WO2011162199A1 - Method for controlling electric current and apparatus for controlling electric current - Google Patents

Method for controlling electric current and apparatus for controlling electric current Download PDF

Info

Publication number
WO2011162199A1
WO2011162199A1 PCT/JP2011/064031 JP2011064031W WO2011162199A1 WO 2011162199 A1 WO2011162199 A1 WO 2011162199A1 JP 2011064031 W JP2011064031 W JP 2011064031W WO 2011162199 A1 WO2011162199 A1 WO 2011162199A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
magnetic field
microwave
current control
semiconductor layer
Prior art date
Application number
PCT/JP2011/064031
Other languages
French (fr)
Japanese (ja)
Inventor
勝一 鐘本
秀展 松岡
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Priority to JP2012521462A priority Critical patent/JPWO2011162199A1/en
Publication of WO2011162199A1 publication Critical patent/WO2011162199A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/10Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using electron paramagnetic resonance

Definitions

  • the present invention relates to a current control method and a current control device.
  • a magnetoresistive element can use a magnetic field to control the amount of current flowing through the element between certain thresholds to distinguish between two states (typically represented as 0 and 1), for example, It is applied to quantum information processing.
  • the magnetoresistive element is used not only for the magnetic sensor and the magnetic head described in Patent Document 1 below, but also for the development of a magnetoresistive memory (Magnetic Resistive Random Access Memory: MRAM).
  • the characteristics of a magnetoresistive element are expressed by an equation ( ⁇ (0) ⁇ (H)) expressed by using an electric resistivity ⁇ (0) at zero magnetic field and a saturated electric resistivity ⁇ (H) by applying a magnetic field. ) / ⁇ (H). Since the discovery of the Fe / Cr artificial lattice, giant magnetoresistive effects using various metal artificial lattices in which ferromagnetic metals such as Co / Cu, Co / Ag, and Ni / Ag are combined with non-ferromagnetic metals have been discovered.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel current control method and current control apparatus applicable to various applications.
  • the current control method includes a step of preparing an element device having a first electrode, a second electrode, and an organic semiconductor layer positioned between the first electrode and the second electrode, and a magnetic field and a microwave.
  • the first electrode and the second electrode are changed by changing at least one of the magnetic field, the microwave and the light applied to the organic semiconductor layer. And controlling the current flowing between them.
  • the changing step at least one of the magnetic field and the microwave is changed.
  • the presence or absence of electron spin resonance in the organic semiconductor layer is changed in the changing step.
  • the element device in the preparing step, has an insulating layer provided between at least one of the first electrode and the second electrode and the organic semiconductor layer.
  • the changing step at least one of the intensity of the magnetic field and the intensity of the microwave is changed.
  • the formation and non-formation of the magnetic field are switched.
  • the microwave irradiation and non-irradiation are switched in the changing step.
  • the organic semiconductor layer has a ⁇ -type conjugated polymer.
  • the current control apparatus includes an element device having a first electrode, a second electrode, and an organic semiconductor layer positioned between the first electrode and the second electrode, and a space in which the element device is disposed.
  • the current flowing between the first electrode and the second electrode is controlled by changing at least one of the light applied to the microwave and the organic semiconductor layer.
  • At least one of the magnetic field forming unit and the microwave irradiation unit changes at least one of the magnetic field and the microwave.
  • At least one of the magnetic field forming unit and the microwave irradiation unit changes presence or absence of an electron spin resonance phenomenon in the organic semiconductor layer.
  • the element device has an insulating layer provided between at least one of the first electrode and the second electrode and the organic semiconductor layer.
  • At least one of the magnetic field forming unit and the microwave irradiation unit changes at least one of the intensity of the magnetic field and the intensity of the microwave.
  • the magnetic field forming unit switches between formation and non-formation of the magnetic field.
  • the microwave irradiation unit switches between irradiation and non-irradiation of the microwave.
  • the organic semiconductor layer has a ⁇ -type conjugated polymer.
  • novel current control applicable to various uses can be performed.
  • FIG. 1 shows a schematic diagram of a current control device 10 of the present embodiment.
  • the current control apparatus 10 includes an element device 20, a magnetic field forming unit 30, and a microwave irradiation unit 40.
  • the element device 20 is disposed at a place where light is irradiated. For example, the element device 20 is irradiated with sunlight.
  • the magnetic field forming unit 30 forms a magnetic field in the space where the element device 20 is arranged.
  • the microwave irradiation unit 40 irradiates the element device 20 with microwaves.
  • the magnetic field forming unit 30 forms a magnetic field with a predetermined intensity on the element device 20 and the microwave irradiating unit 40 irradiates the microwave having a predetermined frequency with the element device 20.
  • An electron spin resonance phenomenon occurs in the device 20.
  • FIG. 2 shows an example of the element device 20 in the current control apparatus 10.
  • the element device 20 includes an electrode 22, an electrode 24, and an organic semiconductor layer 26 positioned between the electrode 22 and the electrode 24.
  • the electrode 22 may be supported by the substrate S.
  • the electrode 22 and the electrode 24 may be referred to as a first electrode 22 and a second electrode 24, respectively.
  • the organic semiconductor layer 26 When the organic semiconductor layer 26 is irradiated with light, carriers are generated as the organic semiconductor layer 26 absorbs light. For example, carriers are generated when the organic semiconductor layer 26 absorbs visible light and ultraviolet light.
  • a stacked organic solar cell may be used as the element device 20.
  • a solar cell having an organic thin film semiconductor in which a fullerene derivative as an electron acceptor and a ⁇ -type conjugated polymer as an electron donor are combined may be used as the element device 20.
  • an electromagnet is used as the magnetic field forming unit 30.
  • any magnetic field forming unit 30 may be used as long as a magnetic field can be applied.
  • a microwave resonator is used as the microwave irradiation unit 40.
  • the microwave resonance circuit 40 is a cavity resonator surrounded by a wall surface of a conductor such as metal, and is configured so that only an electromagnetic wave having a predetermined frequency satisfying the resonance condition can exist.
  • the element device 20 is disposed between the electromagnets 30 and at the center of the microwave resonator 40.
  • the magnetic field forming unit 30 and the microwave irradiating unit 40 are integrally configured, and the organic semiconductor layer 26 is operated under resonance conditions determined from the intensity of the magnetic field and the frequency of the microwave. Causes an electron spin resonance phenomenon.
  • the magnetic field forming unit 30 and the microwave irradiation unit 40 may be collectively referred to as an electron spin resonance apparatus 100.
  • a commercially available apparatus may be used as the electron spin resonance apparatus 100.
  • the current control method of this embodiment will be described with reference to FIGS. 1 and 2.
  • the element device 20 having the first electrode 22, the second electrode 24, and the organic semiconductor layer 26 is prepared.
  • the first electrode 22 is changed by changing at least one of the magnetic field, the microwave, and the light applied to the organic semiconductor layer 26.
  • the current flowing between the second electrode 24 and the second electrode 24 is controlled.
  • the current control device 10 of the present embodiment controls the current flowing between the electrode 22 and the electrode 24 in association with the electron spin resonance phenomenon caused by the magnetic field and the microwave.
  • unpaired electrons in the organic semiconductor layer 26 When unpaired electrons in the organic semiconductor layer 26 are placed under the influence of a magnetic field having a predetermined strength, they absorb microwaves having a predetermined frequency and transition to a higher energy level. Such a phenomenon is called an electron spin resonance phenomenon.
  • a strong magnetic field is applied from the magnetic forming unit 30 to the organic semiconductor layer 26 in which a large number of unpaired electrons exist, the spin of the unpaired electrons changes in the direction of the magnetic field. Strictly speaking, some of the spins are parallel to the magnetic field, while some of the spins are antiparallel to the magnetic field. There are many.
  • the energy difference between the former and latter spins changes according to the strength of the magnetic field. In this state, when a microwave having energy necessary for changing the direction from the former to the latter spin is irradiated, electron spin resonance occurs
  • the microwave when at least one of the magnetic field and the microwave changes from a predetermined state set so as to cause the electron spin phenomenon of the organic semiconductor layer 26 to a state set so as not to cause the electron spin phenomenon, current control is performed.
  • a relatively large current flows between the electrode 22 and the electrode 24.
  • the strength of the magnetic field may be changed from a predetermined value.
  • the strength of the magnetic field may be changed from a predetermined value to zero so that the magnetic field is not formed.
  • the frequency of the microwave may be changed from a predetermined value, or the microwave may be non-irradiated and the intensity of the microwave may be zero.
  • the electron spin in the organic semiconductor layer 26 at a certain rate even if the intensity of the magnetic field formed by the magnetic field forming unit 30 and the frequency of the microwave irradiated by the microwave irradiation unit 40 are changed to some extent, the electron spin in the organic semiconductor layer 26 at a certain rate. A phenomenon may occur. For this reason, it is preferable to change the intensity of the magnetic field formed by the magnetic field forming unit 30 and the frequency of the microwave irradiated by the microwave irradiation unit 40 to such an extent that the electron spin phenomenon does not occur. For example, when the intensity of the magnetic field in which the electron spin phenomenon occurs is about 3370 G, the electron spin phenomenon occurs by changing the intensity of the magnetic field by about 10 G (specifically, by making it less than 3360 G or 3380 G or more). Disappear.
  • the microwave when at least one of the magnetic field and the microwave changes from a state set so as not to cause the electron spin phenomenon of the organic semiconductor layer 26 to a predetermined state set so as to cause the electron spin phenomenon.
  • a relatively large current flows between the electrode 22 and the electrode 24.
  • the intensity of the magnetic field may be changed to a predetermined intensity that causes an electron spin phenomenon.
  • the magnetic field may be formed from a non-formation to a predetermined intensity.
  • the frequency of the microwave may be changed to a predetermined frequency that causes an electron spin phenomenon, or the microwave may be changed so as to be irradiated at a predetermined frequency from non-irradiation.
  • the intensity or wavelength of the light applied to the organic semiconductor layer 26 may be changed in a state where the magnetic field and the microwave are set so as to cause the electron spin phenomenon. Thereby, the current flowing between the electrode 22 and the electrode 24 can be controlled.
  • the current control device 10 changes at least one of the light applied to the magnetic field, the microwave, and the organic semiconductor layer 26 in association with the electron spin resonance phenomenon caused by the magnetic field and the microwave.
  • the current flowing between the first electrode 22 and the second electrode 24 can be controlled. For example, when changing at least one of the strength of the magnetic field and the strength and frequency of the microwave, a relatively large current can flow between the electrode 22 and the electrode 24 for each change. Therefore, an alternating current can be generated using electron spin resonance conditions determined from the frequency of the microwave and the magnetic field strength.
  • the strength of the static magnetic field from the magnetic forming unit 30 is indicated as H0
  • the strength of the electromagnetic field from the microwave irradiation unit 40 is indicated as H1.
  • the microwave from the microwave irradiation unit 40 is satisfied when the resonance condition determined from the value H0 of the static magnetic field and the frequency of the microwave is satisfied.
  • the intensity and / or frequency of the magnetic field or the intensity (H0) of the magnetic field from the magnetic forming unit 30 is modulated, an alternating current having the modulation frequency can be generated.
  • the intensity of the microwave may change in a pulse shape having a certain width, or may change in a sine wave shape.
  • the frequency of the alternating current generated is determined by the frequency of the intensity modulation of the microwave or magnetic field. Since the magnetic field intensity giving the resonance condition and the microwave frequency are in a proportional relationship, the magnetic field intensity and the microwave frequency can be changed to arbitrary values as long as the resonance condition is satisfied.
  • the current flowing between the electrodes 22 and 24 can be controlled by the microwave irradiation unit 40 switching between a state in which the microwave irradiation is performed and a state in which the microwave irradiation is not performed (ON-OFF state). For example, it is possible to switch between a state where an electron spin resonance phenomenon occurs and a state where it does not occur by AM modulation of microwaves, and a current due to the electron spin resonance phenomenon can be generated depending on the switching timing. In this case, a negative spike current immediately after the occurrence of the electron spin resonance phenomenon (that is, immediately after the microwave irradiation is turned on) immediately after the electron spin resonance phenomenon is stopped (that is, immediately after the microwave irradiation is turned off). A spike-like current in the positive direction flows.
  • the current flowing between the electrodes 22 and 24 due to the electron spin resonance phenomenon can be controlled by switching the state where the magnetic field is not formed (ON-OFF state). In this way, a current can be generated between the electrodes by switching the ON-OFF state of the electron spin resonance phenomenon.
  • a polaron pair may be involved as a reason for the generation of current by electron spin resonance.
  • a polaron pair is a state in which electrons and holes are weakly bonded between polymer chains, and is an intermediate between excitons and carriers.
  • PP S singlet
  • PP T triplet
  • an equilibrium state is established in dissociation and recombination between carriers, polaron pairs, and excitons.
  • the microwave can be used as a control factor (switch) under the condition that the strength of the magnetic field is constant.
  • the value of ( ⁇ (0) ⁇ (H)) / ⁇ (H) indicating one characteristic of the magnetoresistive element is set to 100 at room temperature. %, It can be suitably used for applications requiring a large current difference.
  • the current control device 10 it is possible to control the current using not only the magnetic field but also the microwave. Therefore, compared with the case where the current is controlled using only the magnetic field, the current control device 10 has a wider range. Application can be made.
  • the generated current is generated according to light, and the generated current can be controlled according to the amount of light and the wavelength of light.
  • the element device 20 (more specifically, the organic semiconductor layer 26) is irradiated with light from the outside of the current control device 10 such as sunlight. It is not limited.
  • the element device 20 (organic semiconductor layer 26) may be irradiated with light emitted from a member in the current control device 10.
  • FIG. 3 shows a schematic diagram of the current control device 10 of the present embodiment.
  • the current control device 10 shown in FIG. 3 has the same configuration as that of the current control device described above with reference to FIG. 1 except that the light source 50 is further provided, and redundant description is given to avoid redundancy. Omitted.
  • a semiconductor laser may be used as the light source 50.
  • the current can be controlled by controlling the light source 50.
  • a current may flow between the electrode 22 and the electrode 24 by irradiating the organic semiconductor layer 26 with light.
  • a current may flow between the electrode 22 and the electrode 24 by light irradiation.
  • the electrode 22 is a positive electrode and the electrode 24 is a negative electrode.
  • the organic semiconductor layer 26 includes a buffer layer 26a, an electron donor layer 26b, and an electron acceptor layer 26c.
  • the buffer layer 26a is located between the transparent electrode 22 and the electron donor layer 26b, and improves the charge (hole) injection efficiency into the electron donor layer 26b.
  • the electron donor layer 26b delivers electrons excited by light.
  • the electron acceptor layer 26 c receives the electrons and transfers them to the electrode 24.
  • the electron donor layer 26b and the electron acceptor layer 26c are collectively referred to as a photoelectric conversion layer 26o.
  • the electrode 22 is a transparent electrode, and the electrode 22 is supported by the substrate S.
  • a metal electrode may be used as the electrode 24.
  • Exciton (exciton) generated by photoexcitation is charge separated at the pn junction at the interface between the electron donor layer 26b and the electron acceptor layer 26c, and electrons are transferred to the electron acceptor layer 26c and holes are transferred to the electron donor layer. Move to 26b. Thereafter, holes can move in the electron donor layer 26b and electrons can move in the electron acceptor layer 26c, and current can be taken out.
  • the substrate S may be transparent or opaque.
  • a transparent substrate is preferably used as the substrate S when the substrate S side is a light receiving surface.
  • a glass substrate such as quartz glass is used as the transparent substrate S.
  • a transparent rigid material such as a synthetic quartz plate or a flexible flexible material such as a transparent resin film or an optical resin plate is used as the transparent substrate S. May be.
  • the transparent electrode 22 may be made of ITO in which tin is added to indium oxide.
  • the material of the transparent electrode 22 is not particularly limited to ITO, but as will be described later, the transparent electrode 22 is preferably formed of a material having a high work function in consideration of the work function of the electrode 24 and the like.
  • the electrode 24 is not particularly limited as long as it is a conductive material. However, when the transparent electrode 22 is formed from ITO having a relatively high work function, it is preferable to use aluminum having a low work function as the electrode 24.
  • the buffer layer 26a is made of 3,4-polyethylenedioxythiophene: polystyrene sulfonate (poly (3,4-ethylenedithiothiophene): poly (styrenesulfonate), hereinafter referred to as PEDOT / PSS).
  • PEDOT / PSS exhibits extremely high conductivity and is preferably used as a material for the buffer layer 26a.
  • the buffer layer 26a may be made of starburst amine or CuPc (copper phthalocyanine). Note that the buffer layer 26a may be omitted as necessary.
  • the electron donor layer 26b is preferably composed of a ⁇ -conjugated polymer having conjugated ⁇ electrons along the polymer main chain.
  • the electron donor layer 26b is made of poly (2-methoxy-5-ethylhexyoxy-1,4-phenylenevinylene, hereinafter referred to as MEH-PPV).
  • the electron donor layer 26b is formed of poly (3-hexylthiopene) (abbreviation, P3HT) or poly (2-methoxy-5- (3 ′, 7′-dimethylity) -1,1,4-phenylenevinylene) (abbreviation, It may be composed of other ⁇ -conjugated polymers such as MDMOPPV).
  • the electron acceptor layer 26c is made of fullerene (C 60 ) or a fullerene derivative.
  • Fullerene (C 60 ) or fullerene derivatives may exhibit high energy conversion efficiency.
  • fullerene derivatives refer to fullerenes, fullerene derivatives, and mixtures of fullerenes and fullerene derivatives.
  • the fullerene derivative is not particularly limited as long as it is a compound having a fullerene skeleton.
  • any carbon atom in the fullerene skeleton may be surface-modified with an arbitrary group, and the surface-modifying groups may be bonded to each other to form a ring.
  • the fullerene skeleton units contained in one molecule may be the same or different including the surface modifying group.
  • fullerene derivatives include higher-order fullerenes, surface-modified fullerenes having a surface-modifying group, bucky onions, and fullerene-bonded polymers.
  • Higher order fullerenes include, for example, C 60 , C 70 , C 76 , C 78 , C 84 and the like.
  • higher-order fullerenes include not only higher-order fullerenes but also derivatives of higher-order fullerenes.
  • the electron acceptor layer 26c is composed of (6,6) -phenyl-C61-butyric acid methyl ester ((6,6) -phenyl-C61-butylic acid methyl ester (hereinafter referred to as PCBM)) as a fullerene derivative. Is done. Fullerene itself has a low solubility in an organic solvent, and thus is formed by a vacuum deposition method. On the other hand, PCBM can form a solution in an organic solvent into a thin film by spin coating or the like.
  • excitons (excitons) generated by photoexcitation are separated by charge at the pn junction at the interface between the fullerene or fullerene derivative (electron acceptor layer 26c) and the ⁇ -conjugated polymer (electron donor layer 26b). Move to the electron acceptor layer 26c and holes move to the electron donor layer 26b. Thereafter, holes move through the network of ⁇ -conjugated polymer (electron donor layer 26b) and electrons move through the network of fullerene (electron acceptor layer 26c), and are taken out as current.
  • an electrode 22 containing ITO is formed on the surface of the glass substrate S. Thereafter, a buffer layer 26 a, an electron donor layer 26 b, and an electron acceptor layer 26 c are formed on the electrode 22.
  • the buffer layer 26a is made of PEDOT / PSS
  • the electron donor layer 26b is made of MEH-PPV
  • the electron acceptor layer 26c is made of PCBM.
  • the buffer layer 26a, the electron donor layer 26b, and the electron acceptor layer 26c are formed in this order by the spin coat method.
  • a method for applying these materials for example, a die coating method, a dip coating method, a roll coating method, a bead coating method, a spray coating method, a bar coating method, a gravure coating method, or the like can be used.
  • the electron acceptor layer 26c may be made of fullerene. In this case, the electron acceptor layer 26c is formed by vacuum deposition.
  • the electrode 24 is formed using, for example, vacuum deposition.
  • the electrode 24 is formed from aluminum.
  • a method for forming the electrode 24 in addition to the vacuum deposition method, for example, a PVD method such as a sputtering method or an ion plating method, or a dry coating method such as a CVD method can be employed.
  • FIG. 6 is a graph showing the time change of the current obtained by the current control device 10.
  • the horizontal axis indicates time
  • the vertical axis indicates the photocurrent generated in the element device 20.
  • the wavelength of the light applied to the element device 20 is 488 nm
  • the intensity of the light is 25 mW
  • the intensity of the applied magnetic field is 3380G.
  • the frequency of the microwave is about 9.5 GHz.
  • the intensity of the microwave is 50 Hz (period 20 ms), and the intensity is modulated at 0 mW and 200 mW.
  • the intensity of the microwave is modulated at a frequency of 50 Hz (period 20 ms), but when this is modulated at about 1 kHz or more, the spike-like current approaches the alternating current waveform of the sine wave.
  • the intensity of light is about 25 mW, but when the irradiation intensity is increased, the alternating photocurrent further increases.
  • the present invention is not limited to this. Even if the element device 20 (organic semiconductor layer 26) is irradiated with light, no current may flow between the electrode 22 and the electrode 24.
  • FIG. 7 shows the structure of the element device 20.
  • the element device 20 shown in FIG. 7 includes, in addition to the electrodes 22 and 24 and the organic semiconductor layer 26, an insulating layer 23 positioned between the electrode 22 and the organic semiconductor layer 26, and the electrode 24 and the organic semiconductor layer 26. It further has an insulating layer 25 positioned therebetween.
  • the insulating layers 23 and 25 are made of an insulating resin.
  • the insulating resin for example, cycloolefin polymer resin manufactured by Nippon Zeon Co., Ltd. is used.
  • the insulating layers 23 and 25 suppress the current flowing between the electrode 22 and the electrode 24. For example, in the element device 20 shown in FIG. 7, since the insulating layers 23 and 25 are formed, no steady photocurrent is generated.
  • the organic semiconductor layer 26 may include a ⁇ -type conjugated polymer.
  • poly (2-methoxy-5-ethylhexyloxy-1,4-phenylenevinylene, hereinafter referred to as MEH-PPV) is used as the ⁇ -type conjugated polymer of the organic semiconductor layer 26.
  • MEH-PPV poly (2-methoxy-5-ethylhexyloxy-1,4-phenylenevinylene
  • P3HT poly (3-hexylopenene)
  • MDMOPPV poly (2-methoxy-5- (3 ′, 7′-dimethyloxy)-1,4-phenylenevinylene
  • C 60 fullerene or the like may be used.
  • the organic semiconductor layer 26 includes a ⁇ -type conjugated polymer
  • a ⁇ -type conjugated polymer for example, an organic thin film semiconductor that combines a fullerene derivative as an electron acceptor and a ⁇ -type conjugated polymer as an electron donor may be used.
  • P3HT absorbs light having a wavelength of 650 ⁇ m or less
  • MDMOPPV absorbs light having a wavelength of 600 nm or less.
  • C 60 fullerene absorbs light in the visible region and the ultraviolet region.
  • the insulating layer 23 is provided between the transparent electrode 22 and the organic semiconductor layer 26, and the insulating layer 25 is provided between the organic semiconductor layer 26 and the metal electrode 24.
  • the insulating layers 23 and 25 can generate a spike-like alternating current due to a change in the presence or absence of electron spin resonance while no steady photocurrent is generated in the element device 20.
  • the reason why the spike current is generated although the insulating layers 23 and 25 are provided will be described.
  • a device having a structure in which an organic semiconductor layer is sandwiched between different electrodes is short-circuited, an internal electric field is generated in the organic semiconductor layer, and the direction in which the photocurrent flows is uniquely determined by the direction of the electric field. Therefore, the phenomenon in which the direction of the photocurrent is reversed by the observed electron spin resonance cannot occur due to a change in the number of carriers. It is considered that the current change caused by electron spin resonance is caused by a displacement current induced by a change in the electric field environment (ie, dielectric constant) in the device.
  • the two insulating layers 23 and 25 are provided on both sides of the organic semiconductor layer 26, but the present invention is not limited to this. Of the insulating layers 23 and 25, only the insulating layer 23 may be provided, or only the insulating layer 25 may be provided. Thus, the element device 20 may be provided with at least one of the insulating layers 23 and 25.
  • FIG. 8 shows a time change spectrum in the vicinity of the peak (that is, the resonance point) of the photocurrent detection ESR signal measured with an oscilloscope.
  • the ON / OFF state of the electron spin resonance phenomenon is realized by microwave AM modulation.
  • the photocurrent detection ESR an element device set in an X-band microwave cavity is photoexcited with a semiconductor laser having a wavelength of 473 nm, and the photocurrent I is measured at room temperature in a nitrogen atmosphere.
  • the steady photocurrent is suppressed by providing the insulating layer 23 and / or the insulating layer 25.
  • the element device 20 is exposed to the atmosphere for a long time without providing the insulating layers 23 and 25.
  • the steady photocurrent can be suppressed.
  • the spike current can also be increased.
  • the current control device 10 can be used as a memory in combination with a magnetic material, similarly to MARM.
  • MRAM when there is information, the magnetic material is magnetized by applying a magnetic field to store the information.
  • the current value (resistance) under magnetization is distinguished from the current value in the absence of a magnetic field to distinguish between the two states.
  • the current control device 10 since the current can be controlled based on the change of the magnetic field, information can be read through the current. Also, control by microwaves can be performed.
  • the current control device 10 may be used as a photovoltaic element that can be remotely controlled by microwaves.
  • the current control device 10 can control the current using a microwave or a magnetic field as a switch.
  • the current control device 10 can be used as a switch element by bringing a magnetic body or the like close to the element device 20 in a state where the magnetic field from the magnetic field forming unit 30 is applied.
  • the current control device 10 is used for electronic information processing such as a computer or remote monitoring or communication equipment.
  • novel current control applicable to various uses can be performed.
  • the current control device of the present invention is suitably used for manufacturing a switch or a memory.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hall/Mr Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

Disclosed is a method for controlling an electric current, which comprises: a step of preparing an element device (20) that comprises an electrode (22), an electrode (24), and an organic semiconductor layer (26) that is arranged between the electrode (22) and the electrode (24); and a step of controlling an electric current flowing between the electrode (22) and the electrode (24) in association with the electron spin resonance phenomenon of the organic semiconductor layer (26) caused by means of a magnetic field and a microwave. The controlling step comprises a step wherein at least one of the magnetic field, the microwave or the light irradiated upon the organic semiconductor layer (26) is changed.

Description

電流制御方法および電流制御装置Current control method and current control apparatus
 本発明は、電流制御方法および電流制御装置に関する。 The present invention relates to a current control method and a current control device.
 1988年のFertらによるFe/Cr人工格子に対しての巨大磁気抵抗効果の発見を契機として、磁場による電流制御の応用性が注目されている。磁気抵抗素子は、磁場を用いて、素子を流れる電流量をある閾値間で制御して、2つの状態(典型的には0および1と表される)の区別を行うことができるため、例えば、量子情報処理に応用されている。近年では、磁気抵抗素子は、下記特許文献1に記載されたような磁気センサや磁気ヘッドだけでなく、磁気抵抗メモリ(Magnetoresistive Random Access Memory:MRAM)などの開発にも利用されている。 Since 1988, Fert et al. Discovered the giant magnetoresistive effect on the Fe / Cr artificial lattice, and the applicability of current control using a magnetic field has attracted attention. A magnetoresistive element can use a magnetic field to control the amount of current flowing through the element between certain thresholds to distinguish between two states (typically represented as 0 and 1), for example, It is applied to quantum information processing. In recent years, the magnetoresistive element is used not only for the magnetic sensor and the magnetic head described in Patent Document 1 below, but also for the development of a magnetoresistive memory (Magnetic Resistive Random Access Memory: MRAM).
 一般に、磁気抵抗型素子の特性は、ゼロ磁場時の電気抵抗率ρ(0)と磁場印加による飽和電気抵抗率ρ(H)を用いて表される式(ρ(0)-ρ(H))/ρ(H)の値から評価される。Fe/Cr人工格子の発見以降、Co/Cu、Co/Ag、Ni/Agなど強磁性金属と非強磁性金属を組み合わせたさまざまな金属人工格子を利用した巨大磁気抵抗効果が発見されている。 In general, the characteristics of a magnetoresistive element are expressed by an equation (ρ (0) −ρ (H)) expressed by using an electric resistivity ρ (0) at zero magnetic field and a saturated electric resistivity ρ (H) by applying a magnetic field. ) / Ρ (H). Since the discovery of the Fe / Cr artificial lattice, giant magnetoresistive effects using various metal artificial lattices in which ferromagnetic metals such as Co / Cu, Co / Ag, and Ni / Ag are combined with non-ferromagnetic metals have been discovered.
特開2000-077743号公報JP 2000-077743 A
 しかし、上述の式(ρ(0)-ρ(H))/ρ(H)の値は、極低温で100%を超える物質が存在するものの、通常、室温では50%程度にとどまり、この値を向上させるためのさらなる開発が望まれている。また、素子の応用性を広げるためには、磁場のみで制御するのではなく、他の手法による電流制御の開発が望まれている。 However, although the value of the above formula (ρ (0) −ρ (H)) / ρ (H) exceeds 100% at a very low temperature, it is usually only about 50% at room temperature. Further development to improve the performance is desired. In addition, in order to broaden the applicability of the element, it is desired to develop a current control by another method, not by a magnetic field alone.
 本発明は上記課題を鑑みてなされたものであり、その目的は、さまざまな用途に適用可能な新規な電流制御方法および電流制御装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel current control method and current control apparatus applicable to various applications.
 本発明による電流制御方法は、第1電極と、第2電極と、前記第1電極および前記第2電極の間に位置する有機半導体層とを有する素子デバイスを用意する工程と、磁場およびマイクロ波による前記有機半導体層の電子スピン共鳴現象に関連して、前記磁場、前記マイクロ波および前記有機半導体層に照射される光の少なくとも1つを変化させることにより、前記第1電極と前記第2電極との間を流れる電流を制御する工程とを包含する。 The current control method according to the present invention includes a step of preparing an element device having a first electrode, a second electrode, and an organic semiconductor layer positioned between the first electrode and the second electrode, and a magnetic field and a microwave. In relation to the electron spin resonance phenomenon of the organic semiconductor layer due to the above, the first electrode and the second electrode are changed by changing at least one of the magnetic field, the microwave and the light applied to the organic semiconductor layer. And controlling the current flowing between them.
 ある実施形態では、前記変化させる工程において、前記磁場および前記マイクロ波の少なくとも一方を変化させる。 In one embodiment, in the changing step, at least one of the magnetic field and the microwave is changed.
 ある実施形態では、前記変化させる工程において、前記有機半導体層の電子スピン共鳴の有無を変化させる。 In one embodiment, the presence or absence of electron spin resonance in the organic semiconductor layer is changed in the changing step.
 ある実施形態では、前記用意する工程において、前記素子デバイスは、前記第1電極および前記第2電極の少なくとも一方と前記有機半導体層との間に設けられた絶縁層を有する。 In one embodiment, in the preparing step, the element device has an insulating layer provided between at least one of the first electrode and the second electrode and the organic semiconductor layer.
 ある実施形態では、前記変化させる工程において、前記磁場の強度および前記マイクロ波の強度のうちの少なくとも一方を変化させる。 In one embodiment, in the changing step, at least one of the intensity of the magnetic field and the intensity of the microwave is changed.
 ある実施形態では、前記変化させる工程において、前記磁場の形成と非形成を切り換える。 In one embodiment, in the step of changing, the formation and non-formation of the magnetic field are switched.
 ある実施形態では、前記変化させる工程において、前記マイクロ波の照射と非照射を切り換える。 In an embodiment, the microwave irradiation and non-irradiation are switched in the changing step.
 ある実施形態では、前記用意する工程において、前記有機半導体層はπ型共役ポリマーを有する。 In one embodiment, in the preparing step, the organic semiconductor layer has a π-type conjugated polymer.
 本発明による電流制御装置は、第1電極と、第2電極と、前記第1電極および前記第2電極の間に位置する有機半導体層とを有する素子デバイスと、前記素子デバイスの配置された空間に磁場を形成する磁場形成部と、前記素子デバイスにマイクロ波を照射するマイクロ波照射部とを備え、前記磁場および前記マイクロ波による前記有機半導体層の電子スピン共鳴現象に関連して、前記磁場、前記マイクロ波および前記有機半導体層に照射される光の少なくとも1つを変化させることにより、前記第1電極と前記第2電極との間を流れる電流が制御される。 The current control apparatus according to the present invention includes an element device having a first electrode, a second electrode, and an organic semiconductor layer positioned between the first electrode and the second electrode, and a space in which the element device is disposed. A magnetic field forming part for forming a magnetic field on the element device and a microwave irradiating part for irradiating the element device with a microwave, wherein the magnetic field and the electron spin resonance phenomenon of the organic semiconductor layer by the microwave are related to the magnetic field. The current flowing between the first electrode and the second electrode is controlled by changing at least one of the light applied to the microwave and the organic semiconductor layer.
 ある実施形態において、前記磁場形成部および前記マイクロ波照射部の少なくとも一方は、前記磁場および前記マイクロ波の少なくとも一方を変化させる。 In one embodiment, at least one of the magnetic field forming unit and the microwave irradiation unit changes at least one of the magnetic field and the microwave.
 ある実施形態において、前記磁場形成部および前記マイクロ波照射部の少なくとも一方は、前記有機半導体層の電子スピン共鳴現象の有無を変化させる。 In one embodiment, at least one of the magnetic field forming unit and the microwave irradiation unit changes presence or absence of an electron spin resonance phenomenon in the organic semiconductor layer.
 ある実施形態において、前記素子デバイスは、前記第1電極および前記第2電極の少なくとも一方と前記有機半導体層との間に設けられた絶縁層を有する。 In one embodiment, the element device has an insulating layer provided between at least one of the first electrode and the second electrode and the organic semiconductor layer.
 ある実施形態において、前記磁場形成部および前記マイクロ波照射部の少なくとも一方は、前記磁場の強度および前記マイクロ波の強度のうちの少なくとも一方を変化させる。 In one embodiment, at least one of the magnetic field forming unit and the microwave irradiation unit changes at least one of the intensity of the magnetic field and the intensity of the microwave.
 ある実施形態において、前記磁場形成部は、前記磁場の形成と非形成を切り換える。 In one embodiment, the magnetic field forming unit switches between formation and non-formation of the magnetic field.
 ある実施形態において、前記マイクロ波照射部は、前記マイクロ波の照射と非照射を切り換える。 In one embodiment, the microwave irradiation unit switches between irradiation and non-irradiation of the microwave.
 ある実施形態において、前記有機半導体層はπ型共役ポリマーを有する。 In one embodiment, the organic semiconductor layer has a π-type conjugated polymer.
 本発明によれば、さまざまな用途に適用可能な新規な電流制御を行うことができる。 According to the present invention, novel current control applicable to various uses can be performed.
本発明による電流制御装置の実施形態の模式図である。It is a schematic diagram of an embodiment of a current control device according to the present invention. 本実施形態の電流制御装置における素子デバイスの一例を示す模式図である。It is a schematic diagram which shows an example of the element device in the current control apparatus of this embodiment. 本実施形態の電流制御装置の模式図である。It is a schematic diagram of the current control device of the present embodiment. 本実施形態の電流制御装置における素子デバイスの一例を示す模式図である。It is a schematic diagram which shows an example of the element device in the current control apparatus of this embodiment. 図4に示した素子デバイスの作製方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the element device shown in FIG. 本実施形態の電流制御装置で制御された電流の変化を示すグラフである。It is a graph which shows the change of the current controlled with the current control device of this embodiment. 本実施形態の電流制御装置における素子デバイスの一例を示す模式図である。It is a schematic diagram which shows an example of the element device in the current control apparatus of this embodiment. 本実施形態の電流制御装置で制御された電流の変化を示すグラフである。It is a graph which shows the change of the current controlled with the current control device of this embodiment.
 以下、図面を参照して本発明による電流制御方法および電流制御装置の実施形態を説明する。 Hereinafter, embodiments of a current control method and a current control device according to the present invention will be described with reference to the drawings.
 図1に、本実施形態の電流制御装置10の模式図を示す。電流制御装置10は、素子デバイス20と、磁場形成部30と、マイクロ波照射部40とを備える。素子デバイス20は光の照射される場所に配置される。例えば、素子デバイス20には太陽光が照射される。磁場形成部30は素子デバイス20の配置された空間に磁場を形成する。マイクロ波照射部40は素子デバイス20にマイクロ波を照射する。本実施形態の電流制御装置10では、素子デバイス20に対して磁場形成部30が所定の強度の磁場を形成するとともにマイクロ波照射部40が所定の周波数を有するマイクロ波を照射することにより、素子デバイス20において電子スピン共鳴現象が生じる。 FIG. 1 shows a schematic diagram of a current control device 10 of the present embodiment. The current control apparatus 10 includes an element device 20, a magnetic field forming unit 30, and a microwave irradiation unit 40. The element device 20 is disposed at a place where light is irradiated. For example, the element device 20 is irradiated with sunlight. The magnetic field forming unit 30 forms a magnetic field in the space where the element device 20 is arranged. The microwave irradiation unit 40 irradiates the element device 20 with microwaves. In the current control device 10 of the present embodiment, the magnetic field forming unit 30 forms a magnetic field with a predetermined intensity on the element device 20 and the microwave irradiating unit 40 irradiates the microwave having a predetermined frequency with the element device 20. An electron spin resonance phenomenon occurs in the device 20.
 図2に、電流制御装置10における素子デバイス20の一例を示す。素子デバイス20は、電極22と、電極24と、電極22と電極24の間に位置する有機半導体層26とを有している。電極22は基板Sに支持されていてもよい。なお、本明細書の以下の説明において、電極22および電極24をそれぞれ第1電極22および第2電極24と呼ぶことがある。 FIG. 2 shows an example of the element device 20 in the current control apparatus 10. The element device 20 includes an electrode 22, an electrode 24, and an organic semiconductor layer 26 positioned between the electrode 22 and the electrode 24. The electrode 22 may be supported by the substrate S. In the following description of the present specification, the electrode 22 and the electrode 24 may be referred to as a first electrode 22 and a second electrode 24, respectively.
 有機半導体層26に光が照射されると有機半導体層26の光の吸収に伴い、キャリアが発生する。例えば、キャリアは、有機半導体層26が可視光および紫外光を吸収することによって発生する。 When the organic semiconductor layer 26 is irradiated with light, carriers are generated as the organic semiconductor layer 26 absorbs light. For example, carriers are generated when the organic semiconductor layer 26 absorbs visible light and ultraviolet light.
 キャリアが発生する場合、電極22と電極24との間に電圧が印加されていると、発生したキャリアは電極22から電極24に向かって、または、その反対に移動する。移動するキャリアは電極22と電極24との間を流れる電流として取り出すことができ、このような電流は光電流とも呼ばれる。素子デバイス20として積層型有機太陽電池を用いてもよい。例えば、素子デバイス20として、電子受容体としてのフラーレン誘導体と、電子供与体としてのπ型共役ポリマーとを組み合わせた有機薄膜半導体を有する太陽電池を用いてもよい。 When carriers are generated, if a voltage is applied between the electrodes 22 and 24, the generated carriers move from the electrode 22 toward the electrode 24 or vice versa. The moving carriers can be taken out as a current flowing between the electrodes 22 and 24, and such a current is also called a photocurrent. A stacked organic solar cell may be used as the element device 20. For example, a solar cell having an organic thin film semiconductor in which a fullerene derivative as an electron acceptor and a π-type conjugated polymer as an electron donor are combined may be used as the element device 20.
 なお、図1に示した電流制御装置10において、例えば、磁場形成部30として電磁石が用いられる。ただし、磁場を印加することができれば、磁場形成部30として任意のものを用いてもよい。また、例えば、マイクロ波照射部40としてマイクロ波共振器が用いられる。マイクロ波共振回路40は、金属等の導体の壁面で囲まれた空洞共振器であって、共振条件を満たす所定の周波数の電磁波しか存在できないように構成されている。なお、ここでは、素子デバイス20は、電磁石30の間で、かつ、マイクロ波共振器40の中央に配置されている。 In the current control device 10 shown in FIG. 1, for example, an electromagnet is used as the magnetic field forming unit 30. However, any magnetic field forming unit 30 may be used as long as a magnetic field can be applied. For example, a microwave resonator is used as the microwave irradiation unit 40. The microwave resonance circuit 40 is a cavity resonator surrounded by a wall surface of a conductor such as metal, and is configured so that only an electromagnetic wave having a predetermined frequency satisfying the resonance condition can exist. Here, the element device 20 is disposed between the electromagnets 30 and at the center of the microwave resonator 40.
 図1に示した電流制御装置10では、磁場形成部30およびマイクロ波照射部40が一体的に構成されており、磁場の強度とマイクロ波の周波数から決定される共鳴条件下で有機半導体層26において電子スピン共鳴現象が生じる。なお、本明細書の以下の説明において、磁場形成部30およびマイクロ波照射部40を併せて電子スピン共鳴装置100と呼ぶことがある。電子スピン共鳴装置100として市販の装置を用いてもよい。 In the current control device 10 shown in FIG. 1, the magnetic field forming unit 30 and the microwave irradiating unit 40 are integrally configured, and the organic semiconductor layer 26 is operated under resonance conditions determined from the intensity of the magnetic field and the frequency of the microwave. Causes an electron spin resonance phenomenon. In the following description of the present specification, the magnetic field forming unit 30 and the microwave irradiation unit 40 may be collectively referred to as an electron spin resonance apparatus 100. A commercially available apparatus may be used as the electron spin resonance apparatus 100.
 以下、図1および図2を参照して本実施形態の電流制御方法を説明する。まず、第1電極22、第2電極24および有機半導体層26を有する素子デバイス20を用意する。次に、磁場およびマイクロ波による有機半導体層26の電子スピン共鳴現象に関連して、磁場、マイクロ波および有機半導体層26に照射される光の少なくとも1つを変化させることにより、第1電極22と第2電極24との間を流れる電流を制御する。 Hereinafter, the current control method of this embodiment will be described with reference to FIGS. 1 and 2. First, the element device 20 having the first electrode 22, the second electrode 24, and the organic semiconductor layer 26 is prepared. Next, in relation to the electron spin resonance phenomenon of the organic semiconductor layer 26 by the magnetic field and microwave, the first electrode 22 is changed by changing at least one of the magnetic field, the microwave, and the light applied to the organic semiconductor layer 26. And the current flowing between the second electrode 24 and the second electrode 24 is controlled.
 本実施形態の電流制御装置10は、磁場とマイクロ波によって生じる電子スピン共鳴現象に関連して、電極22と電極24との間を流れる電流を制御する。有機半導体層26内の不対電子は、所定の強度の磁場の影響下に置かれると、所定の周波数を有するマイクロ波を吸収し、より高いエネルギー準位に遷移する。このような現象は電子スピン共鳴現象と呼ばれる。多数の不対電子が存在する有機半導体層26に、磁気形成部30から強い磁場が与えられると、不対電子のスピンは磁場方向に向きを変える。なお、厳密には、一部のスピンは磁場に平行になる一方で、一部のスピンは磁場と逆平行になるが、前者のスピンは後者のスピンよりも安定であるため、確率的に若干多く存在する。前者と後者のスピンのエネルギー差は磁場の強さに応じて変化する。この状態で、前者から後者のスピンに向きを変えるのに必要なエネルギーを有するマイクロ波が照射されると、電子スピン共鳴がおこり、入射したマイクロ波が吸収される。 The current control device 10 of the present embodiment controls the current flowing between the electrode 22 and the electrode 24 in association with the electron spin resonance phenomenon caused by the magnetic field and the microwave. When unpaired electrons in the organic semiconductor layer 26 are placed under the influence of a magnetic field having a predetermined strength, they absorb microwaves having a predetermined frequency and transition to a higher energy level. Such a phenomenon is called an electron spin resonance phenomenon. When a strong magnetic field is applied from the magnetic forming unit 30 to the organic semiconductor layer 26 in which a large number of unpaired electrons exist, the spin of the unpaired electrons changes in the direction of the magnetic field. Strictly speaking, some of the spins are parallel to the magnetic field, while some of the spins are antiparallel to the magnetic field. There are many. The energy difference between the former and latter spins changes according to the strength of the magnetic field. In this state, when a microwave having energy necessary for changing the direction from the former to the latter spin is irradiated, electron spin resonance occurs and the incident microwave is absorbed.
 例えば、磁場およびマイクロ波の少なくとも一方が、有機半導体層26の電子スピン現象が生じるように設定された所定の状態から、電子スピン現象が生じないように設定された状態に変化する場合、電流制御装置10において電極22と電極24との間に比較的大きな電流が流れる。磁場の強度を所定の値から変化させてもよく、例えば、磁場の強度を所定の値からゼロに変化させて磁場を非形成にしてもよい。あるいは、マイクロ波の周波数を所定の値から変化させてもよく、また、マイクロ波を非照射にしてマイクロ波の強度をゼロにしてもよい。 For example, when at least one of the magnetic field and the microwave changes from a predetermined state set so as to cause the electron spin phenomenon of the organic semiconductor layer 26 to a state set so as not to cause the electron spin phenomenon, current control is performed. In the device 10, a relatively large current flows between the electrode 22 and the electrode 24. The strength of the magnetic field may be changed from a predetermined value. For example, the strength of the magnetic field may be changed from a predetermined value to zero so that the magnetic field is not formed. Alternatively, the frequency of the microwave may be changed from a predetermined value, or the microwave may be non-irradiated and the intensity of the microwave may be zero.
 なお、厳密には、磁場形成部30によって形成される磁場の強度、および、マイクロ波照射部40によって照射されるマイクロ波の周波数をある程度変化させても有機半導体層26においてある程度の割合で電子スピン現象が生じることがある。このため、磁場形成部30によって形成される磁場の強度、および、マイクロ波照射部40によって照射されるマイクロ波の周波数は、電子スピン現象が生じない程度まで変化させることが好ましい。例えば、電子スピン現象の生じる磁場の強度が約3370Gである場合、磁場の強度を約10G程度変化させることにより(具体的には、3360G未満または3380G以上にすることにより)、電子スピン現象が生じなくなる。 Strictly speaking, even if the intensity of the magnetic field formed by the magnetic field forming unit 30 and the frequency of the microwave irradiated by the microwave irradiation unit 40 are changed to some extent, the electron spin in the organic semiconductor layer 26 at a certain rate. A phenomenon may occur. For this reason, it is preferable to change the intensity of the magnetic field formed by the magnetic field forming unit 30 and the frequency of the microwave irradiated by the microwave irradiation unit 40 to such an extent that the electron spin phenomenon does not occur. For example, when the intensity of the magnetic field in which the electron spin phenomenon occurs is about 3370 G, the electron spin phenomenon occurs by changing the intensity of the magnetic field by about 10 G (specifically, by making it less than 3360 G or 3380 G or more). Disappear.
 また、例えば、磁場およびマイクロ波の少なくとも一方が、有機半導体層26の電子スピン現象が生じないように設定された状態から、電子スピン現象が生じるように設定された所定の状態に変化する場合、電流制御装置10において電極22と電極24との間に比較的大きな電流が流れる。磁場の強度を、電子スピン現象を生じさせる所定の強度に変化させてもよく、例えば、磁場を非形成から所定の強度で形成してもよい。あるいは、マイクロ波の周波数を、電子スピン現象を生じさせる所定の周波数に変化させてもよく、また、マイクロ波を非照射から所定の周波数で照射するように変化させてもよい。 In addition, for example, when at least one of the magnetic field and the microwave changes from a state set so as not to cause the electron spin phenomenon of the organic semiconductor layer 26 to a predetermined state set so as to cause the electron spin phenomenon. In the current control device 10, a relatively large current flows between the electrode 22 and the electrode 24. The intensity of the magnetic field may be changed to a predetermined intensity that causes an electron spin phenomenon. For example, the magnetic field may be formed from a non-formation to a predetermined intensity. Alternatively, the frequency of the microwave may be changed to a predetermined frequency that causes an electron spin phenomenon, or the microwave may be changed so as to be irradiated at a predetermined frequency from non-irradiation.
 また、磁場およびマイクロ波が、電子スピン現象の生じるように設定された状態で、有機半導体層26に照射される光の強度または波長を変更してもよい。これにより、電極22と電極24との間を流れる電流を制御することができる。 Further, the intensity or wavelength of the light applied to the organic semiconductor layer 26 may be changed in a state where the magnetic field and the microwave are set so as to cause the electron spin phenomenon. Thereby, the current flowing between the electrode 22 and the electrode 24 can be controlled.
 以上のように、電流制御装置10は、磁場とマイクロ波によって生じる電子スピン共鳴現象に関連して、磁場、マイクロ波および有機半導体層26に照射される光の少なくとも1つを変化させることにより、第1電極22と第2電極24との間を流れる電流を制御することができる。例えば、磁場の強度およびマイクロ波の強度および周波数の少なくとも1つを変化させる場合、変化毎に電極22と電極24との間に比較的大きな電流を流すことができる。したがって、マイクロ波の周波数と磁場強度から決定される電子スピン共鳴条件を利用して交流電流を発生できる。 As described above, the current control device 10 changes at least one of the light applied to the magnetic field, the microwave, and the organic semiconductor layer 26 in association with the electron spin resonance phenomenon caused by the magnetic field and the microwave. The current flowing between the first electrode 22 and the second electrode 24 can be controlled. For example, when changing at least one of the strength of the magnetic field and the strength and frequency of the microwave, a relatively large current can flow between the electrode 22 and the electrode 24 for each change. Therefore, an alternating current can be generated using electron spin resonance conditions determined from the frequency of the microwave and the magnetic field strength.
 図1では、磁気形成部30からの静磁場の強度をH0と示し、マイクロ波照射部40からの電磁場の強度をH1と示している。このような状態で、有機半導体層26に光が照射されると、静磁場の値H0とマイクロ波の周波数から決定される共鳴条件を満足する場合に、そのマイクロ波照射部40からのマイクロ波の強度および/または周波数、または、磁気形成部30からの磁場の強度(H0)を変調すると、その変調周波数を有する交流電流を発生させることができる。 In FIG. 1, the strength of the static magnetic field from the magnetic forming unit 30 is indicated as H0, and the strength of the electromagnetic field from the microwave irradiation unit 40 is indicated as H1. When the organic semiconductor layer 26 is irradiated with light in such a state, the microwave from the microwave irradiation unit 40 is satisfied when the resonance condition determined from the value H0 of the static magnetic field and the frequency of the microwave is satisfied. When the intensity and / or frequency of the magnetic field or the intensity (H0) of the magnetic field from the magnetic forming unit 30 is modulated, an alternating current having the modulation frequency can be generated.
 例えば、マイクロ波の周波数を一定に保ちながら磁場の強度を増減させるか、または、磁場の強度を一定に保ちながら所定の周波数を有するマイクロ波の強度を増減させることにより、電極22、24の間を流れる電流を制御する。ここで、マイクロ波の強度は、一定の幅を有するパルス状に変化してもよく、正弦波状に変化してもよい。この場合、発生する交流電流の周波数は、マイクロ波または磁場の強度変調の周波数によって決定される。なお、共鳴条件を与える磁場強度とマイクロ波周波数は比例関係にあるため、共鳴条件を満足する限り、磁場強度とマイクロ波周波数は、任意の値に変更することができる。 For example, by increasing or decreasing the strength of the magnetic field while keeping the frequency of the microwave constant, or by increasing or decreasing the strength of the microwave having a predetermined frequency while keeping the strength of the magnetic field constant. To control the current flowing through. Here, the intensity of the microwave may change in a pulse shape having a certain width, or may change in a sine wave shape. In this case, the frequency of the alternating current generated is determined by the frequency of the intensity modulation of the microwave or magnetic field. Since the magnetic field intensity giving the resonance condition and the microwave frequency are in a proportional relationship, the magnetic field intensity and the microwave frequency can be changed to arbitrary values as long as the resonance condition is satisfied.
 例えば、マイクロ波照射部40が、マイクロ波を照射している状態と照射していない状態(ON-OFF状態)を切り替えることにより、電極22、24間に流れる電流を制御することができる。例えば、マイクロ波のAM変調によって電子スピン共鳴現象が発生する状態と発生しない状態とに切り替えることができ、その切り替えるタイミングによって電子スピン共鳴現象による電流を発生することができる。この場合、電子スピン共鳴現象の発生直後(すなわち、マイクロ波照射のON直後)にはマイナス方向のスパイク状の電流が、電子スピン共鳴現象の停止直後(すなわち、マイクロ波照射のOFF直後)にはプラス方向のスパイク状の電流が流れる。 For example, the current flowing between the electrodes 22 and 24 can be controlled by the microwave irradiation unit 40 switching between a state in which the microwave irradiation is performed and a state in which the microwave irradiation is not performed (ON-OFF state). For example, it is possible to switch between a state where an electron spin resonance phenomenon occurs and a state where it does not occur by AM modulation of microwaves, and a current due to the electron spin resonance phenomenon can be generated depending on the switching timing. In this case, a negative spike current immediately after the occurrence of the electron spin resonance phenomenon (that is, immediately after the microwave irradiation is turned on) immediately after the electron spin resonance phenomenon is stopped (that is, immediately after the microwave irradiation is turned off). A spike-like current in the positive direction flows.
 同様に、磁場を形成している状態としていない状態(ON-OFF状態)を切り替えることにより、電子スピン共鳴現象による電極22、24間に流れる電流を制御することができる。このようにして、電子スピン共鳴現象のON-OFF状態を切り替えることにより、電極間に電流を発生させることができる。 Similarly, the current flowing between the electrodes 22 and 24 due to the electron spin resonance phenomenon can be controlled by switching the state where the magnetic field is not formed (ON-OFF state). In this way, a current can be generated between the electrodes by switching the ON-OFF state of the electron spin resonance phenomenon.
 なお、電子スピン共鳴によって電流が発生する理由として、ポーラロンペアの関与が考えられる。ポーラロンペアとは、ポリマー鎖間において電子と正孔が弱く結合した状態であり、励起子とキャリアの中間体とされている。ポーラロンペアには励起子と同様に、singlet(PP)とtriplet(PP)の形態が存在する。定常条件の下では、キャリア、ポーラロンペア、励起子間における解離、再結合において、平衡状態が成立している。電子スピン共鳴によりポーラロンペアの電子あるいは正孔のスピンが反転することで、PPとPPの個数の関係が平衡状態から崩れ、キャリアの個数が変化し、電流が変化すると考えられる。 It should be noted that a polaron pair may be involved as a reason for the generation of current by electron spin resonance. A polaron pair is a state in which electrons and holes are weakly bonded between polymer chains, and is an intermediate between excitons and carriers. In the polaron pair, there are singlet (PP S ) and triplet (PP T ) forms as well as excitons. Under steady-state conditions, an equilibrium state is established in dissociation and recombination between carriers, polaron pairs, and excitons. By inverting the electron or hole spin of Poraronpea by electron spin resonance, the relationship of the number of PP S and PP T collapse from the equilibrium state, the number of carriers is changed, is considered current changes.
 電流制御装置10では、磁場のみならずマイクロ波を利用して電流を制御するため、磁場の強度を一定にした条件下において、マイクロ波を制御因子(スイッチ)として用いることができる。また、電流制御装置10を用いて磁気抵抗型素子を作製した場合、磁気抵抗型素子の1つの特性を示す(ρ(0)-ρ(H))/ρ(H)の値を室温で100%以上にできるため、大きな電流差を必要とする用途に好適に利用できる。このように、電流制御装置10では、磁場のみならずマイクロ波を利用して電流を制御することが可能であるため、磁場のみを利用して電流の制御を行う場合と比べると、広い範囲で応用を図ることができる。加えて、発生電流は光に応じて生成されており、発生電流を光量や光の波長に応じて制御することができる。 In the current control device 10, since the current is controlled using not only the magnetic field but also the microwave, the microwave can be used as a control factor (switch) under the condition that the strength of the magnetic field is constant. Further, when a magnetoresistive element is manufactured using the current control device 10, the value of (ρ (0) −ρ (H)) / ρ (H) indicating one characteristic of the magnetoresistive element is set to 100 at room temperature. %, It can be suitably used for applications requiring a large current difference. As described above, in the current control device 10, it is possible to control the current using not only the magnetic field but also the microwave. Therefore, compared with the case where the current is controlled using only the magnetic field, the current control device 10 has a wider range. Application can be made. In addition, the generated current is generated according to light, and the generated current can be controlled according to the amount of light and the wavelength of light.
 なお、上述した説明では、一例として、素子デバイス20(より具体的には有機半導体層26)に、太陽光などの電流制御装置10の外部からの光が照射されたが、本発明はこれに限定されない。素子デバイス20(有機半導体層26)には電流制御装置10内の部材から出射された光が照射されてもよい。 In the above description, as an example, the element device 20 (more specifically, the organic semiconductor layer 26) is irradiated with light from the outside of the current control device 10 such as sunlight. It is not limited. The element device 20 (organic semiconductor layer 26) may be irradiated with light emitted from a member in the current control device 10.
 図3に、本実施形態の電流制御装置10の模式図を示す。図3に示した電流制御装置10は光源50をさらに備える点を除いて、図1を参照して上述した電流制御装置と同様の構成を有しており、冗長を避けるために重複する説明を省略する。例えば、光源50として半導体レーザを用いてもよい。電流制御装置10では、光源50を制御することにより、電流を制御することができる。 FIG. 3 shows a schematic diagram of the current control device 10 of the present embodiment. The current control device 10 shown in FIG. 3 has the same configuration as that of the current control device described above with reference to FIG. 1 except that the light source 50 is further provided, and redundant description is given to avoid redundancy. Omitted. For example, a semiconductor laser may be used as the light source 50. In the current control device 10, the current can be controlled by controlling the light source 50.
 なお、上述したように、素子デバイス20では、有機半導体層26に光が照射されることにより、電極22と電極24との間に電流が流れてもよい。以下、図4を参照して光の照射によって電極22と電極24との間に電流が流れる素子デバイス20の一例を説明する。 In addition, as described above, in the element device 20, a current may flow between the electrode 22 and the electrode 24 by irradiating the organic semiconductor layer 26 with light. Hereinafter, an example of the element device 20 in which a current flows between the electrode 22 and the electrode 24 by light irradiation will be described with reference to FIG.
 図4に示した素子デバイス20では、電極22が正極であり、電極24が負極である。素子デバイス20において有機半導体層26は、バッファー層26aと、電子供与体層26bと、電子受容体層26cと有している。バッファー層26aは、透明電極22と電子供与体層26bとの間に位置しており、電子供与体層26bへの電荷(正孔)注入効率を向上させる。電子供与体層26bは光によって励起された電子を渡す。電子受容体層26cは電子を受け取り、電極24まで転送する。電子供与体層26bおよび電子受容体層26cは併せて光電変換層26oと呼ばれる。ここでは、電極22は透明電極であり、また、電極22は基板Sに支持されている。電極24として金属電極を用いてもよい。 In the element device 20 shown in FIG. 4, the electrode 22 is a positive electrode and the electrode 24 is a negative electrode. In the element device 20, the organic semiconductor layer 26 includes a buffer layer 26a, an electron donor layer 26b, and an electron acceptor layer 26c. The buffer layer 26a is located between the transparent electrode 22 and the electron donor layer 26b, and improves the charge (hole) injection efficiency into the electron donor layer 26b. The electron donor layer 26b delivers electrons excited by light. The electron acceptor layer 26 c receives the electrons and transfers them to the electrode 24. The electron donor layer 26b and the electron acceptor layer 26c are collectively referred to as a photoelectric conversion layer 26o. Here, the electrode 22 is a transparent electrode, and the electrode 22 is supported by the substrate S. A metal electrode may be used as the electrode 24.
 光励起により発生したエキシトン(励起子)は、電子供与体層26bと電子受容体層26cとの界面のpn接合部で電荷分離され、電子は電子受容体層26cへ、正孔は電子供与体層26bへ移動する。その後、正孔は電子供与体層26b中を、電子は電子受容体層26c中をそれぞれ移動し、電流を取り出すことができる。 Exciton (exciton) generated by photoexcitation is charge separated at the pn junction at the interface between the electron donor layer 26b and the electron acceptor layer 26c, and electrons are transferred to the electron acceptor layer 26c and holes are transferred to the electron donor layer. Move to 26b. Thereafter, holes can move in the electron donor layer 26b and electrons can move in the electron acceptor layer 26c, and current can be taken out.
 基板Sは、透明なものであってもよく、不透明なものであってもよい。ただし、基板S側が光の受光面となる場合には、基板Sとして透明基板を用いることが好ましい。この場合、特に限定されるものではないが、透明基板Sとして石英ガラス等のガラス基板が用いられる。なお、透明基板Sとして、ガラス基板以外にも、合成石英板等の可撓性のない透明なリジット材、あるいは透明樹脂フィルム、光学用樹脂板等の可撓性を有する透明なフレキシブル材を利用してもよい。 The substrate S may be transparent or opaque. However, a transparent substrate is preferably used as the substrate S when the substrate S side is a light receiving surface. In this case, although not particularly limited, a glass substrate such as quartz glass is used as the transparent substrate S. In addition to the glass substrate, a transparent rigid material such as a synthetic quartz plate or a flexible flexible material such as a transparent resin film or an optical resin plate is used as the transparent substrate S. May be.
 例えば、透明電極22は、酸化インジウムにスズを添加したITOから構成されてもよい。なお、透明電極22の材料は特にITOに限定されないが、後述するように、電極24の仕事関数等を考慮すると、透明電極22は、仕事関数の高い材料から形成されることが好ましい。 For example, the transparent electrode 22 may be made of ITO in which tin is added to indium oxide. The material of the transparent electrode 22 is not particularly limited to ITO, but as will be described later, the transparent electrode 22 is preferably formed of a material having a high work function in consideration of the work function of the electrode 24 and the like.
 電極24は、導電性を有する材料であれば特に限定されない。ただし、透明電極22を仕事関数の比較的高いITOから形成する場合、電極24として、仕事関数の低いアルミニウムを用いることが好ましい。 The electrode 24 is not particularly limited as long as it is a conductive material. However, when the transparent electrode 22 is formed from ITO having a relatively high work function, it is preferable to use aluminum having a low work function as the electrode 24.
 例えば、バッファー層26aは、3,4-ポリエチレンジオキシチオフェン:ポリスチレンスルホネート(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)、以下PEDOT・PSSという。)から構成される。PEDOT・PSSは、極めて高い導電性を示し、バッファー層26aの材料として好適に用いられる。あるいは、バッファー層26aはスターバーストアミンまたはCuPc(銅フタロシアニン)等から構成されてもよい。なお、必要に応じてバッファー層26aを省略してもよい。 For example, the buffer layer 26a is made of 3,4-polyethylenedioxythiophene: polystyrene sulfonate (poly (3,4-ethylenedithiothiophene): poly (styrenesulfonate), hereinafter referred to as PEDOT / PSS). PEDOT / PSS exhibits extremely high conductivity and is preferably used as a material for the buffer layer 26a. Alternatively, the buffer layer 26a may be made of starburst amine or CuPc (copper phthalocyanine). Note that the buffer layer 26a may be omitted as necessary.
 電子供与体層26bはポリマー主鎖に沿った共役π電子を有するπ共役ポリマーから構成されることが好ましい。例えば、電子供与体層26bは、poly(2-methoxy-5-ethylhexyloxy-1,4-phenylenevinylene、以下MEH-PPVという。)から構成される。あるいは、電子供与体層26bは、poly(3-hexylthiopene)(略称、P3HT)、または、poly(2-methoxy-5―(3‘,7’-dimethyloctyloxy)―1,4-phenylenevinylene)(略称、MDMOPPV)などの他のπ共役ポリマーから構成されてもよい。 The electron donor layer 26b is preferably composed of a π-conjugated polymer having conjugated π electrons along the polymer main chain. For example, the electron donor layer 26b is made of poly (2-methoxy-5-ethylhexyoxy-1,4-phenylenevinylene, hereinafter referred to as MEH-PPV). Alternatively, the electron donor layer 26b is formed of poly (3-hexylthiopene) (abbreviation, P3HT) or poly (2-methoxy-5- (3 ′, 7′-dimethylity) -1,1,4-phenylenevinylene) (abbreviation, It may be composed of other π-conjugated polymers such as MDMOPPV).
 電子受容体層26cは、フラーレン(C60)又はフラーレン誘導体から構成されている。フラーレン(C60)又はフラーレン誘導体は高いエネルギー変換効率を示し得る。ここで、フラーレン誘導体とは、フラーレン、フラーレンの誘導体、ならびに、フラーレンおよびフラーレンの誘導体の混合物をいう。フラーレン誘導体としては、フラーレン骨格を有する化合物であれば特に限定されない。また、フラーレン骨格における炭素原子は、いずれも任意の基で表面修飾されていてもよく、この表面修飾基同士が互いに結合して環を形成していてもよい。また、1分子中に含まれるフラーレン骨格単位は、その表面修飾基を含め、同一であっても異なっていてもよい。 The electron acceptor layer 26c is made of fullerene (C 60 ) or a fullerene derivative. Fullerene (C 60 ) or fullerene derivatives may exhibit high energy conversion efficiency. Here, fullerene derivatives refer to fullerenes, fullerene derivatives, and mixtures of fullerenes and fullerene derivatives. The fullerene derivative is not particularly limited as long as it is a compound having a fullerene skeleton. In addition, any carbon atom in the fullerene skeleton may be surface-modified with an arbitrary group, and the surface-modifying groups may be bonded to each other to form a ring. Further, the fullerene skeleton units contained in one molecule may be the same or different including the surface modifying group.
 このようなフラーレン誘導体としては、例えば高次フラーレン類、表面修飾基を有する表面修飾フラーレン類、バッキーオニオン、フラーレン結合ポリマー類等が挙げられる。高次フラーレン類としては、例えば、C60、C70、C76、C78、C84等がある。本明細書において、高次フラーレン類とは、高次フラーレンだけでなく、高次フラーレンの誘導体も含む。例えば、電子受容体層26cは、フラーレン誘導体として、(6,6)-フェニル-C61-ブチル酸メチルエステル((6,6)-phenyl-C61-butyric acid methyl ester、以下PCBMという。)から構成される。フラーレンそのものは有機溶媒への溶解性が低いことから、真空蒸着法で形成される。これに対して、PCBMは有機溶媒に溶解させた溶液をスピンコーティングなどによって薄膜状に形成することができる。 Examples of such fullerene derivatives include higher-order fullerenes, surface-modified fullerenes having a surface-modifying group, bucky onions, and fullerene-bonded polymers. Higher order fullerenes include, for example, C 60 , C 70 , C 76 , C 78 , C 84 and the like. In the present specification, higher-order fullerenes include not only higher-order fullerenes but also derivatives of higher-order fullerenes. For example, the electron acceptor layer 26c is composed of (6,6) -phenyl-C61-butyric acid methyl ester ((6,6) -phenyl-C61-butylic acid methyl ester (hereinafter referred to as PCBM)) as a fullerene derivative. Is done. Fullerene itself has a low solubility in an organic solvent, and thus is formed by a vacuum deposition method. On the other hand, PCBM can form a solution in an organic solvent into a thin film by spin coating or the like.
 素子デバイス20では、光励起により発生したエキシトン(励起子)は、フラーレン又はフラーレン誘導体(電子受容体層26c)とπ共役ポリマー(電子供与体層26b)の界面のpn接合部で電荷分離され、電子は電子受容体層26cへ、正孔は電子供与体層26bへ移動する。その後、正孔はπ共役ポリマー(電子供与体層26b)のネットワーク中を、電子はフラーレン(電子受容体層26c)のネットワーク中をそれぞれ移動し、電流として取り出される。 In the element device 20, excitons (excitons) generated by photoexcitation are separated by charge at the pn junction at the interface between the fullerene or fullerene derivative (electron acceptor layer 26c) and the π-conjugated polymer (electron donor layer 26b). Move to the electron acceptor layer 26c and holes move to the electron donor layer 26b. Thereafter, holes move through the network of π-conjugated polymer (electron donor layer 26b) and electrons move through the network of fullerene (electron acceptor layer 26c), and are taken out as current.
 以下、図5を参照して、図4に示した素子デバイス20の一例およびその作製方法を説明する。 Hereinafter, an example of the element device 20 shown in FIG. 4 and a manufacturing method thereof will be described with reference to FIG.
 まず、ガラス基板Sの表面上に、ITOを含む電極22を形成する。その後、電極22の上に、バッファー層26a、電子供与体層26b、電子受容体層26cを形成する。 First, an electrode 22 containing ITO is formed on the surface of the glass substrate S. Thereafter, a buffer layer 26 a, an electron donor layer 26 b, and an electron acceptor layer 26 c are formed on the electrode 22.
 ここでは、バッファー層26aはPEDOT・PSSから構成され、電子供与体層26bはMEH-PPVから構成され、電子受容体層26cはPCBMから構成される。例えば、バッファー層26a、電子供与体層26bおよび電子受容体層26cをこの順番にスピンコート法で形成する。これらの材料を塗布する手法として、例えばダイコート法、ディップコート法、ロールコート法、ビードコート法、スプレーコート法、バーコート法、グラビアコート法等を用いることができる。なお、上述したように、電子受容体層26cはフラーレンから構成されてもよく、この場合、電子受容体層26cは真空蒸着で形成される。 Here, the buffer layer 26a is made of PEDOT / PSS, the electron donor layer 26b is made of MEH-PPV, and the electron acceptor layer 26c is made of PCBM. For example, the buffer layer 26a, the electron donor layer 26b, and the electron acceptor layer 26c are formed in this order by the spin coat method. As a method for applying these materials, for example, a die coating method, a dip coating method, a roll coating method, a bead coating method, a spray coating method, a bar coating method, a gravure coating method, or the like can be used. As described above, the electron acceptor layer 26c may be made of fullerene. In this case, the electron acceptor layer 26c is formed by vacuum deposition.
 電極24は、例えば、真空蒸着を用いて形成される。例えば、電極24はアルミニウムから形成される。電極24の形成方法として、真空蒸着法の他に、例えばスパッタリング法、イオンプレーティング法等のPVD法や、CVD法等の乾式塗工法を採用することができる。 The electrode 24 is formed using, for example, vacuum deposition. For example, the electrode 24 is formed from aluminum. As a method for forming the electrode 24, in addition to the vacuum deposition method, for example, a PVD method such as a sputtering method or an ion plating method, or a dry coating method such as a CVD method can be employed.
 ここで、図6を参照して、図4に示した素子デバイス20を備える電流制御装置10の測定結果を説明する。図6は、電流制御装置10によって得られた電流の時間変化を示すグラフである。図6において横軸は時間を示し、縦軸は素子デバイス20において発生する光電流を示している。 Here, with reference to FIG. 6, the measurement result of the current control apparatus 10 provided with the element device 20 shown in FIG. 4 will be described. FIG. 6 is a graph showing the time change of the current obtained by the current control device 10. In FIG. 6, the horizontal axis indicates time, and the vertical axis indicates the photocurrent generated in the element device 20.
 ここでは、素子デバイス20に照射する光の波長は488nm、光の強度は25mWであり、印加する磁場の強度は3380Gである。また、マイクロ波の周波数は、約9.5GHzである。マイクロ波の強度は周波数50Hz(周期20ms)で、強度は0mWおよび200mWで変調される。 Here, the wavelength of the light applied to the element device 20 is 488 nm, the intensity of the light is 25 mW, and the intensity of the applied magnetic field is 3380G. The frequency of the microwave is about 9.5 GHz. The intensity of the microwave is 50 Hz (period 20 ms), and the intensity is modulated at 0 mW and 200 mW.
 図6から理解されるように、電子スピン共鳴の有無が変化するまで、室温中で約4nAの直流光電流(定常光電流)が得られているが、電子スピン共鳴の有無の変化が起こった直後に、スパイク状の光電流の増加(+11nA)および減少(-4nA)が観測される。このスパイク状の光電流は、室温中において直流光電流の200%以上大きい振幅値を示している。 As understood from FIG. 6, a DC photocurrent (steady photocurrent) of about 4 nA was obtained at room temperature until the presence or absence of electron spin resonance changed, but the presence or absence of electron spin resonance occurred. Immediately thereafter, spiked photocurrent increases (+11 nA) and decreases (−4 nA) are observed. This spike-like photocurrent has an amplitude value that is 200% or more larger than the DC photocurrent at room temperature.
 なお、図6では、マイクロ波の強度を周波数50Hz(周期20ms)で変調しているが、これを1kHz以上程度で変調すると、スパイク状の電流がサイン波の交流電流波形に近づく。また、ここでは光の強度は約25mWであるが、照射強度をより強くすると、交流光電流はさらに増加する。 In FIG. 6, the intensity of the microwave is modulated at a frequency of 50 Hz (period 20 ms), but when this is modulated at about 1 kHz or more, the spike-like current approaches the alternating current waveform of the sine wave. Here, the intensity of light is about 25 mW, but when the irradiation intensity is increased, the alternating photocurrent further increases.
 なお、上述した説明では、素子デバイス20(有機半導体層26)に光が照射されると、電極22と電極24との間に電流が流れたが、本発明はこれに限定されない。素子デバイス20(有機半導体層26)に光が照射されても電極22と電極24との間に電流が流れなくてもよい。 In the above description, when light is applied to the element device 20 (organic semiconductor layer 26), a current flows between the electrode 22 and the electrode 24. However, the present invention is not limited to this. Even if the element device 20 (organic semiconductor layer 26) is irradiated with light, no current may flow between the electrode 22 and the electrode 24.
 図7に、素子デバイス20の構造を示す。図7に示した素子デバイス20は、電極22、24および有機半導体層26に加えて、電極22と有機半導体層26との間に位置する絶縁層23と、電極24と有機半導体層26との間に位置する絶縁層25とをさらに有している。 FIG. 7 shows the structure of the element device 20. The element device 20 shown in FIG. 7 includes, in addition to the electrodes 22 and 24 and the organic semiconductor layer 26, an insulating layer 23 positioned between the electrode 22 and the organic semiconductor layer 26, and the electrode 24 and the organic semiconductor layer 26. It further has an insulating layer 25 positioned therebetween.
 絶縁層23、25は絶縁性樹脂から形成される。絶縁性樹脂として、例えば、日本ゼオン株式会社製のシクロオレフィンポリマー樹脂が用いられる。絶縁層23、25により、電極22と電極24との間を流れる電流が抑制される。例えば、図7に示した素子デバイス20では、絶縁層23、25が形成されているため定常光電流が発生しない。 The insulating layers 23 and 25 are made of an insulating resin. As the insulating resin, for example, cycloolefin polymer resin manufactured by Nippon Zeon Co., Ltd. is used. The insulating layers 23 and 25 suppress the current flowing between the electrode 22 and the electrode 24. For example, in the element device 20 shown in FIG. 7, since the insulating layers 23 and 25 are formed, no steady photocurrent is generated.
 図7に示した素子デバイス20において、有機半導体層26はπ型共役ポリマーを含んでもよい。例えば、有機半導体層26のπ型共役ポリマーとしてpoly(2-methoxy-5-ethylhexyloxy-1,4-phenylenevinylene、以下MEH-PPVという。)を用いている。MEH-PPVの他にもpoly(3-hexylthiopene)(略称、P3HT)やpoly(2-methoxy-5―(3‘,7’-dimethyloctyloxy)―1,4-phenylenevinylene)(略称、MDMOPPV)やC60フラーレンなどを用いてもよい。また、有機半導体層26がπ型共役ポリマーを含む場合、例えば電子受容体としてのフラーレン誘導体と、電子供与体としてのπ型共役ポリマーとを組み合わせた有機薄膜半導体を用いてもよい。なお、P3HTは波長650μm以下の光を吸収し、MDMOPPVは波長600nm以下の光を吸収する。また、C60フラーレンは可視域および紫外領域の光を吸収する。 In the element device 20 shown in FIG. 7, the organic semiconductor layer 26 may include a π-type conjugated polymer. For example, poly (2-methoxy-5-ethylhexyloxy-1,4-phenylenevinylene, hereinafter referred to as MEH-PPV) is used as the π-type conjugated polymer of the organic semiconductor layer 26. In addition to MEH-PPV, poly (3-hexylopenene) (abbreviation, P3HT), poly (2-methoxy-5- (3 ′, 7′-dimethyloxy))-1,4-phenylenevinylene (abbreviation, MDMOPPV) and C 60 fullerene or the like may be used. When the organic semiconductor layer 26 includes a π-type conjugated polymer, for example, an organic thin film semiconductor that combines a fullerene derivative as an electron acceptor and a π-type conjugated polymer as an electron donor may be used. P3HT absorbs light having a wavelength of 650 μm or less, and MDMOPPV absorbs light having a wavelength of 600 nm or less. C 60 fullerene absorbs light in the visible region and the ultraviolet region.
 図7に示した素子デバイス20では、透明電極22と有機半導体層26の間に絶縁層23が設けられ、有機半導体層26と金属電極24の間に絶縁層25が設けられている。絶縁層23、25により、素子デバイス20には定常光電流が発生しない一方で、電子スピン共鳴の有無の変化によるスパイク状の交流電流を発生させることができる。 7, the insulating layer 23 is provided between the transparent electrode 22 and the organic semiconductor layer 26, and the insulating layer 25 is provided between the organic semiconductor layer 26 and the metal electrode 24. The insulating layers 23 and 25 can generate a spike-like alternating current due to a change in the presence or absence of electron spin resonance while no steady photocurrent is generated in the element device 20.
 以下、絶縁層23、25が設けられているにも関わらずスパイク電流が発生する理由について説明する。通常、有機半導体層を異なる電極で挟んだ構造のデバイスをショートさせた場合には、有機半導体層内に内部電場が生じ、光電流の流れる方向は、その電場の向きによって一意的に決まる。そのため、観測された電子スピン共鳴によって光電流の向きが反転する現象は、キャリア数の変化等では起こりえない。電子スピン共鳴によって起こる電流変化は、デバイス内での電場環境(すなわち誘電率)が変わることにより誘起された変位電流が原因であると考えられる。電子スピン共鳴によって内部電場が変化する機構の詳細は、現在のところ明らかではないが、スピン反転によるポーラロンペアの再結合量や解離量の増減がデバイス内部のキャリア分布を変えることに起因して、電子スピン共鳴による内部電場の変化が起こっているのではないかと考えられる。 Hereinafter, the reason why the spike current is generated although the insulating layers 23 and 25 are provided will be described. Usually, when a device having a structure in which an organic semiconductor layer is sandwiched between different electrodes is short-circuited, an internal electric field is generated in the organic semiconductor layer, and the direction in which the photocurrent flows is uniquely determined by the direction of the electric field. Therefore, the phenomenon in which the direction of the photocurrent is reversed by the observed electron spin resonance cannot occur due to a change in the number of carriers. It is considered that the current change caused by electron spin resonance is caused by a displacement current induced by a change in the electric field environment (ie, dielectric constant) in the device. The details of the mechanism by which the internal electric field changes due to electron spin resonance are not clear at present, but the increase or decrease in the recombination amount or dissociation amount of the polaron pair due to spin inversion changes the carrier distribution inside the device, It is thought that the internal electric field changes due to electron spin resonance.
 なお、図7示した素子デバイス20では有機半導体層26の両側に2つの絶縁層23、25が設けられているが、本発明はこれに限定されない。絶縁層23、25のうちの絶縁層23のみが設けられてもよく、または、絶縁層25のみが設けられてもよい。このように、素子デバイス20には絶縁層23、25の少なくとも一方が設けられてもよい。 In the element device 20 shown in FIG. 7, the two insulating layers 23 and 25 are provided on both sides of the organic semiconductor layer 26, but the present invention is not limited to this. Of the insulating layers 23 and 25, only the insulating layer 23 may be provided, or only the insulating layer 25 may be provided. Thus, the element device 20 may be provided with at least one of the insulating layers 23 and 25.
 以下、図8に、図7に示した素子デバイス20を用いた場合の測定結果を説明する。図8では、オシロスコープで計測した光電流検出ESR信号のピーク付近(すなわち共鳴点)における時間変化スペクトルを示している。なお、電子スピン共鳴現象のON-OFFの状態は、マイクロ波のAM変調により実現している。ここでは、光電流検出ESRはX-バンド用のマイクロ波キャビティ内にセットした素子デバイスを、波長473nmの半導体レーザーで光励起し、光電流Iを室温かつ窒素雰囲気中で測定している。  Hereinafter, the measurement results when the element device 20 shown in FIG. 7 is used will be described with reference to FIG. FIG. 8 shows a time change spectrum in the vicinity of the peak (that is, the resonance point) of the photocurrent detection ESR signal measured with an oscilloscope. The ON / OFF state of the electron spin resonance phenomenon is realized by microwave AM modulation. Here, in the photocurrent detection ESR, an element device set in an X-band microwave cavity is photoexcited with a semiconductor laser having a wavelength of 473 nm, and the photocurrent I is measured at room temperature in a nitrogen atmosphere. *
 図8から、絶縁層23、25の設けられた素子デバイス20を用いた場合、絶縁層23、25によって定常光電流が観測されない一方で、電子スピン共鳴によるスパイク電流が観測されることが分かる。このように、有機半導体層26と電極22、24の間に絶縁層23、25を設けることにより、定常光電流を除去するとともに、電子スピン共鳴の有無が変化する際にスパイク電流が得られる。絶縁層が形成されていない素子デバイス20に対して同様の条件で行った図6と図8との比較から理解されるように、図7に示した素子デバイス20を用いた場合、電流制御装置10は、定常光電流を発生させないで、電子スピン共鳴の有無を変化に起因する交流電流を十分に得ることができ、素子デバイス20の性能を向上させることができる。 8 that when the element device 20 provided with the insulating layers 23 and 25 is used, a steady photocurrent is not observed by the insulating layers 23 and 25, while a spike current due to electron spin resonance is observed. Thus, by providing the insulating layers 23 and 25 between the organic semiconductor layer 26 and the electrodes 22 and 24, a steady photocurrent is removed, and a spike current is obtained when the presence or absence of electron spin resonance changes. As can be understood from a comparison between FIG. 6 and FIG. 8 performed under the same conditions for the element device 20 in which the insulating layer is not formed, when the element device 20 shown in FIG. No. 10 can sufficiently obtain an alternating current resulting from a change in the presence or absence of electron spin resonance without generating a steady photocurrent, and can improve the performance of the element device 20.
 なお、上述した説明では、絶縁層23および/または絶縁層25を設けることによって定常光電流を抑制したが、絶縁層23、25を設けなくても、素子デバイス20を長期間大気に曝すことにより、定常光電流を抑制することができる。また、この場合、スパイク電流も増大させることができる。 In the above description, the steady photocurrent is suppressed by providing the insulating layer 23 and / or the insulating layer 25. However, the element device 20 is exposed to the atmosphere for a long time without providing the insulating layers 23 and 25. The steady photocurrent can be suppressed. In this case, the spike current can also be increased.
 電流制御装置10は、MARMと同様、磁性体と組み合わせてメモリとして用いることができる。MRAMでは、情報があるとき、磁場を印加することで磁性体に磁化を持たせて情報を蓄える。その情報を読み取るときは、磁化の下における電流値(抵抗)を、磁場が無い状態の電流値と区別することにより、2つの状態の区別を行う。電流制御装置10では、磁場の変化にもとづいて電流を制御可能であるため、電流を通して情報を読み取ることができる。また、マイクロ波による制御もできる。 The current control device 10 can be used as a memory in combination with a magnetic material, similarly to MARM. In the MRAM, when there is information, the magnetic material is magnetized by applying a magnetic field to store the information. When reading the information, the current value (resistance) under magnetization is distinguished from the current value in the absence of a magnetic field to distinguish between the two states. In the current control device 10, since the current can be controlled based on the change of the magnetic field, information can be read through the current. Also, control by microwaves can be performed.
 また、電流制御装置10は、マイクロ波による遠隔制御の可能な光起電力素子として用いてもよい。あるいは、電流制御装置10は、マイクロ波または磁場をスイッチとして電流を制御できる。例えば、素子デバイス20に磁場形成部30からの磁場を作用させた状態で磁性体等を近づけることにより、電流制御装置10をスイッチ素子として用いることができる。また、電流制御装置10は、コンピュータ又は遠隔モニタリング又は通信機器などの電子情報処理に用いられる。 Further, the current control device 10 may be used as a photovoltaic element that can be remotely controlled by microwaves. Alternatively, the current control device 10 can control the current using a microwave or a magnetic field as a switch. For example, the current control device 10 can be used as a switch element by bringing a magnetic body or the like close to the element device 20 in a state where the magnetic field from the magnetic field forming unit 30 is applied. The current control device 10 is used for electronic information processing such as a computer or remote monitoring or communication equipment.
 本発明によれば、さまざまな用途に適用可能な新規な電流制御を行うことができる。本発明の電流制御装置は、スイッチまたはメモリの作製に好適に用いられる。 According to the present invention, novel current control applicable to various uses can be performed. The current control device of the present invention is suitably used for manufacturing a switch or a memory.
 10  電流制御装置
 20  素子デバイス
 22  電極
 24  電極 
 26  有機半導体層 
 26a バッファー層
 26b 電子供与体
 26c 電子受容体
 26o 光電変換層
 30  磁場形成部
 40  マイクロ波照射部

 
DESCRIPTION OF SYMBOLS 10 Current control apparatus 20 Element device 22 Electrode 24 Electrode
26 Organic semiconductor layer
26a buffer layer 26b electron donor 26c electron acceptor 26o photoelectric conversion layer 30 magnetic field forming unit 40 microwave irradiation unit

Claims (15)

  1.  第1電極と、第2電極と、前記第1電極および前記第2電極の間に位置する有機半導体層とを有する素子デバイスを用意する工程と、
     磁場およびマイクロ波による前記有機半導体層の電子スピン共鳴現象に関連して、前記磁場、前記マイクロ波および前記有機半導体層に照射される光の少なくとも1つを変化させることにより、前記第1電極と前記第2電極との間を流れる電流を制御する工程と
    を包含する、電流制御方法。
    Preparing an element device having a first electrode, a second electrode, and an organic semiconductor layer located between the first electrode and the second electrode;
    In connection with the electron spin resonance phenomenon of the organic semiconductor layer due to the magnetic field and microwave, by changing at least one of the magnetic field, the microwave and the light applied to the organic semiconductor layer, And a step of controlling a current flowing between the second electrodes.
  2.  前記変化させる工程において、前記磁場および前記マイクロ波の少なくとも一方を変化させる、請求項1に記載の電流制御方法。 The current control method according to claim 1, wherein, in the changing step, at least one of the magnetic field and the microwave is changed.
  3.  前記変化させる工程において、前記有機半導体層の電子スピン共鳴の有無を変化させる、請求項2に記載の電流制御方法。 3. The current control method according to claim 2, wherein in the changing step, presence or absence of electron spin resonance of the organic semiconductor layer is changed.
  4.  前記用意する工程において、前記素子デバイスは、前記第1電極および前記第2電極の少なくとも一方と前記有機半導体層との間に設けられた絶縁層を有する、請求項1から3のいずれかに記載の電流制御方法。 4. The device according to claim 1, wherein in the preparing step, the element device has an insulating layer provided between at least one of the first electrode and the second electrode and the organic semiconductor layer. 5. Current control method.
  5.  前記変化させる工程において、前記磁場の強度および前記マイクロ波の強度のうちの少なくとも一方を変化させる、請求項1から4のいずれかに記載の電流制御方法。 5. The current control method according to claim 1, wherein, in the changing step, at least one of the intensity of the magnetic field and the intensity of the microwave is changed.
  6.  前記変化させる工程において、前記磁場の形成と非形成を切り換える、請求項1から5のいずれかに記載の電流制御方法。 6. The current control method according to claim 1, wherein in the changing step, the formation and non-formation of the magnetic field are switched.
  7.  前記変化させる工程において、前記マイクロ波の照射と非照射を切り換える、請求項1から6のいずれかに記載の電流制御方法。 The current control method according to any one of claims 1 to 6, wherein, in the changing step, the irradiation and non-irradiation of the microwave are switched.
  8.  前記用意する工程において、前記有機半導体層はπ型共役ポリマーを有する、請求項1から7のいずれかに記載の電流制御方法。 The current control method according to claim 1, wherein in the step of preparing, the organic semiconductor layer has a π-type conjugated polymer.
  9.  第1電極と、第2電極と、前記第1電極および前記第2電極の間に位置する有機半導体層とを有する素子デバイスと、
     前記素子デバイスの配置された空間に磁場を形成する磁場形成部と、
     前記素子デバイスにマイクロ波を照射するマイクロ波照射部と
    を備え、
     前記磁場および前記マイクロ波による前記有機半導体層の電子スピン共鳴現象に関連して、前記磁場、前記マイクロ波および前記有機半導体層に照射される光の少なくとも1つを変化させることにより、前記第1電極と前記第2電極との間を流れる電流が制御される、電流制御装置。
    An element device having a first electrode, a second electrode, and an organic semiconductor layer located between the first electrode and the second electrode;
    A magnetic field forming unit that forms a magnetic field in a space in which the element device is disposed;
    A microwave irradiation unit for irradiating the element device with microwaves,
    In relation to the electron spin resonance phenomenon of the organic semiconductor layer by the magnetic field and the microwave, the first magnetic field, the microwave, and the light applied to the organic semiconductor layer are changed, thereby changing the first. A current control device in which a current flowing between an electrode and the second electrode is controlled.
  10.  前記磁場形成部および前記マイクロ波照射部の少なくとも一方は、前記磁場および前記マイクロ波の少なくとも一方を変化させる、請求項9に記載の電流制御装置。 The current control device according to claim 9, wherein at least one of the magnetic field forming unit and the microwave irradiation unit changes at least one of the magnetic field and the microwave.
  11.  前記磁場形成部および前記マイクロ波照射部の少なくとも一方は、前記有機半導体層の電子スピン共鳴現象の有無を変化させる、請求項10に記載の電流制御装置。 The current control device according to claim 10, wherein at least one of the magnetic field forming unit and the microwave irradiation unit changes presence or absence of an electron spin resonance phenomenon in the organic semiconductor layer.
  12.  前記素子デバイスは、前記第1電極および前記第2電極の少なくとも一方と前記有機半導体層との間に設けられた絶縁層を有する、請求項9から11のいずれかに記載の電流制御装置。 The current control device according to any one of claims 9 to 11, wherein the element device has an insulating layer provided between at least one of the first electrode and the second electrode and the organic semiconductor layer.
  13.  前記磁場形成部および前記マイクロ波照射部の少なくとも一方は、前記磁場の強度および前記マイクロ波の強度のうちの少なくとも一方を変化させる、請求項9から12のいずれかに記載の電流制御装置。 The current control device according to claim 9, wherein at least one of the magnetic field forming unit and the microwave irradiation unit changes at least one of the intensity of the magnetic field and the intensity of the microwave.
  14.  前記磁場形成部は、前記磁場の形成と非形成を切り換える、請求項9から13のいずれかに記載の電流制御装置。 The current control device according to claim 9, wherein the magnetic field forming unit switches between formation and non-formation of the magnetic field.
  15.  前記マイクロ波照射部は、前記マイクロ波の照射と非照射を切り換える、請求項9から14のいずれかに記載の電流制御装置。

     
    The current control device according to claim 9, wherein the microwave irradiation unit switches between irradiation and non-irradiation of the microwave.

PCT/JP2011/064031 2010-06-24 2011-06-20 Method for controlling electric current and apparatus for controlling electric current WO2011162199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521462A JPWO2011162199A1 (en) 2010-06-24 2011-06-20 Current control method and current control apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-143266 2010-06-24
JP2010143266 2010-06-24
JP2010-273225 2010-12-08
JP2010273225 2010-12-08

Publications (1)

Publication Number Publication Date
WO2011162199A1 true WO2011162199A1 (en) 2011-12-29

Family

ID=45371382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064031 WO2011162199A1 (en) 2010-06-24 2011-06-20 Method for controlling electric current and apparatus for controlling electric current

Country Status (2)

Country Link
JP (1) JPWO2011162199A1 (en)
WO (1) WO2011162199A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916554B (en) * 2020-06-24 2022-11-18 华南理工大学 All-organic spin-dependent magneto current regulation device and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041393A1 (en) * 2008-10-06 2010-04-15 国立大学法人 筑波大学 Electron spin measurement device and measurement method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041393A1 (en) * 2008-10-06 2010-04-15 国立大学法人 筑波大学 Electron spin measurement device and measurement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUHIRO MARUMOTO ET AL.: "Electron Spin Resonance Observation of Gate-Induced Ambipolar Charge Carriers in Organic Devices", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 46, no. 48, 7 December 2007 (2007-12-07), pages L1191 - L1193 *

Also Published As

Publication number Publication date
JPWO2011162199A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
Mermer et al. Large magnetoresistance in nonmagnetic π-conjugated semiconductor thin film devices
Guo et al. Functional organic field‐effect transistors
Du et al. Hydrogen bond induced green solvent processed high performance ternary organic solar cells with good tolerance on film thickness and blend ratios
Lin et al. Recent advances in organic phototransistors: nonvolatile memory, artificial synapses, and photodetectors
Gorodetsky et al. Reticulated heterojunctions for photovoltaic devices
Wang et al. Effects of magnetic nanoparticles and external magnetostatic field on the bulk heterojunction polymer solar cells
US9735361B2 (en) Method of making a stack of the type comprising a first electrode, an active layer, and a second electrode
Wang et al. Enhanced performance of polymer solar cells using PEDOT: PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer
Lin et al. Photo-tunable organic resistive random access memory based on PVP/N-doped carbon dot nanocomposites for encrypted image storage
Li et al. Inserting thienyl linkers into conjugated molecules for efficient multilevel electronic memory: a new understanding of charge‐trapping in organic materials
JP3450856B2 (en) Electroluminescent device and method using polythiophene
WO2011162199A1 (en) Method for controlling electric current and apparatus for controlling electric current
Wang et al. Cyanospirobifluorene-based conjugated polyelectrolytes: Synthesis and tunable nonvolatile information storage performance
Kim et al. Effect of annealing on bulk heterojunction organic solar cells based on copper phthalocyanine and perylene derivative
Veeraraghavan et al. Magnetic field effects on current, electroluminescence and photocurrent in organic light-emitting diodes
JP2010177615A (en) Organic electronic element, and method of manufacturing the same
Ryu et al. Effects of oxygen vacancies in a zinc oxide electron transport layer on long-term degradation and short-term photo-induced changes in the operation characteristics of organic solar cells
Yuan et al. 1, 2, 3, 4-bis (p-methylbenzylidene sorbitol) accelerates crystallization and improves hole mobility of poly (3-hexylthiophene)
Wang et al. Enhanced efficiency of ternary organic solar cells by doping a polymer material in P3HT: PC61BM
Wu et al. Effect of external magnetic field on bulk heterojunction polymer solar cells
Li et al. Molecular and interfacial adjustment of magnetoresistance in organic spin valves using isoindigo-based polymers
JP5665839B2 (en) Solar cell and method for manufacturing the same
Nguyen Organic Electronics 1: Materials and Physical Processes
Hamam Organic Solar Cells Based on High Dielectric Constant Materials: An Approach to Increase Efficiency
JP2013134803A (en) Magnetic reading device, magnetic reading method, and magnetic recording/reproducing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798083

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012521462

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798083

Country of ref document: EP

Kind code of ref document: A1