WO2011162150A1 - Fluorescence measurement method - Google Patents

Fluorescence measurement method Download PDF

Info

Publication number
WO2011162150A1
WO2011162150A1 PCT/JP2011/063776 JP2011063776W WO2011162150A1 WO 2011162150 A1 WO2011162150 A1 WO 2011162150A1 JP 2011063776 W JP2011063776 W JP 2011063776W WO 2011162150 A1 WO2011162150 A1 WO 2011162150A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
water
fluorescence
soluble polymer
substrate
Prior art date
Application number
PCT/JP2011/063776
Other languages
French (fr)
Japanese (ja)
Inventor
鶴紀 田村
英隆 二宮
真紀子 大谷
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012521437A priority Critical patent/JP5621846B2/en
Publication of WO2011162150A1 publication Critical patent/WO2011162150A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Definitions

  • the present invention relates to a fluorescence measuring method for detecting a fluorescent molecule generated by an enzymatic reaction with high sensitivity. More specifically, the present invention relates to a fluorescence measurement method that detects fluorescent molecules with high sensitivity by preventing diffusion of fluorescent molecules generated by an enzyme reaction.
  • a method of measuring biomolecules such as nucleic acids and proteins there is a method of measuring the amount of analyte in a sample by labeling the analyte in the sample with an enzyme and evaluating the amount of the molecule generated by the enzyme reaction. Since this method uses the catalytic activity of an enzyme reaction, signal enhancement through an enzyme substrate is easy and is widely used.
  • various methods are used as methods for evaluating the amount of molecules generated by the enzyme reaction. From the ease of highly sensitive measurement, fluorescence or chemiluminescence from the molecules generated by the enzyme reaction is detected. Many methods are used to evaluate the amount of molecules generated by an enzyme reaction based on the amount of luminescence.
  • an example of a method for measuring a biomolecule based on fluorescence from a molecule generated by an enzyme reaction is a fluorogenic substrate conversion method.
  • this fluorogenic substrate conversion method the amount of analyte in a sample is determined by converting the fluorogenic substrate into a fluorescent molecule with an enzyme labeled with the analyte, and detecting the fluorescence emission from this fluorescent molecule. It is a method of measuring.
  • An example of a method for measuring a biomolecule based on chemiluminescence from a molecule generated by an enzyme reaction is an enzyme chemiluminescence method.
  • This enzyme chemiluminescence method is a method for measuring the amount of analyte in a sample by converting a substrate into a chemiluminescent molecule with an enzyme labeled with an analyte and detecting chemiluminescence from this chemiluminescent molecule. It is.
  • fluorogenic substrate conversion methods and enzyme chemiluminescence methods are applied to assay methods such as hybridization assays used for nucleic acid detection and immunoassays used for detection of various biomolecules such as proteins.
  • assay methods such as hybridization assays used for nucleic acid detection and immunoassays used for detection of various biomolecules such as proteins.
  • the enzyme in the assay method to which the fluorogenic substrate conversion method and the enzyme chemiluminescence method are applied but the ease of operation and the application to the measurement by an automatic measuring instrument are included.
  • an assay method in which an enzyme reaction is performed on a solid phase is frequently used.
  • a prominent example of such an assay method is a solid-phase enzyme immunoassay (Enzyme-linked Immunosorbent Assay: hereinafter referred to as “ELISA method”).
  • the fluorogenic substrate conversion method and the enzyme chemiluminescence method are applied to an assay method in which an enzyme reaction is performed on a solid phase, there is an advantage that the enzyme reaction field can be used as it is as a measurement field for fluorescence or chemiluminescence.
  • the analyte measurement method using the catalytic activity of the enzyme has a problem that the detection sensitivity cannot be sufficiently improved because the product of the enzyme reaction diffuses quickly into the solution.
  • Various studies have been made to solve such problems.
  • Patent Document 1 captures an immune complex containing an enzyme-labeled antibody and an analyte on a support without a solution layer, and this immune complex.
  • a method of measuring the amount of analyte by overlaying a support membrane containing a chemiluminescent substrate on the body and detecting the amount of luminescence generated by the enzyme reaction is disclosed.
  • Patent Document 2 describes that an enzyme reaction is performed in a state where an immune complex containing an enzyme and an analyte is present in a solution, and a reaction product is detected as a sensor. A method of measuring the amount of analyte by binding to a surface and detecting light is disclosed.
  • Patent Document 1 it is necessary to prepare a support film containing a chemiluminescent substrate in advance and superimpose it in the enzyme reaction.
  • Conventionally known automatic measuring devices that detect analytes in specimens based on the fluorogenic substrate conversion method or the enzyme chemiluminescence method, in many cases, a substrate having an enzyme immobilized on its surface is arranged in the middle of the flow path, and Since it has a structure that sends various substances in a closed system through this flow path, it will become complicated and cost will increase if a mechanism is introduced to the solid phase from the outside of the flow path. At the same time, there is a problem that restrictions are imposed on miniaturization of equipment.
  • the present invention emits light by preventing a fluorescent molecule or the like generated by an enzymatic reaction from diffusing into a solution in an assay method based on a fluorogenic substrate conversion method.
  • An object to be solved is to provide a fluorescence measurement method that enhances the detection efficiency of fluorescence, thereby improving sensitivity, and that allows a fluorescent substrate obtained by a conventional enzyme reaction to be used as it is.
  • the present inventors have made a water-soluble polymer coexist in the measurement system when detecting fluorescent molecules or the like generated by an enzyme reaction by an enzyme immobilized on a substrate. If this is done, it is possible to prevent diffusion of the generated fluorescent molecules and the like, and to keep the fluorescent molecules and the like within a limited range. As a result, it is found that the intensity of the detected fluorescence increases.
  • the present invention has been completed.
  • the fluorescence measurement method of the present invention is: Step (b): introducing a water-soluble polymer and a fluorescent molecule precursor molecule onto the enzyme-immobilized substrate; Step (c): causing an enzyme reaction on the enzyme-immobilized substrate to convert the fluorescent molecule precursor molecule into a fluorescent molecule; Step (d): binding the fluorescent molecule to the water-soluble polymer to form a fluorescent molecule-water-soluble polymer complex on the enzyme-immobilized substrate; and Step (e): The method includes a step of detecting fluorescence emitted from the fluorescent molecule-water-soluble polymer complex.
  • the water-soluble polymer used in the present invention preferably has an ionic group in order to suitably form a fluorescent molecule-water-soluble polymer complex. It is more preferable that a cationic group is contained as the ionic group. Examples of such a cationic group include one or more groups selected from a tertiary amino group and a quaternary ammonium group.
  • a fluorescent molecule-water-soluble polymer complex is preferably formed by electrostatic interaction between the fluorescent molecule and the water-soluble polymer.
  • the water-soluble polymer has a property of quickly binding to the fluorescent substance generated by the enzyme reaction, but the fluorescent molecule precursor molecule existing in the system approaches the enzyme. In order to do so, it is preferable not to prevent passage through the inside.
  • One such water-soluble polymer is a linear non-crosslinked water-soluble polymer.
  • the water-soluble polymer may be a polymer matrix gel having thixotropy.
  • These water-soluble polymers preferably have a skeleton composed of one or more selected from linear polyacrylamides and polysaccharides.
  • such a water-soluble polymer is a water-soluble cationized polysaccharide, and in this case, the degree of cation substitution in the water-soluble cationized polysaccharide is preferably 0.01 to 1.
  • the water-soluble polymer used in the present invention has a weight average molecular weight of usually 10,000 to 2,000,000, preferably 50,000 to 2,000,000.
  • Steps (c) to (e) are desirably performed in a stationary state in order for the fluorescent molecule-water-soluble polymer complex to remain securely without departing from the region to be subjected to fluorescence detection.
  • the fluorescence measurement method according to the present invention can be applied for use as a biomolecule assay method. That is, by incorporating the biomolecule in the sample into the enzyme-immobilized substrate, the amount of the biomolecule contained in the sample can be evaluated in the form of the fluorescence amount of the fluorescent molecule-water-soluble polymer complex.
  • an enzyme-immobilized substrate in which the enzyme is immobilized on the substrate through the bond between the biomolecule and the ligand molecule can be mentioned.
  • a ligand molecule is bound to the substrate, a biomolecule is bound to the ligand molecule, and an enzyme is directly or indirectly bound to the biomolecule.
  • a fixed substrate may be mentioned.
  • typical steps of the fluorescence measurement method according to the present invention include, in addition to steps (b) to (e), Step (a): a step of producing the enzyme-immobilized substrate using a specimen, an enzyme, a ligand molecule and a substrate; and Step (f): the fluorescence contained in the specimen from the amount of fluorescence detected in Step (e)
  • the method further includes the step of quantifying the biomolecule.
  • the fluorescence detection in the step (e) is preferably performed by detecting fluorescence excited by near-field light.
  • a typical example of the near-field light used is light enhanced by plasmons.
  • the fluorescence detection in the step (e) may be performed using a confocal laser microscope or a confocal laser scanner.
  • an enzyme reaction by an enzyme immobilized on a substrate and detection of a fluorescent molecule or the like generated by the enzyme reaction are performed in the presence of a water-soluble polymer, whereby a fluorescent molecule generated by the enzyme reaction is fluorescent. Since it is possible to suppress the diffusion of the fluorescent molecules to the space outside the measurement range in the measurement system by staying in the vicinity of the detection measurement field, it is possible to provide a highly sensitive fluorescence measurement method.
  • the fluorescence measurement method includes: Step (b): introducing the water-soluble polymer 43 and the fluorescent molecule precursor molecule 41 onto the enzyme-immobilized substrate 11; Step (c): causing an enzyme reaction on the enzyme-immobilized substrate 11 to convert the fluorescent molecule precursor molecule 41 into the fluorescent molecule 42; Step (d): binding the fluorescent molecule 42 to the water-soluble polymer 43 to form a fluorescent molecule-water-soluble polymer complex 31 on the enzyme-immobilized substrate 11; and Step (e): The method includes a step of detecting fluorescence emitted from the fluorescent molecule-water-soluble polymer complex 31.
  • the present invention is most characterized in that the reaction for generating the fluorescent molecules 42 on the enzyme-immobilized substrate 11 is performed in the presence of the water-soluble polymer 43.
  • step (b) is a step of introducing the water-soluble polymer 43 and the fluorescent molecule precursor molecule 41 onto the enzyme-immobilized substrate 11.
  • the enzyme-immobilized substrate 11 used in the fluorescence measurement method according to the present invention is a substrate on which an enzyme 23 is immobilized on the surface.
  • the enzyme-immobilized substrate 11 includes a substrate 21 and an enzyme 23, and has a structure in which the enzyme 23 is bonded to the substrate 21.
  • the substrate 21 serves as a base for immobilizing the enzyme 23, and provides a measurement field for performing fluorescence detection in the step (e) described later.
  • the substrate 21 may be referred to as a “base substrate” in order to make the distinction from the “enzyme-immobilized substrate” more clear.
  • the substrate 21 (that is, “basic substrate”) is not particularly limited in material as long as it does not hinder the fluorescence measurement in the present invention and does not impair the activity of the enzyme 23.
  • Conventionally known materials used for typical assay methods can be used.
  • glass may be used as the substrate 21, or plastic such as polycarbonate (PC) or cycloolefin polymer (COP) may be used.
  • PC polycarbonate
  • COP cycloolefin polymer
  • the substrate 21 may be composed of a plurality of layers as appropriate according to the means for detecting fluorescence.
  • the metal thin film is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum. More preferably, it consists of. About these metals, the form of the alloy may be sufficient and the thing which laminated
  • a method for forming a metal thin film on a transparent flat substrate include a sputtering method and a vapor deposition method (resistance heating vapor deposition method, electron beam vapor deposition method, etc.).
  • a surface treatment layer made of a self-assembled monolayer (SAM) used in a general bioassay method or the like may be provided on the surface of the substrate 21.
  • the SAM is used as a base for fixing a coupling portion 22 to be described later to the substrate 21.
  • this surface treatment layer is a fluorescent metal
  • a spacer layer made of a dielectric may be further included.
  • the substrate 21 and the surface treatment layer there is a configuration in which a spacer layer made of a dielectric is present on a metal thin film constituting the substrate 21 and a SAM layer is present on the spacer layer. .
  • the enzyme 23 plays a role of converting a fluorescent molecule precursor molecule 41 described later into a fluorescent molecule 42.
  • the enzyme 23 used in the present invention has the property of changing the fluorescent molecule precursor molecule 41 to the fluorescent molecule 42, but unless it has the property of altering or degrading other components, for example, the water-soluble polymer 43. Any kind of enzyme may be used.
  • examples of such enzymes 23 include, but are not limited to, oxidoreductases such as horseradish peroxidase (HRP), phosphatases such as alkaline phosphatase, and ⁇ -galactosidase.
  • the enzyme 23 may be directly bonded to the substrate 21.
  • the enzyme 23 is indirectly connected via a binding portion 22 made of another molecule or molecular complex as shown in FIG. Are connected. Since the coupling portion 22 has a role of linking the substrate 21 and the enzyme 23, the coupling portion inevitably includes a junction portion for coupling with the substrate 21 and a junction portion for coupling with the enzyme 23. It will be.
  • the surface treatment layer provided on the substrate 21 as the functional group or molecule constituting the bond for bonding to the substrate 21 a conventionally known functional group or molecule Can be used as appropriate.
  • a functional group or molecule constituting a junction for binding to the enzyme 23 a conventionally known functional group or molecule used in a general bioassay method can be appropriately used.
  • An example of such a bond at the junction is one that utilizes the bond between biotin and avidin.
  • molecules or molecular complexes that constitute portions other than the bonding portion for binding to the substrate 21 and the bonding portion for binding to the enzyme 23 should be an obstacle to fluorescence measurement in the present invention. As long as the activity of the enzyme 23 is not impaired, it does not matter. If it is sufficient to simply bind the enzyme 23 to the substrate 21, the junction for coupling to the substrate 21 and the junction for coupling to the enzyme 23 may be integrated, or The junction for binding to the substrate 21 and the junction for binding to the enzyme 23 are bonded via a conventionally known molecule generally used as a spacer or linker for a general bioassay method. Also good.
  • the fluorescence measurement method according to the present invention can be applied for use as a bioassay method.
  • the content of biomolecules in a specimen is determined from the fluorescent molecules through the amount of enzyme 23 immobilized on the substrate 21 and becoming a part of the enzyme-immobilized substrate 11. This is evaluated as the amount of fluorescence.
  • the biomolecule in the sample constitutes the enzyme-immobilized substrate 11 in a state of being incorporated in the binding portion 22.
  • the bonding portion 22 includes a bonding portion for bonding to the substrate 21, a bonding portion for bonding to the enzyme 23, a biomolecule, and a ligand molecule.
  • Biomolecule means a molecule or molecular fragment to be measured when the fluorescence measurement method according to the present invention is applied to a bioassay method, and is also called an analyte.
  • molecule or “molecular fragment” include nucleic acids (DNA that may be single-stranded or double-stranded, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids), etc., Alternatively, nucleosides, nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modifications thereof Examples thereof include molecules, complexes, and the like. Specifically, it may be a carcinoembryonic antigen such as AFP ( ⁇ -fetoprotein), a tumor marker, a signaling substance, a hormone,
  • AFP ⁇ -feto
  • the “ligand molecule” refers to a molecule or molecular fragment capable of specifically recognizing (or recognizing) and binding to the “biomolecule”.
  • molecule or “molecular fragment” include nucleic acids (DNA that may be single-stranded or double-stranded, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids), etc., Alternatively, nucleosides, nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modifications thereof Examples include, but are not limited to, molecules and complexes.
  • proteins examples include antibodies and the like, specifically, anti- ⁇ -fetoprotein (AFP) monoclonal antibody (available from Japan Medical Laboratory), anti-carcinoembryonic antigen (CEA) ) Monoclonal antibody, anti-CA19-9 monoclonal antibody, anti-PSA monoclonal antibody and the like.
  • AFP anti- ⁇ -fetoprotein
  • CEA anti-carcinoembryonic antigen
  • antibody includes polyclonal or monoclonal antibodies, antibodies obtained by genetic recombination, and antibody fragments.
  • a typical example of a ligand molecule is an antibody.
  • the enzyme 23 is bonded directly to the substrate 21 or indirectly through the bonding portion 22.
  • the binding mode of the enzyme 23 to the substrate 21 is not particularly limited as long as the object of the present invention is achieved.
  • a plurality of bonds may be interposed between the substrate 21 and the enzyme 23, and the plurality of bonds may be composed of different types of bonds.
  • the enzyme 23 is fixed on the substrate 21 through a bond between the biomolecule and the ligand molecule in the enzyme-fixed substrate 11.
  • a ligand molecule is bound to the substrate 21, a biomolecule is bound to the ligand molecule, and an enzyme 23 is directly or indirectly bound to the biomolecule.
  • the ligand molecules may be bonded to the substrate 21 through such a surface treatment layer.
  • the biomolecule and the enzyme 23 may be directly bonded without interposing the second ligand molecule, or may be indirectly bonded with the second ligand molecule interposed.
  • a target DNA in which a part of the base is modified with biotin is used as a “biomolecule” as in the case where the present invention is applied to a DNA hybridization assay. And the target DNA is bound with a biotin-modified enzyme through a biotin-avidin bond.
  • the biomolecule and the enzyme 23 are indirectly bound via the second ligand molecule, as in the case where the present invention is applied to an immunoassay, the antigen and the antibody are respectively The molecule is used as a “molecule” and a “second ligand molecule”, and there is a case where the enzyme 23 is bound to this antigen via an antibody.
  • the second ligand molecule is specifically recognized (or recognized) and the third ligand molecule capable of binding.
  • the biomolecule and the enzyme 23 may be bound in a form mediated by the second ligand molecule and the third ligand molecule.
  • the biomolecules and ligand molecules interposed between the substrate 21 and the enzyme 23 do not necessarily have to be arranged in series.
  • the enzyme 23 may be bound to the biomolecule and the ligand molecule via a molecule that is easily incorporated into the binding site.
  • the enzyme 23 may be bound to the biomolecule and the ligand molecule by using an appropriate intercalator to which the enzyme 23 is bound.
  • the fluorescent molecule precursor molecule 41 is used as a substrate for generating the fluorescent molecule 42 by the enzyme reaction by the enzyme 23.
  • This fluorescent molecule precursor molecule 41 is a molecule corresponding to a fluorogenic substrate in a conventionally known fluorogenic substrate conversion method.
  • fluorescent molecule means a molecule that emits fluorescence by irradiating with predetermined excitation light or being excited by using an electric field effect. Including.
  • the fluorescent molecule precursor molecule 41 is a molecule that changes to a fluorescent molecule 42 due to a chemical change caused by an enzyme reaction.
  • the fluorescent molecule precursor molecule 41 used in the present invention has fluorescence in other wavelength regions as long as it does not exhibit fluorescence in the wavelength region near the maximum fluorescence wavelength in the fluorescent molecule 42 generated by the enzyme reaction. You may do it. Moreover, as long as it does not interfere with fluorescence detection, it may be accompanied by generation of chemiluminescent molecules by enzymatic reaction.
  • fluorescent molecule precursor molecule 41 a substrate generally used as a fluorogenic substrate in a conventionally known assay method based on the fluorogenic substrate conversion method can be used.
  • fluorescent molecule precursor molecules 41 include oxidoreductase substrates such as horseradish peroxidase (HRP) substrates, phosphatase substrates such as alkaline phosphatase substrates, and glycosidase substrates such as ⁇ -galactosidase substrates.
  • HRP horseradish peroxidase
  • phosphatase substrates such as alkaline phosphatase substrates
  • glycosidase substrates such as ⁇ -galactosidase substrates.
  • Table 1 shows a typical enzyme reaction substrate used as the fluorescent molecule precursor molecule 41 and the absorption wavelength (nm) and emission wavelength (nm) of the fluorescent molecule generated from this substrate by the fluorescence reaction.
  • the greatest feature of the fluorescence measurement method according to the present invention is that the enzyme reaction on the enzyme-immobilized substrate 11 and the detection of luminescence from the fluorescent molecule 42 generated by the enzyme reaction are performed in the presence of the water-soluble polymer 43.
  • the water-soluble polymer 43 is used for the purpose of capturing the fluorescent molecules 42 generated by the enzyme reaction by the enzyme 23 and preventing diffusion into the solution. Since the region to be subjected to fluorescence detection in fluorescence measurement is a very narrow portion in the measurement system, the detection efficiency of fluorescence emission is increased by localizing the fluorescent molecules 42 in the vicinity of the region to be subjected to fluorescence detection. As a result, the detection sensitivity can be improved.
  • the viscosity of the solution One factor that affects the diffusion of the fluorescent molecules 42 into the solution is the viscosity of the solution.
  • the water-soluble polymer 43 is present in this solution compared to the case where the water-soluble polymer 43 is not present.
  • the viscosity of the solution is high. In general, the higher the viscosity of the solution, the more difficult it is for the solute in the solution to diffuse. The generated fluorescent molecules 42 tend to be difficult to diffuse.
  • the fluorescent molecule precursor molecule 41 Another factor that affects the diffusion of the fluorescent molecules 42 into the solution is charge.
  • the fluorescent molecule 42 generated by the enzyme reaction has a charge.
  • the water-soluble polymer 43 has a charge opposite to that of the fluorescent molecule 42, the fluorescent molecule 42 is separated from the water-soluble polymer 43 by electrostatic interaction between the fluorescent molecule 42 and the water-soluble polymer 43.
  • the fluorescent molecules 42 can be prevented from diffusing into the solution.
  • it is preferable that the water-soluble polymer 43 has an ionic group.
  • the fluorescent molecule 42 generated from the fluorescent molecule precursor molecule 41 used in the present invention has an anionic molecular structure under the condition of performing fluorescence measurement.
  • a cationic group is included as the ionic group of the water-soluble polymer 43.
  • a particularly preferred ionic group is a cationic group that has a low binding property to the fluorescent molecule precursor molecule 41 and a high binding property to the fluorescent molecule 42 generated by the enzymatic reaction under enzyme reaction conditions. Examples of this cationic group include a tertiary amino group and a quaternary ammonium group.
  • the water-soluble polymer 43 used in the present invention may contain one kind of such a cationic group or may contain two or more kinds in combination.
  • the water-soluble polymer 43 used in the present invention may contain an anionic group in addition to a cationic group as an ionic group in order to balance the charge.
  • preferred anionic groups include sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, and phosphoric acid groups.
  • the number of cationic groups contained in the molecule varies depending on the type of water-soluble polymer 43 used, and will be described later together with a specific example of the water-soluble polymer 43 used in the present invention.
  • the fluorescent molecule 42 generated in the enzyme reaction on the enzyme-immobilized substrate 11 is combined with the water-soluble polymer 43 to form the fluorescent molecule-water-soluble polymer complex 31.
  • the fluorescent molecule-water-soluble polymer complex 31 there is at least a bond between the fluorescent molecule 42 and the water-soluble polymer 43 due to the interaction based on the intermolecular force.
  • the water-soluble polymer 43 includes an ionic group, an electrostatic interaction acts between the fluorescent molecule 42 and the water-soluble polymer 43 in addition to the interaction based on the intermolecular force.
  • the fluorescent molecule-water-soluble polymer complex 31 is preferably formed by electrostatic interaction between the fluorescent molecule 42 and the water-soluble polymer 43.
  • the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 are introduced onto the enzyme-immobilized substrate 11, and a solution containing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 is usually used. It is necessary to show fluidity because it is introduced through the flow path.
  • a linear non-crosslinked water-soluble polymer is used as the water-soluble polymer 43.
  • the fluorescent molecule precursor molecules 41 distributed on the substrate are not prevented from approaching the enzyme 23 in the enzyme-immobilized substrate 11.
  • a cross-linked polymer is used as the water-soluble polymer 43 instead of the linear non-cross-linked water-soluble polymer, the water-soluble polymer 43 may become a gel and cannot be introduced through the flow path.
  • this linear non-crosslinked water-soluble polymer include linear polyacrylamide and derivatives thereof, and linear cellulose derivatives.
  • a polymer matrix gel having thixotropy is used as the water-soluble polymer 43.
  • a polymer matrix gel exhibits fluidity in the presence of stress and can be introduced through the flow path, while it loses fluidity when no stress is present and it remains stationary. Therefore, there is an advantage that after leaving on the enzyme-immobilized substrate 11, it is not separated from the enzyme-immobilized substrate 11.
  • the polymer matrix gel having thixotropic properties include water-soluble cellulose derivatives, polysaccharides such as chitosan and derivatives thereof.
  • the water-soluble polymer 43 used in the present invention is not necessarily limited to the linear non-crosslinked water-soluble polymer and the thixotropic polymer matrix gel as long as the functions and effects of the present invention can be achieved. It is not limited.
  • the linear non-crosslinked water-soluble polymer and the thixotropic polymer matrix gel can be used singly or in combination of two or more.
  • the water-soluble polymer 43 used in the present invention may have both properties of the linear non-crosslinked water-soluble polymer and the thixotropic polymer matrix gel.
  • the skeleton constituting such a water-soluble polymer 43 preferably has one or more skeletons selected from linear polyacrylamide and the above polysaccharides.
  • a water-soluble cationized polymer generally used for toiletries such as shampoo and rinse is preferably used.
  • Typical compounds of such water-soluble cationized polymers include, for example, water-soluble cationized polysaccharides such as cationized cellulose derivatives, cationic starches and cationized guar gum derivatives; and diallyl quaternary ammonium salts / acrylamide co-polymers And cationized polyacrylamides such as vinylpyrrolidone / quaternary ammonium modified acrylamide copolymers.
  • Patent Document 3 describes JP-A-62-234618
  • a cationized cellulose derivative that can be used as the water-soluble polymer 43 in the present invention a cationized cellulose containing an anhydroglucose unit substituted with a polyalkyloxy group having a cationic group as an anhydroglucose unit.
  • the cationized cellulose derivative used in the present invention preferably contains 50 to 20000 anhydroglucose units including an anhydroglucose unit substituted with a polyalkyloxy group having a cationic group.
  • Examples of the cationic group contained in the cationized cellulose derivative include a quaternary ammonium group.
  • An example of the quaternary ammonium group is a quaternary ammonium group having a structure represented by the following formula (1).
  • R 1 , R 2 , and R 3 are each independently an alkyl group, aryl group, or aralkyl group having 10 or less carbon atoms, R 4 is an alkylene or hydroxyalkylene group, and X is negative Ion. Further, two or more of R 1 , R 2 and R 3 may form a heterocyclic ring in a form containing a nitrogen atom in the formula.
  • a quaternary ammonium group having a structure represented by the above formula (1) is bonded to a polyalkyloxy chain bonded to a hydroxyl group not involved in the formation of the cellulose skeleton. Introduced into glucose units.
  • the number of cationic groups contained in the molecule is introduced into the constituent monosaccharide units such as the degree of cation substitution, that is, anhydroglucose units. This can be determined by the average number of cationic groups formed.
  • the degree of cation substitution of the cationized cellulose is 0.01 to 1, that is, the average number of cationic groups introduced per anhydroglucose unit is 0.01 to 1, preferably 0.02 to 0.5.
  • cationized cellulose derivatives examples include Katachiro H-60 (manufactured by Kao), Katchinar (manufactured by Toho Chemical), Leogard (manufactured by Matsumoto Kosho), and the like.
  • Examples of the cationic starch that can be used as the water-soluble polymer 43 in the present invention include cationized starch in which the hydroxyl group of the starch residue is substituted with a cationic functional group.
  • a quaternary ammonium group As a cationic group contained in this cationic starch, a quaternary ammonium group can be mentioned.
  • An example of the quaternary ammonium group is a quaternary ammonium group having a structure as shown in the above formula (1).
  • the cationic starch preferably has a cation substitution degree of 0.01 to 1, that is, 0.01 to 1 and especially 0.02 to 0.5 cationic groups introduced per anhydroglucose unit.
  • hydroxypropyltrimonium chloride starch is commercially available. For example, it is sold by Matsumoto Kosho under the trade name “Sensomer CI-50” (molecular weight (GPC-MALLS method): 200,000). Yes.
  • Examples of the cationized guar gum derivative that can be used as the water-soluble polymer 43 in the present invention include a cationized guar gum derivative in which the hydroxyl group of the guar gum residue is substituted with a cationic group.
  • Examples of the cationic group contained in the cationized guar gum derivative include a quaternary ammonium group.
  • An example of the quaternary ammonium group is a quaternary ammonium group having a structure as shown in the above formula (1).
  • the cationized guar gum derivative preferably has a cation substitution degree of 0.01 to 1, that is, 0.01 to 1, particularly 0.02 to 0.5, in which a cationic group is introduced into the sugar unit.
  • cationized guar gum derivatives are described in JP-B-58-35640, JP-B-60-46158, and JP-A-58-53996.
  • products from Celanese Stein Hall It is marketed under the name “Jaguar”.
  • the water-soluble cationized polysaccharide used as the water-soluble polymer 43 in the present invention is not limited to the water-soluble cationized polysaccharide having glucose as a constituent unit as exemplified above, but glucose as a constituent unit.
  • Other types of water-soluble cationized polysaccharides, or water-soluble cationized polysaccharides containing monosaccharides other than glucose as constituent units may be used.
  • those having a cation substitution degree of 0.01 to 1 can be preferably used.
  • the diallyl quaternary ammonium salt / acrylamide copolymer that can be used as the water-soluble polymer 43 in the present invention is a copolymer of diallylammonium-derived cyclic ammonium units and acrylamide units.
  • this acrylamide unit some or all of the hydrogen atoms bonded to the nitrogen atom of the amide bond may be substituted with a lower alkyl group (1 to 3 carbon atoms) or a phenyl group.
  • Examples of the cyclic ammonium unit contained in the diallyl quaternary ammonium salt / acrylamide copolymer include cyclic ammonium units having a structure represented by the following formula (2a) or (2b).
  • R 5 and R 6 are each independently hydrogen, an alkyl group (having 1 to 18 carbon atoms), a phenyl group, an aryl group, a hydroxyalkyl group, an amidoalkyl group, a cyanoalkyl group.
  • An alkoxyalkyl group and a carboalkoxyalkyl group, R 7 and R 8 are each independently a hydrogen atom, a lower alkyl group (having 1 to 3 carbon atoms), a phenyl group, and X is an anion.
  • the diallyl quaternary ammonium salt / acrylamide copolymer has a molecular weight of 30,000 to 2,000,000, preferably 100,000 to 2,000,000. There is no particular limitation on the ratio of cyclic ammonium units to acrylamide units in the diallyl quaternary ammonium salt / acrylamide copolymer.
  • dimethyldiallylammonium chloride / acrylamide copolymer that is, in the above formula (2a) or (2b)
  • R 5 and R 6 are methyl groups
  • R A copolymer in which 7 and R 8 are hydrogen atoms is preferably used as the water-soluble polymer 43.
  • a vinylpyrrolidone / quaternary ammonium modified acrylamide copolymer that can be used as the water-soluble polymer 43 in the present invention
  • a quaternary ammonium modified acrylamide in which a vinylpyrrolidone unit and a quaternary ammonium group are bonded to a nitrogen atom of an amide bond examples thereof include a copolymer comprising units.
  • Examples of the quaternary ammonium group contained in the quaternary ammonium-modified acrylamide unit include a quaternary ammonium group having a structure represented by the following formula (3).
  • R 9 , R 10 and R 11 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group, an amidoalkyl group, a cyanoalkyl group, an alkoxyalkyl group, a carboalkoxy group.
  • An alkyl group, R 12 is a linear alkyl group having 10 or less carbon atoms, and X is an anion.
  • the carbon on the main chain adjacent to the carbo group may be further substituted with an alkyl group having 3 or less carbon atoms.
  • the molecular weight of the vinylpyrrolidone / quaternary ammonium modified acrylamide copolymer is 10,000 to 2,000,000, preferably 50,000 to 1,500,000.
  • the content of the cationic nitrogen derived from the cationic polymer contained in this copolymer is 0.004 to 0.2%, preferably 0.01 to 0.15% in terms of vinyl polymer.
  • the ratio of the vinyl pyrrolidone unit and the quaternary ammonium modified acrylamide unit in the vinyl pyrrolidone / quaternary ammonium modified acrylamide copolymer is not particularly limited.
  • the cationized polyacrylamide used as the water-soluble polymer 43 in the present invention is not limited to the cationized polyacrylamides exemplified above.
  • the cationic group may be introduced into the acrylamide unit in the form of a quaternary ammonium-modified acrylamide unit or the cyclic ammonium unit or the like. In the form, it may be introduced into another monomer unit used for copolymerization with the acrylamide unit, or may be introduced into both the acrylamide unit and the other monomer unit.
  • the water-soluble polymer 43 used in the present invention may be produced by polymerizing or copolymerizing a corresponding monomer, or chemical modification by a conventionally known method may be performed on an existing polymer compound as necessary. You may manufacture by giving. In the case of the water-soluble polymer 43 having an ionic group, it is produced by copolymerizing a corresponding monomer having no ionic group and a monomer having an ionic group, and further applying chemical modification as necessary. Alternatively, it may be produced by introducing an ionic group into an existing polymer compound having no ionic group.
  • linear polyacrylamide having an ionic group is prepared by a method of copolymerizing acrylamide with a monomer having an appropriate ionic group such as a diallylammonium compound, or a quaternary ammonium-modified acrylamide as necessary. And (co) polymerization with other monomer units.
  • the polysaccharide which has an ionic group can be obtained by performing the chemical modification by a conventionally well-known method with respect to the commercially available polysaccharide used as a base
  • water-soluble polymer 43 a corresponding commercially available product may be used as the water-soluble polymer 43.
  • the molecular weight of the water-soluble polymer 43 used in the present invention is usually in the range of 10,000 to 2,000,000, preferably 50,000 to 2,000,000 as a weight average molecular weight so as not to disturb the enzyme reaction.
  • the method for introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 onto the enzyme-immobilized substrate 11 is not particularly limited.
  • the enzyme-immobilized substrate 11 is disposed in a closed channel system, as in the corresponding conventional fluorescence measurement method that does not use the water-soluble polymer 43,
  • the measurement is performed in a measurement system in which various drugs, solutions, and the like are supplied through the flow path.
  • the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 are usually introduced onto the enzyme-immobilized substrate 11 in the form of a solution.
  • it is introduced onto the enzyme-immobilized substrate 11 through a flow path in the form of a liquid feed.
  • the solvent or buffer used when introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 as a solution is the same as the solvent or buffer used in the corresponding conventionally known fluorescence measurement method that does not use the water-soluble polymer 43.
  • the same thing can be used according to the kind of the fluorescent molecule precursor molecule 41.
  • an additive generally used in an assay method based on a conventionally known fluorogenic substrate conversion method may be added, if necessary.
  • the order of introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 is not particularly limited as long as the action / effect of the present invention is not diminished. Either the fluorescent molecule precursor molecule 41 or the water-soluble polymer 43 may be introduced first, or the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 may be introduced simultaneously. However, from the viewpoint of suppressing the diffusion of the fluorescent molecule 42 generated by the enzyme reaction, the fluorescent molecule precursor molecule 41 is preferably introduced simultaneously with the water-soluble polymer 43 or after the water-soluble polymer 43 is introduced.
  • the amount of the water-soluble polymer 43 present in the solution on the enzyme-immobilized substrate 11 is large.
  • the viscosity of the solution when the water-soluble polymer 43 is introduced does not become too high.
  • the water-soluble polymer 43 is usually placed on the enzyme-immobilized substrate 11 so that the concentration in the entire solution immediately before the enzyme reaction is 0.001% to 5%, preferably 0.01% to 1%. be introduced.
  • the concentration of the fluorescent molecule precursor molecule 41 is not particularly limited as long as the action / effect of the present invention is not diminished, and is approximately the same as the substrate used in the corresponding conventionally known fluorescence measuring method not using the water-soluble polymer 43.
  • the concentration of Specifically, the fluorescent molecule precursor molecule 41 is placed on the enzyme-immobilized substrate 11 so that the concentration in the entire solution immediately before the enzyme reaction is usually 0.01M to 0.000000001M, preferably 0.001M to 0.0000001M. be introduced.
  • the total amount of the solution containing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 is not particularly limited. However, when this solution is introduced onto the enzyme-immobilized substrate 11 in the form of liquid feeding, the total amount of this solution is usually 0.0001 to 20 mL, preferably 0.01 to 1 mL as the volume of the flow path.
  • the flow rate of liquid feeding when introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 in the form of liquid feeding is usually 0.1 ⁇ L / min to 10 mL / min, preferably 1 ⁇ L / min to 1 mL / min.
  • the flow channel “flow channel” is a rectangular parallelepiped or a tube that can efficiently deliver a small amount of chemical solution and can change the liquid feeding speed or circulate in order to promote the reaction. is there.
  • the vicinity of the location where the substrate 21 or the enzyme-immobilized substrate 11 is installed preferably has a rectangular parallelepiped structure, and the vicinity of the location where the chemical solution is delivered preferably has a tubular shape.
  • the material which comprises a flow path, and the dimension of a flow path it can be set to the same thing as the flow path used by the corresponding conventionally well-known method which does not use the water-soluble polymer 43.
  • the position of the liquid feeding inlet for introducing the liquid feeding from the drug delivery part to the enzyme fixing substrate part and the position of the liquid feeding outlet for discharging the liquid feeding from the enzyme fixing substrate part are both obstructing the fluorescence measurement Unless it becomes, it will not specifically limit.
  • the flow path of the enzyme-immobilized substrate section has a rectangular parallelepiped structure, it is convenient to create the flow path for both the liquid feeding inlet and the liquid feeding outlet on the ceiling surface. Either one or both of the liquid discharge ports may be provided on the side surface.
  • the method for fixing the substrate 21 or the enzyme-immobilized substrate 11 to the flow path is not particularly limited as long as the flow path is maintained in a certain shape and the fluorescence measurement is not hindered.
  • the introduction of the water-soluble polymer 43 and the fluorescent molecule precursor molecule 41 to the enzyme-immobilized substrate 11 is usually performed through the above-mentioned flow path.
  • the fluorescence measurement method according to the present invention is used in a measurement system in which the enzyme-immobilized substrate 11 is disposed in a closed channel system and various drugs, solutions, and the like are supplied through the channel, the enzyme-immobilized substrate 11 is used. It is advantageous in terms of operation to consistently carry out the manufacturing step and the subsequent steps (b) to (e) under the same flow path system. Therefore, it is preferable that the step of producing the enzyme-immobilized substrate 11 is incorporated in a series of steps in the fluorescence measurement method of the present invention as step (a).
  • the enzyme-immobilized substrate 11 can be produced by the same method as a general enzyme-immobilized substrate used in enzyme immunoassay methods such as ELISA.
  • the enzyme-immobilized substrate 11 is Step (a-1): A step of forming a surface treatment layer such as a SAM layer on the surface of the substrate 21 as necessary, Step (a-2): A step of binding ligand molecules directly to the surface of the substrate 21 or indirectly through the surface treatment layer formed in the step (a-1). Step (a-3): a step of bringing a specimen into contact with the surface of the substrate obtained in the step (a-2) and binding a biomolecule in the specimen to a ligand molecule; Step (a-4): manufactured through the step of binding the enzyme 23 to the biomolecule bound to the substrate in the step (a-3).
  • Step (a-1) A step of forming a surface treatment layer such as a SAM layer on the surface of the substrate 21 as necessary
  • Step (a-2) A step of binding ligand molecules directly to the surface of the substrate 21 or indirectly through the surface treatment layer formed in the step (a-1).
  • Step (a-3) a step of bringing a specimen into contact with the surface of the substrate obtained
  • the enzyme immobilization substrate 11 is By the step (a-2), a ligand molecule is bound to the surface of the base substrate 21 to obtain a substrate on which the ligand molecule is immobilized (hereinafter sometimes referred to as “ligand-immobilized substrate”).
  • the specimen is brought into contact with the surface of the “ligand immobilization substrate”, and the biomolecule in the specimen is bound to the ligand molecule to thereby immobilize the biomolecule (hereinafter referred to as “biomolecule immobilization”).
  • biomolecule immobilization sometimes called a "substrate”
  • it can be obtained by binding an enzyme to the “biomolecule-immobilized substrate”.
  • a surface treatment layer such as a SAM layer can be formed on the surface of the substrate 21 in advance.
  • an enzyme-second ligand molecule complex is prepared in advance by binding the enzyme 23 to a second ligand molecule, and then the step (a-3).
  • the enzyme-second ligand molecule complex can be brought into contact with the surface of the substrate obtained in the above (ie, “biomolecule-immobilized substrate”).
  • the biomolecule is a nucleic acid
  • an enzyme modification treatment is performed on the sample in advance, and then the step (a-2)
  • the enzyme-immobilized substrate 11 can also be manufactured by bringing an enzyme-treated specimen into contact with the surface of the substrate obtained in (i.e., “ligand-immobilized substrate”).
  • the enzyme modification treatment on the specimen can be performed by various conventionally known methods.
  • the enzyme 23 is combined with an intercalator in advance and the enzyme-intercalator is used.
  • a solution containing the specimen and the enzyme-intercalator complex is brought into contact with the surface of the substrate obtained in the step (a-2) (ie, the “ligand-immobilized substrate”).
  • the enzyme-immobilized substrate 11 can also be manufactured.
  • contact means that the surface on which the ligand molecules and the like are fixed is immersed in the liquid feeding in the substrate obtained through the step (a-2) (that is, “ligand fixing substrate”). In this state, it refers to bringing an object contained in the liquid feeding into contact with the ligand-immobilized substrate.
  • the “contact” between the specimen and the ligand-immobilized substrate means that the specimen is contained in the liquid-feeding liquid circulating in the flow path, and only one side of the ligand-immobilized substrate on which the ligand molecules are immobilized is the liquid-feeding liquid.
  • a mode in which the ligand-immobilized substrate and the specimen are brought into contact with each other in a state of being immersed therein is preferable.
  • the surface of the ligand-immobilized substrate is previously immobilized on bovine serum albumin (BSA) after immobilizing the ligand molecule on the substrate 21 and before contacting the specimen. It is preferable to treat with a blocking agent such as
  • the solution used for producing the enzyme-immobilized substrate 11 is preferably the same as the solvent or buffer in which the specimen is diluted.
  • PBS phosphate buffered saline
  • TBS Tris buffered saline
  • the temperature and time for circulating the liquid supply during the production of the enzyme-immobilized substrate 11 vary depending on the type of specimen and are not particularly limited, but are usually 20 to 40 ° C. ⁇ 1 to 60 minutes, preferably 37. ° C x 5-15 minutes.
  • the initial concentration of the biomolecule contained in the specimen being sent may be 100 ⁇ g / mL to 0.0001 pg / mL.
  • the total amount of the liquid delivery that is, the volume of the flow path is usually 0.0001 to 20 mL, preferably 0.01 to 1 mL.
  • the flow rate of the liquid supply when producing the enzyme-immobilized substrate 11 is usually 1 to 2,000 ⁇ L / min, preferably 5 to 500 ⁇ L / min.
  • a surfactant such as Tween 20 or Triton X100 is dissolved in the same solvent or buffer solution as that used in the above-mentioned “liquid feeding used in manufacturing the enzyme-immobilized substrate 11”. Those containing 0.00001 to 1% by weight are desirable.
  • the temperature and flow rate at which the cleaning liquid is circulated are preferably the same as the above-mentioned “temperature and flow rate at which the liquid feed is circulated when producing the enzyme-immobilized substrate 11”.
  • the time for circulating the cleaning liquid is usually 0.5 to 180 minutes, preferably 5 to 60 minutes.
  • Specimen refers to various samples to be measured when the fluorescence measuring method according to the present invention is applied to a use as a bioassay method.
  • samples of the “specimen” include blood (serum / plasma), urine, nasal fluid, saliva, feces, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.), etc., and appropriately diluted in a desired solvent, buffer solution, etc. May be used.
  • blood serum / plasma
  • urine nasal fluid
  • saliva saliva
  • feces body cavity fluid
  • body cavity fluid spinal fluid, ascites, pleural effusion, etc.
  • appropriately diluted in a desired solvent, buffer solution, etc. May be used.
  • blood, serum, plasma, urine, nasal fluid and saliva are preferred. These may be used alone or in combination of two or more.
  • step (c) is a step of causing the enzyme reaction to occur on the enzyme-immobilized substrate 11 to convert the fluorescent molecule precursor molecule 41 into the fluorescent molecule 42.
  • the fluorescent molecule 42 is a fluorescent molecule that is generated by the fluorescent molecule precursor molecule 41 introduced in the step (b) being changed by an enzyme reaction by the enzyme 23.
  • the amount of the fluorescent molecules 42 generated is evaluated in the form of the amount of fluorescence emitted.
  • the excitation wavelength and emission wavelength of the fluorescent molecule 42 generated from a typical enzyme reaction substrate used as the fluorescent molecule precursor molecule 41 are as described in the section of the fluorescent molecule precursor molecule.
  • Step (d)> In the fluorescence measurement method of the present invention, in the step (d), the fluorescent molecule 42 produced in the step (c) is bonded to the water-soluble polymer 43 to form a fluorescent molecule-water-soluble polymer complex on the enzyme-immobilized substrate 11. This is a step of forming 31.
  • the fluorescent molecule 42 generated by the enzyme reaction in the fluorescent molecule-water-soluble polymer complex step (c) is free in the solution existing on the enzyme-immobilized substrate 11. It moves and diffuses to a site away from the enzyme immobilization substrate 11.
  • the region to be subjected to fluorescence detection in the fluorescence measurement is limited to a very narrow portion around the enzyme-immobilized substrate 11, the light emitted from the fluorescent molecules 42 diffused to a site away from the enzyme-immobilized substrate 11. Fluorescence is not detected, which causes the detection sensitivity not to be sufficiently improved in the fluorescence measuring method based on the conventionally known fluorogenic substrate conversion method.
  • the fluorescent molecule 42 generated by the enzyme reaction is high due to the water-soluble polymer 43. Due to the viscosity, diffusion tends to be suppressed as compared with a solution in which the water-soluble polymer 43 does not exist. Further, when the fluorescent molecule 42 moves through the water-soluble polymer 43, an interaction such as electrostatic interaction acts between the fluorescent molecule 42 and the water-soluble polymer 43. Bonds rapidly to form a fluorescent molecule-water-soluble polymer complex 31.
  • the fluorescence measurement method of the present invention can improve detection sensitivity.
  • the generated fluorescent molecule-water-soluble polymer complex 31 flows out from the enzyme-immobilized substrate 11 by the flow of the liquid, In order to reduce the possibility of deviating from the region to be subjected to fluorescence detection, it is desirable to carry out in a stationary state.
  • step (e) is a step of detecting fluorescence emitted from the fluorescent molecule-water-soluble polymer complex 31 produced in step (d).
  • the fluorescent molecule-water-soluble polymer complex 31 generated in the step (d) is irradiated with excitation light, and the intensity of fluorescence emission corresponding to the excitation light is measured. Is done by.
  • the fluorescence detection method used in step (e) is not particularly limited as long as it is a known fluorescence detection method generally used in the field of bioassay.
  • a method for generating fluorescence by exciting the fluorescent molecule-water-soluble polymer complex 31 a method for generating fluorescence mainly by directly irradiating the fluorescent molecule-water-soluble polymer complex 31 with excitation light is used. Is mentioned.
  • Various methods are known as means for detecting and measuring fluorescence by this method.
  • fluorescence is detected using a confocal laser microscope or a confocal laser scanner. Is preferred. When these fluorescence detection devices are used, images with a high depth of focus can be obtained by acquiring images with high contrast at positions corresponding to the focus at various positions and superimposing them.
  • the region to be subjected to fluorescence detection in the measurement system can be expanded, the ratio of the fluorescent molecules 42 that contribute to fluorescence detection among the generated fluorescent molecules 42 can be increased, thereby improving the detection sensitivity.
  • the members such as the light source, the beam splitter, the objective lens, the pinhole, the photodetector, and the galvanometer mirror constituting the confocal laser microscope and the confocal laser scanner used in the present invention, conventionally known ones should be used. Can do.
  • the method of exciting the fluorescent molecule-water-soluble polymer complex 31 to generate fluorescence is not limited to the method described above.
  • a method of generating fluorescence by irradiating excitation light indirectly using near-field light may be used.
  • fluorescence excited by near-field light is detected.
  • An example of such near-field light is light enhanced by plasmons.
  • a specific example is a method of generating fluorescence by exciting the fluorescent molecule-water-soluble polymer complex 31 using surface plasmon or the like by surface plasmon excitation enhanced fluorescence spectroscopy (SPFS).
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • the region that can be excited by near-field light is extremely limited.
  • the region where the effect of electric field enhancement by SPFS can be obtained is the enzyme-immobilized substrate 11. It is limited to a region from about 100 to 200 nm from the surface of the substrate.
  • the fluorescent molecule 42 is kept in the region near the surface of the enzyme-immobilized substrate 11 in the form of the fluorescent molecule-water-soluble polymer complex 31. This leads to an increase in the ratio of the fluorescent molecules 42 excited by the near-field light in the generated fluorescent molecules 42, which is advantageous in achieving high sensitivity.
  • members such as a light source, a prism, an optical filter, a polarizing filter, a cut filter, a condensing lens, and a light detector used for detecting fluorescence excited by near-field light are conventionally known ones. Can be used respectively.
  • step (e) the “biomolecule” contained in the specimen is quantified based on the detected fluorescence amount. become. More specifically, it is a step of creating a calibration curve by performing measurement with a biomolecule at a known concentration, and calculating the biomolecular weight in the sample to be measured from the measurement signal based on the created calibration curve.
  • the step of quantifying the biomolecule contained in the specimen from the detected fluorescence amount can be performed as a step independent of the series of steps (b) to (e) in the fluorescence measurement method of the present invention.
  • it is usually detected as a step of detecting fluorescence.
  • the step of quantifying the biomolecule contained in the specimen from the amount of fluorescence obtained is performed as a series of steps. Therefore, the step of quantifying the biomolecule contained in the specimen from the amount of fluorescence detected in the step (e) is preferably incorporated as a step (f) in a series of steps in the fluorescence measurement method of the present invention.
  • Fluorescence intensity was measured by SPFS detection method using DDAOP as an enzyme chemical fluorescence reagent and using an alkaline phosphatase labeled secondary antibody.
  • Example 1 After preparing an SPFS sensor substrate with an anti-AFP monoclonal antibody (primary antibody) immobilized on the surface by a conventional method, the surface of the antibody-immobilized side was reacted with AFP (0.1 ng / mL) as an antigen. Alkaline phosphatase-labeled anti-AFP monoclonal antibody (secondary antibody) was bound. As a result, an SPFS sensor having an antigen-antibody sandwich complex formed on the surface, which functions as an enzyme-immobilized substrate, was obtained.
  • primary antibody anti-AFP monoclonal antibody
  • Comparative Example 1 As a comparative example, the fluorescence intensity of the fluorescent molecule was measured in the same manner as in Example 1 except that a substrate solution to which no cationized polymer was added was used as the substrate solution.
  • FIG. 2 shows the relationship between the reaction time and fluorescence intensity after introducing the substrate solution on the surface of the SPFS sensor in the SPFS system of Example 1 and Comparative Example 1.
  • the fluorescence intensity increases linearly after the reaction starts, whereas the substrate without cationized polymer added.
  • the fluorescence intensity did not increase until about 5 minutes after the start of the reaction, and thereafter the fluorescence intensity tended to increase gradually. This is because the fluorescent product generated on the surface diffuses quickly into the solution and takes time to be detected as a fluorescent signal, whereas the fluorescent solution generated in the substrate solution to which the cationized polymer is added. This shows that the molecules remain on the outermost surface of the sensor, and as a result, they can be efficiently detected as fluorescent signals immediately after the reaction time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The disclosed fluorescence measurement method increases the efficiency of detection of fluorescence emitted from fluorescent molecules generated as a result of an enzyme reaction, thereby providing increased sensitivity and allowing fluorescent substrates from conventional enzyme reactions to be used as is. Said fluorescence measurement method includes: a step (b) wherein water-soluble macromolecules and fluorescent-molecule precursor molecules are introduced onto an enzyme-immobilizing substrate; a step (c) wherein an enzyme reaction is induced on the enzyme-immobilizing substrate and the fluorescent-molecule precursor molecules are converted to fluorescent molecules; a step (d) wherein the fluorescent molecules are bound to the aforementioned water-soluble macromolecules, thereby forming fluorescent-molecule/water-soluble-macromolecule complexes on the enzyme-immobilizing substrate; and a step (e) wherein fluorescence emitted from the fluorescent-molecule/water-soluble-macromolecule complexes is detected.

Description

蛍光測定方法Fluorescence measurement method
 本発明は、酵素反応により生成した蛍光分子を高感度に検出する蛍光測定方法に関する。より詳細には、酵素反応により生成した蛍光分子の拡散を防ぐことによって、蛍光分子を高感度に検出する蛍光測定方法に関する。 The present invention relates to a fluorescence measuring method for detecting a fluorescent molecule generated by an enzymatic reaction with high sensitivity. More specifically, the present invention relates to a fluorescence measurement method that detects fluorescent molecules with high sensitivity by preventing diffusion of fluorescent molecules generated by an enzyme reaction.
 核酸やタンパクなどの生体分子を測定する方法として、検体中のアナライトを酵素によって標識し、酵素反応により生じた分子の量を評価することによって検体中のアナライト量を測定する方法がある。この方法は、酵素反応の触媒活性を利用することから、酵素基質を通じたシグナル増強が容易であり、広く用いられている。ここで、酵素反応により生じた分子の量を評価する方法として種々の方法が用いられているが、高感度測定の容易さから、酵素反応により生じた分子からの蛍光または化学発光を検出してその発光量に基づき酵素反応により生じた分子の量を評価する方法が多く用いられている。このうち、酵素反応により生じた分子からの蛍光に基づく生体分子の測定方法の例として、蛍光原基質変換法が挙げられる。この蛍光原基質変換法は、アナライトに標識した酵素で蛍光原基質を蛍光発光性分子に変換して、この蛍光発光性分子からの蛍光発光を検出することにより、検体中のアナライト量を測定する方法である。また、酵素反応により生じた分子からの化学発光に基づく生体分子の測定方法の例として、酵素化学発光法が挙げられる。この酵素化学発光法は、アナライトに標識した酵素で基質を化学発光性分子に変換して、この化学発光性分子からの化学発光を検出することにより、検体中のアナライト量を測定する方法である。 As a method of measuring biomolecules such as nucleic acids and proteins, there is a method of measuring the amount of analyte in a sample by labeling the analyte in the sample with an enzyme and evaluating the amount of the molecule generated by the enzyme reaction. Since this method uses the catalytic activity of an enzyme reaction, signal enhancement through an enzyme substrate is easy and is widely used. Here, various methods are used as methods for evaluating the amount of molecules generated by the enzyme reaction. From the ease of highly sensitive measurement, fluorescence or chemiluminescence from the molecules generated by the enzyme reaction is detected. Many methods are used to evaluate the amount of molecules generated by an enzyme reaction based on the amount of luminescence. Among these, an example of a method for measuring a biomolecule based on fluorescence from a molecule generated by an enzyme reaction is a fluorogenic substrate conversion method. In this fluorogenic substrate conversion method, the amount of analyte in a sample is determined by converting the fluorogenic substrate into a fluorescent molecule with an enzyme labeled with the analyte, and detecting the fluorescence emission from this fluorescent molecule. It is a method of measuring. An example of a method for measuring a biomolecule based on chemiluminescence from a molecule generated by an enzyme reaction is an enzyme chemiluminescence method. This enzyme chemiluminescence method is a method for measuring the amount of analyte in a sample by converting a substrate into a chemiluminescent molecule with an enzyme labeled with an analyte and detecting chemiluminescence from this chemiluminescent molecule. It is.
 これら蛍光原基質変換法および酵素化学発光法は、核酸検出に用いられるハイブリダイゼーションアッセイや蛋白質等種々の生体分子の検出に用いられるイムノアッセイなどのアッセイ法に応用されている。ここで、蛍光原基質変換法および酵素化学発光法を応用する対象となるアッセイ法における酵素の存在態様には種々のものが含まれるが、操作の簡便性および自動測定機器による測定への応用の容易さなどの点から、酵素反応を固相上で行う態様のアッセイ法が多用されている。このようなアッセイ法の著名な例として、固相酵素免疫検定法(Enzyme-linked Immunosorbent Assay:以下「ELISA法」と称する。)が挙げられる。酵素反応を固相上で行うアッセイ法に蛍光原基質変換法および酵素化学発光法が応用されると、酵素反応場をそのまま蛍光または化学発光の測定場として用いることができるという利点がある。 These fluorogenic substrate conversion methods and enzyme chemiluminescence methods are applied to assay methods such as hybridization assays used for nucleic acid detection and immunoassays used for detection of various biomolecules such as proteins. Here, there are various forms of the presence of the enzyme in the assay method to which the fluorogenic substrate conversion method and the enzyme chemiluminescence method are applied, but the ease of operation and the application to the measurement by an automatic measuring instrument are included. From the viewpoint of easiness, an assay method in which an enzyme reaction is performed on a solid phase is frequently used. A prominent example of such an assay method is a solid-phase enzyme immunoassay (Enzyme-linked Immunosorbent Assay: hereinafter referred to as “ELISA method”). When the fluorogenic substrate conversion method and the enzyme chemiluminescence method are applied to an assay method in which an enzyme reaction is performed on a solid phase, there is an advantage that the enzyme reaction field can be used as it is as a measurement field for fluorescence or chemiluminescence.
 しかし、酵素の触媒活性を利用したアナライトの測定法には、酵素反応の生成物が速やかに溶液中に拡散してしまうため、検出感度を充分に向上させることができないという問題点がある。このような問題点を解決するため、種々の研究がなされてきた。 However, the analyte measurement method using the catalytic activity of the enzyme has a problem that the detection sensitivity cannot be sufficiently improved because the product of the enzyme reaction diffuses quickly into the solution. Various studies have been made to solve such problems.
 そのような試みの一つとして、国際公開2007/052613号パンフレット(特許文献1)には、酵素標識抗体とアナライトを含む免疫複合体を溶液層のない支持体上に捕捉し、この免疫複合体の上に化学発光基質を含む支持膜を重ね、酵素反応により生じる発光量を検出することによりアナライトの量を測定する方法が開示されている。 As one of such attempts, International Publication No. 2007/052613 pamphlet (Patent Document 1) captures an immune complex containing an enzyme-labeled antibody and an analyte on a support without a solution layer, and this immune complex. A method of measuring the amount of analyte by overlaying a support membrane containing a chemiluminescent substrate on the body and detecting the amount of luminescence generated by the enzyme reaction is disclosed.
 また、別の試みとして、特開2008-139245号公報(特許文献2)には、酵素とアナライトを含む免疫複合体を溶液中に存在させた状態で酵素反応を行い、反応生成物をセンサー表面に結合させ、光を検出することによりアナライトの量を測定する方法が開示されている。 As another attempt, Japanese Patent Application Laid-Open No. 2008-139245 (Patent Document 2) describes that an enzyme reaction is performed in a state where an immune complex containing an enzyme and an analyte is present in a solution, and a reaction product is detected as a sensor. A method of measuring the amount of analyte by binding to a surface and detecting light is disclosed.
国際公開2007/052613号パンフレットInternational publication 2007/052613 pamphlet 特開2008-139245号公報JP 2008-139245 特開平6-234618号公報JP-A-62-234618
 しかしながら、特許文献1に記載の方法では、化学発光基質を含む支持膜を予め作成しておき、酵素反応の際に重ね合わせるという操作が必要となる。蛍光原基質変換法または酵素化学発光法に基づき検体中のアナライトの検出を行う従来公知の自動測定機器は、多くの場合、酵素を表面に固定した基板が流路の途中に配置され、且つこの流路を通じて閉鎖系で各種物質の送液を行う構造を有していることから、固相に流路の外部から膜を導入する機構を設けようとすると構造が複雑になり、コストが増大するとともに、機器の小型化に制約が生じるという問題点がある。 However, in the method described in Patent Document 1, it is necessary to prepare a support film containing a chemiluminescent substrate in advance and superimpose it in the enzyme reaction. Conventionally known automatic measuring devices that detect analytes in specimens based on the fluorogenic substrate conversion method or the enzyme chemiluminescence method, in many cases, a substrate having an enzyme immobilized on its surface is arranged in the middle of the flow path, and Since it has a structure that sends various substances in a closed system through this flow path, it will become complicated and cost will increase if a mechanism is introduced to the solid phase from the outside of the flow path. At the same time, there is a problem that restrictions are imposed on miniaturization of equipment.
 また、特許文献2に記載の方法の場合、酵素反応の反応生成物をセンサー表面に結合させるには、アビジンとビオチンとの結合、もしくはジゴキシゲニンと抗ジゴキシゲニン抗体との結合が必要であり、そのためには反応生成物に予めアビジンかビオチン、もしくはジゴキシゲニンが修飾されている必要があるという問題点がある。 In the case of the method described in Patent Document 2, in order to bind the reaction product of the enzyme reaction to the sensor surface, it is necessary to bind avidin and biotin or digoxigenin and anti-digoxigenin antibody. Has a problem that the reaction product needs to be modified in advance with avidin, biotin, or digoxigenin.
 本発明は、上記の従来技術の問題を解決するため、蛍光原基質変換法に基づくアッセイ法において、酵素反応によって生成する蛍光分子等が溶液中に拡散することを防止することによって、発光された蛍光の検出効率を高め、これによって高感度化を図ると共に、従来の酵素反応による蛍光基質をそのまま利用可能とする蛍光測定方法を提供することを解決すべき課題とする。 In order to solve the above-described problems of the prior art, the present invention emits light by preventing a fluorescent molecule or the like generated by an enzymatic reaction from diffusing into a solution in an assay method based on a fluorogenic substrate conversion method. An object to be solved is to provide a fluorescence measurement method that enhances the detection efficiency of fluorescence, thereby improving sensitivity, and that allows a fluorescent substrate obtained by a conventional enzyme reaction to be used as it is.
 本発明者らは、上記の問題を解決すべく鋭意研究した結果、基板に固定された酵素による酵素反応により生じる蛍光分子等の検出を行うに当たり、その測定系中に水溶性高分子を共存させておくと、生成した蛍光分子等の拡散を防ぎ、且つこの蛍光分子等を限られた範囲内に留めておくことができ、その結果、検出される蛍光等の強度が増大することを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have made a water-soluble polymer coexist in the measurement system when detecting fluorescent molecules or the like generated by an enzyme reaction by an enzyme immobilized on a substrate. If this is done, it is possible to prevent diffusion of the generated fluorescent molecules and the like, and to keep the fluorescent molecules and the like within a limited range. As a result, it is found that the intensity of the detected fluorescence increases. The present invention has been completed.
 すなわち、本発明の蛍光測定方法は、
 工程(b):酵素固定基板上に、水溶性高分子および蛍光分子前駆分子を導入する工程;
 工程(c):前記酵素固定基板上で酵素反応を生じさせて、前記蛍光分子前駆分子を蛍光分子に変換する工程;
 工程(d):前記蛍光分子を前記水溶性高分子と結合させて、前記酵素固定基板上に蛍光分子-水溶性高分子複合体を形成させる工程;および、
 工程(e):前記蛍光分子-水溶性高分子複合体から発光された蛍光を検出する工程
を含むことを特徴とする。
That is, the fluorescence measurement method of the present invention is:
Step (b): introducing a water-soluble polymer and a fluorescent molecule precursor molecule onto the enzyme-immobilized substrate;
Step (c): causing an enzyme reaction on the enzyme-immobilized substrate to convert the fluorescent molecule precursor molecule into a fluorescent molecule;
Step (d): binding the fluorescent molecule to the water-soluble polymer to form a fluorescent molecule-water-soluble polymer complex on the enzyme-immobilized substrate; and
Step (e): The method includes a step of detecting fluorescence emitted from the fluorescent molecule-water-soluble polymer complex.
 本発明に係る蛍光測定方法において、蛍光分子-水溶性高分子複合体の形成が好適に行われるためには、本発明で用いられる水溶性高分子は、イオン性基を有することが好ましく、このイオン性基としてカチオン性基が含まれているとより好ましい。このようなカチオン性基の例として、第3級アミノ基および第4級アンモニウム基から選ばれる1つ以上の基が挙げられる。このような蛍光分子-水溶性高分子複合体は、前記蛍光分子と前記水溶性高分子との静電相互作用により形成されることが好ましい。 In the fluorescence measurement method according to the present invention, the water-soluble polymer used in the present invention preferably has an ionic group in order to suitably form a fluorescent molecule-water-soluble polymer complex. It is more preferable that a cationic group is contained as the ionic group. Examples of such a cationic group include one or more groups selected from a tertiary amino group and a quaternary ammonium group. Such a fluorescent molecule-water-soluble polymer complex is preferably formed by electrostatic interaction between the fluorescent molecule and the water-soluble polymer.
 また、本発明に係る蛍光測定方法において、水溶性高分子は、酵素反応によって生じた蛍光物質とは速やかに結合する性質を有しつつも、系内に存在する蛍光分子前駆分子が酵素に接近するために内部を通過することを妨げないことが好ましい。このような水溶性高分子の一つとして、直鎖状の非架橋型水溶性ポリマーが挙げられる。また、水溶性高分子は、チクソトロピー性を有する高分子マトリクスゲルであってもよい。これらの水溶性高分子は、直鎖状ポリアクリルアミドおよび多糖類から選ばれる1つ以上からなる骨格を有していることが好ましい。本発明の一態様においては、そのような水溶性高分子が、水溶性カチオン化多糖類であり、この場合、水溶性カチオン化多糖類におけるカチオン置換度が0.01~1であることが好ましい。なお、本発明で用いられる水溶性高分子の重量平均分子量は、通常1万~200万、好ましくは5万~200万である。 In the fluorescence measurement method according to the present invention, the water-soluble polymer has a property of quickly binding to the fluorescent substance generated by the enzyme reaction, but the fluorescent molecule precursor molecule existing in the system approaches the enzyme. In order to do so, it is preferable not to prevent passage through the inside. One such water-soluble polymer is a linear non-crosslinked water-soluble polymer. The water-soluble polymer may be a polymer matrix gel having thixotropy. These water-soluble polymers preferably have a skeleton composed of one or more selected from linear polyacrylamides and polysaccharides. In one embodiment of the present invention, such a water-soluble polymer is a water-soluble cationized polysaccharide, and in this case, the degree of cation substitution in the water-soluble cationized polysaccharide is preferably 0.01 to 1. . The water-soluble polymer used in the present invention has a weight average molecular weight of usually 10,000 to 2,000,000, preferably 50,000 to 2,000,000.
 蛍光分子-水溶性高分子複合体が蛍光検出の対象となる領域から逸脱することなく確実に留まるためには、工程(c)~(e)が静置状態で行われることが望ましい。 Steps (c) to (e) are desirably performed in a stationary state in order for the fluorescent molecule-water-soluble polymer complex to remain securely without departing from the region to be subjected to fluorescence detection.
 本発明に係る蛍光測定方法は、生体分子のアッセイ法としての用途に応用することができる。すなわち、検体中の生体分子を酵素固定基板に組み込むことによって、蛍光分子-水溶性高分子複合体の蛍光量の形で検体中に含まれる生体分子の量を評価することができる。 The fluorescence measurement method according to the present invention can be applied for use as a biomolecule assay method. That is, by incorporating the biomolecule in the sample into the enzyme-immobilized substrate, the amount of the biomolecule contained in the sample can be evaluated in the form of the fluorescence amount of the fluorescent molecule-water-soluble polymer complex.
 このように検体中の生体分子を組み込んだ酵素固定基板の態様として、酵素が生体分子とリガンド分子との結合を介して基板上に固定されている酵素固定基板が挙げられる。このような酵素固定基板の典型的な態様として、基板にリガンド分子が結合し、このリガンド分子に生体分子が結合し、さらに、この生体分子に酵素が直接的または間接的に結合している酵素固定基板が挙げられる。 As an embodiment of the enzyme-immobilized substrate in which the biomolecule in the specimen is incorporated in this way, an enzyme-immobilized substrate in which the enzyme is immobilized on the substrate through the bond between the biomolecule and the ligand molecule can be mentioned. As a typical embodiment of such an enzyme-immobilized substrate, a ligand molecule is bound to the substrate, a biomolecule is bound to the ligand molecule, and an enzyme is directly or indirectly bound to the biomolecule. A fixed substrate may be mentioned.
 本発明に係る蛍光測定方法を生体分子のアッセイ法として用いる場合、本発明に係る蛍光測定方法の典型的な工程には、工程(b)~(e)に加えて、
 工程(a):検体、酵素、リガンド分子および基板を用いて前記酵素固定基板を製造する工程、および
 工程(f):工程(e)で検出された蛍光量から、前記検体中に含まれる前記生体分子を定量する工程
がさらに含まれる。
When the fluorescence measurement method according to the present invention is used as an assay method for a biomolecule, typical steps of the fluorescence measurement method according to the present invention include, in addition to steps (b) to (e),
Step (a): a step of producing the enzyme-immobilized substrate using a specimen, an enzyme, a ligand molecule and a substrate; and Step (f): the fluorescence contained in the specimen from the amount of fluorescence detected in Step (e) The method further includes the step of quantifying the biomolecule.
 本発明に係る蛍光測定方法において、工程(e)における蛍光の検出は、近接場光により励起された蛍光を検出することに行うと好ましい。ここで、用いられる近接場光の代表例として、プラズモンにより増強された光が挙げられる。 In the fluorescence measurement method according to the present invention, the fluorescence detection in the step (e) is preferably performed by detecting fluorescence excited by near-field light. Here, a typical example of the near-field light used is light enhanced by plasmons.
 また、工程(e)における蛍光の検出は、共焦点レーザー顕微鏡または共焦点レーザースキャナーを用いて行ってもよい。 Further, the fluorescence detection in the step (e) may be performed using a confocal laser microscope or a confocal laser scanner.
 本発明に係る蛍光測定方法は、基板に固定された酵素による酵素反応およびこの酵素反応により生じる蛍光分子等の検出を水溶性高分子共存下で行うことにより、酵素反応により生成した蛍光分子を蛍光検出の測定場付近に留め、これにより測定系における測定範囲外の空間への蛍光分子の拡散を抑制することができるので、高感度の蛍光測定方法を提供することができる。 In the fluorescence measurement method according to the present invention, an enzyme reaction by an enzyme immobilized on a substrate and detection of a fluorescent molecule or the like generated by the enzyme reaction are performed in the presence of a water-soluble polymer, whereby a fluorescent molecule generated by the enzyme reaction is fluorescent. Since it is possible to suppress the diffusion of the fluorescent molecules to the space outside the measurement range in the measurement system by staying in the vicinity of the detection measurement field, it is possible to provide a highly sensitive fluorescence measurement method.
本発明に係る蛍光測定方法の模式図を示す。The schematic diagram of the fluorescence measuring method which concerns on this invention is shown. 実施例1及び比較例1における、基質溶液を導入してからの反応時間と蛍光強度との関係を示す。The relationship between the reaction time after introducing the substrate solution and the fluorescence intensity in Example 1 and Comparative Example 1 is shown.
 以下、本発明について、図1を参照しながら具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to FIG.
 〔蛍光測定方法〕
 本発明に係る蛍光測定方法は、
 工程(b):酵素固定基板11上に、水溶性高分子43および蛍光分子前駆分子41を導入する工程;
 工程(c):前記酵素固定基板11上で酵素反応を生じさせて、前記蛍光分子前駆分子41を蛍光分子42に変換する工程;
 工程(d):前記蛍光分子42を前記水溶性高分子43と結合させて、前記酵素固定基板11上に蛍光分子-水溶性高分子複合体31を形成させる工程;および、
 工程(e):前記蛍光分子-水溶性高分子複合体31から発光された蛍光を検出する工程
を含むことを特徴とする。
[Fluorescence measurement method]
The fluorescence measurement method according to the present invention includes:
Step (b): introducing the water-soluble polymer 43 and the fluorescent molecule precursor molecule 41 onto the enzyme-immobilized substrate 11;
Step (c): causing an enzyme reaction on the enzyme-immobilized substrate 11 to convert the fluorescent molecule precursor molecule 41 into the fluorescent molecule 42;
Step (d): binding the fluorescent molecule 42 to the water-soluble polymer 43 to form a fluorescent molecule-water-soluble polymer complex 31 on the enzyme-immobilized substrate 11; and
Step (e): The method includes a step of detecting fluorescence emitted from the fluorescent molecule-water-soluble polymer complex 31.
 本発明は、酵素固定基板11上で蛍光分子42を生成させる反応を水溶性高分子43存在下で行うことを最大の特徴とする。 The present invention is most characterized in that the reaction for generating the fluorescent molecules 42 on the enzyme-immobilized substrate 11 is performed in the presence of the water-soluble polymer 43.
 <工程(b)>
 本発明の蛍光測定方法において、工程(b)は、酵素固定基板11上に、水溶性高分子43および蛍光分子前駆分子41を導入する工程である。
<Step (b)>
In the fluorescence measurement method of the present invention, step (b) is a step of introducing the water-soluble polymer 43 and the fluorescent molecule precursor molecule 41 onto the enzyme-immobilized substrate 11.
 《酵素固定基板》
 本発明に係る蛍光測定方法で用いられる酵素固定基板11は、酵素23を表面上に固定した基板である。この酵素固定基板11は、基板21と酵素23とを含んでおり、この酵素23が基板21と結合した構造を有する。
<Enzyme immobilization substrate>
The enzyme-immobilized substrate 11 used in the fluorescence measurement method according to the present invention is a substrate on which an enzyme 23 is immobilized on the surface. The enzyme-immobilized substrate 11 includes a substrate 21 and an enzyme 23, and has a structure in which the enzyme 23 is bonded to the substrate 21.
 基板
 本発明に係る蛍光測定方法で用いられる酵素固定基板11において、基板21は、酵素23を固定する土台としての役割を有するとともに、後述する工程(e)において蛍光検出を行う測定場を提供する役割を有する。したがって、本明細書において基板21は、「酵素固定基板」との区別をより明確にするために「基礎基板」と呼ばれる場合もある。
Substrate In the enzyme-immobilized substrate 11 used in the fluorescence measurement method according to the present invention, the substrate 21 serves as a base for immobilizing the enzyme 23, and provides a measurement field for performing fluorescence detection in the step (e) described later. Have a role. Therefore, in this specification, the substrate 21 may be referred to as a “base substrate” in order to make the distinction from the “enzyme-immobilized substrate” more clear.
 この基板21(すなわち、「基礎基板」)は、本発明における蛍光測定の妨げとならず、また酵素23の活性を損なわない限り、その材質に特に制限はなく、酵素化学蛍光反応を用いた一般的なアッセイ法に用いられる従来公知の材質を用いることができる。例えば、基板21として、ガラスを用いてもよく、また、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)などのプラスチックを用いてもよい。 The substrate 21 (that is, “basic substrate”) is not particularly limited in material as long as it does not hinder the fluorescence measurement in the present invention and does not impair the activity of the enzyme 23. Conventionally known materials used for typical assay methods can be used. For example, glass may be used as the substrate 21, or plastic such as polycarbonate (PC) or cycloolefin polymer (COP) may be used.
 この基板21は、蛍光の検出を行う手段に合わせて適宜複数の層から構成してもよい。 The substrate 21 may be composed of a plurality of layers as appropriate according to the means for detecting fluorescence.
 例えば、近接場光、特にプラズモンにより増強された光により励起された蛍光を検出する場合、ガラス製またはプラスチック製の透明平面基板に10~100nm程度の金属薄膜を形成させたものが基板21として用いられる。表面プラズモン励起増強蛍光分光法(SPFS)により蛍光の検出を行う場合、金属薄膜が、金、銀、アルミニウム、銅、および白金からなる群から選ばれる少なくとも1種の金属からなることが好ましく、金からなることがより好ましい。これらの金属については、その合金の形態であってもよく、金属を積層したものであってもよい。なお、透明平面基板上に金属薄膜を形成する方法としては、例えば、スパッタリング法、蒸着法(抵抗加熱蒸着法、電子線蒸着法等)などが挙げられる。 For example, in the case of detecting fluorescence excited by near-field light, particularly light enhanced by plasmon, a glass or plastic transparent flat substrate formed with a metal thin film of about 10 to 100 nm is used as the substrate 21. It is done. When fluorescence is detected by surface plasmon excitation enhanced fluorescence spectroscopy (SPFS), the metal thin film is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum. More preferably, it consists of. About these metals, the form of the alloy may be sufficient and the thing which laminated | stacked the metal may be sufficient. Examples of a method for forming a metal thin film on a transparent flat substrate include a sputtering method and a vapor deposition method (resistance heating vapor deposition method, electron beam vapor deposition method, etc.).
 また、基板21の表面には、一般的なバイオアッセイ法で用いられる自己組織化単分子膜(Self Assembled Monolayer:SAM)などからなる表面処理層が設けられていてもよい。ここで、SAMは、後述する結合部22を基板21に固定するための土台として用いられるものである。後述する工程(e)において近接場光により励起された蛍光を検出する場合等、基板21として表面に金属薄膜を形成させた透明平面基板を用いる場合には、この表面処理層は、蛍光の金属消光を防止することを目的として、誘電体からなるスペーサー層をさらに含んでいてもよい。この場合の基板21と表面処理層との構成例として、基板21を構成する金属薄膜上に、誘電体からなるスペーサー層が存在し、このスペーサー層の上にSAM層が存在する構成が挙げられる。 Further, a surface treatment layer made of a self-assembled monolayer (SAM) used in a general bioassay method or the like may be provided on the surface of the substrate 21. Here, the SAM is used as a base for fixing a coupling portion 22 to be described later to the substrate 21. When a transparent flat substrate having a metal thin film formed on the surface is used as the substrate 21 such as when detecting fluorescence excited by near-field light in the step (e) described later, this surface treatment layer is a fluorescent metal For the purpose of preventing quenching, a spacer layer made of a dielectric may be further included. As a configuration example of the substrate 21 and the surface treatment layer in this case, there is a configuration in which a spacer layer made of a dielectric is present on a metal thin film constituting the substrate 21 and a SAM layer is present on the spacer layer. .
 酵素
 本発明に係る蛍光測定方法で用いられる酵素固定基板11において、酵素23は、後述する蛍光分子前駆分子41を蛍光分子42に変換する役割を果たす。本発明において用いられる酵素23は、蛍光分子前駆分子41を蛍光分子42に変化させる性質を有するが、それ以外の構成要素、例えば、水溶性高分子43を変質または分解する性質を有さない限り、どのような種類の酵素であってもよい。そのような酵素23の例として、西洋ワサビペルオキシダーゼ(HRP)などの酸化還元酵素、アルカリホスファターゼなどのホスファターゼ類、および、β-ガラクトシダーゼなどが挙げられるが、これらに限定されるものではない。
Enzyme In the enzyme-immobilized substrate 11 used in the fluorescence measurement method according to the present invention, the enzyme 23 plays a role of converting a fluorescent molecule precursor molecule 41 described later into a fluorescent molecule 42. The enzyme 23 used in the present invention has the property of changing the fluorescent molecule precursor molecule 41 to the fluorescent molecule 42, but unless it has the property of altering or degrading other components, for example, the water-soluble polymer 43. Any kind of enzyme may be used. Examples of such enzymes 23 include, but are not limited to, oxidoreductases such as horseradish peroxidase (HRP), phosphatases such as alkaline phosphatase, and β-galactosidase.
 結合部
 本発明に係る蛍光測定方法で用いられる酵素固定基板11において、酵素23は、基板21と直接結合していてもよい。しかし、酵素23が基板21上に確実に固定されるよう、通常の場合、酵素23は、図1に示されるように他の分子または分子複合体等からなる結合部22を介して間接的に結合している。この結合部22は、基板21と酵素23とを結びつける役割を有していることから、必然的に、基板21と結合するための接合部と、酵素23と結合するための接合部とを含むことになる。
In the enzyme-immobilized substrate 11 used in the fluorescence measuring method according to the present invention, the enzyme 23 may be directly bonded to the substrate 21. However, in order to ensure that the enzyme 23 is securely fixed on the substrate 21, in the usual case, the enzyme 23 is indirectly connected via a binding portion 22 made of another molecule or molecular complex as shown in FIG. Are connected. Since the coupling portion 22 has a role of linking the substrate 21 and the enzyme 23, the coupling portion inevitably includes a junction portion for coupling with the substrate 21 and a junction portion for coupling with the enzyme 23. It will be.
 基板21と結合するための接合部を構成する官能基または分子として、用いる基板21、または該当する場合には基板21上に設けられる表面処理層の種類に応じて、従来公知の官能基または分子を適宜用いることができる。 Depending on the type of substrate 21 used or, if applicable, the surface treatment layer provided on the substrate 21 as the functional group or molecule constituting the bond for bonding to the substrate 21, a conventionally known functional group or molecule Can be used as appropriate.
 また、酵素23と結合するための接合部を構成する官能基または分子として、一般的なバイオアッセイ法で用いられる従来公知の官能基または分子を適宜用いることができる。
このような接合部における結合の例として、ビオチンとアビジンとの結合を利用したものが挙げられる。
Moreover, as a functional group or molecule constituting a junction for binding to the enzyme 23, a conventionally known functional group or molecule used in a general bioassay method can be appropriately used.
An example of such a bond at the junction is one that utilizes the bond between biotin and avidin.
 結合部22のうち、これら基板21と結合するための接合部および酵素23と結合するための接合部を除く部分を構成する分子または分子複合体等については、本発明における蛍光測定の妨げとならず、また酵素23の活性を損なわない限り、その如何を問わない。
ただ単に、酵素23を基板21に結合すれば足りる場合には、基板21と結合するための接合部と酵素23と結合するための接合部とが一体のものであってもよいし、あるいは、一般的なバイオアッセイ法用のスペーサーまたはリンカーとして一般的に用いられる従来公知の分子を介して、基板21と結合するための接合部と酵素23と結合するための接合部とが結合していてもよい。
Of the binding portion 22, molecules or molecular complexes that constitute portions other than the bonding portion for binding to the substrate 21 and the bonding portion for binding to the enzyme 23 should be an obstacle to fluorescence measurement in the present invention. As long as the activity of the enzyme 23 is not impaired, it does not matter.
If it is sufficient to simply bind the enzyme 23 to the substrate 21, the junction for coupling to the substrate 21 and the junction for coupling to the enzyme 23 may be integrated, or The junction for binding to the substrate 21 and the junction for binding to the enzyme 23 are bonded via a conventionally known molecule generally used as a spacer or linker for a general bioassay method. Also good.
 本発明に係る蛍光測定方法は、バイオアッセイ法としての用途に応用することができる。バイオアッセイ法としての本発明に係る蛍光測定方法は、検体中の生体分子の含有量を、基板21に固定されて酵素固定基板11の一部となった酵素23の量を通じて、蛍光分子からの蛍光量として評価するものである。そのようなバイオアッセイ系を形成するため、検体中の生体分子は、結合部22に組み込まれた状態で酵素固定基板11を構成する。言い換えると、このような酵素固定基板11において、結合部22は、基板21と結合するための接合部、酵素23と結合するための接合部、生体分子、およびリガンド分子を含む。 The fluorescence measurement method according to the present invention can be applied for use as a bioassay method. In the fluorescence measurement method according to the present invention as a bioassay method, the content of biomolecules in a specimen is determined from the fluorescent molecules through the amount of enzyme 23 immobilized on the substrate 21 and becoming a part of the enzyme-immobilized substrate 11. This is evaluated as the amount of fluorescence. In order to form such a bioassay system, the biomolecule in the sample constitutes the enzyme-immobilized substrate 11 in a state of being incorporated in the binding portion 22. In other words, in such an enzyme-immobilized substrate 11, the bonding portion 22 includes a bonding portion for bonding to the substrate 21, a bonding portion for bonding to the enzyme 23, a biomolecule, and a ligand molecule.
 生体分子
 本発明において「生体分子」は、本発明に係る蛍光測定方法をバイオアッセイ法に応用する場合に、測定の対象となる分子または分子断片を意味し、アナライトとも呼ばれる分子である。このような「分子」または「分子断片」としては、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、またはヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、タンパク質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)、糖質(オリゴ糖、多糖類、糖鎖等)、脂質、またはこれらの修飾分子、複合体などが挙げられ、具体的には、AFP(αフェトプロテイン)等のがん胎児性抗原や腫瘍マーカー、シグナル伝達物質、ホルモンなどであってもよく、特に限定されない。
Biomolecule In the present invention, “biomolecule” means a molecule or molecular fragment to be measured when the fluorescence measurement method according to the present invention is applied to a bioassay method, and is also called an analyte. Examples of such “molecule” or “molecular fragment” include nucleic acids (DNA that may be single-stranded or double-stranded, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids), etc., Alternatively, nucleosides, nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modifications thereof Examples thereof include molecules, complexes, and the like. Specifically, it may be a carcinoembryonic antigen such as AFP (α-fetoprotein), a tumor marker, a signaling substance, a hormone, and the like, and is not particularly limited.
 リガンド分子
 本発明において「リガンド分子」は、上記「生体分子」を特異的に認識し(または、認識され)結合し得る分子または分子断片をいう。このような「分子」または「分子断片」としては、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、またはヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、タンパク質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)、糖質(オリゴ糖、多糖類、糖鎖等)、脂質、またはこれらの修飾分子、複合体などが挙げられるが、これらに限定されるものではない。
Ligand molecule In the present invention, the “ligand molecule” refers to a molecule or molecular fragment capable of specifically recognizing (or recognizing) and binding to the “biomolecule”. Examples of such “molecule” or “molecular fragment” include nucleic acids (DNA that may be single-stranded or double-stranded, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids), etc., Alternatively, nucleosides, nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modifications thereof Examples include, but are not limited to, molecules and complexes.
 「タンパク質」としては、例えば、抗体などが挙げられ、具体的には、抗αフェトプロテイン(AFP)モノクローナル抗体((株)日本医学臨床検査研究所などから入手可能)、抗ガン胎児性抗原(CEA)モノクローナル抗体、抗CA19-9モノクローナル抗体、抗PSAモノクローナル抗体などが挙げられる。 Examples of the “protein” include antibodies and the like, specifically, anti-α-fetoprotein (AFP) monoclonal antibody (available from Japan Medical Laboratory), anti-carcinoembryonic antigen (CEA) ) Monoclonal antibody, anti-CA19-9 monoclonal antibody, anti-PSA monoclonal antibody and the like.
 なお、本発明において、「抗体」という用語は、ポリクローナル抗体またはモノクローナル抗体、遺伝子組換えにより得られる抗体、および抗体断片を包含する。本発明において、リガンド分子の典型例は、抗体である。 In the present invention, the term “antibody” includes polyclonal or monoclonal antibodies, antibodies obtained by genetic recombination, and antibody fragments. In the present invention, a typical example of a ligand molecule is an antibody.
 結合態様
 本発明に係る蛍光測定方法で用いられる酵素固定基板11において、酵素23は基板21と直接的に、あるいは結合部22を介して間接的に結合している。基板21への酵素23の結合態様は、本発明の目的が達せられる限り特に限定されるものではない。しかし、本発明に係る蛍光測定方法においては、結合の安定性の点から、基板21と酵素23とが共有結合または分子間のアフィニティに基づく結合を介して結合していることが好ましい。ここで、基板21と酵素23との間に複数の結合が介在していてもよく、またこの複数の結合が、異なる種類の結合から成るものであってもよい。
Binding Mode In the enzyme-immobilized substrate 11 used in the fluorescence measurement method according to the present invention, the enzyme 23 is bonded directly to the substrate 21 or indirectly through the bonding portion 22. The binding mode of the enzyme 23 to the substrate 21 is not particularly limited as long as the object of the present invention is achieved. However, in the fluorescence measurement method according to the present invention, it is preferable that the substrate 21 and the enzyme 23 are bonded through a covalent bond or a bond based on an affinity between molecules from the viewpoint of the stability of the bond. Here, a plurality of bonds may be interposed between the substrate 21 and the enzyme 23, and the plurality of bonds may be composed of different types of bonds.
 ここで、結合部22が生体分子およびリガンド分子を含む場合、酵素固定基板11において、酵素23は、生体分子とリガンド分子との結合を介して基板21上に固定されている。 Here, in the case where the binding portion 22 includes a biomolecule and a ligand molecule, the enzyme 23 is fixed on the substrate 21 through a bond between the biomolecule and the ligand molecule in the enzyme-fixed substrate 11.
 その1つの態様として、酵素固定基板11において、基板21にリガンド分子が結合し、このリガンド分子に生体分子が結合し、この生体分子に酵素23が直接的または間接的に結合している。ここで、基板21上に上述したSAM層およびスペーサー層などの表面処理層が設けられている場合、リガンド分子は、そのような表面処理層を介して基板21と結合していてもよい。また、生体分子と酵素23とは、第2のリガンド分子を介在させることなく直接結合していてもよいし、第2のリガンド分子を介在させて間接的に結合していてもよい。 As one embodiment, in the enzyme-immobilized substrate 11, a ligand molecule is bound to the substrate 21, a biomolecule is bound to the ligand molecule, and an enzyme 23 is directly or indirectly bound to the biomolecule. Here, when the surface treatment layers such as the SAM layer and the spacer layer described above are provided on the substrate 21, the ligand molecules may be bonded to the substrate 21 through such a surface treatment layer. Further, the biomolecule and the enzyme 23 may be directly bonded without interposing the second ligand molecule, or may be indirectly bonded with the second ligand molecule interposed.
 生体分子と酵素23とが直接結合している場合の例としては、本発明をDNAハイブリダイゼーションアッセイに応用する場合のように、塩基の一部にビオチン修飾を施したターゲットDNAが「生体分子」として用いられており、ビオチン修飾が施された酵素とこのターゲットDNAとがビオチン-アビジン結合を通じて結合している場合が挙げられる。一方、生体分子と酵素23とが第2のリガンド分子を介在させて間接的に結合している場合の例としては、本発明をイムノアッセイに応用する場合のように、抗原および抗体がそれぞれ「生体分子」および「第2のリガンド分子」として用いられており、この抗原に対して、酵素23が抗体を介して結合している場合が挙げられる。 As an example of the case where the biomolecule and the enzyme 23 are directly bound, a target DNA in which a part of the base is modified with biotin is used as a “biomolecule” as in the case where the present invention is applied to a DNA hybridization assay. And the target DNA is bound with a biotin-modified enzyme through a biotin-avidin bond. On the other hand, as an example of the case where the biomolecule and the enzyme 23 are indirectly bound via the second ligand molecule, as in the case where the present invention is applied to an immunoassay, the antigen and the antibody are respectively The molecule is used as a “molecule” and a “second ligand molecule”, and there is a case where the enzyme 23 is bound to this antigen via an antibody.
 なお、この第2のリガンド分子に酵素23を直接結合させることが困難な場合には、この第2のリガンド分子を特異的に認識し(または、認識され)結合し得る第3のリガンド分子に酵素23を結合させることにより、第2のリガンド分子および第3のリガンド分子が介在した形で生体分子と酵素23とが結合していてもよい。 In addition, when it is difficult to directly bind the enzyme 23 to the second ligand molecule, the second ligand molecule is specifically recognized (or recognized) and the third ligand molecule capable of binding. By binding the enzyme 23, the biomolecule and the enzyme 23 may be bound in a form mediated by the second ligand molecule and the third ligand molecule.
 酵素固定基板11において、基板21と酵素23との間に介在する生体分子およびリガンド分子は、必ずしも直列的に配置されていなくてもよい。例えば、生体分子とリガンド分子とが結合する際にその結合部位に取り込まれやすい分子を介して酵素23が生体分子およびリガンド分子と結合する態様であってもよい。例えば、生体分子およびリガンド分子が核酸である場合、酵素23を結合させた適当なインターカレーターを用いることによって、酵素23を生体分子およびリガンド分子と結合させてもよい。 In the enzyme-immobilized substrate 11, the biomolecules and ligand molecules interposed between the substrate 21 and the enzyme 23 do not necessarily have to be arranged in series. For example, when the biomolecule and the ligand molecule are bound, the enzyme 23 may be bound to the biomolecule and the ligand molecule via a molecule that is easily incorporated into the binding site. For example, when the biomolecule and the ligand molecule are nucleic acids, the enzyme 23 may be bound to the biomolecule and the ligand molecule by using an appropriate intercalator to which the enzyme 23 is bound.
 《蛍光分子前駆分子》
 本発明に係る蛍光測定方法において、蛍光分子前駆分子41は、酵素23による酵素反応により蛍光分子42を生成させる基質として用いられる。この蛍光分子前駆分子41は、従来公知の蛍光原基質変換法における蛍光原基質に相当する分子である。
《Fluorescent molecule precursor molecule》
In the fluorescence measuring method according to the present invention, the fluorescent molecule precursor molecule 41 is used as a substrate for generating the fluorescent molecule 42 by the enzyme reaction by the enzyme 23. This fluorescent molecule precursor molecule 41 is a molecule corresponding to a fluorogenic substrate in a conventionally known fluorogenic substrate conversion method.
 本発明において「蛍光分子」とは、所定の励起光を照射する、または電界効果を利用して励起することによって蛍光を発光する分子を意味し、該「蛍光」は、燐光など各種の発光も含む。 In the present invention, the term “fluorescent molecule” means a molecule that emits fluorescence by irradiating with predetermined excitation light or being excited by using an electric field effect. Including.
 この蛍光分子前駆分子41は、酵素反応による化学変化によって、蛍光分子42に変化する分子である。ここで、本発明に用いられる蛍光分子前駆分子41は、酵素反応により生成する蛍光分子42における最大蛍光波長付近の波長領域において蛍光発光性を示さない限り、他の波長領域において蛍光発光性を有していてもよい。また、蛍光検出の妨げとならない限り、酵素反応により化学発光性分子の生成を伴うものであってもよい。 The fluorescent molecule precursor molecule 41 is a molecule that changes to a fluorescent molecule 42 due to a chemical change caused by an enzyme reaction. Here, the fluorescent molecule precursor molecule 41 used in the present invention has fluorescence in other wavelength regions as long as it does not exhibit fluorescence in the wavelength region near the maximum fluorescence wavelength in the fluorescent molecule 42 generated by the enzyme reaction. You may do it. Moreover, as long as it does not interfere with fluorescence detection, it may be accompanied by generation of chemiluminescent molecules by enzymatic reaction.
 本発明では、蛍光分子前駆分子41として、蛍光原基質変換法に基づく従来公知のアッセイ法において蛍光原基質として一般的に用いられる基質を用いることができる。このような蛍光分子前駆分子41の例として、西洋ワサビペルオキシダーゼ(HRP)用基質などの酸化還元酵素用基質、アルカリホスファターゼ用基質などのホスファターゼ用基質、および、β-ガラクトシダーゼ用基質などのグリコシダーゼ用基質が挙げられるが、これらに限定されるものではない。 In the present invention, as the fluorescent molecule precursor molecule 41, a substrate generally used as a fluorogenic substrate in a conventionally known assay method based on the fluorogenic substrate conversion method can be used. Examples of such fluorescent molecule precursor molecules 41 include oxidoreductase substrates such as horseradish peroxidase (HRP) substrates, phosphatase substrates such as alkaline phosphatase substrates, and glycosidase substrates such as β-galactosidase substrates. However, it is not limited to these.
 蛍光分子前駆分子41として用いられる代表的な酵素反応用基質と蛍光反応によりこの基質から生成する蛍光分子の吸収波長(nm)および発光波長(nm)とを表1に示す。 Table 1 shows a typical enzyme reaction substrate used as the fluorescent molecule precursor molecule 41 and the absorption wavelength (nm) and emission wavelength (nm) of the fluorescent molecule generated from this substrate by the fluorescence reaction.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 《水溶性高分子》
 本発明に係る蛍光測定方法の最大の特徴は、酵素固定基板11上での酵素反応および、酵素反応により生成した蛍光分子42からの発光検出を水溶性高分子43存在下で行うことにある。ここで、水溶性高分子43は、酵素23による酵素反応により生成した蛍光分子42を捕捉し、溶液中への拡散を防ぐ目的で用いられる。蛍光測定における蛍光検出の対象となる領域は、測定系中のごく狭い部分であることから、蛍光分子42を蛍光検出の対象となる領域付近に局在させることによって、蛍光発光の検出効率を高めることができ、その結果検出感度の向上が可能となる。
《Water-soluble polymer》
The greatest feature of the fluorescence measurement method according to the present invention is that the enzyme reaction on the enzyme-immobilized substrate 11 and the detection of luminescence from the fluorescent molecule 42 generated by the enzyme reaction are performed in the presence of the water-soluble polymer 43. Here, the water-soluble polymer 43 is used for the purpose of capturing the fluorescent molecules 42 generated by the enzyme reaction by the enzyme 23 and preventing diffusion into the solution. Since the region to be subjected to fluorescence detection in fluorescence measurement is a very narrow portion in the measurement system, the detection efficiency of fluorescence emission is increased by localizing the fluorescent molecules 42 in the vicinity of the region to be subjected to fluorescence detection. As a result, the detection sensitivity can be improved.
 蛍光分子42の溶液中への拡散を左右する一つの要素として、溶液の粘度が挙げられる。酵素固定基板11とその上に存在する蛍光分子前駆分子41の溶液とからなる酵素反応系において、水溶性高分子43がこの溶液中に存在する場合、水溶性高分子43が存在しない場合と比べて溶液の粘度が高い。一般に、溶液の粘度が高いほど当該溶液内での溶質が拡散しにくくなることから、水溶性高分子43が存在する溶液においては、水溶性高分子43が存在しない溶液と比べて、酵素反応により生じた蛍光分子42が拡散しにくい傾向にある。 One factor that affects the diffusion of the fluorescent molecules 42 into the solution is the viscosity of the solution. In the enzyme reaction system composed of the enzyme-immobilized substrate 11 and the solution of the fluorescent molecule precursor molecule 41 existing thereon, the water-soluble polymer 43 is present in this solution compared to the case where the water-soluble polymer 43 is not present. The viscosity of the solution is high. In general, the higher the viscosity of the solution, the more difficult it is for the solute in the solution to diffuse. The generated fluorescent molecules 42 tend to be difficult to diffuse.
 また、蛍光分子42の溶液中への拡散を左右するもう一つの要素として、電荷が挙げられる。従来公知の酵素反応用基質を蛍光分子前駆分子41として用いる場合、多くの場合、酵素反応により生じる蛍光分子42は電荷を有している。ここで、水溶性高分子43がこの蛍光分子42と逆の電荷を有していれば、蛍光分子42と水溶性高分子43との静電相互作用により蛍光分子42は水溶性高分子43と結合しやすくなり、その結果として蛍光分子42が溶液中に拡散することを抑制することができる。このため、水溶性高分子43は、イオン性基を有することが好ましい。ただ、本発明で用いられる蛍光分子前駆分子41から生成する蛍光分子42は、多くの場合、蛍光測定を行う条件下でアニオン型の分子構造を有する。このことから、本発明では、水溶性高分子43が有するイオン性基として、カチオン性基が含まれることが好ましい。特に好ましいイオン性基は、酵素反応条件下において、蛍光分子前駆分子41との結合性が低く、酵素反応により生じる蛍光分子42との結合性が高いカチオン性基である。このカチオン性基の例としては、第3級アミノ基、および第4級アンモニウム基が挙げられる。具体的な第3級アミノ基および第4級アンモニウム基については、水溶性高分子43の種類によって好適な基が異なることから後述する。本発明で用いられる水溶性高分子43には、このようなカチオン性基が1種単独で含まれていてもよいし、あるいは2種以上を組み合わせた形で含まれていてもよい。 Another factor that affects the diffusion of the fluorescent molecules 42 into the solution is charge. When a conventionally known enzyme reaction substrate is used as the fluorescent molecule precursor molecule 41, in many cases, the fluorescent molecule 42 generated by the enzyme reaction has a charge. Here, if the water-soluble polymer 43 has a charge opposite to that of the fluorescent molecule 42, the fluorescent molecule 42 is separated from the water-soluble polymer 43 by electrostatic interaction between the fluorescent molecule 42 and the water-soluble polymer 43. As a result, the fluorescent molecules 42 can be prevented from diffusing into the solution. For this reason, it is preferable that the water-soluble polymer 43 has an ionic group. However, in many cases, the fluorescent molecule 42 generated from the fluorescent molecule precursor molecule 41 used in the present invention has an anionic molecular structure under the condition of performing fluorescence measurement. For this reason, in the present invention, it is preferable that a cationic group is included as the ionic group of the water-soluble polymer 43. A particularly preferred ionic group is a cationic group that has a low binding property to the fluorescent molecule precursor molecule 41 and a high binding property to the fluorescent molecule 42 generated by the enzymatic reaction under enzyme reaction conditions. Examples of this cationic group include a tertiary amino group and a quaternary ammonium group. Specific tertiary amino groups and quaternary ammonium groups will be described later because suitable groups differ depending on the type of the water-soluble polymer 43. The water-soluble polymer 43 used in the present invention may contain one kind of such a cationic group or may contain two or more kinds in combination.
 なお、本発明で用いられる水溶性高分子43は、電荷のバランスを取るために、イオン性基としてカチオン性基のほかにアニオン性基を含んでいてもよい。この場合、好ましいアニオン性基として、スルホン酸基、カルボン酸基、ホスホン酸基、リン酸基などが挙げられる。 The water-soluble polymer 43 used in the present invention may contain an anionic group in addition to a cationic group as an ionic group in order to balance the charge. In this case, preferred anionic groups include sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, and phosphoric acid groups.
 本発明で用いられる水溶性高分子43において、分子中に含まれるカチオン性基の数が多いほど、より多くの蛍光分子42を捕捉することができるので好ましい。分子中に含まれるカチオン性基の数については用いる水溶性高分子43の種類によりその基準が異なることから、本発明で用いられる水溶性高分子43の具体例とともに、後述する。 In the water-soluble polymer 43 used in the present invention, the larger the number of cationic groups contained in the molecule, the more fluorescent molecules 42 can be captured, which is preferable. The number of cationic groups contained in the molecule varies depending on the type of water-soluble polymer 43 used, and will be described later together with a specific example of the water-soluble polymer 43 used in the present invention.
 本発明の蛍光測定方法において、酵素固定基板11上での酵素反応に生成した蛍光分子42が水溶性高分子43と結合して蛍光分子-水溶性高分子複合体31が形成する。この蛍光分子-水溶性高分子複合体31において、蛍光分子42と水溶性高分子43との間には、最低でも分子間力に基づく相互作用による結合が存在している。ここで、水溶性高分子43がイオン性基を含む場合には、蛍光分子42と水溶性高分子43との間に分子間力に基づく相互作用に加えて静電相互作用が働くようになる。その場合、蛍光分子42と水溶性高分子43との間に静電相互作用に基づくより強い結合が形成されるので、蛍光分子42と水溶性高分子43との間の結びつきがより強固になり、蛍光分子42の溶液中への拡散をより強く抑制することができる。このことから、本発明の蛍光測定方法においては、蛍光分子-水溶性高分子複合体31が、蛍光分子42と水溶性高分子43との静電相互作用により形成されることが好ましい。 In the fluorescence measurement method of the present invention, the fluorescent molecule 42 generated in the enzyme reaction on the enzyme-immobilized substrate 11 is combined with the water-soluble polymer 43 to form the fluorescent molecule-water-soluble polymer complex 31. In the fluorescent molecule-water-soluble polymer complex 31, there is at least a bond between the fluorescent molecule 42 and the water-soluble polymer 43 due to the interaction based on the intermolecular force. Here, in the case where the water-soluble polymer 43 includes an ionic group, an electrostatic interaction acts between the fluorescent molecule 42 and the water-soluble polymer 43 in addition to the interaction based on the intermolecular force. . In that case, since a stronger bond based on electrostatic interaction is formed between the fluorescent molecule 42 and the water-soluble polymer 43, the connection between the fluorescent molecule 42 and the water-soluble polymer 43 becomes stronger. The diffusion of the fluorescent molecules 42 into the solution can be more strongly suppressed. Therefore, in the fluorescence measurement method of the present invention, the fluorescent molecule-water-soluble polymer complex 31 is preferably formed by electrostatic interaction between the fluorescent molecule 42 and the water-soluble polymer 43.
 ところで、工程(b)において、酵素固定基板11上に蛍光分子前駆分子41と水溶性高分子43とが導入されるが、この蛍光分子前駆分子41と水溶性高分子43とを含む溶液は通常流路を通じて導入されることから流動性を示す必要がある。このような要求を満たすため、本発明に係る蛍光測定方法の1つの態様においては、水溶性高分子43として直鎖状の非架橋型水溶性ポリマーが用いられる。このような水溶性ポリマーを用いると、溶液の形で酵素固定基板11上に導入する際には流路を通じた導入が可能であり、また、工程(c)における酵素反応の際に、溶液中に分布する蛍光分子前駆分子41が酵素固定基板11中の酵素23に接近することを妨げないという利点がある。ここで、直鎖状の非架橋型水溶性ポリマーの代わりに架橋型のポリマーを水溶性高分子43として用いると、ゲル状になり、流路を通じた導入ができなくなるおそれがある。この直鎖状の非架橋型水溶性ポリマーの例としては、直鎖状ポリアクリルアミドおよびその誘導体、並びに直鎖状セルロース誘導体などが挙げられる。 By the way, in the step (b), the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 are introduced onto the enzyme-immobilized substrate 11, and a solution containing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 is usually used. It is necessary to show fluidity because it is introduced through the flow path. In order to satisfy such a requirement, in one embodiment of the fluorescence measurement method according to the present invention, a linear non-crosslinked water-soluble polymer is used as the water-soluble polymer 43. When such a water-soluble polymer is used, introduction into the enzyme immobilization substrate 11 in the form of a solution can be performed through a flow path, and in the solution during the enzyme reaction in the step (c). There is an advantage that the fluorescent molecule precursor molecules 41 distributed on the substrate are not prevented from approaching the enzyme 23 in the enzyme-immobilized substrate 11. Here, if a cross-linked polymer is used as the water-soluble polymer 43 instead of the linear non-cross-linked water-soluble polymer, the water-soluble polymer 43 may become a gel and cannot be introduced through the flow path. Examples of this linear non-crosslinked water-soluble polymer include linear polyacrylamide and derivatives thereof, and linear cellulose derivatives.
 また、本発明の蛍光測定方法のもう1つの態様においては、水溶性高分子43としてチクソトロピー性を有する高分子マトリクスゲルが用いられる。このような高分子マトリクスゲルは、応力が存在する状況下では流動性を示すので、流路を通じて導入することが可能であり、一方、応力が存在しなくなり静止状態におかれると流動性を失うので、酵素固定基板11上に静置された後では酵素固定基板11上から離れないという利点がある。このチクソトロピー性を有する高分子マトリクスゲルの例としては、水溶性セルロース誘導体、キトサンおよびその誘導体等の多糖類などが挙げられる。 In another embodiment of the fluorescence measurement method of the present invention, a polymer matrix gel having thixotropy is used as the water-soluble polymer 43. Such a polymer matrix gel exhibits fluidity in the presence of stress and can be introduced through the flow path, while it loses fluidity when no stress is present and it remains stationary. Therefore, there is an advantage that after leaving on the enzyme-immobilized substrate 11, it is not separated from the enzyme-immobilized substrate 11. Examples of the polymer matrix gel having thixotropic properties include water-soluble cellulose derivatives, polysaccharides such as chitosan and derivatives thereof.
 本発明で用いられる水溶性高分子43は、本発明の作用・効果を奏しうるものであれば、必ずしも、上記直鎖状の非架橋型水溶性ポリマーおよび上記チクソトロピー性を有する高分子マトリクスゲルに限定されるものではない。水溶性高分子43として、上記直鎖状の非架橋型水溶性ポリマーおよび上記チクソトロピー性を有する高分子マトリクスゲルは、1種単独で用いることもできるし、2種以上を組み合わせて用いることもできる。また、本発明で用いられる水溶性高分子43は、上記直鎖状の非架橋型水溶性ポリマーと上記チクソトロピー性を有する高分子マトリクスゲルとの両方の性質を有していてもよい。このような水溶性高分子43を構成する骨格としては、直鎖状ポリアクリルアミド、上記多糖類から選ばれる1つ以上の骨格を有していることが好ましい。 The water-soluble polymer 43 used in the present invention is not necessarily limited to the linear non-crosslinked water-soluble polymer and the thixotropic polymer matrix gel as long as the functions and effects of the present invention can be achieved. It is not limited. As the water-soluble polymer 43, the linear non-crosslinked water-soluble polymer and the thixotropic polymer matrix gel can be used singly or in combination of two or more. . In addition, the water-soluble polymer 43 used in the present invention may have both properties of the linear non-crosslinked water-soluble polymer and the thixotropic polymer matrix gel. The skeleton constituting such a water-soluble polymer 43 preferably has one or more skeletons selected from linear polyacrylamide and the above polysaccharides.
 このような水溶性高分子43として用いられるカチオン性高分子として、シャンプー、リンスなどのトイレタリー用途で一般的に用いられる水溶性カチオン化ポリマーが好適に用いられる。このような水溶性カチオン化ポリマーの典型的な化合物として、例えば、カチオン化セルロース誘導体、カチオン性澱粉およびカチオン化グアガム誘導体などの水溶性カチオン化多糖類;並びに、ジアリル4級アンモニウム塩/アクリルアミド共重合体およびビニルピロリドン/4級アンモニウム修飾アクリルアミド共重合体などのカチオン化ポリアクリルアミド類が挙げられる。これらの化合物として、例えば、特開平6-234618号公報(特許文献3)に記載の化合物を用いることができる。 As the cationic polymer used as the water-soluble polymer 43, a water-soluble cationized polymer generally used for toiletries such as shampoo and rinse is preferably used. Typical compounds of such water-soluble cationized polymers include, for example, water-soluble cationized polysaccharides such as cationized cellulose derivatives, cationic starches and cationized guar gum derivatives; and diallyl quaternary ammonium salts / acrylamide co-polymers And cationized polyacrylamides such as vinylpyrrolidone / quaternary ammonium modified acrylamide copolymers. As these compounds, for example, compounds described in JP-A-62-234618 (Patent Document 3) can be used.
 これらのうち、本発明で水溶性高分子43として用いることができるカチオン化セルロース誘導体として、カチオン性基を有するポリアルキルオキシ基で置換されたアンヒドログルコース単位をアンヒドログルコース単位として含むカチオン化セルロース誘導体が挙げられる。本発明で用いられるカチオン化セルロース誘導体は、カチオン性基を有するポリアルキルオキシ基で置換されたアンヒドログルコース単位を含めて、50~20000個のアンヒドログルコース単位を含むことが好ましい。 Among these, as a cationized cellulose derivative that can be used as the water-soluble polymer 43 in the present invention, a cationized cellulose containing an anhydroglucose unit substituted with a polyalkyloxy group having a cationic group as an anhydroglucose unit. Derivatives. The cationized cellulose derivative used in the present invention preferably contains 50 to 20000 anhydroglucose units including an anhydroglucose unit substituted with a polyalkyloxy group having a cationic group.
 このカチオン化セルロース誘導体に含まれるカチオン性基としては、第4級アンモニウム基が挙げられる。第4級アンモニウム基の一例として、下記式(1)に示されるような構造を有する第4級アンモニウム基が挙げられる。 Examples of the cationic group contained in the cationized cellulose derivative include a quaternary ammonium group. An example of the quaternary ammonium group is a quaternary ammonium group having a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記(1)式中、R1,R2,R3はそれぞれ独立に、炭素数10以下のアルキル基、アリール基、アラルキル基であり、R4はアルキレンまたはヒドロキシアルキレン基であり、Xは陰イオンである。また、R1,R2,R3のうちの2以上が式中の窒素原子を含んだ形で複素環を形成しても良い。本発明の一態様においては、セルロース骨格の形成に関与しない水酸基に結合したポリアルキルオキシ鎖に、上記式(1)に示されるような構造を有する第4級アンモニウム基が結合した態様でアンヒドログルコース単位に導入されている。 In the above formula (1), R 1 , R 2 , and R 3 are each independently an alkyl group, aryl group, or aralkyl group having 10 or less carbon atoms, R 4 is an alkylene or hydroxyalkylene group, and X is negative Ion. Further, two or more of R 1 , R 2 and R 3 may form a heterocyclic ring in a form containing a nitrogen atom in the formula. In one embodiment of the present invention, a quaternary ammonium group having a structure represented by the above formula (1) is bonded to a polyalkyloxy chain bonded to a hydroxyl group not involved in the formation of the cellulose skeleton. Introduced into glucose units.
 カチオン化セルロース誘導体、カチオン性澱粉、カチオン化グアガム誘導体等の多糖類の場合には、分子中に含まれるカチオン性基の数をカチオン置換度、すなわち、アンヒドログルコース単位など構成単糖単位に導入されたカチオン基の平均個数で判断することができる。カチオン化セルロースのカチオン置換度は、0.01~1、すなわちアンヒドログルコース単位あたりに導入されたカチオン基の平均個数が0.01~1、好ましくは0.02~0.5である。 In the case of polysaccharides such as cationized cellulose derivatives, cationic starch, and cationized guar gum derivatives, the number of cationic groups contained in the molecule is introduced into the constituent monosaccharide units such as the degree of cation substitution, that is, anhydroglucose units. This can be determined by the average number of cationic groups formed. The degree of cation substitution of the cationized cellulose is 0.01 to 1, that is, the average number of cationic groups introduced per anhydroglucose unit is 0.01 to 1, preferably 0.02 to 0.5.
 カチオン化セルロース誘導体の市販品としてはカチセロ H-60(花王製)、カチナール(東邦化学製)、レオガード(マツモト交商製)等が挙げられる。 Examples of commercially available cationized cellulose derivatives include Katachiro H-60 (manufactured by Kao), Katchinar (manufactured by Toho Chemical), Leogard (manufactured by Matsumoto Kosho), and the like.
 本発明で水溶性高分子43として用いることができるカチオン性澱粉として、澱粉残基の水酸基がカチオン性官能基で置換されたカチオン化澱粉が挙げられる。 Examples of the cationic starch that can be used as the water-soluble polymer 43 in the present invention include cationized starch in which the hydroxyl group of the starch residue is substituted with a cationic functional group.
 このカチオン性澱粉に含まれるカチオン性基としては、第4級アンモニウム基が挙げられる。第4級アンモニウム基の一例として、上記式(1)に示されるような構造を有する第4級アンモニウム基が挙げられる。 As a cationic group contained in this cationic starch, a quaternary ammonium group can be mentioned. An example of the quaternary ammonium group is a quaternary ammonium group having a structure as shown in the above formula (1).
 カチオン性澱粉は、カチオン置換度が0.01~1、すなわちアンヒドログルコース単位あたり0.01~1個、特に0.02~0.5個のカチオン基が導入されたものが好ましい。カチオン性澱粉のうち、塩化ヒドロキシプロピルトリモニウム澱粉については市販されており、例えば、商品名「センソーマーCI-50」(分子量(GPC-MALLS法):20万)として、マツモト交商から販売されている。 The cationic starch preferably has a cation substitution degree of 0.01 to 1, that is, 0.01 to 1 and especially 0.02 to 0.5 cationic groups introduced per anhydroglucose unit. Among the cationic starches, hydroxypropyltrimonium chloride starch is commercially available. For example, it is sold by Matsumoto Kosho under the trade name “Sensomer CI-50” (molecular weight (GPC-MALLS method): 200,000). Yes.
 本発明で水溶性高分子43として用いることができるカチオン化グアガム誘導体として、グアガム残基の水酸基がカチオン性基で置換されたカチオン化グアガム誘導体が挙げられる。 Examples of the cationized guar gum derivative that can be used as the water-soluble polymer 43 in the present invention include a cationized guar gum derivative in which the hydroxyl group of the guar gum residue is substituted with a cationic group.
 このカチオン化グアガム誘導体に含まれるカチオン性基としては、第4級アンモニウム基が挙げられる。第4級アンモニウム基の一例として、上記式(1)に示されるような構造を有する第4級アンモニウム基が挙げられる。 Examples of the cationic group contained in the cationized guar gum derivative include a quaternary ammonium group. An example of the quaternary ammonium group is a quaternary ammonium group having a structure as shown in the above formula (1).
 カチオン化グアガム誘導体は、カチオン置換度が0.01~1、すなわち0.01~1個、特に0.02~0.5個のカチオン基が糖ユニットに導入されたものが好ましい。このようなカチオン化グアガム誘導体は、特公昭58-35640号公報、特公昭60-46158号公報、及び特開昭58-53996号公報中に記載されており、例えばセラニーズ-シュタイン・ホール社から商品名「ジャガー」で市販されている。 The cationized guar gum derivative preferably has a cation substitution degree of 0.01 to 1, that is, 0.01 to 1, particularly 0.02 to 0.5, in which a cationic group is introduced into the sugar unit. Such cationized guar gum derivatives are described in JP-B-58-35640, JP-B-60-46158, and JP-A-58-53996. For example, products from Celanese Stein Hall It is marketed under the name “Jaguar”.
 本発明で水溶性高分子43として用いられる水溶性カチオン化多糖類は、上記に例示したようなグルコースを構成単位とする水溶性カチオン化多糖類に限定されるものではなく、グルコースを構成単位とする他の種類の水溶性カチオン化多糖類でもよいし、グルコース以外の単糖を構成単位として含む水溶性カチオン化多糖類であってもよい。これらの水溶性カチオン化多糖類の場合にも、通常カチオン置換度が0.01~1のものを好適に用いることができる。 The water-soluble cationized polysaccharide used as the water-soluble polymer 43 in the present invention is not limited to the water-soluble cationized polysaccharide having glucose as a constituent unit as exemplified above, but glucose as a constituent unit. Other types of water-soluble cationized polysaccharides, or water-soluble cationized polysaccharides containing monosaccharides other than glucose as constituent units may be used. In the case of these water-soluble cationized polysaccharides, those having a cation substitution degree of 0.01 to 1 can be preferably used.
 本発明で水溶性高分子43として用いることができるジアリル4級アンモニウム塩/アクリルアミド共重合物は、ジアリルアンモニウム由来の環状アンモニウム単位と、アクリルアミド単位との共重合体である。このアクリルアミド単位において、アミド結合の窒素原子に結合した水素原子の一部または全部が低級アルキル基(炭素数1~3)またはフェニル基によって置換されていてもよい。 The diallyl quaternary ammonium salt / acrylamide copolymer that can be used as the water-soluble polymer 43 in the present invention is a copolymer of diallylammonium-derived cyclic ammonium units and acrylamide units. In this acrylamide unit, some or all of the hydrogen atoms bonded to the nitrogen atom of the amide bond may be substituted with a lower alkyl group (1 to 3 carbon atoms) or a phenyl group.
 このジアリル4級アンモニウム塩/アクリルアミド共重合物に含まれる環状アンモニウム単位としては、下記式(2a)または(2b)に示されるような構造を有する環状アンモニウム単位が挙げられる。 Examples of the cyclic ammonium unit contained in the diallyl quaternary ammonium salt / acrylamide copolymer include cyclic ammonium units having a structure represented by the following formula (2a) or (2b).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記(2a)および(2b)式中、R5,Rはそれぞれ独立に、水素、アルキル基(炭素数1~18)、フェニル基、アリール基、ヒドロキシアルキル基、アミドアルキル基、シアノアルキル基、アルコキシアルキル基、カルボアルコキシアルキル基であり、R7,Rはそれぞれ独立に、水素原子、低級アルキル基(炭素数1~3)、フェニル基であり、Xは陰イオンである。 In the formulas (2a) and (2b), R 5 and R 6 are each independently hydrogen, an alkyl group (having 1 to 18 carbon atoms), a phenyl group, an aryl group, a hydroxyalkyl group, an amidoalkyl group, a cyanoalkyl group. , An alkoxyalkyl group and a carboalkoxyalkyl group, R 7 and R 8 are each independently a hydrogen atom, a lower alkyl group (having 1 to 3 carbon atoms), a phenyl group, and X is an anion.
 ジアリル4級アンモニウム塩/アクリルアミド共重合物は、分子量として3万~200万、好ましくは10万~200万の範囲のものが良い。ジアリル4級アンモニウム塩/アクリルアミド共重合物における環状アンモニウム単位とアクリルアミド単位との比率には、特に制限がない。 The diallyl quaternary ammonium salt / acrylamide copolymer has a molecular weight of 30,000 to 2,000,000, preferably 100,000 to 2,000,000. There is no particular limitation on the ratio of cyclic ammonium units to acrylamide units in the diallyl quaternary ammonium salt / acrylamide copolymer.
 上記のようなジアリル4級アンモニウム塩/アクリルアミド共重合物のうち、塩化ジメチルジアリルアンモニウム/アクリルアミド共重合体、すなわち、上記式(2a)または(2b)において、R5およびR6がメチル基、R7およびR8が水素原子で表される共重合体が水溶性高分子43として好ましく用いられる。この共重合体は、例えば商品名「マーコート550」(重合比:塩化ジメチルジアリルアンモニウム/アクリルアミド=30/70(モル比);分子量(GPC-MALLS法):160万)としてマツモト交商から販売されている。 Among the diallyl quaternary ammonium salt / acrylamide copolymers as described above, dimethyldiallylammonium chloride / acrylamide copolymer, that is, in the above formula (2a) or (2b), R 5 and R 6 are methyl groups, R A copolymer in which 7 and R 8 are hydrogen atoms is preferably used as the water-soluble polymer 43. This copolymer is sold by Matsumoto Trading under the trade name “Mercoat 550” (polymerization ratio: dimethyldiallylammonium chloride / acrylamide = 30/70 (molar ratio); molecular weight (GPC-MALLS method): 1.6 million)). ing.
 本発明で水溶性高分子43として用いることができるビニルピロリドン/4級アンモニウム修飾アクリルアミド共重合体として、ビニルピロリドン単位と、第4級アンモニウム基がアミド結合の窒素原子と結合した4級アンモニウム修飾アクリルアミド単位とからなる共重合体が挙げられる。 As a vinylpyrrolidone / quaternary ammonium modified acrylamide copolymer that can be used as the water-soluble polymer 43 in the present invention, a quaternary ammonium modified acrylamide in which a vinylpyrrolidone unit and a quaternary ammonium group are bonded to a nitrogen atom of an amide bond. Examples thereof include a copolymer comprising units.
 この4級アンモニウム修飾アクリルアミド単位に含まれる第4級アンモニウム基として、下記式(3)に示されるような構造を有する第4級アンモニウム基が挙げられる。 Examples of the quaternary ammonium group contained in the quaternary ammonium-modified acrylamide unit include a quaternary ammonium group having a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記(3)式中、R9,R10,R11はそれぞれ独立に、水素原子、炭素数1~4のアルキル基、ヒドロキシアルキル基、アミドアルキル基、シアノアルキル基、アルコキシアルキル基、カルボアルコキシアルキル基であり、R12は炭素数10以下の直鎖アルキル基であり、Xは陰イオンである。ここで、この4級アンモニウム修飾アクリルアミド単位において、カルボ基に隣接する主鎖上の炭素は、炭素数3以下のアルキル基でさらに置換されていてもよい。 In the above formula (3), R 9 , R 10 and R 11 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group, an amidoalkyl group, a cyanoalkyl group, an alkoxyalkyl group, a carboalkoxy group. An alkyl group, R 12 is a linear alkyl group having 10 or less carbon atoms, and X is an anion. Here, in this quaternary ammonium-modified acrylamide unit, the carbon on the main chain adjacent to the carbo group may be further substituted with an alkyl group having 3 or less carbon atoms.
 ビニルピロリドン/4級アンモニウム修飾アクリルアミド共重合体の分子量は、1万~200万、好ましくは5万~150万が特に良い。この共重合体中に含まれるカチオン性高分子に由来するカチオン性窒素の含有量はビニル重合体にして0.004~0.2%、好ましくは0.01~0.15%である。ビニルピロリドン/4級アンモニウム修飾アクリルアミド共重合体におけるビニルピロリドン単位と4級アンモニウム修飾アクリルアミド単位との比率には、特に制限がない。 The molecular weight of the vinylpyrrolidone / quaternary ammonium modified acrylamide copolymer is 10,000 to 2,000,000, preferably 50,000 to 1,500,000. The content of the cationic nitrogen derived from the cationic polymer contained in this copolymer is 0.004 to 0.2%, preferably 0.01 to 0.15% in terms of vinyl polymer. The ratio of the vinyl pyrrolidone unit and the quaternary ammonium modified acrylamide unit in the vinyl pyrrolidone / quaternary ammonium modified acrylamide copolymer is not particularly limited.
 本発明で水溶性高分子43として用いられるカチオン化ポリアクリルアミド類は、上記に例示したようなカチオン化ポリアクリルアミド類に限定されるものではない。本発明で水溶性高分子43として用いられるカチオン化ポリアクリルアミド類において、カチオン性基は、4級アンモニウム修飾アクリルアミド単位などの形でアクリルアミド単位に導入されていてもよいし、上記環状アンモニウム単位などの形で、アクリルアミド単位とともに共重合させるために用いられる他のモノマー単位に導入されていてもよいし、アクリルアミド単位および当該他のモノマー単位の両方に導入されていてもよい。 The cationized polyacrylamide used as the water-soluble polymer 43 in the present invention is not limited to the cationized polyacrylamides exemplified above. In the cationized polyacrylamides used as the water-soluble polymer 43 in the present invention, the cationic group may be introduced into the acrylamide unit in the form of a quaternary ammonium-modified acrylamide unit or the cyclic ammonium unit or the like. In the form, it may be introduced into another monomer unit used for copolymerization with the acrylamide unit, or may be introduced into both the acrylamide unit and the other monomer unit.
 本発明で用いられる水溶性高分子43は、対応するモノマーを重合または共重合させることにより製造してもよいし、既存の高分子化合物に対して必要に応じて従来公知の手法による化学修飾を施すことにより製造してもよい。イオン性基を有する水溶性高分子43の場合には、イオン性基を有さない対応するモノマーとイオン性基を有するモノマーとを共重合し、必要に応じてさらに化学修飾を施すことによって製造してもよいし、イオン性基を有さない既存の高分子化合物に対してイオン性基を導入することによって製造してもよい。例えば、イオン性基を有する直鎖状ポリアクリルアミドは、アクリルアミドを、例えば、ジアリルアンモニウム系化合物等適当なイオン性基を有するモノマーと共重合するの方法、あるいは、4級アンモニウム修飾アクリルアミドを必要に応じて他のモノマー単位とともに(共)重合させる方法により得ることができる。また、イオン性基を有する多糖類は、母体となる市販の多糖類に対して、従来公知の手法による化学修飾を施してイオン性基を導入することにより得ることができる。 The water-soluble polymer 43 used in the present invention may be produced by polymerizing or copolymerizing a corresponding monomer, or chemical modification by a conventionally known method may be performed on an existing polymer compound as necessary. You may manufacture by giving. In the case of the water-soluble polymer 43 having an ionic group, it is produced by copolymerizing a corresponding monomer having no ionic group and a monomer having an ionic group, and further applying chemical modification as necessary. Alternatively, it may be produced by introducing an ionic group into an existing polymer compound having no ionic group. For example, linear polyacrylamide having an ionic group is prepared by a method of copolymerizing acrylamide with a monomer having an appropriate ionic group such as a diallylammonium compound, or a quaternary ammonium-modified acrylamide as necessary. And (co) polymerization with other monomer units. Moreover, the polysaccharide which has an ionic group can be obtained by performing the chemical modification by a conventionally well-known method with respect to the commercially available polysaccharide used as a base | substrate, and introduce | transducing an ionic group.
 なお、該当する場合には、対応する市販品を上記水溶性高分子43として用いてもよい。 If applicable, a corresponding commercially available product may be used as the water-soluble polymer 43.
 本発明で用いられる水溶性高分子43の分子量は、酵素反応を妨げないよう、重量平均分子量として通常1万~200万、好ましくは5万~200万の範囲にある。 The molecular weight of the water-soluble polymer 43 used in the present invention is usually in the range of 10,000 to 2,000,000, preferably 50,000 to 2,000,000 as a weight average molecular weight so as not to disturb the enzyme reaction.
 《水溶性高分子および蛍光分子前駆分子の導入》
 本発明に係る蛍光測定方法において、酵素固定基板11上に蛍光分子前駆分子41および水溶性高分子43を導入する方法は特に限定されるものではない。しかし、本発明に係る蛍光測定方法の典型的な態様において、水溶性高分子43を使用しない対応する従来公知の蛍光測定方法と同様、閉じた流路系中に酵素固定基板11が配置され、且つ流路を通じて各種薬剤や溶液等が供給される測定系で行われる。そのような測定系で使用する際の操作性の点から、蛍光分子前駆分子41および水溶性高分子43は、通常、溶液の形で酵素固定基板11上に導入されるものであり、その典型的な導入態様では、送液の形で流路を通じて酵素固定基板11上に導入される。
<Introduction of water-soluble polymer and fluorescent molecule precursor molecule>
In the fluorescence measurement method according to the present invention, the method for introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 onto the enzyme-immobilized substrate 11 is not particularly limited. However, in a typical embodiment of the fluorescence measurement method according to the present invention, the enzyme-immobilized substrate 11 is disposed in a closed channel system, as in the corresponding conventional fluorescence measurement method that does not use the water-soluble polymer 43, In addition, the measurement is performed in a measurement system in which various drugs, solutions, and the like are supplied through the flow path. From the viewpoint of operability when used in such a measurement system, the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 are usually introduced onto the enzyme-immobilized substrate 11 in the form of a solution. In a typical introduction mode, it is introduced onto the enzyme-immobilized substrate 11 through a flow path in the form of a liquid feed.
 蛍光分子前駆分子41および水溶性高分子43を溶液として導入する場合に用いられる溶媒または緩衝液は、水溶性高分子43を使用しない対応する従来公知の蛍光測定方法で用いられる溶媒または緩衝液と同様のものであり、蛍光分子前駆分子41の種類に合わせて適当なものを用いることができる。 The solvent or buffer used when introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 as a solution is the same as the solvent or buffer used in the corresponding conventionally known fluorescence measurement method that does not use the water-soluble polymer 43. The same thing can be used according to the kind of the fluorescent molecule precursor molecule 41.
 蛍光分子前駆分子41および水溶性高分子43を導入する際には、必要に応じて、従来公知の蛍光原基質変換法に基づくアッセイ法で一般に用いられる添加剤を加えてもよい。 When introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43, an additive generally used in an assay method based on a conventionally known fluorogenic substrate conversion method may be added, if necessary.
 蛍光分子前駆分子41および水溶性高分子43を導入する順番については、本発明の作用・効果を減殺しない限り特に問わない。蛍光分子前駆分子41と水溶性高分子43とのうちいずれかを先に導入してもよく、また、蛍光分子前駆分子41および水溶性高分子43を同時に導入してもよい。ただ、酵素反応により生成する蛍光分子42の拡散を抑制する観点からは、蛍光分子前駆分子41は、水溶性高分子43と同時に、あるいは水溶性高分子43を導入した後に導入することが好ましい。 The order of introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 is not particularly limited as long as the action / effect of the present invention is not diminished. Either the fluorescent molecule precursor molecule 41 or the water-soluble polymer 43 may be introduced first, or the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 may be introduced simultaneously. However, from the viewpoint of suppressing the diffusion of the fluorescent molecule 42 generated by the enzyme reaction, the fluorescent molecule precursor molecule 41 is preferably introduced simultaneously with the water-soluble polymer 43 or after the water-soluble polymer 43 is introduced.
 酵素反応の際、生成する蛍光分子42をより多く捕捉するためには、酵素固定基板11上の溶液中に存在する水溶性高分子43の量が多い方が好ましい。その一方、水溶性高分子43を溶液として導入するためには一定の流動性が必要であることから、水溶性高分子43を導入する際の溶液の粘度が高くなりすぎないことが好ましい。これらを考慮すると、水溶性高分子43は、酵素反応直前における溶液全体における濃度として、通常0.001%~5%、好ましくは0.01%~1%となるように酵素固定基板11上に導入される。 In order to capture more of the fluorescent molecules 42 produced during the enzyme reaction, it is preferable that the amount of the water-soluble polymer 43 present in the solution on the enzyme-immobilized substrate 11 is large. On the other hand, since a certain fluidity is required to introduce the water-soluble polymer 43 as a solution, it is preferable that the viscosity of the solution when the water-soluble polymer 43 is introduced does not become too high. In consideration of these, the water-soluble polymer 43 is usually placed on the enzyme-immobilized substrate 11 so that the concentration in the entire solution immediately before the enzyme reaction is 0.001% to 5%, preferably 0.01% to 1%. be introduced.
 蛍光分子前駆分子41の濃度については、本発明の作用・効果を減殺しない限り特に制限されることなく、水溶性高分子43を使用しない対応する従来公知の蛍光測定方法で用いられる基質と同程度の濃度でもよい。具体的には、蛍光分子前駆分子41は、酵素反応直前における溶液全体における濃度として、通常0.01M~0.000000001M、好ましくは0.001M~0.0000001Mとなるように酵素固定基板11上に導入される。 The concentration of the fluorescent molecule precursor molecule 41 is not particularly limited as long as the action / effect of the present invention is not diminished, and is approximately the same as the substrate used in the corresponding conventionally known fluorescence measuring method not using the water-soluble polymer 43. The concentration of Specifically, the fluorescent molecule precursor molecule 41 is placed on the enzyme-immobilized substrate 11 so that the concentration in the entire solution immediately before the enzyme reaction is usually 0.01M to 0.000000001M, preferably 0.001M to 0.0000001M. be introduced.
 蛍光分子前駆分子41および水溶性高分子43を含む溶液の総量は、特に限定されない。ただ、この溶液が送液の形で酵素固定基板11上に導入される場合、この溶液の総量は、流路の容積として、通常0.0001~20mL、好ましくは0.01~1mLである。 The total amount of the solution containing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 is not particularly limited. However, when this solution is introduced onto the enzyme-immobilized substrate 11 in the form of liquid feeding, the total amount of this solution is usually 0.0001 to 20 mL, preferably 0.01 to 1 mL as the volume of the flow path.
 蛍光分子前駆分子41および水溶性高分子43を送液の形で導入する際の送液の流速は、通常0.1μL/min~10mL/min、好ましくは1μL/min~1mL/minである。 The flow rate of liquid feeding when introducing the fluorescent molecule precursor molecule 41 and the water-soluble polymer 43 in the form of liquid feeding is usually 0.1 μL / min to 10 mL / min, preferably 1 μL / min to 1 mL / min.
 流路
 「流路」とは、微量な薬液の送達を効率的に行うことができ、反応促進を行うために送液速度を変化させたり、循環させたりすることができる直方体または管状のものである。
また、この流路として、基板21または酵素固定基板11を設置する個所近傍は直方体構造を有することが好ましく、薬液を送達する個所近傍は管状を有することが好ましい。流路を構成する材質、流路の寸法については、水溶性高分子43を使用しない対応する従来公知の方法で用いられる流路と同様のものとすることができる。
The flow channel “flow channel” is a rectangular parallelepiped or a tube that can efficiently deliver a small amount of chemical solution and can change the liquid feeding speed or circulate in order to promote the reaction. is there.
Moreover, as this flow path, the vicinity of the location where the substrate 21 or the enzyme-immobilized substrate 11 is installed preferably has a rectangular parallelepiped structure, and the vicinity of the location where the chemical solution is delivered preferably has a tubular shape. About the material which comprises a flow path, and the dimension of a flow path, it can be set to the same thing as the flow path used by the corresponding conventionally well-known method which does not use the water-soluble polymer 43.
 流路において、薬物送達部から酵素固定基板部に送液を導入する送液導入口、及びその送液を酵素固定基板部から排出する送液排出口の位置は、いずれも、蛍光測定の妨げとならない限り特に限定されない。例えば、酵素固定基板部の流路が直方体構造を有する場合、前記送液導入口及び送液排出口とも天井面に設けるのが流路の作成上簡便であるが、この送液導入口と送液排出口とのうちいずれか一方、あるいはその両方を側面に設けてもよい。 In the flow path, the position of the liquid feeding inlet for introducing the liquid feeding from the drug delivery part to the enzyme fixing substrate part and the position of the liquid feeding outlet for discharging the liquid feeding from the enzyme fixing substrate part are both obstructing the fluorescence measurement Unless it becomes, it will not specifically limit. For example, when the flow path of the enzyme-immobilized substrate section has a rectangular parallelepiped structure, it is convenient to create the flow path for both the liquid feeding inlet and the liquid feeding outlet on the ceiling surface. Either one or both of the liquid discharge ports may be provided on the side surface.
 流路に基板21または酵素固定基板11を固定する方法は、流路が一定の形状に保たれ、且つ蛍光測定が妨げられない限り特に限定されない。 The method for fixing the substrate 21 or the enzyme-immobilized substrate 11 to the flow path is not particularly limited as long as the flow path is maintained in a certain shape and the fluorescence measurement is not hindered.
 本発明において、酵素固定基板11への水溶性高分子43および蛍光分子前駆分子41の導入は、通常、上記流路を通じて行われる。 In the present invention, the introduction of the water-soluble polymer 43 and the fluorescent molecule precursor molecule 41 to the enzyme-immobilized substrate 11 is usually performed through the above-mentioned flow path.
 《酵素固定基板の製造》
 本発明に係る蛍光測定方法をバイオアッセイ法としての用途に応用する場合、工程(b)に先立ち、検体、酵素23、リガンド分子、および、基板21(すなわち、「基礎基板」)を用いて酵素固定基板11を製造することになる。この酵素固定基板11を製造する工程は、本発明の蛍光測定方法における一連の工程(b)~(e)とは独立した工程として行うことも可能ではある。しかし、本発明に係る蛍光測定方法を、閉じた流路系中に酵素固定基板11が配置され、且つ流路を通じて各種薬剤や溶液等が供給される測定系で用いる場合、酵素固定基板11を製造する工程と、引き続く工程(b)~(e)とを同じ流路系のもとで一貫して行うことが操作上好都合である。したがって、この酵素固定基板11を製造する工程は、工程(a)として本発明の蛍光測定方法における一連の工程に組み込まれていることが好ましい。
<Manufacture of enzyme-immobilized substrate>
When the fluorescence measurement method according to the present invention is applied to a use as a bioassay method, an enzyme is used using a specimen, an enzyme 23, a ligand molecule, and a substrate 21 (that is, a “basic substrate”) prior to the step (b). The fixed substrate 11 is manufactured. The step of manufacturing the enzyme-immobilized substrate 11 can be performed as a step independent of the series of steps (b) to (e) in the fluorescence measurement method of the present invention. However, when the fluorescence measurement method according to the present invention is used in a measurement system in which the enzyme-immobilized substrate 11 is disposed in a closed channel system and various drugs, solutions, and the like are supplied through the channel, the enzyme-immobilized substrate 11 is used. It is advantageous in terms of operation to consistently carry out the manufacturing step and the subsequent steps (b) to (e) under the same flow path system. Therefore, it is preferable that the step of producing the enzyme-immobilized substrate 11 is incorporated in a series of steps in the fluorescence measurement method of the present invention as step (a).
 この酵素固定基板11は、ELISA法等の酵素免疫測定法で用いられる一般的な酵素固定基板と同様の手法によって製造することができる。 The enzyme-immobilized substrate 11 can be produced by the same method as a general enzyme-immobilized substrate used in enzyme immunoassay methods such as ELISA.
 酵素固定基板11は、典型的には、
 工程(a-1):基板21の表面に、必要に応じてSAM層等の表面処理層を形成させる工程、
 工程(a-2):基板21の表面に直接的に、あるいは前記工程(a-1)で形成された表面処理層を介して間接的にリガンド分子を結合させる工程、
 工程(a-3):前記工程(a-2)で得られた基板の表面に検体を接触させて、検体中の生体分子をリガンド分子と結合させる工程、
 工程(a-4):前記工程(a-3)で基板と結合した生体分子に酵素23を結合させる工程
を通じて製造される。
Typically, the enzyme-immobilized substrate 11 is
Step (a-1): A step of forming a surface treatment layer such as a SAM layer on the surface of the substrate 21 as necessary,
Step (a-2): A step of binding ligand molecules directly to the surface of the substrate 21 or indirectly through the surface treatment layer formed in the step (a-1).
Step (a-3): a step of bringing a specimen into contact with the surface of the substrate obtained in the step (a-2) and binding a biomolecule in the specimen to a ligand molecule;
Step (a-4): manufactured through the step of binding the enzyme 23 to the biomolecule bound to the substrate in the step (a-3).
 言い換えると、酵素固定基板11は、
 工程(a-2)により、基礎基板である基板21の表面にリガンド分子を結合させて、リガンド分子が固定された基板(以下、「リガンド固定基板」と呼ぶ場合がある。)を得、
 工程(a-3)により、前記「リガンド固定基板」の表面に検体を接触させて、検体中の生体分子をリガンド分子と結合させて、生体分子が固定された基板(以下、「生体分子固定基板」と呼ぶ場合がある。)を得、
 工程(a-4)により、前記「生体分子固定基板」に酵素を結合させる
ことにより得ることができ、その際、工程(a-2)~(a-4)に先立ち、
 工程(a-1)により、基板21の表面に予めSAM層等の表面処理層を形成させておく
こともできる。
In other words, the enzyme immobilization substrate 11 is
By the step (a-2), a ligand molecule is bound to the surface of the base substrate 21 to obtain a substrate on which the ligand molecule is immobilized (hereinafter sometimes referred to as “ligand-immobilized substrate”).
By the step (a-3), the specimen is brought into contact with the surface of the “ligand immobilization substrate”, and the biomolecule in the specimen is bound to the ligand molecule to thereby immobilize the biomolecule (hereinafter referred to as “biomolecule immobilization”). Sometimes called a "substrate")
In step (a-4), it can be obtained by binding an enzyme to the “biomolecule-immobilized substrate”. In this case, prior to steps (a-2) to (a-4),
By the step (a-1), a surface treatment layer such as a SAM layer can be formed on the surface of the substrate 21 in advance.
 ここで、上記工程(a-4)は、例えば、予め、酵素23を第2のリガンド分子と結合させて酵素-第2のリガンド分子複合体を調製してから、上記工程(a-3)で得られた基板(すなわち、「生体分子固定基板」)の表面にこの酵素-第2のリガンド分子複合体を接触させることにより行うことができる。 Here, in the step (a-4), for example, an enzyme-second ligand molecule complex is prepared in advance by binding the enzyme 23 to a second ligand molecule, and then the step (a-3). The enzyme-second ligand molecule complex can be brought into contact with the surface of the substrate obtained in the above (ie, “biomolecule-immobilized substrate”).
 ただし、生体分子が核酸である場合には、上記工程(a-3)および工程(a-4)を行う代わりに、予め、検体に酵素修飾処理を行ってから、上記工程(a-2)で得られた基板(すなわち、「リガンド固定基板」)の表面に酵素処理済みの検体を接触させることにより、酵素固定基板11を製造することもできる。検体への酵素修飾処理は、従来公知の種々の方法により行うことができる。 However, when the biomolecule is a nucleic acid, instead of performing the steps (a-3) and (a-4), an enzyme modification treatment is performed on the sample in advance, and then the step (a-2) The enzyme-immobilized substrate 11 can also be manufactured by bringing an enzyme-treated specimen into contact with the surface of the substrate obtained in (i.e., “ligand-immobilized substrate”). The enzyme modification treatment on the specimen can be performed by various conventionally known methods.
 また、生体分子が核酸である場合における別の製造方法として、上記工程(a-3)および工程(a-4)を行う代わりに、予め、酵素23をインターカレーターと結合させて酵素-インターカレーター複合体を調製してから、上記工程(a-2)で得られた基板(すなわち、「リガンド固定基板」)の表面に検体とこの酵素-インターカレーター複合体とを含む溶液を接触させることにより、酵素固定基板11を製造することもできる。 As another production method in the case where the biomolecule is a nucleic acid, instead of performing the above steps (a-3) and (a-4), the enzyme 23 is combined with an intercalator in advance and the enzyme-intercalator is used. After preparing the complex, a solution containing the specimen and the enzyme-intercalator complex is brought into contact with the surface of the substrate obtained in the step (a-2) (ie, the “ligand-immobilized substrate”). The enzyme-immobilized substrate 11 can also be manufactured.
 ここで、「接触」とは、上記工程(a-2)を経て得られる基板(すなわち、「リガンド固定基板」)において、リガンド分子等が固定されている面が送液中に浸漬されている状態で、この送液中に含まれる対象物をこのリガンド固定基板と接触させることをいう。本発明において、上記検体と上記リガンド固定基板との「接触」は、流路中に循環する送液に検体が含まれ、リガンド固定基板においてリガンド分子が固定化されている片面のみが該送液中に浸漬されている状態において、リガンド固定基板と検体とを接触させる態様が好ましい。なお、検体等がリガンド固定基板に非特異的に吸着することを防止するため、リガンド分子を基板21に固定化した後、検体を接触させる前に予めリガンド固定基板の表面を牛血清アルブミン(BSA)等のブロッキング剤により処理することが好ましい。 Here, “contact” means that the surface on which the ligand molecules and the like are fixed is immersed in the liquid feeding in the substrate obtained through the step (a-2) (that is, “ligand fixing substrate”). In this state, it refers to bringing an object contained in the liquid feeding into contact with the ligand-immobilized substrate. In the present invention, the “contact” between the specimen and the ligand-immobilized substrate means that the specimen is contained in the liquid-feeding liquid circulating in the flow path, and only one side of the ligand-immobilized substrate on which the ligand molecules are immobilized is the liquid-feeding liquid. A mode in which the ligand-immobilized substrate and the specimen are brought into contact with each other in a state of being immersed therein is preferable. In order to prevent non-specific adsorption of the specimen or the like on the ligand-immobilized substrate, the surface of the ligand-immobilized substrate is previously immobilized on bovine serum albumin (BSA) after immobilizing the ligand molecule on the substrate 21 and before contacting the specimen. It is preferable to treat with a blocking agent such as
 酵素固定基板11を製造する際に用いられる送液としては、検体を希釈した溶媒または緩衝液と同じものが好ましく、例えば、リン酸緩衝生理食塩水(PBS)、トリス緩衝生理食塩水(TBS)などが挙げられるが、特に限定されるものではない。 The solution used for producing the enzyme-immobilized substrate 11 is preferably the same as the solvent or buffer in which the specimen is diluted. For example, phosphate buffered saline (PBS), Tris buffered saline (TBS) However, it is not particularly limited.
 酵素固定基板11を製造する際の送液を循環させる温度および時間としては、検体の種類などにより異なり、特に限定されるものではないが、通常20~40℃×1~60分間、好ましくは37℃×5~15分間である。 The temperature and time for circulating the liquid supply during the production of the enzyme-immobilized substrate 11 vary depending on the type of specimen and are not particularly limited, but are usually 20 to 40 ° C. × 1 to 60 minutes, preferably 37. ° C x 5-15 minutes.
 送液中の検体中に含有される生体分子の初期濃度は、100μg/mL~0.0001pg/mLであってもよい。 The initial concentration of the biomolecule contained in the specimen being sent may be 100 μg / mL to 0.0001 pg / mL.
 送液の総量、すなわち流路の容積としては、通常0.0001~20mL、好ましくは0.01~1mLである。 The total amount of the liquid delivery, that is, the volume of the flow path is usually 0.0001 to 20 mL, preferably 0.01 to 1 mL.
 酵素固定基板11を製造する際の送液の流速は、通常1~2,000μL/min、好ましくは5~500μL/minである。 The flow rate of the liquid supply when producing the enzyme-immobilized substrate 11 is usually 1 to 2,000 μL / min, preferably 5 to 500 μL / min.
 なお、本発明においては、酵素固定基板11を製造後、酵素固定基板11を洗浄する工程が含まれることが好ましい。 In addition, in this invention, it is preferable that the process of wash | cleaning the enzyme fixed substrate 11 after the enzyme fixed substrate 11 is manufactured is included.
 洗浄工程に使用される洗浄液としては、例えば、Tween20、TritonX100などの界面活性剤を、上記「酵素固定基板11を製造する際に用いられる送液」と同じ溶媒または緩衝液に溶解させ、好ましくは0.00001~1重量%含有するものが望ましい。 As the cleaning solution used in the cleaning step, for example, a surfactant such as Tween 20 or Triton X100 is dissolved in the same solvent or buffer solution as that used in the above-mentioned “liquid feeding used in manufacturing the enzyme-immobilized substrate 11”. Those containing 0.00001 to 1% by weight are desirable.
 洗浄液を循環させる温度および流速は、上記「酵素固定基板11を製造する際の送液を循環させる温度および流速」と同じであることが好ましい。 The temperature and flow rate at which the cleaning liquid is circulated are preferably the same as the above-mentioned “temperature and flow rate at which the liquid feed is circulated when producing the enzyme-immobilized substrate 11”.
 洗浄液を循環させる時間は、通常0.5~180分間、好ましくは5~60分間である。 The time for circulating the cleaning liquid is usually 0.5 to 180 minutes, preferably 5 to 60 minutes.
 検体
 本発明において、「検体」とは、本発明に係る蛍光測定方法をバイオアッセイ法としての用途に応用する場合に測定対象となる種々の試料をいう。
Specimen In the present invention, “specimen” refers to various samples to be measured when the fluorescence measuring method according to the present invention is applied to a use as a bioassay method.
 「検体」としては、例えば、血液(血清・血漿)、尿、鼻孔液、唾液、便、体腔液(髄液、腹水、胸水等)などが挙げられ、所望の溶媒、緩衝液等に適宜希釈して用いてもよい。これら検体のうち、血液、血清、血漿、尿、鼻孔液および唾液が好ましい。これらは1種単独で用いてもよく、また、2種以上を併用してもよい。 Examples of the “specimen” include blood (serum / plasma), urine, nasal fluid, saliva, feces, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.), etc., and appropriately diluted in a desired solvent, buffer solution, etc. May be used. Of these samples, blood, serum, plasma, urine, nasal fluid and saliva are preferred. These may be used alone or in combination of two or more.
 <工程(c)>
 本発明の蛍光測定方法において、工程(c)は、酵素固定基板11上で酵素反応を生じさせて、蛍光分子前駆分子41を蛍光分子42に変換する工程である。
<Step (c)>
In the fluorescence measurement method of the present invention, step (c) is a step of causing the enzyme reaction to occur on the enzyme-immobilized substrate 11 to convert the fluorescent molecule precursor molecule 41 into the fluorescent molecule 42.
 蛍光分子
 本発明に係る蛍光測定方法において、蛍光分子42は、工程(b)において導入された蛍光分子前駆分子41が、酵素23による酵素反応により変化して生成する蛍光発光性の分子である。本発明においては、この蛍光分子42の生成量は、蛍光の発光量の形で評価される。なお、蛍光分子前駆分子41として用いられる代表的な酵素反応用基質から生成する蛍光分子42の励起波長および発光波長については、前述の蛍光分子前駆分子の項で述べた通りである。
Fluorescent molecule In the fluorescence measuring method according to the present invention, the fluorescent molecule 42 is a fluorescent molecule that is generated by the fluorescent molecule precursor molecule 41 introduced in the step (b) being changed by an enzyme reaction by the enzyme 23. In the present invention, the amount of the fluorescent molecules 42 generated is evaluated in the form of the amount of fluorescence emitted. The excitation wavelength and emission wavelength of the fluorescent molecule 42 generated from a typical enzyme reaction substrate used as the fluorescent molecule precursor molecule 41 are as described in the section of the fluorescent molecule precursor molecule.
 <工程(d)>
 本発明の蛍光測定方法において、工程(d)は、工程(c)で生成した蛍光分子42を水溶性高分子43と結合させて、酵素固定基板11上に蛍光分子-水溶性高分子複合体31を形成させる工程である。
<Step (d)>
In the fluorescence measurement method of the present invention, in the step (d), the fluorescent molecule 42 produced in the step (c) is bonded to the water-soluble polymer 43 to form a fluorescent molecule-water-soluble polymer complex on the enzyme-immobilized substrate 11. This is a step of forming 31.
 蛍光分子-水溶性高分子複合体
 工程(c)における酵素反応により生成した蛍光分子42は、水溶性高分子43が存在しない測定系においては、酵素固定基板11上に存在する溶液中で自由に移動し、酵素固定基板11から離れた部位にまで拡散する。ここで、蛍光測定における蛍光検出の対象となる領域は酵素固定基板11周辺というごく狭い部分に限られていることから、酵素固定基板11から離れた部位にまで拡散した蛍光分子42からの発光した蛍光は検出されず、このことが従来公知の蛍光原基質変換法に基づく蛍光測定方法において検出感度が充分に向上しない原因となっている。
In the measurement system in which the water-soluble polymer 43 does not exist, the fluorescent molecule 42 generated by the enzyme reaction in the fluorescent molecule-water-soluble polymer complex step (c) is free in the solution existing on the enzyme-immobilized substrate 11. It moves and diffuses to a site away from the enzyme immobilization substrate 11. Here, since the region to be subjected to fluorescence detection in the fluorescence measurement is limited to a very narrow portion around the enzyme-immobilized substrate 11, the light emitted from the fluorescent molecules 42 diffused to a site away from the enzyme-immobilized substrate 11. Fluorescence is not detected, which causes the detection sensitivity not to be sufficiently improved in the fluorescence measuring method based on the conventionally known fluorogenic substrate conversion method.
 これに対して、本発明の蛍光測定方法では、酵素固定基板11上の溶液中に水溶性高分子43が存在することから、酵素反応により生成した蛍光分子42は、水溶性高分子43による高い粘性のため水溶性高分子43が存在しない溶液中と比べて拡散が抑制される傾向にある。また、蛍光分子42が水溶性高分子43を移動すると、蛍光分子42と水溶性高分子43との間に静電相互作用などの相互作用が働くため、蛍光分子42は水溶性高分子43と速やかに結合し、蛍光分子-水溶性高分子複合体31を形成する。その状況下では、蛍光分子42は蛍光検出の測定場となる酵素固定基板11周辺の領域により多く留まることになるので、生成した蛍光分子42のうちの蛍光検出に寄与する蛍光分子42の割合が高まり、その結果として検出される蛍光が増大する。このような機構を通じて、本発明の蛍光測定方法は、検出感度の向上を可能とする。 On the other hand, in the fluorescence measurement method of the present invention, since the water-soluble polymer 43 is present in the solution on the enzyme-immobilized substrate 11, the fluorescent molecule 42 generated by the enzyme reaction is high due to the water-soluble polymer 43. Due to the viscosity, diffusion tends to be suppressed as compared with a solution in which the water-soluble polymer 43 does not exist. Further, when the fluorescent molecule 42 moves through the water-soluble polymer 43, an interaction such as electrostatic interaction acts between the fluorescent molecule 42 and the water-soluble polymer 43. Bonds rapidly to form a fluorescent molecule-water-soluble polymer complex 31. Under such circumstances, since the fluorescent molecules 42 remain more in the region around the enzyme-immobilized substrate 11 that serves as a measurement field for fluorescence detection, the ratio of the fluorescent molecules 42 that contribute to fluorescence detection in the generated fluorescent molecules 42 is As a result, the fluorescence detected is increased. Through such a mechanism, the fluorescence measurement method of the present invention can improve detection sensitivity.
 なお、後述する工程(e)を含め、工程(c)~(e)においては、生成した蛍光分子-水溶性高分子複合体31が送液の流れにより酵素固定基板11上から流出して、蛍光検出の対象となる領域から逸脱する可能性を少なくするため、静置状態で行うことが望ましい。 In addition, in the steps (c) to (e) including the step (e) described later, the generated fluorescent molecule-water-soluble polymer complex 31 flows out from the enzyme-immobilized substrate 11 by the flow of the liquid, In order to reduce the possibility of deviating from the region to be subjected to fluorescence detection, it is desirable to carry out in a stationary state.
 <工程(e)>
 本発明の蛍光測定方法において、工程(e)は、工程(d)で生成した蛍光分子-水溶性高分子複合体31から発光された蛍光を検出する工程である。工程(e)における蛍光の検出は、工程(d)で生成した蛍光分子-水溶性高分子複合体31に対して、励起光を照射し、その励起光に対応する蛍光発光の強度を計測することによって行われる。
<Process (e)>
In the fluorescence measurement method of the present invention, step (e) is a step of detecting fluorescence emitted from the fluorescent molecule-water-soluble polymer complex 31 produced in step (d). In the detection of fluorescence in the step (e), the fluorescent molecule-water-soluble polymer complex 31 generated in the step (d) is irradiated with excitation light, and the intensity of fluorescence emission corresponding to the excitation light is measured. Is done by.
 工程(e)で用いられる蛍光の検出方法は、バイオアッセイの分野において一般に用いられている公知の蛍光検出方法であれば特に限定されない。 The fluorescence detection method used in step (e) is not particularly limited as long as it is a known fluorescence detection method generally used in the field of bioassay.
 蛍光分子-水溶性高分子複合体31を励起して蛍光を発生させる方法としては、主として、蛍光分子-水溶性高分子複合体31に対して直接励起光を照射することによって蛍光を発生させる方法が挙げられる。この方法によって蛍光の検出・測定を行う手段として、様々な方法が知られているが、本発明の蛍光測定方法においては、共焦点レーザー顕微鏡または共焦点レーザースキャナーを用いて蛍光の検出を行うことが好ましい。これらの蛍光検出装置を用いると、焦点に対応した位置におけるコントラストの高い画像を様々な位置において取得し、重ね合わせることによって、焦点深度の深い画像を得ることができる。したがって、測定系の中で蛍光検出の対象となる領域を広げることができるので、生成した蛍光分子42のうちの蛍光検出に寄与する蛍光分子42の割合を高めることができ、検出感度の向上につながる利点がある。なお、本発明で用いられる共焦点レーザー顕微鏡および共焦点レーザースキャナーを構成する光源、ビームスプリッター、対物レンズ、ピンホール、光検出器、ガルバノミラーなどの部材については、従来公知のものをそれぞれ用いることができる。 As a method for generating fluorescence by exciting the fluorescent molecule-water-soluble polymer complex 31, a method for generating fluorescence mainly by directly irradiating the fluorescent molecule-water-soluble polymer complex 31 with excitation light is used. Is mentioned. Various methods are known as means for detecting and measuring fluorescence by this method. In the fluorescence measuring method of the present invention, fluorescence is detected using a confocal laser microscope or a confocal laser scanner. Is preferred. When these fluorescence detection devices are used, images with a high depth of focus can be obtained by acquiring images with high contrast at positions corresponding to the focus at various positions and superimposing them. Therefore, since the region to be subjected to fluorescence detection in the measurement system can be expanded, the ratio of the fluorescent molecules 42 that contribute to fluorescence detection among the generated fluorescent molecules 42 can be increased, thereby improving the detection sensitivity. There are benefits to connect. In addition, as for the members such as the light source, the beam splitter, the objective lens, the pinhole, the photodetector, and the galvanometer mirror constituting the confocal laser microscope and the confocal laser scanner used in the present invention, conventionally known ones should be used. Can do.
 蛍光分子-水溶性高分子複合体31を励起して蛍光を発生させる方法は、上述の方法に限定されるものではない。例えば、近接場光を利用して間接的に励起光を照射することによって蛍光を発生させる方法を用いてもよい。この場合、近接場光により励起された蛍光を検出することになる。このような近接場光の例としては、プラズモンにより増強された光が挙げられる。具体例としては、表面プラズモン励起増強蛍光分光法(SPFS)により、表面プラズモン等を用いて蛍光分子-水溶性高分子複合体31を励起して蛍光を発生させる方法が挙げられる。近接場光により励起された蛍光を検出する利点としては、蛍光検出の際に入射光からの影響を最小限に抑えつつ、高感度の測定が可能となることが挙げられる。ここで、近接場光により励起された蛍光を検出する場合、近接場光による励起が可能な領域はきわめて限られており、例えば、SPFSによる電場増強の効果を得られる領域は、酵素固定基板11の表面から100~200nm程度までの領域に限られている。このような測定系において、水溶性高分子43を溶液中に共存させることによって、蛍光分子42を蛍光分子-水溶性高分子複合体31の形で酵素固定基板11の表面付近の領域に留めておくことは、生成した蛍光分子42のうちの近接場光により励起される蛍光分子42の割合を高めることにつながり、高感度化を行う上で有利となる。なお、本発明で近接場光により励起された蛍光を検出するために用いられる光源、プリズム、光学フィルタ、偏光フィルタ、カットフィルタ、集光レンズ、光検出器などの部材については、従来公知のものをそれぞれ用いることができる。 The method of exciting the fluorescent molecule-water-soluble polymer complex 31 to generate fluorescence is not limited to the method described above. For example, a method of generating fluorescence by irradiating excitation light indirectly using near-field light may be used. In this case, fluorescence excited by near-field light is detected. An example of such near-field light is light enhanced by plasmons. A specific example is a method of generating fluorescence by exciting the fluorescent molecule-water-soluble polymer complex 31 using surface plasmon or the like by surface plasmon excitation enhanced fluorescence spectroscopy (SPFS). As an advantage of detecting fluorescence excited by near-field light, it is possible to perform highly sensitive measurement while minimizing the influence from incident light during fluorescence detection. Here, when detecting fluorescence excited by near-field light, the region that can be excited by near-field light is extremely limited. For example, the region where the effect of electric field enhancement by SPFS can be obtained is the enzyme-immobilized substrate 11. It is limited to a region from about 100 to 200 nm from the surface of the substrate. In such a measurement system, by allowing the water-soluble polymer 43 to coexist in the solution, the fluorescent molecule 42 is kept in the region near the surface of the enzyme-immobilized substrate 11 in the form of the fluorescent molecule-water-soluble polymer complex 31. This leads to an increase in the ratio of the fluorescent molecules 42 excited by the near-field light in the generated fluorescent molecules 42, which is advantageous in achieving high sensitivity. In the present invention, members such as a light source, a prism, an optical filter, a polarizing filter, a cut filter, a condensing lens, and a light detector used for detecting fluorescence excited by near-field light are conventionally known ones. Can be used respectively.
 《生体分子の定量》
 本発明に係る蛍光測定方法をバイオアッセイ法としての用途に応用する場合、工程(e)の後、検出された蛍光量をもとにして、検体中に含まれる「生体分子」を定量することになる。より具体的には、既知濃度の生体分子での測定を実施することで検量線を作成し、作成された検量線に基づいて被測定検体中の生体分子量を測定シグナルから算出する工程である。
<Quantification of biomolecules>
When the fluorescence measurement method according to the present invention is applied to a use as a bioassay method, after step (e), the “biomolecule” contained in the specimen is quantified based on the detected fluorescence amount. become. More specifically, it is a step of creating a calibration curve by performing measurement with a biomolecule at a known concentration, and calculating the biomolecular weight in the sample to be measured from the measurement signal based on the created calibration curve.
 この検出された蛍光量から検体中に含まれる生体分子を定量する工程は、本発明の蛍光測定方法における一連の工程(b)~(e)とは独立した工程として行うことも可能ではある。しかし、水溶性高分子43を用いない対応する従来公知の蛍光測定方法と同様、水溶性高分子43を用いる本発明に係る蛍光測定方法においても、通常の場合、蛍光を検出する工程と検出された蛍光量から検体中に含まれる生体分子を定量する工程とは、一連の工程として行われる。したがって、工程(e)で検出された蛍光量から検体中に含まれる生体分子を定量する工程は、工程(f)として本発明の蛍光測定方法における一連の工程に組み込まれていることが好ましい。 The step of quantifying the biomolecule contained in the specimen from the detected fluorescence amount can be performed as a step independent of the series of steps (b) to (e) in the fluorescence measurement method of the present invention. However, in the fluorescence measurement method according to the present invention using the water-soluble polymer 43 as well as the corresponding conventionally known fluorescence measurement method that does not use the water-soluble polymer 43, it is usually detected as a step of detecting fluorescence. The step of quantifying the biomolecule contained in the specimen from the amount of fluorescence obtained is performed as a series of steps. Therefore, the step of quantifying the biomolecule contained in the specimen from the amount of fluorescence detected in the step (e) is preferably incorporated as a step (f) in a series of steps in the fluorescence measurement method of the present invention.
 アッセイS/N比
 工程(f)においては、上記工程(b)の前に測定した“ブランク蛍光シグナル”、上記工程(e)で得られた“測定蛍光シグナル”、および何も修飾していない基板21を流路に固定し、超純水を流しながら蛍光発光を測定して得られたシグナルを“初期ノイズ”としたとき、下記式(4a)で表されるアッセイS/N比を算出することができる:
  アッセイS/N比=|Ia/Io|/In        (4a)
(上記式(1a)において、Iaはアッセイ蛍光シグナル、Ioはブランク蛍光シグナル、Inは初期ノイズである)。
In the assay S / N ratio step (f), the “blank fluorescence signal” measured before the step (b), the “measured fluorescence signal” obtained in the step (e), and nothing modified When the signal obtained by measuring the fluorescence emission while flowing the ultrapure water while fixing the substrate 21 to the flow path is “initial noise”, the assay S / N ratio represented by the following formula (4a) is calculated. can do:
Assay S / N ratio = | Ia / Io | / In (4a)
(In the above formula (1a), Ia is the assay fluorescence signal, Io is the blank fluorescence signal, and In is the initial noise).
 ただし、アッセイS/N比を算出するにあたっては、実用上、上記式(4a)に代えて、検体中に含まれる生体分子の濃度が0の場合における“アッセイノイズシグナル”を基準として、下記式(4b)にしたがって算出してもよい:
  アッセイS/N比=|Ia|/|Ian|    (4b)
(上記式(4b)において、Ianはアッセイノイズシグナル、Iaは上記式(4a)の場合と同様にアッセイ蛍光シグナルである)。
However, in calculating the assay S / N ratio, instead of the above formula (4a), the following formula is used on the basis of the “assay noise signal” when the concentration of the biomolecule contained in the specimen is 0: You may calculate according to (4b):
Assay S / N ratio = | Ia | / | Ian | (4b)
(In the above formula (4b), Ian is the assay noise signal and Ia is the assay fluorescence signal as in the above formula (4a)).
 酵素化学蛍光試薬としてDDAOPを使用し、アルカリフォスファターゼ標識二次抗体を用いてSPFS検出法により蛍光強度を測定した。 Fluorescence intensity was measured by SPFS detection method using DDAOP as an enzyme chemical fluorescence reagent and using an alkaline phosphatase labeled secondary antibody.
 [実施例1]
 抗AFPモノクローナル抗体(一次抗体)を表面に固定化したSPFSセンサー基板を常法により作成し、抗体を固定化した側の表面に、抗原であるAFP(0.1ng/mL)を反応させた後、アルカリフォスファターゼ標識抗AFPモノクローナル抗体(二次抗体)を結合させた。これにより、酵素固定基板として機能する、表面に抗原抗体のサンドイッチ複合体が形成されたSPFSセンサーが得られた。
[Example 1]
After preparing an SPFS sensor substrate with an anti-AFP monoclonal antibody (primary antibody) immobilized on the surface by a conventional method, the surface of the antibody-immobilized side was reacted with AFP (0.1 ng / mL) as an antigen. Alkaline phosphatase-labeled anti-AFP monoclonal antibody (secondary antibody) was bound. As a result, an SPFS sensor having an antigen-antibody sandwich complex formed on the surface, which functions as an enzyme-immobilized substrate, was obtained.
 その後、このSPFSセンサー表面上に、6.0E-6 mol/LのDDAOP溶液(pH8.5、トリス塩酸緩衝液)に0.05重量%のカチオン化高分子(カチナールHC-100,東邦化学製、商品名)を添加した基質溶液を、流速100μL/minにて導入してセットし、生成される蛍光分子の蛍光強度を測定した。 After that, on the surface of the SPFS sensor, 0.05% by weight of a cationized polymer (Catinal HC-100, manufactured by Toho Chemical Co., Ltd.) in 6.0E-6 mol / L DDAOP solution (pH 8.5, Tris-HCl buffer). (Trade name) was added and set at a flow rate of 100 μL / min, and the fluorescence intensity of the generated fluorescent molecules was measured.
 [比較例1]
 比較例として、基質溶液としてカチオン化高分子を添加していない基質溶液を用いたことを除いては実施例1と同様に、蛍光分子の蛍光強度を測定した。
[Comparative Example 1]
As a comparative example, the fluorescence intensity of the fluorescent molecule was measured in the same manner as in Example 1 except that a substrate solution to which no cationized polymer was added was used as the substrate solution.
 実施例1及び比較例1のSPFS系における、基質溶液をSPFSセンサー表面に導入してからの反応時間と蛍光強度との関係を図2に示す。 FIG. 2 shows the relationship between the reaction time and fluorescence intensity after introducing the substrate solution on the surface of the SPFS sensor in the SPFS system of Example 1 and Comparative Example 1.
 図2に示されるように、カチオン化高分子が添加されている基質溶液では、蛍光強度が反応開始後、直線的に蛍光強度が増加するのに対し、カチオン化高分子が添加されていない基質溶液では、反応開始後5分程度までは蛍光強度の増加が無く、その後徐々に蛍光強度が上昇する傾向となった。これは、表面上で生成した蛍光生成物が速やかに溶液中に拡散し、蛍光シグナルとして検出されるまでに時間がかかるのに対し、カチオン化高分子が添加されている基質溶液では生成した蛍光分子がセンサーの最表面に留まり、結果として反応時間直後から効率的に蛍光シグナルとして検出できていることを示している。 As shown in Fig. 2, in the substrate solution with cationized polymer added, the fluorescence intensity increases linearly after the reaction starts, whereas the substrate without cationized polymer added. In the solution, the fluorescence intensity did not increase until about 5 minutes after the start of the reaction, and thereafter the fluorescence intensity tended to increase gradually. This is because the fluorescent product generated on the surface diffuses quickly into the solution and takes time to be detected as a fluorescent signal, whereas the fluorescent solution generated in the substrate solution to which the cationized polymer is added. This shows that the molecules remain on the outermost surface of the sensor, and as a result, they can be efficiently detected as fluorescent signals immediately after the reaction time.
 11・・・酵素固定基板
 21・・・基板
 22・・・結合部
 23・・・酵素
 31・・・蛍光分子-水溶性高分子複合体
 41・・・蛍光分子前駆分子
 42・・・蛍光分子
 43・・・水溶性高分子
DESCRIPTION OF SYMBOLS 11 ... Enzyme fixed substrate 21 ... Substrate 22 ... Binding part 23 ... Enzyme 31 ... Fluorescent molecule-water-soluble polymer complex 41 ... Fluorescent molecule precursor molecule 42 ... Fluorescent molecule 43. Water-soluble polymer

Claims (18)

  1.  下記工程(b)~(e)を含むことを特徴とする蛍光測定方法:
     工程(b):酵素固定基板上に、水溶性高分子および蛍光分子前駆分子を導入する工程;
     工程(c):前記酵素固定基板上で酵素反応を生じさせて、前記蛍光分子前駆分子を蛍光分子に変換する工程;
     工程(d):前記蛍光分子を前記水溶性高分子と結合させて、前記酵素固定基板上に蛍光分子-水溶性高分子複合体を形成させる工程;および、
     工程(e):前記蛍光分子-水溶性高分子複合体から発光された蛍光を検出する工程。
    A fluorescence measurement method comprising the following steps (b) to (e):
    Step (b): introducing a water-soluble polymer and a fluorescent molecule precursor molecule onto the enzyme-immobilized substrate;
    Step (c): causing an enzyme reaction on the enzyme-immobilized substrate to convert the fluorescent molecule precursor molecule into a fluorescent molecule;
    Step (d): binding the fluorescent molecule to the water-soluble polymer to form a fluorescent molecule-water-soluble polymer complex on the enzyme-immobilized substrate; and
    Step (e): A step of detecting fluorescence emitted from the fluorescent molecule-water-soluble polymer complex.
  2.  前記水溶性高分子がイオン性基を有する請求項1に記載の蛍光測定方法。 2. The fluorescence measuring method according to claim 1, wherein the water-soluble polymer has an ionic group.
  3.  前記イオン性基がカチオン性基を含む請求項2に記載の蛍光測定方法。 3. The fluorescence measuring method according to claim 2, wherein the ionic group contains a cationic group.
  4.  前記カチオン性基が、第3級アミノ基および第4級アンモニウム基から選ばれる1つ以上の基である請求項3に記載の蛍光測定方法。 4. The fluorescence measurement method according to claim 3, wherein the cationic group is one or more groups selected from a tertiary amino group and a quaternary ammonium group.
  5.  前記蛍光分子-水溶性高分子複合体が、前記蛍光分子と前記水溶性高分子との静電相互作用により形成される請求項1~4のいずれかに記載の蛍光測定方法。 5. The fluorescence measuring method according to claim 1, wherein the fluorescent molecule-water-soluble polymer complex is formed by electrostatic interaction between the fluorescent molecule and the water-soluble polymer.
  6.  前記水溶性高分子が直鎖状の非架橋型水溶性ポリマーである請求項1~5のいずれかに記載の蛍光測定方法。 6. The fluorescence measuring method according to claim 1, wherein the water-soluble polymer is a linear non-crosslinked water-soluble polymer.
  7.  前記水溶性高分子がチクソトロピー性を有する高分子マトリクスゲルである請求項1~5のいずれかに記載の蛍光測定方法。 6. The fluorescence measuring method according to claim 1, wherein the water-soluble polymer is a polymer matrix gel having thixotropic properties.
  8.  前記水溶性高分子が、直鎖状ポリアクリルアミドおよび多糖類から選ばれる1つ以上からなる骨格を有する請求項1~7のいずれかに記載の蛍光測定方法。 8. The fluorescence measurement method according to claim 1, wherein the water-soluble polymer has a skeleton composed of one or more selected from linear polyacrylamide and polysaccharide.
  9.  前記水溶性高分子が、水溶性カチオン化多糖類である請求項8に記載の蛍光測定方法。 9. The fluorescence measuring method according to claim 8, wherein the water-soluble polymer is a water-soluble cationized polysaccharide.
  10.  前記水溶性カチオン化多糖類におけるカチオン置換度が0.01~1である請求項9に記載の蛍光測定方法。 10. The fluorescence measuring method according to claim 9, wherein the degree of cation substitution in the water-soluble cationized polysaccharide is 0.01 to 1.
  11.  前記水溶性高分子の重量平均分子量が1万~200万である請求項1~10のいずれかに記載の蛍光測定方法。 11. The fluorescence measurement method according to claim 1, wherein the water-soluble polymer has a weight average molecular weight of 10,000 to 2,000,000.
  12.  前記工程(c)~(e)が静置状態で行われる請求項1~11のいずれかに記載の蛍光測定方法。 The fluorescence measurement method according to any one of claims 1 to 11, wherein the steps (c) to (e) are performed in a stationary state.
  13.  前記酵素固定基板において、酵素が生体分子とリガンド分子との結合を介して基板上に固定されている請求項1~12のいずれかに記載の蛍光測定方法。 13. The fluorescence measurement method according to claim 1, wherein the enzyme is immobilized on the substrate through a bond between a biomolecule and a ligand molecule.
  14.  前記酵素固定基板において、
     前記基板に前記リガンド分子が結合し、
     前記リガンド分子に前記生体分子が結合し、
     前記生体分子に前記酵素が直接的または間接的に結合している
    請求項13に記載の蛍光測定方法。
    In the enzyme-immobilized substrate,
    The ligand molecule binds to the substrate;
    The biomolecule binds to the ligand molecule;
    14. The fluorescence measurement method according to claim 13, wherein the enzyme is directly or indirectly bound to the biomolecule.
  15.  工程(a):検体、酵素、リガンド分子および基板を用いて前記酵素固定基板を製造する工程、および
     工程(f):前記工程(e)で検出された蛍光量から、前記検体中に含まれる前記生体分子を定量する工程
    をさらに含むことを特徴とする請求項13および14のいずれかに記載の蛍光測定方法。
    Step (a): A step of producing the enzyme-immobilized substrate using a sample, an enzyme, a ligand molecule and a substrate, and Step (f): The amount of fluorescence detected in the step (e) is included in the sample. 15. The fluorescence measurement method according to claim 13, further comprising a step of quantifying the biomolecule.
  16.  前記工程(e)において、近接場光により励起された蛍光を検出する請求項1~15のいずれかに記載の蛍光測定方法。 The fluorescence measurement method according to any one of claims 1 to 15, wherein in the step (e), fluorescence excited by near-field light is detected.
  17.  前記近接場光がプラズモンにより増強された光である請求項16に記載の蛍光測定方法。 The fluorescence measurement method according to claim 16, wherein the near-field light is light enhanced by plasmons.
  18.  前記工程(e)において、共焦点レーザー顕微鏡または共焦点レーザースキャナーを用いて蛍光の検出を行う請求項1~15のいずれかに記載の蛍光測定方法。 16. The fluorescence measuring method according to claim 1, wherein in the step (e), fluorescence is detected using a confocal laser microscope or a confocal laser scanner.
PCT/JP2011/063776 2010-06-21 2011-06-16 Fluorescence measurement method WO2011162150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521437A JP5621846B2 (en) 2010-06-21 2011-06-16 Fluorescence measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-140609 2010-06-21
JP2010140609 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011162150A1 true WO2011162150A1 (en) 2011-12-29

Family

ID=45371341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063776 WO2011162150A1 (en) 2010-06-21 2011-06-16 Fluorescence measurement method

Country Status (2)

Country Link
JP (1) JP5621846B2 (en)
WO (1) WO2011162150A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047684A (en) * 2010-08-30 2012-03-08 Konica Minolta Holdings Inc Fluorescence measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151935A (en) * 1997-08-06 1999-02-26 Aisin Seiki Co Ltd Simultaneous detection method for plural kinds of target molecules
JP2005013174A (en) * 2003-06-30 2005-01-20 Japan Science & Technology Agency Gel tip used for detection of enzyme reaction, and the like
JP2005538728A (en) * 2002-09-20 2005-12-22 クィーンズ ユニバーシティー アット キングストン Detection of biomolecules by differential distribution of enzyme substrate and enzyme product
JP2010091527A (en) * 2008-10-10 2010-04-22 Konica Minolta Holdings Inc Assay method using surface plasmon

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290537A (en) * 1985-08-29 1987-04-25 エンゾ− バイオケム インコ−ポレイテツド Method of detecting component of substance to be analyzed bysignal localization
WO2004001415A1 (en) * 2002-06-24 2003-12-31 Fujirebio Inc. Chemiluminescence enhancer
WO2007052613A1 (en) * 2005-10-31 2007-05-10 National University Corporation Hokkaido University Non-liquid phase type chemiluminescent enzyme immunoassay method and assay kit
JP2008139245A (en) * 2006-12-05 2008-06-19 Fujifilm Corp Immunoassay method of specimen
JP2008249502A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Solid substrate immobilized with physiologically active substance
JP2009019894A (en) * 2007-07-10 2009-01-29 Bio Matrix Research Inc Detection method of substance by surface plasmon resonance
EP2058663A1 (en) * 2007-11-12 2009-05-13 Euro-Diagnostica B.V. Method for the immobilization of an analyte on a solid support

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151935A (en) * 1997-08-06 1999-02-26 Aisin Seiki Co Ltd Simultaneous detection method for plural kinds of target molecules
JP2005538728A (en) * 2002-09-20 2005-12-22 クィーンズ ユニバーシティー アット キングストン Detection of biomolecules by differential distribution of enzyme substrate and enzyme product
JP2005013174A (en) * 2003-06-30 2005-01-20 Japan Science & Technology Agency Gel tip used for detection of enzyme reaction, and the like
JP2010091527A (en) * 2008-10-10 2010-04-22 Konica Minolta Holdings Inc Assay method using surface plasmon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047684A (en) * 2010-08-30 2012-03-08 Konica Minolta Holdings Inc Fluorescence measurement method

Also Published As

Publication number Publication date
JP5621846B2 (en) 2014-11-12
JPWO2011162150A1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
Muhammad et al. Molecularly imprinted plasmonic substrates for specific and ultrasensitive immunoassay of trace glycoproteins in biological samples
Song et al. Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy
US8183057B2 (en) Biomaterial construct, its producing method, biomaterial support, target material purifying method, affinity chromatography container, separation chip, analyzing method and analyzing separator for target material, biomaterial complex, and its support, sensor chip, solid support with biomaterial fixed thereon
JP5720248B2 (en) Immunoassay using surface plasmon and fluorescence resonance energy transfer
JP5652393B2 (en) Plasmon excitation sensor and assay method used for measurement method by SPFS-LPFS system
JP5994890B2 (en) Analyte detection probe
JP5428322B2 (en) Assay method using plasmon excitation sensor
BR112020020108A2 (en) sandwich colocalization tests by connection
JP5573499B2 (en) Fluorescence measurement method
WO2017130578A1 (en) Prostate carcinoma determination method
D'Agata et al. Exploiting the design of surface plasmon resonance interfaces for better diagnostics: A perspective review
JP5621846B2 (en) Fluorescence measurement method
Mustafaoglu et al. Site‐specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced ebola detection
Aktas et al. DNA immobilization and detection using DNA binding proteins
JP5660035B2 (en) Fusion protein-containing assembly, method for producing the same, and assay method using the assembly
US9134235B2 (en) SPFS sensor equipped with mechanism purifying non-specifically adsorptive contaminants
JP5541003B2 (en) Plasmon excitation sensor chip and assay method using the same
JP6076500B2 (en) Target substance detection method
Lu et al. The Importance of Antibody Orientation for Enhancing Sensitivity and Selectivity in Lateral Flow Immunoassays
JP2006208352A (en) Method for detecting substance, and surface of sensor chip
Park et al. A single-step, digital immunoassay based on serial imaging and image processing
Jalili Quantitative Protein Detection by Circular Proximity Ligation Assay
JP2010181322A (en) Assay method using surface plasmon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521437

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798035

Country of ref document: EP

Kind code of ref document: A1