WO2011162218A1 - Laminate of ceramic insulation layer and metal layer, and method for producing laminate - Google Patents

Laminate of ceramic insulation layer and metal layer, and method for producing laminate Download PDF

Info

Publication number
WO2011162218A1
WO2011162218A1 PCT/JP2011/064083 JP2011064083W WO2011162218A1 WO 2011162218 A1 WO2011162218 A1 WO 2011162218A1 JP 2011064083 W JP2011064083 W JP 2011064083W WO 2011162218 A1 WO2011162218 A1 WO 2011162218A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
ceramic insulating
metal layer
laminate
Prior art date
Application number
PCT/JP2011/064083
Other languages
French (fr)
Japanese (ja)
Inventor
直彦 阿部
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2011162218A1 publication Critical patent/WO2011162218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors

Definitions

  • the laminated body of the ceramic insulating layer and the metal layer is an electronic circuit forming material for forming various electronic circuits including a capacitor circuit or a transistor circuit on a printed wiring board or a semiconductor substrate, or a capacitor or a transistor. It can be suitably used as an electronic component forming material for forming various electronic components.
  • electronic components such as capacitors and resistors are formed on the inner layer of a multilayer wiring board by a wiring pattern or the like at the manufacturing stage of the printed wiring board.
  • electronic components such as capacitors can be arranged directly under active elements such as ICs, and the wiring length between electronic components can be shortened to the limit and wiring can be simplified. It becomes possible. For this reason, increase in parasitic resistance can be suppressed, signals can be transmitted and received between components at higher speed, and generation of heat generation, unnecessary radiation, crosstalk, and the like can be suppressed.
  • the printed wiring board can be further reduced in thickness and thickness. Therefore, it is considered that the demand for such a printed wiring board with built-in electronic components will further increase in the future in the realization of portable electronic devices and the like that require further advanced processing.
  • Patent Document 1 and Patent Document 2 as one of the circuit forming materials, have an insulating layer or a dielectric layer on a metal foil as a conductive layer.
  • Capacitor circuit forming materials have been proposed that have a basic structure of laminated ceramic insulating layers.
  • the capacitance of the capacitor increases as the dielectric constant of the dielectric layer increases. Furthermore, when the electrode area is the same, the capacitance becomes larger as the distance between the electrodes is shorter. That is, in order to obtain a capacitor having a large capacitance, a laminate of a ceramic insulating layer and a metal layer in which a ceramic insulating layer and a metal layer having a high dielectric constant are stacked is required. Further, along with miniaturization of semiconductor integrated circuits, miniaturization of transistor circuits and thinning of gate insulating films are required. Therefore, it is required to form a ceramic insulating layer used as a dielectric layer or an insulating layer thin on a conductive layer and in a wide area.
  • sol-gel method electrophoretic electrodeposition, MOCVD method, sputtering deposition and the like have been adopted for forming the ceramic insulating layer.
  • sol-gel method a high temperature is applied to the metal layer as a base material during firing, and the metal layer is oxidized to cause deterioration of the base material, or the constituent metal of the metal layer diffuses into the ceramic insulating layer. As a result, the insulating property is lowered, and the reliability is sometimes lowered.
  • the metal material forming the conductive layer has low electrical resistivity and heat resistance. It was necessary to select a material that can withstand a high temperature process. In other words, from the viewpoint of electrical resistivity, there is a case where copper cannot be adopted when it is necessary to go through a high temperature process even though copper is superior.
  • the constituent material of the metal layer used as the base material can be selected as appropriate regardless of the method of forming the ceramic insulating layer. There has been a demand for improvement in production yield by preventing a decrease in insulating properties of the insulating layer.
  • the present inventors can appropriately select a metal material for forming a conductive layer regardless of a method for forming a ceramic insulating layer, and obtain a capacitor circuit having stable capacitor characteristics.
  • the present inventors have devised the following invention of a laminate of a ceramic insulating layer and a metal layer and a method of manufacturing the laminate, which can improve the production yield and obtain a highly reliable circuit forming material. .
  • a laminate of a ceramic insulating layer and a metal layer according to the present invention is a laminate of a ceramic insulating layer and a metal layer, and the metal layer has a surface on the side where the ceramic insulating layer is provided. Further, a protective layer made of a silicon compound having a layer thickness of 5 nm to 100 nm is provided.
  • the protective layer is preferably made of an amorphous silicon compound.
  • the method for producing a laminate of a ceramic insulating layer and a metal layer according to the present invention includes a protective layer forming step of forming a protective layer made of a silicon compound having a layer thickness of 5 nm to 100 nm on the upper surface of the metal layer, And a ceramic insulating layer forming step of forming the ceramic insulating layer on the surface of the protective layer.
  • a protective layer made of a silicon compound having a layer thickness of 5 nm to 100 nm is provided on the side of the metal layer on which the ceramic insulating layer is provided.
  • the ceramic insulating layer is formed on the upper surface of the metal layer through a high-temperature process such as firing in the course of manufacturing by various methods such as a sol-gel method, a sputtering method, a CVD method, and an electrophoretic electrodeposition method.
  • the oxidation of the metal layer can be extremely effectively prevented, the decrease in the conductivity of the metal layer as the conductive layer and the deterioration of the mechanical characteristics can be prevented. Adhesion with the system insulating layer is improved.
  • the protective layer acts as a barrier, preventing the metal constituting the metal layer from precipitating and diffusing into the ceramic insulating layer, thereby reducing the insulating properties of the ceramic insulating layer. And the deterioration of dielectric characteristics can be prevented, and the laminate can be provided as a highly reliable electronic circuit forming material or electronic circuit component forming material.
  • the metal material for forming the conductive layer can be appropriately selected regardless of the method for forming the ceramic insulating layer, and a capacitor circuit having stable capacitor characteristics can be obtained and produced. The yield can be improved and a highly reliable circuit forming material can be obtained.
  • the laminated body of the ceramic insulating layer and the metal layer according to the present invention can be used as, for example, a dielectric layer and a lower electrode forming layer of a capacitor, or a gate insulating film and a gate electrode of a transistor. It can be suitably used as an electronic circuit forming material for forming various electronic circuits on a substrate or a semiconductor substrate, or an electronic component forming material for forming various electronic components such as capacitors and transistors. .
  • 1. Laminated body of ceramic insulating layer and metal layer; The manufacturing method of the said laminated body is demonstrated in order.
  • a laminated body 100 according to the present invention is obtained by laminating a ceramic insulating layer 30 on the upper surface of a metal layer 10 with a protective layer 20 interposed therebetween.
  • the protective layer 20 is characterized by adopting a layer made of a silicon compound having a layer thickness of 5 nm to 100 nm.
  • the metal layer 10, the protective layer 20, and the ceramic insulating layer 30 will be described in this order.
  • the metal layer 10 has conductivity, and is a layer used as, for example, an electrode formation layer. Accordingly, various metals such as copper, aluminum, nickel, cobalt, gold, and platinum, or various metals that can be employed as the conductive layer such as an alloy thereof can be appropriately selected and used.
  • any of the above-listed materials can be suitably used, but it is preferable to use copper, aluminum, nickel, or an alloy thereof from the viewpoint of easy availability and low cost. Furthermore, copper or a copper alloy can be particularly preferably used because it has a low electrical resistivity and is excellent in workability during circuit formation by etching or the like.
  • a surface treatment layer using one or more selected from nickel, zinc, chromium, or an alloy thereof may be provided on the surface of the metal layer 10.
  • various surfaces according to the metal used for the surface treatment such as improvement of heat resistance and improvement of corrosion resistance of the metal layer 10.
  • a processing effect can be obtained. Therefore, even when copper or a copper alloy is selected as a constituent material of the metal layer 10, by providing the surface treatment layer between the metal layer 10 and the protective layer 20, a metal layer made of copper or a copper alloy.
  • the heat resistance, corrosion resistance, etc. of No. 10 can be improved and deterioration of the conductive layer, such as a decrease in conductivity and a decrease in mechanical properties, can be prevented.
  • the surface treatment layer has an arbitrary layer configuration, the illustration is omitted in FIG.
  • Silane coupling agent layer In the laminate 100 according to the present invention, a silane coupling agent layer may be provided between the metal layer 10 and the protective layer 20.
  • a silane coupling agent layer By providing the silane coupling agent layer, the wettability of the metal layer 10 can be improved and the adhesion between the metal layer 10 and the protective layer 20 can be improved. Since the silane coupling agent layer has an arbitrary layer configuration, the illustration thereof is omitted in FIG.
  • the metal layer 10 when a surface treatment layer and a silane coupling layer are provided between the metal layer 10 and the protective layer 20, only one of these layers may be provided, or both layers may be provided. Good.
  • both the surface treatment layer and the silane coupling agent layer are provided between the metal layer 10 and the protective layer 20, the metal layer 10, the surface treatment layer, the silane coupling agent layer, and the protective layer 20 are laminated in this order. It is preferable to provide as described above. This is because the surface treatment effect of the metal layer 10 by the surface treatment layer is obtained, and the adhesion between the protective layer 20 and the metal layer 10 is obtained by the silane coupling agent layer.
  • the protective layer 20 is a layer made of a silicon compound and having a thickness of 5 nm to 100 nm, and the ceramic insulating layer 30 is provided on the surface of the protective layer 20.
  • the protective layer 20 made of a silicon compound with a layer thickness of 5 nm to 100 nm, for example, when the ceramic insulating layer 30 is formed on the surface of the metal layer 10, Deterioration of the metal layer 10, that is, oxidation of the various metal materials constituting the metal layer 10 can be extremely effectively prevented, and deterioration of the metal layer 10 can be prevented.
  • the thickness of the protective layer 20 is more preferably in the range of 10 nm to 70 nm.
  • the thickness of the protective layer 20 is in the range of 10 nm to 70 nm, the deterioration of the metal layer 10 can be more effectively prevented even when a high temperature process is performed when the ceramic insulating layer 30 is formed. can do. Further, as described later, even when a BST (Barium Strontium Titanate) layer having a perovskite structure is employed as the ceramic insulating layer 30, it prevents the highly reactive BST layer from reacting with the metal layer 10. Further, it is possible to prevent the metal constituting the metal layer 10 from being precipitated and diffused in the ceramic insulating layer 30.
  • BST Barium Strontium Titanate
  • the conductivity of the metal layer 10 is reduced and the ceramic insulating layer is provided. It is possible to prevent the decrease in the insulation property of 30 very effectively. For this reason, in the past, in consideration of the influence of heat applied when the ceramic insulating layer 30 is formed, copper or a copper alloy could not be actively employed as described above. As described above, copper or a copper alloy can be suitably used as a constituent material of the metal layer 10. Hereinafter, this point will be further described.
  • the ceramic insulating layer 30 As a method for forming the ceramic insulating layer 30, various methods such as a sol-gel method, an MOCVD method, a sputtering deposition method, and an electrophoretic electrodeposition method are generally employed. Conventionally, it has been necessary to appropriately select the metal constituting the conductive layer for forming the lower electrode in accordance with the method for forming the ceramic insulating layer 30. In other words, the heat applied when forming the ceramic insulating layer 30 may oxidize the metal material constituting the conductive layer and cause deterioration of the conductive layer. It was necessary to appropriately select a metal material constituting the conductive layer according to the method employed.
  • platinum or the like is used as a heat-resistant metal in order to prevent oxidation of the conductive layer when it is necessary to go through a high-temperature process such as a firing process in a sol-gel method or the like. It was.
  • a metal foil as the conductive layer
  • a nickel foil or a nickel alloy foil nickel-phosphorus alloy foil, nickel-cobalt alloy foil
  • a composite foil in which a nickel layer of, for example, about 1 ⁇ m to 5 ⁇ m is laminated on a copper layer Etc. have been adopted.
  • the metal material constituting the conductive layer for forming the lower electrode in the laminate 100 of the ceramic insulating layer and the metal layer is used when forming the ceramic insulating layer 30 used as a dielectric layer.
  • certain restrictions may be imposed on the type of metal that can be selected. For example, when copper and nickel are compared, the electrical resistivity of copper is about 1.68 ⁇ 10 ⁇ 8 ⁇ m, whereas the electrical resistivity of nickel is 6.99 ⁇ 10 ⁇ 8 ⁇ m. Copper is a nonmagnetic metal, whereas nickel is a magnetic metal.
  • the metal layer 10 is made of copper, which has a low electrical resistivity and is nonmagnetic. is there.
  • conventionally when a high temperature process exists when forming the ceramic insulating layer 30, copper or copper alloy is oxidized under this high temperature process, and the above-mentioned various problems occur, so copper or copper In some cases, the alloy could not be actively employed.
  • the present invention for example, a two-layer structure in which the metal layer 10 and the protective layer 20 are laminated as a conductive layer, and the ceramic insulating layer 30 is formed on the surface of the protective layer 20 using the conductive layer as a base material.
  • the metal layer 10 can be configured by appropriately selecting various metals including copper or a copper alloy regardless of the method of forming the ceramic insulating layer 30.
  • the protective layer 20 is preferably made of one kind selected from SiO 2 , SiN x —SiO 2 (x> 0) and SiN x (x> 0) as the silicon compound. Since the protective layer 20 made of these silicon compounds can be formed at a relatively low temperature, a heat load is not applied to the metal layer 10 when the protective layer 20 is formed, and the metal layer 10 is not oxidized. These silicon compounds are preferable because they have low reactivity with the metal layer 10 and do not react with the metal layer 10 to lower the conductivity of the metal layer 10. Further, since the protective layer 20 made of these silicon compounds is amorphous and excellent in flexibility, it is excellent in handling properties when the laminate 100 of the ceramic insulating layer and the metal layer is laminated on a substrate.
  • the ceramic insulating layer 30 is a layer that is used as an insulating layer or a dielectric layer when manufacturing various electronic components using the laminate 100, and is a layer made of an inorganic oxide. For example, considering the case where a capacitor circuit is formed by etching or the like using the multilayer body 100, it is preferable that the ceramic insulating layer 30 is thin.
  • the capacitance (C) of the capacitor can be obtained by the following equation, and is proportional to the dielectric constant and inversely proportional to the distance (d) between the electrodes, that is, the thickness of the ceramic insulating layer 30. Because.
  • C ⁇ 0 (A / d) (formula)
  • C is the capacitance of the capacitor
  • is the dielectric constant of the ceramic insulating layer 30
  • ⁇ 0 is the vacuum dielectric constant
  • A is the surface area of the electrode
  • d is This is the distance between the upper electrode and the lower electrode.
  • Thickness of the ceramic insulating layer From the viewpoint of forming a capacitor having a large capacitance using the laminate 100 according to the present invention, or from the viewpoint of miniaturizing various electronic components such as transistors, the ceramic system according to the present invention
  • the insulating layer 30 is preferably thinner as described above. Specifically, the thickness is preferably in the range of 50 nm to 5.0 ⁇ m, and more preferably in the range of 50 nm to 2.0 ⁇ m. If the thickness of the ceramic insulating layer 30 is less than 50 nm, the layer thickness may be non-uniform, and the upper electrode and the lower portion when the capacitor circuit is formed due to the presence of gaps between the inorganic oxide particles.
  • the ceramic insulating layer 30 is composed of barium titanate, strontium titanate, barium strontium titanate, strontium zirconate, zirconic acid.
  • a perovskite ferroelectric thin layer having a basic composition such as bismuth is preferred.
  • the ceramic insulating layer 30 is a perovskite ferroelectric thin layer having a basic composition of any one of barium titanate, strontium titanate, and barium strontium titanate, the dielectric constant is high, This is particularly preferable from the viewpoint that a large capacity capacitor circuit can be obtained.
  • the ceramic insulating layer 30 is preferably impregnated with a resin component between particles or grain boundaries present in the ceramic insulating layer 30.
  • a resin component between particles or grain boundaries present in the ceramic insulating layer 30 is formed by the sol-gel method or the electrophoretic electrodeposition method. Therefore, by impregnating a resin component between particles or grain boundaries existing in the ceramic insulating layer 30, a structural defect serving as a leakage current channel can be filled.
  • the leakage current can be reduced, the deterioration of the insulating properties of the ceramic insulating layer 30 can be prevented, and it can function as a highly reliable insulating layer or dielectric layer, and the production yield can be improved. can do.
  • group insulating layer 30, or a grain boundary, the impregnation method, etc. are 2. This will be described later in the method for manufacturing the laminate 100 of the ceramic insulating layer and the metal layer.
  • the upper electrode formation layer 40 made of a metal material is provided on the upper surface of the ceramic insulating layer 30, and the metal layer 10 (including the protective layer 20) is provided.
  • the laminated body 100 may be configured as a capacitor circuit forming material (110) that uses the dielectric characteristics of the ceramic insulating layer.
  • the upper electrode formation layer 40 is preferably composed of any one of copper, copper alloy, nickel, nickel alloy, and aluminum.
  • the capacitor circuit forming material (110) thus configured can be suitably used, for example, when a capacitor circuit is formed on the inner layer of the printed wiring board by etching or the like.
  • the method for producing a laminate of a ceramic insulating layer and a metal layer according to the present invention includes a protective layer forming step of forming a protective layer 20 made of a silicon compound having a layer thickness of 5 nm to 100 nm on the metal layer 10; And a ceramic insulating layer forming step of forming the ceramic insulating layer 30 on the surface of the protective layer 20.
  • a protective layer forming step of forming a protective layer 20 made of a silicon compound having a layer thickness of 5 nm to 100 nm on the metal layer 10 and a ceramic insulating layer forming step of forming the ceramic insulating layer 30 on the surface of the protective layer 20.
  • the protective layer 20 made of the silicon compound having a thickness of 5 nm to 100 nm is formed on the metal layer 10.
  • the metal layer 10 can be made of various metals such as copper, nickel, cobalt, gold, and platinum, or metal foils of these alloys, etc.
  • copper or a copper alloy can be preferably used.
  • copper has the lowest electrical resistivity among the above-mentioned metals and is a non-magnetic material, so that it is suitable as a conductive layer and is easily available compared to other metals. This is because processing such as etching is easy and the manufacturing cost can be kept low because it is inexpensive.
  • the metal layer 10 can be formed using a metal foil made of the various metals described above.
  • a metal foil obtained by a rolling method or an electrolytic method can be used.
  • copper foil or copper alloy foil brass foil, Corson alloy foil
  • nickel foil or nickel alloy foil nickel-phosphorus alloy foil, nickel-cobalt alloy foil
  • the metal layer 10 may be a single composition metal layer from the viewpoint of satisfactorily forming a fine electrode pattern or wiring pattern in consideration of, for example, performing circuit formation by etching or the like. preferable. Moreover, you may provide the said surface treatment layer and / or a silane coupling agent layer on the surface of the metal layer 10 by a conventionally well-known method as needed.
  • the protective layer 20 is formed on the surface of the metal layer 10 so as to have a layer thickness of 5 nm to 100 nm. However, when the surface treatment layer and / or the silane coupling layer is provided on the surface of the metal layer 10, the protective layer 20 is provided on the surface of the outermost surface treatment layer or the silane coupling material layer. Form.
  • Polysilazane is applied within a range of 5 nm to 100 nm on the metal layer 10 provided with a surface treatment layer and / or a silane coupling agent layer as required. Apply to a thickness.
  • a coating method for example, a conventionally known coating method such as a spin coating method can be appropriately employed.
  • the polysilazane solution for example, SSL-SD500-HB manufactured by Exsia Co., Ltd. can be used.
  • it may be used after appropriately diluted with an organic solvent such as anhydrous dibutyl ether.
  • polysilazane is a polymer in which Si—N (silicon-nitrogen) bonds are repeated in the molecule, and is not particularly limited as long as it can be easily converted to silica (SiO 2 ).
  • Si—N silicon-nitrogen
  • perhydropolysilazane having a repeating structure of — (SiH 2 —NH) — in which two hydrogen atoms are bonded to Si atoms of Si—N bonds reacts with moisture in the atmosphere and is easily converted to silica. Therefore, it can be preferably used when forming the protective layer 20.
  • a dense and amorphous high-purity silica (amorphous SiO 2 ) layer can be obtained by using the organic solvent solution of perhydropolysilazane as a coating solution, drying in the air, and irradiating with UV.
  • the UV irradiation is performed in order to promote the reaction between polysilazane and moisture in the air to shorten the time required for conversion to silica and satisfy the productivity required for industrial production.
  • the drying is a process performed for the purpose of removing the solvent, preventing the flow of the coating film, and the like, and is generally performed in the range of 80 ° C to 130 ° C.
  • drying is performed for the purpose of removing the solvent, preventing the flow of the coating film, and the like. Therefore, it is not necessary to perform drying for a long time, and it may be appropriately performed within a range of about 10 seconds to 5 minutes.
  • the purpose of UV irradiation is to promote the reaction between polysilazane and moisture in the atmosphere.
  • the reaction promoting effect by UV irradiation is enhanced.
  • the temperature is lower than 150 ° C., the reaction promoting effect by heating cannot be sufficiently obtained, which is not preferable.
  • it exceeds 350 degreeC the heat load may be given with respect to the metal layer 10, and it is unpreferable.
  • the time required for UV irradiation is the time required for polysilazane to be converted to silica after the polysilazane solution is coated and the polysilazane coating layer is cured.
  • UV irradiation is performed in the above temperature range
  • the polysilazane coating layer that is, the protective layer 20 having a layer thickness of 5 nm to 100 nm is formed
  • it is converted to silica in the range of 1 minute to 180 minutes. Therefore, when the UV irradiation time is less than 1 minute, the reaction between polysilazane and moisture may not be completed.
  • the polysilazane layer has the above thickness, it is converted into a silica layer within 180 minutes. There is little need to irradiate UV beyond minutes.
  • CVD Method Chemical Vapor Phase Reaction Method
  • Physical Vapor Deposition Method In forming the protective layer 20, in addition to the method of applying a polysilazane coating solution, a conventionally known chemical vapor reaction method or physical vapor deposition method is used.
  • a SiO 2 layer, a SiNx (silicon nitride) -SiO 2 layer, or a SiNx layer may be formed.
  • the surface of the metal layer 10 is so-called glass coated, so that the oxidation effect of the metal layer 10 and the effect of preventing metal diffusion into the ceramic insulating layer 30 are achieved.
  • a sol-gel solution is applied to the surface of the metal layer 10 by a spin coating method or the like in the sol-gel method described below, the metal layer 10 is protected to prevent the metal layer 10 from being mechanically damaged. can do.
  • the ceramic insulating layer forming step is characterized in that the ceramic insulating layer 30 is formed on the surface of the protective layer 20 laminated on the metal layer 10 in the protective layer forming step.
  • the ceramic insulating layer 30 is formed on the surface of the protective layer 20, regardless of what method is adopted when forming the ceramic insulating layer 30, deterioration due to oxidation or the like of the metal layer 10 or the ceramic This is because diffusion of the base metal into the system insulating layer 30 can be prevented.
  • a sol-gel method As a method for forming the ceramic insulating layer 30, various methods such as a sol-gel method, an electrophoretic electrodeposition method, an MOCVD method, and a sputtering vapor deposition method can be employed.
  • a sol-gel method and an electrophoretic electrodeposition method which are particularly advantageous when the ceramic insulating layer 30 is formed thin over a wide area, will be described.
  • the sol-gel solution preparation step is a step for preparing a sol-gel solution for forming the ceramic insulating layer 30 having a desired composition.
  • the process is not particularly limited, and the sol-gel solution may be prepared by itself so as to be the ceramic insulating layer 30 having a desired composition, or a commercially available preparation solution may be used. .
  • a sol-gel solution capable of forming the ceramic insulating layer 30 having a desired composition for example, as the ceramic insulating layer 30, a BST layer having a perovskite structure as a crystal structure can be formed using 10 wt% BST (90/10/100) manufactured by Mitsubishi Materials.
  • 90/10/100 is the molar ratio of barium, strontium, and titanic acid.
  • (A-2) Coating process In the coating process, the sol-gel liquid prepared in the above-mentioned (A) sol-gel liquid preparation process is applied to the surface of the protective layer 20 of the metal layer 10, and the sol-gel liquid is dried to obtain the desired This is a step of obtaining a sol-gel solution coating layer having a layer thickness of.
  • a conventionally known method can be appropriately employed. However, in consideration of the uniformity of the layer thickness, the characteristics of the sol-gel solution, and the like, it is preferably performed by a spin coating method.
  • the coating method is characterized by adopting the following method. That is, applying a sol-gel solution to the surface of the protective layer 20 of the metal layer 10 and drying in an oxygen-containing atmosphere at a temperature range of 120 ° C. to 350 ° C. for 30 seconds to 10 minutes is repeated a plurality of times. It is preferable to adjust the layer thickness of the liquid coating layer. If the drying conditions are not met and the drying becomes insufficient, the final thickness of the ceramic insulating layer 30 may be reduced due to the flow of the coating film or re-dissolution during repeated application. Since it becomes uniform, it is not preferable.
  • the drying condition is out of the range and the drying becomes excessive, a heat load is applied to the metal layer 10 as a base material, and the metal layer 10 may be deteriorated. .
  • the sol-gel solution by repeatedly applying and drying the sol-gel solution, it is easy to adjust the layer thickness of the sol-gel solution coating layer, and the ceramic insulating layer 30 having a desired thickness can be obtained. Can do.
  • (A-3) Firing step The firing step is preferably performed at 400 to 800 ° C. for 5 to 120 minutes in an inert gas replacement (nitrogen gas atmosphere or the like; the same applies hereinafter) or a vacuum atmosphere. Through the firing step, the oxidation reaction of the precursor proceeds, and the ceramic insulating layer 30 according to the present invention can be obtained. The reason why the firing process is performed in an inert gas replacement or vacuum atmosphere is to prevent the metal layer 10 from being deteriorated.
  • the firing temperature is less than 400 ° C.
  • the above oxidation reaction is incomplete, excellent adhesion to the metal layer 10 as a base material, ceramic as a dielectric layer having an appropriate fineness and a crystal structure of an appropriate particle size It is difficult to obtain the system insulating layer 30.
  • the firing temperature exceeds 800 ° C.
  • firing is excessive, which is not preferable because the insulation of the ceramic insulating layer 30 is lowered, the physical strength of the metal layer 10 is lowered, and the conductivity is lowered.
  • the firing temperature and firing time can be appropriately changed to an appropriate temperature and time depending on the type of constituent metal of the metal layer 10 and the composition of the sol-gel solution used for forming the ceramic insulating layer 30. Of course.
  • the ceramic insulating layer 30 is obtained by firing the sol-gel solution coating layer in the above-mentioned temperature range in the firing step.
  • the protective layer 20 according to the present invention provided on the upper layer of the metal layer 10 as a base material, as described above the deterioration of the metal layer 10, that is, the oxidation of the metal material constituting the metal layer 10 Can be prevented very effectively, and the deterioration of the metal layer 10 can be prevented.
  • a highly reactive BST layer is formed using a BST solution or the like as a sol-gel solution when the ceramic insulating layer 30 is formed, the metal layer 10 and the BST layer are formed in the firing step or the like.
  • the reaction can be prevented and the metal constituting the metal layer 10 can be prevented from precipitating and diffusing in the ceramic insulating layer 30. Therefore, conventionally, when a temperature within the above range is applied to the metal layer 10 in the firing step, it has not been possible to positively adopt copper or a copper alloy in which an oxidation reaction easily proceeds. However, as described above, by providing the protective layer 20 on the upper layer of the metal layer 10, copper or a copper alloy can be suitably used as a constituent material of the metal layer 10.
  • the surface of the dielectric particles in the dielectric particle dispersion slurry prepared in the (b-1) slurry preparation step is charged positively or negatively.
  • the (b-2) electrodeposition step when a voltage is applied between the cathode electrode and the anode electrode arranged in the dielectric particle-dispersed slurry, the charged dielectric particles are electrophoresed. Adsorption and aggregation occur in the vicinity of one of the electrodes to form an electrodeposition layer made of dielectric particles on the electrode surface.
  • the metal layer 10 according to the present invention is used as an electrode on the film formation side where the electrodeposition layer is formed.
  • the ceramic insulating layer 30 according to the present invention is obtained by firing the electrodeposition layer by the firing step (b-3).
  • This electrophoretic electrodeposition method utilizes a so-called electrophoretic phenomenon, and has the advantages of high material use efficiency, high film formation speed, and excellent productivity. Therefore, when the ceramic insulating layer 30 is formed over a wide range on the surface of the metal layer 10 like the laminated body 100 of the ceramic insulating layer and the metal layer according to the present invention, the method can be suitably employed. it can. Hereinafter, each step will be further described.
  • the slurry preparation step is a step for obtaining a dielectric particle-dispersed slurry for forming the ceramic insulating layer 30 having a desired composition.
  • a dielectric particle-dispersed slurry in which dielectric particles are dispersed in a polar organic solvent such as acetone is prepared.
  • the dielectric particles it is preferable to use perovskite type dielectric particles.
  • the perovskite-type dielectric particles referred to here have a basic composition such as barium titanate, strontium titanate, barium strontium titanate, and bismuth zirconate.
  • those having a basic composition of any one of barium titanate, strontium titanate, and barium strontium titanate are particularly preferable. This is because dielectric particles having these compositions have stable electrophoretic deposition properties.
  • a commercially available dielectric particle dispersed slurry can also be used.
  • manganese, silicon, nickel, aluminum, lanthanum, niobium, magnesium, tin, or the like may be added as appropriate. These additive components are segregated at the grain boundaries, thereby blocking the leakage current flow path and preventing the short circuit.
  • Electrodeposition step In the electrodeposition step, as described above, the metal layer 10 is used as an electrode on the electrodeposition layer forming side.
  • the counter electrode of the metal layer 10 it is preferable to use a material composed of any component of stainless steel, titanium, or an insoluble anode material.
  • the metal layer 10 functions as a cathode electrode or an anode electrode in combination with the metal material constituting the metal layer 10 according to the present invention.
  • the distance between these electrodes is preferably about 1 cm to 20 cm, and the voltage applied between the electrodes is preferably 0.5 V to 200 V.
  • the distance between the electrodes is less than 1 cm, the inflow of the dielectric particle dispersed slurry is insufficient between the two electrodes, and stable electrophoretic deposition cannot be performed.
  • the distance between the electrodes exceeds 20 cm, the distance between the electrodes becomes too long, so that it is difficult to uniformly control the migration of the dielectric particles between the electrodes, and the layer thickness is uniform on the metal layer 10 side. It becomes difficult to form a simple electrodeposition layer.
  • the voltage applied between the electrodes is preferably 10V to 40V as described above.
  • the voltage applied between the two electrodes is less than 10 V, the migration speed of the dielectric particles is slow and the film formation speed is also lowered, so that the productivity required for industrial production is not satisfied.
  • the metal layer 10 having the protective layer 20 laminated is used as the electrode on the film formation side, so that particles are deposited on the surface of the protective layer 20. If it does so, the said particle
  • the ceramic insulating layer 30 having a desired thickness can be formed by controlling the value of the voltage applied between the two electrodes and the energization time.
  • (B-3) Firing step In the electrophoretic electrodeposition method, the firing step can be performed basically under the same conditions as in the sol-gel method, and thus description thereof is omitted here.
  • a) the sol-gel method and b) electrophoretic electrodeposition method have been described as the ceramic insulating layer forming step.
  • Various methods such as MOCVD and sputtering deposition can be employed.
  • a resin component impregnation step is provided after the ceramic insulating layer 30 is formed by these methods. The impregnation step of the resin component is performed, for example, in (a) sol-gel method and (b) electrophoretic electrodeposition method after finishing the (a-3) and (b-3) firing steps, respectively.
  • the resin component impregnation step is a step for filling a structural defect serving as a leakage current flow path by impregnating a resin component between particles or grain boundaries present in the ceramic insulating layer 30. is there.
  • a resin component impregnated in the particles or grain boundaries present in the ceramic insulating layer 30 it is preferable to use a resin composition using an epoxy resin as a main component.
  • the epoxy resin contains 40 wt% to 70 wt% of the epoxy resin, 20 wt% to 50 wt% of the polyvinyl acetal resin, and 0.1 wt% to 20 wt% of the melamine resin or urethane resin with respect to the total resin component. It is preferable to use a resin composition in which 5 wt% to 80 wt% of the resin is a rubber-modified epoxy resin.
  • any epoxy resin can be used without particular limitation as long as it is commercially available for molding laminated plates and electronic parts.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, novolac type epoxy resin, o-cresol novolac type epoxy resin, triglycidyl isocyanurate, N, N-diglycidylaniline and other glycidylamine compounds
  • examples thereof include glycidyl ester compounds such as tetrahydrophthalic acid diglycidyl ester and brominated epoxy resins such as tetrabromobisphenol A diglycidyl ether.
  • These epoxy resins are preferably used alone or in combination.
  • the polymerization degree and epoxy equivalent as an epoxy resin are not specifically limited.
  • epoxy resin curing agents examples include dicyandiamide, organic hydrazides, imidazoles, amines of aromatic amines, phenols such as bisphenol A and brominated bisphenol A, novolaks such as phenol novolac resins and cresol novolacs, An acid anhydride such as phthalic anhydride can be used.
  • curing agent may be used individually by 1 type, and 2 or more types may be mixed and used for it. The addition amount of the curing agent with respect to the epoxy resin can be appropriately determined according to each epoxy equivalent.
  • curing agent for example, a tertiary amine, an imidazole-based, a urea-based curing accelerator, or the like can be used.
  • the epoxy resin is preferably 40% by weight to 70% by weight of the total resin component as described above.
  • the compounding quantity of an epoxy resin is less than 40 weight%, the insulation and heat resistance of the ceramic type
  • the compounding amount of the epoxy resin exceeds 70% by weight, when the resin component is cured, the so-called resin flow becomes too large, and the resin is uniformly distributed between particles in the ceramic insulating layer 30 or between grain boundaries. The resin component cannot be impregnated and the resin component tends to be unevenly distributed in the ceramic insulating layer 30, which is not preferable.
  • a rubber-modified epoxy resin as a part of the epoxy resin composition.
  • the rubber-modified epoxy resin products marketed for adhesives or paints can be used without particular limitation. Specifically, “EPICLON® TSR-960” (trade name, manufactured by Dainippon Ink, Inc.), “EPOTOTOTO® YR-102” (trade name, manufactured by Toto Kasei), “Sumiepoxy® ESC-500” (trade name, Sumitomo Chemical) And “EPOMIK VSR 3531” (trade name, manufactured by Mitsui Petrochemical Co., Ltd.) can be used. These rubber-modified epoxy resins may be used alone or in combination of two or more.
  • the blending amount of the rubber-modified epoxy resin is preferably 5 to 80% by weight of the total amount of the epoxy resin.
  • the rubber-modified epoxy resin By using the rubber-modified epoxy resin, fixing of the resin component in the ceramic insulating layer 30 can be promoted. Therefore, when the amount of the rubber-modified epoxy resin is less than 5% by weight, the effect of promoting fixing in the ceramic insulating layer 30 cannot be obtained. On the other hand, if the blending amount of the rubber-modified epoxy resin exceeds 80% by weight, the heat resistance as a cured resin may be reduced.
  • the polyvinyl acetal resin is synthesized by a reaction between polyvinyl alcohol and aldehydes.
  • the polyvinyl acetal resin those commercially available for paints and adhesives can be used without any particular limitation.
  • the degree of polymerization of the raw material polyvinyl alcohol, the type of raw aldehydes and the degree of acetalization are not particularly limited, but the degree of polymerization is considered in consideration of heat resistance as a cured resin and solubility in a solvent. It is desirable to use products synthesized from 2000-3500 polyvinyl alcohol.
  • a modified polyvinyl acetal resin having a carboxyl group or the like introduced in the molecule is also commercially available, but can be used without particular limitation as long as there is no problem in compatibility with the combined epoxy resin.
  • the blending amount of the polyvinyl acetal resin blended in the insulating layer is 20% by weight to 50% by weight of the total amount of the resin composition. If the blending amount is less than 20% by weight, the effect of improving the fluidity as a resin cannot be obtained. On the other hand, if the blending amount exceeds 50% by weight, the water absorption rate of the insulating layer after curing becomes high, which is extremely undesirable as a constituent material of the ceramic insulating layer 30.
  • the resin composition used in the present invention preferably contains a melamine resin or a urethane resin as a crosslinking agent for the polyvinyl acetal resin in addition to the above components.
  • alkylated melamine resin commercially available for coating can be used.
  • alkylated melamine resins include methylated melamine resins, n-butylated melamine resins, iso-butylated melamine resins, and mixed alkylated melamine resins.
  • the molecular weight and alkylation degree as a melamine resin are not particularly limited.
  • the urethane resin a resin containing an isocyanate group in a molecule marketed for an adhesive or a paint can be used.
  • the urethane resin include a reaction product of a polyisocyanate compound such as tolylene diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenyl polyisocyanate and a polyol such as trimethylolpropane, polyether polyol, and polyester polyol. Since these compounds are highly reactive as resins and may be polymerized by moisture in the atmosphere, in the present invention, these resins are blocked with phenols or oximes so as not to cause this problem. It is preferable to use a urethane resin called isocyanate.
  • the blending amount of the melamine resin or the urethane resin added to the resin composition in the present invention is 0.1% by weight to 20% by weight of the total amount of the resin composition.
  • the blending amount is less than 0.1% by weight, the crosslinking effect of the polyvinyl acetal resin is insufficient, the heat resistance of the insulating layer is lowered, and when the blending amount exceeds 20% by weight, the fixability in the ceramic insulating layer 30 is achieved. Deteriorates.
  • additives such as inorganic fillers, antifoaming agents, leveling agents, coupling agents and the like can be used for this resin composition as desired. These improve the permeability of the resin component to the ceramic insulating layer 30 and are effective in improving flame retardancy and reducing costs.
  • the above resin composition is present in the ceramic insulating layer 30 by applying it to the surface of the ceramic insulating layer 30 by a spin coating method or the like after the firing step and heating it using a hot plate, an oven or the like.
  • the resin component can be impregnated between particles or between grain boundaries.
  • Upper electrode layer forming step As described above, when the multilayer body 100 according to the present invention is used as a capacitor circuit forming material (110 (see FIG. 1)), an upper electrode made of a metal material is formed on the upper surface of the ceramic insulating layer 30.
  • An upper electrode layer forming step for forming the layer 40 may be provided.
  • the upper electrode formation layer 40 may be formed by bonding a metal foil of any one of copper foil, copper alloy foil, nickel foil and nickel alloy foil to the upper surface of the ceramic insulating layer 30,
  • the upper electrode forming layer 40 may be formed by a plating method using any one of copper, a copper alloy, nickel, a nickel alloy, and aluminum, or a method such as sputtering deposition.
  • Example 1 describes an example in which a laminated body 100 of a ceramic insulating layer and a metal layer according to the present invention is manufactured by using a sol-gel method when the ceramic insulating layer 30 is formed.
  • the metal layer 10 obtained by laminating a 20 nm SiO 2 layer as the protective layer 20 on the surface of the 18 ⁇ m smooth copper foil as the metal layer 10 was obtained.
  • SEM manufactured by JEOL; JSM-700IF
  • JSM-700IF magnification 100,000 times
  • Sol-gel solution preparation step In the sol-gel solution preparation step, a commercially available sol-gel solution (10 wt% BST (90/10/100) solution manufactured by Mitsubishi Materials Corporation) was used.
  • (A-2) Coating process In the coating process, the above sol-gel solution is applied to the surface of the protective layer 20 of the metal layer 10 by a spin coating method, and then air is applied at 190 ° C. for 1 minute using a hot plate. Dried in. With this step as one unit step, the one unit step was repeated 6 times to form a sol-gel liquid coating layer.
  • (A-3) Firing step Then, the metal layer 10 provided with the sol-gel liquid coating layer is subjected to a nitrogen atmosphere (atmosphere in which saturated water vapor containing 25 ° C. is blown; the same applies to the firing step hereinafter). Using a tube furnace, firing was performed under firing conditions of 600 ° C. ⁇ 60 minutes.
  • (A-4) Resin impregnation step Thereafter, 100 parts by weight of an epoxy resin (Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.) and 1 part by weight of an imidazole compound (Curesol 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.) as an epoxy resin curing agent
  • an epoxy resin Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.
  • an imidazole compound Curesol 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • methyl ethyl ketone (reagent) was used as a solvent to prepare an epoxy resin varnish having a total amount of epoxy resin and an epoxy resin curing agent of 0.22 wt% as a solid content.
  • the epoxy resin varnish as a coating solution by spin coating, it is applied to the surface of the sol-gel solution coating layer after baking, and heated in the atmosphere at 190 ° C. for 90 minutes using a hot plate, and the resin is ceramic. Impregnation was carried out between particles or grain boundaries existing in the system insulating layer 30. Thus, a laminate 100 of the ceramic insulating layer and the metal layer of Example 1 according to the present invention was manufactured.
  • Example 2 As the laminated body 100 of the ceramic insulating layer and the metal layer of Example 2, it was carried out except that (a-3) the firing step was performed at 500 ° C. in the ii) ceramic insulating layer forming step of Example 1 above.
  • a laminate 100 of a ceramic insulating layer and a metal layer of Example 2 according to the present invention was manufactured by the same method as Example 1.
  • the ceramic insulating layer 30 was formed by electrophoretic deposition as the laminate 100 of the ceramic insulating layer and the metal layer of Example 3.
  • Protective layer forming step In the protective layer forming step, as in Example 1 and Example 2 above, surface smooth copper having a laminated surface of Rz ⁇ 1.0 ⁇ m and a layer thickness of 18 ⁇ m manufactured by Mitsui Mining & Smelting Co., Ltd. A foil (NA-DFF, 18 ⁇ m) was used as the metal layer 10. Then, using a polysilazane silica coating agent (SSL-SD500-HB) manufactured by Exsia Co., Ltd. without dilution, it was dried in the atmosphere at 150 ° C. for 1 minute using a hot plate, and then in the atmosphere at 250 ° C.
  • SSL-SD500-HB polysilazane silica coating agent
  • a protective layer 20 having a thickness of about 60 nm was formed on the upper surface of the metal layer 10 in the same manner as in Example 1 and Example 2 except that UV irradiation was performed while heating using a hot plate.
  • the thickness of the protective layer 20 was measured using SEM (manufactured by JEOL; JSM-700IF) (magnification 100,000 times) in the same manner as in Example 1 and Example 2.
  • Ceramic insulating layer forming step In the ceramic insulating layer forming step, the ceramic insulating layer 30 was formed on the surface of the protective layer 20 of the metal layer 10 by electrophoretic deposition.
  • the average particle diameter of dielectric particles refers to the arithmetic average value when the major axis of 100 particles is laterally extended using the SEM.
  • Electrodeposition step In the electrodeposition step, the metal layer 10 is used as a cathode electrode, a stainless steel plate is used as an anode electrode, and the two electrodes are separated from each other by 20 mm in the dielectric particle dispersion slurry prepared above. Arranged. Then, a BST electrodeposition layer having a thickness of about 1.5 ⁇ m was formed on the metal layer 10 as a cathode electrode by applying a voltage of 30 V between both electrodes and applying a direct current for 20 seconds.
  • (B-3) Firing step The metal layer 10 on which the BST electrodeposition layer was formed was fired using a tube furnace at 600 ° C. for 60 minutes in a nitrogen atmosphere.
  • (B-4) Resin impregnation step Next, the resin component is impregnated between particles or grain boundaries existing in the BST electrodeposition layer after firing by the same method as in Example 1 and Example 2, A ceramic insulating layer 30 according to the invention was formed, and a laminate 100 of the ceramic insulating layer 30 and the metal layer 10 of Example 3 according to the present invention was manufactured.
  • Comparative Example 3 In order to compare with the laminate 100 obtained in Example 3, i) a ceramic insulating layer formed by electrophoretic deposition in the same manner as in Example 3 except that the protective layer 20 was not provided in the protective layer forming step. 30 to form a laminate of the ceramic insulating layer and the metal layer of Comparative Example 3. However, in Comparative Example 3, since the protective layer 20 made of SiO 2 which is an insulating material is not provided on the surface of the metal layer 10, the ceramic insulating layer having substantially the same thickness as the ceramic insulating layer 30 of Example 3. In order to form 30, the voltage applied between both electrodes is set to 20 V in the electrodeposition process.
  • FIG. 2A is a SEM photograph showing the surface of the ceramic insulating layer 30 formed in Example 1
  • FIG. 4 is a SEM photograph showing the surface of the formed ceramic insulating layer 30.
  • 2C is an SEM photograph showing the surface of the ceramic insulating layer 30 formed in Comparative Example 1
  • FIG. 2D shows the surface of the ceramic insulating layer 30 formed in Comparative Example 2. It is a SEM photograph. However, each SEM photograph was obtained by photographing the surface of the ceramic insulating layer 30 at a magnification of 30,000 using a SEM (JSM-700IF) manufactured by JEOL.
  • JSM-700IF SEM
  • Example 1 and Comparative Example 1 the firing temperature when forming the ceramic insulating layer 30 was 600 ° C.
  • the firing temperature was 500 ° C.
  • FIG. 2C copper crystals can be observed on the surface of the ceramic insulating layer 30 of Comparative Example 1 fired at 600 ° C.
  • FIG. 2D no copper crystals are observed on the surface of the ceramic insulating layer 30 of Comparative Example 2 fired at 500.degree.
  • FIG. 2 (d) as indicated by an arrow A, portions that are visually recognized as white on the surface of the ceramic insulating layer 30 are observed. The part visually recognized as white is a part swollen by firing (see FIG. 3C).
  • Example 1 and Example 2 in Example 1 and Example 2 according to the present invention, the protective layer 20 made of SiO 2 is formed on the surface of the copper foil as the metal layer 10 and then the ceramic.
  • the laminated body 100 (refer FIG. 1) in which the system insulation layer 30 was formed is obtained.
  • Example 1 a laminated body of the metal layer 10 and the ceramic insulating layer 30 was formed in the same manner as in Comparative Example 1 except that the protective layer 20 was provided. See FIG. 2A. Then, it can be seen that copper crystals are not recognized and copper diffusion into the ceramic insulating layer 30 is prevented. Further, in FIGS.
  • the protective layer 20 is formed on the metal layer 10
  • the ceramic insulating layer 30 is formed on the surface of the protective layer 20, thereby diffusing the constituent metals of the metal layer 10 into the ceramic insulating layer 30. It was confirmed that there was an effect to suppress, a change in shape due to oxidation of the metal layer 10 was prevented, and a smooth ceramic insulating layer 30 could be formed.
  • FIGS. 3A and 3B show SEM photographs in which a cross section of the laminate 100 (see FIG. 1) of the metal layer 10 and the ceramic insulating layer 30 formed in Example 1 is shown.
  • 3C and 3D show SEM photographs in which a cross section of the laminate 100 of the metal layer 10 and the ceramic insulating layer 30 formed in Comparative Example 1 is photographed.
  • 3 (a) and 3 (c) are taken at a magnification of 5,000 times
  • FIGS. 3 (b) and 3 (d) are taken at a magnification of 50,000 times.
  • the laminate 100 formed in Example 1 was formed in a thin film between the copper foil as the metal layer 10 and the ceramic insulating layer 30. A protective layer 20 is observed. And the surface of the ceramic type
  • FIGS. 3C and 3D in the laminate formed in Comparative Example 1, countless copper crystals diffused on the surface of the ceramic insulating layer 30 are recognized.
  • FIGS. 4A and 4B show cross-sectional SEM photographs of the laminate 100 formed in Example 2.
  • 4A and 4C are taken at a magnification of 5,000 times
  • FIGS. 4B and 4D are taken at a magnification of 50,000 times.
  • Example 2 and Comparative Example 2 since the firing temperature is 500 ° C., no copper crystal diffused on the surface of the ceramic insulating layer 30 is observed. However, as shown in FIGS. 4C and 4D, in the laminated body of Comparative Example 2, innumerable swelling was observed on the surface of the ceramic insulating layer 30, and the surface of the ceramic insulating layer 30 was wavy. I understand that As described above, when unevenness is generated on the surface of the ceramic insulating layer 30 due to the shape change accompanying the oxidation of the metal layer 10, the insulating characteristic or the dielectric characteristic becomes uneven depending on the location, and the lamination of the ceramic insulating layer and the metal layer is performed. The yield as a body cannot be improved.
  • group insulating layer 30 is shown. Is recognized. Further, it can be seen that no swelling of the surface of the ceramic insulating layer 30 formed on the surface of the protective layer 20 is observed, and the ceramic insulating layer 30 having a uniform layer thickness is obtained.
  • the ceramic insulating layer 30 having a uniform layer thickness can be formed on the upper surface of the metal layer 10 via the protective layer 20, and copper diffusion to the ceramic insulating layer 30 can be prevented. It was confirmed that this could be prevented. Therefore, according to the present invention, it is possible to prevent deterioration of the insulating property and dielectric property of the ceramic insulating layer 30 due to metal diffusion, and to manufacture the laminate 100 of the ceramic insulating layer and the metal layer with high production yield. it can.
  • Oxidation of metal layer (1) Next, in order to evaluate the oxidation state of copper as the metal layer 10, the ceramic system formed in Example 1 and Example 2 using X'Pert PRO manufactured by Panalical Co., Ltd. X-ray diffraction of the surface of the insulating layer 30 was performed.
  • FIG. 5 shows the result. In FIG. 5, the horizontal axis indicates the incident angle (2 ⁇ ), and the vertical axis indicates the intensity (au).
  • FIG. 6 shows the X-ray diffraction results of the ceramic insulating layer 30 formed in Comparative Example 1 and Comparative Example 2.
  • FIG. 6 shows the ceramic insulation formed under the same conditions as in Comparative Example 1 and Comparative Example 2 together with the X-ray diffraction results of each ceramic insulating layer 30 in (a) Comparative Example 1 and (b) Comparative Example 2.
  • the X-ray diffraction result (c) before firing of the layer 30 is also shown.
  • diffraction peaks indicating the BaTiO 3 is confirmed by performing firing. From this, it can be seen that the oxidation reaction of the BaTiO 3 precursor progressed by firing, and the ceramic insulating layer 30 was formed.
  • the diffraction peak indicating Cu 2 O by performing firing appears, copper constituting the metal layer 10 by firing is observed to have oxidized.
  • FIG. 5 shows (a) the firing of the ceramic insulating layer 30 formed under the same conditions as in the first and second embodiments, together with the X-ray diffraction results of the respective ceramic insulating layers 30 in the first and second embodiments.
  • the previous X-ray diffraction result (c) is also shown.
  • FIGS. 5A and 5B for the ceramic insulating layer 30 formed in Example 1 and Example 2, although a diffraction peak indicating BaTiO 3 appears, a diffraction peak indicating Cu 2 O appears. Has not appeared. Therefore, from the result, by forming the protective layer 20 on the metal layer 10, it is possible to effectively prevent oxidation of the copper constituting the metal layer 10 in the firing step when forming the ceramic insulating layer 30. It was confirmed that it was possible.
  • FIG. 7 and FIG. 8 are electron beam microanalyzer photographs in the cross section of the laminate of the metal layer 10 and the ceramic insulating layer 30 formed in Example 1 and Comparative Example 1, respectively. Show. However, for taking the sectional analysis photograph, an energy dispersive X-ray analyzer INCA Energy PentaFETx3. It was performed using.
  • FIG. 7 no diffusion of copper on the surface of the ceramic insulating layer 30 is observed in FIG. Further, referring to FIG. 7C, the distribution of oxygen atoms remains only in the ceramic insulating layer 30, and the oxidation reaction of the precursor of BiTO 3 proceeds by firing, but the oxidation reaction of copper does not occur. This is also confirmed from this figure. Further, as shown in FIG. 7E, the distribution of silicon atoms (Si) is recognized between the metal layer 10 and the ceramic insulating layer 30, and the protective layer 20 made of SiO 2 is formed in a thin film shape. Can be confirmed.
  • Table 1 shows the results of evaluating the capacity density, dielectric loss tangent, and production yield in the laminate 100 of the ceramic insulating layer and the metal layer formed in Example 1 and Example 2.
  • the evaluation was performed for the case where resin impregnation was performed on the ceramic insulating layer 30 and the case where it was not performed. Table 1 shows both of these evaluation results.
  • the capacitance density and dielectric loss tangent were measured using an LCR high tester 3532-50 manufactured by HIOKI.
  • 16 laminated bodies 100 of ceramic insulating layers and metal layers are manufactured for each condition, and the quality of each laminated body 100 of ceramic insulating layers and metal layers is set to capacity density and dielectric.
  • Each item of tangent and leakage current was evaluated and evaluated based on the proportion of non-defective products.
  • Comparative Examples 1 and 2 in terms of capacity density. Smaller than. However, the high capacity density of the laminate of the ceramic insulating layer and the metal layer obtained in Comparative Example 1 and Comparative Example 2 is considered to be caused by an increase in leakage current due to a short circuit. As a result, in Comparative Example 1 and Comparative Example 2, the production yields were as low as 18.8% and 68.8%, respectively, and it was difficult to obtain good products with good yields.
  • Example 1 and Example 2 as described above, the diffusion of copper in the ceramic insulating layer 30 is prevented, and the layer thickness of the ceramic insulating layer 30 is also configured uniformly. As a result, the occurrence of short circuits is small and the value of leakage current is small. In addition, Example 1 and Example 2 have lower dielectric loss tangent values than Comparative Example 1 and Comparative Example 2, respectively. As a result, the production yield was 81.3% in Example 1 and 100% in Example 2.
  • the capacity density is reduced as compared with the case where the resin impregnation is not performed.
  • the tangent value was 1/10 or less, and it was confirmed that a good product having a small dielectric tangent value can be obtained.
  • the resin impregnation can fill the structural defect of the ceramic insulating layer 30 serving as a flow path for the leakage current, so that a short circuit can be prevented and the leakage current can be further reduced. As a result, the production yield was 81.3% when the resin impregnation was not performed, but it could be improved to 93.8% by performing the resin impregnation.
  • the leakage current density is evaluated with reference to FIG. 9 and FIG.
  • a copper layer (upper part) was formed on the surface of the ceramic insulating layer of each laminated body by a sputtering vapor deposition method. Electrode forming layer) was formed. Then, using this copper layer as the upper electrode and the metal layer 10 as the lower electrode, a voltage was applied between these two electrodes, and the leakage current density with respect to the voltage value was measured.
  • the leakage current density in the presence or absence of resin impregnation of the ceramic insulating layer 30 was also evaluated.
  • FIG. 9A shows the measurement result for Example 1 when the resin impregnation of the ceramic resin layer 30 is performed
  • FIG. 9B shows the measurement result for Example 1 when the resin impregnation is not performed.
  • C has shown the measurement result about the comparative example 1.
  • FIG. 10A shows the measurement result for Example 2 when the resin impregnation of the ceramic resin layer 30 is performed
  • FIG. 10B shows the measurement result for Example 2 when the resin impregnation is not performed.
  • the measurement results are shown, and (c) shows the measurement results for Comparative Example 2.
  • Example 1 and Comparative Example 1 are evaluated.
  • the laminate 100 of the layer and the metal layer has a leakage current density value reduced to 1/1000 or less.
  • FIG. 9 shows that when the resin-impregnated ceramic insulating layer 30 in Example 1 (a) is compared with the resin-impregnated (b) (b), the resin-impregnated one leaks. It can be seen that the current density is low.
  • Example 2 and Comparative Example 2 are evaluated. Regarding Example 2 and Comparative Example 2, the same tendency as in Example 1 and Comparative Example 1 was observed. That is, referring to FIG. 10, the ceramic of Example 2 according to the present invention shown in (a) and (b) of the laminate of the ceramic insulating layer and metal layer of Comparative Example 2 shown in (c). It can be seen that the laminate 100 of the system insulating layer 30 and the metal layer 10 has a leakage current density value reduced to 1/1000 or less. From FIG. 10, in Example 2, when the resin-impregnated ceramic insulating layer 30 (a) and the resin-impregnated (b) were compared, the ceramic insulating layer 30 was compared. It can be seen that the value of the leakage current density is lower when the resin is impregnated.
  • FIG. 11A is a SEM photograph showing a cross section of the laminate 100 formed in Example 3, and FIG. 11B is a SEM photograph showing a cross section of the laminate formed in Comparative Example 3.
  • FIG. 11A in the laminate 100 of Example 3, the protective layer 20 made of thin SiO 2 between the copper foil as the metal layer 10 and the ceramic insulating layer 30 can be confirmed. .
  • FIG. 11B it can be seen that a copper oxide layer formed by oxidizing copper is formed between the copper foil layer and the ceramic insulating layer 30 instead of the protective layer 20.
  • the protective layer 20 made of a silicon compound on the surface of the metal layer 10 it is possible to prevent oxidation of the metal constituting the metal layer 10, that is, copper, and to prevent deterioration of the metal layer 10. Can do.
  • the laminate 100 (a) of the ceramic insulating layer and the metal layer of Example 3 according to the present invention is the laminate (b) of the ceramic insulating layer and the metal layer of Comparative Example 3. It can be seen that the value of the leakage current density is small as compared with the above, and a short circuit between the upper electrode and the lower electrode is prevented. Moreover, when the voltage applied between both electrodes is 20 V or more, the value of the leakage current density in the laminate 100 of the ceramic insulating layer and the metal layer of Example 3 is the same as that of the ceramic insulating layer of Comparative Example 3. Although it is about 1/10 of the value of the leakage current density in the laminate with the metal layer, the difference increases when the voltage applied between the two electrodes is less than 20V.
  • the ceramic insulating layer as the insulating layer or the dielectric layer in the laminated body 100 of the ceramic insulating layer and the metal layer according to the present invention has high reliability, and operates at a lower voltage using the laminated body 100. It can be said that the effect of reducing leakage current is great when forming an electronic circuit (including a semiconductor circuit).
  • Table 2 shows the evaluation results of the capacity density, dielectric loss tangent, production yield, and layer thickness of the ceramic insulating layer in the laminate 100 of the ceramic insulating layer and the metal layer obtained in Example 3 and Comparative Example 3. Show.
  • Example 3 As shown in Table 2, in Example 3, a voltage of 30 V was applied for 20 seconds in the electrodeposition process, and in Comparative Example 3, a voltage of 20 V was applied for 20 seconds in the electrodeposition process.
  • the finally obtained ceramic insulating layers 30 had substantially the same thickness, which were 1.6 ⁇ m and 1.5 ⁇ m, respectively.
  • the protective layer 20 made of SiO 2 which is an insulating material is provided on the surface of the metal layer 10 formed in Example 3, so that the protective layer 20 is not provided with the metal layer 10 of the comparative example. In comparison, it is conceivable that the electrical characteristics during electrodeposition are degraded. However, as shown in FIG.
  • the ceramic insulating layer 30 having a desired layer thickness is formed through the protective layer 20 by changing the voltage, energizing time, etc. as appropriate, and adjusting the amount of deposited particles deposited on the electrode surface on the film formation side. 10 upper layers can be laminated.
  • the capacity density of the laminate 100 of the ceramic insulating layer and the metal layer of Example 3 is lower than that of the laminate of the ceramic insulating layer and the metal layer of Comparative Example 3.
  • the dielectric loss tangent value of the laminated body 100 of the ceramic insulating layer and the metal layer of Example 3 is lower than the laminated body of the ceramic insulating layer and the metal layer of Comparative Example 3, and the production yield is also implemented.
  • Example 3 is higher.
  • the thickness of the ceramic insulating layer 30 is increased by about 1.5 times, even if the protective layer 20 is not provided, the insulating property of the ceramic insulating layer 30 is improved and the capacity density is reduced, but the leakage current density is also reduced. . However, no improvement in the value of dielectric loss tangent is observed.
  • the reference shown in Table 3 is the ceramic insulating layer when the electrodeposition process is performed at 30 V when the laminate of the ceramic insulating layer and the metal layer of Comparative Example 3 is manufactured. It is an evaluation result about a laminated body with a metal layer. As shown for reference, the thickness of the ceramic insulating layer 30 was increased about 1.5 times by performing the electrodeposition step at 30V.
  • FIG. 12C shows the measurement result of the leakage current density for the laminate shown as this reference example. 12A and 12C are compared, the value of the leakage current density is obtained by increasing the layer thickness of the ceramic insulating layer 30 in Comparative Example 3 by about 1.5 times. A value similar to 3 is shown.
  • the laminated body 100 according to the present invention can effectively prevent the occurrence of a leakage current as compared with the conventional case even when the ceramic insulating layer 30 is thinned, and the reliability. It is possible to form an electronic circuit or electronic component circuit having a high height.
  • the protective layer 20 was formed so that the thickness of the protective layer 20 was 20 nm when the laminate 100 of the ceramic insulating layer and the metal layer of Example 3 was formed. .
  • the thickness of the protective layer 20 is reduced, the leakage current density can be reduced as compared with the case where the protective layer 20 is not provided, and various values such as a decrease in the dielectric loss tangent value can be obtained. The effect of was recognized.
  • the metal layer 10 Oxidation can be prevented very effectively, and a decrease in the conductivity of the metal layer 10 can be prevented.
  • the protective layer 20 on the metal layer 10 the metal constituting the metal layer 10 is prevented from diffusing into the ceramic insulating layer 30, and the insulating property of the ceramic insulating layer 30 is lowered. Alternatively, it is possible to prevent a decrease in dielectric characteristics.
  • the laminate 100 of the ceramic insulating layer and the metal layer according to the present invention it becomes possible to form an electronic circuit or electronic component having higher reliability than the conventional one, and the ceramic system.
  • the production yield of the laminated body 100 of an insulating layer and a metal layer can be improved.
  • the laminate of the ceramic insulating layer and the metal layer according to the present invention can be used very effectively as a forming material for reducing the leakage current of the insulating layer and forming a highly reliable electronic circuit or electronic component. . Furthermore, by laminating the protective layer on the surface of the copper foil layer, oxidation or the like of the copper foil layer under a high temperature process can be prevented. For this reason, since there is a high temperature process in the past, there is an excellent effect that it is possible to employ copper foil as various constituent materials even when copper foil cannot be employed. Can expand the industrial applicability of copper foil.

Abstract

Provided are a laminate of a ceramic insulation layer and a metal layer and also a method for producing this laminate, with which it is possible to appropriately select structural materials for the metal layer, which serves as a base material, regardless of the method used to form the ceramic insulation layer, with which deterioration of the base material and reduction in insulating performance of the insulation layer during the ceramic insulation layer production process can be prevented, and with which an improved production yield can be achieved. A laminate (100) of a ceramic insulation layer (30) and a metal layer (10), wherein a protective layer (20) is provided on the surface of the side of the metal layer (10) on which the ceramic insulation layer (30) is formed, and the protective layer (20) is formed from a silicon compound having a layer thickness of 5 nm to 100 nm.

Description

セラミック系絶縁層と金属層との積層体及び当該積層体の製造方法LAMINATE OF CERAMIC INSULATION LAYER AND METAL LAYER AND METHOD FOR PRODUCING THE LAMINATE
 本件発明は、セラミック系絶縁層と金属層との積層体及び当該積層体の製造方法に関する。特に、このセラミック系絶縁層と金属層との積層体は、プリント配線基板又は半導体基板等にキャパシタ回路又はトランジスタ回路等を含む各種電子回路を形成するための電子回路形成材料、或いは、キャパシタ又はトランジスタ等の各種電子部品を形成するための電子部品形成材料等として好適に使用することのできるものである。 This invention relates to the laminated body of a ceramic type insulating layer and a metal layer, and the manufacturing method of the said laminated body. In particular, the laminated body of the ceramic insulating layer and the metal layer is an electronic circuit forming material for forming various electronic circuits including a capacitor circuit or a transistor circuit on a printed wiring board or a semiconductor substrate, or a capacitor or a transistor. It can be suitably used as an electronic component forming material for forming various electronic components.
 従来より、携帯電話機等の携帯電子機器の高機能化及び高性能化に伴い、高密度実装技術によるプリント配線基板の軽薄短小化が進展してきた。具体的には、高密度実装技術として、表面実装部品の小型化及び薄型化、配線パターンの高精細化、配線基板の薄型多層化などが採用されてきた。 Conventionally, along with the enhancement of functionality and performance of portable electronic devices such as mobile phones, light and thin printed wiring boards using high-density mounting technology have progressed. Specifically, as a high-density mounting technology, miniaturization and thinning of surface mounting components, high definition of wiring patterns, thinning and multilayering of wiring boards, and the like have been adopted.
 しかしながら、配線パターンが高精細化し、配線同士が相互に接近すると、配線の複雑な引き回しは寄生抵抗の増加等につながり、これらによる信号遅延や発熱、不要輻射やクロストークなどの発生原因ともなる。このため、高周波回路及び超高速動作回路に対応するには、上記高密度実装技術だけでは限界に近づきつつあった。 However, when the wiring pattern becomes high definition and the wirings come close to each other, complicated wiring routing leads to an increase in parasitic resistance, which causes signal delay, heat generation, unnecessary radiation, crosstalk, and the like. For this reason, in order to cope with high-frequency circuits and ultrahigh-speed operation circuits, the high-density mounting technology alone is approaching its limit.
 このような流れを受けて、近年、プリント配線基板の製造段階で、キャパシタ、抵抗等の電子部品を配線パターン等により多層配線基板の内層に形成することが行われている。電子部品をプリント配線基板に埋め込むことにより、例えば、IC等の能動素子の直下にキャパシタ等の電子部品を配置することができ、電子部品間の配線長を極限まで短縮し、配線を簡素化することが可能になる。このため、寄生抵抗の増加を抑制し、部品間で信号をより高速に送受することができ、発熱、不要輻射やクロストークの発生等を抑制することができる。また、表面実装部品点数の削減や配線長の短縮に伴い、プリント配線基板の軽薄短小化を更に進行することができる。従って、今後、更に高度な処理が要求される携帯電子機器等の実現において、このような電子部品内蔵型のプリント配線基板の需要は更に高まるものと考えられる。 In response to such a flow, in recent years, electronic components such as capacitors and resistors are formed on the inner layer of a multilayer wiring board by a wiring pattern or the like at the manufacturing stage of the printed wiring board. By embedding electronic components in a printed wiring board, for example, electronic components such as capacitors can be arranged directly under active elements such as ICs, and the wiring length between electronic components can be shortened to the limit and wiring can be simplified. It becomes possible. For this reason, increase in parasitic resistance can be suppressed, signals can be transmitted and received between components at higher speed, and generation of heat generation, unnecessary radiation, crosstalk, and the like can be suppressed. Further, along with the reduction in the number of surface-mounted components and the shortening of the wiring length, the printed wiring board can be further reduced in thickness and thickness. Therefore, it is considered that the demand for such a printed wiring board with built-in electronic components will further increase in the future in the realization of portable electronic devices and the like that require further advanced processing.
 さらに、CMOSトランジスタ等のシリコンを主材料としてきた半導体回路部品においても、ゲート電極としていわゆる金属ゲート電極の使用や、ゲート絶縁膜としてセラミック系絶縁材料の使用が検討されている。このような流れを受けて、近年、金属箔に、セラミック系絶縁層を積層した積層体を用いてゲート電極やゲート絶縁膜を形成することが提案されている。すなわち、従来、高真空プロセスを用いることで、高コスト化が避けられなかった半導体回路部品を含む各種電子回路部品や、半導体回路を含む各種電子回路形成等の各種電子部品の製造に際して、ウェブ状の基材を用いたプリント配線板製造に用いられる印刷やエッチング技術を適用することが行われている。 Further, in semiconductor circuit components mainly made of silicon such as CMOS transistors, the use of so-called metal gate electrodes as gate electrodes and the use of ceramic insulating materials as gate insulating films are being studied. In response to such a flow, in recent years, it has been proposed to form a gate electrode or a gate insulating film using a laminate in which a ceramic insulating layer is laminated on a metal foil. That is, in the production of various electronic circuit components including semiconductor circuit components, and various electronic circuit formations including semiconductor circuits, which have been inevitable in the past by using a high vacuum process, a web-like Application of printing and etching techniques used in the production of printed wiring boards using the above-mentioned base materials has been performed.
 以上のような観点から、本件出願人らは、上記回路形成材料の一つとして、特許文献1及び特許文献2等に開示されるように、導電層としての金属箔に絶縁層或いは誘電層としてのセラミック系絶縁層を積層した構成を基本構成としたキャパシタ回路形成材料を提案してきた。 From the above viewpoint, the present applicants, as disclosed in Patent Document 1 and Patent Document 2 as one of the circuit forming materials, have an insulating layer or a dielectric layer on a metal foil as a conductive layer. Capacitor circuit forming materials have been proposed that have a basic structure of laminated ceramic insulating layers.
特開2007-35975号公報JP 2007-35975 A 再表2008/044573号公報No. 2008/044573
 ところで、キャパシタの静電容量は、誘電層の誘電率が高い方が大きくなる。さらに、電極面積が同じ場合、電極間の距離が短い方が静電容量が大きくなる。すなわち、静電容量の大きなキャパシタを得るには、誘電率の高いセラミック系絶縁層と金属層とが積層されたセラミック系絶縁層と金属層との積層体が求められる。また、半導体集積回路の微細化に伴い、トランジスタ回路の微細化、ゲート絶縁膜の薄膜化が求められている。そこで、これらの誘電層或いは絶縁層として使用されるセラミック系絶縁層を導電層上に薄く、且つ、広面積で形成することが求められている。 Incidentally, the capacitance of the capacitor increases as the dielectric constant of the dielectric layer increases. Furthermore, when the electrode area is the same, the capacitance becomes larger as the distance between the electrodes is shorter. That is, in order to obtain a capacitor having a large capacitance, a laminate of a ceramic insulating layer and a metal layer in which a ceramic insulating layer and a metal layer having a high dielectric constant are stacked is required. Further, along with miniaturization of semiconductor integrated circuits, miniaturization of transistor circuits and thinning of gate insulating films are required. Therefore, it is required to form a ceramic insulating layer used as a dielectric layer or an insulating layer thin on a conductive layer and in a wide area.
 しかしながら、従来、セラミック系絶縁層の形成に際して、ゾル-ゲル法、泳動電着、MOCVD法、スパッタリング蒸着等の各種の方法が採用されてきたが、これらいずれの方法であっても焼成工程等の高温プロセスが存在する。特に、ゾルーゲル法においては、焼成時に基材としての金属層に高温が負荷され、当該金属層が酸化して、基材の劣化を招いたり、セラミック系絶縁層内に金属層の構成金属が拡散して絶縁性が低下し、信頼性の低下を引き起こす場合があった。 However, conventionally, various methods such as sol-gel method, electrophoretic electrodeposition, MOCVD method, sputtering deposition and the like have been adopted for forming the ceramic insulating layer. There is a high temperature process. In particular, in the sol-gel method, a high temperature is applied to the metal layer as a base material during firing, and the metal layer is oxidized to cause deterioration of the base material, or the constituent metal of the metal layer diffuses into the ceramic insulating layer. As a result, the insulating property is lowered, and the reliability is sometimes lowered.
 このため、セラミック系絶縁層を形成する際に導電層に負荷される熱の影響を考慮して、導電層を形成する金属材料には、電気抵抗率の低さとともに、耐熱性を考慮して、高温プロセスに耐え得る材料を選択する必要があった。換言すれば、電気抵抗率という観点においては、銅が優位であるにも関わらず、高温プロセスを経る必要がある場合には、銅を採用することができない場合があった。 For this reason, considering the influence of heat applied to the conductive layer when forming the ceramic insulating layer, the metal material forming the conductive layer has low electrical resistivity and heat resistance. It was necessary to select a material that can withstand a high temperature process. In other words, from the viewpoint of electrical resistivity, there is a case where copper cannot be adopted when it is necessary to go through a high temperature process even though copper is superior.
 以上のことから、市場では、セラミック系絶縁層の形成方法によらず、基材として用いる金属層の構成材料を適宜選択可能であり、セラミック系絶縁層の製造プロセスにおいて当該基材の劣化や当該絶縁層の絶縁性の低下を防止して、生産歩留の向上が求められていた。 From the above, in the market, the constituent material of the metal layer used as the base material can be selected as appropriate regardless of the method of forming the ceramic insulating layer. There has been a demand for improvement in production yield by preventing a decrease in insulating properties of the insulating layer.
 そこで、本発明者等は、鋭意研究を行った結果、セラミック系絶縁層の形成方法によらず、導電層を形成する金属材料を適宜選択可能であり、安定したキャパシタ特性を備えるキャパシタ回路を得ることができ、且つ、生産歩留まりの向上を図り、信頼性の高い回路形成材を得ることができる以下のセラミック系絶縁層と金属層との積層体及び当該積層体の製造方法の発明に想到した。 Therefore, as a result of diligent research, the present inventors can appropriately select a metal material for forming a conductive layer regardless of a method for forming a ceramic insulating layer, and obtain a capacitor circuit having stable capacitor characteristics. The present inventors have devised the following invention of a laminate of a ceramic insulating layer and a metal layer and a method of manufacturing the laminate, which can improve the production yield and obtain a highly reliable circuit forming material. .
 本件発明に係るセラミック系絶縁層と金属層との積層体は、セラミック系絶縁層と金属層との積層体であって、当該金属層には、前記セラミック系絶縁層が設けられる側の面に、層厚が5nm~100nmのケイ素化合物から成る保護層が設けられたことを特徴とする。 A laminate of a ceramic insulating layer and a metal layer according to the present invention is a laminate of a ceramic insulating layer and a metal layer, and the metal layer has a surface on the side where the ceramic insulating layer is provided. Further, a protective layer made of a silicon compound having a layer thickness of 5 nm to 100 nm is provided.
 本件発明に係るセラミック系絶縁層と金属層との積層体において、前記保護層はアモルファス状態のケイ素化合物から成ることが好ましい。 In the laminate of the ceramic insulating layer and the metal layer according to the present invention, the protective layer is preferably made of an amorphous silicon compound.
 本件発明に係るセラミック系絶縁層と金属層との積層体の製造方法は、当該金属層の上面に、層厚が5nm~100nmのケイ素化合物から成る保護層を形成する保護層形成工程と、当該保護層の表面に当該セラミック系絶縁層を形成するセラミック系絶縁層形成工程と、を備えることを特徴とする。 The method for producing a laminate of a ceramic insulating layer and a metal layer according to the present invention includes a protective layer forming step of forming a protective layer made of a silicon compound having a layer thickness of 5 nm to 100 nm on the upper surface of the metal layer, And a ceramic insulating layer forming step of forming the ceramic insulating layer on the surface of the protective layer.
 本件発明によれば、当該セラミック系絶縁層と金属層との積層体において、当該金属層の前記セラミック系絶縁層が設けられる側に、層厚が5nm~100nmのケイ素化合物から成る保護層とを備えている。当該構成を有することにより、金属層の上面に、ゾルーゲル法、スパッタ法、CVD法、泳動電着法等の各種の方法によって、製造の過程で焼成等の高温プロセスを経ることによりセラミック系絶縁層を形成する場合においても、金属層の酸化を極めて有効に防止することができ、導電層としての金属層の導電率の低下及び機械的特性の劣化を防止することができ、当該金属層とセラミック系絶縁層との密着性が向上する。これと同時に、当該構成を採用することにより、保護層がバリアとなって、金属層を構成する金属がセラミック系絶縁層に析出拡散するのを防止して、セラミック系絶縁層の絶縁性の低下や誘電特性の低下を防止することができ、当該積層体を信頼性の高い電子回路形成材或いは電子回路部品形成材として提供することができる。 According to the present invention, in the laminate of the ceramic insulating layer and the metal layer, a protective layer made of a silicon compound having a layer thickness of 5 nm to 100 nm is provided on the side of the metal layer on which the ceramic insulating layer is provided. I have. By having such a configuration, the ceramic insulating layer is formed on the upper surface of the metal layer through a high-temperature process such as firing in the course of manufacturing by various methods such as a sol-gel method, a sputtering method, a CVD method, and an electrophoretic electrodeposition method. In the case of forming the metal layer, the oxidation of the metal layer can be extremely effectively prevented, the decrease in the conductivity of the metal layer as the conductive layer and the deterioration of the mechanical characteristics can be prevented. Adhesion with the system insulating layer is improved. At the same time, by adopting this configuration, the protective layer acts as a barrier, preventing the metal constituting the metal layer from precipitating and diffusing into the ceramic insulating layer, thereby reducing the insulating properties of the ceramic insulating layer. And the deterioration of dielectric characteristics can be prevented, and the laminate can be provided as a highly reliable electronic circuit forming material or electronic circuit component forming material.
 さらに、従来、セラミック系絶縁層の形成方法によっては、耐熱性を考慮するが故に、電気抵抗率のより低い銅又は銅合金等を金属層として採用することができなかった場合でも、銅又は銅合金等を金属層として採用することが可能になる。したがって、本件発明によれば、セラミック系絶縁層の形成方法によらず、導電層を形成する金属材料を適宜選択可能であり、安定したキャパシタ特性を備えるキャパシタ回路を得ることができ、且つ、生産歩留まりの向上を図り、信頼性の高い回路形成材を得ることができる。 Further, conventionally, depending on the method of forming the ceramic insulating layer, even if copper or copper alloy having a lower electrical resistivity cannot be adopted as the metal layer because of considering heat resistance, copper or copper An alloy or the like can be used as the metal layer. Therefore, according to the present invention, the metal material for forming the conductive layer can be appropriately selected regardless of the method for forming the ceramic insulating layer, and a capacitor circuit having stable capacitor characteristics can be obtained and produced. The yield can be improved and a highly reliable circuit forming material can be obtained.
本件発明に係るセラミック系絶縁層と金属層との積層体の基本的な層構成を示す模式図である。It is a schematic diagram which shows the basic layer structure of the laminated body of the ceramic type | system | group insulating layer which concerns on this invention, and a metal layer. 実施例1のセラミック系絶縁層と金属層との積層体におけるセラミック系絶縁層の表面を示すSEM写真(a)、実施例2の同セラミック系絶縁層の表面を示すSEM写真(b)、比較例1の同セラミック系絶縁層の表面を示すSEM写真(c)、比較例2の同セラミック系絶縁層の表面を示すSEM写真(d)である。SEM photograph (a) showing the surface of the ceramic insulating layer in the laminate of the ceramic insulating layer and the metal layer of Example 1, SEM photograph (b) showing the surface of the ceramic insulating layer of Example 2, comparison It is the SEM photograph (c) which shows the surface of the same ceramic type | system | group insulating layer of Example 1, and the SEM photograph (d) which shows the surface of the same ceramic type | system | group insulating layer of the comparative example 2. 実施例1のセラミック系絶縁層と金属層との積層体の断面を示すSEM写真(a)、(b)及び比較例1のセラミック系絶縁層と金属層との積層体の断面を示すSEM写真(c)、(d)である。SEM photographs (a) and (b) showing the cross section of the laminate of the ceramic insulating layer and metal layer of Example 1, and SEM photographs showing the cross section of the laminate of the ceramic insulating layer and metal layer of Comparative Example 1 (C), (d). 実施例2のセラミック系絶縁層と金属層との積層体の断面を示すSEM写真(a)、(b)及び比較例2のセラミック系絶縁層と金属層との積層体の断面を示すSEM写真(c)、(d)である。SEM photographs (a) and (b) showing the cross section of the laminate of the ceramic insulating layer and metal layer of Example 2, and SEM photographs showing the cross section of the laminate of the ceramic insulating layer and metal layer of Comparative Example 2 (C), (d). 実施例1及び実施例2のセラミック系絶縁層と金属層との積層体のセラミック系絶縁層の表面のX線回析結果を示すグラフである。It is a graph which shows the X-ray-diffraction result of the surface of the ceramic type | system | group insulating layer of the laminated body of the ceramic type | system | group insulating layer of Example 1 and Example 2, and a metal layer. 比較例1及び比較例2のセラミック系絶縁層と金属層との積層体のセラミック系絶縁層の表面のX線回析結果を示すグラフである。It is a graph which shows the X-ray-diffraction result of the surface of the ceramic type | system | group insulating layer of the laminated body of the ceramic type | system | group insulating layer of Comparative Example 1 and Comparative Example 2, and a metal layer. 実施例1のセラミック系絶縁層と金属層との積層体の電子線マイクロアナライザ写真である。2 is an electron beam microanalyzer photograph of a laminate of a ceramic insulating layer and a metal layer in Example 1. FIG. 比較例1のセラミック系絶縁層と金属層との積層体の電子線マイクロアナライザ写真である。3 is an electron beam microanalyzer photograph of a laminate of a ceramic insulating layer and a metal layer of Comparative Example 1. 実施例1及び比較例1のセラミック系絶縁層と金属層との積層体におけるリーク電流密度の測定結果を示す図である。It is a figure which shows the measurement result of the leakage current density in the laminated body of the ceramic type insulating layer of Example 1 and Comparative Example 1, and a metal layer. 実施例2及び比較例2のセラミック系絶縁層と金属層との積層体におけるリーク電流密度の測定結果を示す図である。It is a figure which shows the measurement result of the leakage current density in the laminated body of the ceramic type insulating layer of Example 2 and Comparative Example 2, and a metal layer. 実施例3のセラミック系絶縁層と金属層との積層体の断面を示すSEM写真(a)及び比較例3のセラミック系絶縁層と金属層との積層体の断面を示すSEM写真(b)である。In the SEM photograph (a) which shows the cross section of the laminated body of the ceramic type insulating layer and metal layer of Example 3, and the SEM photograph (b) which shows the cross section of the laminated body of the ceramic type insulating layer and metal layer of the comparative example 3. is there. 実施例3及び比較例3のセラミック系絶縁層と金属層との積層体におけるリーク電流密度の測定結果を示す図である。It is a figure which shows the measurement result of the leakage current density in the laminated body of the ceramic type insulating layer of Example 3 and Comparative Example 3, and a metal layer. 泳動電着法により金属層の表面にセラミック系絶縁層を形成する際に、印加する電圧を変化させたときの誘電体粒子の堆積量の変化を示した図である。It is the figure which showed the change of the deposition amount of the dielectric particle when changing the voltage to apply, when forming a ceramic type | system | group insulating layer on the surface of a metal layer by the electrophoretic electrodeposition method.
 以下、本件発明に係るセラミック系絶縁層と金属層との積層体及び当該積層体の製造方法の好ましい実施の形態を説明する。本件発明に係るセラミック系絶縁層と金属層との積層体は、例えば、キャパシタの誘電層及び下部電極形成層、或いは、トランジスタのゲート絶縁膜及びゲート電極等として使用可能なものであり、プリント配線基板或いは半導体基板等に各種電子回路を形成するための電子回路形成材料、或いは、キャパシタ、トランジスタ等の各種電子部品を形成するための電子部品形成材料等として好適に使用することができるものである。以下、1.セラミック系絶縁層と金属層との積層体、2.当該積層体の製造方法について、順に説明する。 Hereinafter, preferred embodiments of a laminate of a ceramic insulating layer and a metal layer and a method for producing the laminate according to the present invention will be described. The laminated body of the ceramic insulating layer and the metal layer according to the present invention can be used as, for example, a dielectric layer and a lower electrode forming layer of a capacitor, or a gate insulating film and a gate electrode of a transistor. It can be suitably used as an electronic circuit forming material for forming various electronic circuits on a substrate or a semiconductor substrate, or an electronic component forming material for forming various electronic components such as capacitors and transistors. . Hereinafter, 1. 1. Laminated body of ceramic insulating layer and metal layer; The manufacturing method of the said laminated body is demonstrated in order.
1.セラミック系絶縁層と金属層との積層体
 図1に示すように、本件発明に係る積層体100は、金属層10の上面に、保護層20を介してセラミック系絶縁層30を積層したものであり、保護層20として層厚が5nm~100nmのケイ素化合物から成る層を採用したことを特徴としている。以下、金属層10、保護層20、セラミック系絶縁層30の順に説明する。
1. Laminated body of ceramic insulating layer and metal layer As shown in FIG. 1, a laminated body 100 according to the present invention is obtained by laminating a ceramic insulating layer 30 on the upper surface of a metal layer 10 with a protective layer 20 interposed therebetween. The protective layer 20 is characterized by adopting a layer made of a silicon compound having a layer thickness of 5 nm to 100 nm. Hereinafter, the metal layer 10, the protective layer 20, and the ceramic insulating layer 30 will be described in this order.
1-1)金属層
 まず、金属層10について説明する。当該金属層10は導電性を有し、例えば、電極形成層等として用いられる層である。したがって、銅、アルミニウム、ニッケル、コバルト、金、白金等の種々の金属又はこれらの合金等の導電層として採用可能な種々の金属を適宜選択して用いることができる。
1-1) Metal Layer First, the metal layer 10 will be described. The metal layer 10 has conductivity, and is a layer used as, for example, an electrode formation layer. Accordingly, various metals such as copper, aluminum, nickel, cobalt, gold, and platinum, or various metals that can be employed as the conductive layer such as an alloy thereof can be appropriately selected and used.
 上記列挙した材料はいずれも好適に使用することができるが、入手が容易であり、且つ、安価であるという観点から、銅、アルミニウム、ニッケル又はこれらの合金等を用いることが好ましい。さらに、電気抵抗率が低く、更に、エッチング等による回路形成時の加工性にも優れるという点から銅又は銅合金を特に好適に用いることができる。 Any of the above-listed materials can be suitably used, but it is preferable to use copper, aluminum, nickel, or an alloy thereof from the viewpoint of easy availability and low cost. Furthermore, copper or a copper alloy can be particularly preferably used because it has a low electrical resistivity and is excellent in workability during circuit formation by etching or the like.
表面処理層: 本件発明では、上記金属層10の表面に、ニッケル、亜鉛、クロム又はこれらの合金から選択される一種又は二種以上を用いた表面処理層を設けてもよい。このように金属層10と保護層20との間に当該表面処理層を設けることにより、例えば、金属層10の耐熱性の向上や耐食性の向上等の表面処理に用いる金属に応じた種々の表面処理効果を得ることができる。従って、銅又は銅合金を金属層10の構成材料として選択した場合であっても、当該表面処理層を金属層10と保護層20との間に設けることにより、銅又は銅合金から成る金属層10の耐熱性や耐食性等を向上して、導電率の低下及び機械的特性の低下等、導電層の劣化を防止することができる。但し、表面処理層は任意の層構成であるため、図1において図示は省略している。 Surface treatment layer: In the present invention, a surface treatment layer using one or more selected from nickel, zinc, chromium, or an alloy thereof may be provided on the surface of the metal layer 10. By providing the surface treatment layer between the metal layer 10 and the protective layer 20 in this way, for example, various surfaces according to the metal used for the surface treatment such as improvement of heat resistance and improvement of corrosion resistance of the metal layer 10. A processing effect can be obtained. Therefore, even when copper or a copper alloy is selected as a constituent material of the metal layer 10, by providing the surface treatment layer between the metal layer 10 and the protective layer 20, a metal layer made of copper or a copper alloy. The heat resistance, corrosion resistance, etc. of No. 10 can be improved and deterioration of the conductive layer, such as a decrease in conductivity and a decrease in mechanical properties, can be prevented. However, since the surface treatment layer has an arbitrary layer configuration, the illustration is omitted in FIG.
シランカップリング剤層: また、本件発明に係る積層体100では、金属層10と保護層20との間にシランカップリング剤層を設けてもよい。シランカップリング剤層を設けることにより、金属層10の濡れ性を改善して、金属層10と保護層20との密着性を向上することができる。シランカップリング剤層についても任意の層構成であるため、図1において図示は省略している。 Silane coupling agent layer: In the laminate 100 according to the present invention, a silane coupling agent layer may be provided between the metal layer 10 and the protective layer 20. By providing the silane coupling agent layer, the wettability of the metal layer 10 can be improved and the adhesion between the metal layer 10 and the protective layer 20 can be improved. Since the silane coupling agent layer has an arbitrary layer configuration, the illustration thereof is omitted in FIG.
 金属層10において、金属層10と保護層20との間に表面処理層及びシランカップリング層を設ける場合、これらのいずれか一方の層のみを設けてもよいし、双方の層を設けてもよい。また、表面処理層とシランカップリング剤層とを共に金属層10と保護層20との間に設ける場合には、金属層10、表面処理層、シランカップリング剤層、保護層20の順に積層されるように設けることが好ましい。表面処理層による金属層10の表面処理効果を得るとともに、シランカップリング剤層により保護層20と金属層10との密着性を得るためである。 In the metal layer 10, when a surface treatment layer and a silane coupling layer are provided between the metal layer 10 and the protective layer 20, only one of these layers may be provided, or both layers may be provided. Good. When both the surface treatment layer and the silane coupling agent layer are provided between the metal layer 10 and the protective layer 20, the metal layer 10, the surface treatment layer, the silane coupling agent layer, and the protective layer 20 are laminated in this order. It is preferable to provide as described above. This is because the surface treatment effect of the metal layer 10 by the surface treatment layer is obtained, and the adhesion between the protective layer 20 and the metal layer 10 is obtained by the silane coupling agent layer.
1-2)保護層
 次に、保護層20について説明する。保護層20は、上述した通り、ケイ素化合物から成る層厚が5nm~100nmの層であり、この保護層20の表面にセラミック系絶縁層30が設けられる。このようにケイ素化合物から成る層厚が5nm~100nmの保護層20を設けることにより、例えば、金属層10の表面にセラミック系絶縁層30を形成する際に高温プロセスを経る場合であっても、金属層10の劣化、即ち、金属層10を構成する上記種々の金属材料の酸化を極めて有効に防止して、金属層10の劣化を防止することができる。ここで、保護層20の層厚としては、10nm~70nmの範囲であることがより好ましい。当該保護層20の層厚が、10nm~70nmの範囲であることにより、セラミック系絶縁層30を形成する際に高温プロセスを経る場合であっても、より効果的に金属層10の劣化を防止することができる。また、後述するように、セラミック系絶縁層30としてペロブスカイト構造を備えるBST(Barium Strontium Titanate)層を採用した場合であっても、反応性の高いBST層が金属層10と反応するのを防止し、セラミック系絶縁層30内に金属層10を構成する金属が析出拡散するのを防止することができる。従って、本件発明に係る保護層20を金属層10に積層して、保護層20に接触するようにしてセラミック系絶縁層30を設けることにより、金属層10の導電率の低下及びセラミック系絶縁層30の絶縁性の低下を極めて有効に防止することができる。このため、従来にあっては、セラミック系絶縁層30を形成する際に加わる熱の影響等を考慮して、銅又は銅合金を積極的に採用することができなかった場合にも、上述した通り、銅又は銅合金を金属層10の構成材料として好適に用いることができる。以下、この点について、更に説明する。
1-2) Protective layer Next, the protective layer 20 will be described. As described above, the protective layer 20 is a layer made of a silicon compound and having a thickness of 5 nm to 100 nm, and the ceramic insulating layer 30 is provided on the surface of the protective layer 20. Thus, by providing the protective layer 20 made of a silicon compound with a layer thickness of 5 nm to 100 nm, for example, when the ceramic insulating layer 30 is formed on the surface of the metal layer 10, Deterioration of the metal layer 10, that is, oxidation of the various metal materials constituting the metal layer 10 can be extremely effectively prevented, and deterioration of the metal layer 10 can be prevented. Here, the thickness of the protective layer 20 is more preferably in the range of 10 nm to 70 nm. When the thickness of the protective layer 20 is in the range of 10 nm to 70 nm, the deterioration of the metal layer 10 can be more effectively prevented even when a high temperature process is performed when the ceramic insulating layer 30 is formed. can do. Further, as described later, even when a BST (Barium Strontium Titanate) layer having a perovskite structure is employed as the ceramic insulating layer 30, it prevents the highly reactive BST layer from reacting with the metal layer 10. Further, it is possible to prevent the metal constituting the metal layer 10 from being precipitated and diffused in the ceramic insulating layer 30. Therefore, by laminating the protective layer 20 according to the present invention on the metal layer 10 and providing the ceramic insulating layer 30 so as to be in contact with the protective layer 20, the conductivity of the metal layer 10 is reduced and the ceramic insulating layer is provided. It is possible to prevent the decrease in the insulation property of 30 very effectively. For this reason, in the past, in consideration of the influence of heat applied when the ceramic insulating layer 30 is formed, copper or a copper alloy could not be actively employed as described above. As described above, copper or a copper alloy can be suitably used as a constituent material of the metal layer 10. Hereinafter, this point will be further described.
 セラミック系絶縁層30を形成する方法として、一般に、ゾルーゲル法、MOCVD法、スパッタリング蒸着法、泳動電着法等の種々の方法が採用されている。従来においては、セラミック系絶縁層30の形成方法に応じて、下部電極形成用の導電層を構成する金属を適宜選択する必要があった。すなわち、セラミック系絶縁層30を形成する際に負荷される熱によって、導電層を構成する金属材料が酸化して導電層の劣化を招く場合があるため、セラミック系絶縁層30を形成する際に採用する方法に応じて、導電層を構成する金属材料を適宜選択する必要があった。例えば、セラミック系絶縁層30を形成する際にゾル-ゲル法等において焼成工程等の高温プロセスを経る必要がある場合、導電層の酸化等を防止するため耐熱性金属として白金等が使用されていた。また、導電層として金属箔を用いる際には、ニッケル箔又はニッケル合金箔(ニッケルーリン合金箔、ニッケルーコバルト合金箔)や、例えば、1μm~5μm程度のニッケル層を銅層に積層した複合箔等が採用されてきた。 As a method for forming the ceramic insulating layer 30, various methods such as a sol-gel method, an MOCVD method, a sputtering deposition method, and an electrophoretic electrodeposition method are generally employed. Conventionally, it has been necessary to appropriately select the metal constituting the conductive layer for forming the lower electrode in accordance with the method for forming the ceramic insulating layer 30. In other words, the heat applied when forming the ceramic insulating layer 30 may oxidize the metal material constituting the conductive layer and cause deterioration of the conductive layer. It was necessary to appropriately select a metal material constituting the conductive layer according to the method employed. For example, when the ceramic insulating layer 30 is formed, platinum or the like is used as a heat-resistant metal in order to prevent oxidation of the conductive layer when it is necessary to go through a high-temperature process such as a firing process in a sol-gel method or the like. It was. In addition, when using a metal foil as the conductive layer, a nickel foil or a nickel alloy foil (nickel-phosphorus alloy foil, nickel-cobalt alloy foil) or a composite foil in which a nickel layer of, for example, about 1 μm to 5 μm is laminated on a copper layer Etc. have been adopted.
 このように、従来においては、セラミック系絶縁層と金属層との積層体100において下部電極形成用の導電層を構成する金属材料は、誘電層として用いられるセラミック系絶縁層30を形成する際に採用する方法によっては、選択可能な金属の種類に一定の制限が課される場合があった。例えば、銅とニッケルとを比較すると、銅の電気抵抗率は約1.68×10-8Ωmであるのに対して、ニッケルの電気抵抗率は、6.99×10-8Ωmである。また、銅は非磁性金属であるのに対して、ニッケルは磁性金属である。従って、電気抵抗率が低く、非磁性体である銅を用いて当該金属層10を構成した方が、当該積層体100を用いて得られる各種電子部品の電気的特性を向上させることが容易である。しかしながら、従来においては、セラミック系絶縁層30を形成する際に高温プロセスが存在する場合には、この高温プロセス下において銅又は銅合金が酸化し、上述の種々の弊害が生じるため、銅又は銅合金を積極的に採用することができない場合があった。これに対して、本件発明では、例えば、導電層として金属層10と保護層20とを積層した二層構成とし、この導電層を基材として用いて保護層20の表面にセラミック系絶縁層30を形成することにより、セラミック系絶縁層30の形成方法によらず、銅又は銅合金を含む種々の金属を適宜選択して金属層10を構成することができる。 Thus, conventionally, the metal material constituting the conductive layer for forming the lower electrode in the laminate 100 of the ceramic insulating layer and the metal layer is used when forming the ceramic insulating layer 30 used as a dielectric layer. Depending on the method employed, certain restrictions may be imposed on the type of metal that can be selected. For example, when copper and nickel are compared, the electrical resistivity of copper is about 1.68 × 10 −8 Ωm, whereas the electrical resistivity of nickel is 6.99 × 10 −8 Ωm. Copper is a nonmagnetic metal, whereas nickel is a magnetic metal. Therefore, it is easier to improve the electrical characteristics of various electronic components obtained using the laminate 100 when the metal layer 10 is made of copper, which has a low electrical resistivity and is nonmagnetic. is there. However, conventionally, when a high temperature process exists when forming the ceramic insulating layer 30, copper or copper alloy is oxidized under this high temperature process, and the above-mentioned various problems occur, so copper or copper In some cases, the alloy could not be actively employed. On the other hand, in the present invention, for example, a two-layer structure in which the metal layer 10 and the protective layer 20 are laminated as a conductive layer, and the ceramic insulating layer 30 is formed on the surface of the protective layer 20 using the conductive layer as a base material. By forming the metal layer 10, the metal layer 10 can be configured by appropriately selecting various metals including copper or a copper alloy regardless of the method of forming the ceramic insulating layer 30.
ケイ素化合物: 本件発明において、保護層20は、上記ケイ素化合物として、SiO、SiN-SiO(x>0)及びSiN(x>0)から選択された一種から成ることが好ましい。これらのケイ素化合物から成る保護層20は、比較的低温で形成することができるため、保護層20形成時に金属層10に熱の負荷を与えず、金属層10の酸化等を引き起こすことがない。また、これらのケイ素化合物は、金属層10との反応性が低く、金属層10と反応して金属層10の導電性を低下させることがないため、好ましい。また、これらのケイ素化合物から成る保護層20は非晶質で、屈曲性に優れるため、当該セラミック系絶縁層と金属層との積層体100を基板に積層する際などのハンドリング性にも優れる。 Silicon Compound: In the present invention, the protective layer 20 is preferably made of one kind selected from SiO 2 , SiN x —SiO 2 (x> 0) and SiN x (x> 0) as the silicon compound. Since the protective layer 20 made of these silicon compounds can be formed at a relatively low temperature, a heat load is not applied to the metal layer 10 when the protective layer 20 is formed, and the metal layer 10 is not oxidized. These silicon compounds are preferable because they have low reactivity with the metal layer 10 and do not react with the metal layer 10 to lower the conductivity of the metal layer 10. Further, since the protective layer 20 made of these silicon compounds is amorphous and excellent in flexibility, it is excellent in handling properties when the laminate 100 of the ceramic insulating layer and the metal layer is laminated on a substrate.
1-3)セラミック系絶縁層
 次に、セラミック系絶縁層30について説明する。セラミック系絶縁層30は、当該積層体100を用いて各種電子部品等を製造する際に、絶縁層又は誘電層として用いられる層であり、無機酸化物から成る層である。例えば、当該積層体100を用いてエッチング加工等によりキャパシタ回路を形成する場合を考慮すると、当該セラミック系絶縁層30の層厚は薄い方が好ましい。周知のように、キャパシタの静電容量(C)は、下記式により求めることができ、誘電率に比例するとともに、電極間の距離(d)、すなわち、セラミック系絶縁層30の厚みに反比例するからである。
1-3) Ceramic Insulating Layer Next, the ceramic insulating layer 30 will be described. The ceramic insulating layer 30 is a layer that is used as an insulating layer or a dielectric layer when manufacturing various electronic components using the laminate 100, and is a layer made of an inorganic oxide. For example, considering the case where a capacitor circuit is formed by etching or the like using the multilayer body 100, it is preferable that the ceramic insulating layer 30 is thin. As is well known, the capacitance (C) of the capacitor can be obtained by the following equation, and is proportional to the dielectric constant and inversely proportional to the distance (d) between the electrodes, that is, the thickness of the ceramic insulating layer 30. Because.
 C=εε(A/d)・・・(式)
 但し、上記式において、Cはキャパシタの静電容量であり、εはセラミック系絶縁層30の誘電率であり、εは真空の誘電率であり、Aは電極の表面面積であり、dは上部電極と下部電極との間の距離である。
C = εε 0 (A / d) (formula)
In the above equation, C is the capacitance of the capacitor, ε is the dielectric constant of the ceramic insulating layer 30, ε 0 is the vacuum dielectric constant, A is the surface area of the electrode, and d is This is the distance between the upper electrode and the lower electrode.
セラミック系絶縁層の厚み: 本件発明に係る積層体100を用いて静電容量の大きいキャパシタを形成するという観点、或いはトランジスタ等の各種電子部品の微細化を図るという観点から本件発明に係るセラミック系絶縁層30の厚みは、上述の通り薄い方が好ましい。具体的には、50nm~5.0μmの範囲の厚みであることが好ましく、より好ましくは、50nm~2.0μmの範囲の厚みである。セラミック系絶縁層30の厚みが50nm未満の場合、層厚が不均一になる場合があり、また、無機酸化物粒子の粒子間の間隙の存在により、キャパシタ回路を形成した際の上部電極と下部電極との間の短絡が生じ、リーク電流が大きくなる場合があるため好ましくない。また、セラミック系絶縁層30の厚みが5.0μmを超える場合、当該セラミック系絶縁層30にクラックが生じる場合があり、また、キャパシタ回路を形成する際に静電容量の低下を生じるため好ましくない。 Thickness of the ceramic insulating layer: From the viewpoint of forming a capacitor having a large capacitance using the laminate 100 according to the present invention, or from the viewpoint of miniaturizing various electronic components such as transistors, the ceramic system according to the present invention The insulating layer 30 is preferably thinner as described above. Specifically, the thickness is preferably in the range of 50 nm to 5.0 μm, and more preferably in the range of 50 nm to 2.0 μm. If the thickness of the ceramic insulating layer 30 is less than 50 nm, the layer thickness may be non-uniform, and the upper electrode and the lower portion when the capacitor circuit is formed due to the presence of gaps between the inorganic oxide particles. This is not preferable because a short circuit may occur between the electrodes and the leakage current may increase. In addition, when the thickness of the ceramic insulating layer 30 exceeds 5.0 μm, cracks may occur in the ceramic insulating layer 30 and the capacitance is reduced when forming the capacitor circuit, which is not preferable. .
セラミック系絶縁層の構成材料: また、静電容量の大きなキャパシタ回路を得るという観点から、当該セラミック系絶縁層30は、チタン酸バリウム、チタン酸ストロンチウム、チタン酸バリウムストロンチウム、ジルコン酸ストロンチウム、ジルコン酸ビスマス等の基本組成を備えるペロブスカイト型の強誘電体薄層とすることが好ましい。これらの中でも、特に、当該セラミック系絶縁層30をチタン酸バリウム、チタン酸ストロンチウム、チタン酸バリウムストロンチウムのいずれかの基本組成を備えるペロブスカイト型の強誘電体薄層とした場合、誘電率が高く、大容量のキャパシタ回路を得ることができるという観点から特に好ましい。 Constituent material of ceramic insulating layer: From the viewpoint of obtaining a capacitor circuit having a large capacitance, the ceramic insulating layer 30 is composed of barium titanate, strontium titanate, barium strontium titanate, strontium zirconate, zirconic acid. A perovskite ferroelectric thin layer having a basic composition such as bismuth is preferred. Among these, in particular, when the ceramic insulating layer 30 is a perovskite ferroelectric thin layer having a basic composition of any one of barium titanate, strontium titanate, and barium strontium titanate, the dielectric constant is high, This is particularly preferable from the viewpoint that a large capacity capacitor circuit can be obtained.
樹脂成分の含浸: また、本件発明において、当該セラミック系絶縁層30は、当該セラミック系絶縁層30内に存在する粒子又は粒界間に樹脂成分を含浸させることが好ましい。例えば、ゾルーゲル法、又は泳動電着法によりセラミック系絶縁層30を形成する場合、当該セラミック絶縁層30内に粒子又は粒界間にリーク電流の流路となる隙間(構造欠陥)が生じやすい。そこで、セラミック系絶縁層30内に存在する粒子又は粒界間に樹脂成分を含浸させることにより、リーク電流の流路となる構造欠陥を埋めることができる。これにより、リーク電流を小さくすることができ、セラミック系絶縁層30の絶縁性の低下を防止することができ、信頼性の高い絶縁層或いは誘電層として機能させることができるとともに、生産歩留まりを向上することができる。 Impregnation of resin component: In the present invention, the ceramic insulating layer 30 is preferably impregnated with a resin component between particles or grain boundaries present in the ceramic insulating layer 30. For example, when the ceramic insulating layer 30 is formed by the sol-gel method or the electrophoretic electrodeposition method, a gap (structural defect) that becomes a flow path of a leakage current is easily generated between particles or grain boundaries in the ceramic insulating layer 30. Therefore, by impregnating a resin component between particles or grain boundaries existing in the ceramic insulating layer 30, a structural defect serving as a leakage current channel can be filled. As a result, the leakage current can be reduced, the deterioration of the insulating properties of the ceramic insulating layer 30 can be prevented, and it can function as a highly reliable insulating layer or dielectric layer, and the production yield can be improved. can do.
 なお、セラミック系絶縁層30の形成方法や、セラミック系絶縁層30内に存在する粒子又は粒界間に含浸させる樹脂成分や、その含浸方法等については、2.セラミック系絶縁層と金属層との積層体100の製造方法において後述する。 In addition, about the formation method of the ceramic type | system | group insulating layer 30, the resin component impregnated between the particle | grains which exist in the ceramic type | system | group insulating layer 30, or a grain boundary, the impregnation method, etc. are 2. This will be described later in the method for manufacturing the laminate 100 of the ceramic insulating layer and the metal layer.
1-4)上部電極形成層
 以上の様に構成した積層体100において、セラミック系絶縁層30の上面に金属材料からなる上部電極形成層40を設け、金属層10(保護層20を含む)を下部電極形成層として用い、当該積層体100をセラミック系絶縁層の誘電特性を利用したキャパシタ回路形成材(110)として構成してもよい。この場合、当該上部電極形成層40は、銅、銅合金、ニッケル及びニッケル合金、アルミニウムのいずれかにより構成されることが好ましい。このように構成されたキャパシタ回路形成材(110)は、例えば、エッチング加工等によりプリント配線基板の内層にキャパシタ回路を形成する際等に好適に用いることができる。
1-4) Upper Electrode Formation Layer In the laminate 100 configured as described above, the upper electrode formation layer 40 made of a metal material is provided on the upper surface of the ceramic insulating layer 30, and the metal layer 10 (including the protective layer 20) is provided. The laminated body 100 may be configured as a capacitor circuit forming material (110) that uses the dielectric characteristics of the ceramic insulating layer. In this case, the upper electrode formation layer 40 is preferably composed of any one of copper, copper alloy, nickel, nickel alloy, and aluminum. The capacitor circuit forming material (110) thus configured can be suitably used, for example, when a capacitor circuit is formed on the inner layer of the printed wiring board by etching or the like.
2.セラミック系絶縁層と金属層との積層体の製造方法
 次に、本件発明に係るセラミック系絶縁層と金属層との積層体の製造方法について説明する。本件発明に係るセラミック系絶縁層と金属層との積層体の製造方法は、金属層10上に、層厚が5nm~100nmのケイ素化合物から成る保護層20を形成する保護層形成工程と、当該保護層20の表面に当該セラミック系絶縁層30を形成するセラミック系絶縁層形成工程とを備えることを特徴としている。以下、各工程毎に説明する。
2. Next, the manufacturing method of the laminated body of the ceramic type | system | group insulating layer and metal layer which concerns on this invention is demonstrated. The method for producing a laminate of a ceramic insulating layer and a metal layer according to the present invention includes a protective layer forming step of forming a protective layer 20 made of a silicon compound having a layer thickness of 5 nm to 100 nm on the metal layer 10; And a ceramic insulating layer forming step of forming the ceramic insulating layer 30 on the surface of the protective layer 20. Hereinafter, each step will be described.
2-1)保護層形成工程
 保護層形成工程では、金属層10上に、上述した層厚が5nm~100nmのケイ素化合物から成る保護層20を形成する。
2-1) Protective layer forming step In the protective layer forming step, the protective layer 20 made of the silicon compound having a thickness of 5 nm to 100 nm is formed on the metal layer 10.
金属層: 保護層20を形成する際に、金属層10として、銅、ニッケル、コバルト、金、白金等の種々の金属又はこれらの合金等の金属箔を用いることができるが、本件発明においては、特に銅又は銅合金を好ましく用いることができる。上述した通り、銅は、上述の金属の中で、最も電気抵抗率が低く、且つ、非磁性体であることから、導電層として好適であるとともに、他の金属と比較して、入手が容易であり、エッチング等の加工が容易であり、また、安価であることから製造コストを低く抑えることができるためである。 Metal layer: When forming the protective layer 20, the metal layer 10 can be made of various metals such as copper, nickel, cobalt, gold, and platinum, or metal foils of these alloys, etc. In particular, copper or a copper alloy can be preferably used. As described above, copper has the lowest electrical resistivity among the above-mentioned metals and is a non-magnetic material, so that it is suitable as a conductive layer and is easily available compared to other metals. This is because processing such as etching is easy and the manufacturing cost can be kept low because it is inexpensive.
金属箔: 金属層10は、上記各種の金属から成る金属箔を用いて形成することができる。この場合、圧延法又は電解法等で得られた金属箔を用いることができる。例えば、銅又は銅合金から成る金属層10を形成する場合、銅箔又は銅合金箔(真鍮箔、コルソン合金箔)を用いることができる。また、ニッケル又はニッケル合金から成る金属層10を形成する場合、ニッケル箔又はニッケル合金箔(ニッケル-リン合金箔、ニッケルーコバルト合金箔)を用いることができる。また、これらの金属箔の表面に、異種の金属層を備える複合箔等を用いてもよい。但し、当該金属層10は、例えば、エッチング加工等により回路形成等を行うことを考慮すると、微細な電極パターン或いは配線パターンを良好に形成するという観点から、単一組成の金属層を用いることが好ましい。また、必要に応じて、金属層10の表面に、上記表面処理層及び/又はシランカップリング剤層を従来既知の方法により設けてもよい。 Metal foil: The metal layer 10 can be formed using a metal foil made of the various metals described above. In this case, a metal foil obtained by a rolling method or an electrolytic method can be used. For example, when forming the metal layer 10 made of copper or copper alloy, copper foil or copper alloy foil (brass foil, Corson alloy foil) can be used. Further, when forming the metal layer 10 made of nickel or nickel alloy, nickel foil or nickel alloy foil (nickel-phosphorus alloy foil, nickel-cobalt alloy foil) can be used. Moreover, you may use the composite foil etc. which provide a dissimilar metal layer on the surface of these metal foils. However, the metal layer 10 may be a single composition metal layer from the viewpoint of satisfactorily forming a fine electrode pattern or wiring pattern in consideration of, for example, performing circuit formation by etching or the like. preferable. Moreover, you may provide the said surface treatment layer and / or a silane coupling agent layer on the surface of the metal layer 10 by a conventionally well-known method as needed.
保護層の形成: 次に、上記金属層10の表面に層厚が5nm~100nmになるように保護層20を形成する。但し、金属層10の表面に表面処理層及び/又はシランカップリング層が設けられている場合には、その最も外層に設けられた表面処理層又はシランカップリング材層の表面に保護層20を形成する。 Formation of protective layer: Next, the protective layer 20 is formed on the surface of the metal layer 10 so as to have a layer thickness of 5 nm to 100 nm. However, when the surface treatment layer and / or the silane coupling layer is provided on the surface of the metal layer 10, the protective layer 20 is provided on the surface of the outermost surface treatment layer or the silane coupling material layer. Form.
 本件発明において保護層20の形成に際しては、a)ポリシラザンの塗布によりSiO層を形成する方法と、b)化学気相反応法(CVD法)又は物理蒸着法のいずれかによりSiO層、SiNx-SiO層、SiNx層を形成する方法のいずれを採用してもよい。 In forming the protective layer 20 in the present invention, a) a method of forming a SiO 2 layer by applying polysilazane; and b) a SiO 2 layer, SiNx by either chemical vapor reaction (CVD) or physical vapor deposition. Any method of forming a —SiO 2 layer and a SiNx layer may be employed.
a)ポリシラザンの塗布によりSiO層を形成する方法
 必要に応じて表面処理層及び/又はシランカップリグ剤層が設けられた金属層10上に、ポリシラザンを上記5nm~100nmの範囲内で所定の厚みとなるように塗布する。塗布方法としては、例えば、スピンコート法等、従来既知の塗工方法を適宜採用することができる。ポリシラザン溶液としては、例えば、有限会社エクスシア社製のSSL-SD500-HBを用いることができる。また、形成する保護層20の層厚を調整するために、無水ジブチルエーテル等の有機溶剤を用いて適宜希釈して用いてもよい。
a) Method for forming a SiO 2 layer by applying polysilazane Polysilazane is applied within a range of 5 nm to 100 nm on the metal layer 10 provided with a surface treatment layer and / or a silane coupling agent layer as required. Apply to a thickness. As a coating method, for example, a conventionally known coating method such as a spin coating method can be appropriately employed. As the polysilazane solution, for example, SSL-SD500-HB manufactured by Exsia Co., Ltd. can be used. Moreover, in order to adjust the layer thickness of the protective layer 20 to be formed, it may be used after appropriately diluted with an organic solvent such as anhydrous dibutyl ether.
 ここで、ポリシラザン(Polysilazane)とは、分子内でSi-N(ケイ素-窒素)結合が繰り返された重合体であり、シリカ(SiO)への転化が容易なものであれば、特に限定なく使用することができる。特に、Si-N結合のSi原子に2個の水素原子が結合した-(SiH-NH)-の繰り返し構造を有するペルヒドロポリシラザンは、大気中の水分と反応してシリカに容易に転化するため、上記保護層20を形成する際に好ましく用いることができる。当該ペルヒドロポリシラザンの有機溶媒溶液を塗布液として用い、大気中で乾燥し、UV照射すること等により、緻密でアモルファス状態の高純度シリカ(アモルファスSiO)層を得ることができる。 Here, polysilazane is a polymer in which Si—N (silicon-nitrogen) bonds are repeated in the molecule, and is not particularly limited as long as it can be easily converted to silica (SiO 2 ). Can be used. In particular, perhydropolysilazane having a repeating structure of — (SiH 2 —NH) — in which two hydrogen atoms are bonded to Si atoms of Si—N bonds reacts with moisture in the atmosphere and is easily converted to silica. Therefore, it can be preferably used when forming the protective layer 20. A dense and amorphous high-purity silica (amorphous SiO 2 ) layer can be obtained by using the organic solvent solution of perhydropolysilazane as a coating solution, drying in the air, and irradiating with UV.
 上記において、UV照射を行うのは、ポリシラザンと大気中の水分との反応を促進してシリカへの転化に要する時間を短縮して、工業生産に求められる生産性を満足するためである。また、乾燥時及びUV照射時のそれぞれにおいて、加熱することにより、ポリシラザンと大気中の水分との反応を促進してシリカへの転化に要する時間を更に短縮することができる。ここで、乾燥は、溶剤の除去や塗膜流れの防止等を目的として行う工程であり、概ね80℃~130℃の範囲で行う。また、乾燥は、上述の通り、溶剤の除去や塗膜流れの防止等を目的として行うため、長時間の乾燥を行う必要はなく、10秒~5分程度の範囲内で適宜行えばよい。 In the above, the UV irradiation is performed in order to promote the reaction between polysilazane and moisture in the air to shorten the time required for conversion to silica and satisfy the productivity required for industrial production. In addition, by heating at the time of drying and at the time of UV irradiation, the reaction between polysilazane and atmospheric moisture can be promoted, and the time required for conversion to silica can be further shortened. Here, the drying is a process performed for the purpose of removing the solvent, preventing the flow of the coating film, and the like, and is generally performed in the range of 80 ° C to 130 ° C. In addition, as described above, drying is performed for the purpose of removing the solvent, preventing the flow of the coating film, and the like. Therefore, it is not necessary to perform drying for a long time, and it may be appropriately performed within a range of about 10 seconds to 5 minutes.
 一方、UV照射は、ポリシラザンと大気中の水分との反応を促進することを目的としたものであり、加熱した状態でUVを照射することにより、UV照射による当該反応促進効果が高くなる。具体的には、150℃~350℃の範囲で加熱することが好ましい。150℃未満の場合は、加熱による上記反応促進効果を十分に得ることができず好ましくない。また、350℃を超えると、金属層10に対して熱の負荷を与える場合があり好ましくない。UV照射に要する時間は、ポリシラザン液塗布後、ポリシラザンがシリカに転化して当該ポリシラザン塗布層が硬化するまでに要する時間である。上記温度範囲でUV照射を行った場合、当該ポリシラザン塗布層、すなわち5nm~100nmの層厚の保護層20を形成する場合、1分~180分の範囲でシリカに転化する。従って、UVの照射時間が1分未満の場合には、ポリシラザンと水分との反応が完了しない場合があり上記層厚のポリシラザン層であれば、180分以内でシリカ層に転化することから、180分を超えてUVを照射する必要性は乏しい。 On the other hand, the purpose of UV irradiation is to promote the reaction between polysilazane and moisture in the atmosphere. By irradiating UV in a heated state, the reaction promoting effect by UV irradiation is enhanced. Specifically, it is preferable to heat in the range of 150 ° C to 350 ° C. When the temperature is lower than 150 ° C., the reaction promoting effect by heating cannot be sufficiently obtained, which is not preferable. Moreover, when it exceeds 350 degreeC, the heat load may be given with respect to the metal layer 10, and it is unpreferable. The time required for UV irradiation is the time required for polysilazane to be converted to silica after the polysilazane solution is coated and the polysilazane coating layer is cured. When UV irradiation is performed in the above temperature range, when the polysilazane coating layer, that is, the protective layer 20 having a layer thickness of 5 nm to 100 nm is formed, it is converted to silica in the range of 1 minute to 180 minutes. Therefore, when the UV irradiation time is less than 1 minute, the reaction between polysilazane and moisture may not be completed. If the polysilazane layer has the above thickness, it is converted into a silica layer within 180 minutes. There is little need to irradiate UV beyond minutes.
b)化学気相反応法(CVD法)又は物理蒸着法について
 上記保護層20の形成に際して、ポリシラザン塗布液の塗布による方法の他に、従来既知の化学気相反応法又は物理蒸着法を用いて、SiO層、SiNx(窒化シリコン)-SiO層、SiNx層を形成してもよい。これらにより、アモルファス状態のシリカ層、窒化シリコン-シリカ層、窒化シリコン層を形成することが好ましい。
b) Chemical Vapor Phase Reaction Method (CVD Method) or Physical Vapor Deposition Method In forming the protective layer 20, in addition to the method of applying a polysilazane coating solution, a conventionally known chemical vapor reaction method or physical vapor deposition method is used. A SiO 2 layer, a SiNx (silicon nitride) -SiO 2 layer, or a SiNx layer may be formed. Thus, it is preferable to form an amorphous silica layer, a silicon nitride-silica layer, and a silicon nitride layer.
 以上のケイ素化合物からなる保護層20を形成することにより、金属層10の表面をいわばガラスコーティングすることになるため、金属層10の酸化防止効果や、セラミック系絶縁層30への金属拡散防止効果に加えて、次に説明するゾルーゲル法等において金属層10の表面にゾルーゲル液をスピンコート法等により塗布する際に、金属層10を保護して金属層10が機械的損傷を受けるのを防止することができる。 By forming the protective layer 20 made of the above silicon compound, the surface of the metal layer 10 is so-called glass coated, so that the oxidation effect of the metal layer 10 and the effect of preventing metal diffusion into the ceramic insulating layer 30 are achieved. In addition, when a sol-gel solution is applied to the surface of the metal layer 10 by a spin coating method or the like in the sol-gel method described below, the metal layer 10 is protected to prevent the metal layer 10 from being mechanically damaged. can do.
2-2)セラミック系絶縁層形成工程
 次に、セラミック系絶縁層形成工程について説明する。セラミック系絶縁層形成工程は、上記保護層形成工程において金属層10に積層された保護層20の表面にセラミック系絶縁層30を形成することを特徴としている。上記保護層20の表面にセラミック系絶縁層30を形成することにより、セラミック系絶縁層30形成時に、どのような方法を採用するかによらず、金属層10の酸化等による劣化や、当該セラミック系絶縁層30内への下地金属の拡散等を防止することができるためである。セラミック系絶縁層30を形成する方法として、ゾルーゲル法、泳動電着法、MOCVD法、スパッタリング蒸着法等種々の方法を採用することができる。ここでは、特に、セラミック系絶縁層30を広面積に薄く形成する際に有利であるゾルーゲル法及び泳動電着法について説明する。
2-2) Ceramic Insulating Layer Forming Step Next, the ceramic insulating layer forming step will be described. The ceramic insulating layer forming step is characterized in that the ceramic insulating layer 30 is formed on the surface of the protective layer 20 laminated on the metal layer 10 in the protective layer forming step. By forming the ceramic insulating layer 30 on the surface of the protective layer 20, regardless of what method is adopted when forming the ceramic insulating layer 30, deterioration due to oxidation or the like of the metal layer 10 or the ceramic This is because diffusion of the base metal into the system insulating layer 30 can be prevented. As a method for forming the ceramic insulating layer 30, various methods such as a sol-gel method, an electrophoretic electrodeposition method, an MOCVD method, and a sputtering vapor deposition method can be employed. Here, a sol-gel method and an electrophoretic electrodeposition method, which are particularly advantageous when the ceramic insulating layer 30 is formed thin over a wide area, will be described.
a)ゾルーゲル法
 まず、ゾルーゲル法によるセラミック系絶縁層30の形成方法について説明する。ゾルーゲル法により、セラミック系絶縁層30を形成する際には、(a-1)ゾルーゲル液を調製するゾルーゲル液調製工程、(a-2)ゾル-ゲル液を金属層10の保護層20の表面に塗布する塗工工程、(a-3)最終的なセラミック系絶縁層30を形成するための焼成工程の3工程を経ることが好ましい。以下、各工程毎に説明する。
a) Sol-Gel Method First, a method for forming the ceramic insulating layer 30 by the sol-gel method will be described. When the ceramic insulating layer 30 is formed by the sol-gel method, (a-1) a sol-gel solution preparation step for preparing a sol-gel solution, (a-2) the surface of the protective layer 20 of the metal layer 10 on the sol-gel solution It is preferable to pass through three steps: a coating step for applying to (a-3) and a firing step for forming the final ceramic insulating layer 30. Hereinafter, each step will be described.
(a-1)ゾルーゲル液調製工程: ゾルーゲル液調製工程は、所望の組成を有するセラミック系絶縁層30を形成するためのゾル-ゲル溶液を調製するための工程である。当該工程は、特段の制限はなく、ゾルーゲル液として、所望の組成を有するセラミック系絶縁層30となるように自らゾル-ゲル液を調製してもよいし、市販の調製液を用いてもよい。結果として、所望の組成を有するセラミック系絶縁層30を形成することが可能なゾルーゲル液が調製できればよい。例えば、セラミック系絶縁層30として、三菱マテリアル製の10wt%BST(90/10/100)を用いて、結晶構造としてペロブスカイト構造を備えるBST層を形成することができる。但し、90/10/100は、バリウム、ストロンチウム、チタン酸のそれぞれのモル比である。 (A-1) Sol-gel solution preparation step: The sol-gel solution preparation step is a step for preparing a sol-gel solution for forming the ceramic insulating layer 30 having a desired composition. The process is not particularly limited, and the sol-gel solution may be prepared by itself so as to be the ceramic insulating layer 30 having a desired composition, or a commercially available preparation solution may be used. . As a result, it is only necessary to prepare a sol-gel solution capable of forming the ceramic insulating layer 30 having a desired composition. For example, as the ceramic insulating layer 30, a BST layer having a perovskite structure as a crystal structure can be formed using 10 wt% BST (90/10/100) manufactured by Mitsubishi Materials. However, 90/10/100 is the molar ratio of barium, strontium, and titanic acid.
(a-2)塗工工程: 塗工工程では、上記(A)ゾルーゲル液調製工程において調製したゾルーゲル液を金属層10の保護層20の表面に塗布し、当該ゾルーゲル液を乾燥させて、所望の層厚のゾルーゲル液塗布層を得る工程である。ここで、ゾルーゲル液の塗布に際しては、従来既知の方法を適宜採用することができるが、層厚の均一性及びゾルーゲル液の特質等を考慮すると、スピンコート法により行うことが好ましい。 (A-2) Coating process: In the coating process, the sol-gel liquid prepared in the above-mentioned (A) sol-gel liquid preparation process is applied to the surface of the protective layer 20 of the metal layer 10, and the sol-gel liquid is dried to obtain the desired This is a step of obtaining a sol-gel solution coating layer having a layer thickness of. Here, when applying the sol-gel solution, a conventionally known method can be appropriately employed. However, in consideration of the uniformity of the layer thickness, the characteristics of the sol-gel solution, and the like, it is preferably performed by a spin coating method.
 本件発明において、当該塗工工程では、以下の方法を採用することを特徴としている。すなわち、金属層10の保護層20の表面にゾルーゲル液を塗布し、酸素含有雰囲気中で120℃~350℃の温度範囲下において、30秒間~10分間で乾燥することを複数回繰り返し、当該ゾルーゲル液塗布層の層厚を調整することが好ましい。当該乾燥条件の範囲を外れ、乾燥が不十分なものとなった場合には、塗膜流れや、繰り返し塗布時の再溶解等により、最終的に得られるセラミック系絶縁層30の層厚が不均一になるため、好ましくない。一方、当該乾燥条件の範囲を外れ、乾燥が過剰なものとなった場合には、基材としての金属層10に熱の負荷を与え、金属層10の劣化を招く場合があるため、好ましくない。また、以上のように、ゾル-ゲル液の塗布と乾燥を繰り返し行うことにより、当該ゾルーゲル液塗布層の層厚の調整が容易であり、目的とする厚さのセラミック系絶縁層30を得ることができる。 In the present invention, the coating method is characterized by adopting the following method. That is, applying a sol-gel solution to the surface of the protective layer 20 of the metal layer 10 and drying in an oxygen-containing atmosphere at a temperature range of 120 ° C. to 350 ° C. for 30 seconds to 10 minutes is repeated a plurality of times. It is preferable to adjust the layer thickness of the liquid coating layer. If the drying conditions are not met and the drying becomes insufficient, the final thickness of the ceramic insulating layer 30 may be reduced due to the flow of the coating film or re-dissolution during repeated application. Since it becomes uniform, it is not preferable. On the other hand, if the drying condition is out of the range and the drying becomes excessive, a heat load is applied to the metal layer 10 as a base material, and the metal layer 10 may be deteriorated. . In addition, as described above, by repeatedly applying and drying the sol-gel solution, it is easy to adjust the layer thickness of the sol-gel solution coating layer, and the ceramic insulating layer 30 having a desired thickness can be obtained. Can do.
(a-3)焼成工程: 焼成工程は、400℃~800℃で、5分間から120分間、不活性ガス置換(窒素ガス雰囲気等;以下同じ)又は真空雰囲気で行うことが好ましい。当該焼成工程を経ることにより、前駆体の酸化反応が進行し、本件発明に係るセラミック系絶縁層30を得ることができる。当該焼成工程を不活性ガス置換又は真空雰囲気で行うのは、金属層10の劣化を防止するためである。焼成温度が400℃未満の場合、上記酸化反応が不完全なものとなり、基材としての金属層10との密着性に優れ、適正な緻密さと適度な粒度の結晶組織を備える誘電層としてのセラミック系絶縁層30を得ることが困難である。一方、焼成温度が800℃を超える場合、焼成が過剰になり、当該セラミック系絶縁層30の絶縁性の低下及び金属層10の物理的強度の低下、導電率の低下等が生じるため好ましくない。但し、焼成温度や焼成時間は、金属層10の構成金属の種類、当該セラミック系絶縁層30の形成に用いるゾルーゲル液の組成等に応じて、適宜適切な温度や時間に変更可能であるのは勿論である。 (A-3) Firing step: The firing step is preferably performed at 400 to 800 ° C. for 5 to 120 minutes in an inert gas replacement (nitrogen gas atmosphere or the like; the same applies hereinafter) or a vacuum atmosphere. Through the firing step, the oxidation reaction of the precursor proceeds, and the ceramic insulating layer 30 according to the present invention can be obtained. The reason why the firing process is performed in an inert gas replacement or vacuum atmosphere is to prevent the metal layer 10 from being deteriorated. When the firing temperature is less than 400 ° C., the above oxidation reaction is incomplete, excellent adhesion to the metal layer 10 as a base material, ceramic as a dielectric layer having an appropriate fineness and a crystal structure of an appropriate particle size It is difficult to obtain the system insulating layer 30. On the other hand, when the firing temperature exceeds 800 ° C., firing is excessive, which is not preferable because the insulation of the ceramic insulating layer 30 is lowered, the physical strength of the metal layer 10 is lowered, and the conductivity is lowered. However, the firing temperature and firing time can be appropriately changed to an appropriate temperature and time depending on the type of constituent metal of the metal layer 10 and the composition of the sol-gel solution used for forming the ceramic insulating layer 30. Of course.
 本件発明では、当該焼成工程において上述の温度範囲でゾルーゲル液塗布層の焼成を行い、セラミック系絶縁層30を得ている。このとき、本件発明に係る保護層20を金属層10の上層に設けたものを基材として用いることにより、上述した通り、金属層10の劣化、即ち、金属層10を構成する金属材料の酸化を極めて有効に防止して、金属層10の劣化を防止することができる。また、セラミック系絶縁層30を形成する際に、ゾルーゲル液としてBST液等を用いて反応性の高いBST層を形成する場合であっても、当該焼成工程等において金属層10とBST層との反応を防止し、セラミック系絶縁層30内に金属層10を構成する金属が析出拡散するのを防止することができる。したがって、従来にあっては、当該焼成工程において上記範囲内の温度が金属層10に加わる場合、酸化反応が進行しやすい銅又は銅合金を積極的に採用することができなかった。しかしながら、上述した通り、金属層10の上層に保護層20を設けることにより、銅又は銅合金を金属層10の構成材料として好適に用いることができる。 In the present invention, the ceramic insulating layer 30 is obtained by firing the sol-gel solution coating layer in the above-mentioned temperature range in the firing step. At this time, by using the protective layer 20 according to the present invention provided on the upper layer of the metal layer 10 as a base material, as described above, the deterioration of the metal layer 10, that is, the oxidation of the metal material constituting the metal layer 10 Can be prevented very effectively, and the deterioration of the metal layer 10 can be prevented. Further, even when a highly reactive BST layer is formed using a BST solution or the like as a sol-gel solution when the ceramic insulating layer 30 is formed, the metal layer 10 and the BST layer are formed in the firing step or the like. The reaction can be prevented and the metal constituting the metal layer 10 can be prevented from precipitating and diffusing in the ceramic insulating layer 30. Therefore, conventionally, when a temperature within the above range is applied to the metal layer 10 in the firing step, it has not been possible to positively adopt copper or a copper alloy in which an oxidation reaction easily proceeds. However, as described above, by providing the protective layer 20 on the upper layer of the metal layer 10, copper or a copper alloy can be suitably used as a constituent material of the metal layer 10.
b)泳動電着法
 次に、泳動電着法によるセラミック系絶縁層30の形成方法について説明する。泳動電着法によりセラミック系絶縁層30を形成する際には、(b-1)所望のセラミック系絶縁層30を得るための誘電体粒子を有機溶媒に分散させて誘電体粒子分散スラリーを得るスラリー調製工程と、(b-2)誘電体粒子分散スラリー内にカソード電極とアノード電極とを配置して泳動電着することで、いずれか一方の電極上に電着層を形成する電着工程と、(b-3)当該電着層を焼成して最終的なセラミック系絶縁層30を形成するための焼成工程とを経て形成される。
b) Electrophoretic electrodeposition method Next, a method for forming the ceramic insulating layer 30 by the electrophoretic electrodeposition method will be described. When forming the ceramic insulating layer 30 by the electrophoretic electrodeposition method, (b-1) dielectric particles for obtaining the desired ceramic insulating layer 30 are dispersed in an organic solvent to obtain a dielectric particle dispersed slurry. A slurry preparation step, and (b-2) an electrodeposition step in which a cathode electrode and an anode electrode are placed in the dielectric particle-dispersed slurry and electrophoretic deposition is performed to form an electrodeposition layer on one of the electrodes. And (b-3) a firing step for firing the electrodeposition layer to form the final ceramic insulating layer 30.
 まず、泳動電着法について簡単に説明する。上記(b-1)スラリー調製工程で調製された誘電体粒子分散スラリー内にある誘電体粒子の表面を正又は負に帯電する。そして、上記(b-2)電着工程において、この誘電体粒子分散スラリー内に配置されたカソード電極とアノード電極との間に電圧を与えると、帯電した誘電体粒子が電気泳動して、いずれか一方の電極の付近で吸着凝集して、電極表面に誘電体粒子から成る電着層を形成する。この電着層が成膜される成膜側の電極として、本件発明に係る金属層10を用いる。その後、上記(b-3)焼成工程により、電着層の焼成を行うことにより本件発明に係るセラミック系絶縁層30が得られる。この泳動電着法は、いわゆる電気泳動現象を利用したものであり、材料の使用効率が高く、成膜速度が速く生産性に優れるという利点がある。従って、本件発明に係るセラミック系絶縁層と金属層との積層体100のように、金属層10の表面に広範囲にセラミック系絶縁層30を形成する場合に、当該方法を好適に採用することができる。以下、各工程毎に更に説明する。 First, the electrophoretic electrodeposition method will be briefly described. The surface of the dielectric particles in the dielectric particle dispersion slurry prepared in the (b-1) slurry preparation step is charged positively or negatively. In the (b-2) electrodeposition step, when a voltage is applied between the cathode electrode and the anode electrode arranged in the dielectric particle-dispersed slurry, the charged dielectric particles are electrophoresed. Adsorption and aggregation occur in the vicinity of one of the electrodes to form an electrodeposition layer made of dielectric particles on the electrode surface. The metal layer 10 according to the present invention is used as an electrode on the film formation side where the electrodeposition layer is formed. Then, the ceramic insulating layer 30 according to the present invention is obtained by firing the electrodeposition layer by the firing step (b-3). This electrophoretic electrodeposition method utilizes a so-called electrophoretic phenomenon, and has the advantages of high material use efficiency, high film formation speed, and excellent productivity. Therefore, when the ceramic insulating layer 30 is formed over a wide range on the surface of the metal layer 10 like the laminated body 100 of the ceramic insulating layer and the metal layer according to the present invention, the method can be suitably employed. it can. Hereinafter, each step will be further described.
(b-1)スラリー調製工程: スラリー調製工程は、所望の組成を有するセラミック系絶縁層30を形成するための誘電体粒子分散スラリーを得るための工程である。当該工程において、誘電体粒子をアセトン等の極性の有機溶媒に分散させた誘電体粒子分散スラリーを調製する。 (B-1) Slurry preparation step: The slurry preparation step is a step for obtaining a dielectric particle-dispersed slurry for forming the ceramic insulating layer 30 having a desired composition. In this step, a dielectric particle-dispersed slurry in which dielectric particles are dispersed in a polar organic solvent such as acetone is prepared.
 誘電体粒子としては、ペロブスカイト型の誘電体粒子を用いることが好ましい。ここで言うペロブスカイト型の誘電体粒子とは、チタン酸バリウム、チタン酸ストロンチウム、チタン酸バリウムストロンチウム、ジルコン酸ビスマス等の基本組成を備えるものである。中でも、チタン酸バリウム、チタン酸ストロンチウム、チタン酸バリウムストロンチウムのいずれかの基本組成を備えるものが特に好ましい。これらの組成を備える誘電体粒子は、その泳動電着性が安定しているからである。但し、当工程では、市販の誘電体粒子分散スラリーを用いることもできる。また、適宜、マンガン、ケイ素、ニッケル、アルミニウム、ランタン、ニオブ、マグネシウム、スズ等を添加させてもよい。これらの添加成分は、粒界に偏析させることで、リーク電流の流路を遮断して、短絡を防止する効果がある。 As the dielectric particles, it is preferable to use perovskite type dielectric particles. The perovskite-type dielectric particles referred to here have a basic composition such as barium titanate, strontium titanate, barium strontium titanate, and bismuth zirconate. Among these, those having a basic composition of any one of barium titanate, strontium titanate, and barium strontium titanate are particularly preferable. This is because dielectric particles having these compositions have stable electrophoretic deposition properties. However, in this step, a commercially available dielectric particle dispersed slurry can also be used. In addition, manganese, silicon, nickel, aluminum, lanthanum, niobium, magnesium, tin, or the like may be added as appropriate. These additive components are segregated at the grain boundaries, thereby blocking the leakage current flow path and preventing the short circuit.
(b-2)電着工程: 電着工程では、上述した通り、金属層10を電着層形成側の電極として用いる。金属層10の対極としては、ステンレス鋼、チタン、不溶性陽極材のいずれかの成分で構成したものを用いることが好ましい。本件発明に係る金属層10を構成する金属材料との組み合わせにより、当該金属層10はカソード電極又はアノード電極として機能する。これらの電極間の距離は、1cm~20cm程度が好ましく、電極間に印加する電圧は0.5V~200Vであることが好ましい。 (B-2) Electrodeposition step: In the electrodeposition step, as described above, the metal layer 10 is used as an electrode on the electrodeposition layer forming side. As the counter electrode of the metal layer 10, it is preferable to use a material composed of any component of stainless steel, titanium, or an insoluble anode material. The metal layer 10 functions as a cathode electrode or an anode electrode in combination with the metal material constituting the metal layer 10 according to the present invention. The distance between these electrodes is preferably about 1 cm to 20 cm, and the voltage applied between the electrodes is preferably 0.5 V to 200 V.
 電極間の距離が1cm未満の場合には、両極間に対して誘電体粒子分散スラリーの流入が不十分となり、安定した泳動電着を行うことができない。一方、電極間の距離が20cmを超える場合は、電極間の距離が長くなりすぎるため、電極間における誘電体粒子の泳動を均一に制御することが困難となり、金属層10側に層厚の均一な電着層を形成するのが困難になる。 If the distance between the electrodes is less than 1 cm, the inflow of the dielectric particle dispersed slurry is insufficient between the two electrodes, and stable electrophoretic deposition cannot be performed. On the other hand, when the distance between the electrodes exceeds 20 cm, the distance between the electrodes becomes too long, so that it is difficult to uniformly control the migration of the dielectric particles between the electrodes, and the layer thickness is uniform on the metal layer 10 side. It becomes difficult to form a simple electrodeposition layer.
 電極間の距離が上記範囲内であるときに、上述した通り、電極間に印加する電圧は10V~40Vであることが好ましい。両極間に印加する電圧が10V未満である場合、誘電体粒子の泳動速度が遅く、成膜速度も低下するため、工業生産に求められる生産性を満足しない。一方、両極間に印加する電圧が200Vを超える場合、本件発明では、成膜側の電極として保護層20を積層した金属層10を用いているため、この保護層20の表面に粒子を堆積させようとすると当該粒子が凝集し、層厚の均一な電着層を形成することが困難になる。但し、電極間に印加する電圧の値が大きくなるほど、同じ時間通電したときに、成膜側の電極としての当該金属層10の表面に堆積する誘電体粒子量が増大する。従って、両極間に印加する電圧の値と、通電時間を制御することにより所望の厚さのセラミック系絶縁層30を形成することができる。 When the distance between the electrodes is within the above range, the voltage applied between the electrodes is preferably 10V to 40V as described above. When the voltage applied between the two electrodes is less than 10 V, the migration speed of the dielectric particles is slow and the film formation speed is also lowered, so that the productivity required for industrial production is not satisfied. On the other hand, when the voltage applied between both electrodes exceeds 200 V, in the present invention, the metal layer 10 having the protective layer 20 laminated is used as the electrode on the film formation side, so that particles are deposited on the surface of the protective layer 20. If it does so, the said particle | grain will aggregate and it will become difficult to form an electrodeposition layer with uniform layer thickness. However, as the value of the voltage applied between the electrodes increases, the amount of dielectric particles deposited on the surface of the metal layer 10 as the electrode on the film forming side increases when the current is applied for the same time. Therefore, the ceramic insulating layer 30 having a desired thickness can be formed by controlling the value of the voltage applied between the two electrodes and the energization time.
(b-3)焼成工程: 泳動電着法において、基本的には、ゾルーゲル法と同様の条件により、焼成工程を行うことができるため、ここでは説明を省略する。 (B-3) Firing step: In the electrophoretic electrodeposition method, the firing step can be performed basically under the same conditions as in the sol-gel method, and thus description thereof is omitted here.
 以上、セラミック系絶縁層形成工程として、a)ゾルーゲル法、b)泳動電着法について説明したが、上述した通り、本件発明に係るセラミック系絶縁層と金属層との積層体100の製造方法において、MOCVD法、スパッタリング蒸着法等種々の方法を採用することができる。これらの方法により、セラミック系絶縁層30を形成した後、樹脂成分の含浸工程を設けることがさらに好ましい。樹脂成分の含浸工程は、例えば、a)ゾルーゲル法、b)泳動電着法において、それぞれ(a-3)(b-3)焼成工程を終了した後に行う。 As described above, a) the sol-gel method and b) electrophoretic electrodeposition method have been described as the ceramic insulating layer forming step. As described above, in the method for manufacturing the laminate 100 of the ceramic insulating layer and the metal layer according to the present invention. Various methods such as MOCVD and sputtering deposition can be employed. More preferably, after the ceramic insulating layer 30 is formed by these methods, a resin component impregnation step is provided. The impregnation step of the resin component is performed, for example, in (a) sol-gel method and (b) electrophoretic electrodeposition method after finishing the (a-3) and (b-3) firing steps, respectively.
樹脂成分含浸工程: 樹脂成分含浸工程とは、セラミック系絶縁層30内に存在する粒子又は粒界間に樹脂成分を含浸させることにより、リーク電流の流路となる構造欠陥を埋めるための工程である。セラミック系絶縁層30内に存在する粒子又は粒界内に含浸させる樹脂成分として、エポキシ系樹脂を主剤として用いた樹脂組成物を用いることが好ましい。特に、樹脂成分総量に対して、エポキシ樹脂40重量%~70重量%、ポリビニルアセタール樹脂20重量%~50重量%、メラミン樹脂又はウレタン樹脂0.1重量%~20重量%を含有し、このエポキシ樹脂の5重量%~80重量%がゴム変性エポキシ樹脂である樹脂組成物を用いることが好ましい。 Resin component impregnation step: The resin component impregnation step is a step for filling a structural defect serving as a leakage current flow path by impregnating a resin component between particles or grain boundaries present in the ceramic insulating layer 30. is there. As a resin component impregnated in the particles or grain boundaries present in the ceramic insulating layer 30, it is preferable to use a resin composition using an epoxy resin as a main component. In particular, the epoxy resin contains 40 wt% to 70 wt% of the epoxy resin, 20 wt% to 50 wt% of the polyvinyl acetal resin, and 0.1 wt% to 20 wt% of the melamine resin or urethane resin with respect to the total resin component. It is preferable to use a resin composition in which 5 wt% to 80 wt% of the resin is a rubber-modified epoxy resin.
 但し、エポキシ樹脂としては、積層板や電子部品の成型用として市販されているものであれば、特に制限なく使用することができる。具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、トリグリシジルイソシアヌレート、N,N-ジグリシジルアニリン等のグリシジルアミン化合物、テトラヒドロフタル酸ジグリシジルエステル等のグリシジルエステル化合物、テトラブロモビスフェノールAジグリシジルエーテル等の臭素化エポキシ樹脂等がある。これらのエポキシ樹脂は1種又は2種以上を混合して用いることが好ましい。また、エポキシ樹脂としての重合度やエポキシ当量は特に限定されない。 However, any epoxy resin can be used without particular limitation as long as it is commercially available for molding laminated plates and electronic parts. Specifically, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, o-cresol novolac type epoxy resin, triglycidyl isocyanurate, N, N-diglycidylaniline and other glycidylamine compounds, Examples thereof include glycidyl ester compounds such as tetrahydrophthalic acid diglycidyl ester and brominated epoxy resins such as tetrabromobisphenol A diglycidyl ether. These epoxy resins are preferably used alone or in combination. Moreover, the polymerization degree and epoxy equivalent as an epoxy resin are not specifically limited.
 また、エポキシ樹脂の硬化剤としては、ジシアンジアミド、有機ヒドラジド、イミダゾール類、芳香族アミン類のアミン類、ビスフェノールA、ブロム化ビスフェノールA等のフェノール類、フェノールノボラック樹脂及びクレゾールノボラック類等のノボラック類、無水フタル酸等の酸無水剤等を用いることができる。硬化剤は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。エポキシ樹脂に対する硬化剤の添加量は、それぞれのエポキシ当量に応じて適宜決定することができる。 Examples of epoxy resin curing agents include dicyandiamide, organic hydrazides, imidazoles, amines of aromatic amines, phenols such as bisphenol A and brominated bisphenol A, novolaks such as phenol novolac resins and cresol novolacs, An acid anhydride such as phthalic anhydride can be used. A hardening | curing agent may be used individually by 1 type, and 2 or more types may be mixed and used for it. The addition amount of the curing agent with respect to the epoxy resin can be appropriately determined according to each epoxy equivalent.
 さらに、硬化剤と共に必要に応じて硬化促進剤を添加してもよい。この場合、硬化促進剤として、例えば、3級アミン、イミダゾール系、尿素系硬化促進剤等を用いることができる。 Furthermore, you may add a hardening accelerator with a hardening | curing agent as needed. In this case, as a curing accelerator, for example, a tertiary amine, an imidazole-based, a urea-based curing accelerator, or the like can be used.
 セラミック系絶縁層30に含浸させる樹脂成分として用いる樹脂組成物において、エポキシ樹脂は上述した通り、樹脂成分総量の40重量%~70重量%であることが好ましい。エポキシ樹脂の配合量が40重量%未満である場合、セラミック系絶縁層30の絶縁性及び耐熱性が低下する。一方、エポキシ樹脂の配合量が70重量%を超える場合、樹脂成分を硬化させる際に、いわゆる樹脂流れが大きくなり過ぎて、セラミック系絶縁層30内の粒子間又は粒界間に均一に樹脂を含浸させることができず、セラミック系絶縁層30内での樹脂成分の偏在が起こり易くなり好ましくない。 In the resin composition used as the resin component impregnated in the ceramic insulating layer 30, the epoxy resin is preferably 40% by weight to 70% by weight of the total resin component as described above. When the compounding quantity of an epoxy resin is less than 40 weight%, the insulation and heat resistance of the ceramic type | system | group insulating layer 30 fall. On the other hand, when the compounding amount of the epoxy resin exceeds 70% by weight, when the resin component is cured, the so-called resin flow becomes too large, and the resin is uniformly distributed between particles in the ceramic insulating layer 30 or between grain boundaries. The resin component cannot be impregnated and the resin component tends to be unevenly distributed in the ceramic insulating layer 30, which is not preferable.
 また、エポキシ樹脂組成物の一部として、ゴム変性エポキシ樹脂を使用することが好ましい。ゴム変性エポキシ樹脂として、接着剤用あるいは塗料用等として市販されている製品を特に制限なく使用することができる。具体的には、“EPICLON TSR-960”(商品名、大日本インキ社製)、“EPOTOHTO YR-102”(商品名、東都化成社製)、“スミエポキシ ESC-500”(商品名、住友化学社製)、“EPOMIK VSR 3531”(商品名、三井石油化学社製)等を用いることができる。これらのゴム変成エポキシ樹脂は1種類を単独で使用しても、2種類以上を混合して使用してもよい。ここで、ゴム変成エポキシ樹脂の配合量は全エポキシ樹脂量の5重量%~80重量%であることが好ましい。ゴム変成エポキシ樹脂を用いることにより、セラミック系絶縁層30内への樹脂成分の定着を促進することができる。従って、当該ゴム変成エポキシ樹脂の配合量が5重量%未満の場合には、セラミック系絶縁層30内への定着促進効果を得ることができない。一方、当該ゴム変成エポキシ樹脂の配合量が80重量%を超えるものとすると、硬化後の樹脂としての耐熱性が低下する恐れがある。 Moreover, it is preferable to use a rubber-modified epoxy resin as a part of the epoxy resin composition. As the rubber-modified epoxy resin, products marketed for adhesives or paints can be used without particular limitation. Specifically, “EPICLON® TSR-960” (trade name, manufactured by Dainippon Ink, Inc.), “EPOTOTOTO® YR-102” (trade name, manufactured by Toto Kasei), “Sumiepoxy® ESC-500” (trade name, Sumitomo Chemical) And "EPOMIK VSR 3531" (trade name, manufactured by Mitsui Petrochemical Co., Ltd.) can be used. These rubber-modified epoxy resins may be used alone or in combination of two or more. Here, the blending amount of the rubber-modified epoxy resin is preferably 5 to 80% by weight of the total amount of the epoxy resin. By using the rubber-modified epoxy resin, fixing of the resin component in the ceramic insulating layer 30 can be promoted. Therefore, when the amount of the rubber-modified epoxy resin is less than 5% by weight, the effect of promoting fixing in the ceramic insulating layer 30 cannot be obtained. On the other hand, if the blending amount of the rubber-modified epoxy resin exceeds 80% by weight, the heat resistance as a cured resin may be reduced.
 次に、ポリビニルアセタール樹脂について説明する。ここで、ポリビニルアセタール樹脂は、ポリビニルアルコールと、アルデヒド類との反応により合成されるものである。本件発明では、ポリビニルアセタール樹脂として、塗料用や接着剤用として市販されているものを特に制限することなく使用できる。本件発明では、原料ポリビニルアルコールの重合度、原料アルデヒド類の種類やアセタール化度については特に限定されるものではないが、硬化後の樹脂としての耐熱性や溶剤に対する溶解性を考慮すると、重合度2000~3500のポリビニルアルコールから合成された製品を使用することが望ましい。さらに分子内にカルボキシル基等を導入した変成ポリビニルアセタール樹脂も市販されているが、組み合わされるエポキシ樹脂との相溶性に問題がなければ、特に制限なく使用できる。絶縁層に配合されるポリビニルアセタール樹脂の配合量としては樹脂組成物総量の20重量%~50重量%である。当該配合量が20重量%未満であれば、樹脂としての流動性を改良する効果が得られない。一方、当該配合量が50重量%を超えると硬化後の絶縁層の吸水率が高くなるので、セラミック系絶縁層30の構成材としては極めて好ましくないものとなる。 Next, the polyvinyl acetal resin will be described. Here, the polyvinyl acetal resin is synthesized by a reaction between polyvinyl alcohol and aldehydes. In the present invention, as the polyvinyl acetal resin, those commercially available for paints and adhesives can be used without any particular limitation. In the present invention, the degree of polymerization of the raw material polyvinyl alcohol, the type of raw aldehydes and the degree of acetalization are not particularly limited, but the degree of polymerization is considered in consideration of heat resistance as a cured resin and solubility in a solvent. It is desirable to use products synthesized from 2000-3500 polyvinyl alcohol. Further, a modified polyvinyl acetal resin having a carboxyl group or the like introduced in the molecule is also commercially available, but can be used without particular limitation as long as there is no problem in compatibility with the combined epoxy resin. The blending amount of the polyvinyl acetal resin blended in the insulating layer is 20% by weight to 50% by weight of the total amount of the resin composition. If the blending amount is less than 20% by weight, the effect of improving the fluidity as a resin cannot be obtained. On the other hand, if the blending amount exceeds 50% by weight, the water absorption rate of the insulating layer after curing becomes high, which is extremely undesirable as a constituent material of the ceramic insulating layer 30.
 本件発明で用いる樹脂組成物は、上記成分に加えて、前記ポリビニルアセタール樹脂の架橋剤としてメラミン樹脂またはウレタン樹脂を配合したものであることが好ましい。 The resin composition used in the present invention preferably contains a melamine resin or a urethane resin as a crosslinking agent for the polyvinyl acetal resin in addition to the above components.
 メラミン樹脂としては塗料用として市販されているアルキル化メラミン樹脂を使用することができる。アルキル化メラミン樹脂として、例えば、メチル化メラミン樹脂、n-ブチル化メラミン樹脂、iso-ブチル化メラミン樹脂、およびこれらの混合アルキル化メラミン樹脂を挙げることができる。メラミン樹脂としての分子量やアルキル化度は特に限定されない。 As the melamine resin, an alkylated melamine resin commercially available for coating can be used. Examples of alkylated melamine resins include methylated melamine resins, n-butylated melamine resins, iso-butylated melamine resins, and mixed alkylated melamine resins. The molecular weight and alkylation degree as a melamine resin are not particularly limited.
 当該ウレタン樹脂としては、接着剤用、塗料用として市販されている分子中にイソシアネート基を含有した樹脂を使用することができる。例えば、ウレタン樹脂として、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート等のポリイソシアネート化合物とトリメチロールプロパンやポリエーテルポリオール、ポリエステルポリオール等のポリオール類との反応物を挙げることができる。これらの化合物は樹脂としての反応性が高く、雰囲気中の水分で重合する場合があるので、本件発明では、この不具合の起きないように、これらの樹脂をフェノール類やオキシム類で安定化したブロックイソシアネートと呼ばれるウレタン樹脂を使用することが好ましい。 As the urethane resin, a resin containing an isocyanate group in a molecule marketed for an adhesive or a paint can be used. Examples of the urethane resin include a reaction product of a polyisocyanate compound such as tolylene diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenyl polyisocyanate and a polyol such as trimethylolpropane, polyether polyol, and polyester polyol. Since these compounds are highly reactive as resins and may be polymerized by moisture in the atmosphere, in the present invention, these resins are blocked with phenols or oximes so as not to cause this problem. It is preferable to use a urethane resin called isocyanate.
 本件発明における樹脂組成物に添加するメラミン樹脂またはウレタン樹脂の配合量は、樹脂組成物総量の0.1重量%~20重量%である。当該配合量が0.1重量%未満ではポリビニルアセタール樹脂の架橋効果が不十分となり、絶縁層の耐熱性が低下し、20重量%を超えて配合すると、セラミック系絶縁層30内での定着性が劣化する。 The blending amount of the melamine resin or the urethane resin added to the resin composition in the present invention is 0.1% by weight to 20% by weight of the total amount of the resin composition. When the blending amount is less than 0.1% by weight, the crosslinking effect of the polyvinyl acetal resin is insufficient, the heat resistance of the insulating layer is lowered, and when the blending amount exceeds 20% by weight, the fixability in the ceramic insulating layer 30 is achieved. Deteriorates.
 この樹脂組成物には、上記必須成分に加えて無機充填剤、消泡剤、レベリング剤、カップリング剤等の添加剤を所望により使用することもできる。これらはセラミック系絶縁層30に対する樹脂成分の浸透性を改良し、難燃性向上、コストの低減等に効果がある。 In addition to the above essential components, additives such as inorganic fillers, antifoaming agents, leveling agents, coupling agents and the like can be used for this resin composition as desired. These improve the permeability of the resin component to the ceramic insulating layer 30 and are effective in improving flame retardancy and reducing costs.
 以上の樹脂組成物を、焼成工程の後に、セラミック系絶縁層30の表面にスピンコート法等により塗布し、ホットプレート、オーブン等を用いて加熱することにより、セラミック系絶縁層30内に存在する粒子間又は粒界間に樹脂成分を含浸させることができる。 The above resin composition is present in the ceramic insulating layer 30 by applying it to the surface of the ceramic insulating layer 30 by a spin coating method or the like after the firing step and heating it using a hot plate, an oven or the like. The resin component can be impregnated between particles or between grain boundaries.
上部電極層形成工程: 上述した様に、本件発明に係る積層体100をキャパシタ回路形成材(110(図1参照))として用いる場合、セラミック系絶縁層30の上面に金属材料からなる上部電極形成層40を形成する上部電極層形成工程を設けてもよい。この場合、当該上部電極形成層40を銅箔、銅合金箔、ニッケル箔及びニッケル合金箔のいずれかの金属箔を上記セラミック系絶縁層30の上面に貼り合わせることにより形成してもよいし、銅、銅合金、ニッケル及びニッケル合金、アルミニウムのうちいずれかの金属を用いてメッキ法により形成してもよいし、スパッタリング蒸着等の方法により当該上部電極形成層40を形成してもよい。 Upper electrode layer forming step: As described above, when the multilayer body 100 according to the present invention is used as a capacitor circuit forming material (110 (see FIG. 1)), an upper electrode made of a metal material is formed on the upper surface of the ceramic insulating layer 30. An upper electrode layer forming step for forming the layer 40 may be provided. In this case, the upper electrode formation layer 40 may be formed by bonding a metal foil of any one of copper foil, copper alloy foil, nickel foil and nickel alloy foil to the upper surface of the ceramic insulating layer 30, The upper electrode forming layer 40 may be formed by a plating method using any one of copper, a copper alloy, nickel, a nickel alloy, and aluminum, or a method such as sputtering deposition.
 次に、実施例及び比較例を挙げて、本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではない。 Next, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
 実施例1では、セラミック系絶縁層30を形成する際に、ゾルーゲル法を採用して、本件発明に係るセラミック系絶縁層と金属層との積層体100を製造した例について説明する。 Example 1 describes an example in which a laminated body 100 of a ceramic insulating layer and a metal layer according to the present invention is manufactured by using a sol-gel method when the ceramic insulating layer 30 is formed.
〈本件発明に係るセラミック系絶縁層と金属層との積層体100の製造〉
i)保護層形成工程
 ここでは、三井金属鉱業株式会社製のRz≦1.0μmのラミネート面を有する層厚が18μmの表面平滑銅箔(NA-DFF、18μm)を金属層10として用いた。そして、この銅箔の表面に有限会社エクスシア製のポリシラザンシリカコーティング剤(SSL-SD500-HB)無水ジブチルエータルで希釈したポリシラザン溶液(但し、ポリシラザン/無水ジブチルエータル=1/1wt%)を金属層10の表面にスピンコート法により塗布し、大気中で150℃×1分間ホットプレートを用いて乾燥した後、大気中で220℃×30分間ホットプレートを用いて加熱しながら、UVを照射した。これにより、層厚が20nmのSiO層を形成した。以上の工程により、金属層10としての18μmの表面平滑銅箔の表面に、保護層20としての20nmのSiO層が積層された金属層10を得た。但し、保護層20の厚さの測定には、SEM(JEOL社製;JSM-700IF)(倍率100,000倍)を用いた。
<Manufacture of Laminated Body 100 of Ceramic Insulating Layer and Metal Layer>
i) Protective layer forming step Here, a smooth surface copper foil (NA-DFF, 18 μm) having a laminated surface of Rz ≦ 1.0 μm and having a thickness of 18 μm manufactured by Mitsui Mining & Smelting Co., Ltd. was used as the metal layer 10. Then, polysilazane solution diluted with polysilazane silica coating agent (SSL-SD500-HB) anhydrous dibutyl ether manufactured by Exsia Co., Ltd. It was applied to the surface of the layer 10 by a spin coating method, dried in the air using a hot plate at 150 ° C. for 1 minute, and then irradiated with UV while being heated in the air using a hot plate at 220 ° C. for 30 minutes. . Thereby, a SiO 2 layer having a layer thickness of 20 nm was formed. By the above process, the metal layer 10 obtained by laminating a 20 nm SiO 2 layer as the protective layer 20 on the surface of the 18 μm smooth copper foil as the metal layer 10 was obtained. However, SEM (manufactured by JEOL; JSM-700IF) (magnification 100,000 times) was used to measure the thickness of the protective layer 20.
ii)セラミック系絶縁層30の形成
 次に、上記金属層10の表面に、ゾルーゲル法により、以下の(a-1)ゾルーゲル液調製工程、(a-2)塗工工程、(a-3)焼成工程、(a-4)樹脂含浸工程の4工程を経てセラミック系絶縁層30を形成した。
ii) Formation of Ceramic Insulating Layer 30 Next, the following (a-1) sol-gel liquid preparation step, (a-2) coating step, (a-3) are applied to the surface of the metal layer 10 by a sol-gel method. The ceramic insulating layer 30 was formed through the four steps of the firing step and (a-4) resin impregnation step.
(a-1)ゾルーゲル液調製工程: ゾルーゲル液調製工程では、市販のゾルーゲル液(三菱マテリアル株式会社製10wt%BST(90/10/100)液を用いた。 (A-1) Sol-gel solution preparation step: In the sol-gel solution preparation step, a commercially available sol-gel solution (10 wt% BST (90/10/100) solution manufactured by Mitsubishi Materials Corporation) was used.
(a-2)塗工工程: 塗工工程では、上記ゾルーゲル液を用いてスピンコート法により金属層10の保護層20の表面に塗布し、その後190℃×1分間、ホットプレートを用いて大気中で乾燥させた。この工程を1単位工程として、当該1単位工程を繰り返し6回行い、ゾルーゲル液塗布層を形成した。 (A-2) Coating process: In the coating process, the above sol-gel solution is applied to the surface of the protective layer 20 of the metal layer 10 by a spin coating method, and then air is applied at 190 ° C. for 1 minute using a hot plate. Dried in. With this step as one unit step, the one unit step was repeated 6 times to form a sol-gel liquid coating layer.
(a-3)焼成工程: そして、上記ゾルーゲル液塗布層が設けられた金属層10を、窒素雰囲気(25℃の飽和水蒸気含有窒素を吹き込んだ雰囲気;焼成工程において、以下、同じ)下で、チューブ炉を用いて、600℃×60分の焼成条件により、焼成した。 (A-3) Firing step: Then, the metal layer 10 provided with the sol-gel liquid coating layer is subjected to a nitrogen atmosphere (atmosphere in which saturated water vapor containing 25 ° C. is blown; the same applies to the firing step hereinafter). Using a tube furnace, firing was performed under firing conditions of 600 ° C. × 60 minutes.
(a-4)樹脂含浸工程: その後、エポキシ系樹脂(ジャパンエポキシレジン株式会社製 エピコート828)100重量部と、エポキシ樹脂硬化剤としてイミダゾール化合物(四国化成工業株式会社製 キュアゾール2E4MZ)1重量部とを混合して樹脂組成物として、溶剤としてメチルエチルケトン(試薬)を用いて、エポキシ樹脂とエポキシ樹脂硬化剤との合計量の濃度が固形部分量0.22wt%のエポキシ系樹脂ワニスを調製した。そして、スピンコート法により当該エポキシ系樹脂ワニスを塗布液として、上記焼成後のゾルーゲル液塗布層の表面に塗布し、ホットプレートを用いて、大気中で190℃×90分間加熱し、樹脂をセラミック系絶縁層30内に存在する粒子間又は粒界間に含浸させた。以上により、本件発明に係る実施例1のセラミック系絶縁層と金属層との積層体100を製造した。 (A-4) Resin impregnation step: Thereafter, 100 parts by weight of an epoxy resin (Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.) and 1 part by weight of an imidazole compound (Curesol 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.) as an epoxy resin curing agent As a resin composition, methyl ethyl ketone (reagent) was used as a solvent to prepare an epoxy resin varnish having a total amount of epoxy resin and an epoxy resin curing agent of 0.22 wt% as a solid content. Then, by applying the epoxy resin varnish as a coating solution by spin coating, it is applied to the surface of the sol-gel solution coating layer after baking, and heated in the atmosphere at 190 ° C. for 90 minutes using a hot plate, and the resin is ceramic. Impregnation was carried out between particles or grain boundaries existing in the system insulating layer 30. Thus, a laminate 100 of the ceramic insulating layer and the metal layer of Example 1 according to the present invention was manufactured.
 実施例2のセラミック系絶縁層と金属層との積層体100として、上記実施例1のii)セラミック系絶縁層形成工程において、(a-3)焼成工程を500℃で行った以外は、実施例1と同じ方法により本件発明に係る実施例2のセラミック系絶縁層と金属層との積層体100を製造した。 As the laminated body 100 of the ceramic insulating layer and the metal layer of Example 2, it was carried out except that (a-3) the firing step was performed at 500 ° C. in the ii) ceramic insulating layer forming step of Example 1 above. A laminate 100 of a ceramic insulating layer and a metal layer of Example 2 according to the present invention was manufactured by the same method as Example 1.
 次に、実施例3のセラミック系絶縁層と金属層との積層体100として、泳動電着法によりセラミック系絶縁層30を形成した。 Next, the ceramic insulating layer 30 was formed by electrophoretic deposition as the laminate 100 of the ceramic insulating layer and the metal layer of Example 3.
i)保護層形成工程: 保護層形成工程では、上記実施例1及び実施例2と同様に、三井金属鉱業株式会社製のRz≦1.0μmのラミネート面を有する層厚が18μmの表面平滑銅箔(NA-DFF、18μm)を金属層10として用いた。そして、有限会社エクスシア製のポリシラザンシリカコーティング剤(SSL-SD500-HB)を希釈せずに用いて、大気中で150℃×1分間ホットプレートを用いて乾燥した後、大気中で250℃×90分間ホットプレートを用いて加熱しながら、UVを照射した以外は、実施例1及び実施例2と同様にして約60nmの厚みを有する保護層20を金属層10の上面に形成した。保護層20の厚さの測定は、実施例1及び実施例2と同様に、SEM(JEOL社製;JSM-700IF)(倍率100,000倍)を用いた。 i) Protective layer forming step: In the protective layer forming step, as in Example 1 and Example 2 above, surface smooth copper having a laminated surface of Rz ≦ 1.0 μm and a layer thickness of 18 μm manufactured by Mitsui Mining & Smelting Co., Ltd. A foil (NA-DFF, 18 μm) was used as the metal layer 10. Then, using a polysilazane silica coating agent (SSL-SD500-HB) manufactured by Exsia Co., Ltd. without dilution, it was dried in the atmosphere at 150 ° C. for 1 minute using a hot plate, and then in the atmosphere at 250 ° C. × 90 A protective layer 20 having a thickness of about 60 nm was formed on the upper surface of the metal layer 10 in the same manner as in Example 1 and Example 2 except that UV irradiation was performed while heating using a hot plate. The thickness of the protective layer 20 was measured using SEM (manufactured by JEOL; JSM-700IF) (magnification 100,000 times) in the same manner as in Example 1 and Example 2.
ii)セラミック系絶縁層形成工程: セラミック系絶縁層形成工程では、上記金属層10の保護層20の表面に泳動電着法によりセラミック系絶縁層30を形成した。 ii) Ceramic insulating layer forming step: In the ceramic insulating layer forming step, the ceramic insulating layer 30 was formed on the surface of the protective layer 20 of the metal layer 10 by electrophoretic deposition.
(b-1)スラリー調製工程: 実施例3では、平均粒子径が80nmの誘電体粒子をn-ブタノールに分散させた懸濁液に、有機溶媒としてアセトンを混合して、誘電体粒子濃度が10g/lとなるように5分間超音波振動撹拌して誘電体粒子分散スラリーを得た。但し、上記において、誘電体粒子の平均粒子径とは、上記SEMを用いて100個の粒子の長径を側長した際の算術平均値を指している。 (B-1) Slurry preparation step: In Example 3, a suspension in which dielectric particles having an average particle diameter of 80 nm are dispersed in n-butanol is mixed with acetone as an organic solvent, so that the dielectric particle concentration is Dielectric particle-dispersed slurry was obtained by ultrasonic vibration stirring for 5 minutes so as to be 10 g / l. However, in the above, the average particle diameter of dielectric particles refers to the arithmetic average value when the major axis of 100 particles is laterally extended using the SEM.
(b-2)電着工程: 電着工程では、上記金属層10をカソード電極として用い、アノード電極としてステンレス板を用い、両電極間を上記において調製した誘電体粒子分散スラリー内に20mm離間させて配置した。そして、両電極間に30Vの電圧を印加し、20秒間直流電流を通電することにより、カソード電極としての金属層10上に約1.5μmの厚みのBST電着層を形成した。 (B-2) Electrodeposition step: In the electrodeposition step, the metal layer 10 is used as a cathode electrode, a stainless steel plate is used as an anode electrode, and the two electrodes are separated from each other by 20 mm in the dielectric particle dispersion slurry prepared above. Arranged. Then, a BST electrodeposition layer having a thickness of about 1.5 μm was formed on the metal layer 10 as a cathode electrode by applying a voltage of 30 V between both electrodes and applying a direct current for 20 seconds.
(b-3)焼成工程: そして、上記BST電着層が形成された金属層10を窒素雰囲気下で600℃×60分間、チューブ炉を用いて焼成した。 (B-3) Firing step: The metal layer 10 on which the BST electrodeposition layer was formed was fired using a tube furnace at 600 ° C. for 60 minutes in a nitrogen atmosphere.
(b-4)樹脂含浸工程: 次いで、実施例1及び実施例2と同様の方法により、焼成後のBST電着層内に存在する粒子間又は粒界間に樹脂成分を含浸させて、本件発明に係るセラミック系絶縁層30を形成し、本件発明に係る実施例3のセラミック系絶縁層30と金属層10との積層体100を製造した。 (B-4) Resin impregnation step: Next, the resin component is impregnated between particles or grain boundaries existing in the BST electrodeposition layer after firing by the same method as in Example 1 and Example 2, A ceramic insulating layer 30 according to the invention was formed, and a laminate 100 of the ceramic insulating layer 30 and the metal layer 10 of Example 3 according to the present invention was manufactured.
比較例Comparative example
[比較例1]
 実施例1のセラミック系絶縁層と金属層との積層体100と比較するために、i)保護層形成工程において、保護層20を設けなかったこと以外は、実施例1と同様にしてゾルーゲル法によりセラミック系絶縁層30を形成して、比較例1のセラミック系絶縁層と金属層との積層体とした。
[Comparative Example 1]
In order to compare with the laminate 100 of the ceramic insulating layer and the metal layer of Example 1, i) Sol-gel method as in Example 1 except that the protective layer 20 was not provided in the protective layer forming step. Thus, the ceramic insulating layer 30 was formed to obtain a laminate of the ceramic insulating layer and the metal layer of Comparative Example 1.
[比較例2]
 実施例2のセラミック系絶縁層と金属層との積層体100と比較するために、i)保護層形成工程において、保護層20を設けなかったこと以外は、実施例2と同様にしてゾルーゲル法によりセラミック系絶縁層30を形成して、比較例2のセラミック系絶縁層と金属層との積層体とした。
[Comparative Example 2]
In order to compare with the laminated body 100 of the ceramic type insulating layer and metal layer of Example 2, i) Sol-gel method as in Example 2 except that the protective layer 20 was not provided in the protective layer forming step. Thus, a ceramic insulating layer 30 was formed to obtain a laminate of the ceramic insulating layer and the metal layer of Comparative Example 2.
[比較例3]
 実施例3で得た積層体100と比較するために、i)保護層形成工程において、保護層20を設けなかったこと以外は、実施例3と同様にして泳動電着法によりセラミック系絶縁層30を形成して、比較例3のセラミック系絶縁層と金属層との積層体とした。但し、比較例3では、金属層10の表面に絶縁物質であるSiOから成る保護層20を設けていないため、実施例3のセラミック系絶縁層30と略同一の厚みを有するセラミック系絶縁層30を形成するため、電着工程では両電極間に印加する電圧を20Vにしている。
[Comparative Example 3]
In order to compare with the laminate 100 obtained in Example 3, i) a ceramic insulating layer formed by electrophoretic deposition in the same manner as in Example 3 except that the protective layer 20 was not provided in the protective layer forming step. 30 to form a laminate of the ceramic insulating layer and the metal layer of Comparative Example 3. However, in Comparative Example 3, since the protective layer 20 made of SiO 2 which is an insulating material is not provided on the surface of the metal layer 10, the ceramic insulating layer having substantially the same thickness as the ceramic insulating layer 30 of Example 3. In order to form 30, the voltage applied between both electrodes is set to 20 V in the electrodeposition process.
[評価]
(i)ゾルーゲル法
 まず、ゾルーゲル法でセラミック系絶縁層30を形成した実施例1及び実施例2の積層体100と、比較例1及び比較例2の積層体とを対比しながら、本件発明に係るセラミック系絶縁層と金属層との積層体100の評価を行う。
[Evaluation]
(I) Sol-Gel Method First, the present invention is compared with the laminate 100 of Example 1 and Example 2 in which the ceramic insulating layer 30 is formed by the sol-gel method and the laminate of Comparative Example 1 and Comparative Example 2. The laminate 100 of the ceramic insulating layer and the metal layer is evaluated.
セラミック系絶縁層30に対する銅の拡散(1): 図2(a)は、実施例1で形成したセラミック系絶縁層30の表面を示すSEM写真であり、図2(b)は実施例2で形成したセラミック系絶縁層30の表面を示すSEM写真である。一方、図2(c)は、比較例1で形成したセラミック系絶縁層30の表面を示すSEM写真であり、図2(d)は比較例2で形成したセラミック系絶縁層30の表面を示すSEM写真である。但し、それぞれのSEM写真は、JEOL社製のSEM(JSM-700IF)を用いてセラミック系絶縁層30の表面を倍率30,000倍で撮影したものである。 Copper diffusion to ceramic insulating layer 30 (1): FIG. 2A is a SEM photograph showing the surface of the ceramic insulating layer 30 formed in Example 1, and FIG. 4 is a SEM photograph showing the surface of the formed ceramic insulating layer 30. 2C is an SEM photograph showing the surface of the ceramic insulating layer 30 formed in Comparative Example 1, and FIG. 2D shows the surface of the ceramic insulating layer 30 formed in Comparative Example 2. It is a SEM photograph. However, each SEM photograph was obtained by photographing the surface of the ceramic insulating layer 30 at a magnification of 30,000 using a SEM (JSM-700IF) manufactured by JEOL.
 ここで、実施例1と比較例1とにおいて、セラミック系絶縁層30形成時の焼成温度は600℃であった。一方、実施例2と比較例2とにおいて、当該焼成温度は500℃であった。まず、図2(c)を参照すると、600℃で焼成を行った比較例1のセラミック系絶縁層30の表面には銅の結晶が観察できる。これに対して、図2(d)を参照すると、500℃で焼成を行った比較例2のセラミック系絶縁層30の表面には銅の結晶は観察されない。しかしながら、図2(d)には、矢印Aで示すように、セラミック系絶縁層30の表面に所々に白く視認される箇所が観察される。この白く視認される箇所は、焼成により膨らんだ箇所である(図3(c)参照)。このように、金属層10として銅を採用した場合、セラミック系絶縁層30を形成する際の焼成温度が高くなると、セラミック系絶縁層30に銅が全面に拡散し、セラミック系絶縁層30の絶縁性の低下、短絡の発生、リーク電流の増大等を招く恐れがある。一方、焼成温度を500℃にした場合、焼成温度が600℃であったときに比較するとセラミック系絶縁層30における銅の拡散は認められないが、セラミック系絶縁層30の膨らみが観察される。 Here, in Example 1 and Comparative Example 1, the firing temperature when forming the ceramic insulating layer 30 was 600 ° C. On the other hand, in Example 2 and Comparative Example 2, the firing temperature was 500 ° C. First, referring to FIG. 2C, copper crystals can be observed on the surface of the ceramic insulating layer 30 of Comparative Example 1 fired at 600 ° C. On the other hand, referring to FIG. 2D, no copper crystals are observed on the surface of the ceramic insulating layer 30 of Comparative Example 2 fired at 500.degree. However, in FIG. 2 (d), as indicated by an arrow A, portions that are visually recognized as white on the surface of the ceramic insulating layer 30 are observed. The part visually recognized as white is a part swollen by firing (see FIG. 3C). As described above, when copper is employed as the metal layer 10, if the firing temperature at the time of forming the ceramic insulating layer 30 is increased, copper diffuses throughout the ceramic insulating layer 30, thereby insulating the ceramic insulating layer 30. There is a risk of causing a decrease in performance, occurrence of a short circuit, an increase in leakage current, and the like. On the other hand, when the firing temperature is 500 ° C., copper diffusion in the ceramic insulating layer 30 is not observed as compared with when the firing temperature is 600 ° C., but swelling of the ceramic insulating layer 30 is observed.
 以上の比較例1及び比較例2に対して、本件発明に係る実施例1及び実施例2では、金属層10としての銅箔の表面にSiOから成る保護層20を形成した上で、セラミック系絶縁層30を形成した積層体100(図1参照)を得ている。実施例1は、保護層20を設けたこと以外は、比較例1と同様にして金属層10とセラミック系絶縁層30との積層体を形成したものであるが、図2(a)を参照すると、銅の結晶は認められず、セラミック系絶縁層30への銅の拡散が防止されていることが分かる。また、図2(a)、(b)には、セラミック系絶縁層30の表面において白く視認される箇所はないことから、セラミック系絶縁層30の膨らみも生じていないことが分かる。以上のことから、保護層20を金属層10上に形成し、この保護層20の表面にセラミック系絶縁層30を形成することにより、セラミック系絶縁層30に対する金属層10の構成金属の拡散を抑制する効果があり、また、金属層10の酸化による形状変化を防止し、平滑なセラミック系絶縁層30が形成可能であることが確認された。 In contrast to the above Comparative Example 1 and Comparative Example 2, in Example 1 and Example 2 according to the present invention, the protective layer 20 made of SiO 2 is formed on the surface of the copper foil as the metal layer 10 and then the ceramic. The laminated body 100 (refer FIG. 1) in which the system insulation layer 30 was formed is obtained. In Example 1, a laminated body of the metal layer 10 and the ceramic insulating layer 30 was formed in the same manner as in Comparative Example 1 except that the protective layer 20 was provided. See FIG. 2A. Then, it can be seen that copper crystals are not recognized and copper diffusion into the ceramic insulating layer 30 is prevented. Further, in FIGS. 2A and 2B, since there is no portion that is visually recognized as white on the surface of the ceramic insulating layer 30, it can be seen that the swelling of the ceramic insulating layer 30 does not occur. From the above, the protective layer 20 is formed on the metal layer 10, and the ceramic insulating layer 30 is formed on the surface of the protective layer 20, thereby diffusing the constituent metals of the metal layer 10 into the ceramic insulating layer 30. It was confirmed that there was an effect to suppress, a change in shape due to oxidation of the metal layer 10 was prevented, and a smooth ceramic insulating layer 30 could be formed.
 次に、図3(a)、(b)に実施例1で形成した金属層10とセラミック系絶縁層30との積層体100(図1参照)の断面を撮影したSEM写真を示す。また、図3(c)、(d)に比較例1で形成した金属層10とセラミック系絶縁層30との積層体100の断面を撮影したSEM写真を示す。但し、図3(a)、(c)は5,000倍の倍率で撮影したものであり、図3(b)、(d)は50,000倍の倍率で撮影したものである。 Next, FIGS. 3A and 3B show SEM photographs in which a cross section of the laminate 100 (see FIG. 1) of the metal layer 10 and the ceramic insulating layer 30 formed in Example 1 is shown. 3C and 3D show SEM photographs in which a cross section of the laminate 100 of the metal layer 10 and the ceramic insulating layer 30 formed in Comparative Example 1 is photographed. 3 (a) and 3 (c) are taken at a magnification of 5,000 times, and FIGS. 3 (b) and 3 (d) are taken at a magnification of 50,000 times.
 図3(a)、(b)に示すように、実施例1で形成した当該積層体100については、金属層10である銅箔とセラミック系絶縁層30との間に薄膜状に形成された保護層20が認められる。そして、セラミック系絶縁層30の表面は滑らかであり、銅の結晶や、表面の膨らみは認められない。これに対して、図3(c)、(d)を参照すると、比較例1で形成した当該積層体では、セラミック系絶縁層30の表面に拡散した銅の結晶が無数に認められる。 As shown in FIGS. 3A and 3B, the laminate 100 formed in Example 1 was formed in a thin film between the copper foil as the metal layer 10 and the ceramic insulating layer 30. A protective layer 20 is observed. And the surface of the ceramic type | system | group insulating layer 30 is smooth, and a copper crystal | crystallization and the swelling of a surface are not recognized. On the other hand, referring to FIGS. 3C and 3D, in the laminate formed in Comparative Example 1, countless copper crystals diffused on the surface of the ceramic insulating layer 30 are recognized.
セラミック系絶縁層30に対する銅の拡散(2): 次に、図4(a)、(b)に実施例2で形成した上記積層体100の断面SEM写真を示す。また、図4(c)、(d)に比較例2で形成した上記積層体の断面SEM写真を示す。図4(a)、(c)は、5,000倍の倍率で撮影したものであり、図4(b)、(d)は50,000倍の倍率で撮影したものである。 Copper diffusion to ceramic insulating layer 30 (2): Next, FIGS. 4A and 4B show cross-sectional SEM photographs of the laminate 100 formed in Example 2. FIG. Moreover, the cross-sectional SEM photograph of the said laminated body formed in FIG.4 (c), (d) in the comparative example 2 is shown. 4A and 4C are taken at a magnification of 5,000 times, and FIGS. 4B and 4D are taken at a magnification of 50,000 times.
 図4を参照すると、実施例2及び比較例2では、焼成温度を500℃としているため、いずれについてもセラミック系絶縁層30の表面に拡散した銅の結晶は認められない。しかしながら、図4(c)、(d)に示すように、比較例2の積層体については、セラミック系絶縁層30の表面に無数の膨らみが認められ、セラミック系絶縁層30の表面が波打っていることが分かる。このように、金属層10の酸化に伴う形状変化によってセラミック系絶縁層30の表面に凹凸が生じると、場所によって絶縁特性或いは誘電特性が不均一になり、セラミック系絶縁層と金属層との積層体としての歩留まりを向上することができない。一方、実施例2の積層体100については、図4(b)に示すように、金属層10である銅箔層とセラミック系絶縁層30との間に薄膜状に形成された保護層20が認められる。そして、保護層20の表面に形成されたセラミック系絶縁層30の表面の膨らみは認められず、層厚の均一なセラミック系絶縁層30が得られていることが分かる。 Referring to FIG. 4, in Example 2 and Comparative Example 2, since the firing temperature is 500 ° C., no copper crystal diffused on the surface of the ceramic insulating layer 30 is observed. However, as shown in FIGS. 4C and 4D, in the laminated body of Comparative Example 2, innumerable swelling was observed on the surface of the ceramic insulating layer 30, and the surface of the ceramic insulating layer 30 was wavy. I understand that As described above, when unevenness is generated on the surface of the ceramic insulating layer 30 due to the shape change accompanying the oxidation of the metal layer 10, the insulating characteristic or the dielectric characteristic becomes uneven depending on the location, and the lamination of the ceramic insulating layer and the metal layer is performed. The yield as a body cannot be improved. On the other hand, as for the laminated body 100 of Example 2, as shown in FIG.4 (b), the protective layer 20 formed in the thin film shape between the copper foil layer which is the metal layer 10, and the ceramic type | system | group insulating layer 30 is shown. Is recognized. Further, it can be seen that no swelling of the surface of the ceramic insulating layer 30 formed on the surface of the protective layer 20 is observed, and the ceramic insulating layer 30 having a uniform layer thickness is obtained.
 以上の断面SEM写真より、本件発明では、金属層10の上面に保護層20を介して層厚の均一なセラミック系絶縁層30を形成することができ、セラミック系絶縁層30に対する銅の拡散を防止することが確認できた。したがって、本件発明によれば、金属拡散によるセラミック系絶縁層30の絶縁性の低下や誘電特性の低下を防止し、セラミック系絶縁層と金属層との積層体100を生産歩留まりよく製造することができる。 From the above cross-sectional SEM photograph, in the present invention, the ceramic insulating layer 30 having a uniform layer thickness can be formed on the upper surface of the metal layer 10 via the protective layer 20, and copper diffusion to the ceramic insulating layer 30 can be prevented. It was confirmed that this could be prevented. Therefore, according to the present invention, it is possible to prevent deterioration of the insulating property and dielectric property of the ceramic insulating layer 30 due to metal diffusion, and to manufacture the laminate 100 of the ceramic insulating layer and the metal layer with high production yield. it can.
金属層の酸化(1): 次に、金属層10としての銅の酸化状態を評価するため、パナリティカル社製のX’Pert PROを用いて、実施例1及び実施例2において形成したセラミック系絶縁層30の表面のX線回析を行った。図5に、その結果を示す。但し、図5において、横軸は入射角(2θ)を示し、縦軸は強度(a.u.)を示している。また、図6には、比較例1及び比較例2において形成したセラミック系絶縁層30のX線回析結果を示している。 Oxidation of metal layer (1): Next, in order to evaluate the oxidation state of copper as the metal layer 10, the ceramic system formed in Example 1 and Example 2 using X'Pert PRO manufactured by Panalical Co., Ltd. X-ray diffraction of the surface of the insulating layer 30 was performed. FIG. 5 shows the result. In FIG. 5, the horizontal axis indicates the incident angle (2θ), and the vertical axis indicates the intensity (au). FIG. 6 shows the X-ray diffraction results of the ceramic insulating layer 30 formed in Comparative Example 1 and Comparative Example 2.
 まず、比較例1及び比較例2について検討する。図6には、(a)比較例1及び(b)比較例2における各セラミック系絶縁層30のX線回析結果と共に、比較例1及び比較例2と同様の条件で形成したセラミック系絶縁層30の焼成前のX線回析結果(c)についても併せて表示している。比較例1及び比較例2のそれぞれについて、図6(a)、(b)に示すように、焼成を行うことによりBaTiOを示す回析ピークが確認される。このことから、焼成によってBaTiOの前駆体の酸化反応が進行し、セラミック系絶縁層30が形成されたことが認められる。一方、焼成を行うことによりCuOを示す回析ピークが現れることから、焼成によって金属層10を構成する銅が酸化していることが認められる。 First, Comparative Example 1 and Comparative Example 2 are examined. FIG. 6 shows the ceramic insulation formed under the same conditions as in Comparative Example 1 and Comparative Example 2 together with the X-ray diffraction results of each ceramic insulating layer 30 in (a) Comparative Example 1 and (b) Comparative Example 2. The X-ray diffraction result (c) before firing of the layer 30 is also shown. For each of Comparative Examples 1 and 2, as shown in FIG. 6 (a), (b) , diffraction peaks indicating the BaTiO 3 is confirmed by performing firing. From this, it can be seen that the oxidation reaction of the BaTiO 3 precursor progressed by firing, and the ceramic insulating layer 30 was formed. On the other hand, since the diffraction peak indicating Cu 2 O by performing firing appears, copper constituting the metal layer 10 by firing is observed to have oxidized.
 次に、図5を参照して、実施例1及び実施例2について検討する。図5には、(a)実施例1及び実施例2における各セラミック系絶縁層30のX線回折結果と共に、実施例1及び実施例2と同様の条件で形成したセラミック系絶縁層30の焼成前のX線回折結果(c)についても併せて表示している。図5(a)、(b)を参照すると、実施例1及び実施例2で形成したセラミック系絶縁層30については、BaTiOを示す回析ピークは現れるものの、CuOを示す回析ピークは現れていない。したがって、当該結果より、保護層20を金属層10上に形成することにより、セラミック系絶縁層30を形成する際の焼成工程において、金属層10を構成する銅の酸化を有効に防止することができることが確認された。 Next, with reference to FIG. 5, Example 1 and Example 2 are examined. FIG. 5 shows (a) the firing of the ceramic insulating layer 30 formed under the same conditions as in the first and second embodiments, together with the X-ray diffraction results of the respective ceramic insulating layers 30 in the first and second embodiments. The previous X-ray diffraction result (c) is also shown. Referring to FIGS. 5A and 5B, for the ceramic insulating layer 30 formed in Example 1 and Example 2, although a diffraction peak indicating BaTiO 3 appears, a diffraction peak indicating Cu 2 O appears. Has not appeared. Therefore, from the result, by forming the protective layer 20 on the metal layer 10, it is possible to effectively prevent oxidation of the copper constituting the metal layer 10 in the firing step when forming the ceramic insulating layer 30. It was confirmed that it was possible.
金属層の酸化(2): 次に、図7及び図8に実施例1及び比較例1で形成した金属層10とセラミック系絶縁層30との積層体の断面における電子線マイクロアナライザ写真をそれぞれ示す。但し、当該断面分析写真の撮影には、OXFORD社製のエネルギー分散型X線分析装置 INCA Energy PentaFETx3.を用いて行った。 Oxidation of metal layer (2): Next, FIG. 7 and FIG. 8 are electron beam microanalyzer photographs in the cross section of the laminate of the metal layer 10 and the ceramic insulating layer 30 formed in Example 1 and Comparative Example 1, respectively. Show. However, for taking the sectional analysis photograph, an energy dispersive X-ray analyzer INCA Energy PentaFETx3. It was performed using.
 ここで、図8を参照すると、比較例1で形成した積層体においては、まず、図8(a)に示すように、セラミック系絶縁層30の表面に銅が拡散している状態が観察される。これは、図8(b)に示す銅原子(Cu)の分散状態からも明らかである。一方、図8(c)に示すように、金属層10の内部には酸素原子(O)の存在が確認され、金属層10を構成する銅が酸化していることが分かる。 Here, referring to FIG. 8, in the laminated body formed in Comparative Example 1, first, as shown in FIG. 8A, a state in which copper is diffused on the surface of the ceramic insulating layer 30 is observed. The This is also apparent from the dispersed state of copper atoms (Cu) shown in FIG. On the other hand, as shown in FIG. 8C, the presence of oxygen atoms (O) is confirmed inside the metal layer 10, and it can be seen that copper constituting the metal layer 10 is oxidized.
 これに対して、図7を参照すると、図7(b)には、セラミック系絶縁層30の表面における銅の拡散は認められない。また、図7(c)を参照すると、酸素原子の分布はセラミック系絶縁層30にのみとどまっており、焼成によりBiTOの前駆体の酸化反応は進行したが、銅の酸化反応は起こっていないことがこの図からも確認される。また、図7(e)に示すように、金属層10とセラミック系絶縁層30との間に、ケイ素原子(Si)の分布が認められ、SiOから成る保護層20が薄膜状に形成されていることが確認できる。 On the other hand, referring to FIG. 7, no diffusion of copper on the surface of the ceramic insulating layer 30 is observed in FIG. Further, referring to FIG. 7C, the distribution of oxygen atoms remains only in the ceramic insulating layer 30, and the oxidation reaction of the precursor of BiTO 3 proceeds by firing, but the oxidation reaction of copper does not occur. This is also confirmed from this figure. Further, as shown in FIG. 7E, the distribution of silicon atoms (Si) is recognized between the metal layer 10 and the ceramic insulating layer 30, and the protective layer 20 made of SiO 2 is formed in a thin film shape. Can be confirmed.
 次に、実施例1及び実施例2で形成したセラミック系絶縁層と金属層との積層体100における容量密度、誘電正接(Loss tangent)、生産歩留まりについて評価した結果を表1に示す。但し、各実施例及び各比較例において、セラミック系絶縁層30に対して樹脂含浸を行った場合と、行っていない場合についても評価を行ったため、表1には、これらの評価結果を共に示している。また、上記評価において、容量密度及び誘電正接は、HIOKI社製のLCRハイテスタ3532-50を用いて測定した。さらに、生産歩留まりについては、各条件毎にセラミック系絶縁層と金属層との積層体100を16ずつ製造し、各セラミック系絶縁層と金属層との積層体100についての品質を容量密度、誘電正接、リーク電流の各項目について評価し、良品の占める割合に基づいて評価した。 Next, Table 1 shows the results of evaluating the capacity density, dielectric loss tangent, and production yield in the laminate 100 of the ceramic insulating layer and the metal layer formed in Example 1 and Example 2. However, in each example and each comparative example, the evaluation was performed for the case where resin impregnation was performed on the ceramic insulating layer 30 and the case where it was not performed. Table 1 shows both of these evaluation results. ing. In the above evaluation, the capacitance density and dielectric loss tangent were measured using an LCR high tester 3532-50 manufactured by HIOKI. Furthermore, with respect to production yield, 16 laminated bodies 100 of ceramic insulating layers and metal layers are manufactured for each condition, and the quality of each laminated body 100 of ceramic insulating layers and metal layers is set to capacity density and dielectric. Each item of tangent and leakage current was evaluated and evaluated based on the proportion of non-defective products.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1を参照すると、まず、実施例1と実施例2はセラミック系絶縁層30内の粒子間又は粒界間に樹脂含浸を行っていない場合、容量密度の点では比較例1及び比較例2よりも小さい。しかしながら、比較例1及び比較例2で得たセラミック系絶縁層と金属層との積層体の容量密度が高いのは、短絡のためリーク電流が大きくなっていることが原因と考えられる。その結果、比較例1及び比較例2では、生産歩留まりがそれぞれ18.8%、68.8%と低く、歩留まり良く良品を得ることは困難であった。一方、実施例1及び実施例2は、上述してきたように、セラミック系絶縁層30における銅の拡散が防止されており、セラミック系絶縁層30の層厚も均一に構成されている。その結果、短絡の発生は少なく、リーク電流の値は小さい。また、実施例1及び実施例2は、それぞれ比較例1及び比較例2よりも誘電正接の値が低い。その結果、生産歩留まりは実施例1が81.3%、実施例2が100%であった。 Referring to Table 1, first, in Examples 1 and 2, when resin impregnation is not performed between particles or grain boundaries in the ceramic insulating layer 30, Comparative Examples 1 and 2 in terms of capacity density. Smaller than. However, the high capacity density of the laminate of the ceramic insulating layer and the metal layer obtained in Comparative Example 1 and Comparative Example 2 is considered to be caused by an increase in leakage current due to a short circuit. As a result, in Comparative Example 1 and Comparative Example 2, the production yields were as low as 18.8% and 68.8%, respectively, and it was difficult to obtain good products with good yields. On the other hand, in Example 1 and Example 2, as described above, the diffusion of copper in the ceramic insulating layer 30 is prevented, and the layer thickness of the ceramic insulating layer 30 is also configured uniformly. As a result, the occurrence of short circuits is small and the value of leakage current is small. In addition, Example 1 and Example 2 have lower dielectric loss tangent values than Comparative Example 1 and Comparative Example 2, respectively. As a result, the production yield was 81.3% in Example 1 and 100% in Example 2.
 さらに、実施例1及び実施例2においてセラミック系絶縁層30内の粒子間又は粒界間に樹脂含浸を行った場合、樹脂含浸を行わない場合に比して、容量密度は低下するが、誘電正接の値は、1/10以下になり、誘電正接の値の小さい良好な製品を得ることができることが確認された。また、樹脂含浸を行うことによりリーク電流の流路となるセラミック系絶縁層30の構造欠陥を埋めることができるため、短絡の発生を防止して、リーク電流を更に小さくすることができる。その結果、生産歩留まりについても、樹脂含浸を行わない場合は81.3%であったのに対して、樹脂含浸を行うことにより93.8%に向上することができた。一方、樹脂含浸を行った場合であっても、比較例1及び比較例2で得たセラミック系絶縁層と金属層との積層体は、短絡してしまい、生産歩留まりは0%であり、容量密度及び誘電正接を測定することはできなかった。 Further, when the resin impregnation is performed between the particles in the ceramic insulating layer 30 or between the grain boundaries in the first and second embodiments, the capacity density is reduced as compared with the case where the resin impregnation is not performed. The tangent value was 1/10 or less, and it was confirmed that a good product having a small dielectric tangent value can be obtained. Further, the resin impregnation can fill the structural defect of the ceramic insulating layer 30 serving as a flow path for the leakage current, so that a short circuit can be prevented and the leakage current can be further reduced. As a result, the production yield was 81.3% when the resin impregnation was not performed, but it could be improved to 93.8% by performing the resin impregnation. On the other hand, even when the resin impregnation is performed, the laminate of the ceramic insulating layer and the metal layer obtained in Comparative Example 1 and Comparative Example 2 is short-circuited, the production yield is 0%, and the capacity Density and dielectric loss tangent could not be measured.
 次に、図9及び図10を参照してリーク電流密度について評価する。当該評価に際して、まず、実施例1及び比較例1で得たセラミック系絶縁層と金属層との積層体100において、各積層体のセラミック系絶縁層の表面にスパッタリング蒸着法により、銅層(上部電極形成層)を形成した。そして、この銅層を上部電極、金属層10を下部電極として、これら両電極間に電圧を印加し、その電圧値に対するリーク電流密度を測定した。このとき、実施例1及び実施例2についてはそれぞれセラミック系絶縁層30の樹脂含浸の有無におけるリーク電流密度についても評価した。図9(a)は、セラミック系樹脂層30の樹脂含浸を行った場合の実施例1についての測定結果を示し、(b)は樹脂含浸を行っていない場合の実施例1についての測定結果を示し、(c)は比較例1についての測定結果を示している。同様に、図10(a)は、セラミック系樹脂層30の樹脂含浸を行った場合の実施例2についての測定結果を示し、(b)は樹脂含浸を行っていない場合の実施例2についての測定結果を示し、(c)は比較例2についての測定結果を示している。 Next, the leakage current density is evaluated with reference to FIG. 9 and FIG. In the evaluation, first, in the laminated body 100 of the ceramic insulating layer and the metal layer obtained in Example 1 and Comparative Example 1, a copper layer (upper part) was formed on the surface of the ceramic insulating layer of each laminated body by a sputtering vapor deposition method. Electrode forming layer) was formed. Then, using this copper layer as the upper electrode and the metal layer 10 as the lower electrode, a voltage was applied between these two electrodes, and the leakage current density with respect to the voltage value was measured. At this time, for Example 1 and Example 2, the leakage current density in the presence or absence of resin impregnation of the ceramic insulating layer 30 was also evaluated. FIG. 9A shows the measurement result for Example 1 when the resin impregnation of the ceramic resin layer 30 is performed, and FIG. 9B shows the measurement result for Example 1 when the resin impregnation is not performed. (C) has shown the measurement result about the comparative example 1. FIG. Similarly, FIG. 10A shows the measurement result for Example 2 when the resin impregnation of the ceramic resin layer 30 is performed, and FIG. 10B shows the measurement result for Example 2 when the resin impregnation is not performed. The measurement results are shown, and (c) shows the measurement results for Comparative Example 2.
 まず、実施例1及び比較例1について評価する。図9を参照すると、(c)に示す比較例1のセラミック系絶縁層と金属層との積層体に対して、(a)、(b)に示す本件発明に係る実施例1のセラミック系絶縁層と金属層との積層体100はリーク電流密度の値が1/1,000以下に低下していることが分かる。また、図9から、実施例1においてセラミック系絶縁層30の樹脂含浸を行ったもの(a)と、樹脂含浸を行っていないもの(b)とを比較すると、樹脂含浸を行った方がリーク電流密度の値が低いことが分かる。 First, Example 1 and Comparative Example 1 are evaluated. Referring to FIG. 9, the ceramic insulation of Example 1 according to the present invention shown in (a) and (b) of the laminate of the ceramic insulation layer and metal layer of Comparative Example 1 shown in (c). It can be seen that the laminate 100 of the layer and the metal layer has a leakage current density value reduced to 1/1000 or less. Further, FIG. 9 shows that when the resin-impregnated ceramic insulating layer 30 in Example 1 (a) is compared with the resin-impregnated (b) (b), the resin-impregnated one leaks. It can be seen that the current density is low.
 次に、実施例2及び比較例2について評価する。実施例2及び比較例2についても、実施例1及び比較例1の場合と同様の傾向が見られた。すなわち、図10を参照すると、(c)に示す比較例2のセラミック系絶縁層と金属層との積層体に対して、(a)、(b)に示す本件発明に係る実施例2のセラミック系絶縁層30と金属層10との積層体100はリーク電流密度の値が1/1,000以下に低下していることが分かる。また、図10から、実施例2において、セラミック系絶縁層30の樹脂含浸を行ったもの(a)と、樹脂含浸を行っていないもの(b)とを比較すると、セラミック系絶縁層30に対して樹脂含浸を行った方がリーク電流密度の値が低いことが分かる。 Next, Example 2 and Comparative Example 2 are evaluated. Regarding Example 2 and Comparative Example 2, the same tendency as in Example 1 and Comparative Example 1 was observed. That is, referring to FIG. 10, the ceramic of Example 2 according to the present invention shown in (a) and (b) of the laminate of the ceramic insulating layer and metal layer of Comparative Example 2 shown in (c). It can be seen that the laminate 100 of the system insulating layer 30 and the metal layer 10 has a leakage current density value reduced to 1/1000 or less. From FIG. 10, in Example 2, when the resin-impregnated ceramic insulating layer 30 (a) and the resin-impregnated (b) were compared, the ceramic insulating layer 30 was compared. It can be seen that the value of the leakage current density is lower when the resin is impregnated.
2.泳動電着法
 次に、泳動電着法でセラミック系絶縁層30を形成した実施例3のセラミック系絶縁層と金属層との積層体100と、比較例のセラミック系絶縁層と金属層との積層体とを対比しながら、本件発明に係るセラミック系絶縁層と金属層との積層体100の評価を行う。
2. Electrophoretic electrodeposition method Next, the laminate 100 of the ceramic insulating layer and the metal layer of Example 3 in which the ceramic insulating layer 30 was formed by the electrophoretic electrodeposition method, and the ceramic insulating layer and the metal layer of the comparative example The laminate 100 of the ceramic insulating layer and the metal layer according to the present invention is evaluated while comparing with the laminate.
i)断面評価
 JEOL社製の走査型電子顕微鏡(JSM-700IF)を用いて、実施例3で得たセラミック系絶縁層と金属層との積層体100における金属層10とセラミック系絶縁層30の積層体100と、比較例3で得たセラミック系絶縁層と金属層との積層体における金属層10とセラミック系絶縁層30の積層体とについて、それぞれ断面を撮影し、銅の酸化の状態について分析した。
i) Cross-sectional evaluation Using a scanning electron microscope (JSM-700IF) manufactured by JEOL, the metal layer 10 and the ceramic insulating layer 30 in the laminate 100 of the ceramic insulating layer and the metal layer obtained in Example 3 were used. About the laminated body 100 and the laminated body of the metal-based layer 10 and the ceramic-based insulating layer 30 in the laminated body of the ceramic-based insulating layer and the metal layer obtained in Comparative Example 3, respectively, a cross-section is photographed, and the state of copper oxidation analyzed.
 図11(a)は、実施例3で形成した上記積層体100の断面を示すSEM写真であり、図11(b)は比較例3で形成した上記積層体の断面を示すSEM写真である。図11(a)を参照すると、実施例3の上記積層体100では、金属層10である銅箔とセラミック系絶縁層30との間い薄いSiOから成る保護層20を確認することができる。一方、図11(b)を参照すると、この保護層20の代わりに、銅箔層とセラミック系絶縁層30との間に銅が酸化した酸化銅層がが形成されていることが分かる。このように、ケイ素化合物から成る保護層20を金属層10の表面に設けることにより、金属層10を構成する金属、すなわち銅の酸化を防止することができ、金属層10の劣化を防止することができる。 11A is a SEM photograph showing a cross section of the laminate 100 formed in Example 3, and FIG. 11B is a SEM photograph showing a cross section of the laminate formed in Comparative Example 3. FIG. Referring to FIG. 11A, in the laminate 100 of Example 3, the protective layer 20 made of thin SiO 2 between the copper foil as the metal layer 10 and the ceramic insulating layer 30 can be confirmed. . On the other hand, referring to FIG. 11B, it can be seen that a copper oxide layer formed by oxidizing copper is formed between the copper foil layer and the ceramic insulating layer 30 instead of the protective layer 20. Thus, by providing the protective layer 20 made of a silicon compound on the surface of the metal layer 10, it is possible to prevent oxidation of the metal constituting the metal layer 10, that is, copper, and to prevent deterioration of the metal layer 10. Can do.
ii)リーク電流密度
 次に、実施例3及び比較例3で得たセラミック系絶縁層と金属層との積層体100について、リーク電流密度の評価を行った。当該評価では、金属層10を下部電極とし、セラミック系絶縁層の上層に形成した銅層を上部電極として用いて、両電極間に電圧を印加したときのリーク電流密度を測定した。リーク電流密度の測定は、ADVANTEST社製のR8252 DIGITAL ELECTROMETERを用いて行った。結果を図12に示す。但し、図12において、(a)は実施例3についての測定結果であり、(b)は比較例3についての測定結果である。また、(c)については後述する。
ii) Leakage Current Density Next, the leakage current density of the laminate 100 of the ceramic insulating layer and the metal layer obtained in Example 3 and Comparative Example 3 was evaluated. In the evaluation, the leakage current density when a voltage was applied between the two electrodes was measured using the metal layer 10 as the lower electrode and the copper layer formed on the ceramic insulating layer as the upper electrode. The measurement of the leakage current density was performed using R8252 DIGITAL ELECTROMETER manufactured by ADVANTEST. The results are shown in FIG. However, in FIG. 12, (a) is a measurement result about Example 3, (b) is a measurement result about Comparative Example 3. Further, (c) will be described later.
 図12に示すように、本件発明に係る実施例3のセラミック系絶縁層と金属層との積層体100(a)は、比較例3のセラミック系絶縁層と金属層との積層体(b)に比して、リーク電流密度の値が小さく、上部電極と下部電極との間の短絡が防止されていることが分かる。また、両極間に印加する電圧が20V以上である場合には、実施例3のセラミック系絶縁層と金属層との積層体100におけるリーク電流密度の値は、比較例3のセラミック系絶縁層と金属層との積層体におけるリーク電流密度の値の約1/10であるが、両極間に印加する電圧が20V未満の場合、その差は拡大する。例えば、両極間に印加する電圧が6V~10Bの範囲では、1/100以下になる。このことから、本件発明に係るセラミック系絶縁層と金属層との積層体100における絶縁層或いは誘電層としてのセラミック系絶縁層の信頼性は高く、当該積層体100を用いてより低電圧で動作する電子回路(半導体回路を含む)を形成する際にリーク電流を低減する効果が大きいといえる。 As shown in FIG. 12, the laminate 100 (a) of the ceramic insulating layer and the metal layer of Example 3 according to the present invention is the laminate (b) of the ceramic insulating layer and the metal layer of Comparative Example 3. It can be seen that the value of the leakage current density is small as compared with the above, and a short circuit between the upper electrode and the lower electrode is prevented. Moreover, when the voltage applied between both electrodes is 20 V or more, the value of the leakage current density in the laminate 100 of the ceramic insulating layer and the metal layer of Example 3 is the same as that of the ceramic insulating layer of Comparative Example 3. Although it is about 1/10 of the value of the leakage current density in the laminate with the metal layer, the difference increases when the voltage applied between the two electrodes is less than 20V. For example, when the voltage applied between the two electrodes is in the range of 6V to 10B, it becomes 1/100 or less. Therefore, the ceramic insulating layer as the insulating layer or the dielectric layer in the laminated body 100 of the ceramic insulating layer and the metal layer according to the present invention has high reliability, and operates at a lower voltage using the laminated body 100. It can be said that the effect of reducing leakage current is great when forming an electronic circuit (including a semiconductor circuit).
 また、実施例3及び比較例3で得たセラミック系絶縁層と金属層との積層体100における容量密度、誘電正接、生産歩留まり、及びセラミック系絶縁層の層厚について評価した結果を表2に示す。 Table 2 shows the evaluation results of the capacity density, dielectric loss tangent, production yield, and layer thickness of the ceramic insulating layer in the laminate 100 of the ceramic insulating layer and the metal layer obtained in Example 3 and Comparative Example 3. Show.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例3では電着工程において、30Vの電圧を20秒印加しており、比較例3では同電着工程において20Vの電圧を20秒間印加している。しかしながら、最終的に得られたセラミック系絶縁層30の層厚はほぼ同程度であり、それぞれ1.6μm、1.5μmであった。これは、実施例3で形成した金属層10の表面には絶縁物質であるSiOから成る保護層20が設けられているため、この保護層20が設けられていない比較例の金属層10に比して、電着時の電気特性が低下していることが考えられる。しかしながら、参考までに図13に示すように、SiOから成る保護層20を金属層10(銅箔)の表面に設けた場合でも、電着時に印加する電圧の値を上げれば、成膜側の電極面に堆積する粒子堆積量が増加する。従って、電圧や通電時間等を適宜変更して、成膜側の電極面に堆積する粒子堆積量を調整することにより、所望の層厚のセラミック系絶縁層30を保護層20を介して金属層10の上層に積層することができる。 As shown in Table 2, in Example 3, a voltage of 30 V was applied for 20 seconds in the electrodeposition process, and in Comparative Example 3, a voltage of 20 V was applied for 20 seconds in the electrodeposition process. However, the finally obtained ceramic insulating layers 30 had substantially the same thickness, which were 1.6 μm and 1.5 μm, respectively. This is because the protective layer 20 made of SiO 2 which is an insulating material is provided on the surface of the metal layer 10 formed in Example 3, so that the protective layer 20 is not provided with the metal layer 10 of the comparative example. In comparison, it is conceivable that the electrical characteristics during electrodeposition are degraded. However, as shown in FIG. 13 for reference, even when the protective layer 20 made of SiO 2 is provided on the surface of the metal layer 10 (copper foil), if the value of the voltage applied during electrodeposition is increased, the film forming side The amount of particles deposited on the electrode surface increases. Therefore, the ceramic insulating layer 30 having a desired layer thickness is formed through the protective layer 20 by changing the voltage, energizing time, etc. as appropriate, and adjusting the amount of deposited particles deposited on the electrode surface on the film formation side. 10 upper layers can be laminated.
 一方、比較例3のセラミック系絶縁層と金属層との積層体に比べると、実施例3のセラミック系絶縁層と金属層との積層体100の容量密度は低い。しかしながら、セラミック系絶縁層30の厚みを薄くすることにより容量密度を向上することは可能である。また、誘電正接の値は、実施例3のセラミック系絶縁層と金属層との積層体100の方が比較例3のセラミック系絶縁層と金属層との積層体よりも低く、生産歩留まりも実施例3の方が高い。セラミック系絶縁層30の厚みを約1.5倍にした場合、保護層20を設けなくとも、セラミック系絶縁層30の絶縁性は向上し、容量密度は低下するが、リーク電流密度も低下する。しかしながら、誘電正接の値の向上は認められない。 On the other hand, the capacity density of the laminate 100 of the ceramic insulating layer and the metal layer of Example 3 is lower than that of the laminate of the ceramic insulating layer and the metal layer of Comparative Example 3. However, it is possible to improve the capacity density by reducing the thickness of the ceramic insulating layer 30. In addition, the dielectric loss tangent value of the laminated body 100 of the ceramic insulating layer and the metal layer of Example 3 is lower than the laminated body of the ceramic insulating layer and the metal layer of Comparative Example 3, and the production yield is also implemented. Example 3 is higher. When the thickness of the ceramic insulating layer 30 is increased by about 1.5 times, even if the protective layer 20 is not provided, the insulating property of the ceramic insulating layer 30 is improved and the capacity density is reduced, but the leakage current density is also reduced. . However, no improvement in the value of dielectric loss tangent is observed.
 ここで、表3に参考として示しているのは、比較例3のセラミック系絶縁層と金属層との積層体を製造する際に、電着工程を30Vで行った場合のセラミック系絶縁層と金属層との積層体についての評価結果である。参考として示すように、電着工程を30Vで行うことにより、セラミック系絶縁層30の層厚は約1.5倍になった。図12(c)は、この参考例として示した積層体についてのリーク電流密度の測定結果を示したものである。図12(a)、(c)を比較すると、比較例3におけるセラミック系絶縁層30の層厚を約1.5倍にすることで、リーク電流密度の値は、(a)に示す実施例3と同程度の値を示している。換言すれば、本件発明に係る積層体100は、セラミック系絶縁層30を薄層化した場合であっても、従来に比して、リーク電流の発生を有効に防止することができ、信頼性の高い電子回路或いは電子部品回路を形成することが可能になる。 Here, the reference shown in Table 3 is the ceramic insulating layer when the electrodeposition process is performed at 30 V when the laminate of the ceramic insulating layer and the metal layer of Comparative Example 3 is manufactured. It is an evaluation result about a laminated body with a metal layer. As shown for reference, the thickness of the ceramic insulating layer 30 was increased about 1.5 times by performing the electrodeposition step at 30V. FIG. 12C shows the measurement result of the leakage current density for the laminate shown as this reference example. 12A and 12C are compared, the value of the leakage current density is obtained by increasing the layer thickness of the ceramic insulating layer 30 in Comparative Example 3 by about 1.5 times. A value similar to 3 is shown. In other words, the laminated body 100 according to the present invention can effectively prevent the occurrence of a leakage current as compared with the conventional case even when the ceramic insulating layer 30 is thinned, and the reliability. It is possible to form an electronic circuit or electronic component circuit having a high height.
 また、図示等は行っていないが、実施例3のセラミック系絶縁層と金属層との積層体100を形成する際に、保護層20の厚みを20nmになるようにして保護層20を形成した。その結果、保護層20の厚みを薄くした場合であっても、保護層20を設けない場合に比して、リーク電流密度を低下させることができ、また、誘電正接の値の低下等の各種の効果が認められた。 Although not shown, the protective layer 20 was formed so that the thickness of the protective layer 20 was 20 nm when the laminate 100 of the ceramic insulating layer and the metal layer of Example 3 was formed. . As a result, even when the thickness of the protective layer 20 is reduced, the leakage current density can be reduced as compared with the case where the protective layer 20 is not provided, and various values such as a decrease in the dielectric loss tangent value can be obtained. The effect of was recognized.
 以上説明したように、金属層10の金属層10として、銅箔を採用した場合であっても、セラミック系絶縁層30を形成する際に、焼成工程において高温が負荷されても金属層10の酸化を極めて有効に防止することができ、金属層10の導電率の低下を防止することができる。これと同時に、当該保護層20を金属層10上に設けることにより、金属層10を構成する金属がセラミック系絶縁層30に拡散するのを防止して、セラミック系絶縁層30の絶縁性の低下或いは誘電特性の低下を防止することができる。したがって、本件発明に係るセラミック系絶縁層と金属層との積層体100を用いることにより、従来に比して信頼性の高い電子回路或いは電子部品を形成するのが可能になるとともに、当該セラミック系絶縁層と金属層との積層体100の生産歩留まりを向上することができる。 As described above, even when a copper foil is used as the metal layer 10 of the metal layer 10, even when a high temperature is applied in the firing process when the ceramic insulating layer 30 is formed, the metal layer 10 Oxidation can be prevented very effectively, and a decrease in the conductivity of the metal layer 10 can be prevented. At the same time, by providing the protective layer 20 on the metal layer 10, the metal constituting the metal layer 10 is prevented from diffusing into the ceramic insulating layer 30, and the insulating property of the ceramic insulating layer 30 is lowered. Alternatively, it is possible to prevent a decrease in dielectric characteristics. Therefore, by using the laminate 100 of the ceramic insulating layer and the metal layer according to the present invention, it becomes possible to form an electronic circuit or electronic component having higher reliability than the conventional one, and the ceramic system. The production yield of the laminated body 100 of an insulating layer and a metal layer can be improved.
 本件発明に係るセラミック系絶縁層と金属層との積層体は、絶縁層のリーク電流を低減し、信頼性の高い電子回路或いは電子部品を形成するための形成材料として極めて有効に用いることができる。さらに、保護層を銅箔層の表面に積層することにより、銅箔層を高温プロセス下における酸化等を防止することができる。このため、従来においては高温プロセスが存在するが為に、銅箔を採用することができなかった場合にも銅箔を種々の構成材料として採用することが可能になるという優れた効果を奏するため、銅箔の産業上の利用可能性を拡張することができる。 The laminate of the ceramic insulating layer and the metal layer according to the present invention can be used very effectively as a forming material for reducing the leakage current of the insulating layer and forming a highly reliable electronic circuit or electronic component. . Furthermore, by laminating the protective layer on the surface of the copper foil layer, oxidation or the like of the copper foil layer under a high temperature process can be prevented. For this reason, since there is a high temperature process in the past, there is an excellent effect that it is possible to employ copper foil as various constituent materials even when copper foil cannot be employed. Can expand the industrial applicability of copper foil.
  10・・・金属層
  20・・・保護層
  30・・・セラミック系絶縁層
  40・・・上部電極形成層
  100・・セラミック系絶縁層と金属層との積層体
DESCRIPTION OF SYMBOLS 10 ... Metal layer 20 ... Protective layer 30 ... Ceramic type insulating layer 40 ... Upper electrode formation layer 100 .. Laminated body of ceramic type insulating layer and metal layer

Claims (10)

  1.  セラミック系絶縁層と金属層との積層体であって、
     当該金属層には、前記セラミック系絶縁層が設けられる側の面に、層厚が5nm~100nmのケイ素化合物から成る保護層が設けられたこと、
     を特徴とするセラミック系絶縁層と金属層との積層体。
    A laminate of a ceramic insulating layer and a metal layer,
    The metal layer is provided with a protective layer made of a silicon compound having a thickness of 5 nm to 100 nm on the surface on which the ceramic insulating layer is provided,
    A laminate of a ceramic insulating layer and a metal layer.
  2.  前記保護層はアモルファス状態のケイ素化合物から成る請求項1に記載のセラミック系絶縁層と金属層との積層体。 The laminate of a ceramic insulating layer and a metal layer according to claim 1, wherein the protective layer is made of an amorphous silicon compound.
  3.  前記ケイ素化合物は、SiO、SiN-SiO(x>0)及びSiN(x>0)から選択された一種である請求項1に記載のセラミック系絶縁層と金属層との積層体。 2. The laminate of a ceramic insulating layer and a metal layer according to claim 1, wherein the silicon compound is one selected from SiO 2 , SiN x —SiO 2 (x> 0), and SiN x (x> 0). .
  4.  前記保護層は、化学溶液塗布法、化学気相反応法又は物理蒸着法のいずれかにより形成したものである請求項1に記載のセラミック系絶縁層と金属層との積層体。 The laminate of a ceramic insulating layer and a metal layer according to claim 1, wherein the protective layer is formed by any one of a chemical solution coating method, a chemical vapor reaction method, and a physical vapor deposition method.
  5.  前記金属層は、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル及びニッケル合金から選択されるいずれか一種から成る請求項1に記載のセラミック系絶縁層と金属層との積層体。 The laminate of a ceramic insulating layer and a metal layer according to claim 1, wherein the metal layer is made of any one selected from copper, copper alloy, aluminum, aluminum alloy, nickel and nickel alloy.
  6.  前記金属層と前記保護層との間に、ニッケル、ニッケル合金、亜鉛、亜鉛合金、クロム及びクロム合金から選択される少なくともいずれか一種の表面処理層及び/又はシランカップリング剤層を備えるものである請求項1に記載のセラミック系絶縁層と金属層との積層体。 Between the metal layer and the protective layer, at least one kind of surface treatment layer selected from nickel, nickel alloy, zinc, zinc alloy, chromium and chromium alloy and / or a silane coupling agent layer is provided. A laminate of a ceramic insulating layer and a metal layer according to claim 1.
  7.  前記セラミック系絶縁層は、ゾル-ゲル法、泳動電着法、MOCVD法及びスパッタリング蒸着法のいずれかの方法を用いて形成したものである請求項1~請求項6のいずれか一項に記載のセラミック系絶縁層と金属層との積層体。 The ceramic insulating layer is formed using any one of a sol-gel method, an electrophoretic electrodeposition method, an MOCVD method, and a sputtering vapor deposition method. A laminate of ceramic insulating layers and metal layers.
  8.  前記金属層を下部電極形成層として用い、前記セラミック系絶縁層の上面に金属材料から成る上部電極形成層が積層され、当該セラミック系絶縁層の誘電特性を利用したキャパシタ回路形成材として用いられる請求項1に記載のセラミック系絶縁層と金属層との積層体。 The metal layer is used as a lower electrode forming layer, and an upper electrode forming layer made of a metal material is laminated on the upper surface of the ceramic insulating layer, and used as a capacitor circuit forming material utilizing the dielectric characteristics of the ceramic insulating layer. Item 2. A laminate of a ceramic insulating layer and a metal layer according to Item 1.
  9.  前記セラミック系絶縁層は、当該セラミック系絶縁層内に存在する粒子又は粒界間に樹脂成分を含浸させたものである請求項1に記載のセラミック系絶縁層と金属層との積層体。 The laminate of a ceramic insulating layer and a metal layer according to claim 1, wherein the ceramic insulating layer is obtained by impregnating a resin component between particles or grain boundaries present in the ceramic insulating layer.
  10.  セラミック系絶縁層と金属層との積層体の製造方法であって、
     当該金属層の上面に、層厚が5nm~100nmのケイ素化合物から成る保護層を形成する保護層形成工程と、
     当該保護層の表面に当該セラミック系絶縁層を形成するセラミック系絶縁層形成工程と、
     を備えることを特徴とするセラミック系絶縁層と金属層との積層体の製造方法。
    A method for producing a laminate of a ceramic insulating layer and a metal layer,
    A protective layer forming step of forming a protective layer made of a silicon compound having a layer thickness of 5 nm to 100 nm on the upper surface of the metal layer;
    A ceramic insulating layer forming step of forming the ceramic insulating layer on the surface of the protective layer;
    A method for producing a laminate of a ceramic insulating layer and a metal layer.
PCT/JP2011/064083 2010-06-21 2011-06-20 Laminate of ceramic insulation layer and metal layer, and method for producing laminate WO2011162218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010140830A JP2012000947A (en) 2010-06-21 2010-06-21 Laminate of ceramic insulation layer and metal layer, and method for producing the laminate
JP2010-140830 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011162218A1 true WO2011162218A1 (en) 2011-12-29

Family

ID=45371401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064083 WO2011162218A1 (en) 2010-06-21 2011-06-20 Laminate of ceramic insulation layer and metal layer, and method for producing laminate

Country Status (3)

Country Link
JP (1) JP2012000947A (en)
TW (1) TW201210809A (en)
WO (1) WO2011162218A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731524A (en) * 2016-08-10 2018-02-23 钰邦电子(无锡)有限公司 Thin film capacitor and preparation method thereof
CN110970327A (en) * 2018-09-28 2020-04-07 日本碍子株式会社 Component for semiconductor manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209767A (en) * 1990-11-30 1992-07-31 Ibiden Co Ltd Production of aluminum nitride substrate
JP2001284774A (en) * 2000-03-28 2001-10-12 Kyocera Corp Film with metal foil and method for manufacturing ceramic wiring board
JP2005262506A (en) * 2004-03-16 2005-09-29 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil equipped with resin layer for forming insulating layer, copper clad laminated sheet, printed wiring board, manufacturing method of multilayered copper clad laminated sheet and printed wiring board manufacturing method
JP2007035975A (en) * 2005-07-27 2007-02-08 Mitsui Mining & Smelting Co Ltd Capacitor layer formation material with support substrate, and capacitor layer formation material as well as method for manufacturing these

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209767A (en) * 1990-11-30 1992-07-31 Ibiden Co Ltd Production of aluminum nitride substrate
JP2001284774A (en) * 2000-03-28 2001-10-12 Kyocera Corp Film with metal foil and method for manufacturing ceramic wiring board
JP2005262506A (en) * 2004-03-16 2005-09-29 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil equipped with resin layer for forming insulating layer, copper clad laminated sheet, printed wiring board, manufacturing method of multilayered copper clad laminated sheet and printed wiring board manufacturing method
JP2007035975A (en) * 2005-07-27 2007-02-08 Mitsui Mining & Smelting Co Ltd Capacitor layer formation material with support substrate, and capacitor layer formation material as well as method for manufacturing these

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731524A (en) * 2016-08-10 2018-02-23 钰邦电子(无锡)有限公司 Thin film capacitor and preparation method thereof
CN110970327A (en) * 2018-09-28 2020-04-07 日本碍子株式会社 Component for semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
TW201210809A (en) 2012-03-16
JP2012000947A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP3841814B1 (en) Capacitor layer forming material and method for manufacturing the capacitor layer forming material
JP6254306B2 (en) Surface treated copper foil, copper foil with carrier, substrate manufacturing method, printed wiring board manufacturing method, printed circuit board manufacturing method, copper clad laminate manufacturing method
EP1387367B1 (en) Composite particle for dielectrics, ultramicroparticulate composite resin particle, composition for forming dielectrics and use thereof
US9779880B2 (en) Resin composition and dielectric layer and capacitor produced therefrom
JP5864299B2 (en) Resin composition
KR100674848B1 (en) High Capacitancy Metal-Ceramic-Polymer Dielectric Material And Preparing Method For Embedded Capacitor Using The Same
KR100685273B1 (en) Insulating material, film, circuit board and method for manufacture thereof
JP4171725B2 (en) Dielectric forming composition, capacitor layer, and printed circuit board
JP5544444B1 (en) Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP5176290B2 (en) Paste composition, dielectric composition, dielectric sheet, and circuit board with built-in capacitor using the same
TWI787442B (en) Resin composition, resin-attached copper foil, dielectric layer, copper-clad laminate, capacitor element, and printed circuit board with built-in capacitor
KR101926808B1 (en) Resin composition with good workability, insulating film, and prepreg
WO2011162218A1 (en) Laminate of ceramic insulation layer and metal layer, and method for producing laminate
TWI665254B (en) Resin composition, copper foil with resin, dielectric layer, copper-clad laminate, capacitor element, and printed wiring board with capacitor inside
JPWO2008044573A1 (en) CAPACITOR LAYER FORMING MATERIAL, METHOD FOR PRODUCING CAPACITOR LAYER FORMING MATERIAL, AND PRINTED WIRING BOARD HAVING BUILT-IN CAPACITOR OBTAINED USING THE CAPACITOR LAYER FORMING MATERIAL
WO2004081952A1 (en) Polymer composite high-dielectric-constant material, multilayer printed circuit board and module board
JP3876679B2 (en) Resin composition and use thereof
JP3820668B2 (en) Metal base substrate and manufacturing method thereof
US20120141777A1 (en) Laminate composed of ceramic insulating layer and metal layer, and method for producing the same
US11890853B2 (en) Resin layered product, dielectric layer, metal foil with resin, capacitor element, and printed wiring board with built-in capacitor
JP2006123232A (en) Copper foil with resin layer containing dielectric filler and printed circuit board obtained by using the copper foil with resin layer containing dielectric filler
KR20040042315A (en) An Insulating Film To Reduce Deviation of Thickness of Insulating Layer, A Preparing Method Thereof, And A Multilayer Printed Circuit Board Having The Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798102

Country of ref document: EP

Kind code of ref document: A1