure (the 7) of the thin film silicon solar cell concerning 3rd embodiment. It is a manufacturing-process figure (the 8) of the thin film silicon solar cell concerning 3rd embodiment. It is a manufacturing-process figure (the 9) of the thin film silicon solar cell concerning 3rd embodiment. It is a manufacturing-process figure (the 10) of the thin film silicon solar cell concerning 3rd embodiment.
  • the change of the light absorption rate with a wavelength of 1 micrometer with respect to the period of a recessed part at the time of forming a recessed part periodically in the n-type silicon layer side surface of an electrode and the transparent conductive film side surface of a p-type silicon layer is shown.
  • the change of the light absorption rate of wavelength 1 micrometer with respect to the period of a recessed part is shown.
  • the thin film silicon solar cell 11A according to the first embodiment shown in FIG. 1 comprises a substrate 1, a first electrode 3 disposed on the substrate 1, and an n-type silicon layer 5An, an i-type, on the first electrode 3. It has a silicon layer 5A in which a silicon layer 5Ai and a p-type silicon layer 5Ap are stacked, and a second electrode 8 disposed on the silicon layer 5A. Although not shown, the first electrode 3 and the second electrode 8 are electrically connected.
  • the substrate 1 is not particularly limited as long as it is a thin film substrate 1.
  • a stainless steel thin film substrate can be used.
  • the first electrode 3 a film obtained by applying and drying a liquid metal material containing aluminum (Al) or silver (Ag) nanoparticles on the substrate 1 can be used.
  • the silicon layer 5A a film obtained by applying and drying a solution containing polysilane by an inkjet method or the like in an inert gas atmosphere can be used.
  • the i-type silicon layer 5Ai is treated with hydrogen, for example, dangling bonds by exposing hydrogen plasma or atmospheric pressure hydrogen plasma It is preferable that reduction processing is performed.
  • a film obtained by applying and drying a liquid material containing nanoparticles such as ITO (transparent conductive film, indium tin oxide) or SnO 2 on the silicon layer 5 A can be used.
  • the substrate 1 is prepared.
  • a thin film substrate 1 made of roll type stainless steel having a width of 1100 m is prepared.
  • the inert gas nitrogen (N 2 ) gas, argon (Ar) gas, helium (He) gas or the like can be used.
  • the first electrode 3 is formed on the substrate 1.
  • aluminum is applied to the entire surface of the substrate 1 by screen coating, and fired at 430 ° C. to form an electrode 3 having a thickness of 100 ⁇ m and a sheet resistance value of ⁇ 1 ⁇ / sq.
  • an n-type silicon layer 5An, i-type silicon layer on the first electrode 3 side from the first electrode 3 side using a method of applying a pattern containing a polysilane in an inert gas atmosphere and drying the pattern 5Ai and p-type silicon layer 5Ap are stacked in this order to form a silicon layer 5A.
  • a method of forming the silicon layer 5A in which each of the n-type silicon layer 5An, the i-type silicon layer 5Ai, and the p-type silicon layer 5Ap is an amorphous type will be described below.
  • n-type silicon layer 5An for example, as shown in FIG. 4, a solution containing phosphorus-doped polysilane is pattern-coated on the electrode 3 in an inert gas atmosphere and dried to form the n-type The silicon layer 5An is formed. Specifically, light having a wavelength of 405 nm and 3000 mW is appropriately irradiated for 1 to 30 minutes to a solution obtained by mixing 0.25% by mass of white phosphorus P 4 with cyclopentasilane (CPS). This solution is diluted to about 10% with a hydrocarbon-based solvent such as toluene, pattern-coated on the electrode 3, and preheated at 200 ° C. for 10 seconds.
  • a hydrocarbon-based solvent such as toluene
  • baking is performed at 400 ° C. to 460 ° C., preferably 420 ° C. to 440 ° C., for 60 minutes, whereby the n-type silicon layer 5An of 30 nm in film thickness and conductivity 2.5 ⁇ 10 ⁇ 3 S / cm is on the electrode 3 Is formed.
  • a solution containing polysilane is patterned and dried in an inert gas atmosphere on the n-type silicon layer 5An and i-type silicon layer is dried.
  • Form layer 5Ai Specifically, light having a wavelength of 405 nm and 3000 mW is appropriately adjusted in a solution containing CPS in 1 to 30 minutes to obtain a polysilane solution having a molecular weight of about 1000.
  • the polysilane solution is diluted to about 30% with a hydrocarbon-based solvent such as toluene, and the pattern is applied on the n-type silicon layer 5An with a dispenser and preheated at 200 ° C.
  • thermal decomposition is performed at 400 ° C. to 460 ° C., preferably 420 ° C. to 440 ° C., for 60 minutes to form an i-type silicon layer 5Ai having a film thickness of 200 nm.
  • a solution containing polysilane doped with a borane compound is patterned on an i-type silicon layer 5Ai in an inert gas atmosphere and dried. Then, a p-type silicon layer 5Ap is formed.
  • a solution obtained by mixing 1% of borane compounds such as decaborane with CPS is irradiated with light having a wavelength of 405 nm and 3000 mW for 1 to 30 minutes, and this solution is used as a hydrocarbon system such as toluene.
  • i-type silicon layer 5Ai Dilute to about 10% with a solvent, apply a pattern on i-type silicon layer 5Ai with a dispenser, and preheat at 200 ° C. for 10 seconds. Thereafter, thermal decomposition is performed at 400 ° C. to 460 ° C., preferably 420 ° C. to 440 ° C. for 60 minutes to form a p-type silicon layer 5 Ap having a film thickness of 30 nm and a conductivity of 2.6 ⁇ 10 ⁇ 5 S / cm. .
  • dangling bond reduction processing is performed on at least one of the n-type silicon layer 5An, the i-type silicon layer 5Ai, and the p-type silicon layer 5Ap.
  • hydrogen is preferably used to terminate the dangling bond.
  • heat treatment is preferably performed at a temperature suitable for the polymerization reaction, and particularly preferably heat treatment is performed at a temperature of 420 ° C. to 440 ° C.
  • the hydrogen plasma 12 is exposed to the dangling bond in the i-type silicon layer 5Ai in the vacuum chamber. Perform reduction processing.
  • the irradiation conditions of the hydrogen plasma 12 may be, for example, a hydrogen flow rate of 100 sccm, a microwave output of 445 W, a pressure of 191.95 Pa (1.44 Torr), a heater temperature of 480 ° C. (substrate surface temperature of 400 ° C.), and an irradiation time of about 10 minutes. preferable.
  • a method of heating at a temperature at which the silicon layer 5A is not etched an etching protective film such as a silicon oxide film on the surface of the silicon layer 5A. It is preferable to use a method of providing and processing. When the etching protective film is used, it is preferable to remove the etching protective film with a chemical solution such as hydrogen fluoride after the dangling bond reduction treatment.
  • a chemical solution such as hydrogen fluoride
  • the second electrode 8 is formed on the silicon layer 5A.
  • the thin film silicon solar cell 11A shown in FIG. 1 is manufactured.
  • the first electrode 3 and the second electrode 8 are also formed by applying a pattern of a liquid material. This is because manufacturing equipment can be simplified by using a method of applying a liquid material pattern. Further, as described in detail in the third embodiment, the surface of the electrode 3 can be easily processed, so that it is possible to improve the solar light intake rate.
  • the application method include a method of applying a pattern using a general droplet application device such as an inkjet device, a dispenser, a micro dispenser, or a slit coater. Since the polysilane and the liquid metal material react with oxygen to denature, the series of steps is preferably in an inert gas atmosphere in the absence of oxygen. Further, it is preferable to mix a reducing gas such as hydrogen as necessary.
  • the manufacturing apparatus is not particularly limited as long as the above steps can be carried out, it is preferable to use a roll-to-roll manufacturing apparatus. This is because continuous production of the thin film silicon solar cell 11A is facilitated.
  • the roll-to-roll manufacturing apparatus includes a delivery unit for delivering a thin film substrate made of a roll type stainless steel, and a winding unit for winding a thin film silicon solar cell, and A roll-to-roll manufacturing apparatus (not shown) further comprising a unit for performing operations corresponding to the steps of the method for manufacturing a thin film silicon solar cell according to one embodiment can be used.
  • a thin film silicon substrate made of a roll type stainless is attached to the delivery unit of the roll-to-roll manufacturing apparatus, and the thin film silicon solar cell 11A is made to pass through each unit while rolling up the thin film substrate made of roll stainless steel. Manufactured in a continuous process.
  • the silicon layer 5A can be formed by applying and drying a solution containing polysilane under a low oxygen atmosphere without using an expensive plasma CVD apparatus. It can be formed. In addition, by coating all necessary patterns of metal, metal oxide, etc. with liquid ink, the laser cutting process which is necessary when using the plasma CVD apparatus is also unnecessary, and the production efficiency is improved.
  • the dangling bond is reduced by performing the dangling bond reduction treatment, as a result, the contrast ratio is improved, and the contrast ratio is changed.
  • the photoconductive characteristics are improved.
  • Example of the First Embodiment (1) In the first embodiment, an experiment was conducted to see the heat treatment effect on a solution containing polysilane as a step before dangling bond reduction treatment.
  • Table 1 summarizes the results when the baking temperature at the time of forming the i-type silicon layer 5Ai is 330 ° C. and 430 ° C. From Table 1, comparing the cases of firing at 330 ° C. and 430 ° C., it was found that although the photoconductivity was almost the same, the dark conductivity was higher when firing at 330 ° C. This indicates that the conductivity in the dark is lower when baked at 430 ° C. From the above, it is shown that 430 ° C.
  • the electron spin resonance (ESR) device is used to divide the case of hydrogen (H 2 ) plasma treatment and the case of no treatment. The amount of unpaired electrons, that is, the dangling bond density was measured, and the film thickness of the silicon layer 5A was measured. The obtained results are shown in Table 2.
  • the values of hydrogen, dangling bond density, and photoconductivity of the i-type silicon layer formed by the coating method and the i-type silicon layer formed by the general CVD method are shown in Table 3 Shown in.
  • the i-type silicon layer formed by the application method has an order of dangling bond density more than that of the i-type silicon layer formed by the general CVD method by about one digit. It also has low photoconductivity.
  • the dangling bond is on the same order as the amorphous silicon layer manufactured using the CVD method. It was shown to have decreased.
  • the silicon layer 5A is divided into the case of hydrogen (H 2 ) plasma treatment or hydrogen (H 2 ) annealing treatment and the case of non-treatment, and the Fourier transform type red
  • the amount of hydrogen bonds was measured using an external spectroscopy (FT-IR) device.
  • the obtained result is shown in FIG.
  • the hydrogen (H 2 ) plasma treatment increased the absorbance (AU) at the absorption wavelengths of SiH and SiH 3 . This indicates that the hydrogen (H 2 ) plasma treatment increased SiH and SiH 3 and reduced dangling bonds.
  • a thin film silicon solar cell 11B according to the second embodiment shown in FIG. 8A includes a substrate 1, a first electrode 3 disposed on the substrate 1, and an n-type silicon layer 5Bn on the first electrode 3.
  • Recesses 5Bph1, 5Bph2, 5Bph3, 5Bph4, 5Bph5, 5Bph6, 5Bph7 are periodically provided on the surface of the second electrode 8 of the p-type silicon layer 5Bp.
  • the concave portions 5Bph1 to 5Bph7 are periodically provided on the surface of the second electrode 8 of the p-type silicon layer 5Bp, but the surface of the n-type silicon layer 5Bn of the electrode 3 and the surface of the second electrode 8 of the p-type silicon layer 5Bp
  • the concave portion may be periodically provided on at least one of the two.
  • illustration is abbreviate
  • the “period” refers to the distance B between the left ends of adjacent concave portions 5Bph2 and 5Bph3.
  • the width A and the depth C of each of the concave portions 5Bph1 to 5Bph7 are constant.
  • the preferable period when the depth C of the concave portions 5Bph1 to 5Bph7 is 100 nm is 0.1 ⁇ m to 1.0 ⁇ m, more preferably 0.1 to 0.8 ⁇ m.
  • FIG. 8 (a), FIG. 12 (a), and FIG. 13 (a) are the same as that of the cross-sectional schematic obtained by cut
  • concave portions 5Bph1 to 5Bph7 are provided in the p-type silicon layer 5Bp.
  • concave portions 5Bph1 to 5Bph7 can be provided by using a photolithography method or the like.
  • the second electrode 8 As shown in FIG. 11, the second electrode 8 is provided. Thus, the thin film silicon solar cell 11B shown in FIG. 8 is manufactured.
  • the concave portions 5Bph1 to 5Bph7 are provided on the surface of the p-type silicon layer 5Bp to diffusely reflect the sunlight which has entered the thin film silicon solar cell 11B. Can be confined within the thin film silicon solar cell 11B. As a result, power generation efficiency is increased because sunlight can be efficiently taken.
  • Example of Second Embodiment In the second embodiment, an experiment was conducted on the influence of the recess period on the absorptivity of light having a wavelength of 1 ⁇ m. In addition, the reason for choosing the light of a wavelength of 1 ⁇ m is because it is considered that it can be approximated to all the wavelengths of sunlight.
  • the absorptivity is improved by setting the period to be longer than 0.3 ⁇ m and shorter than 0.7 ⁇ m.
  • the absorptivity is particularly improved by setting the period to be longer than 0.4 and shorter than 0.6.
  • the absorptivity is improved by setting the cycle to be longer than 0.3 ⁇ m and shorter than 0.5 ⁇ m.
  • FIG. 29 and FIG. 30 were compared, it turned out that the absorptivity becomes higher in the case of FIG.
  • FIG. 32 shows the relationship between the period of the recesses and the integral value of the absorptivity of sunlight. As shown in FIG. 32, it was found that by setting the cycle of the recesses to 0.1 ⁇ m to 0.8 ⁇ m, the absorptivity of sunlight is improved as compared with the case where the recesses are not provided.
  • the thin film silicon solar cell 11C according to the third embodiment shown in FIG. 14 (a) is a substrate 1, a first electrode 3 disposed on the substrate 1, and an n-type disposed on the first electrode 3.
  • Recesses 5C2ph1, 5C2ph2, 5C2ph3, 5C2ph4, 5C2ph5, 5C2ph6, 5C2ph7 are periodically provided on the surface of the p-type silicon layer 5C2p on the second electrode 8 side. Also, recesses 3h1, 3h2, 3h3, 3h4, 3h5, 3h6, 3h7 are periodically provided on the surface of the first electrode 3 on the n-type silicon layer 5Bn side. Although not shown, the first electrode 3 and the second electrode 8 are electrically connected.
  • the electrode 3 is formed on the substrate 1 as shown in FIG. 15 in accordance with the steps of FIGS. From the viewpoint of facilitating processing of the surface of the electrode 3, it is preferable to use a method of applying a pattern of a liquid material.
  • the electrode 3 is provided with concave portions 3h1 to 3h7.
  • the concave portions 3h1 to 3h7 can be provided by using a photolithography method or the like.
  • i-type silicon layer 5C1i is irradiated with light having a half width of 1 ms or less by xenon (Xe) flash lamps 14a, 14b and 14c, and i-type silicon layer 5C1i is polycrystalline.
  • Xe xenon
  • i-type silicon layer 5C1i is polycrystalline.
  • the uppermost silicon layer is polycrystallized, the lower silicon layer is also polycrystallized, and it becomes difficult to combine the amorphous silicon layer and the polycrystallized silicon layer.
  • Green laser annealing may be used as a means for polycrystallizing the i-type silicon layer.
  • the second electrode 8 is formed as shown in FIG. 25 in the same manner as the process of FIG.
  • the thin film silicon solar cell 11C shown in FIG. 14 is manufactured.
  • the silicon layers 5A and 5B are one layer, but a plurality of silicon layers are formed between the first electrode 3 and the second electrode 8
  • a polycrystalline silicon layer 5C1 and an amorphous silicon layer 5C2 may be provided.
  • the i-type silicon layers as an i-type amorphous silicon layer and the other i-type silicon layer as an i-type polycrystallized silicon layer, the mutual absorption of light is absorbed by the layers mutually absorbing light. This is because the width of the wavelength is broadened and the light absorption efficiency is improved.
  • the recesses 3h1 to 3h7 are also formed on the surface of the first electrode 3 (in other words, the n-type polycrystalline silicon layer
  • the convex portions 5C1 np1 to 5 C1 np7 on the surface of the thin film silicon solar cell 11C more efficiently than in the second embodiment, irregularly reflecting the sunlight that has entered the thin film silicon solar cell 11C and confining it in the thin film silicon solar cell 11C. Can. As a result, power generation efficiency is increased because sunlight can be efficiently taken.
  • the concave portions 5Bph1 to 5Bph7 are formed in a band shape as shown in FIG. 8B in order to facilitate understanding of the invention.
  • a checkered pattern from the viewpoint of efficiently taking in light incident perpendicularly to the longitudinal direction of the thin film silicon solar cell 11B. It is preferable to arrange at equal intervals in the longitudinal direction and the width direction.
  • the shape of the convex portion 8Bp of the second electrode 8 formed in the concave portion is not limited to a polygonal prism such as a square prism, and may be a cylindrical shape as shown in FIG. 13 (b).
  • the convex portions 8Bp1... 8Bp7 do not need to be in contact with each other, and they may be spaced apart at equal intervals as shown in the second modification of the second embodiment of FIG.
  • the manufacturing method of the thin film silicon solar cell using the coating method which can be manufactured simply is provided, suppressing the increase in the dangling bond of a silicon layer.

Abstract

A process for producing a thin film silicon solar cell (11A) comprising a step of forming a first electrode (3) on a substrate, a step of laminating an n-type silicon layer (5An), an i-type silicon layer (5Ai) and a p-type silicon layer (5Ap) on the first electrode (3) by a technique in which a solution containing polysilane is applied in the form of a pattern under an inert gas atmosphere and the pattern is dried to thereby form a silicon layer (5A), and a step of forming a second electrode (8) on the silicon layer (5A), wherein, in the step of forming the silicon layer (5A), at least one layer selected from the n-type silicon layer (5An), the i-type silicon layer (5Ai) and the p-type silicon layer (5Ap) is subjected to a dangling bond reduction treatment. It is possible to provide a process for producing a thin film silicon solar cell employing a coating method, which can produce the solar cell in a simple manner and does not undergo the increase in dangling bonds in a silicon layer.

Description

薄膜シリコン太陽電池およびその製造方法Thin film silicon solar cell and method of manufacturing the same
 本発明は、薄膜シリコン太陽電池およびその製造方法に関する。 The present invention relates to a thin film silicon solar cell and a method of manufacturing the same.
 従来の薄膜シリコン太陽電池の製造においては、薄膜状の基板上に電極を形成し、シクロペンタシラン(CPS)などの原料ガスをプラズマ化学気相成長法(PE-CVD)等を用いて電極上に堆積させてp-i-n接合を備えるシリコン層を形成し、シリコン層上に透明電極膜を形成することで薄膜シリコン太陽電池を製造していた。一連の工程において、セルの間や膜の加工にはレーザーカットが行われていた。 In the production of a conventional thin film silicon solar cell, an electrode is formed on a thin film substrate, and a source gas such as cyclopentasilane (CPS) is deposited on the electrode using plasma chemical vapor deposition (PE-CVD) or the like. To form a silicon layer having a pin junction, and forming a transparent electrode film on the silicon layer to manufacture a thin film silicon solar cell. In a series of processes, laser cutting has been performed to process cells and cells.
 ところが、従来の薄膜シリコン太陽電池の製造方法においては、高価なプラズマCVD装置を使用していたことから、製造コストが高くなるという問題があった。また、レーザーカット工程を必要としていたことより、作業工程の簡略化が求められていた。 However, in the conventional method of manufacturing a thin film silicon solar cell, there is a problem that the manufacturing cost becomes high because an expensive plasma CVD apparatus is used. Moreover, since the laser cutting process was required, simplification of the work process was calculated | required.
 上述の問題を解決する手段として、液体シリコンを用いた塗布法を用いてシリコン層を形成することが提案された(例えば、特許文献1参照。)。これにより、高価なプラズマCVD装置が不要となることで生産コストが減少し、また塗布法を用いることでパターン塗布が可能になることから、レーザーカット工程が省略できることで作業工程の簡略化が図られることが期待された。 As a means for solving the above-mentioned problems, it has been proposed to form a silicon layer using a coating method using liquid silicon (see, for example, Patent Document 1). As a result, the production cost can be reduced by eliminating the need for an expensive plasma CVD apparatus, and pattern coating can be performed by using the coating method, so that the laser cutting process can be omitted, thereby simplifying the working process. Was expected to be
 しかしながら、プラズマ化学気相成長法(PE-CVD)により製造されたシリコン層と比べると、塗布法を用いて形成されたシリコン層はダングリングボンドが多く、光伝導度が低いという問題があった。そのため、塗布法を用いてシリコン層を形成した場合であっても、シリコン層のダングリングボンドが少ない薄膜シリコン太陽電池の製造方法が求められていた。 However, compared with the silicon layer manufactured by plasma enhanced chemical vapor deposition (PE-CVD), the silicon layer formed using the coating method has a problem that there are many dangling bonds and the photoconductivity is low. . Therefore, even when the silicon layer is formed using a coating method, a method for manufacturing a thin film silicon solar cell with less dangling bonds in the silicon layer has been desired.
 上述の課題に加えて、太陽電池の発電効率向上のために、薄膜シリコン太陽電池内への太陽光の取り込み率を向上させることが求められていた。この課題を解決する手段として例えばシリコン層表面にアルカリエッジ等によって凹凸を形成することが提案されたが、発電効率の増加が1%程度であったため、シリコン層表面の構造の改善が求められていた。しかしながら、プラズマ化学気相成長法を用いた場合、シリコン層表面の構造の制御は困難であった。 In addition to the above-mentioned problems, in order to improve the power generation efficiency of the solar cell, it has been required to improve the rate of uptake of sunlight into the thin film silicon solar cell. As a means to solve this problem, for example, it has been proposed to form asperities on the surface of the silicon layer with an alkaline edge etc., but since the increase in power generation efficiency was about 1%, improvement of the structure on the surface of the silicon layer is required. The However, when plasma chemical vapor deposition is used, it is difficult to control the structure of the silicon layer surface.
特開2000-31066号公報Japanese Patent Laid-Open No. 2000-31066
 本発明の第一の課題は、シリコン層のダングリングボンドの増加を抑えつつ、簡易に製造することができる塗布法を用いた薄膜シリコン太陽電池の製造方法を提供することにある。 A first object of the present invention is to provide a method of manufacturing a thin film silicon solar cell using a coating method which can be easily manufactured while suppressing an increase in dangling bonds of a silicon layer.
 本発明の第二の課題は、太陽光の取り込み率を向上させることができる薄膜シリコン太陽電池及びその製造方法を提供することにある。 A second object of the present invention is to provide a thin film silicon solar cell capable of improving the solar light uptake rate and a method of manufacturing the same.
 本発明の第1の態様は、基板上に第1電極を形成する工程と、ポリシランを含む溶液を不活性ガス雰囲気下でパターン塗付し乾燥する手法を用いて、第1電極上にn型シリコン層、i型シリコン層、p型シリコン層を積層してシリコン層を形成する工程と、シリコン層上に第2電極を形成する工程とを含み、シリコン層を形成する工程において、n型シリコン層、i型シリコン層、p型シリコン層の少なくともいずれか1層にダングリングボンド低減処理を行う薄膜シリコン太陽電池の製造方法を要旨とする。 According to a first aspect of the present invention, an n-type is formed on a first electrode using a process of forming a first electrode on a substrate and a method of pattern-coating and drying a solution containing polysilane in an inert gas atmosphere. Forming a silicon layer by laminating a silicon layer, an i-type silicon layer, and a p-type silicon layer, and forming a second electrode on the silicon layer; Abstract: A method of manufacturing a thin film silicon solar cell, in which dangling bond reduction treatment is performed on at least one layer of a layer, an i-type silicon layer, and a p-type silicon layer is summarized.
 本発明の第2の態様は、基板と、基板上に配置された第1電極と、ポリシランを含む溶液を不活性ガス雰囲気下でパターン塗付し乾燥する手法を用いて、前記第1電極上にn型シリコン層、i型シリコン層、p型シリコン層が積層されたシリコン層と、シリコン層上に配置された第2電極とを有し、
 第1電極の前記n型シリコン層表面及び前記p型シリコン層の表面の少なくともいずれか一方に、周期的に凹部を備え、n型シリコン層、i型シリコン層、p型シリコン層の少なくともいずれか1層は、水素を用いてダングリングボンドが終端化されている薄膜シリコン太陽電池を要旨とする。
According to a second aspect of the present invention, there is provided a substrate, a first electrode disposed on the substrate, and a method of pattern-coating and drying a solution containing polysilane in an inert gas atmosphere on the first electrode. A silicon layer in which an n-type silicon layer, an i-type silicon layer, and a p-type silicon layer are stacked, and a second electrode disposed on the silicon layer,
A recess is periodically provided on at least one of the surface of the n-type silicon layer of the first electrode and the surface of the p-type silicon layer, and at least one of an n-type silicon layer, an i-type silicon layer and a p-type silicon layer One layer is a thin film silicon solar cell in which dangling bonds are terminated using hydrogen.
 本発明によれば、シリコン層のダングリングボンドの増加を抑えつつ、簡易に製造することができる塗布法を用いた薄膜シリコン太陽電池の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the thin film silicon solar cell using the coating method which can be manufactured simply is provided, suppressing the increase in the dangling bond of a silicon layer.
 本発明によれば、太陽光の取り込み率を向上させることができる薄膜シリコン太陽電池及びその製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the thin film silicon solar cell which can improve the uptake | capture rate of sunlight, and its manufacturing method are provided.
第一の実施形態に係る薄膜シリコン太陽電池の長手方向に切断して得られる断面概略図である。It is the cross-sectional schematic obtained by cut | disconnecting to the longitudinal direction of the thin film silicon solar cell which concerns on 1st embodiment. 第一の実施形態に係る薄膜シリコン太陽電池の製造工程図(その1)である。It is a manufacturing-process figure (the 1) of the thin film silicon solar cell concerning 1st embodiment. 第一の実施形態に係る薄膜シリコン太陽電池の製造工程図(その2)である。It is a manufacturing-process figure (the 2) of the thin film silicon solar cell concerning 1st embodiment. 第一の実施形態に係る薄膜シリコン太陽電池の製造工程図(その3)である。It is a manufacturing-process figure (the 3) of the thin film silicon solar cell concerning 1st embodiment. 第一の実施形態に係る薄膜シリコン太陽電池の製造工程図(その4)である。It is a manufacturing-process figure (the 4) of the thin film silicon solar cell concerning 1st embodiment. 第一の実施形態に係る薄膜シリコン太陽電池の製造工程図(その5)である。It is a manufacturing-process figure (the 5) of the thin film silicon solar cell concerning 1st embodiment. 第一の実施形態に係る薄膜シリコン太陽電池の製造工程図(その6)である。It is a manufacturing-process figure (the 6) of the thin film silicon solar cell concerning 1st embodiment. 第二の実施形態に係る薄膜シリコン太陽電池の長手方向に切断して得られる断面概略図(a)と、主面に平行に切断して得られる断面概略図(b)である。It is the cross-sectional schematic (a) obtained by cut | disconnecting in the longitudinal direction of the thin film silicon solar cell which concerns on 2nd embodiment, and the cross-sectional schematic (b) obtained by cut | disconnecting in parallel to a main surface. 第二の実施形態に係る薄膜シリコン太陽電池の製造工程図(その1)である。It is a manufacturing-process figure (the 1) of the thin film silicon solar cell concerning 2nd embodiment. 第二の実施形態に係る薄膜シリコン太陽電池の製造工程図(その2)である。It is a manufacturing-process figure (the 2) of the thin film silicon solar cell concerning 2nd embodiment. 第二の実施形態に係る薄膜シリコン太陽電池の製造工程図(その3)である。It is a manufacturing-process figure (the 3) of the thin film silicon solar cell concerning 2nd embodiment. 第二の実施形態の変形例1に係る薄膜シリコン太陽電池の長手方向に切断して得られる断面概略図(a)と、主面に平行に切断して得られる断面概略図(b)である。It is the cross-sectional schematic (a) obtained by cut | disconnecting in the longitudinal direction of the thin film silicon solar cell which concerns on the modification 1 of 2nd embodiment, and the cross-sectional schematic obtained by cut | disconnecting in parallel to a main surface . 第二の実施形態の変形例2に係る薄膜シリコン太陽電池の長手方向に切断して得られる断面概略図(a)と、主面に平行に切断して得られる断面概略図(b)である。It is the cross-sectional schematic (a) obtained by cut | disconnecting in the longitudinal direction of the thin film silicon solar cell concerning the modification 2 of 2nd embodiment, and the cross-sectional schematic obtained by cut | disconnecting in parallel to a main surface . 第三の実施形態に係る薄膜シリコン太陽電池の長手方向に切断して得られる断面概略図(a)と、主面に平行に切断して得られる断面概略図(b)である。It is the cross-sectional schematic (a) obtained by cut | disconnecting in the longitudinal direction of the thin film silicon solar cell which concerns on 3rd embodiment, and the cross-sectional schematic (b) obtained by cut | disconnecting in parallel to a main surface. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その1)である。It is a manufacturing-process figure (the 1) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その2)である。It is a manufacturing-process figure (the 2) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その3)である。It is a manufacturing-process figure (the 3) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その4)である。It is a manufacturing-process figure (the 4) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その5)である。It is a manufacturing-process figure (the 5) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その6)である。It is a manufacturing-process figure (the 6) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その7)である。It is a manufacturing-process figure (the 7) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その8)である。It is a manufacturing-process figure (the 8) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その9)である。It is a manufacturing-process figure (the 9) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その10)である。It is a manufacturing-process figure (the 10) of the thin film silicon solar cell concerning 3rd embodiment. 第三の実施形態に係る薄膜シリコン太陽電池の製造工程図(その11)である。It is a manufacturing-process figure (the 11) of the thin film silicon solar cell concerning 3rd embodiment. プラズマ発生装置の内部構造を示す。The internal structure of a plasma generator is shown. フーリエ変換型赤外分光(FT-IR)装置を用いて測定した水素結合量を示す。The amount of hydrogen bonds measured using a Fourier transform infrared spectrometer (FT-IR) is shown. 電気伝導度評価実験の結果である。It is the result of the electrical conductivity evaluation experiment. 電極のn型シリコン層側表面に凹部を周期的に形成した場合の凹部の周期に対する波長1μmの光吸収率の変化を示す。The change of the light absorption rate of wavelength 1 micrometer with respect to the period of a recessed part when the recessed part is periodically formed in the n-type silicon layer side surface of an electrode is shown. p型シリコン層の透明導電膜側表面に凹部を周期的に形成した場合の凹部の周期に対する波長1μmの光吸収率の変化を示す。The change of the light absorption rate of wavelength 1 micrometer with respect to the period of a recessed part when the recessed part is periodically formed in the transparent conductive film side surface of a p-type silicon layer is shown. 電極のn型シリコン層側表面と、p型シリコン層の透明導電膜側表面に凹部を周期的に形成した場合の凹部の周期に対する波長1μmの光吸収率の変化を示す。The change of the light absorption rate with a wavelength of 1 micrometer with respect to the period of a recessed part at the time of forming a recessed part periodically in the n-type silicon layer side surface of an electrode and the transparent conductive film side surface of a p-type silicon layer is shown. 凹部の周期に対する波長1μmの光吸収率の変化を示す。The change of the light absorption rate of wavelength 1 micrometer with respect to the period of a recessed part is shown.
 以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。尚、図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。 Hereinafter, the present invention will be described by way of embodiments, but the present invention is not limited to the following embodiments. In addition, about what has the same function or similar function in a figure, the same or similar code | symbol is attached | subjected and description is abbreviate | omitted.
[第一の実施形態に係る薄膜シリコン太陽電池]
 図1に示す第一の実施形態に係る薄膜シリコン太陽電池11Aは、基板1と、基板1上に配置された第1電極3と、第1電極3上に、n型シリコン層5An、i型シリコン層5Ai、p型シリコン層5Apが積層されたシリコン層5Aと、シリコン層5A上に配置された第2電極8とを有する。なお、図示を省略しているが第1電極3と第2電極8は電気的に接続されている。
[Thin film silicon solar cell according to the first embodiment]
The thin film silicon solar cell 11A according to the first embodiment shown in FIG. 1 comprises a substrate 1, a first electrode 3 disposed on the substrate 1, and an n-type silicon layer 5An, an i-type, on the first electrode 3. It has a silicon layer 5A in which a silicon layer 5Ai and a p-type silicon layer 5Ap are stacked, and a second electrode 8 disposed on the silicon layer 5A. Although not shown, the first electrode 3 and the second electrode 8 are electrically connected.
 基板1としては、薄膜状の基板1であれば特に制限されないが、例えばステンレス性の薄膜状の基板等を用いることができる。 The substrate 1 is not particularly limited as long as it is a thin film substrate 1. For example, a stainless steel thin film substrate can be used.
 第1電極3としては、アルミニウム(Al)または銀(Ag)のナノ粒子を含む液体金属材料を基板1上に塗付し乾燥して得られた膜を用いることができる。 As the first electrode 3, a film obtained by applying and drying a liquid metal material containing aluminum (Al) or silver (Ag) nanoparticles on the substrate 1 can be used.
 シリコン層5Aとしては、ポリシランを含む溶液を不活性ガス雰囲気下でインクジェット法等により塗付し乾燥して得られる膜を用いることができる。i型シリコン層5Ai等を図26に示すような構成を備えるプラズマ発生装置内に設置した後、i型シリコン層5Aiに水素処理、例えば水素プラズマもしくは大気圧水素プラズマを曝すこと等によりダングリングボンド低減処理されていることが好ましい。 As the silicon layer 5A, a film obtained by applying and drying a solution containing polysilane by an inkjet method or the like in an inert gas atmosphere can be used. After installing the i-type silicon layer 5Ai etc. in the plasma generator having the configuration as shown in FIG. 26, the i-type silicon layer 5Ai is treated with hydrogen, for example, dangling bonds by exposing hydrogen plasma or atmospheric pressure hydrogen plasma It is preferable that reduction processing is performed.
 第2電極8としては、ITO(透明導電膜、酸化インジウムスズ)またはSn0等のナノ粒子を含む液体材料をシリコン層5A上に塗付し乾燥して得られる膜を用いることができる。 As the second electrode 8, a film obtained by applying and drying a liquid material containing nanoparticles such as ITO (transparent conductive film, indium tin oxide) or SnO 2 on the silicon layer 5 A can be used.
[第一の実施形態に係る薄膜シリコン太陽電池の製造方法]
(イ)図2に示すように、基板1を用意する。例えば、幅1100mのロール型ステンレス製の薄膜状の基板1を用意する。ロール・ツー・ロール方法を用いて連続プロセスを用いることができる観点からは、ロール型ステンレス製の薄膜状の基板を用いることが好ましい。そして、基板1を酸素濃度1ppm以下に制御した不活性ガス雰囲気の処理室内で15mm/sで移送させることが好ましい。後のシリコン層5Aの積層工程において阻害要因となる酸素源等を除去することができるからである。不活性ガスとしては、窒素(N)ガス、アルゴン(Ar)ガス、ヘリウム(He)ガス等を用いることができる。
[Method of Manufacturing Thin Film Silicon Solar Cell According to First Embodiment]
(A) As shown in FIG. 2, the substrate 1 is prepared. For example, a thin film substrate 1 made of roll type stainless steel having a width of 1100 m is prepared. From the viewpoint of being able to use a continuous process using a roll-to-roll method, it is preferable to use a thin film substrate made of roll-type stainless steel. Then, it is preferable to transfer the substrate 1 at 15 mm / s in a processing chamber of an inert gas atmosphere controlled to an oxygen concentration of 1 ppm or less. This is because an oxygen source or the like which becomes an inhibiting factor can be removed in the subsequent lamination process of the silicon layer 5A. As the inert gas, nitrogen (N 2 ) gas, argon (Ar) gas, helium (He) gas or the like can be used.
(ロ)図3に示すように、基板1上に第1電極3を形成する。例えば、アルミニウムをスクリーン塗布で基板1全面に塗布し、430℃で焼成して厚さ100μm、シート抵抗値<1Ω/sqの電極3を形成する。 (B) As shown in FIG. 3, the first electrode 3 is formed on the substrate 1. For example, aluminum is applied to the entire surface of the substrate 1 by screen coating, and fired at 430 ° C. to form an electrode 3 having a thickness of 100 μm and a sheet resistance value of <1 Ω / sq.
(ハ)次に、ポリシランを含む溶液を不活性ガス雰囲気下でパターン塗付し乾燥する手法を用いて、第1電極3上に第1電極3側からn型シリコン層5An、i型シリコン層5Ai、p型シリコン層5Apの順に積層してシリコン層5Aを形成する。ここでは、n型シリコン層5An、i型シリコン層5Ai、p型シリコン層5Apのそれぞれがアモルファス型であるシリコン層5Aの形成方法について以下に説明する。 (C) Next, an n-type silicon layer 5An, i-type silicon layer on the first electrode 3 side from the first electrode 3 side using a method of applying a pattern containing a polysilane in an inert gas atmosphere and drying the pattern 5Ai and p-type silicon layer 5Ap are stacked in this order to form a silicon layer 5A. Here, a method of forming the silicon layer 5A in which each of the n-type silicon layer 5An, the i-type silicon layer 5Ai, and the p-type silicon layer 5Ap is an amorphous type will be described below.
(ニ)n型シリコン層5Anを形成するには、例えば図4に示すように、電極3上にリンをドープしたポリシランを含む溶液を不活性ガス雰囲気下でパターン塗付し乾燥してn型シリコン層5Anを形成する。具体的には、シクロペンタシラン(CPS)に対して白リンP4を0.25質量%混合して得られた溶液に、波長405nm、3000mWの光を1~30分で適宜照射する。この溶液をトルエン等の炭化水素系溶媒で10%程度に希釈して、電極3上にパターン塗布し200℃で10秒間予備加熱する。その後、400℃~460℃、好ましくは420℃~440℃で60分間焼成を行うことで、膜厚30nm、伝導度2.5×10-3S/cmのn型シリコン層5Anが電極3上に形成される。 (D) To form the n-type silicon layer 5An, for example, as shown in FIG. 4, a solution containing phosphorus-doped polysilane is pattern-coated on the electrode 3 in an inert gas atmosphere and dried to form the n-type The silicon layer 5An is formed. Specifically, light having a wavelength of 405 nm and 3000 mW is appropriately irradiated for 1 to 30 minutes to a solution obtained by mixing 0.25% by mass of white phosphorus P 4 with cyclopentasilane (CPS). This solution is diluted to about 10% with a hydrocarbon-based solvent such as toluene, pattern-coated on the electrode 3, and preheated at 200 ° C. for 10 seconds. Thereafter, baking is performed at 400 ° C. to 460 ° C., preferably 420 ° C. to 440 ° C., for 60 minutes, whereby the n-type silicon layer 5An of 30 nm in film thickness and conductivity 2.5 × 10 −3 S / cm is on the electrode 3 Is formed.
(ホ)i型シリコン層5Aiを形成するには、例えば図5に示すように、n型シリコン層5An上にポリシランを含む溶液を不活性ガス雰囲気下でパターン塗付し乾燥してi型シリコン層5Aiを形成する。具体的にはCPSを含む溶液に波長405nm、3000mWの光を1~30分で適宜調整して分子量約1000のポリシラン溶液を得る。このポリシラン溶液をトルエン等の炭化水素系溶媒で30%程度に希釈して、ディスペンサーでn型シリコン層5An上にパターン塗布し200℃で10秒間予備加熱する。その後、400℃~460℃、好ましくは420℃~440℃で60分間熱分解を行うことで、膜厚200nmのi型シリコン層5Aiが形成される。 (E) In order to form the i-type silicon layer 5Ai, for example, as shown in FIG. 5, a solution containing polysilane is patterned and dried in an inert gas atmosphere on the n-type silicon layer 5An and i-type silicon layer is dried. Form layer 5Ai. Specifically, light having a wavelength of 405 nm and 3000 mW is appropriately adjusted in a solution containing CPS in 1 to 30 minutes to obtain a polysilane solution having a molecular weight of about 1000. The polysilane solution is diluted to about 30% with a hydrocarbon-based solvent such as toluene, and the pattern is applied on the n-type silicon layer 5An with a dispenser and preheated at 200 ° C. for 10 seconds. Thereafter, thermal decomposition is performed at 400 ° C. to 460 ° C., preferably 420 ° C. to 440 ° C., for 60 minutes to form an i-type silicon layer 5Ai having a film thickness of 200 nm.
(ヘ)p型シリコン層5Apを形成するには、例えば図7に示すように、i型シリコン層5Ai上にボラン化合物をドープしたポリシランを含む溶液を不活性ガス雰囲気下でパターン塗付し乾燥してp型シリコン層5Apを形成する。具体的には、CPSに対してデカボラン等のボラン化合物を1%混合して得られた溶液に、波長405nm、3000mWの光を1~30分で適宜照射するこの溶液をトルエン等の炭化水素系溶媒で10%程度に希釈して、ディスペンサーでi型シリコン層5Ai上にパターン塗布し200℃で10s間予備加熱する。その後、400℃~460℃、好ましくは420℃~440℃で60分間熱分解を行って、膜厚30nm、伝導度2.6×10-5S/cmのp型シリコン層5Apが形成される。 (F) To form the p-type silicon layer 5Ap, for example, as shown in FIG. 7, a solution containing polysilane doped with a borane compound is patterned on an i-type silicon layer 5Ai in an inert gas atmosphere and dried. Then, a p-type silicon layer 5Ap is formed. Specifically, a solution obtained by mixing 1% of borane compounds such as decaborane with CPS is irradiated with light having a wavelength of 405 nm and 3000 mW for 1 to 30 minutes, and this solution is used as a hydrocarbon system such as toluene. Dilute to about 10% with a solvent, apply a pattern on i-type silicon layer 5Ai with a dispenser, and preheat at 200 ° C. for 10 seconds. Thereafter, thermal decomposition is performed at 400 ° C. to 460 ° C., preferably 420 ° C. to 440 ° C. for 60 minutes to form a p-type silicon layer 5 Ap having a film thickness of 30 nm and a conductivity of 2.6 × 10 −5 S / cm. .
(ト)シリコン層5Aを形成する工程において、n型シリコン層5An、i型シリコン層5Ai、p型シリコン層5Apの少なくともいずれか1層にダングリングボンド低減処理を行う。例えば水素を用いてダングリングボンドを終端化させることが好ましい。更に、ダングリングボンド低減処理の前処理として、重合反応に適した温度で熱処理を行うのが好ましく、特に好ましくは420℃~440℃の温度で熱処理を行う。ここでは、i型シリコン層5Aiを積層した後、p型シリコン層5Apを積層する前に、図6に示すように、真空チャンバー内でi型シリコン層5Aiに水素プラズマ12を曝してダングリングボンド低減処理を行う。水素プラズマ12の照射条件としては、例えば水素流量100sccm、マイクロ波出力445W、圧力191.95Pa(1.44Torr)、ヒーター温度480℃(基板表面温度400℃)、照射時間10分程度とすることが好ましい。水素プラズマ12処理を行う場合、シリコン層5Aがエッチングされることを防ぐ必要があることから、シリコン層5Aがエッチングされない温度で加熱する方法、シリコン層5A表面にシリコン酸化膜等のエッチング保護膜を設けて処理する方法などを用いることが好ましい。エッチング保護膜を用いた際はダングリングボンド低減処理後にフッ化水素等の薬液でエッチング保護膜を除去することが好ましい。なお、真空チャンバー内で水素プラズマ12処理を行う他にも、大気圧水素プラズマ処理、高圧水蒸気処理などを用いることができる。 (G) In the step of forming the silicon layer 5A, dangling bond reduction processing is performed on at least one of the n-type silicon layer 5An, the i-type silicon layer 5Ai, and the p-type silicon layer 5Ap. For example, hydrogen is preferably used to terminate the dangling bond. Furthermore, as a pretreatment for the dangling bond reduction treatment, heat treatment is preferably performed at a temperature suitable for the polymerization reaction, and particularly preferably heat treatment is performed at a temperature of 420 ° C. to 440 ° C. Here, after laminating the i-type silicon layer 5Ai and before laminating the p-type silicon layer 5Ap, as shown in FIG. 6, the hydrogen plasma 12 is exposed to the dangling bond in the i-type silicon layer 5Ai in the vacuum chamber. Perform reduction processing. The irradiation conditions of the hydrogen plasma 12 may be, for example, a hydrogen flow rate of 100 sccm, a microwave output of 445 W, a pressure of 191.95 Pa (1.44 Torr), a heater temperature of 480 ° C. (substrate surface temperature of 400 ° C.), and an irradiation time of about 10 minutes. preferable. Since it is necessary to prevent the silicon layer 5A from being etched when hydrogen plasma 12 processing is performed, a method of heating at a temperature at which the silicon layer 5A is not etched, an etching protective film such as a silicon oxide film on the surface of the silicon layer 5A. It is preferable to use a method of providing and processing. When the etching protective film is used, it is preferable to remove the etching protective film with a chemical solution such as hydrogen fluoride after the dangling bond reduction treatment. In addition to the hydrogen plasma 12 processing in the vacuum chamber, atmospheric pressure hydrogen plasma processing, high pressure steam processing, or the like can be used.
(チ)次に、図1に示すように、シリコン層5A上に第2電極8を形成する。例えば、ITOの材料となる直径5~20nmのナノ粒子を含む液体をシリコン層5A上にパターン塗布し、膜厚100nm、シート抵抗値<10Ω/sqの第2電極8を形成する。以上により、図1に示す薄膜シリコン太陽電池11Aが製造される。 (H) Next, as shown in FIG. 1, the second electrode 8 is formed on the silicon layer 5A. For example, a liquid containing nanoparticles having a diameter of 5 to 20 nm, which is a material of ITO, is pattern-coated on the silicon layer 5A to form a second electrode 8 having a film thickness of 100 nm and a sheet resistance of <10 Ω / sq. Thus, the thin film silicon solar cell 11A shown in FIG. 1 is manufactured.
 上記工程において、シリコン層5Aの他に、第1電極3及び第2電極8も、液体材料をパターン塗布することにより形成することが好ましい。液体材料をパターン塗布する手法を用いることで、製造設備を簡略化できるからである。また第三の実施形態で詳しく説明するように、電極3の表面の加工がし易くなることで太陽光の取り込み率を向上させることができるからである。塗布方法としては、インクジェット装置、ディスペンサー、マイクロディスペンサー、スリットコーター等の一般的な液滴塗布装置を用いてパターン塗布する方法が挙げられる。ポリシランおよび液体金属材料は酸素と反応して変性するので、一連の工程は酸素が存在しない不活性ガス雰囲気中であることが好ましい。さらに必要に応じて水素などの還元性ガスを混入することが好ましい。 In the above process, in addition to the silicon layer 5A, it is preferable that the first electrode 3 and the second electrode 8 are also formed by applying a pattern of a liquid material. This is because manufacturing equipment can be simplified by using a method of applying a liquid material pattern. Further, as described in detail in the third embodiment, the surface of the electrode 3 can be easily processed, so that it is possible to improve the solar light intake rate. Examples of the application method include a method of applying a pattern using a general droplet application device such as an inkjet device, a dispenser, a micro dispenser, or a slit coater. Since the polysilane and the liquid metal material react with oxygen to denature, the series of steps is preferably in an inert gas atmosphere in the absence of oxygen. Further, it is preferable to mix a reducing gas such as hydrogen as necessary.
 上記工程を実施可能であれば製造装置は特に制限されないが、ロール・ツー・ロール製造装置を用いることが好ましい。薄膜シリコン太陽電池11Aの連続生産が容易になるからである。ロール・ツー・ロール製造装置としては、ロール型ステンレス製の薄膜状の基板を送り出す送り出しユニットと、薄膜シリコン太陽電池を巻き取る巻き取りユニットを備え、送り出しユニットと、巻き取りユニットの間に上記第一の実施形態に係る薄膜シリコン太陽電池の製造方法の各工程に対応する操作を行うユニットをさらに備えるロール・ツー・ロール製造装置(図示せず)を用いることができる。ロール・ツー・ロール製造装置の送り出す送り出しユニットにロール型ステンレス製の薄膜状の基板を取り付け、ロール型ステンレス製の薄膜状の基板を巻き取りながら各ユニットを通過させることで薄膜シリコン太陽電池11Aが連続プロセスで製造される。 Although the manufacturing apparatus is not particularly limited as long as the above steps can be carried out, it is preferable to use a roll-to-roll manufacturing apparatus. This is because continuous production of the thin film silicon solar cell 11A is facilitated. The roll-to-roll manufacturing apparatus includes a delivery unit for delivering a thin film substrate made of a roll type stainless steel, and a winding unit for winding a thin film silicon solar cell, and A roll-to-roll manufacturing apparatus (not shown) further comprising a unit for performing operations corresponding to the steps of the method for manufacturing a thin film silicon solar cell according to one embodiment can be used. A thin film silicon substrate made of a roll type stainless is attached to the delivery unit of the roll-to-roll manufacturing apparatus, and the thin film silicon solar cell 11A is made to pass through each unit while rolling up the thin film substrate made of roll stainless steel. Manufactured in a continuous process.
 第一の実施形態に係る薄膜シリコン太陽電池11Aの製造方法によれば、高価なプラズマCVD装置を使うことなく、ポリシランを含む溶液を低酸素雰囲気下で塗布、乾燥させることで、シリコン層5Aを形成することができる。その他にも金属・金属酸化物なども液体インクで全て必要パターンを塗布することで、プラズマCVD装置を使用する際必要であったレーザーカット工程も不要となり生産効率が向上する。 According to the method of manufacturing the thin film silicon solar cell 11A according to the first embodiment, the silicon layer 5A can be formed by applying and drying a solution containing polysilane under a low oxygen atmosphere without using an expensive plasma CVD apparatus. It can be formed. In addition, by coating all necessary patterns of metal, metal oxide, etc. with liquid ink, the laser cutting process which is necessary when using the plasma CVD apparatus is also unnecessary, and the production efficiency is improved.
 第一の実施形態に係る薄膜シリコン太陽電池11Aの製造方法によれば、ダングリングボンド低減処理を行うことで、ダングリングボンドが低減し、その結果、明暗比が向上し、また明暗比は変わらず光伝導特性が向上する。 According to the method of manufacturing the thin film silicon solar cell 11A according to the first embodiment, the dangling bond is reduced by performing the dangling bond reduction treatment, as a result, the contrast ratio is improved, and the contrast ratio is changed. The photoconductive characteristics are improved.
[第一の実施形態についての実施例]
(1)第一の実施形態について、ダングリングボンド低減処理の前段階としてポリシランを含む溶液に対する熱処理効果をみる実験を行った。一例として、i型シリコン層5Aiを形成する際の焼成温度を330℃、430℃としたときの結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、330℃及び430℃で焼成した場合の両者を比較すると、光伝導度はほぼ同一であったが、330℃で焼成した方が、暗伝導度が大きくなることが分かった。これは430℃で焼成した方が、暗所での伝導性が低いことを示す。以上より、太陽電池特性において暗伝導度の低い方が好ましいことより、焼成温度として430℃が好ましいことが示された。
(2)第一の実施形態について、ダングリングボンド低減処理の効果をみるべく、水素(H)プラズマ処理した場合と、非処理の場合に分けて、電子スピン共鳴(ESR)装置を用いて不対電子量、即ちダングリングボンド密度を測定し、またシリコン層5Aの膜厚を測定した。得られた結果を表2に示す。
Example of the First Embodiment
(1) In the first embodiment, an experiment was conducted to see the heat treatment effect on a solution containing polysilane as a step before dangling bond reduction treatment. As an example, Table 1 summarizes the results when the baking temperature at the time of forming the i-type silicon layer 5Ai is 330 ° C. and 430 ° C.
Figure JPOXMLDOC01-appb-T000001
From Table 1, comparing the cases of firing at 330 ° C. and 430 ° C., it was found that although the photoconductivity was almost the same, the dark conductivity was higher when firing at 330 ° C. This indicates that the conductivity in the dark is lower when baked at 430 ° C. From the above, it is shown that 430 ° C. is preferable as the firing temperature because it is preferable that the dark conductivity is low in solar cell characteristics.
(2) In order to examine the effect of the dangling bond reduction treatment in the first embodiment, the electron spin resonance (ESR) device is used to divide the case of hydrogen (H 2 ) plasma treatment and the case of no treatment. The amount of unpaired electrons, that is, the dangling bond density was measured, and the film thickness of the silicon layer 5A was measured. The obtained results are shown in Table 2.
 表2より、シリコン層5Aに水素プラズマ処理をすることで、膜厚を維持しながら、ダングリングボンドを大幅に低減できることが分かった。 From Table 2, it was found that dangling bonds can be significantly reduced while maintaining the film thickness by subjecting the silicon layer 5A to hydrogen plasma treatment.
(3)参考のため、塗布法により形成されたi型シリコン層と、一般的なCVD法で形成されたi型シリコン層の水素量、ダングリングボンド密度、光伝導度の文献値を表3に示す。塗布法により形成されたi型シリコン層は、一般的なCVD法で形成されたi型シリコン層と比べ、ダングリングボンド密度のオーダーが一桁程度多い。また光伝導度が低い。
Figure JPOXMLDOC01-appb-T000003
(3) For reference, the values of hydrogen, dangling bond density, and photoconductivity of the i-type silicon layer formed by the coating method and the i-type silicon layer formed by the general CVD method are shown in Table 3 Shown in. The i-type silicon layer formed by the application method has an order of dangling bond density more than that of the i-type silicon layer formed by the general CVD method by about one digit. It also has low photoconductivity.
Figure JPOXMLDOC01-appb-T000003
 一方、第一の実施形態によれば、i型シリコン層5Aiに水素を用いてダングリングボンド低減処理を施すことで、CVD法を用いて作製したアモルファスシリコン層と同じオーダーにまでダングリングボンドが減少したことが示された。 On the other hand, according to the first embodiment, by performing dangling bond reduction treatment on the i-type silicon layer 5Ai using hydrogen, the dangling bond is on the same order as the amorphous silicon layer manufactured using the CVD method. It was shown to have decreased.
 次に、第一の実施形態について、シリコン層5Aに対して、水素(H)プラズマ処理もしくは水素(H)アニール処理を行った場合と、非処理の場合に分けて、フーリエ変換型赤外分光(FT-IR)装置を用いて水素結合量を測定した。得られた結果を図27に示す。図27に示すように、水素(H)プラズマ処理することにより、SiH,SiHの吸収波長で吸光度(AU)が増加した。このことより水素(H)プラズマ処理することで、SiH,SiHが増加してダングリングボンドが低減したことが示された。 Next, with regard to the first embodiment, the silicon layer 5A is divided into the case of hydrogen (H 2 ) plasma treatment or hydrogen (H 2 ) annealing treatment and the case of non-treatment, and the Fourier transform type red The amount of hydrogen bonds was measured using an external spectroscopy (FT-IR) device. The obtained result is shown in FIG. As shown in FIG. 27, the hydrogen (H 2 ) plasma treatment increased the absorbance (AU) at the absorption wavelengths of SiH and SiH 3 . This indicates that the hydrogen (H 2 ) plasma treatment increased SiH and SiH 3 and reduced dangling bonds.
 また、電気伝導度評価実験を行った。得られた結果を図28に示す。図28に示すように、非処理の場合に比べ、水素プラズマ処理した場合、光伝導特性が向上し明暗比が3倍向上した。 In addition, an electrical conductivity evaluation experiment was conducted. The obtained result is shown in FIG. As shown in FIG. 28, the photoconductive characteristics were improved and the contrast ratio was improved threefold when hydrogen plasma treatment was performed, as compared with the case of no treatment.
 以上より、ダングリングボンド低減処理を行うことで、ダングリングボンドが低減し、電気伝導度の明暗比が向上することが示された。 From the above, it was shown that by performing the dangling bond reduction treatment, the dangling bonds are reduced and the contrast ratio of the electrical conductivity is improved.
[第二の実施形態に係る薄膜シリコン太陽電池]
 図8(a)に示す第二の実施形態に係る薄膜シリコン太陽電池11Bは、基板1と、基板1上に配置された第1電極3と、第1電極3上に、n型シリコン層5Bn、i型シリコン層5Bi、p型シリコン層5Bpが積層されたシリコン層5Bと、シリコン層5B上に配置された第2電極8とを有する。p型シリコン層5Bpの第2電極8表面に周期的に凹部5Bph1、5Bph2、5Bph3、5Bph4、5Bph5、5Bph6、5Bph7を備える。ここでは、p型シリコン層5Bpの第2電極8表面に周期的に凹部5Bph1…5Bph7を備えることとしたが、電極3のn型シリコン層5Bn表面及びp型シリコン層5Bpの第2電極8表面の少なくともいずれか一方に、周期的に凹部を備えればよい。なお、図示を省略しているが電極3と第2電極8は電気的に接続されている。
[Thin Film Silicon Solar Cell According to Second Embodiment]
A thin film silicon solar cell 11B according to the second embodiment shown in FIG. 8A includes a substrate 1, a first electrode 3 disposed on the substrate 1, and an n-type silicon layer 5Bn on the first electrode 3. A silicon layer 5B in which an i-type silicon layer 5Bi and a p-type silicon layer 5Bp are stacked, and a second electrode 8 disposed on the silicon layer 5B. Recesses 5Bph1, 5Bph2, 5Bph3, 5Bph4, 5Bph5, 5Bph6, 5Bph7 are periodically provided on the surface of the second electrode 8 of the p-type silicon layer 5Bp. Here, the concave portions 5Bph1 to 5Bph7 are periodically provided on the surface of the second electrode 8 of the p-type silicon layer 5Bp, but the surface of the n-type silicon layer 5Bn of the electrode 3 and the surface of the second electrode 8 of the p-type silicon layer 5Bp The concave portion may be periodically provided on at least one of the two. In addition, although illustration is abbreviate | omitted, the electrode 3 and the 2nd electrode 8 are electrically connected.
 ここで、「周期」とは、図8(a)に示すように、隣り合う凹部5Bph2、5Bph3の左端間の距離Bをいう。凹部5Bph1…5Bph7のそれぞれの幅Aと深さCは一定である。凹部5Bph1…5Bph7の深さCを100nmとしたときの好ましい周期は0.1μm~1.0μm、より好ましくは0.1~0.8μmである。 Here, as shown in FIG. 8A, the “period” refers to the distance B between the left ends of adjacent concave portions 5Bph2 and 5Bph3. The width A and the depth C of each of the concave portions 5Bph1 to 5Bph7 are constant. The preferable period when the depth C of the concave portions 5Bph1 to 5Bph7 is 100 nm is 0.1 μm to 1.0 μm, more preferably 0.1 to 0.8 μm.
 なお、第二の実施形態に係る薄膜シリコン太陽電池の長手方向に切断して得られる断面概略図は、図8(a)、図12(a)および図13(a)は同様である。 In addition, FIG. 8 (a), FIG. 12 (a), and FIG. 13 (a) are the same as that of the cross-sectional schematic obtained by cut | disconnecting to the longitudinal direction of the thin film silicon solar cell which concerns on 2nd embodiment.
[第二の実施形態に係る薄膜シリコン太陽電池の製造方法]
 第一の実施形態との相違点を中心に説明する。
[Method of Manufacturing Thin Film Silicon Solar Cell According to Second Embodiment]
The differences from the first embodiment will be mainly described.
(イ)第一の実施形態と同様にして、図1~図7の工程に従い、図9に示すように、基板1上に電極3と、シリコン層5Bとを設ける。 (A) As in the first embodiment, according to the steps of FIGS. 1 to 7, as shown in FIG. 9, an electrode 3 and a silicon layer 5B are provided on the substrate 1.
(ロ)図10に示すようにp型シリコン層5Bpに凹部5Bph1…5Bph7を設ける。例えばフォトリソグラフィー法等を用いることにより、凹部5Bph1…5Bph7を設けることができる。 (Ii) As shown in FIG. 10, concave portions 5Bph1 to 5Bph7 are provided in the p-type silicon layer 5Bp. For example, concave portions 5Bph1 to 5Bph7 can be provided by using a photolithography method or the like.
(ハ)図11に示すように、第2電極8を設ける。以上により図8に示す薄膜シリコン太陽電池11Bが製造される。 (Iii) As shown in FIG. 11, the second electrode 8 is provided. Thus, the thin film silicon solar cell 11B shown in FIG. 8 is manufactured.
 第二の実施形態に係る薄膜シリコン太陽電池11Bの製造方法によれば、p型シリコン層5Bpの表面に凹部5Bph1…5Bph7を設けたことで、薄膜シリコン太陽電池11B内に入りこんだ太陽光を乱反射させ薄膜シリコン太陽電池11B内に閉じ込めることができる。その結果、太陽光を効率的に取り込めるので発電効率が増加する。 According to the method of manufacturing the thin film silicon solar cell 11B according to the second embodiment, the concave portions 5Bph1 to 5Bph7 are provided on the surface of the p-type silicon layer 5Bp to diffusely reflect the sunlight which has entered the thin film silicon solar cell 11B. Can be confined within the thin film silicon solar cell 11B. As a result, power generation efficiency is increased because sunlight can be efficiently taken.
[第二の実施形態の実施例]
 第二の実施形態について、凹部の周期が1μmの波長の光の吸収率に与える影響について実験を行った。なお、1μmの波長の光を選んだ理由は太陽光の全波長と近似しうると考えたからである。
Example of Second Embodiment
In the second embodiment, an experiment was conducted on the influence of the recess period on the absorptivity of light having a wavelength of 1 μm. In addition, the reason for choosing the light of a wavelength of 1 μm is because it is considered that it can be approximated to all the wavelengths of sunlight.
 図29、図30、図31はそれぞれ、電極3のn型シリコン層5Bn側表面に凹部を周期的に形成した場合、p型シリコン層5Bpの第2電極8側表面に凹部を周期的に形成した場合、電極3のn型シリコン層5Bn側表面とp型シリコン層5Bpの第2電極8側表面に凹部を周期的に形成した場合の、凹部の周期に対する波長1μmの光吸収率の変化を示す。図中の点線は凹部を周期的に形成しなかった場合の吸収率(薄膜時の値)を示す。一連の実験において凹部の深さCは100nmとした。 In FIG. 29, FIG. 30, and FIG. 31, when the recess is periodically formed on the n-type silicon layer 5Bn side surface of the electrode 3, the recess is periodically formed on the second electrode 8 side surface of the p-type silicon layer 5Bp. In this case, when the recesses are periodically formed on the n-type silicon layer 5Bn side surface of the electrode 3 and the second electrode 8 side surface of the p-type silicon layer 5Bp, the change in light absorptivity at 1 .mu. Show. The dotted line in the figure shows the absorptivity (value at the time of thin film) when the recess is not formed periodically. The depth C of the recess was 100 nm in a series of experiments.
 図29より、周期を0.3μmよりも長く0.7μmよりも短くすることで吸収率が向上することが分かった。特に周期を0.4よりも長く0.6よりも短くすることで特に吸収率が向上することが分かった。図30より周期を0.3μmよりも長く0.5μmよりも短くすることで吸収率が向上することが分かった。また図29と図30を比較した場合、図29の場合のほうが吸収率が高くなることが分かった。 From FIG. 29, it was found that the absorptivity is improved by setting the period to be longer than 0.3 μm and shorter than 0.7 μm. In particular, it was found that the absorptivity is particularly improved by setting the period to be longer than 0.4 and shorter than 0.6. It is understood from FIG. 30 that the absorptivity is improved by setting the cycle to be longer than 0.3 μm and shorter than 0.5 μm. Moreover, when FIG. 29 and FIG. 30 were compared, it turned out that the absorptivity becomes higher in the case of FIG.
 図31より、周期が0.3μmよりも長く0.5μmよりも短い場合、周期が0.5μmよりも長く0.8μmよりも短い場合に吸収率が向上することが分かった。即ち、周期が0.5μmのときに吸収率が低下した理由は定かではないが、概して周期が0.3μmよりも長く0.8μmよりも短いときに吸収率が向上することが分かった。特に0.5μmよりも長く0.7μmよりも短いときに吸収率が向上することが分かった。 From FIG. 31, it was found that when the period is longer than 0.3 μm and shorter than 0.5 μm, the absorptivity is improved when the period is longer than 0.5 μm and shorter than 0.8 μm. That is, it is not clear why the absorptivity decreased when the period was 0.5 μm, but it was found that the absorptivity improved when the period was longer than 0.3 μm and shorter than 0.8 μm. In particular, it has been found that the absorptivity is improved when it is longer than 0.5 μm and shorter than 0.7 μm.
 図32は凹部の周期と太陽光の吸収率の積分値との関係を示す。図32に示すように、凹部の周期を0.1μm~0.8μmとすることで、凹部を設けない場合よりも、太陽光の吸収率が向上することが分かった。 FIG. 32 shows the relationship between the period of the recesses and the integral value of the absorptivity of sunlight. As shown in FIG. 32, it was found that by setting the cycle of the recesses to 0.1 μm to 0.8 μm, the absorptivity of sunlight is improved as compared with the case where the recesses are not provided.
[第三の実施形態に係る薄膜シリコン太陽電池]
 図14(a)に示す第三の実施形態に係る薄膜シリコン太陽電池11Cは、基板1と、基板1上に配置された第1電極3と、第1電極3上に配置された、n型シリコン層5C1n、i型シリコン層5C1i、p型シリコン層5C1pが積層された多結晶シリコン層5C1と、バッファー層9を介して多結晶シリコン層5C1上に、n型シリコン層5C2n、i型シリコン層5C2i、p型シリコン層5C2pが積層されたアモルファスシリコン層5C2と、アモルファスシリコン層5C2上に配置された第2電極8とを有する。p型シリコン層5C2pの第2電極8側表面に周期的に凹部5C2ph1、5C2ph2、5C2ph3、5C2ph4、5C2ph5、5C2ph6、5C2ph7を備える。また第1電極3のn型シリコン層5Bn側表面に凹部3h1、3h2、3h3、3h4、3h5、3h6、3h7を周期的に備える。なお、図示を省略しているが第1電極3と第2電極8は電気的に接続されている。
[Thin Film Silicon Solar Cell According to Third Embodiment]
The thin film silicon solar cell 11C according to the third embodiment shown in FIG. 14 (a) is a substrate 1, a first electrode 3 disposed on the substrate 1, and an n-type disposed on the first electrode 3. N-type silicon layer 5C2n, i-type silicon layer on polycrystalline silicon layer 5C1 with polysilicon layer 5C1n, i-type silicon layer 5C1i, p-type silicon layer 5C1p stacked, and buffer layer 9 It has an amorphous silicon layer 5C2 in which 5C2i and p-type silicon layer 5C2p are stacked, and a second electrode 8 disposed on the amorphous silicon layer 5C2. Recesses 5C2ph1, 5C2ph2, 5C2ph3, 5C2ph4, 5C2ph5, 5C2ph6, 5C2ph7 are periodically provided on the surface of the p-type silicon layer 5C2p on the second electrode 8 side. Also, recesses 3h1, 3h2, 3h3, 3h4, 3h5, 3h6, 3h7 are periodically provided on the surface of the first electrode 3 on the n-type silicon layer 5Bn side. Although not shown, the first electrode 3 and the second electrode 8 are electrically connected.
[第三の実施形態に係る薄膜シリコン太陽電池の製造方法]
 第一、第二の実施形態との相違点を中心に説明する。
[Method of Manufacturing Thin Film Silicon Solar Cell According to Third Embodiment]
The differences from the first and second embodiments will be mainly described.
(イ)第一の実施形態と同様にして、図2,図3の工程に従い、図15に示すように、基板1上に電極3を形成する。電極3の表面の加工がし易くなる観点から液体材料をパターン塗布する手法を用いることが好ましい。 (A) As in the first embodiment, the electrode 3 is formed on the substrate 1 as shown in FIG. 15 in accordance with the steps of FIGS. From the viewpoint of facilitating processing of the surface of the electrode 3, it is preferable to use a method of applying a pattern of a liquid material.
(ロ)図16に示すように電極3に凹部3h1…3h7を設ける。例えばフォトリソグラフィー法等を用いることにより、凹部3h1…3h7を設けることができる。 (Ii) As shown in FIG. 16, the electrode 3 is provided with concave portions 3h1 to 3h7. For example, the concave portions 3h1 to 3h7 can be provided by using a photolithography method or the like.
(ハ)図4の工程と同様にして、図17に示すようにn型シリコン層5C1nを形成する。 (Iii) In the same manner as in the process of FIG. 4, the n-type silicon layer 5C1n is formed as shown in FIG.
(ニ)図5の工程と同様にして、図18に示すようにi型シリコン層5C1iを形成する。 (D) Similar to the process of FIG. 5, the i-type silicon layer 5C1i is formed as shown in FIG.
(ホ)図19に示すようにキセノン(Xe)フラッシュランプ14a,14b,14cにより、半値幅1ms以下の光をi型シリコン層5C1iに対して光を照射し、i型シリコン層5C1iを多結晶化する。複数あるシリコン層のうち、電極側最下層のシリコン層を積層した後に、電極側最下層のシリコン層を多結晶化することが好ましい。最上層のシリコン層を多結晶化するとそれよりも下層のシリコン層も多結晶化してしまい、アモルファスシリコン層と多結晶化シリコン層を併せもつことが困難になるからである。i型シリコン層を多結晶化する手段として、グリーンレーザーアニールを用いてもよい。 (E) As shown in FIG. 19, i-type silicon layer 5C1i is irradiated with light having a half width of 1 ms or less by xenon (Xe) flash lamps 14a, 14b and 14c, and i-type silicon layer 5C1i is polycrystalline. Turn Among the plurality of silicon layers, it is preferable to polycrystallize the electrode layer lowermost layer after laminating the electrode layer lowermost layer. When the uppermost silicon layer is polycrystallized, the lower silicon layer is also polycrystallized, and it becomes difficult to combine the amorphous silicon layer and the polycrystallized silicon layer. Green laser annealing may be used as a means for polycrystallizing the i-type silicon layer.
(ヘ)図6の工程と同様にして、図20に示すようにi型シリコン層5C1iに水素プラズマ12を照射してダングリングボンド低減処理を行う。 (F) In the same manner as in the process of FIG. 6, the dangling bond reduction process is performed by irradiating the i-type silicon layer 5C1i with hydrogen plasma 12 as shown in FIG.
(ト)図7の工程と同様にして、図21に示すようにp型シリコン層5C1pを設ける。 (G) In the same manner as the process of FIG. 7, the p-type silicon layer 5C1p is provided as shown in FIG.
(チ)図22に示すようにバッファ-層9を設けた後、図4~図7の工程と同様にして、図23に示すようにアモルファスシリコン層5C2を設ける。 (H) After the buffer layer 9 is provided as shown in FIG. 22, an amorphous silicon layer 5C2 is provided as shown in FIG. 23 in the same manner as in the steps shown in FIGS.
(リ)図24に示すように凹部5C2ph1…5C2ph7を形成する。 (I) As shown in FIG. 24, the recesses 5C2ph1... 5C2ph7 are formed.
(ヌ)図11の工程と同様にして、図25に示すように、第2電極8を形成する。 (Ii) The second electrode 8 is formed as shown in FIG. 25 in the same manner as the process of FIG.
 以上により図14に示す薄膜シリコン太陽電池11Cが製造される。 Thus, the thin film silicon solar cell 11C shown in FIG. 14 is manufactured.
 第一、第二の実施形態に係る薄膜シリコン太陽電池11A,11Bにおいては、シリコン層5A、5Bを1層としたが、第1電極3と第2電極8との間にシリコン層を複数形成してもよい。例えば図14(a)の第三の実施形態に係る薄膜シリコン太陽電池11Cのように、多結晶シリコン層5C1と、アモルファスシリコン層5C2とを備える構成にしてもよい。i型シリコン層の一つをi型アモルファスシリコン層とし、他のi型シリコン層をi型多結晶化シリコン層とすることで、互いの層が光の吸収波長を補い合うことで、光の吸収波長の幅が広がり、光の吸収効率が向上するからである。製造プロセスが容易である観点からは基板1側最下層のi型シリコン層5C1iをi型多結晶化シリコン層とすること好ましい。 In the thin film silicon solar cells 11A and 11B according to the first and second embodiments, the silicon layers 5A and 5B are one layer, but a plurality of silicon layers are formed between the first electrode 3 and the second electrode 8 You may For example, as in a thin film silicon solar cell 11C according to the third embodiment of FIG. 14 (a), a polycrystalline silicon layer 5C1 and an amorphous silicon layer 5C2 may be provided. By using one of the i-type silicon layers as an i-type amorphous silicon layer and the other i-type silicon layer as an i-type polycrystallized silicon layer, the mutual absorption of light is absorbed by the layers mutually absorbing light. This is because the width of the wavelength is broadened and the light absorption efficiency is improved. It is preferable to use the i-type silicon layer 5C1i of the lowermost layer on the substrate 1 side as the i-type polycrystalline silicon layer from the viewpoint of easy manufacturing process.
 第三の実施形態に係る薄膜シリコン太陽電池11Cの製造方法によれば、p型シリコン層5C2p表面に加えて、第1電極3表面にも凹部3h1…3h7(言い換えると、n型多結晶シリコン層の表面に凸部5C1np1…5C1np7)を設けたことで、第二の実施形態よりもより効率的に、薄膜シリコン太陽電池11C内に入りこんだ太陽光を乱反射させ薄膜シリコン太陽電池11C内に閉じ込めることができる。その結果、太陽光を効率的に取り込めるので発電効率が増加する。 According to the method of manufacturing the thin film silicon solar cell 11C according to the third embodiment, in addition to the surface of the p-type silicon layer 5C2p, the recesses 3h1 to 3h7 are also formed on the surface of the first electrode 3 (in other words, the n-type polycrystalline silicon layer By providing convex portions 5C1 np1 to 5 C1 np7) on the surface of the thin film silicon solar cell 11C more efficiently than in the second embodiment, irregularly reflecting the sunlight that has entered the thin film silicon solar cell 11C and confining it in the thin film silicon solar cell 11C. Can. As a result, power generation efficiency is increased because sunlight can be efficiently taken.
(その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although the present invention was described by the embodiment, it should not be understood that the statement and the drawings which form a part of this disclosure limit the present invention. Various alternative embodiments, examples and operation techniques will be apparent to those skilled in the art from this disclosure.
 例えば、第二の実施形態に係る薄膜シリコン太陽電池11Bにおいて、凹部5Bph1…5Bph7は、発明の理解を容易にするため、図8(b)に示すように帯状に形成した。しかし、薄膜シリコン太陽電池11Bの長手平行に直行して入射する光も効率的に取り込む観点からは、図12(b)の第二の実施形態の変形例1に示すように、例えば市松模様状に長手方向、幅方向に等間隔に配置することが好ましい。その際、凹部に形成される第2電極8の凸部8Bpの形状は、四角柱状等の多角柱に限らず、図13(b)に示すように円柱状であっても構わない。また凸部8Bp1…8Bp7同士が接し合う必要はなく図13(b)の第二の実施形態の変形例2に示すように等間隔に離間して散点状に配置されても構わない。 For example, in the thin film silicon solar cell 11B according to the second embodiment, the concave portions 5Bph1 to 5Bph7 are formed in a band shape as shown in FIG. 8B in order to facilitate understanding of the invention. However, as shown in the first modification of the second embodiment of FIG. 12 (b), for example, a checkered pattern, from the viewpoint of efficiently taking in light incident perpendicularly to the longitudinal direction of the thin film silicon solar cell 11B. It is preferable to arrange at equal intervals in the longitudinal direction and the width direction. At this time, the shape of the convex portion 8Bp of the second electrode 8 formed in the concave portion is not limited to a polygonal prism such as a square prism, and may be a cylindrical shape as shown in FIG. 13 (b). Further, the convex portions 8Bp1... 8Bp7 do not need to be in contact with each other, and they may be spaced apart at equal intervals as shown in the second modification of the second embodiment of FIG.
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 本出願は、同出願人により先にされた日本国特許出願、すなわち、特願2010-140863号(出願日2010年6月21日)に基づく優先権主張を伴うものであって、これらの明細書の内容を参照して本発明の一部としてここに組み込むものとする。
Thus, it is a matter of course that the present invention includes various embodiments and the like which are not described herein. Accordingly, the technical scope of the present invention is defined only by the invention-specifying matters according to the scope of claims appropriate from the above description.
This application is accompanied by a priority claim based on the Japanese patent application filed earlier by the same applicant, ie, Japanese Patent Application No. 2010-140863 (filing date: June 21, 2010), and these specifications The contents of which are incorporated herein by reference as part of the present invention.
 本発明によれば、シリコン層のダングリングボンドの増加を抑えつつ、簡易に製造することができる塗布法を用いた薄膜シリコン太陽電池の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the thin film silicon solar cell using the coating method which can be manufactured simply is provided, suppressing the increase in the dangling bond of a silicon layer.
1…基板、
3…第1電極、
5A、5B…シリコン層、
5C1…多結晶シリコン層、
5C2…アモルファスシリコン層、
5An、5Bn、5C1n、5C2n…n型シリコン層、
5Ai、5Bi、5C1i、5C2i…i型シリコン層、
5Ap、5Bp、5C1p、5C2p…p型シリコン層、
8…第2電極、
9…バッファー層、
11A、11B、11C…薄膜シリコン太陽電池、
12…水素プラズマ、
14a、14b、14c…キセノン(Xe)フラッシュランプ、
1 ... board,
3 ... 1st electrode,
5A, 5B ... silicon layer,
5C1 ... Polycrystalline silicon layer,
5C2 ... amorphous silicon layer,
5 An, 5 Bn, 5 C 1 n, 5 C 2 n ... n-type silicon layer,
5Ai, 5Bi, 5C1i, 5C2i ... i-type silicon layer,
5 Ap, 5 Bp, 5 C 1 p, 5 C 2 p: p-type silicon layer,
8 ... second electrode,
9: Buffer layer,
11A, 11B, 11C: thin film silicon solar cells,
12 ... hydrogen plasma,
14a, 14b, 14c ... xenon (Xe) flash lamp,

Claims (14)

  1.  基板上に第1電極を形成する工程と、
     ポリシランを含む溶液を不活性ガス雰囲気下でパターン塗付し乾燥する手法を用いて、前記第1電極上にn型シリコン層、i型シリコン層、p型シリコン層を積層してシリコン層を形成する工程と、
     前記シリコン層上に第2電極を形成する工程とを含み、
     前記シリコン層を形成する工程において、前記n型シリコン層、前記i型シリコン層、前記p型シリコン層の少なくともいずれか1層にダングリングボンド低減処理を行うことを特徴とする薄膜シリコン太陽電池の製造方法。
    Forming a first electrode on the substrate;
    A silicon layer is formed by laminating an n-type silicon layer, an i-type silicon layer and a p-type silicon layer on the first electrode using a method of pattern-coating and drying a solution containing polysilane in an inert gas atmosphere. The process to
    Forming a second electrode on the silicon layer;
    In the step of forming the silicon layer, a dangling bond reduction process is performed on at least one of the n-type silicon layer, the i-type silicon layer, and the p-type silicon layer. Production method.
  2.  液体材料をパターン塗布する手法を用いて、前記第1及び第2電極を形成することを特徴とする請求項1に記載の薄膜シリコン太陽電池の製造方法。 The method for manufacturing a thin film silicon solar cell according to claim 1, wherein the first and second electrodes are formed using a method of pattern application of a liquid material.
  3.  前記第1電極のn型シリコン層表面及び前記p型シリコン層の表面の少なくともいずれか一方に、凹部を周期的に形成する工程をさらに含むことを特徴とする請求項2に記載の薄膜シリコン太陽電池の製造方法。 The thin film silicon solar according to claim 2, further comprising the step of periodically forming a recess on at least one of the surface of the n-type silicon layer of the first electrode and the surface of the p-type silicon layer. How to make a battery.
  4.  前記凹部を0.1μm~0.8μmの周期で形成することを特徴とする請求項3に記載の薄膜シリコン太陽電池の製造方法。 The method for producing a thin film silicon solar cell according to claim 3, wherein the concave portion is formed in a cycle of 0.1 μm to 0.8 μm.
  5.  前記ダングリングボンド低減処理を行う工程において、水素を用いてダングリングボンドを終端化させることを特徴とする請求項1に記載の薄膜シリコン太陽電池の製造方法。 The method for manufacturing a thin film silicon solar cell according to claim 1, wherein the dangling bond is terminated using hydrogen in the step of performing the dangling bond reduction treatment.
  6.  前記ダングリングボンド低減処理を行う工程において、所定の温度で焼成を行った後に水素を用いてダングリングボンドを終端化させることを特徴とする請求項1に記載の薄膜シリコン太陽電池の製造方法。 The method for manufacturing a thin film silicon solar cell according to claim 1, wherein in the step of performing the dangling bond reduction treatment, the dangling bond is terminated using hydrogen after being fired at a predetermined temperature.
  7.  前記焼成を行う温度は420℃~440℃であることを特徴とする請求項6に記載の薄膜シリコン太陽電池の製造方法。 The method for producing a thin film silicon solar cell according to claim 6, wherein a temperature at which the firing is performed is 420 ° C to 440 ° C.
  8.  前記電極と透明導電膜との間に前記シリコン層を複数形成することを特徴とする請求項1~6のいずれか1項に記載の薄膜シリコン太陽電池の製造方法。 The method for manufacturing a thin film silicon solar cell according to any one of claims 1 to 6, wherein a plurality of the silicon layers are formed between the electrodes and the transparent conductive film.
  9.  前記基板としてステンレス製の薄板を用いることを特徴とする請求項1~7のいずれか1項に記載の薄膜シリコン太陽電池の製造方法。 The method for producing a thin film silicon solar cell according to any one of claims 1 to 7, wherein a thin plate made of stainless steel is used as the substrate.
  10.  基板と、
     前記基板上に配置された第1電極と、
     ポリシランを含む溶液を不活性ガス雰囲気下でパターン塗付し乾燥する手法を用いて、前記第1電極上にn型シリコン層、i型シリコン層、p型シリコン層が積層されたシリコン層と、
     前記シリコン層上に配置された第2電極とを有し、
     前記第1電極の前記n型シリコン層表面及び前記p型シリコン層の表面の少なくともいずれか一方に、周期的に凹部を備え、
     前記n型シリコン層、前記i型シリコン層、前記p型シリコン層の少なくともいずれか1層は、水素を用いてダングリングボンドが終端化されていることを特徴とする薄膜シリコン太陽電池。
    A substrate,
    A first electrode disposed on the substrate;
    A silicon layer in which an n-type silicon layer, an i-type silicon layer, and a p-type silicon layer are stacked on the first electrode using a method of pattern-coating and drying a solution containing polysilane in an inert gas atmosphere;
    And a second electrode disposed on the silicon layer,
    A recess is periodically provided on at least one of the n-type silicon layer surface of the first electrode and the surface of the p-type silicon layer,
    A thin film silicon solar cell characterized in that at least one of the n-type silicon layer, the i-type silicon layer, and the p-type silicon layer is terminated with dangling bonds using hydrogen.
  11.  前記凹部を0.1μm~0.8μmの周期で備えることを特徴とする請求項10に記載の薄膜シリコン太陽電池。 The thin film silicon solar cell according to claim 10, wherein the concave portion is provided in a cycle of 0.1 μm to 0.8 μm.
  12.  前記第1電極と前記第2電極との間に前記シリコン層を複数形成することを特徴とする請求項10に記載の薄膜シリコン太陽電池。 The thin film silicon solar cell according to claim 10, wherein a plurality of the silicon layers are formed between the first electrode and the second electrode.
  13.  前記n型シリコン層、前記i型シリコン層、前記p型シリコン層の少なくともいずれか1層は、所定の温度で焼成が行われた後に水素を用いてダングリングボンドが終端化されていることを特徴とする請求項10に記載の薄膜シリコン太陽電池。 At least one of the n-type silicon layer, the i-type silicon layer, and the p-type silicon layer has a dangling bond terminated with hydrogen after being fired at a predetermined temperature. The thin film silicon solar cell according to claim 10, characterized in that
  14.  前記焼成を行う温度は420℃~440℃であることを特徴とする請求項13に記載の薄膜シリコン太陽電池。 The thin film silicon solar cell according to claim 13, wherein a temperature at which the firing is performed is 420 属 C to 440 属 C.
PCT/JP2011/064148 2010-06-21 2011-06-21 Thin film silicon solar cell and process for production thereof WO2011162247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010140863 2010-06-21
JP2010-140863 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011162247A1 true WO2011162247A1 (en) 2011-12-29

Family

ID=45371430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064148 WO2011162247A1 (en) 2010-06-21 2011-06-21 Thin film silicon solar cell and process for production thereof

Country Status (3)

Country Link
JP (1) JP2012028754A (en)
TW (1) TW201214740A (en)
WO (1) WO2011162247A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114182B2 (en) * 2018-09-25 2022-08-08 株式会社ディスコ A method of forming an optical thin film by attaching it to an adherend

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237927A (en) * 1995-12-26 1997-09-09 Toshiba Corp Semiconductor film forming method and solar cell manufacturing method
WO2000059044A1 (en) * 1999-03-30 2000-10-05 Seiko Epson Corporation Method of manufacturing solar cell
JP2004186320A (en) * 2002-12-02 2004-07-02 Jsr Corp Composition for forming silicon film, and solar battery
JP2010067803A (en) * 2008-09-11 2010-03-25 Seiko Epson Corp Photoelectric conversion device, electronic apparatus, method for manufacturing photoelectric conversion device, and method for manufacturing electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298084A (en) * 2002-03-29 2003-10-17 Tdk Corp Solar cell and its fabricating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237927A (en) * 1995-12-26 1997-09-09 Toshiba Corp Semiconductor film forming method and solar cell manufacturing method
WO2000059044A1 (en) * 1999-03-30 2000-10-05 Seiko Epson Corporation Method of manufacturing solar cell
JP2004186320A (en) * 2002-12-02 2004-07-02 Jsr Corp Composition for forming silicon film, and solar battery
JP2010067803A (en) * 2008-09-11 2010-03-25 Seiko Epson Corp Photoelectric conversion device, electronic apparatus, method for manufacturing photoelectric conversion device, and method for manufacturing electronic apparatus

Also Published As

Publication number Publication date
JP2012028754A (en) 2012-02-09
TW201214740A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
US7838400B2 (en) Rapid thermal oxide passivated solar cell with improved junction
JP2018011066A (en) Method for forming diffusion regions in silicon substrate
US20140000686A1 (en) Film stack and process design for back passivated solar cells and laser opening of contact
Suhail et al. Improved efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment
WO2011145731A1 (en) Solar cell element and method for producing the same, and solar cell module
KR20180116460A (en) Solar cell, method for manufacturing solar cell, and solar cell module
KR20090088860A (en) Method of manufacturing crystalline silicon solar cells with improved surface passivation
CN109346536A (en) A kind of contact passivation crystal silicon solar energy battery structure and preparation method
CN114335250B (en) Preparation method and application method of passivation contact structure
EP3151286A1 (en) Solar cell element, method for manufacturing same and solar cell module
CN112201700B (en) Solar cell and preparation method thereof
US20110136285A1 (en) Method for manufacturing stacked film and solar cell
US20110183504A1 (en) Methods of forming a dual-doped emitter on a substrate with an inline diffusion apparatus
CN111525037A (en) Preparation method of perovskite/N type TOPCon/perovskite laminated solar cell and cell
JP5884911B2 (en) Manufacturing method of solar cell
WO2011162247A1 (en) Thin film silicon solar cell and process for production thereof
JP2018147910A (en) High efficiency solar cell and method of manufacturing the same
WO2010100947A1 (en) Solar cell and method for manufacturing solar cell
CN109041583B (en) Solar cell element and solar cell module
JP2006344883A (en) Method of manufacturing solar cell
JP2004281569A (en) Method for producing solar cell element
US20140130860A1 (en) Method for forming alumina film and solar cell element
WO2013099805A1 (en) Method for manufacturing solar cell
JP5871996B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2015198978A1 (en) Photoelectric conversion device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798131

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798131

Country of ref document: EP

Kind code of ref document: A1