WO2011162074A1 - Glowplug, production method thereof and heating device - Google Patents

Glowplug, production method thereof and heating device Download PDF

Info

Publication number
WO2011162074A1
WO2011162074A1 PCT/JP2011/062373 JP2011062373W WO2011162074A1 WO 2011162074 A1 WO2011162074 A1 WO 2011162074A1 JP 2011062373 W JP2011062373 W JP 2011062373W WO 2011162074 A1 WO2011162074 A1 WO 2011162074A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heating
glow plug
heating resistor
tip
Prior art date
Application number
PCT/JP2011/062373
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 八谷
利之 桜井
さおり 成田
昌幸 瀬川
良仁 猪飼
健 光岡
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2011538563A priority Critical patent/JP5255706B2/en
Priority to EP11794611.1A priority patent/EP2587156B1/en
Publication of WO2011162074A1 publication Critical patent/WO2011162074A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • F23Q2007/004Manufacturing or assembling methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/027Heaters specially adapted for glow plug igniters

Definitions

  • the present invention relates to a glow plug used for preheating a diesel engine and the like, and a heating device.
  • Glow plugs used for diesel engine preheating and the like are generally formed of an alloy mainly composed of iron (Fe) or nickel (Ni), and Fe or Ni is placed in a tube having a closed end.
  • a sheath heater in which a heating resistor formed of an alloy containing chromium (Cr), aluminum (Al), or the like is enclosed together with an insulating powder.
  • the glow plug generates heat at a higher temperature (for example, the tube surface is heated to 1150 ° C. or higher), but the temperature difference between the tube surface and the heating resistor is about 300 ° C.
  • the heating resistor In order to generate heat at a higher temperature, it is necessary to heat the heating resistor to an extremely high temperature (for example, 1450 ° C. or higher).
  • the alloys mainly composed of Fe and Ni that have been used in the past have a melting point of around 1500 ° C. For this reason, when heated to an extremely high temperature as described above, there is a risk that the heating resistor will suffer from problems such as melting.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to endure both a heating resistor and a tube in a glow plug having a heating resistor formed of a metal material mainly composed of W or Mo. It is an object of the present invention to provide a glow plug, a method for manufacturing the same, and a heating device provided with the glow plug.
  • the heating device of this configuration includes a glow plug having a heating resistor and constituting a heating unit, A heating device that is configured to be capable of adjusting power supplied to the heating resistor and capable of controlling heat generation of the heating resistor by adjusting the power supply, The energization control device supplies power to the heating resistor so that the temperature of the heating unit rises from room temperature to 1000 ° C.
  • the glow plug is A cylindrical tube that has a distal end closed and the heating resistor is inserted into the heating tube; Provided in a rear end side opening of the tube, and a seal portion for sealing the inside of the tube,
  • the heating resistor is formed of a metal material mainly composed of W or Mo,
  • the tube is formed of an alloy containing Al in an amount of 0.5% by mass to 5.0% by mass and Cr in an amount of 20% by mass to 40% by mass.
  • heating section means a tube through which a heating resistor is inserted, but the portion of the tube surface where the temperature is highest when energized may correspond to the “heating section”.
  • the heat generating resistor is formed of a metal material mainly composed of W or Mo having a high melting point, excellent heat resistance can be realized in the heat generating resistor.
  • the tube contains 0.5% by mass or more of Al and 20% of Cr. It is contained by mass% or more. Therefore, during heat generation, Al and Cr that are more easily oxidized than W and Mo function as an oxygen getter element, and an oxide film made of Al 2 O 3 or Cr 2 O 3 is formed on the inner peripheral surface of the tube. As a result, since the inside of the tube is in a sealed state, the oxygen partial pressure inside the tube can be effectively reduced. As a result, it is possible to more reliably prevent the heating resistor mainly composed of W or Mo from being oxidized.
  • an oxide film of Al 2 O 3 or Cr 2 O 3 can be formed over a wide range of the outer surface of the tube.
  • the oxide film can more reliably prevent oxygen from entering the inside of the tube and improve the oxidation resistance of the tube.
  • the content of Al and Cr is sufficiently large, even if peeling or cracking occurs in the oxide film due to thermal stress due to repeated cooling and heating cycles, the oxide film is more reliably and for a longer period of time. Can be reformed over a period of time.
  • the said structure 1 electric power is supplied with respect to a heating resistor so that the temperature of a tube surface (heating part) may rise from normal temperature to 1000 degreeC within 3 second by the electricity supply control apparatus.
  • the thermal stress added to a tube can be increased by heating a tube rapidly. Therefore, the oxide film made of Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube is easily broken, and an unoxidized metal surface is easily exposed from the oxide film on the inner peripheral surface of the tube.
  • the oxygen partial pressure inside the tube can be further reduced, and in turn, the oxidation of the heating resistor made of W or the like can be extremely effectively prevented. Can do.
  • the Al content in the tube is made larger than 5.0% by mass or the Cr content is made larger than 40% by mass, the workability may be lowered. Therefore, it is preferable that the Al content is 5.0% by mass or less and the Cr content is 40% by mass or less.
  • the heating device of this configuration is the above-described configuration 1, wherein the heating resistor has an average value of normal temperature resistance in a portion between the tip of the heating resistor and the 6 mm rear end along the central axis of the tube. It is characterized by being larger than the average value of the whole room temperature resistance.
  • the average value of the room temperature resistance in the portion of the heating resistor from the tip to the rear end of 6 mm along the central axis of the tube is the tube from the tip of the heating resistor to the tube.
  • the value obtained by dividing the room temperature resistance of the portion (tip-side heating element) between 6 mm along the center axis of the tube and the length of the tip-side heating element along the center axis of the tube (that is, the center axis of the tube The normal temperature resistance of the heating element on the tip side per unit length).
  • the “average value of the room temperature resistance of the entire heating resistor” is the value obtained by dividing the room temperature resistance of the entire heating resistor by the length of the heating resistor along the central axis of the tube (ie, the center of the tube). Normal temperature resistance of heating resistor per unit length along the axis) (hereinafter the same).
  • a portion of the tube between the front end and the rear end up to about 4 mm protrudes from the inner wall of the combustion chamber and enters the combustion chamber. Be placed. Therefore, the temperature of the exposed portion is likely to be higher during heat generation than the other portion of the tube around which the components of the internal combustion engine are located. In addition, since the exposed portion rapidly rises in temperature compared to other portions of the tube and is rapidly cooled, a rapid temperature change is likely to occur.
  • the temperature of the exposed portion can be raised particularly so that the temperature of the tube can be raised, and a rapid temperature change can be caused in the tube. If the tube can be heated to a higher temperature or a sudden temperature change can be caused in the tube, the thermal stress generated in the tube can be further increased, and Al 2 O 3 and Cr 2 formed on the inner peripheral surface of the tube The oxide film made of O 3 can be further easily broken. As a result, the effect of preventing oxidation of the heating resistor according to Configuration 1 can be further enhanced.
  • the average value of the room temperature resistance in the portion of the heating resistor from the tip to the rear end of 6 mm along the central axis of the tube (tip-side heating member) is The average value of the room temperature resistance of the entire heating resistor is made larger.
  • the heating device of this configuration is the above configuration 1 or 2, wherein the heating resistor has a coil shape and a wire diameter of 0.2 mm or more.
  • the average pitch in the region from the tip to the rear end of 6 mm along the center axis of the tube is 6 mm along the center axis of the tube from the tip of the heating resistor. It is characterized by being 0.9 mm or more smaller than the average pitch in the part located on the rear end side with respect to the rear end.
  • the “average pitch” means a distance (pitch) along the central axis (coil axis) between the centers of adjacent cross sections of the heating resistors in a cross section including the central axis (coil axis) of the heating resistors. ) Average (hereinafter the same).
  • the average pitch in the portion between the front end and the 6 mm rear end of the heating resistor (the front side heating element) is larger than the rear end portion of the heating resistor 6 mm from the front end. It is set to be smaller by 0.9 mm or more than the average pitch of the parts located on the side (rear end side heating element). Therefore, without making the tip side heating element excessively thin (while making the heating resistor wire diameter 0.2 mm or more), the average value of the room temperature resistance of the tip side heating element is the average value of the room temperature resistance of the whole heating resistor. Can be sufficiently larger. That is, according to the above-described configuration 3, the exposed portion can be heated more rapidly while maintaining the mechanical strength of the heating resistor sufficiently. As a result, the antioxidant effect of the heating resistor can be further improved.
  • the heating resistor can be manufactured relatively easily, and the reduction in productivity can be prevented more reliably.
  • the glow plug includes an insulating powder filled around the heating resistor in the tube,
  • the insulating powder is a powder mainly composed of magnesium oxide (MgO).
  • the thermal conductivity from the heating resistor to the tube can be improved.
  • the glow plug (heating unit) can be heated at a higher temperature without excessively heating the heating resistor.
  • the tube (heating part) can be heated to a higher temperature, the thermal stress applied to the tube can be further increased.
  • the tube (heating portion) is made of Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube.
  • the oxide film becomes easier to break. Therefore, an unoxidized metal surface is more easily exposed on the inner peripheral surface of the tube, and the oxygen partial pressure inside the tube can be more effectively reduced by oxidation of Al or Cr contained in the metal surface.
  • MgO easily forms a composite oxide with Al 2 O 3 and Cr 2 O 3 formed on the inner peripheral surface of the tube.
  • This composite oxide is composed of an oxide film made of Al 2 O 3 and the like. Very coarse compared. Therefore, Al and Cr contained in the tube and oxygen inside the tube are more likely to react, and the oxygen partial pressure inside the tube can be further reduced.
  • the property of good thermal conductivity that MgO has and the property of easily forming composite oxides with Al 2 O 3 and the like act synergistically to extremely effectively reduce the oxygen partial pressure inside the tube. Can be reduced. As a result, the durability of the heating resistor can be further improved, and the glow plug can generate heat at a higher temperature for a longer period of time.
  • the seal portion is made of a material having an oxygen permeability of 2.0 ⁇ 10 ⁇ 9 (cm 3 ⁇ cm / sec ⁇ cm 2 ⁇ cmHg) or less. It is formed.
  • the oxygen permeability of the seal portion is sufficiently small as 2.0 ⁇ 10 ⁇ 9 or less. Therefore, it is possible to effectively prevent oxygen from entering the inside of the tube without excessively thickening the seal portion.
  • a glow plug is known in which the tip of the heating resistor is joined to the tip of the tube.
  • the tip of the tube is closed while the tip of the tube is closed by arc welding or the like after the heating resistor is inserted into the tube having the tip opened.
  • a technique of welding the portion and the tip of the heating resistor There is known a technique of welding the portion and the tip of the heating resistor. If a heating resistor having W as a main component is joined to the distal end portion of the tube using this technique, W may be contained in the distal end portion of the tube. If W is contained in the tube tip (especially the outer surface), W may be oxidized rapidly, and the tube may be damaged.
  • the tip of the tube does not contain W, and the Cr content in the heating resistor (the heating resistor may not contain Cr) or more. Of Cr. Therefore, it is possible to prevent the occurrence of the above-mentioned problems due to the inclusion of W, and it is possible to more reliably form an oxide film made of Cr 2 O 3 on the surface of the distal end portion of the tube with the contained Cr. As a result, it is possible to achieve sufficiently excellent durability at the distal end portion of the tube, and to prevent the tube from being damaged more reliably.
  • a metal piece containing Cr is used as the heating resistor.
  • the glow plug of this configuration has a cylindrical tube with a closed end, A heating resistor inserted through the tube; A glow plug provided at a rear end side opening of the tube and having a seal portion for sealing the inside of the tube;
  • the heating resistor is formed of a metal material mainly composed of W or Mo,
  • the tube is formed of an alloy containing Al in an amount of 0.5% by mass to 5.0% by mass and Cr in an amount of 20% by mass to 40% by mass.
  • the same function and effect as those of the above-described configuration 1 are basically obtained. That is, by containing a predetermined amount of Al or Cr in the tube, the oxidation of the heating resistor made of W, Mo, etc. can be effectively prevented, and the excellent heat resistance of W or Mo can be fully exhibited. And excellent oxidation resistance in the tube can be maintained over a long period of time. As a result, the durability of both the heating resistor and the tube can be dramatically improved, and the glow plug can generate heat at a higher temperature over a long period of time.
  • the average value of the room temperature resistance in the portion from the tip of the heating resistor to the rear end of 6 mm along the central axis of the tube is the heating resistor in the configuration 7. It is characterized by being larger than the average value of the whole room temperature resistance.
  • the glow plug of this configuration is the above-described configuration 7 or 8, wherein the heating resistor has a coil shape and a wire diameter of 0.2 mm or more.
  • the average pitch in the region from the tip to the rear end of 6 mm along the center axis of the tube is 6 mm along the center axis of the tube from the tip of the heating resistor. It is characterized by being 0.9 mm or more smaller than the average pitch in the part located on the rear end side with respect to the rear end.
  • the glow plug of this configuration includes an insulating powder filled around the heating resistor in the tube according to any one of the configurations 7 to 9,
  • the insulating powder is a powder mainly composed of MgO.
  • the seal portion is made of a material having an oxygen permeability of 2.0 ⁇ 10 ⁇ 9 (cm 3 ⁇ cm / sec ⁇ cm 2 ⁇ cmHg) or less. It is formed.
  • the manufacturing method of the glow plug of this configuration includes a cylindrical tube with a closed end, A heating resistor inserted through the tube; A glow plug manufacturing method comprising a seal portion provided in a rear end side opening of the tube and sealing the inside of the tube,
  • the heating resistor formed of a metal material mainly composed of W or Mo is formed of an alloy containing Al in a range of 0.5 mass% to 5.0 mass% and Cr in a content of 20 mass% to 40 mass%.
  • a placement step of placing in the tube A sealing step of providing the seal portion at the rear end side opening of the tube and sealing the inside of the tube; And a heating step of heating the outer surface of the tube after the sealing step.
  • the configuration 13 since the outer surface of the tube is heated in the heating step after the sealing step, Al and Cr in the tube can be led and reacted with oxygen inside the tube rather than the heating resistor. . As a result, the oxygen partial pressure inside the tube can be further reduced while suppressing the oxidation of the heating resistor, and the durability of the heating resistor can be further improved.
  • the heating temperature of the tube outer surface is too low or the heating time is too short, the oxidation of Al or Cr in the tube may not be promoted sufficiently, and the heating temperature is too high, If the heating time is too long, the seal portion may be damaged. Therefore, in order to promote the oxidation of Al and Cr more reliably and prevent damage to the seal portion, it is preferable that the heating temperature is 700 ° C. or higher and 1300 ° C. or lower, and the heating time is 1 second or longer and 60 seconds or shorter. More preferably, the heating temperature is 800 ° C. to 1300 ° C., and the heating time is 3 seconds to 30 seconds.
  • FIG. 1 It is a block diagram which shows schematic structure of a heating apparatus.
  • (A) is a partially broken front view of the glow plug, and (b) is a partially enlarged sectional view of the tip end portion of the glow plug. It is a partial expanded sectional view for demonstrating the joining method of a tube front-end
  • (A), (b) is a partial expanded sectional view which shows the structure of a sample.
  • (A), (b) is a partial expanded sectional view which shows the structure of a sample.
  • FIG. 1 is a block diagram showing a schematic configuration of a heating device 21 according to the present invention.
  • the heating device 21 includes a glow plug 1 and a glow control device (GCU) 31 as an energization control device that controls energization of the glow plug 1.
  • GCU glow control device
  • the GCU 31 is operated by electric power supplied from the battery VA, and includes a microcomputer 32 having a CPU, ROM, RAM, and the like, and a switch 33 that switches on / off of energization from the battery VA to the glow plug 1. Yes.
  • the energization control to the glow plug 1 by the GCU 31 is performed by PWM control, and the switch 33 switches on / off of energization to the glow plug 1 in accordance with an instruction from the microcomputer 32.
  • the switch 33 in order to measure the resistance value of the glow plug 1, the switch 33 is configured to operate an FET (field effect transistor) having a current detection function via an NPN transistor or the like. .
  • a microcomputer 32 is connected to a terminal for power supply of the glow plug 1 via a voltage dividing resistor (not shown), and the microcomputer 32 is applied to the glow plug 1.
  • a voltage obtained by dividing the voltage (voltage output from the GCU 31) is input.
  • the microcomputer 32 can calculate the applied voltage to the glow plug 1 based on the input voltage, and the glow plug 1 can be calculated from the applied voltage and the current flowing through the glow plug 1 measured by the switch 33. The resistance value is obtained.
  • the microcomputer 32 is configured so that when the engine key is turned on, the glow plug 1 is turned on for a predetermined time after the pre-glow energization for rapidly raising the temperature of the glow plug 1 and the pre-glow energization. It is set so that after-glow energization can be performed that is maintained at a predetermined temperature for a predetermined time.
  • the surface of a tube 7 described later of the glow plug 1 is heated from room temperature to 1000 ° C. within 3 seconds so that the glow plug 1 is rapidly heated to a predetermined target temperature. Electric power is supplied to the glow plug 1.
  • a curve indicating the relationship between the electric power supplied to the glow plug 1 and the elapsed time is made to coincide with a reference curve prepared in advance, so that the glow plug 1 can be rapidly connected regardless of the characteristics of the glow plug 1.
  • the power to be input at each time point corresponding to the elapsed time from the start of energization is obtained.
  • the voltage to be applied to the glow plug 1 is obtained from the relationship between the current flowing through the glow plug 1 and the value of power to be applied at that time, and the voltage applied to the glow plug 1 is controlled by PWM control.
  • the power is input so as to draw the same curve as the reference curve, and the glow plug 1 generates heat according to the integrated amount of power input up to each point in the temperature raising process. Therefore, when the power supply along the reference curve is completed, the glow plug 1 reaches the target temperature in the time corresponding to the reference curve.
  • the power supplied to the glow plug 1 is adjusted so that the surface temperature of the tube 7 becomes extremely high at 1150 ° C. or more for a relatively long period (for example, about 180 seconds). It has become.
  • the energization of the glow plug 1 is controlled so that the resistance value of the glow plug 1 matches the resistance value (target resistance value) when the glow plug 1 is set to the target temperature.
  • the effective voltage to be applied to the glow plug 1 is calculated from the difference between the current resistance value of the glow plug 1 and the target resistance value, for example, by PI control, and the duty ratio is calculated based on the effective voltage. Is set.
  • the glow plug 1 includes a cylindrical metal shell 2 and a sheath heater 3 attached to the metal shell 2.
  • the metal shell 2 has a shaft hole 4 penetrating in the direction of the axis CL1, and a hexagonal cross section for engaging a screw portion 5 for attachment to a diesel engine or the like and a tool such as a torque wrench on the outer peripheral surface thereof.
  • a tool engaging portion 6 having a shape is formed.
  • the sheath heater 3 is configured by integrating a tube 7 and a middle shaft 8 in the direction of the axis CL1.
  • the tube 7 is a cylindrical tube formed of a metal material mainly composed of iron (Fe) or nickel (Ni) and having a closed end. Further, a heating coil 9 (corresponding to the “heating resistor” of the present invention) made of a predetermined metal material is provided in the tube 7, and the tip of the heating coil 9 is connected to the tip of the tube 7. (The metal material constituting the tube 7 and the metal material constituting the heating coil 9 will be described in detail later).
  • the tube 7 is configured so that the distal end portion thereof is closed when the heating coil 9 is joined, and the distal end portion of the tube 7 is in an open state before the heating coil 9 is joined.
  • a metal piece MP (see FIG. 3), which will be described later, is welded in advance to the distal end portion of the heating coil 9, and then the metal piece MP is disposed at the distal end opening of the tube 7, and the metal piece is obtained by arc welding or the like.
  • a melting portion 7 ⁇ / b> M is formed at the distal end portion of the tube 7.
  • the metal piece MP is formed of the same metal material as that of the tube 7.
  • the tube 7 through which the heating coil 9 is inserted corresponds to the “heating unit” in the present invention.
  • the portion where the temperature becomes highest by energization in the present embodiment, the tip of the tube 7). 2 mm from the rear end side to the rear end side) may be equivalent to the “heating unit”.
  • insulating powder 10 is filled around the heating coil 9. Therefore, although the heat generating coil 9 is electrically connected to the tube 7 at the tip thereof, the outer peripheral surface of the heat generating coil 9 and the inner peripheral surface of the tube 7 are insulated by the interposition of the insulating powder 10. Yes.
  • the center shaft 8 has its tip inserted into the tube 7, is electrically connected to the rear end of the heating coil 9, and is inserted through the shaft hole 4 of the metal shell 2.
  • the rear end of the middle shaft 8 protrudes from the rear end of the metal shell 2.
  • the rubber-made O-ring 12, the resin-made insulating bush 13, and the insulating bush 13 are removed.
  • the holding ring 14 for preventing and the nut 15 for connecting a cable for energization are structured to be fitted to the middle shaft 8 in this order.
  • the heating coil 9 is a metal material mainly composed of tungsten (W) or molybdenum (Mo) [in this embodiment, pure metal of W or Mo (which may contain inevitable impurities). )].
  • the tube 7 contains Ni or Fe as a main component, and contains aluminum (Al) in an amount of 0.5 mass% to 5.0 mass% and chromium (Cr) in an amount of 20 mass% to 40 mass%. It is formed with the metal material which does.
  • the Cr content in the tube 7 is greater than the Cr content in the heating coil 9, and the tube 7 does not contain W.
  • the insulating powder 10 is composed of a powder containing magnesium oxide (MgO) as a main component.
  • the seal portion 11 is made of an elastic material having an oxygen permeability of 2.0 ⁇ 10 ⁇ 9 (cm 3 ⁇ cm / sec ⁇ cm 2 ⁇ cmHg) or less [for example, ethylene propylene rubber (EPDM rubber) or fluororubber Etc.].
  • the thickness of the seal portion 11 along the direction of the axis CL1 is relatively small (for example, 10 mm or less).
  • the melting portion 7M (the tip portion of the tube 7) is formed by melting the tube 7 and the metal piece MP made of the same material, at least the outer surface thereof does not contain W.
  • the metal material constituting the heating coil 9 is configured to contain Cr that is equal to or greater than the Cr content (the heating coil 9 in the present embodiment does not contain Cr).
  • a resistance heating wire mainly composed of W or Mo is processed into a coil shape, and the heating coil 9 is manufactured.
  • a cylindrical tube 7 whose tip is not closed is made of a metal material containing Ni or Fe as a main component, Al in an amount of 0.5% to 5.0% by mass, and Cr in an amount of 20% to 40% by mass. Make it.
  • the cylindrical tube 7 Inside, the tip of the middle shaft 8 and the heating coil 9 integrated with the middle shaft 8 are arranged. Then, after the metal piece MP is disposed in the opening of the tube 7, the metal piece MP and the tube 7 are melted by arc welding or the like to close the tip of the tube 7, and the tip of the tube 7 is heated. The tip of the coil 9 is joined.
  • the insulating powder 10 is filled in the tube 7, and in the sealing step, the seal portion 11 is provided between the rear end opening of the tube 7 and the middle shaft 8 to seal the inside of the tube 7.
  • the tube 7 is integrated with the middle shaft 8 to complete the sheath heater 3.
  • it is good also as giving a swaging process to the front-end
  • FIG. By performing the swaging process, the packing density of the insulating powder 10 can be further increased.
  • the sheath heater 3 formed as described above is press-fitted and fixed in the shaft hole 4 of the metal shell 2, and the O-ring 12, the insulating bush 13, etc. are fitted into the middle shaft 8 at the rear end portion of the metal shell 2. It is. Thereby, the glow plug 1 mentioned above is obtained.
  • the preheating which heats the outer surface of the tube 7 in the obtained glow plug 1.
  • the outer surface of the portion of the tube 7 where the heat generating coil 9 is located (for example, the range from the tip of the tube 7 to 1 mm on the rear end side in the axis CL1 direction) is 800 ° C. to 1300 ° C. It is heated by an electric furnace or a high-frequency heating device for 2 to 30 seconds.
  • the heat generating coil 9 is formed of a metal material mainly composed of W or Mo having a high melting point, so that the heat generating coil 9 can achieve excellent heat resistance. it can.
  • the tube 7 contains 0.5% by mass or more of Al and 20% by mass or more of Cr. ing. Therefore, during heat generation, Al or Cr that is more easily oxidized than W or Mo functions as an oxygen getter element, and an oxide film made of Al 2 O 3 or Cr 2 O 3 is formed on the inner peripheral surface of the tube 7. Thus, since the inside of the tube 7 is in a sealed state, the oxygen partial pressure inside the tube 7 can be effectively reduced. As a result, it is possible to more reliably prevent oxidation of the heating coil 9 mainly composed of W or Mo.
  • an oxide film of Al 2 O 3 or Cr 2 O 3 can be formed over a wide area on the outer surface of the tube 7. Oxygen intrusion into the tube 7 can be more reliably suppressed by the oxide film, and the oxidation resistance of the tube 7 can be improved. Furthermore, since the content of Al and Cr is sufficiently large, even if peeling or cracking occurs in the oxide film due to thermal stress due to repeated cooling and heating cycles, the oxide film is more reliably and for a longer period of time. Can be reformed over a period of time.
  • the oxidation of the heating coil 9 made of W, Mo, or the like can be effectively prevented, and The excellent heat resistance can be sufficiently exhibited, and the excellent oxidation resistance in the tube 7 can be maintained for a long time.
  • the durability of both the heating coil 9 and the tube 7 can be dramatically improved, and the glow plug 1 can generate heat at a higher temperature over a long period of time.
  • the thermal stress applied to the tube 7 is increased. Can be made. Therefore, an oxide film made of Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube 7 is likely to be broken, and an unoxidized metal surface is easily exposed from the oxide film on the inner peripheral surface of the tube 7.
  • the oxygen partial pressure inside the tube 7 can be further reduced, and as a result, oxidation of the heating coil 9 made of W or the like is extremely effectively prevented. be able to.
  • the surface temperature (heating part) of the tube 7 is a very high temperature of 1150 ° C. or more, and heat generation over a long period is difficult. By acting synergistically, it becomes possible to generate heat over a long period of time even at such a high temperature.
  • the present invention is particularly significant when the surface temperature (heating portion) of the tube 7 is set to a high temperature of 1150 ° C. or higher in after-glow energization performed for a relatively long period of time.
  • the thermal conductivity from the heating coil 9 to the tube 7 can be improved.
  • the glow plug 1 (tube 7) can be heated at a higher temperature without excessively heating the heating coil 9.
  • the tube 7 can be heated to a higher temperature, the thermal stress applied to the tube 7 can be increased, and as a result, an oxide film made of Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube 7. Becomes easier to crack. Therefore, unoxidized Al and Cr are more easily exposed on the inner peripheral surface of the tube 7, and the oxygen partial pressure inside the tube 7 can be reduced more effectively.
  • MgO easily forms a composite oxide with Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube 7, and this composite oxide is an oxide film made of Al 2 O 3 or the like. Very coarse compared to. Therefore, Al and Cr contained in the tube 7 and oxygen inside the tube 7 are more likely to react, and the oxygen partial pressure inside the tube 7 can be further reduced.
  • the property of good thermal conductivity of MgO and the property of easily forming a composite oxide with Al 2 O 3 and the like are synergistic.
  • the oxygen partial pressure inside the tube 7 can be reduced extremely effectively.
  • the durability of the heating coil 9 can be further improved, and the glow plug 1 can generate heat at a higher temperature for a longer period of time.
  • the oxygen permeability of the material constituting the seal portion 11 is sufficiently small as 2.0 ⁇ 10 ⁇ 9 or less, so that oxygen does not enter the tube 7 without excessively thickening the seal portion 11. Intrusion can be effectively prevented.
  • the melting portion 7M (the tip portion of the tube 7) does not contain W at least on the outer surface thereof, and also contains Cr equal to or more than the Cr content in the metal material constituting the heating coil 9. Yes. Therefore, oxidation accompanying the inclusion of W can be prevented, and an oxide film made of Cr 2 O 3 can be more reliably formed on the surface of the tip of the tube 7. As a result, it is possible to achieve sufficiently excellent durability at the distal end portion of the tube 7 and to prevent the tube 7 from being damaged more reliably.
  • a material containing Cr is generally known as a material constituting the heat generating coil 9, but in the present embodiment, the heat generating coil 9 is formed from a pure metal such as W or Mo. For this reason, the formation of the Cr oxide film on the surface can prevent the occurrence of a change in the component of the heating coil 9 and the decrease in the resistance value of the heating coil 9. As a result, the durability of the heating coil 9 can be further improved.
  • the heating coil 49 extends from the tip to the rear end of 6 mm along the center axis CL ⁇ b> 2 of the tube 47 (in the present embodiment, coincides with the axis CL ⁇ b> 1).
  • the wire diameter of the distal end side coil 49A located at the rear is made smaller than the wire diameter of the rear end side coil 49B of the heat generating coil 49 located on the rear end side of the distal end side coil 49A.
  • the distal end portion of the distal end side coil 94A is configured such that the wire diameter gradually decreases toward the distal end side.
  • the average value of the room temperature resistance of the front end side coil 49A per unit length along the central axis CL2 of the tube 47 is made by making the wire diameter of the front end side coil 49A smaller than that of the rear end side coil 49B. Is larger than the average value of the room temperature resistance of the entire heating coil 49 per unit length along the central axis CL2.
  • the average value of the normal temperature resistance in the distal end side coil 49A is made larger than the average value of the normal temperature resistance of the entire heating coil 49, so that when the power is supplied from the battery VA to the glow plug 1 (the heating coil 49), the tube 47, the portion X of about 2 mm and its vicinity can be positively heated from the front end to the rear end thereof, and the portion X and the vicinity thereof can be set to the highest temperature.
  • a portion (hereinafter referred to as an “exposed portion”) of the tube 47 that is generally located between the front end and the rear end of the tube 47 is approximately 4 mm. 47E) is disposed in the combustion chamber ER. Therefore, the part X can be said to be a part located substantially at the center of the exposed portion 7E.
  • the temperature of the exposed portion 47E of the tube 47 that is likely to be higher and that is subject to a sudden temperature change can be positively increased. It is possible to make the temperature higher, and it is possible to cause a rapid temperature change in the tube 47. Therefore, the thermal stress generated in the tube 47 can be further increased, and the oxide film formed on the inner peripheral surface of the tube 47 can be further easily broken. As a result, the oxidation preventing effect of the heating coil 49 can be further improved.
  • the third embodiment will be described focusing on differences from the second embodiment.
  • the wire diameter of the front end side coil 49A is the wire of the rear end side coil 49B. It is smaller than the diameter.
  • the average pitch of the front end side coil 59A is the rear end side. By making it 0.9 mm or more smaller than the average pitch of the coil 59B, the average value of the room temperature resistance in the tip coil 59A is sufficiently larger than the average value of the room temperature resistance of the entire heating coil 59 (this first example).
  • the average value of the normal temperature resistance of the distal end side coil 59A is configured to be at least twice the average value of the normal temperature resistance of the entire heating coil 59).
  • the heating coil 59 has a wire diameter of 0.2 mm or more, and the heating coil 59 is configured to have a substantially constant wire diameter from the front end to the rear end.
  • the temperature of the exposed portion of the tube 57 can be positively increased, and the temperature of the tube 57 can be increased more rapidly. Therefore, the oxide film formed on the inner peripheral surface of the tube 57 can be further easily broken, and the oxidation preventing effect of the heating coil 59 can be further enhanced.
  • the mechanical strength of the heating coil 59 can be sufficiently maintained.
  • the heat generating coil 59 can be manufactured relatively easily, and a reduction in productivity can be prevented more reliably.
  • the heating coil is formed of Fe-26Cr-7.5Al (Pyromax), W, or Mo, and the tube is mainly composed of Fe or Ni.
  • samples of glow plugs formed from metal materials with various contents of Al and Cr were prepared, and durability evaluation tests were performed on the samples.
  • the outline of the durability evaluation test is as follows. That is, for each sample, the tube surface (heating portion) was heated from room temperature to 1000 ° C. in 2 seconds or 10 seconds and energized for 60 seconds so that the tube surface temperature was saturated at 1150 ° C. or 1200 ° C.
  • Table 1 shows the test results of the sample in which the heating coil is formed of Fe-26Cr-7.5Al.
  • Table 2 shows the test results of the sample in which the heating coil is formed of W, and
  • Table 3 shows the test result of the sample in which the heating coil is formed of Mo.
  • the seal portion was formed of fluoro rubber, and the tube composition was specified by quantitative analysis using EPMA.
  • the heating coil was formed of Fe-26Cr-7.5Al, only a test for raising the temperature from room temperature to 1000 ° C. in 2 seconds was performed.
  • the heating coil is disconnected at an early stage regardless of the composition of the tube, particularly up to 1200 ° C. It was found that the heating coil melts when the temperature is raised. This is because the melting point of the metal material composing the heating coil is relatively low, about 1500 ° C., and when the tube surface was heated to a high temperature of 1150 ° C. or higher, the heating coil was heated to near its melting point. Conceivable.
  • the sample in which the tube was formed of Ni-15Cr-8Fe-0.5Mn-0.2Si [Inconel (registered trademark) 600] would be damaged. This is because the tube does not contain Al and the Cr content in the tube is relatively low, so an oxide film formed by oxidation of Al or Cr is not sufficiently formed on the tube surface, and the tube has oxidation resistance. This is thought to be due to the fact that it was insufficient.
  • the heating coil is formed of W or Mo and the Al content of the tube is 0.5 mass% or more and the Cr content is 20 mass% or more has excellent durability. It became clear. This is because Al and Cr contained in the tube are preferentially oxidized over W or Mo of the heating coil, so that the partial pressure of oxygen in the tube can be reduced, and hence the oxidation of the heating coil can be suppressed. In addition, according to the fact that an oxide film made of Al or Cr was sufficiently formed on the outer surface of the tube, and excellent oxidation resistance capable of withstanding a high temperature of 1150 ° C. or higher was realized in the tube over a long period of time. Conceivable.
  • the heating coil is made of a metal material mainly composed of W or Mo. While forming, it can be said that it is preferable to make Al content in a tube into 0.5 mass% or more, and to make Cr content into 20 mass% or more. In order to further improve the durability, the Al content is increased to 1.4% by mass or more and 2.4% by mass or more, or the Cr content is increased to 23% by mass or more and 26% by mass or more. It can be said that it is desirable to increase it. However, if the Al content is more than 5.0% by mass or the Cr content is more than 40% by mass, the workability may be deteriorated. Therefore, it is preferable that the Al content is 5.0% by mass or less and the Cr content is 40% by mass or less.
  • a glow plug in which a heating coil is formed of a metal material mainly composed of W or Mo and a tube is formed of a metal material containing a predetermined amount of Al or Cr. It is preferable to supply power so that the tube surface temperature rises from room temperature to 1000 ° C. within 3 seconds, and it is more preferable to supply power so that the temperature rises from room temperature to 1000 ° C. within 2 seconds. .
  • the temperature was raised from room temperature to 1000 ° C. in 5 seconds), and then air cooling for 180 seconds was taken as one cycle, and the disconnection cycle until the heating coil was disconnected was measured.
  • Table 6 shows the results of the test.
  • the heating coil is formed of W
  • the tube is formed of Ni-23Cr-14Fe-1.4Al-0.5Mn-0.2Si [Inconel (registered trademark) 601], Alloy 602, or SUS310s. did.
  • the seal portion was formed of fluororubber, and the sample after preparation was preheated at 800 ° C. for 30 seconds.
  • the sample in which the tube was formed of Inconel 601 or Alloy 602 had excellent durability in any insulating powder.
  • the sample in which the insulating powder is formed of MgO is more excellent in durability than the sample in which the insulating powder is formed of Al 2 O 3 or Si 3 N 4 .
  • MgO is easy to form a composite oxide with Al and Cr oxides formed on the inner periphery of the tube. Since the composite oxide is very rough, Al and Cr in the tube and oxygen inside the tube As a result, the oxygen partial pressure inside the tube could be further reduced, and compared with Al 2 O 3 etc., MgO is superior in thermal conductivity. It is considered that a large thermal stress is applied, and as a result, the oxide film on the inner periphery of the tube is easily cracked, and the oxidation of oxygen inside the tube and Al and Cr in the tube is further promoted.
  • glow plug samples in which the seal portion is made of EPDM or fluororubber are prepared, and each sample is energized at 7.5 V for 65 seconds (temperature rise from room temperature to 1000 ° C. in 5 seconds), and then for 180 seconds. Taking the air cooling as one cycle, the disconnection cycle until the heating coil was disconnected was measured. Table 7 shows the results of the test.
  • the heating coil was made of W, and the tube was made of Inconel 601 or Alloy 602. Moreover, the thickness along the axial direction of the seal portion was set to 10 mm.
  • each sample has excellent durability, and in particular, as the oxygen permeability of the seal portion is small, further excellent durability can be realized. This is considered to be because the invasion of oxygen that has passed through the seal portion into the tube is further suppressed.
  • the oxygen permeability of the seal portion should be 2.0 ⁇ 10 ⁇ 9 (cm 3 ⁇ cm / sec ⁇ cm 2 ⁇ cmHg) or less. It is preferable that the oxygen permeability is 1.0 ⁇ 10 ⁇ 9 (cm 3 ⁇ cm / sec ⁇ cm 2 ⁇ cmHg) or less.
  • a plurality of glow plug samples in which the heating coil is formed of W and the tube is formed of Inconel 601 are produced, and the tip of the tube (range from the tip to 1 mm) is inserted into the electric furnace for each sample.
  • the tube was preheated at 700 ° C. to 1400 ° C. for 1 second to 60 seconds. Then, for the preheated sample, the tube surface is heated from room temperature to 1000 ° C. in 2 seconds and energized for 60 seconds so that the tube surface temperature is saturated at 1200 ° C. (that is, at 11 V).
  • samples that were preheated at 700 ° C. to 1300 ° C. for 1 second to 30 seconds, or samples that were preheated at 700 ° C. for 60 seconds were samples that were not preheated. It became clear that it had the further outstanding durability compared with. This is because heating the tube causes Al and Cr in the tube to take the lead and react with oxygen inside the tube rather than the heating coil. As a result, while suppressing oxidation of the heating coil, oxygen inside the tube This is probably because the partial pressure could be further reduced.
  • the sample preliminarily heated at 800 ° C. to 1300 ° C. for 3 to 30 seconds has a disconnection cycle exceeding 9000 cycles and has extremely excellent durability.
  • the temperature at the 2 mm portion (center of the exposed portion) of the tube surface from the tip to the rear end is measured. While measuring, each sample was energized at 11 V for 2 seconds, and then energized at 6 V for 180 seconds. And the time (1000 degreeC arrival time) when the temperature in a 2 mm part (measurement object part) reached
  • the sample in which the measurement target portion reaches 1000 ° C. within 3 seconds can easily raise the temperature of the tube quickly and easily expose unoxidized Al and Cr to the inner peripheral surface of the tube.
  • Table 9 shows the test results of the test.
  • the heating coil was made of Mo
  • the pitch of the heating coil was constant
  • the outer diameter of the heating coil was 2.5 mm
  • the room temperature resistance of the entire heating coil was 300 m ⁇ .
  • the length along the axis of the heating coil and the number of turns of the heating coil were changed according to the wire diameter of the heating coil in order to equalize the room temperature resistance of the entire heating coil.
  • the length and the number of turns of the heating coil in each sample are also shown for reference.
  • the measurement target part becomes 1000 ° C. within 3 seconds, and it is easy to rapidly raise the temperature of the exposed part. It was.
  • the heat generating coil was formed of Mo, the outer diameter of the heat generating coil was 2.5 mm, the length of the front end side coil was 6 mm, and the length of the rear end side coil was 18 mm.
  • a heating coil was produced by welding a portion corresponding to the front end side coil to a portion corresponding to the rear end side coil.
  • the average pitch of the tip side coil was changed in accordance with the wire diameter of the tip side coil, and the room temperature resistance of the tip side coil was adjusted to 150 m ⁇ .
  • the wire diameter of the heat generating coil is set to 2.0 mm or more. Then, after making the wire diameter of the heating coil 2.0 mm, a plurality of glow plug samples in which the average value of the room temperature resistance of the tip side coil was changed by changing the pitch of the tip side coil, The sample was heated under the above-described energization conditions (energization at 11V for 2 seconds and energization at 6V for 180 seconds). The sample in which the measurement target portion reaches 1000 ° C. within 3 seconds is evaluated as “ ⁇ ” because the exposed portion is easily heated rapidly. On the other hand, the temperature of the measurement target portion is 3 seconds. Samples that did not reach 1000 ° C. within the range were evaluated as “ ⁇ ” because the temperature of the exposed portion was somewhat difficult to raise. Table 11 shows the test results of the test.
  • the heating coil was made of Mo, and the outer diameter of the heating coil was 2.5 mm. Further, as shown in FIGS. 7A and 7B, in each sample, the length of the front end side coil was 6 mm, and the length of the rear end side coil was 18 mm.
  • the room temperature resistance of the rear end side coil is also changed by adjusting the pitch of the rear end side coil in accordance with the change of the room temperature resistance (pitch) of the front end side coil. It was.
  • the normal temperature resistance of the front end side coil, the normal temperature resistance of the rear end side coil, the average pitch of the front end side coil, and the average pitch of the rear end side coil are also shown.
  • the average pitch of the distal end side coil was calculated by excluding one turn adjacent to the distal end of the tube (the most distal portion of the heating coil) from the distal end side coil.
  • the measurement target portion reaches 1000 ° C. within 3 seconds, and the exposed portion rapidly rises. It became clear that temperature could be easily achieved.
  • the measurement target portion becomes 1000 ° C. within 2 seconds, and the rapid temperature rise performance of the exposed portion is further improved. I understood that.
  • the durability of the heating coil can be improved as the time to reach 1000 ° C. is shortened.
  • both the normal temperature resistance of the front end side coil and the normal temperature resistance of the rear end side coil are set to 150 m ⁇ , and the length of the front end side coil is set to 6 mm as shown in FIGS.
  • the average value of the normal temperature resistance of the front coil is set to a constant value (25 m ⁇ / mm)]
  • the average value of the normal temperature resistance of the entire heating coil is changed by changing the length L of the rear coil.
  • the heating coil was formed of W, and the outer diameter of the heating coil was 2.5 mm.
  • the exposed portion can be rapidly heated rapidly by making the average value of the room temperature resistance of the coil on the tip side larger than the average value of the room temperature resistance of the entire heating coil. .
  • the rapid temperature rising property of the exposed portion can be further improved by making the average pitch of the front end side coil 0.9 mm or more smaller than the average pitch of the rear end side coil.
  • the average temperature resistance of the coil on the tip side is heated to positively raise the temperature of the exposed part of the tube, which is likely to be hot. It can be said that it is preferable to make it larger than the average value of the room temperature resistance of the entire coil. In order to further improve the oxidation resistance of the heating coil, it can be said that it is more preferable to make the average pitch of the front end side coil 0.9 mm or more smaller than the average pitch of the rear end side coil.
  • the surface temperature of the exposed portion should be 1000 ° C. or more within 3 seconds by changing the energization condition. Is possible.
  • the surface temperature of the portion of the tube other than the exposed portion can be set to 1000 ° C. or more within 3 seconds.
  • the metal material constituting the heating coil 9 is an alloy mainly composed of W or Mo. If it is. Therefore, the heat generating coil 9 may be formed of a metal material mainly composed of W or Mo and containing rhenium (Re), thorium oxide (ThO 2 ), Cr, or the like.
  • Re rhenium
  • ThO 2 thorium oxide
  • Cr Cr
  • EPDM rubber or fluororubber is exemplified as the material constituting the seal portion 11, but the material constituting the seal portion 11 is not limited to this. Accordingly, silicon rubber having a certain thickness may be used, or a glass material may be used as the seal portion 11 if the tube 7 is not subjected to swaging.
  • the metal piece MP is formed of a material having the same composition as the material constituting the tube 7, but the composition of the metal piece MP is not limited to this.
  • the metal piece MP in order to configure the tube 7 so that no W is contained in the tip portion, is preferably one containing no W.
  • the metal piece MP in order to make Cr contain at the front-end
  • the insulating powder 10 is made of a metal material mainly composed of MgO.
  • the insulating powder 10 is mainly made of another metal (for example, Al 2 O 3 or Si 3 N 4 ). It is good also as comprising with the material used as a component.
  • the shape or the like of the glow plug 1 is not limited to the above-described embodiment.
  • the tube 7 may be configured to have a small-diameter portion at the tip.
  • the large diameter portion 4a of the shaft hole 4 of the metal shell 2 may be omitted, and the tube 7 may be press-fitted into the shaft hole 4 having a straight shape in the axial direction.
  • the middle shaft 8 is directly joined to the rear end of the heating coil 9, but a metal material different from the heating coil 9 between the heating coil 9 and the middle shaft 8 [for example, cobalt (Co)
  • a coil for example, control coil
  • control coil made of a metal material whose main component is Co or Ni represented by —Ni—Fe alloy or the like.
  • the resistance value of the control coil is relatively low, and the heating coil 9 can be rapidly heated, while when the temperature is saturated, The resistance value becomes relatively high, the amount of power supplied to the heating coil 9 is suppressed, and as a result, the excessive heating of the heating coil 9 can be suppressed.

Abstract

The disclosed glowplug (1) is provided with a cylindrical tube (7) that is closed at the tip, a heating coil (9) that is inserted into the tube (7), and a seal (11) that is provided to the open rear end of the tube (7) and seals the tube (7). The heating coil (9) is formed by a metal member that has tungsten (W) or molybdenum (Mo) as the primary component and the tube (7) is formed from an alloy that contains 0.5-5.0 mass% aluminium (Al) and 20-40 mass% chromium (Cr). Due to the tube (7) containing Al and Cr in designated amounts, as well as the tube having high anti-oxidation properties, the oxygen partial pressure within the tube (7) is reduced and the oxidation of the heating coil (9) can be controlled. As a result, the durability of both the heating coil (9) and the tube (7) is increased and high temperature heating over a long period is possible.

Description

グロープラグ及びその製造方法、並びに、加熱装置Glow plug, manufacturing method thereof, and heating device
 本発明は、ディーゼルエンジンの予熱などに使用するグロープラグ、及び、加熱装置に関する。 The present invention relates to a glow plug used for preheating a diesel engine and the like, and a heating device.
 ディーゼルエンジンの予熱などに使用するグロープラグとしては、一般に、鉄(Fe)やニッケル(Ni)を主成分とする合金により形成され、先端が閉じた筒状をなすチューブ内に、FeやNiを主成分として、クロム(Cr)やアルミニウム(Al)等を含有してなる合金により形成された発熱抵抗体を、絶縁粉末とともに封入したシースヒータを有するものが知られている。 Glow plugs used for diesel engine preheating and the like are generally formed of an alloy mainly composed of iron (Fe) or nickel (Ni), and Fe or Ni is placed in a tube having a closed end. As a main component, there is known one having a sheath heater in which a heating resistor formed of an alloy containing chromium (Cr), aluminum (Al), or the like is enclosed together with an insulating powder.
 ところで近年では、エミッションの更なる低減等を図るべく、燃焼室内の更なる高温化の要請がある。この要請に応えるべく、グロープラグをより高温で(例えば、チューブ表面を1150℃以上に)発熱させることが考えられるが、チューブ表面と発熱抵抗体との温度差は300℃程度あることから、グロープラグをより高温で発熱させるためには、発熱抵抗体を極めて高温(例えば、1450℃以上)にまで加熱する必要がある。しかしながら、従前使用されていたFeやNiを主成分とする合金は、その融点が1500℃前後である。そのため、上述のような極めて高温にまで加熱された場合には、発熱抵抗体に溶損等の不具合が生じてしまうおそれがある。 By the way, in recent years, there has been a demand for higher temperature in the combustion chamber in order to further reduce the emission. In order to meet this requirement, it is conceivable that the glow plug generates heat at a higher temperature (for example, the tube surface is heated to 1150 ° C. or higher), but the temperature difference between the tube surface and the heating resistor is about 300 ° C. In order to generate heat at a higher temperature, it is necessary to heat the heating resistor to an extremely high temperature (for example, 1450 ° C. or higher). However, the alloys mainly composed of Fe and Ni that have been used in the past have a melting point of around 1500 ° C. For this reason, when heated to an extremely high temperature as described above, there is a risk that the heating resistor will suffer from problems such as melting.
 そこで、耐熱性の向上を図るべく、高融点のタングステン(W)やモリブデン(Mo)により発熱抵抗体を形成することが考えられる(例えば、特許文献1等参照)。 Therefore, in order to improve heat resistance, it is conceivable to form a heating resistor from high melting point tungsten (W) or molybdenum (Mo) (see, for example, Patent Document 1).
特開昭58-158425号公報JP 58-158425 A
 しかしながら、WやMoは非常に酸化しやすい性質を有するため、チューブ内側に存在する酸素と反応して、発熱抵抗体が急速に劣化してしまうおそれがある。 However, since W and Mo are very easily oxidized, there is a possibility that the heating resistor will deteriorate rapidly due to reaction with oxygen existing inside the tube.
 また、グロープラグをより高温で発熱可能とするためには、発熱抵抗体だけでなく、チューブ自体の耐久性を向上させることが必要である。ところが、高温下において、FeやNiは酸化してしまいやすく、FeやNiを主成分としつつAlやCrを十分に含まない合金により形成されたチューブでは、耐久性が不十分となってしまうおそれがある。 Also, in order to enable the glow plug to generate heat at a higher temperature, it is necessary to improve not only the heating resistor but also the durability of the tube itself. However, Fe and Ni are likely to oxidize at high temperatures, and a tube made of an alloy that contains Fe or Ni as a main component but does not contain Al or Cr sufficiently may have insufficient durability. There is.
 本発明は、上記事情を鑑みてなされたものであり、その目的は、W又はMoを主成分とする金属材料により形成された発熱抵抗体を有するグロープラグにおいて、発熱抵抗体及びチューブ双方の耐久性を向上させることができ、長期間に亘ってより高温での発熱が可能となるグロープラグ及びその製造方法、並びに、グロープラグを備えてなる加熱装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to endure both a heating resistor and a tube in a glow plug having a heating resistor formed of a metal material mainly composed of W or Mo. It is an object of the present invention to provide a glow plug, a method for manufacturing the same, and a heating device provided with the glow plug.
 以下、上記目的を解決するのに適した各構成につき、項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果を付記する。 Hereafter, each configuration suitable for solving the above-mentioned purpose will be described in terms of items. In addition, the effect specific to the corresponding structure is added as needed.
 構成1.本構成の加熱装置は、発熱抵抗体を有して加熱部を構成するグロープラグと、
 前記発熱抵抗体に対する供給電力を調節可能に構成され、前記供給電力の調節により、前記発熱抵抗体の発熱を制御可能な通電制御装置とを備える加熱装置であって、
 前記通電制御装置は、前記加熱部の温度が常温から1000℃に3秒以内で上昇するように、前記発熱抵抗体に対して電力を供給し、
 前記グロープラグは、
 先端部が閉塞し、内部に前記発熱抵抗体が挿通されて前記加熱部を構成する筒状のチューブと、
 前記チューブの後端側開口に設けられ、前記チューブ内を封止状態とするシール部とを備え、
 前記発熱抵抗体は、W又はMoを主成分とする金属材料により形成されるとともに、
 前記チューブは、Alを0.5質量%以上5.0質量%以下、Crを20質量%以上40質量%以下含有する合金により形成されることを特徴とする。
Configuration 1. The heating device of this configuration includes a glow plug having a heating resistor and constituting a heating unit,
A heating device that is configured to be capable of adjusting power supplied to the heating resistor and capable of controlling heat generation of the heating resistor by adjusting the power supply,
The energization control device supplies power to the heating resistor so that the temperature of the heating unit rises from room temperature to 1000 ° C. within 3 seconds,
The glow plug is
A cylindrical tube that has a distal end closed and the heating resistor is inserted into the heating tube;
Provided in a rear end side opening of the tube, and a seal portion for sealing the inside of the tube,
The heating resistor is formed of a metal material mainly composed of W or Mo,
The tube is formed of an alloy containing Al in an amount of 0.5% by mass to 5.0% by mass and Cr in an amount of 20% by mass to 40% by mass.
 尚、「加熱部」とあるのは、発熱抵抗体が挿通されたチューブを意味するが、チューブ表面のうち、通電により温度が最も高くなる部位を「加熱部」に相当するものとしてもよい。 Note that the “heating section” means a tube through which a heating resistor is inserted, but the portion of the tube surface where the temperature is highest when energized may correspond to the “heating section”.
 上記構成1によれば、発熱抵抗体は高融点のW又はMoを主成分とする金属材料により形成されるため、発熱抵抗体において優れた耐熱性を実現することができる。 According to the above configuration 1, since the heat generating resistor is formed of a metal material mainly composed of W or Mo having a high melting point, excellent heat resistance can be realized in the heat generating resistor.
 一方で、上述の通り、WやMoを用いることによる耐酸化性の低下が懸念されるが、上記構成1によれば、チューブには、Alが0.5質量%以上含有され、Crが20質量%以上含有されている。従って、発熱時において、WやMoよりも酸化しやすいAlやCrが酸素ゲッター元素として機能して、チューブ内周面にAl23やCr23からなる酸化膜が形成されることとなり、ひいてはチューブ内が封止状態であることから、チューブ内側の酸素分圧を効果的に低下させることができる。その結果、WやMoを主成分とする発熱抵抗体の酸化をより確実に防止することができる。 On the other hand, as described above, there is a concern about the decrease in oxidation resistance due to the use of W or Mo. However, according to Configuration 1, the tube contains 0.5% by mass or more of Al and 20% of Cr. It is contained by mass% or more. Therefore, during heat generation, Al and Cr that are more easily oxidized than W and Mo function as an oxygen getter element, and an oxide film made of Al 2 O 3 or Cr 2 O 3 is formed on the inner peripheral surface of the tube. As a result, since the inside of the tube is in a sealed state, the oxygen partial pressure inside the tube can be effectively reduced. As a result, it is possible to more reliably prevent the heating resistor mainly composed of W or Mo from being oxidized.
 また、チューブにAlやCrを所定量以上含有させることで、チューブ外表面の広範囲に亘ってAl23やCr23の酸化膜を形成することができる。当該酸化膜によりチューブ内部への酸素の侵入をより確実に抑制することができ、チューブの耐酸化性を向上させることができる。さらに、AlやCr含有量が十分に大きなものとされているため、冷熱サイクルの繰り返しによる熱応力に伴い酸化膜に剥離や割れが生じても、酸化膜をより確実に、かつ、より長期間に亘って再形成することができる。 Further, by containing a predetermined amount or more of Al or Cr in the tube, an oxide film of Al 2 O 3 or Cr 2 O 3 can be formed over a wide range of the outer surface of the tube. The oxide film can more reliably prevent oxygen from entering the inside of the tube and improve the oxidation resistance of the tube. Furthermore, since the content of Al and Cr is sufficiently large, even if peeling or cracking occurs in the oxide film due to thermal stress due to repeated cooling and heating cycles, the oxide film is more reliably and for a longer period of time. Can be reformed over a period of time.
 以上のように、上記構成1によれば、チューブにAlやCrを所定量以上含有させることで、WやMo等からなる発熱抵抗体の酸化を効果的に防止して、WやMoの優れた耐熱性を十分に発揮させることができるとともに、チューブにおいて優れた耐酸化性を長期間維持させることができる。その結果、発熱抵抗体及びチューブ双方の耐久性を飛躍的に向上させることができ、グロープラグにおいて、長期間に亘ってより高温での発熱が可能となる。 As described above, according to the above-described configuration 1, by adding a predetermined amount or more of Al or Cr to the tube, it is possible to effectively prevent oxidation of the heating resistor made of W, Mo, etc. In addition, it is possible to sufficiently exhibit the heat resistance and to maintain excellent oxidation resistance in the tube for a long period of time. As a result, the durability of both the heating resistor and the tube can be dramatically improved, and the glow plug can generate heat at a higher temperature over a long period of time.
 さらに、上記構成1によれば、通電制御装置により、チューブ表面(加熱部)の温度が常温から1000℃に3秒以内で上昇するように、発熱抵抗体に対して電力が供給される。このようにチューブを急速に加熱することで、チューブに加わる熱応力を増大させることができる。従って、チューブ内周面に形成されるAl23やCr23からなる酸化膜が割れやすくなり、チューブ内周面に未酸化の金属面が当該酸化膜から露出しやすくなる。その金属面に含まれるAlやCrが新たに酸化することにより、チューブ内側の酸素分圧をより一層低減させることができ、ひいてはW等からなる発熱抵抗体の酸化を極めて効果的に防止することができる。 Furthermore, according to the said structure 1, electric power is supplied with respect to a heating resistor so that the temperature of a tube surface (heating part) may rise from normal temperature to 1000 degreeC within 3 second by the electricity supply control apparatus. Thus, the thermal stress added to a tube can be increased by heating a tube rapidly. Therefore, the oxide film made of Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube is easily broken, and an unoxidized metal surface is easily exposed from the oxide film on the inner peripheral surface of the tube. By newly oxidizing Al and Cr contained in the metal surface, the oxygen partial pressure inside the tube can be further reduced, and in turn, the oxidation of the heating resistor made of W or the like can be extremely effectively prevented. Can do.
 尚、チューブにおけるAl含有量を5.0質量%よりも大きくしたり、Cr含有量を40質量%よりも大きくしたりすると加工性が低下してしまうおそれがある。従って、Al含有量を5.0質量%以下とし、Cr含有量を40質量%以下とすることが好ましい。 Note that if the Al content in the tube is made larger than 5.0% by mass or the Cr content is made larger than 40% by mass, the workability may be lowered. Therefore, it is preferable that the Al content is 5.0% by mass or less and the Cr content is 40% by mass or less.
 構成2.本構成の加熱装置は、上記構成1において、前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における常温抵抗の平均値が、前記発熱抵抗体全体の常温抵抗の平均値よりも大きいことを特徴とする。 Configuration 2. The heating device of this configuration is the above-described configuration 1, wherein the heating resistor has an average value of normal temperature resistance in a portion between the tip of the heating resistor and the 6 mm rear end along the central axis of the tube. It is characterized by being larger than the average value of the whole room temperature resistance.
 尚、「前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における常温抵抗の平均値」とあるのは、発熱抵抗体のうちその先端からチューブの中心軸に沿って6mm後端までの間の部位(先端側発熱体)の常温抵抗を、チューブの中心軸に沿った先端側発熱体の長さで割った値(すなわち、チューブの中心軸に沿った単位長さ当たりの先端側発熱体の常温抵抗)をいう。また「発熱抵抗体全体の常温抵抗の平均値」とあるのは、発熱抵抗体全体の常温抵抗を、チューブの中心軸に沿った発熱抵抗体の長さで割った値(すなわち、チューブの中心軸に沿った単位長さ当たりの発熱抵抗体の常温抵抗)をいう(以下、同様)。 “The average value of the room temperature resistance in the portion of the heating resistor from the tip to the rear end of 6 mm along the central axis of the tube” is the tube from the tip of the heating resistor to the tube. The value obtained by dividing the room temperature resistance of the portion (tip-side heating element) between 6 mm along the center axis of the tube and the length of the tip-side heating element along the center axis of the tube (that is, the center axis of the tube The normal temperature resistance of the heating element on the tip side per unit length). The “average value of the room temperature resistance of the entire heating resistor” is the value obtained by dividing the room temperature resistance of the entire heating resistor by the length of the heating resistor along the central axis of the tube (ie, the center of the tube). Normal temperature resistance of heating resistor per unit length along the axis) (hereinafter the same).
 一般にグロープラグを内燃機関に組付けた状態において、チューブのうちその先端から後端に約4mmまでの間の部位(以下、「露出部」と称す)は燃焼室の内壁から突き出して燃焼室内に配置される。従って、前記露出部は、周囲に内燃機関の構成部が位置するチューブのその他の部位と比較して発熱時において温度がより高くなりやすい。また、露出部は、チューブのその他の部位と比較して急速に昇温するとともに、急速に冷却されるため、急激な温度変化が生じやすい。そこで、発熱抵抗体に対する電力の供給時においては、前記露出部を特に昇温させることで、チューブをより高温にすることができ、また、チューブに急激な温度変化を生じさせることができる。チューブをより高温にしたり、チューブに急激な温度変化を生じさせたりすることができれば、チューブに生じる熱応力を一層増大させることができ、チューブ内周面に形成されるAl23やCr23からなる酸化膜を一層割れやすくすることができる。その結果、上記構成1による発熱抵抗体の酸化防止効果をより高めることができる。 In general, in a state where the glow plug is assembled to the internal combustion engine, a portion of the tube between the front end and the rear end up to about 4 mm (hereinafter referred to as “exposed portion”) protrudes from the inner wall of the combustion chamber and enters the combustion chamber. Be placed. Therefore, the temperature of the exposed portion is likely to be higher during heat generation than the other portion of the tube around which the components of the internal combustion engine are located. In addition, since the exposed portion rapidly rises in temperature compared to other portions of the tube and is rapidly cooled, a rapid temperature change is likely to occur. Therefore, at the time of supplying power to the heating resistor, the temperature of the exposed portion can be raised particularly so that the temperature of the tube can be raised, and a rapid temperature change can be caused in the tube. If the tube can be heated to a higher temperature or a sudden temperature change can be caused in the tube, the thermal stress generated in the tube can be further increased, and Al 2 O 3 and Cr 2 formed on the inner peripheral surface of the tube The oxide film made of O 3 can be further easily broken. As a result, the effect of preventing oxidation of the heating resistor according to Configuration 1 can be further enhanced.
 この点を鑑みて、上記構成2によれば、発熱抵抗体のうち、その先端からチューブの中心軸に沿って6mm後端までの間の部位(先端側発熱体)における常温抵抗の平均値が、発熱抵抗体全体の常温抵抗の平均値よりも大きくされている。ここで、先端側発熱体の常温抵抗の平均値を発熱抵抗体全体の常温抵抗の平均値よりも大きくすることで、チューブのうちその先端から後端に約2mmの部分(つまり、露出部の中心部及びその近傍)を積極的に昇温させることができる。従って、上記構成2によれば、チューブをより高温にできるとともに、チューブに急激な温度変化を生じさせることができる。その結果、チューブに生じる熱応力を一層増大させることができ、ひいては発熱抵抗体の酸化防止効果を一層向上させることができる。 In view of this point, according to the above-described configuration 2, the average value of the room temperature resistance in the portion of the heating resistor from the tip to the rear end of 6 mm along the central axis of the tube (tip-side heating member) is The average value of the room temperature resistance of the entire heating resistor is made larger. Here, by making the average value of the normal temperature resistance of the heating element on the front end side larger than the average value of the normal temperature resistance of the entire heating resistor, a portion of the tube about 2 mm from the front end to the rear end (that is, of the exposed portion). It is possible to positively raise the temperature of the central portion and the vicinity thereof. Therefore, according to the said structure 2, while being able to make a tube higher temperature, a sudden temperature change can be produced in a tube. As a result, the thermal stress generated in the tube can be further increased, and as a result, the antioxidant effect of the heating resistor can be further improved.
 また、燃焼室内を急速昇温させるためには、前記露出部を特に昇温させることが望ましい。従って、この点においても上記構成2は有意である。 Also, in order to rapidly raise the temperature in the combustion chamber, it is desirable to raise the temperature of the exposed portion. Therefore, the above-described configuration 2 is also significant in this respect.
 構成3.本構成の加熱装置は、上記構成1又は2において、前記発熱抵抗体は、コイル状をなすとともに、その線径が0.2mm以上であり、
 前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における平均ピッチが、前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端よりも後端側に位置する部位における平均ピッチよりも0.9mm以上小さいことを特徴とする。
Configuration 3. The heating device of this configuration is the above configuration 1 or 2, wherein the heating resistor has a coil shape and a wire diameter of 0.2 mm or more.
Among the heating resistors, the average pitch in the region from the tip to the rear end of 6 mm along the center axis of the tube is 6 mm along the center axis of the tube from the tip of the heating resistor. It is characterized by being 0.9 mm or more smaller than the average pitch in the part located on the rear end side with respect to the rear end.
 尚、「平均ピッチ」とあるのは、発熱抵抗体の中心軸(コイル軸)を含む断面において、隣接する発熱抵抗体の断面の中心間の前記中心軸(コイル軸)に沿った距離(ピッチ)の平均をいう(以下、同様)。 The “average pitch” means a distance (pitch) along the central axis (coil axis) between the centers of adjacent cross sections of the heating resistors in a cross section including the central axis (coil axis) of the heating resistors. ) Average (hereinafter the same).
 上記構成3によれば、発熱抵抗体のうちその先端から6mm後端までの間の部位(先端側発熱体)における平均ピッチが、発熱抵抗体のうち先端から6mm後端の部分よりも後端側に位置する部位(後端側発熱体)の平均ピッチよりも0.9mm以上小さいものとされている。従って、先端側発熱体を過度に細くすることなく(発熱抵抗体の線径を0.2mm以上としつつ)、先端側発熱体の常温抵抗の平均値を発熱抵抗体全体の常温抵抗の平均値よりも十分に大きなものとすることができる。すなわち、上記構成3によれば、発熱抵抗体の機械的強度を十分に維持しつつ、前記露出部のより一層急速な昇温等が可能となる。その結果、発熱抵抗体の酸化防止効果をより一層向上させることができる。 According to the above-described configuration 3, the average pitch in the portion between the front end and the 6 mm rear end of the heating resistor (the front side heating element) is larger than the rear end portion of the heating resistor 6 mm from the front end. It is set to be smaller by 0.9 mm or more than the average pitch of the parts located on the side (rear end side heating element). Therefore, without making the tip side heating element excessively thin (while making the heating resistor wire diameter 0.2 mm or more), the average value of the room temperature resistance of the tip side heating element is the average value of the room temperature resistance of the whole heating resistor. Can be sufficiently larger. That is, according to the above-described configuration 3, the exposed portion can be heated more rapidly while maintaining the mechanical strength of the heating resistor sufficiently. As a result, the antioxidant effect of the heating resistor can be further improved.
 また、先端側発熱体を過度に細くする必要がないため、発熱抵抗体を比較的容易に製造することができ、生産性の低下をより確実に防止することができる。 Further, since it is not necessary to make the tip side heating element excessively thin, the heating resistor can be manufactured relatively easily, and the reduction in productivity can be prevented more reliably.
 構成4.本構成の加熱装置は、上記構成1乃至3のいずれかにおいて、前記グロープラグは、前記チューブ内において前記発熱抵抗体の周囲に充填される絶縁粉末を備え、
 前記絶縁粉末は、酸化マグネシウム(MgO)を主成分とする粉末であることを特徴とする。
Configuration 4. In the heating device of this configuration, in any one of the above configurations 1 to 3, the glow plug includes an insulating powder filled around the heating resistor in the tube,
The insulating powder is a powder mainly composed of magnesium oxide (MgO).
 上記構成4によれば、絶縁粉末として熱伝導率に優れるMgOが用いられるため、発熱抵抗体からチューブに対する熱伝導性を向上させることができる。その結果、発熱抵抗体を過度に昇温させることなく、グロープラグ(加熱部)を一層高温で発熱させることができる。 According to the above configuration 4, since MgO having excellent thermal conductivity is used as the insulating powder, the thermal conductivity from the heating resistor to the tube can be improved. As a result, the glow plug (heating unit) can be heated at a higher temperature without excessively heating the heating resistor.
 また、チューブ(加熱部)をより高温とすることができるため、チューブに加わる熱応力をより増大させることができ、ひいてはチューブ内周面に形成されるAl23やCr23からなる酸化膜がより割れやすくなる。そのため、チューブ内周面に未酸化の金属面がより露出しやすくなり、その金属面に含まれるAlやCrの酸化によりチューブ内側の酸素分圧を一層効果的に低減させることができる。 In addition, since the tube (heating part) can be heated to a higher temperature, the thermal stress applied to the tube can be further increased. As a result, the tube (heating portion) is made of Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube. The oxide film becomes easier to break. Therefore, an unoxidized metal surface is more easily exposed on the inner peripheral surface of the tube, and the oxygen partial pressure inside the tube can be more effectively reduced by oxidation of Al or Cr contained in the metal surface.
 さらに、MgOは、チューブ内周面に形成されたAl23やCr23との間で複合酸化物を作りやすいところ、この複合酸化物は、Al23等からなる酸化膜と比べて非常に粗い。従って、チューブ中に含有されたAlやCrと、チューブ内側の酸素とがより一層反応しやすくなり、チューブ内側の酸素分圧をより一層低下させることができる。 Furthermore, MgO easily forms a composite oxide with Al 2 O 3 and Cr 2 O 3 formed on the inner peripheral surface of the tube. This composite oxide is composed of an oxide film made of Al 2 O 3 and the like. Very coarse compared. Therefore, Al and Cr contained in the tube and oxygen inside the tube are more likely to react, and the oxygen partial pressure inside the tube can be further reduced.
 つまり、MgOの有する良熱伝導性という性質と、Al23等との間で複合酸化物を作りやすいという性質とが相乗的に作用して、チューブ内側の酸素分圧を極めて効果的に低減させることができる。その結果、発熱抵抗体の耐久性を一層向上させることができ、グロープラグにおいて、一層長期間に亘ってより高温での発熱が可能となる。 In other words, the property of good thermal conductivity that MgO has and the property of easily forming composite oxides with Al 2 O 3 and the like act synergistically to extremely effectively reduce the oxygen partial pressure inside the tube. Can be reduced. As a result, the durability of the heating resistor can be further improved, and the glow plug can generate heat at a higher temperature for a longer period of time.
 構成5.本構成の加熱装置は、上記構成1乃至4のいずれかにおいて、前記シール部は、酸素透過率が2.0×10-9(cm3・cm/sec・cm2・cmHg)以下の材料により形成されることを特徴とする。 Configuration 5. In the heating device of this configuration, in any one of the above configurations 1 to 4, the seal portion is made of a material having an oxygen permeability of 2.0 × 10 −9 (cm 3 · cm / sec · cm 2 · cmHg) or less. It is formed.
 上記構成5によれば、シール部の酸素透過率が2.0×10-9以下と十分に小さくされている。そのため、シール部を過度に厚くすることなく、チューブ内側への酸素の侵入を効果的に防止することができる。 According to the configuration 5, the oxygen permeability of the seal portion is sufficiently small as 2.0 × 10 −9 or less. Therefore, it is possible to effectively prevent oxygen from entering the inside of the tube without excessively thickening the seal portion.
 構成6.本構成の加熱装置は、上記構成1乃至5のいずれかにおいて、前記チューブの先端部に前記発熱抵抗体の先端部が接合されており、
 前記チューブの先端部は、Wを含有せず、前記金属材料におけるCrの含有量以上のCrを含むことを特徴とする。
Configuration 6. In the heating device of this configuration, in any one of the above configurations 1 to 5, the tip of the heating resistor is joined to the tip of the tube.
The distal end portion of the tube does not contain W and contains Cr equal to or more than the Cr content in the metal material.
 尚、発熱抵抗体を構成する金属材料にCrを含有させることとしてもよいし、Crを含有させないこととしてもよい。 In addition, it is good also as containing Cr in the metal material which comprises a heating resistor, and it is good also as not containing Cr.
 チューブの先端部に対して発熱抵抗体の先端部を接合したグロープラグが知られている。ここで、チューブに対して発熱抵抗体を接合する手法としては、先端部が開いた状態のチューブに発熱抵抗体を挿通した上で、アーク溶接等により、チューブ先端部を塞ぎつつ、チューブの先端部と発熱抵抗体の先端部とを溶接する手法が知られている。この手法を用いて、Wを主成分とする発熱抵抗体をチューブの先端部に接合すると、チューブの先端部にWが含まれてしまうおそれがある。チューブ先端部(特に外表面)にWが含まれてしまうと、Wが急激に酸化してしまい、チューブの破損が生じてしまうおそれがある。 A glow plug is known in which the tip of the heating resistor is joined to the tip of the tube. Here, as a method of joining the heating resistor to the tube, the tip of the tube is closed while the tip of the tube is closed by arc welding or the like after the heating resistor is inserted into the tube having the tip opened. There is known a technique of welding the portion and the tip of the heating resistor. If a heating resistor having W as a main component is joined to the distal end portion of the tube using this technique, W may be contained in the distal end portion of the tube. If W is contained in the tube tip (especially the outer surface), W may be oxidized rapidly, and the tube may be damaged.
 この点、上記構成6によれば、チューブの先端部は、Wを含有せず、また、発熱抵抗体におけるCr含有量(尚、発熱抵抗体はCrを含有しないものであってもよい)以上のCrを含んで構成されている。従って、Wの含有に伴う上記不具合の発生を防止することができるとともに、含有されたCrによりチューブの先端部表面にCr23からなる酸化膜をより確実に形成することができる。その結果、チューブ先端部において十分に優れた耐久性を実現することができ、チューブの破損をより確実に防止することができる。 In this regard, according to the configuration 6, the tip of the tube does not contain W, and the Cr content in the heating resistor (the heating resistor may not contain Cr) or more. Of Cr. Therefore, it is possible to prevent the occurrence of the above-mentioned problems due to the inclusion of W, and it is possible to more reliably form an oxide film made of Cr 2 O 3 on the surface of the distal end portion of the tube with the contained Cr. As a result, it is possible to achieve sufficiently excellent durability at the distal end portion of the tube, and to prevent the tube from being damaged more reliably.
 尚、上述した手法によりチューブの先端部と発熱抵抗体の先端部とを接合しつつ、上記構成6を実現するにあたっては、例えば、Wを含有しない一方で、Crを含む金属片を発熱抵抗体の先端部に予め溶接した上で、前記金属片とチューブの先端部とを溶接する手法を挙げることができる。 In order to realize the above-described configuration 6 while joining the distal end portion of the tube and the distal end portion of the heating resistor by the above-described method, for example, while not containing W, a metal piece containing Cr is used as the heating resistor. A method of welding the metal piece and the distal end portion of the tube after being previously welded to the distal end portion.
 構成7.本構成のグロープラグは、先端部が閉塞した筒状のチューブと、
 前記チューブ内に挿通された発熱抵抗体と、
 前記チューブの後端側開口に設けられ、前記チューブ内を封止するシール部とを備えたグロープラグであって、
 前記発熱抵抗体は、W又はMoを主成分とする金属材料により形成されるとともに、
 前記チューブは、Alを0.5質量%以上5.0質量%以下、Crを20質量%以上40質量%以下含有する合金により形成されることを特徴とする。
Configuration 7. The glow plug of this configuration has a cylindrical tube with a closed end,
A heating resistor inserted through the tube;
A glow plug provided at a rear end side opening of the tube and having a seal portion for sealing the inside of the tube;
The heating resistor is formed of a metal material mainly composed of W or Mo,
The tube is formed of an alloy containing Al in an amount of 0.5% by mass to 5.0% by mass and Cr in an amount of 20% by mass to 40% by mass.
 上記構成7によれば、基本的には上記構成1と同様の作用効果が奏されることとなる。すなわち、チューブにAlやCrを所定量以上含有させることで、WやMo等からなる発熱抵抗体の酸化を効果的に防止して、WやMoの有する優れた耐熱性を十分に発揮させることができるとともに、チューブにおいて優れた耐酸化性を長期間に亘って維持することができる。その結果、発熱抵抗体及びチューブ双方の耐久性を飛躍的に向上させることができ、グロープラグにおいて、長期間に亘ってより高温での発熱が可能となる。 According to the above-described configuration 7, the same function and effect as those of the above-described configuration 1 are basically obtained. That is, by containing a predetermined amount of Al or Cr in the tube, the oxidation of the heating resistor made of W, Mo, etc. can be effectively prevented, and the excellent heat resistance of W or Mo can be fully exhibited. And excellent oxidation resistance in the tube can be maintained over a long period of time. As a result, the durability of both the heating resistor and the tube can be dramatically improved, and the glow plug can generate heat at a higher temperature over a long period of time.
 構成8.本構成のグロープラグは、上記構成7において、前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における常温抵抗の平均値が、前記発熱抵抗体全体の常温抵抗の平均値よりも大きいことを特徴とする。 Configuration 8. In the glow plug of this configuration, the average value of the room temperature resistance in the portion from the tip of the heating resistor to the rear end of 6 mm along the central axis of the tube is the heating resistor in the configuration 7. It is characterized by being larger than the average value of the whole room temperature resistance.
 上記構成8によれば、基本的には上記構成2と同様の作用効果が奏されることとなる。 According to the above-described configuration 8, the same function and effect as those of the above-described configuration 2 are basically obtained.
 構成9.本構成のグロープラグは、上記構成7又は8において、前記発熱抵抗体は、コイル状をなすとともに、その線径が0.2mm以上であり、
 前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における平均ピッチが、前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端よりも後端側に位置する部位における平均ピッチよりも0.9mm以上小さいことを特徴とする。
Configuration 9 The glow plug of this configuration is the above-described configuration 7 or 8, wherein the heating resistor has a coil shape and a wire diameter of 0.2 mm or more.
Among the heating resistors, the average pitch in the region from the tip to the rear end of 6 mm along the center axis of the tube is 6 mm along the center axis of the tube from the tip of the heating resistor. It is characterized by being 0.9 mm or more smaller than the average pitch in the part located on the rear end side with respect to the rear end.
 上記構成9によれば、基本的には上記構成3と同様の作用効果が奏されることとなる。 According to the above-described configuration 9, basically the same function and effect as those of the above-described configuration 3 are achieved.
 構成10.本構成のグロープラグは、上記構成7乃至9のいずれかにおいて、前記チューブ内において、前記発熱抵抗体の周囲に充填される絶縁粉末を備え、
 前記絶縁粉末は、MgOを主成分とする粉末であることを特徴とする。
Configuration 10 The glow plug of this configuration includes an insulating powder filled around the heating resistor in the tube according to any one of the configurations 7 to 9,
The insulating powder is a powder mainly composed of MgO.
 上記構成10によれば、基本的には上記構成4と同様の作用効果が奏される。 According to the above configuration 10, the same operational effects as the above configuration 4 are basically obtained.
 構成11.本構成のグロープラグは、上記構成7乃至10のいずれかにおいて、前記シール部は、酸素透過率が2.0×10-9(cm3・cm/sec・cm2・cmHg)以下の材料により形成されることを特徴とする。 Configuration 11 In the glow plug of this configuration, in any one of the above configurations 7 to 10, the seal portion is made of a material having an oxygen permeability of 2.0 × 10 −9 (cm 3 · cm / sec · cm 2 · cmHg) or less. It is formed.
 上記構成11によれば、基本的には上記構成5と同様の作用効果が奏される。 According to the above configuration 11, the same operational effects as the above configuration 5 are basically obtained.
 構成12.本構成のグロープラグは、上記構成7乃至11のいずれかにおいて、前記チューブの先端部に前記発熱抵抗体の先端部が接合されており、
 前記チューブの先端部は、Wを含有せず、前記金属材料におけるCrの含有量以上のCrを含むことを特徴とする。
Configuration 12. In the glow plug of this configuration, the tip of the heating resistor is joined to the tip of the tube in any of the above configurations 7 to 11,
The distal end portion of the tube does not contain W and contains Cr equal to or more than the Cr content in the metal material.
 上記構成12によれば、基本的には上記構成6と同様の作用効果が奏される。 According to the above configuration 12, the same operational effects as the above configuration 6 are basically obtained.
 構成13.本構成のグロープラグの製造方法は、先端部が閉塞した筒状のチューブと、
 前記チューブ内に挿通された発熱抵抗体と、
 前記チューブの後端側開口に設けられ、前記チューブ内を封止するシール部とを備えたグロープラグの製造方法であって、
 W又はMoを主成分とする金属材料により形成された前記発熱抵抗体を、Alを0.5質量%以上5.0質量%以下、Crを20質量%以上40質量%以下含有する合金により形成された前記チューブ内に配置する配置工程と、
 前記チューブの後端側開口に前記シール部を設け、前記チューブ内を封止する封止工程と、
 前記封止工程の後において、前記チューブの外表面を加熱する加熱工程とを含むことを特徴とする。
Configuration 13 The manufacturing method of the glow plug of this configuration includes a cylindrical tube with a closed end,
A heating resistor inserted through the tube;
A glow plug manufacturing method comprising a seal portion provided in a rear end side opening of the tube and sealing the inside of the tube,
The heating resistor formed of a metal material mainly composed of W or Mo is formed of an alloy containing Al in a range of 0.5 mass% to 5.0 mass% and Cr in a content of 20 mass% to 40 mass%. A placement step of placing in the tube,
A sealing step of providing the seal portion at the rear end side opening of the tube and sealing the inside of the tube;
And a heating step of heating the outer surface of the tube after the sealing step.
 上記構成13によれば、封止工程後の加熱工程において、チューブ外表面が加熱されるため、発熱抵抗体よりもチューブ中のAlやCrを率先してチューブ内側の酸素と反応させることができる。その結果、発熱抵抗体の酸化を抑制しつつ、チューブ内側の酸素分圧をより低下させることができ、発熱抵抗体の耐久性をより一層向上させることができる。 According to the configuration 13, since the outer surface of the tube is heated in the heating step after the sealing step, Al and Cr in the tube can be led and reacted with oxygen inside the tube rather than the heating resistor. . As a result, the oxygen partial pressure inside the tube can be further reduced while suppressing the oxidation of the heating resistor, and the durability of the heating resistor can be further improved.
 尚、チューブ外表面の加熱温度が低すぎたり、加熱時間が短すぎたりすると、チューブ中のAlやCrの酸化が十分に促進されなくなってしまうおそれがあり、また、加熱温度が高すぎたり、加熱時間が長すぎたりすると、シール部の破損を招いてしまうおそれがある。従って、AlやCrの酸化をより確実に促進しつつ、シール部の破損防止を図るべく、加熱温度を700℃以上1300℃以下とし、加熱時間を1秒以上60秒以下とすることが好ましく、加熱温度を800℃以上1300℃以下とし、加熱時間を3秒以上30秒以下とすることがより好ましい。 If the heating temperature of the tube outer surface is too low or the heating time is too short, the oxidation of Al or Cr in the tube may not be promoted sufficiently, and the heating temperature is too high, If the heating time is too long, the seal portion may be damaged. Therefore, in order to promote the oxidation of Al and Cr more reliably and prevent damage to the seal portion, it is preferable that the heating temperature is 700 ° C. or higher and 1300 ° C. or lower, and the heating time is 1 second or longer and 60 seconds or shorter. More preferably, the heating temperature is 800 ° C. to 1300 ° C., and the heating time is 3 seconds to 30 seconds.
加熱装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a heating apparatus. (a)は、グロープラグの一部破断正面図であり、(b)は、グロープラグ先端部の部分拡大断面図である。(A) is a partially broken front view of the glow plug, and (b) is a partially enlarged sectional view of the tip end portion of the glow plug. チューブ先端部と発熱コイル先端部との接合方法を説明するための部分拡大断面図である。It is a partial expanded sectional view for demonstrating the joining method of a tube front-end | tip part and a heating coil front-end | tip part. 第2実施形態における発熱コイル等の構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the heating coil etc. in 2nd Embodiment. 内燃機関に組付けられたグロープラグ等を示す一部破断拡大図である。It is a partially broken enlarged view showing a glow plug or the like assembled to an internal combustion engine. 第3実施形態における発熱コイル等の構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the heat generating coil etc. in 3rd Embodiment. (a),(b)は、サンプルの構成を示す部分拡大断面図である。(A), (b) is a partial expanded sectional view which shows the structure of a sample. (a),(b)は、サンプルの構成を示す部分拡大断面図である。(A), (b) is a partial expanded sectional view which shows the structure of a sample.
 以下に、実施形態について図面を参照しつつ説明する。
〔第1実施形態〕
 図1は、本発明にかかる加熱装置21の概略構成を示すブロック図である。
Hereinafter, embodiments will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a block diagram showing a schematic configuration of a heating device 21 according to the present invention.
 加熱装置21は、グロープラグ1と、グロープラグ1に対する通電を制御する通電制御装置としてのグロー制御装置(GCU)31とを備えている。尚、図1では、グロープラグ1を1つのみ示しているが、実際のエンジンには複数の気筒が設けられており、各気筒に対応してグロープラグ1や後述するスイッチ33が設けられる。 The heating device 21 includes a glow plug 1 and a glow control device (GCU) 31 as an energization control device that controls energization of the glow plug 1. Although only one glow plug 1 is shown in FIG. 1, an actual engine is provided with a plurality of cylinders, and a glow plug 1 and a switch 33 described later are provided for each cylinder.
 GCU31は、バッテリVAから供給される電力によって動作するものであり、CPUやROM、RAM等を有するマイクロコンピュータ32と、バッテリVAからグロープラグ1に対する通電のオン・オフを切り替えるスイッチ33とを備えている。 The GCU 31 is operated by electric power supplied from the battery VA, and includes a microcomputer 32 having a CPU, ROM, RAM, and the like, and a switch 33 that switches on / off of energization from the battery VA to the glow plug 1. Yes.
 GCU31によるグロープラグ1への通電制御は、PWM制御により行われ、スイッチ33は、マイクロコンピュータ32からの指示に従い、グロープラグ1への通電のオン・オフを切り替えるようになっている。 The energization control to the glow plug 1 by the GCU 31 is performed by PWM control, and the switch 33 switches on / off of energization to the glow plug 1 in accordance with an instruction from the microcomputer 32.
 また、本実施形態において、グロープラグ1の抵抗値を測定するため、スイッチ33は、電流検知機能を有するFET(電界効果トランジスタ)を、NPN型トランジスタ等を介して動作させるように構成されている。加えて、グロープラグ1の電力供給用の端子に対して、分圧抵抗(図示せず)を介して、マイクロコンピュータ32が接続されており、マイクロコンピュータ32には、グロープラグ1に印加される電圧(GCU31から出力される電圧)を分圧した電圧が入力される。マイクロコンピュータ32は、入力された電圧に基づいてグロープラグ1への印加電圧を算出することができ、また、当該印加電圧と前記スイッチ33によって測定されるグロープラグ1に流れる電流とからグロープラグ1の抵抗値を得ている。 In the present embodiment, in order to measure the resistance value of the glow plug 1, the switch 33 is configured to operate an FET (field effect transistor) having a current detection function via an NPN transistor or the like. . In addition, a microcomputer 32 is connected to a terminal for power supply of the glow plug 1 via a voltage dividing resistor (not shown), and the microcomputer 32 is applied to the glow plug 1. A voltage obtained by dividing the voltage (voltage output from the GCU 31) is input. The microcomputer 32 can calculate the applied voltage to the glow plug 1 based on the input voltage, and the glow plug 1 can be calculated from the applied voltage and the current flowing through the glow plug 1 measured by the switch 33. The resistance value is obtained.
 また、本実施形態におけるマイクロコンピュータ32は、エンジンキーがオンとされた際に、グロープラグ1を急速昇温させるプリグロー通電と、プリグロー通電の後に、所定時間の間に亘って、グロープラグ1を所定時間に亘って所定温度にて維持するアフターグロー通電とが行えるように設定されている。 Further, the microcomputer 32 according to the present embodiment is configured so that when the engine key is turned on, the glow plug 1 is turned on for a predetermined time after the pre-glow energization for rapidly raising the temperature of the glow plug 1 and the pre-glow energization. It is set so that after-glow energization can be performed that is maintained at a predetermined temperature for a predetermined time.
 本実施形態では、プリグロー通電において、グロープラグ1の後述するチューブ7の表面が、常温から1000℃に3秒以内で昇温し、グロープラグ1を所定の目標温度まで急速に昇温させるようにグロープラグ1に対して電力を供給するようになっている。 In the present embodiment, in pre-glow energization, the surface of a tube 7 described later of the glow plug 1 is heated from room temperature to 1000 ° C. within 3 seconds so that the glow plug 1 is rapidly heated to a predetermined target temperature. Electric power is supplied to the glow plug 1.
 このプリグロー通電では、グロープラグ1に投入する電力と経過時間との関係を示す曲線を、予め作成した基準となる曲線に一致させることで、グロープラグ1の特性によらずグロープラグ1を急速に目標温度まで昇温させる。具体的には、予め定めた上記基準とする曲線を示す関係式又はテーブルを用い、通電開始からの経過時間に応じた各時点においての投入すべき電力を求める。グロープラグ1に流れる電流と、その時点においての投入すべき電力の値との関係から、グロープラグ1に印加すべき電圧を求め、PWM制御により、グロープラグ1に印加する電圧を制御する。これにより、基準とする曲線と同じカーブを描くようにして電力の投入が行われ、昇温過程の各時点までに投入された電力の積算量に応じ、グロープラグ1が発熱する。従って、上記基準とする曲線に沿った電力の投入が完了すれば、グロープラグ1は基準曲線通りの時間で目標温度に到達する。 In this pre-glow energization, a curve indicating the relationship between the electric power supplied to the glow plug 1 and the elapsed time is made to coincide with a reference curve prepared in advance, so that the glow plug 1 can be rapidly connected regardless of the characteristics of the glow plug 1. Raise the temperature to the target temperature. Specifically, using a relational expression or a table indicating a predetermined reference curve, the power to be input at each time point corresponding to the elapsed time from the start of energization is obtained. The voltage to be applied to the glow plug 1 is obtained from the relationship between the current flowing through the glow plug 1 and the value of power to be applied at that time, and the voltage applied to the glow plug 1 is controlled by PWM control. As a result, the power is input so as to draw the same curve as the reference curve, and the glow plug 1 generates heat according to the integrated amount of power input up to each point in the temperature raising process. Therefore, when the power supply along the reference curve is completed, the glow plug 1 reaches the target temperature in the time corresponding to the reference curve.
 また、アフターグロー通電においては、比較的長期間(例えば、180秒程度)の間、前記チューブ7の表面温度が1150℃以上と極めて高温となるようにグロープラグ1に対する供給電力が調節されるようになっている。 In addition, in the afterglow energization, the power supplied to the glow plug 1 is adjusted so that the surface temperature of the tube 7 becomes extremely high at 1150 ° C. or more for a relatively long period (for example, about 180 seconds). It has become.
 このアフターグロー通電では、グロープラグ1の抵抗値が、グロープラグ1を目標の温度とした際の抵抗値(目標抵抗値)と一致するようにグロープラグ1に対する通電が制御される。具体的には、グロープラグ1の現在の抵抗値と目標抵抗値との差分から、例えば、PI制御により、グロープラグ1に印加すべき実効電圧が算出され、当該実効電圧に基づいてDuty比が設定される。尚、アフターグロー通電時において、チューブ7の表面が1150℃以上の高温に維持されることで、エミッションの低減等を図ることができる。 In this after-glow energization, the energization of the glow plug 1 is controlled so that the resistance value of the glow plug 1 matches the resistance value (target resistance value) when the glow plug 1 is set to the target temperature. Specifically, the effective voltage to be applied to the glow plug 1 is calculated from the difference between the current resistance value of the glow plug 1 and the target resistance value, for example, by PI control, and the duty ratio is calculated based on the effective voltage. Is set. When the afterglow is energized, the surface of the tube 7 is maintained at a high temperature of 1150 ° C. or higher, so that emission can be reduced.
 次いで、上記GCU31によって通電制御されるグロープラグ1の構成について詳述する。図2(a),(b)に示すように、グロープラグ1は、筒状の主体金具2と、主体金具2に装着されたシースヒータ3とを備えている。 Next, the configuration of the glow plug 1 that is energized and controlled by the GCU 31 will be described in detail. As shown in FIGS. 2A and 2B, the glow plug 1 includes a cylindrical metal shell 2 and a sheath heater 3 attached to the metal shell 2.
 主体金具2は、軸線CL1方向に貫通する軸孔4を有するとともに、その外周面には、ディーゼルエンジン等への取付用のねじ部5と、トルクレンチ等の工具を係合させるための断面六角形状の工具係合部6とが形成されている。 The metal shell 2 has a shaft hole 4 penetrating in the direction of the axis CL1, and a hexagonal cross section for engaging a screw portion 5 for attachment to a diesel engine or the like and a tool such as a torque wrench on the outer peripheral surface thereof. A tool engaging portion 6 having a shape is formed.
 シースヒータ3は、チューブ7と中軸8とが軸線CL1方向に一体化されて構成されている。 The sheath heater 3 is configured by integrating a tube 7 and a middle shaft 8 in the direction of the axis CL1.
 チューブ7は、鉄(Fe)又はニッケル(Ni)を主成分とする金属材料から形成され、先端部が閉じた筒状チューブである。また、チューブ7内には、所定の金属材料からなる発熱コイル9(本発明の「発熱抵抗体」に相当する)が設けられており、当該発熱コイル9の先端部はチューブ7の先端部に接合されている(チューブ7を構成する金属材料や発熱コイル9を構成する金属材料については後に詳述する)。 The tube 7 is a cylindrical tube formed of a metal material mainly composed of iron (Fe) or nickel (Ni) and having a closed end. Further, a heating coil 9 (corresponding to the “heating resistor” of the present invention) made of a predetermined metal material is provided in the tube 7, and the tip of the heating coil 9 is connected to the tip of the tube 7. (The metal material constituting the tube 7 and the metal material constituting the heating coil 9 will be described in detail later).
 尚、チューブ7は、発熱コイル9を接合する際に、その先端部が閉じられるように構成されており、発熱コイル9の接合前において、チューブ7の先端部は開いた状態となっている。本実施形態においては、発熱コイル9の先端部に後述する金属片MP(図3参照)を予め溶接した上で、前記金属片MPをチューブ7の先端開口に配置し、アーク溶接等により金属片MP等を溶融させることで、チューブ7の先端部を閉塞するとともに、チューブ7の先端部に発熱コイル9の先端部が接合されるようになっている。そのため、チューブ7の先端部には、溶融部7Mが形成されている。 In addition, the tube 7 is configured so that the distal end portion thereof is closed when the heating coil 9 is joined, and the distal end portion of the tube 7 is in an open state before the heating coil 9 is joined. In the present embodiment, a metal piece MP (see FIG. 3), which will be described later, is welded in advance to the distal end portion of the heating coil 9, and then the metal piece MP is disposed at the distal end opening of the tube 7, and the metal piece is obtained by arc welding or the like. By melting MP or the like, the distal end portion of the tube 7 is closed, and the distal end portion of the heating coil 9 is joined to the distal end portion of the tube 7. Therefore, a melting portion 7 </ b> M is formed at the distal end portion of the tube 7.
 尚、本実施形態において、金属片MPは、チューブ7を構成する金属材料と同一の金属材料から形成されている。また、発熱コイル9が挿通されたチューブ7が、本発明における「加熱部」に相当するが、チューブ7の表面のうち、通電により温度が最も高くなる部位(本実施形態では、チューブ7の先端から後端側に2mmの位置)を「加熱部」に相当するものとしてもよい。 In the present embodiment, the metal piece MP is formed of the same metal material as that of the tube 7. In addition, the tube 7 through which the heating coil 9 is inserted corresponds to the “heating unit” in the present invention. Of the surface of the tube 7, the portion where the temperature becomes highest by energization (in the present embodiment, the tip of the tube 7). 2 mm from the rear end side to the rear end side) may be equivalent to the “heating unit”.
 また、発熱コイル9の周囲には絶縁粉末10が充填されている。そのため、発熱コイル9は、その先端においてチューブ7と導通しているが、発熱コイル9の外周面とチューブ7の内周面との間は、絶縁粉末10の介在により絶縁された状態となっている。 In addition, insulating powder 10 is filled around the heating coil 9. Therefore, although the heat generating coil 9 is electrically connected to the tube 7 at the tip thereof, the outer peripheral surface of the heat generating coil 9 and the inner peripheral surface of the tube 7 are insulated by the interposition of the insulating powder 10. Yes.
 さらに、前記チューブ7の後端は、中軸8との間で環状のシール部11により封止されており、チューブ7の内側は封止状態とされている。 Furthermore, the rear end of the tube 7 is sealed with an annular seal portion 11 between the tube 7 and the inside of the tube 7 is sealed.
 また、軸孔4には、その先端部に大径部4aが形成されるとともに、大径部4aの後端側には小径部4bが形成されている。チューブ7は、軸孔4の小径部4bに対して圧入接合されることで、主体金具2の先端部より突出した状態で保持されている。 Further, the shaft hole 4 has a large diameter portion 4a formed at the tip thereof, and a small diameter portion 4b formed at the rear end side of the large diameter portion 4a. The tube 7 is held in a state of protruding from the distal end portion of the metal shell 2 by being press-fitted and joined to the small diameter portion 4 b of the shaft hole 4.
 前記中軸8は、自身の先端がチューブ7内に挿入され、前記発熱コイル9の後端と電気的に接続されるとともに、主体金具2の軸孔4に挿通されている。中軸8の後端は主体金具2の後端から突出しており、この主体金具2の後端部においては、ゴム製等のOリング12、樹脂製等の絶縁ブッシュ13、絶縁ブッシュ13の脱落を防止するための押さえリング14、及び、通電用のケーブル接続用のナット15がこの順序で中軸8に嵌め込まれた構造となっている。 The center shaft 8 has its tip inserted into the tube 7, is electrically connected to the rear end of the heating coil 9, and is inserted through the shaft hole 4 of the metal shell 2. The rear end of the middle shaft 8 protrudes from the rear end of the metal shell 2. At the rear end of the metal shell 2, the rubber-made O-ring 12, the resin-made insulating bush 13, and the insulating bush 13 are removed. The holding ring 14 for preventing and the nut 15 for connecting a cable for energization are structured to be fitted to the middle shaft 8 in this order.
 次いで、発熱コイル9を構成する金属材料やチューブ7を構成する金属材料の組成等について説明する。 Next, the metal material constituting the heating coil 9 and the composition of the metal material constituting the tube 7 will be described.
 本実施形態において、発熱コイル9は、タングステン(W)又はモリブデン(Mo)を主成分とする金属材料〔本実施形態では、WやMoの純金属(尚、不可避不純物が含有されていてもよい)〕により形成されている。 In the present embodiment, the heating coil 9 is a metal material mainly composed of tungsten (W) or molybdenum (Mo) [in this embodiment, pure metal of W or Mo (which may contain inevitable impurities). )].
 加えて、前記チューブ7は、Ni又はFeを主成分とするとともに、アルミニウム(Al)を0.5質量%以上5.0質量%以下、クロム(Cr)を20質量%以上40質量%以下含有する金属材料により形成されている。尚、本実施形態では、チューブ7におけるCr含有量が、発熱コイル9におけるCr含有量よりも多くされており、チューブ7にはWが含有されていない。 In addition, the tube 7 contains Ni or Fe as a main component, and contains aluminum (Al) in an amount of 0.5 mass% to 5.0 mass% and chromium (Cr) in an amount of 20 mass% to 40 mass%. It is formed with the metal material which does. In the present embodiment, the Cr content in the tube 7 is greater than the Cr content in the heating coil 9, and the tube 7 does not contain W.
 さらに、絶縁粉末10は、酸化マグネシウム(MgO)を主成分とする粉末により構成されている。 Furthermore, the insulating powder 10 is composed of a powder containing magnesium oxide (MgO) as a main component.
 加えて、前記シール部11は、酸素透過率が2.0×10-9(cm3・cm/sec・cm2・cmHg)以下の弾性材料〔例えば、エチレンプロピレンゴム(EPDMゴム)やフッ素ゴム等〕により形成されている。尚、シール部11の軸線CL1方向に沿った厚さは、比較的小さなもの(例えば、10mm以下)とされている。 In addition, the seal portion 11 is made of an elastic material having an oxygen permeability of 2.0 × 10 −9 (cm 3 · cm / sec · cm 2 · cmHg) or less [for example, ethylene propylene rubber (EPDM rubber) or fluororubber Etc.]. The thickness of the seal portion 11 along the direction of the axis CL1 is relatively small (for example, 10 mm or less).
 また、前記溶融部7M(チューブ7の先端部)は、ともに同一材料からなるチューブ7及び金属片MPが溶融されることで形成されているため、少なくともその外表面においては、Wを含有せず、また、発熱コイル9を構成する金属材料におけるCrの含有量(本実施形態における発熱コイル9にはCrが含有されていない)以上のCrを含んで構成されている。 Further, since the melting portion 7M (the tip portion of the tube 7) is formed by melting the tube 7 and the metal piece MP made of the same material, at least the outer surface thereof does not contain W. In addition, the metal material constituting the heating coil 9 is configured to contain Cr that is equal to or greater than the Cr content (the heating coil 9 in the present embodiment does not contain Cr).
 次いで、上述したグロープラグ1の製造方法について説明する。尚、特に明記しない部位については、従来公知の方法が採用される。 Next, a method for manufacturing the above-described glow plug 1 will be described. In addition, a conventionally well-known method is employ | adopted about the site | part which is not specified clearly.
 まず、W又はMoを主成分とする抵抗発熱線をコイル形状に加工し、発熱コイル9を製造しておく。また、Ni又はFeを主成分とし、Alを0.5質量%~5.0質量%、Crを20質量%~40質量%含有する金属材料により、先端の閉じていない筒状のチューブ7を製造しておく。 First, a resistance heating wire mainly composed of W or Mo is processed into a coil shape, and the heating coil 9 is manufactured. In addition, a cylindrical tube 7 whose tip is not closed is made of a metal material containing Ni or Fe as a main component, Al in an amount of 0.5% to 5.0% by mass, and Cr in an amount of 20% to 40% by mass. Make it.
 次いで、図3に示すように、発熱コイル9の先端部に、チューブ7を構成する金属材料と同一の金属材料からなる金属片MPを接合した上で、配置工程において、前記筒状のチューブ7内に、中軸8の先端と、当該中軸8と一体となった発熱コイル9とを配置する。そして、チューブ7の先端開口に前記金属片MPを配置した上で、アーク溶接等によって、金属片MP及びチューブ7を溶融させ、チューブ7の先端部分を閉塞するとともに、チューブ7の先端部と発熱コイル9の先端部とを接合する。 Next, as shown in FIG. 3, after joining the metal piece MP made of the same metal material as the metal material constituting the tube 7 to the tip of the heating coil 9, in the arranging step, the cylindrical tube 7. Inside, the tip of the middle shaft 8 and the heating coil 9 integrated with the middle shaft 8 are arranged. Then, after the metal piece MP is disposed in the opening of the tube 7, the metal piece MP and the tube 7 are melted by arc welding or the like to close the tip of the tube 7, and the tip of the tube 7 is heated. The tip of the coil 9 is joined.
 その後、チューブ7内に絶縁粉末10を充填するとともに、封止工程において、チューブ7の後端開口と中軸8との間にシール部11を設け、チューブ7内を封止する。これにより、チューブ7が中軸8と一体となってシースヒータ3が完成する。尚、チューブ7内を封止した後、チューブ7の先端部にスウェージング加工を施し、チューブ7の先端部を細径化することとしてもよい。スウェージング加工を施すことで、絶縁粉末10の充填密度をより増加させることができる。 Thereafter, the insulating powder 10 is filled in the tube 7, and in the sealing step, the seal portion 11 is provided between the rear end opening of the tube 7 and the middle shaft 8 to seal the inside of the tube 7. Thereby, the tube 7 is integrated with the middle shaft 8 to complete the sheath heater 3. In addition, after sealing the inside of the tube 7, it is good also as giving a swaging process to the front-end | tip part of the tube 7, and reducing the diameter of the front-end | tip part of the tube 7. FIG. By performing the swaging process, the packing density of the insulating powder 10 can be further increased.
 最後に、上記のように形成されたシースヒータ3が主体金具2の軸孔4に圧入固定されるとともに、主体金具2の後端部分において、前記Oリング12や絶縁ブッシュ13等が中軸8に嵌め込まれる。これにより、上述したグロープラグ1が得られる。 Finally, the sheath heater 3 formed as described above is press-fitted and fixed in the shaft hole 4 of the metal shell 2, and the O-ring 12, the insulating bush 13, etc. are fitted into the middle shaft 8 at the rear end portion of the metal shell 2. It is. Thereby, the glow plug 1 mentioned above is obtained.
 尚、得られたグロープラグ1において、チューブ7の外表面を加熱する予備加熱を行うこととしてもよい。予備加熱においては、チューブ7のうち発熱コイル9が位置する部分(例えば、チューブ7先端から軸線CL1方向後端側に1mmまでの範囲)の外表面が800℃~1300℃となるように、1秒~30秒間に亘って電気炉や高周波加熱装置により加熱される。 In addition, it is good also as performing the preheating which heats the outer surface of the tube 7 in the obtained glow plug 1. FIG. In the preheating, the outer surface of the portion of the tube 7 where the heat generating coil 9 is located (for example, the range from the tip of the tube 7 to 1 mm on the rear end side in the axis CL1 direction) is 800 ° C. to 1300 ° C. It is heated by an electric furnace or a high-frequency heating device for 2 to 30 seconds.
 以上詳述したように、本実施形態によれば、発熱コイル9は高融点のW又はMoを主成分とする金属材料により形成されるため、発熱コイル9において優れた耐熱性を実現することができる。 As described above in detail, according to the present embodiment, the heat generating coil 9 is formed of a metal material mainly composed of W or Mo having a high melting point, so that the heat generating coil 9 can achieve excellent heat resistance. it can.
 一方で、WやMoを用いることによる耐酸化性の低下が懸念されるが、本実施形態においては、チューブ7に、Alが0.5質量%以上含有され、Crが20質量%以上含有されている。従って、発熱時において、WやMoよりも酸化しやすいAlやCrが酸素ゲッター元素として機能して、チューブ7内周面にAl23やCr23からなる酸化膜が形成されることとなり、ひいてはチューブ7内は封止状態であることから、チューブ7内側の酸素分圧を効果的に低下させることができる。その結果、WやMoを主成分とする発熱コイル9の酸化をより確実に防止することができる。 On the other hand, although there is a concern about the decrease in oxidation resistance due to the use of W or Mo, in this embodiment, the tube 7 contains 0.5% by mass or more of Al and 20% by mass or more of Cr. ing. Therefore, during heat generation, Al or Cr that is more easily oxidized than W or Mo functions as an oxygen getter element, and an oxide film made of Al 2 O 3 or Cr 2 O 3 is formed on the inner peripheral surface of the tube 7. Thus, since the inside of the tube 7 is in a sealed state, the oxygen partial pressure inside the tube 7 can be effectively reduced. As a result, it is possible to more reliably prevent oxidation of the heating coil 9 mainly composed of W or Mo.
 また、チューブ7にAlやCrを所定量以上含有させることで、チューブ7外表面の広範囲にAl23やCr23の酸化膜を形成することができる。当該酸化膜によりチューブ7内部への酸素の侵入をより確実に抑制することができ、チューブ7の耐酸化性を向上させることができる。さらに、AlやCr含有量が十分に大きなものとされているため、冷熱サイクルの繰り返しによる熱応力に伴い酸化膜に剥離や割れが生じても、酸化膜をより確実に、かつ、より長期間に亘って再形成することができる。 Further, by containing a predetermined amount or more of Al or Cr in the tube 7, an oxide film of Al 2 O 3 or Cr 2 O 3 can be formed over a wide area on the outer surface of the tube 7. Oxygen intrusion into the tube 7 can be more reliably suppressed by the oxide film, and the oxidation resistance of the tube 7 can be improved. Furthermore, since the content of Al and Cr is sufficiently large, even if peeling or cracking occurs in the oxide film due to thermal stress due to repeated cooling and heating cycles, the oxide film is more reliably and for a longer period of time. Can be reformed over a period of time.
 以上のように、本実施形態によれば、チューブ7にAlやCrを所定量以上含有させることで、WやMo等からなる発熱コイル9の酸化を効果的に防止して、WやMoの優れた耐熱性を十分に発揮させることができるとともに、チューブ7において優れた耐酸化性を長期間維持させることができる。その結果、発熱コイル9及びチューブ7双方の耐久性を飛躍的に向上させることができ、グロープラグ1において、長期間に亘ってより高温での発熱が可能となる。 As described above, according to the present embodiment, when the tube 7 contains a predetermined amount of Al or Cr, the oxidation of the heating coil 9 made of W, Mo, or the like can be effectively prevented, and The excellent heat resistance can be sufficiently exhibited, and the excellent oxidation resistance in the tube 7 can be maintained for a long time. As a result, the durability of both the heating coil 9 and the tube 7 can be dramatically improved, and the glow plug 1 can generate heat at a higher temperature over a long period of time.
 加えて、GCU31により、チューブ7表面(加熱部)の温度が常温から1000℃に3秒以内で上昇するように発熱コイル9に対して電力が供給されるため、チューブ7に加わる熱応力を増大させることができる。従って、チューブ7内周面に形成されるAl23やCr23からなる酸化膜が割れやすくなり、チューブ7内周面に未酸化の金属面が前記酸化膜から露出しやすくなる。その金属面に含まれるAlやCrが新たに酸化することにより、チューブ7内側の酸素分圧をより一層低減させることができ、ひいてはW等からなる発熱コイル9の酸化を極めて効果的に防止することができる。 In addition, since power is supplied to the heating coil 9 so that the temperature of the surface of the tube 7 (heating unit) rises from room temperature to 1000 ° C. within 3 seconds by the GCU 31, the thermal stress applied to the tube 7 is increased. Can be made. Therefore, an oxide film made of Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube 7 is likely to be broken, and an unoxidized metal surface is easily exposed from the oxide film on the inner peripheral surface of the tube 7. By newly oxidizing Al and Cr contained in the metal surface, the oxygen partial pressure inside the tube 7 can be further reduced, and as a result, oxidation of the heating coil 9 made of W or the like is extremely effectively prevented. be able to.
 特に本実施形態では、アフターグロー通電において、チューブ7の表面温度(加熱部)が1150℃以上と非常に高温とされ、長期間に亘っての発熱が困難な条件であるが、上述の作用効果が相乗的に作用することで、このような高温であっても長期間に亘って発熱することが可能となる。換言すれば、本発明は、比較的長期間行われるアフターグロー通電において、チューブ7の表面温度(加熱部)の温度が1150℃以上の高温とされる場合に特に有意である。 In particular, in the present embodiment, in after-glow energization, the surface temperature (heating part) of the tube 7 is a very high temperature of 1150 ° C. or more, and heat generation over a long period is difficult. By acting synergistically, it becomes possible to generate heat over a long period of time even at such a high temperature. In other words, the present invention is particularly significant when the surface temperature (heating portion) of the tube 7 is set to a high temperature of 1150 ° C. or higher in after-glow energization performed for a relatively long period of time.
 さらに、絶縁粉末10として熱伝導率に優れるMgOが用いられているため、発熱コイル9からチューブ7に対する熱伝導性を向上させることができる。その結果、発熱コイル9を過度に昇温させることなく、グロープラグ1(チューブ7)を一層高温で発熱させることができる。 Furthermore, since MgO having excellent thermal conductivity is used as the insulating powder 10, the thermal conductivity from the heating coil 9 to the tube 7 can be improved. As a result, the glow plug 1 (tube 7) can be heated at a higher temperature without excessively heating the heating coil 9.
 また、チューブ7をより高温とすることができるため、チューブ7に加わる熱応力を増大させることができ、ひいてはチューブ7内周面に形成されるAl23やCr23からなる酸化膜がより割れやすくなる。そのため、チューブ7内周面に未酸化のAlやCrがより露出しやすくなり、チューブ7内側の酸素分圧を一層効果的に低減できる。 Further, since the tube 7 can be heated to a higher temperature, the thermal stress applied to the tube 7 can be increased, and as a result, an oxide film made of Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube 7. Becomes easier to crack. Therefore, unoxidized Al and Cr are more easily exposed on the inner peripheral surface of the tube 7, and the oxygen partial pressure inside the tube 7 can be reduced more effectively.
 さらに、MgOは、チューブ7内周面に形成されたAl23やCr23との間で複合酸化物を作りやすいところ、この複合酸化物は、Al23等からなる酸化膜と比べて非常に粗い。従って、チューブ7中に含有されたAlやCrと、チューブ7内側の酸素とがより一層反応しやすくなり、チューブ7内側の酸素分圧をより一層低下させることができる。 Further, MgO easily forms a composite oxide with Al 2 O 3 or Cr 2 O 3 formed on the inner peripheral surface of the tube 7, and this composite oxide is an oxide film made of Al 2 O 3 or the like. Very coarse compared to. Therefore, Al and Cr contained in the tube 7 and oxygen inside the tube 7 are more likely to react, and the oxygen partial pressure inside the tube 7 can be further reduced.
 つまり、絶縁粉末10としてMgOを主成分とする金属材料を用いることで、MgOが有する良熱伝導性という性質と、Al23等との間で複合酸化物を作りやすいという性質とが相乗的に作用して、チューブ7内側の酸素分圧を極めて効果的に低減させることができる。その結果、発熱コイル9の耐久性を一層向上させることができ、グロープラグ1において、一層長期間に亘ってより高温での発熱が可能となる。 That is, by using a metal material mainly composed of MgO as the insulating powder 10, the property of good thermal conductivity of MgO and the property of easily forming a composite oxide with Al 2 O 3 and the like are synergistic. The oxygen partial pressure inside the tube 7 can be reduced extremely effectively. As a result, the durability of the heating coil 9 can be further improved, and the glow plug 1 can generate heat at a higher temperature for a longer period of time.
 併せて、シール部11を構成する材料の酸素透過率が2.0×10-9以下と十分に小さくされているため、シール部11を過度に厚くすることなく、チューブ7内側への酸素の侵入を効果的に防止することができる。 At the same time, the oxygen permeability of the material constituting the seal portion 11 is sufficiently small as 2.0 × 10 −9 or less, so that oxygen does not enter the tube 7 without excessively thickening the seal portion 11. Intrusion can be effectively prevented.
 また、溶融部7M(チューブ7の先端部)は、少なくともその外表面において、Wを含有せず、また、発熱コイル9を構成する金属材料におけるCrの含有量以上のCrを含んで構成されている。従って、Wの含有に伴う酸化を防止することができるとともに、チューブ7の先端部表面にCr23からなる酸化膜をより確実に形成することができる。その結果、チューブ7先端部において十分に優れた耐久性を実現することができ、チューブ7の破損をより確実に防止することができる。 In addition, the melting portion 7M (the tip portion of the tube 7) does not contain W at least on the outer surface thereof, and also contains Cr equal to or more than the Cr content in the metal material constituting the heating coil 9. Yes. Therefore, oxidation accompanying the inclusion of W can be prevented, and an oxide film made of Cr 2 O 3 can be more reliably formed on the surface of the tip of the tube 7. As a result, it is possible to achieve sufficiently excellent durability at the distal end portion of the tube 7 and to prevent the tube 7 from being damaged more reliably.
 さらに、一般に発熱コイル9を構成する材料として、Crを含有するものが知られているが、本実施形態では、WやMoの純金属から発熱コイル9が形成されている。このため、表面にCrの酸化膜の形成されることで、発熱コイル9の成分に変化が生じ、ひいては発熱コイル9の抵抗値が低下してしまうといった事態を防止することができる。その結果、発熱コイル9の耐久性のより一層の向上を図ることができる。 Furthermore, a material containing Cr is generally known as a material constituting the heat generating coil 9, but in the present embodiment, the heat generating coil 9 is formed from a pure metal such as W or Mo. For this reason, the formation of the Cr oxide film on the surface can prevent the occurrence of a change in the component of the heating coil 9 and the decrease in the resistance value of the heating coil 9. As a result, the durability of the heating coil 9 can be further improved.
 また、製造時において予備加熱を行うこととすれば、発熱コイル9よりもチューブ7中のAlやCrを率先してチューブ7内側の酸素と反応させることができる。その結果、発熱コイル9の酸化を抑制しつつ、チューブ7内側の酸素分圧をより低下させることができ、発熱コイル9の耐久性をより一層向上させることができる。
〔第2実施形態〕
 次いで、第2実施形態について、上記第1実施形態との相違点を中心に説明する。本第2実施形態では、図4に示すように、発熱コイル49のうち、その先端からチューブ47の中心軸CL2(本実施形態では、軸線CL1と一致する)に沿って6mm後端までの間に位置する先端側コイル49Aの線径が、発熱コイル49のうち前記先端側コイル49Aよりも後端側に位置する後端側コイル49Bの線径よりも小さくされている。具体的には、先端側コイル94Aの先端部は、先端側に向けて徐々に線径が小さくなるように構成されている。
Further, if preheating is performed at the time of manufacture, Al and Cr in the tube 7 can take the lead and react with oxygen inside the tube 7 rather than the heating coil 9. As a result, it is possible to further reduce the oxygen partial pressure inside the tube 7 while suppressing the oxidation of the heat generating coil 9, and to further improve the durability of the heat generating coil 9.
[Second Embodiment]
Next, the second embodiment will be described focusing on differences from the first embodiment. In the second embodiment, as shown in FIG. 4, the heating coil 49 extends from the tip to the rear end of 6 mm along the center axis CL <b> 2 of the tube 47 (in the present embodiment, coincides with the axis CL <b> 1). The wire diameter of the distal end side coil 49A located at the rear is made smaller than the wire diameter of the rear end side coil 49B of the heat generating coil 49 located on the rear end side of the distal end side coil 49A. Specifically, the distal end portion of the distal end side coil 94A is configured such that the wire diameter gradually decreases toward the distal end side.
 そして、先端側コイル49Aの線径が後端側コイル49Bの線径よりも小さくされることで、チューブ47の中心軸CL2に沿った単位長さ当たりの先端側コイル49Aの常温抵抗の平均値が、前記中心軸CL2に沿った単位長さ当たりの発熱コイル49全体の常温抵抗の平均値よりも大きくされている。このように先端側コイル49Aにおける常温抵抗の平均値が発熱コイル49全体の常温抵抗の平均値よりも大きくされることで、バッテリVAからグロープラグ1(発熱コイル49)への電力投入時に、チューブ47のうちその先端から後端に約2mmの部位X及びその近傍を積極的に昇温させることができ、前記部位X及びその近傍を最も高温とすることができる。 And the average value of the room temperature resistance of the front end side coil 49A per unit length along the central axis CL2 of the tube 47 is made by making the wire diameter of the front end side coil 49A smaller than that of the rear end side coil 49B. Is larger than the average value of the room temperature resistance of the entire heating coil 49 per unit length along the central axis CL2. As described above, the average value of the normal temperature resistance in the distal end side coil 49A is made larger than the average value of the normal temperature resistance of the entire heating coil 49, so that when the power is supplied from the battery VA to the glow plug 1 (the heating coil 49), the tube 47, the portion X of about 2 mm and its vicinity can be positively heated from the front end to the rear end thereof, and the portion X and the vicinity thereof can be set to the highest temperature.
 尚、グロープラグ1を内燃機関ENに組付けた状態においては、図5に示すように、一般にチューブ47のうちその先端から後端に約4mmまでの間に位置する部位(以下、「露出部」と称す)47Eが燃焼室ER内に配置される。従って、前記部位Xは、露出部7Eのほぼ中心に位置する部位といえる。 In the state where the glow plug 1 is assembled to the internal combustion engine EN, as shown in FIG. 5, a portion (hereinafter referred to as an “exposed portion”) of the tube 47 that is generally located between the front end and the rear end of the tube 47 is approximately 4 mm. 47E) is disposed in the combustion chamber ER. Therefore, the part X can be said to be a part located substantially at the center of the exposed portion 7E.
 以上詳述したように、本第2実施形態によれば、温度がより高くなりやすく、急激な温度変化が生じやすいチューブ47の露出部47Eを積極的に昇温させることができ、チューブ47をより高温にすることができるとともに、チューブ47に急激な温度変化を生じさせることができる。従って、チューブ47に生じる熱応力を一層増大させることができ、チューブ47内周面に形成される酸化膜を一層割れやすくすることができる。その結果、発熱コイル49の酸化防止効果を一層向上させることができる。
〔第3実施形態〕
 次いで、第3実施形態について上記第2実施形態との相違点を中心に説明する。上記第2実施形態では、先端側コイル49Aの常温抵抗の平均値を発熱コイル49全体の常温抵抗の平均値よりも大きくするために、先端側コイル49Aの線径が後端側コイル49Bの線径よりも小さくされている。これに対して、本第3実施形態においては、図6(尚、図6~図8においては、発熱コイルを模式的に示す)に示すように、先端側コイル59Aの平均ピッチが後端側コイル59Bの平均ピッチよりも0.9mm以上小さくされることで、先端側コイル59Aにおける常温抵抗の平均値が、発熱コイル59全体の常温抵抗の平均値よりも十分に大きくなるように(本第3実施形態では、先端側コイル59Aの常温抵抗の平均値が、発熱コイル59全体の常温抵抗の平均値の2倍以上となるように)構成されている。また、本第3実施形態では、発熱コイル59の線径が0.2mm以上とされており、発熱コイル59は、その先端から後端にかけて略一定の線径を有するように構成されている。
As described above in detail, according to the second embodiment, the temperature of the exposed portion 47E of the tube 47 that is likely to be higher and that is subject to a sudden temperature change can be positively increased. It is possible to make the temperature higher, and it is possible to cause a rapid temperature change in the tube 47. Therefore, the thermal stress generated in the tube 47 can be further increased, and the oxide film formed on the inner peripheral surface of the tube 47 can be further easily broken. As a result, the oxidation preventing effect of the heating coil 49 can be further improved.
[Third Embodiment]
Next, the third embodiment will be described focusing on differences from the second embodiment. In the second embodiment, in order to make the average value of the normal temperature resistance of the front end side coil 49A larger than the average value of the normal temperature resistance of the entire heating coil 49, the wire diameter of the front end side coil 49A is the wire of the rear end side coil 49B. It is smaller than the diameter. On the other hand, in the third embodiment, as shown in FIG. 6 (note that the heating coil is schematically shown in FIGS. 6 to 8), the average pitch of the front end side coil 59A is the rear end side. By making it 0.9 mm or more smaller than the average pitch of the coil 59B, the average value of the room temperature resistance in the tip coil 59A is sufficiently larger than the average value of the room temperature resistance of the entire heating coil 59 (this first example). In the third embodiment, the average value of the normal temperature resistance of the distal end side coil 59A is configured to be at least twice the average value of the normal temperature resistance of the entire heating coil 59). In the third embodiment, the heating coil 59 has a wire diameter of 0.2 mm or more, and the heating coil 59 is configured to have a substantially constant wire diameter from the front end to the rear end.
 以上、本第3実施形態によれば、チューブ57の露出部を積極的に昇温させることができ、チューブ57のより一層急速な昇温等が可能となる。従って、チューブ57内周面に形成される酸化膜をより一層割れやすくすることができ、発熱コイル59の酸化防止効果をさらに高めることができる。 As described above, according to the third embodiment, the temperature of the exposed portion of the tube 57 can be positively increased, and the temperature of the tube 57 can be increased more rapidly. Therefore, the oxide film formed on the inner peripheral surface of the tube 57 can be further easily broken, and the oxidation preventing effect of the heating coil 59 can be further enhanced.
 加えて、本第3実施形態では、先端側コイル59Aの太さを十分に確保できるため、発熱コイル59の機械的強度を十分に維持することができる。 In addition, in the third embodiment, since the thickness of the distal end side coil 59A can be sufficiently secured, the mechanical strength of the heating coil 59 can be sufficiently maintained.
 さらに、先端側コイル59Aを過度に細くする必要がないため、発熱コイル59を比較的容易に製造することができ、生産性の低下をより確実に防止することができる。 Furthermore, since it is not necessary to make the tip side coil 59A excessively thin, the heat generating coil 59 can be manufactured relatively easily, and a reduction in productivity can be prevented more reliably.
 次いで、上記実施形態によって奏される作用効果を確認すべく、発熱コイルをFe-26Cr-7.5Al(パイロマックス)、W、又は、Moにより形成するとともに、チューブをFeやNiを主成分とするとともに、AlやCrの含有量を種々変更した金属材料から形成したグロープラグのサンプルを作製し、各サンプルについて耐久性評価試験を行った。耐久性評価試験の概要は次の通りである。すなわち、各サンプルについて、チューブ表面(加熱部)を常温から1000℃まで2秒間又は10秒間で昇温させるとともに、1150℃又は1200℃にてチューブ表面温度が飽和するように60秒間通電を行い、その後180秒間風冷することを1サイクルとして、発熱コイルが断線するまでのサイクル数(断線サイクル)を測定した。ここで、チューブ表面温度が1150℃にて飽和する際に、断線サイクルが10000サイクル以上となったサンプルは、優れた耐久性を有するとして「○」の評価を下し、一方で、断線サイクルが10000サイクル未満となったサンプルは、耐久性に劣るとして「×」の評価を下すこととした。また、チューブ表面温度が1200℃にて飽和する際に(つまり、発熱コイルがより断線しやすい条件において)、断線サイクルが5000サイクル以上となったサンプルは「○」の評価を下し、断線サイクルが5000サイクル未満となったサンプルは「×」の評価を下した。尚、チューブに破損が生じてしまったサンプルは、下記表1~表3の判定欄に「*」を付した。 Next, in order to confirm the effects achieved by the above embodiment, the heating coil is formed of Fe-26Cr-7.5Al (Pyromax), W, or Mo, and the tube is mainly composed of Fe or Ni. At the same time, samples of glow plugs formed from metal materials with various contents of Al and Cr were prepared, and durability evaluation tests were performed on the samples. The outline of the durability evaluation test is as follows. That is, for each sample, the tube surface (heating portion) was heated from room temperature to 1000 ° C. in 2 seconds or 10 seconds and energized for 60 seconds so that the tube surface temperature was saturated at 1150 ° C. or 1200 ° C. Thereafter, air cooling for 180 seconds was taken as one cycle, and the number of cycles (disconnection cycle) until the heating coil was disconnected was measured. Here, when the tube surface temperature is saturated at 1150 ° C., the sample having a disconnection cycle of 10,000 cycles or more is evaluated as “◯” as having excellent durability, while the disconnection cycle is Samples with less than 10,000 cycles were evaluated as “x” because they were inferior in durability. In addition, when the tube surface temperature is saturated at 1200 ° C. (that is, under the condition that the heating coil is more likely to break), a sample with a break cycle of 5000 cycles or more is evaluated as “◯”, and the break cycle Samples with less than 5000 cycles were rated “x”. For samples in which the tube was damaged, “*” was given in the judgment column of Tables 1 to 3 below.
 表1に、発熱コイルをFe-26Cr-7.5Alにより形成したサンプルの試験結果を示す。また、表2に、発熱コイルをWにより形成したサンプルの試験結果を示し、表3に、発熱コイルをMoにより形成したサンプルの試験結果を示す。尚、常温から1000℃まで2秒間で昇温させる際には、サンプルに対して11Vで2秒間通電し、常温から1000℃まで10秒間で昇温させる際には、サンプルに対して4.5Vで5秒間通電した後、7.5Vで5秒間通電した。また、チューブ表面温度を1150℃にて飽和させる際には、6.5Vで60秒間通電し、チューブ表面温度を1200℃で飽和させる際には、7.5Vで60秒間通電した。尚、各サンプルともに、シール部をフッ素ゴムにより形成し、チューブ組成は、EPMAによる定量分析により特定した。また、発熱コイルをFe-26Cr-7.5Alにより形成したサンプルについては、常温から1000℃まで2秒間で昇温させる試験のみを行った。 Table 1 shows the test results of the sample in which the heating coil is formed of Fe-26Cr-7.5Al. Table 2 shows the test results of the sample in which the heating coil is formed of W, and Table 3 shows the test result of the sample in which the heating coil is formed of Mo. When the temperature is raised from room temperature to 1000 ° C. in 2 seconds, the sample is energized at 11 V for 2 seconds, and when the temperature is raised from room temperature to 1000 ° C. in 10 seconds, 4.5 V is applied to the sample. Was energized for 5 seconds, and then energized at 7.5 V for 5 seconds. Moreover, when saturating the tube surface temperature at 1150 ° C., it was energized at 6.5 V for 60 seconds, and when saturating the tube surface temperature at 1200 ° C., it was energized at 7.5 V for 60 seconds. In each sample, the seal portion was formed of fluoro rubber, and the tube composition was specified by quantitative analysis using EPMA. For the sample in which the heating coil was formed of Fe-26Cr-7.5Al, only a test for raising the temperature from room temperature to 1000 ° C. in 2 seconds was performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、発熱コイルをFe-26Cr-7.5Al(パイロマックス)により形成したサンプルは、チューブの組成に関わらず、早い段階で発熱コイルに断線が生じてしまい、特に1200℃まで昇温させたときには、発熱コイルが溶融してしまうことが分かった。これは、発熱コイルを構成する金属材料の融点が1500℃程度と比較的低く、チューブ表面を1150℃以上の高温とした際に、発熱コイルが自身の融点付近まで加熱されてしまったためであると考えられる。 As shown in Table 1, in the sample in which the heating coil is formed of Fe-26Cr-7.5Al (Pyromax), the heating coil is disconnected at an early stage regardless of the composition of the tube, particularly up to 1200 ° C. It was found that the heating coil melts when the temperature is raised. This is because the melting point of the metal material composing the heating coil is relatively low, about 1500 ° C., and when the tube surface was heated to a high temperature of 1150 ° C. or higher, the heating coil was heated to near its melting point. Conceivable.
 加えて、表2及び表3に示すように、発熱コイルを高融点のW又はMoにより形成した場合であっても、チューブのAl含有量やCr含有量が比較的少ない場合には、耐久性が不十分となってしまうことが明らかとなった。これは、W及びMoは比較的酸化しやすい性質を有するため、高温下において、発熱コイルの酸化消耗が急激に進んでしまったことに起因すると考えられる。 In addition, as shown in Tables 2 and 3, even if the heating coil is made of W or Mo having a high melting point, if the Al content or Cr content of the tube is relatively low, the durability It became clear that became insufficient. This is presumably because W and Mo have the property of being relatively easy to oxidize, so that the oxidation consumption of the heating coil has rapidly advanced at high temperatures.
 また、チューブをNi-15Cr-8Fe-0.5Mn-0.2Si〔インコネル(登録商標)600〕により形成したサンプルは、チューブに破損が生じてしまうことが確認された。これは、チューブがAlを含有せず、また、チューブのCr含有量が比較的少なかったため、チューブ表面にAlやCrが酸化してなる酸化被膜が十分に形成されず、チューブの耐酸化性が不十分となってしまったためであると考えられる。 Further, it was confirmed that the sample in which the tube was formed of Ni-15Cr-8Fe-0.5Mn-0.2Si [Inconel (registered trademark) 600] would be damaged. This is because the tube does not contain Al and the Cr content in the tube is relatively low, so an oxide film formed by oxidation of Al or Cr is not sufficiently formed on the tube surface, and the tube has oxidation resistance. This is thought to be due to the fact that it was insufficient.
 これに対して、発熱コイルをW又はMoにより形成するとともに、チューブのAl含有量を0.5質量%以上、Cr含有量を20質量%以上としたサンプルは、優れた耐久性を有することが明らかとなった。これは、チューブに含有されたAl及びCrが、発熱コイルのW又はMoよりも優先的に酸化したことで、チューブ内の酸素分圧を低下させることができ、ひいては発熱コイルの酸化を抑制できたこと、また、チューブの外表面にAlやCrからなる酸化膜が十分に形成され、チューブにおいて1150℃以上の高温に耐え得る優れた耐酸化性を長期間に亘って実現できたことによると考えられる。 On the other hand, a sample in which the heating coil is formed of W or Mo and the Al content of the tube is 0.5 mass% or more and the Cr content is 20 mass% or more has excellent durability. It became clear. This is because Al and Cr contained in the tube are preferentially oxidized over W or Mo of the heating coil, so that the partial pressure of oxygen in the tube can be reduced, and hence the oxidation of the heating coil can be suppressed. In addition, according to the fact that an oxide film made of Al or Cr was sufficiently formed on the outer surface of the tube, and excellent oxidation resistance capable of withstanding a high temperature of 1150 ° C. or higher was realized in the tube over a long period of time. Conceivable.
 また特に、チューブにおけるAlやCrの含有量を増加させるほど、優れた耐久性を実現できることが確認された。 In particular, it was confirmed that excellent durability can be realized as the content of Al and Cr in the tube is increased.
 以上の試験結果より、発熱コイル及びチューブ双方の耐久性を向上させ、長期間に亘ってより高温での発熱を可能とするためには、発熱コイルをW又はMoを主成分とする金属材料により形成するとともに、チューブにおけるAl含有量を0.5質量%以上とし、Cr含有量を20質量%以上とすることが好ましいといえる。また、耐久性の更なる向上を図るべく、Al含有量を1.4質量%以上や2.4質量%以上とより増加させたり、Cr含有量を23質量%以上や26質量%以上とより増加させたりすることが望ましいといえる。但し、Al含有量を5.0質量%超としたり、Cr含有量を40質量%超としたりすると、加工性が悪化してしまうおそれがある。従って、Al含有量を5.0質量%以下、Cr含有量を40質量%以下とすることが好ましい。 From the above test results, in order to improve the durability of both the heating coil and the tube and to enable heat generation at a higher temperature over a long period of time, the heating coil is made of a metal material mainly composed of W or Mo. While forming, it can be said that it is preferable to make Al content in a tube into 0.5 mass% or more, and to make Cr content into 20 mass% or more. In order to further improve the durability, the Al content is increased to 1.4% by mass or more and 2.4% by mass or more, or the Cr content is increased to 23% by mass or more and 26% by mass or more. It can be said that it is desirable to increase it. However, if the Al content is more than 5.0% by mass or the Cr content is more than 40% by mass, the workability may be deteriorated. Therefore, it is preferable that the Al content is 5.0% by mass or less and the Cr content is 40% by mass or less.
 次いで、発熱コイルをW又はMoにより形成するとともに、チューブをNi-26Cr-11Fe-2.4Al-0.2C-0.2Ti-0.1Zr-0.1Y(Alloy602)により形成したグロープラグのサンプルを複数作製した。そして、各サンプルについて昇温時間を種々変更してチューブ表面を常温から1000℃まで昇温させるとともに、1200℃に到達後、その温度を60秒間維持するように通電を行い、その後180秒間風冷することを1サイクルとして、発熱コイルが断線するまでの断線サイクルを測定した。表4に、発熱コイルをWにより形成したサンプルの試験結果を示し、表5に、発熱コイルをMoにより形成したサンプルの試験結果を示す。尚、各サンプルともに、シール部をフッ素ゴムにより形成した。 Next, a sample of a glow plug in which a heating coil is formed of W or Mo and a tube is formed of Ni-26Cr-11Fe-2.4Al-0.2C-0.2Ti-0.1Zr-0.1Y (Alloy 602) Several were produced. Then, the temperature of the tube is varied from room temperature to 1000 ° C. by changing the temperature raising time for each sample, and after reaching 1200 ° C., energization is performed to maintain the temperature for 60 seconds, and then air cooling is performed for 180 seconds. As one cycle, the disconnection cycle until the heating coil was disconnected was measured. Table 4 shows a test result of a sample in which the heating coil is formed of W, and Table 5 shows a test result of a sample in which the heating coil is formed of Mo. In each sample, the seal portion was formed of fluororubber.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4及び表5に示すように、常温から1000℃までの昇温時間を3秒超とした場合には、断線サイクルが7000サイクル前後となったのに対し、常温から1000℃までの昇温時間を3秒以内とした場合には、断線サイクルが8500サイクル以上となり、一層優れた耐久性を実現できること分かった。また、常温から1000℃までの昇温時間を2秒以内としたことで、断線サイクルが9000サイクルを超え、更なる耐久性の向上が図られることが確認された。これは、昇温時間が短いほどチューブに加わる熱応力が増大することから、チューブ内壁に生成された酸化膜が破壊されやすくなり(換言すれば、未酸化のAlやCrがチューブ内表面に露出しやすくなり)、その結果、チューブ内側の酸素とAlやCrとの酸化がより一層促進され、チューブ内側における酸素分圧がより一層低下したためであると考えられる。 As shown in Table 4 and Table 5, when the temperature rising time from room temperature to 1000 ° C. was more than 3 seconds, the disconnection cycle was around 7000 cycles, whereas the temperature rising from room temperature to 1000 ° C. It was found that when the time was within 3 seconds, the disconnection cycle was 8500 cycles or more, and further excellent durability could be realized. Moreover, it was confirmed that the disconnection cycle exceeded 9000 cycles and the durability was further improved by setting the temperature rising time from room temperature to 1000 ° C. within 2 seconds. This is because the thermal stress applied to the tube increases as the temperature rise time is shorter, so that the oxide film generated on the inner wall of the tube is likely to be destroyed (in other words, unoxidized Al and Cr are exposed on the inner surface of the tube). As a result, it is considered that the oxidation of oxygen inside the tube with Al and Cr was further promoted, and the oxygen partial pressure inside the tube was further reduced.
 以上の試験結果より、耐久性を一層向上させるべく、WやMoを主成分とする金属材料により発熱コイルを形成し、AlやCrを所定量以上含有する金属材料によりチューブを形成したグロープラグにおいては、チューブ表面温度が常温から1000℃に3秒以内で上昇するように電力を供給することが好ましく、常温から1000℃に2秒以内で上昇するように電力を供給することが一層好ましいといえる。 From the above test results, in order to further improve the durability, a glow plug in which a heating coil is formed of a metal material mainly composed of W or Mo and a tube is formed of a metal material containing a predetermined amount of Al or Cr. It is preferable to supply power so that the tube surface temperature rises from room temperature to 1000 ° C. within 3 seconds, and it is more preferable to supply power so that the temperature rises from room temperature to 1000 ° C. within 2 seconds. .
 次に、チューブ内に充填される絶縁粉末をMgO、酸化アルミニウム(Al23)、又は、窒化ケイ素(Si34)としたグロープラグのサンプルを作製し、7.5Vで65秒間通電し(常温から1000℃まで5秒で昇温させ)、その後180秒間風冷することを1サイクルとして、発熱コイルが断線するまでの断線サイクルを測定した。表6に、当該試験の結果を示す。尚、各サンプルともに、発熱コイルをWにより形成するとともに、チューブをNi-23Cr-14Fe-1.4Al-0.5Mn-0.2Si〔インコネル(登録商標)601〕、Alloy602、又は、SUS310sにより形成した。また、シール部をフッ素ゴムにより形成するとともに、作製後のサンプルに対して800℃で30秒間の予備加熱を行った。 Next, a glow plug sample in which the insulating powder filled in the tube is made of MgO, aluminum oxide (Al 2 O 3 ), or silicon nitride (Si 3 N 4 ) is prepared and energized at 7.5 V for 65 seconds. (The temperature was raised from room temperature to 1000 ° C. in 5 seconds), and then air cooling for 180 seconds was taken as one cycle, and the disconnection cycle until the heating coil was disconnected was measured. Table 6 shows the results of the test. In each sample, the heating coil is formed of W, and the tube is formed of Ni-23Cr-14Fe-1.4Al-0.5Mn-0.2Si [Inconel (registered trademark) 601], Alloy 602, or SUS310s. did. In addition, the seal portion was formed of fluororubber, and the sample after preparation was preheated at 800 ° C. for 30 seconds.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、チューブをインコネル601やAlloy602により形成したサンプルは、いずれの絶縁粉末においても優れた耐久性を有することが確認された。また特に、絶縁粉末をMgOにより形成したサンプルは、絶縁粉末をAl23やSi34により形成したサンプルよりも耐久性に一層優れることが明らかとなった。これは、MgOは、チューブ内周に形成されたAlやCrの酸化物との複合酸化物を作りやすいところ、当該複合酸化物は非常に粗いため、チューブ中のAlやCrとチューブ内側の酸素とが反応しやすくなり、結果として、チューブ内側における酸素分圧をより低下させることができたこと、及び、Al23等と比較して、MgOは熱伝導性に優れることから、チューブにより大きな熱応力が加わり、その結果、チューブ内周の酸化膜が割れやすくなり、チューブ内側の酸素とチューブ中のAlやCrとの酸化がより一層促進されたこと等に起因すると考えられる。 As shown in Table 6, it was confirmed that the sample in which the tube was formed of Inconel 601 or Alloy 602 had excellent durability in any insulating powder. In particular, it has been clarified that the sample in which the insulating powder is formed of MgO is more excellent in durability than the sample in which the insulating powder is formed of Al 2 O 3 or Si 3 N 4 . This is because MgO is easy to form a composite oxide with Al and Cr oxides formed on the inner periphery of the tube. Since the composite oxide is very rough, Al and Cr in the tube and oxygen inside the tube As a result, the oxygen partial pressure inside the tube could be further reduced, and compared with Al 2 O 3 etc., MgO is superior in thermal conductivity. It is considered that a large thermal stress is applied, and as a result, the oxide film on the inner periphery of the tube is easily cracked, and the oxidation of oxygen inside the tube and Al and Cr in the tube is further promoted.
 以上の試験結果より、耐久性の更なる向上を図るという観点からは、絶縁粉末として、MgOを主成分とする材料を用いることが好ましいといえる。 From the above test results, it can be said that it is preferable to use a material mainly composed of MgO as the insulating powder from the viewpoint of further improving the durability.
 次いで、シール部をEPDM、又は、フッ素ゴムにより形成したグロープラグのサンプルを作製し、各サンプルについて7.5Vで65秒間通電し(常温から1000℃まで5秒で昇温させ)、その後180秒間風冷することを1サイクルとして、発熱コイルが断線するまでの断線サイクルを測定した。表7に当該試験の結果を示す。尚、発熱コイルはWにより形成し、チューブはインコネル601、又は、Alloy602により形成した。また、シール部の軸線方向に沿った厚さを10mmとした。 Next, glow plug samples in which the seal portion is made of EPDM or fluororubber are prepared, and each sample is energized at 7.5 V for 65 seconds (temperature rise from room temperature to 1000 ° C. in 5 seconds), and then for 180 seconds. Taking the air cooling as one cycle, the disconnection cycle until the heating coil was disconnected was measured. Table 7 shows the results of the test. The heating coil was made of W, and the tube was made of Inconel 601 or Alloy 602. Moreover, the thickness along the axial direction of the seal portion was set to 10 mm.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、各サンプルともに優れた耐久性を有し、特にシール部の酸素透過率が小さいほどより一層優れた耐久性を実現できることが明らかとなった。これは、チューブ内へのシール部を透過した酸素の侵入がより抑制されたためであると考えられる。 As shown in Table 7, it was clarified that each sample has excellent durability, and in particular, as the oxygen permeability of the seal portion is small, further excellent durability can be realized. This is considered to be because the invasion of oxygen that has passed through the seal portion into the tube is further suppressed.
 以上の試験結果より、発熱コイルの耐久性を一層向上させるためには、シール部の酸素透過率を2.0×10-9(cm3・cm/sec・cm2・cmHg)以下とすることが好ましく、酸素透過率を1.0×10-9(cm3・cm/sec・cm2・cmHg)以下とすることがより好ましいといえる。 From the above test results, in order to further improve the durability of the heating coil, the oxygen permeability of the seal portion should be 2.0 × 10 −9 (cm 3 · cm / sec · cm 2 · cmHg) or less. It is preferable that the oxygen permeability is 1.0 × 10 −9 (cm 3 · cm / sec · cm 2 · cmHg) or less.
 次に、発熱コイルをWにより形成するとともに、チューブをインコネル601により形成したグロープラグのサンプルを複数作製し、各サンプルについて、チューブの先端部(先端から1mmまでの範囲)を電気炉に挿入し、700℃~1400℃で1秒~60秒間に亘ってチューブを予備加熱した。そして、予備加熱を行ったサンプルに対して、チューブ表面を常温から1000℃まで2秒間で昇温させるとともに、チューブ表面温度が1200℃にて飽和するように60秒間通電を行い(つまり、11Vで2秒間通電した後、7.5Vで60秒間通電し)、その後180秒間風冷することを1サイクルとして、発熱コイルが断線するまでのサイクル数(断線サイクル)を測定した。表8に、当該試験の結果を示す。尚、シール部はフッ素ゴムにより形成した。また、表8においては、参考として、予備加熱を行わなかったサンプルの断線サイクルも併せて示す。 Next, a plurality of glow plug samples in which the heating coil is formed of W and the tube is formed of Inconel 601 are produced, and the tip of the tube (range from the tip to 1 mm) is inserted into the electric furnace for each sample. The tube was preheated at 700 ° C. to 1400 ° C. for 1 second to 60 seconds. Then, for the preheated sample, the tube surface is heated from room temperature to 1000 ° C. in 2 seconds and energized for 60 seconds so that the tube surface temperature is saturated at 1200 ° C. (that is, at 11 V). After energizing for 2 seconds, energizing for 60 seconds at 7.5 V), and then cooling with air for 180 seconds was taken as one cycle, and the number of cycles until the heating coil was disconnected (disconnection cycle) was measured. Table 8 shows the results of the test. The seal portion was made of fluoro rubber. Moreover, in Table 8, the disconnection cycle of the sample which did not perform preheating is also shown as reference.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、800℃以上で60秒間予備加熱を行ったサンプルや、1400℃で予備加熱を行ったサンプルは、耐久性が極端に低下してしまうことが分かった。これは、長時間の加熱でシール部に溶損が生じてしまったり、極めて高温での加熱によりチューブが薄肉になってしまったりしたことに起因すると考えられる。 As shown in Table 8, it was found that the durability of the sample preliminarily heated at 800 ° C. or higher for 60 seconds or the sample preliminarily heated at 1400 ° C. was extremely lowered. This is considered to be due to the fact that the seal portion is melted by heating for a long time, or that the tube is thinned by heating at an extremely high temperature.
 これに対して、700℃~1300℃で1秒~30秒間に亘って予備加熱を行ったサンプルや、700℃で60秒間に亘って予備加熱を行ったサンプルは、予備加熱を行わなかったサンプルと比較して、一層優れた耐久性を有することが明らかとなった。これは、チューブを加熱したことで、発熱コイルよりもチューブ中のAlやCrが率先してチューブ内側の酸素と反応することとなり、その結果、発熱コイルの酸化を抑制しつつ、チューブ内側の酸素分圧をより低下させることができたためであると考えられる。 In contrast, samples that were preheated at 700 ° C. to 1300 ° C. for 1 second to 30 seconds, or samples that were preheated at 700 ° C. for 60 seconds were samples that were not preheated. It became clear that it had the further outstanding durability compared with. This is because heating the tube causes Al and Cr in the tube to take the lead and react with oxygen inside the tube rather than the heating coil. As a result, while suppressing oxidation of the heating coil, oxygen inside the tube This is probably because the partial pressure could be further reduced.
 また特に、800℃から1300℃で3秒間から30秒間に亘って予備加熱を行ったサンプルは、断線サイクルが9000サイクルを超え、非常に優れた耐久性を有することが確認された。 In particular, it was confirmed that the sample preliminarily heated at 800 ° C. to 1300 ° C. for 3 to 30 seconds has a disconnection cycle exceeding 9000 cycles and has extremely excellent durability.
 以上の試験結果より、耐久性の更なる向上を図るべく、チューブ先端部の予備加熱を行うことが好ましいといえる。特に耐久性を確実に向上させるという点からは、700℃以下の比較的低温で予備加熱を行うこと、又は、700℃超1300℃以下で1秒間から30秒間に亘って予備加熱を行うことがより好ましく、800℃以上1300℃以下で3秒間から30秒間に亘って予備加熱を行うことがより一層好ましいといえる。 From the above test results, it can be said that it is preferable to preheat the tube tip in order to further improve the durability. In particular, from the viewpoint of surely improving the durability, preheating at a relatively low temperature of 700 ° C. or lower, or preheating at 700 ° C. or higher and 1300 ° C. or lower for 1 second to 30 seconds. More preferably, it can be said that it is even more preferable to perform preheating at 800 ° C. or higher and 1300 ° C. or lower for 3 to 30 seconds.
 次に、発熱コイルの線径を種々変更したグロープラグのサンプルを複数作製するとともに、放射温度計を用いてチューブ表面のうち先端から後端側に2mmの部位(露出部の中心)における温度を測定しつつ、各サンプルに対して11Vで2秒間通電した後、6Vで180秒間通電した。そして、チューブのうちその先端から後端側に2mmの部分(測定対象部)における温度が1000℃に到達したときの時間(1000℃到達時間)を計測した。ここで、前記測定対象部が3秒以内に1000℃となったサンプルは、チューブを急速昇温させやすく、チューブ内周面に未酸化のAlやCrを露出しやすくできるため、発熱コイルの耐酸化性向上という面で好ましいといえる。表9に、当該試験の試験結果を示す。尚、各サンプルともに、発熱コイルをMoにより形成するとともに、発熱コイルのピッチを一定とし、発熱コイルの外径を2.5mmとし、発熱コイル全体の常温抵抗を300mΩとした。また、各サンプルにおいては、発熱コイル全体の常温抵抗をそれぞれ等しくすべく、発熱コイルの線径に応じて、発熱コイルの軸線に沿った長さや発熱コイルの巻き数を変更した。表9では、参考として、各サンプルにおける発熱コイルの長さや巻き数を併せて示す。 Next, while preparing a plurality of glow plug samples with various wire diameters of the heating coil, using a radiation thermometer, the temperature at the 2 mm portion (center of the exposed portion) of the tube surface from the tip to the rear end is measured. While measuring, each sample was energized at 11 V for 2 seconds, and then energized at 6 V for 180 seconds. And the time (1000 degreeC arrival time) when the temperature in a 2 mm part (measurement object part) reached | attained 1000 degreeC from the front-end | tip to the rear end side among the tubes was measured. Here, the sample in which the measurement target portion reaches 1000 ° C. within 3 seconds can easily raise the temperature of the tube quickly and easily expose unoxidized Al and Cr to the inner peripheral surface of the tube. It can be said that it is preferable in terms of improving the chemical conversion. Table 9 shows the test results of the test. In each sample, the heating coil was made of Mo, the pitch of the heating coil was constant, the outer diameter of the heating coil was 2.5 mm, and the room temperature resistance of the entire heating coil was 300 mΩ. Further, in each sample, the length along the axis of the heating coil and the number of turns of the heating coil were changed according to the wire diameter of the heating coil in order to equalize the room temperature resistance of the entire heating coil. In Table 9, the length and the number of turns of the heating coil in each sample are also shown for reference.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、発熱コイルの線径を0.15mm以下としたサンプルは、前記測定対象部が3秒以内に1000℃となり、露出部の急速昇温が容易に可能となることが分かった。 As shown in Table 9, in the sample in which the wire diameter of the heating coil is 0.15 mm or less, the measurement target part becomes 1000 ° C. within 3 seconds, and it is easy to rapidly raise the temperature of the exposed part. It was.
 次に、発熱コイルのうちその先端からチューブの中心軸に沿って6mm後端までの間に位置する部位(先端側コイル)の線径を変更する一方で、発熱抵抗体のうち先端側コイルよりも後端側に位置する部位(後端側コイル)の線径を一定(0.2mm)としたグロープラグのサンプルを複数作製し、各サンプルを上述の通電条件(11Vで2秒間通電後、6Vで180秒間通電)で昇温させた。そして、前記測定対象部における温度が1000℃に到達したときの時間を計測した。表10に、当該試験の試験結果を示す。 Next, while changing the wire diameter of the portion (tip-side coil) located between the tip of the heating coil and the 6 mm rear end along the central axis of the tube, from the tip-side coil of the heating resistor Also, a plurality of glow plug samples with a constant wire diameter (0.2 mm) of the portion located on the rear end side (rear end side coil) were prepared, and each sample was energized at 11V for 2 seconds, The temperature was increased by energization at 6 V for 180 seconds. And the time when the temperature in the said measurement object part reached | attained 1000 degreeC was measured. Table 10 shows the test results of the test.
 尚、各サンプルともに、発熱コイルをMoにより形成するとともに、発熱コイルの外径を2.5mmとし、先端側コイルの長さを6mmとし、後端側コイルの長さを18mmとした。また、各サンプルともに、先端側コイルに相当する部位を後端側コイルに相当する部位に溶接することで発熱コイルを作製した。さらに、先端側コイルの線径に合わせて、先端側コイルの平均ピッチを変更し、先端側コイルの常温抵抗が150mΩとなるように調節した。また、後端側コイルの常温抵抗も150mΩとすることで、発熱コイル全体の常温抵抗を300mΩとし、発熱コイル全体の常温抵抗の平均値を12.5mΩ/mm(=300mΩ/24mm)とした。 In each sample, the heat generating coil was formed of Mo, the outer diameter of the heat generating coil was 2.5 mm, the length of the front end side coil was 6 mm, and the length of the rear end side coil was 18 mm. In each sample, a heating coil was produced by welding a portion corresponding to the front end side coil to a portion corresponding to the rear end side coil. Furthermore, the average pitch of the tip side coil was changed in accordance with the wire diameter of the tip side coil, and the room temperature resistance of the tip side coil was adjusted to 150 mΩ. Further, the room temperature resistance of the rear end side coil was also set to 150 mΩ, so that the room temperature resistance of the entire heating coil was 300 mΩ, and the average value of the room temperature resistance of the entire heating coil was 12.5 mΩ / mm (= 300 mΩ / 24 mm).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、各サンプルともに、前記測定対象部が3秒以内に1000℃となり、露出部の急速昇温が容易に可能となることが確認された。 As shown in Table 10, it was confirmed that in each sample, the measurement target part reached 1000 ° C. within 3 seconds, and rapid heating of the exposed part was easily possible.
 ところで、発熱コイルが十分な機械的強度を有するように構成するには、発熱コイルの線径を2.0mm以上とすることが好ましい。そこで次に、発熱コイルの線径を2.0mmとした上で、先端側コイルのピッチを変更することにより先端側コイルの常温抵抗の平均値を変更したグロープラグのサンプルを複数作製し、各サンプルを上述の通電条件(11Vで2秒間通電後、6Vで180秒間通電)で昇温させた。そして、前記測定対象部が3秒以内に1000℃となったサンプルは、露出部を急速昇温させやすいとして「○」の評価を下すこととし、一方で、前記測定対象部の温度が3秒以内に1000℃に到達しなかったサンプルは、露出部をやや昇温させにくいとして「△」の評価を下すこととした。表11に、当該試験の試験結果を示す。 Incidentally, in order to configure the heat generating coil to have sufficient mechanical strength, it is preferable that the wire diameter of the heat generating coil is set to 2.0 mm or more. Then, after making the wire diameter of the heating coil 2.0 mm, a plurality of glow plug samples in which the average value of the room temperature resistance of the tip side coil was changed by changing the pitch of the tip side coil, The sample was heated under the above-described energization conditions (energization at 11V for 2 seconds and energization at 6V for 180 seconds). The sample in which the measurement target portion reaches 1000 ° C. within 3 seconds is evaluated as “◯” because the exposed portion is easily heated rapidly. On the other hand, the temperature of the measurement target portion is 3 seconds. Samples that did not reach 1000 ° C. within the range were evaluated as “Δ” because the temperature of the exposed portion was somewhat difficult to raise. Table 11 shows the test results of the test.
 また、測定対象部が3秒以内に1000℃となったサンプルについては、11Vで2秒間通電した後、7.5Vで180秒間通電し、次いで、通電を120秒間停止することを1サイクルとして、発熱コイルが断線するまでのサイクル数(断線サイクル)を併せて測定した。表11には、前記試験の結果に加えて、測定された断線サイクルも示す。 Moreover, about the sample whose measurement object part became 1000 degreeC within 3 second, after energizing for 2 seconds at 11V, energizing for 180 seconds at 7.5V, and then stopping energization for 120 seconds as one cycle, The number of cycles until the heating coil was disconnected (disconnection cycle) was also measured. Table 11 also shows the measured disconnection cycle in addition to the results of the test.
 尚、各サンプルともに、発熱コイルをMoにより形成するとともに、発熱コイルの外径を2.5mmとした。また、図7(a),(b)に示すように、各サンプルともに、先端側コイルの長さを6mmとし、後端側コイルの長さを18mmとした。そして、先端側コイルの常温抵抗(ピッチ)の変更に合わせて、後端側コイルのピッチを調節することで後端側コイルの常温抵抗も変更し、各サンプルともに発熱コイル全体の常温抵抗を300mΩとした。表11では、先端側コイルの常温抵抗、後端側コイルの常温抵抗、先端側コイルの平均ピッチ、及び、後端側コイルの平均ピッチを併せて示す。尚、先端側コイルの平均ピッチは、先端側コイルのうち、チューブの先端に隣接する1巻分(発熱コイルの最先端部)を除外して算出した。 In each sample, the heating coil was made of Mo, and the outer diameter of the heating coil was 2.5 mm. Further, as shown in FIGS. 7A and 7B, in each sample, the length of the front end side coil was 6 mm, and the length of the rear end side coil was 18 mm. The room temperature resistance of the rear end side coil is also changed by adjusting the pitch of the rear end side coil in accordance with the change of the room temperature resistance (pitch) of the front end side coil. It was. In Table 11, the normal temperature resistance of the front end side coil, the normal temperature resistance of the rear end side coil, the average pitch of the front end side coil, and the average pitch of the rear end side coil are also shown. In addition, the average pitch of the distal end side coil was calculated by excluding one turn adjacent to the distal end of the tube (the most distal portion of the heating coil) from the distal end side coil.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、先端側コイルの常温抵抗の平均値を発熱コイル全体の常温抵抗の平均値よりも大きくしたサンプルは、測定対象部が3秒以内に1000℃となり、露出部の急速昇温が容易に可能となることが明らかとなった。また特に、先端側コイルの平均ピッチを後端側コイルの平均ピッチよりも0.9mm以上小さくしたサンプルは、測定対象部が2秒以内に1000℃となり、露出部の急速昇温性に一層優れることが分かった。 As shown in Table 11, in the sample in which the average value of the normal temperature resistance of the coil on the front end side is larger than the average value of the normal temperature resistance of the entire heating coil, the measurement target portion reaches 1000 ° C. within 3 seconds, and the exposed portion rapidly rises. It became clear that temperature could be easily achieved. In particular, in the sample in which the average pitch of the front end side coil is 0.9 mm or more smaller than the average pitch of the rear end side coil, the measurement target portion becomes 1000 ° C. within 2 seconds, and the rapid temperature rise performance of the exposed portion is further improved. I understood that.
 さらに、1000℃到達時間を短くするほど、発熱コイルの耐久性を向上できることが改めて確認された。 Furthermore, it was confirmed again that the durability of the heating coil can be improved as the time to reach 1000 ° C. is shortened.
 次いで、先端側コイルの常温抵抗及び後端側コイルの常温抵抗の双方を150mΩに設定するとともに、図8(a),(b)に示すように、先端側コイルの長さを6mmとした上〔つまり、先端側コイルの常温抵抗値の平均値を一定値(25mΩ/mm)とした上〕で、後端側コイルの長さLを変更することにより、発熱コイル全体の常温抵抗の平均値を変更したグロープラグのサンプルを作製した。そして、各サンプルを上述の通電条件(11Vで2秒間通電後、6Vで180秒間通電)で昇温させ、測定対象部が3秒以内に1000℃となったサンプルは、「○」の評価を下し、測定対象部が3秒以内に1000℃とならなかったサンプルは、「△」の評価を下した。表12に、当該試験の試験結果を示す。 Next, both the normal temperature resistance of the front end side coil and the normal temperature resistance of the rear end side coil are set to 150 mΩ, and the length of the front end side coil is set to 6 mm as shown in FIGS. [In other words, the average value of the normal temperature resistance of the front coil is set to a constant value (25 mΩ / mm)], and the average value of the normal temperature resistance of the entire heating coil is changed by changing the length L of the rear coil. A sample of a glow plug with a modified length was prepared. Each sample was heated under the above-mentioned energization condition (energized at 11V for 2 seconds and energized at 6V for 180 seconds), and the sample whose measurement target part reached 1000 ° C. within 3 seconds was evaluated as “◯”. The sample whose measurement target part did not reach 1000 ° C. within 3 seconds was evaluated as “Δ”. Table 12 shows the test results of the test.
 また、評価が「○」となったサンプルは、11Vで2秒間通電した後、7.5Vで180秒間通電し、次いで、通電を120秒間停止することを1サイクルとして、発熱コイルが断線するまでのサイクル数(断線サイクル)を測定した。表12には、上記試験の試験結果に加えて、断線サイクルも併せて示す。 In addition, the sample with an evaluation of “◯” was energized at 11 V for 2 seconds, then energized at 7.5 V for 180 seconds, and then stopped for 120 seconds until the heating coil was disconnected. The number of cycles (disconnection cycle) was measured. Table 12 also shows the disconnection cycle in addition to the test results of the above test.
 尚、各サンプルともに、発熱コイルをWにより形成するとともに、発熱コイルの外径を2.5mmとした。 In each sample, the heating coil was formed of W, and the outer diameter of the heating coil was 2.5 mm.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、先端側コイルの常温抵抗の平均値を発熱コイル全体の常温抵抗の平均値よりも大きくすることで、露出部を容易に急速昇温可能となることが改めて確認された。また、先端側コイルの平均ピッチを後端側コイルの平均ピッチよりも0.9mm以上小さくすることで、露出部の急速昇温性を一層向上できる点も改めて確認された。 As shown in Table 12, it was reconfirmed that the exposed portion can be rapidly heated rapidly by making the average value of the room temperature resistance of the coil on the tip side larger than the average value of the room temperature resistance of the entire heating coil. . In addition, it was confirmed again that the rapid temperature rising property of the exposed portion can be further improved by making the average pitch of the front end side coil 0.9 mm or more smaller than the average pitch of the rear end side coil.
 上記試験の結果より、発熱コイルにおける耐酸化性の更なる向上を図るべく、より高温となりやすいチューブの露出部を積極的に昇温させるためには、先端側コイルの常温抵抗の平均値を発熱コイル全体の常温抵抗の平均値よりも大きくすることが好ましいといえる。また、発熱コイルの耐酸化性をより一層向上させるために、先端側コイルの平均ピッチを後端側コイルの平均ピッチよりも0.9mm以上小さくすることがより好ましいといえる。 Based on the above test results, in order to further increase the oxidation resistance of the heating coil, the average temperature resistance of the coil on the tip side is heated to positively raise the temperature of the exposed part of the tube, which is likely to be hot. It can be said that it is preferable to make it larger than the average value of the room temperature resistance of the entire coil. In order to further improve the oxidation resistance of the heating coil, it can be said that it is more preferable to make the average pitch of the front end side coil 0.9 mm or more smaller than the average pitch of the rear end side coil.
 尚、表9~表12における試験結果は、上述の通り、11Vで2秒間通電した後、6Vで180秒間通電したときに得られたものである。従って、この通電条件において、露出部がやや急速昇温しにくいと評価されたサンプルであっても、通電条件を変更することで、露出部の表面温度を3秒以内に1000℃以上とすることは可能である。また、通電条件や発熱コイルの構成を変更することで、チューブのうち露出部以外の部位の表面温度を3秒以内に1000℃以上とすることも可能である。 The test results in Tables 9 to 12 were obtained when energized at 11V for 2 seconds and then energized at 6V for 180 seconds as described above. Therefore, even in a sample where the exposed portion is evaluated to be slightly less likely to be rapidly heated under this energization condition, the surface temperature of the exposed portion should be 1000 ° C. or more within 3 seconds by changing the energization condition. Is possible. In addition, by changing the energization conditions and the configuration of the heating coil, the surface temperature of the portion of the tube other than the exposed portion can be set to 1000 ° C. or more within 3 seconds.
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。 In addition, it is not limited to the description content of the said embodiment, For example, you may implement as follows. Of course, other application examples and modification examples not illustrated below are also possible.
 (a)上記実施形態では、発熱コイル9を構成する金属材料として、WやMoの純金属が例示されているが、発熱コイル9を構成する金属材料は、WやMoを主成分とする合金であればよい。従って、発熱コイル9を、WやMoを主成分とし、レニウム(Re)や酸化トリウム(ThO2)、Cr等を含有してなる金属材料により形成することとしてもよい。Reを数質量%以上数十質量%以下含有させることで、発熱コイル9に過度の細径化を施すことなく(つまり、発熱コイル9の耐久性を維持したまま)、発熱コイル9の抵抗値を十分に増大させることができ、十分な発熱性能を実現することができる。また、ThO2を数質量%含有させることで、高温下における発熱コイル9の粒成長を抑制することができ、発熱コイル9の耐久性をより一層向上させることができる。 (A) In the above embodiment, pure metals such as W and Mo are exemplified as the metal material constituting the heating coil 9, but the metal material constituting the heating coil 9 is an alloy mainly composed of W or Mo. If it is. Therefore, the heat generating coil 9 may be formed of a metal material mainly composed of W or Mo and containing rhenium (Re), thorium oxide (ThO 2 ), Cr, or the like. By including Re in the range of several mass% to several tens mass%, the resistance value of the heating coil 9 is maintained without excessively reducing the diameter of the heating coil 9 (that is, maintaining the durability of the heating coil 9). Can be sufficiently increased, and sufficient heat generation performance can be realized. Further, by containing ThO 2 by several mass%, it is possible to suppress the grain growth of the heat generating coil 9 at a high temperature, and the durability of the heat generating coil 9 can be further improved.
 (b)上記実施形態では、チューブ7の先端部と発熱コイル9の先端部とが接合されているが、チューブ7の先端部と発熱コイル9の先端部とを接合することなく構成することとしてもよい。 (B) In the above embodiment, the tip of the tube 7 and the tip of the heating coil 9 are joined, but the tip of the tube 7 and the tip of the heating coil 9 are configured without joining. Also good.
 (c)上記実施形態では、シール部11を構成する材料としてEPDMゴムやフッ素ゴムが例示されているが、シール部11を構成する材料はこれに限定されるものではない。従って、ある程度の厚さを有するシリコンゴムを用いることとしてもよいし、チューブ7に対してスウェージング加工を行わないのであれば、シール部11としてガラス材を用いることとしてもよい。 (C) In the above embodiment, EPDM rubber or fluororubber is exemplified as the material constituting the seal portion 11, but the material constituting the seal portion 11 is not limited to this. Accordingly, silicon rubber having a certain thickness may be used, or a glass material may be used as the seal portion 11 if the tube 7 is not subjected to swaging.
 (d)上記実施形態において、金属片MPは、チューブ7を構成する材料と同一組成の材料により形成されているが、金属片MPを組成はこれに限定されるものではない。但し、チューブ7の先端部にWが含有されないように構成するためには、金属片MPはWが含有されていないものであることが好ましい。また、上記実施形態のように、チューブ7の先端部にCrを含有させ、チューブ7の先端部における耐酸化性を向上させるためには、金属片MPにCrを含有させることが好ましい。 (D) In the above embodiment, the metal piece MP is formed of a material having the same composition as the material constituting the tube 7, but the composition of the metal piece MP is not limited to this. However, in order to configure the tube 7 so that no W is contained in the tip portion, the metal piece MP is preferably one containing no W. Moreover, like the said embodiment, in order to make Cr contain at the front-end | tip part of the tube 7, and to improve the oxidation resistance in the front-end | tip part of the tube 7, it is preferable to make the metal piece MP contain Cr.
 (e)上記実施形態では、絶縁粉末10がMgOを主成分とする金属材料により構成されているが、絶縁粉末10を、他の金属(例えば、Al23やSi34)を主成分とする材料により構成することとしてもよい。 (E) In the above embodiment, the insulating powder 10 is made of a metal material mainly composed of MgO. However, the insulating powder 10 is mainly made of another metal (for example, Al 2 O 3 or Si 3 N 4 ). It is good also as comprising with the material used as a component.
 (f)グロープラグ1の形状等は上記実施形態に限定されるものではなく、例えば、チューブ7について、その先端部に小径部を設けるように構成することとしてもよい。また、主体金具2の軸孔4の大径部4aを省略し、軸線方向にストレート形態となった軸孔4にチューブ7が圧入される構成としてもよい。 (F) The shape or the like of the glow plug 1 is not limited to the above-described embodiment. For example, the tube 7 may be configured to have a small-diameter portion at the tip. Alternatively, the large diameter portion 4a of the shaft hole 4 of the metal shell 2 may be omitted, and the tube 7 may be press-fitted into the shaft hole 4 having a straight shape in the axial direction.
 (g)上記実施形態において、発熱コイル9の後端に中軸8が直接接合されているが、発熱コイル9と中軸8との間に、発熱コイル9と異なる金属材料〔例えば、コバルト(Co)-Ni-Fe系合金等に代表されるCo又はNiを主成分とする金属材料〕からなるコイル(いわゆる制御コイル)を設けることとしてもよい。この場合には、昇温(比較的低温)時には、制御コイルの抵抗値が比較的低く、発熱コイル9を急速に昇温させることができる一方で、温度が飽和した際には、制御コイルの抵抗値が比較的高くなり、発熱コイル9に対する電力供給量が抑制され、ひいては発熱コイル9の過昇温を抑制することができる。 (G) In the above embodiment, the middle shaft 8 is directly joined to the rear end of the heating coil 9, but a metal material different from the heating coil 9 between the heating coil 9 and the middle shaft 8 [for example, cobalt (Co) It is also possible to provide a coil (so-called control coil) made of a metal material whose main component is Co or Ni represented by —Ni—Fe alloy or the like. In this case, when the temperature rises (relatively low temperature), the resistance value of the control coil is relatively low, and the heating coil 9 can be rapidly heated, while when the temperature is saturated, The resistance value becomes relatively high, the amount of power supplied to the heating coil 9 is suppressed, and as a result, the excessive heating of the heating coil 9 can be suppressed.
 1…グロープラグ、7…チューブ、9…発熱コイル(発熱抵抗体)、10…絶縁粉末、11…シール部、21…加熱装置、31…GCU(通電制御装置)。 DESCRIPTION OF SYMBOLS 1 ... Glow plug, 7 ... Tube, 9 ... Heat generating coil (heat generating resistor), 10 ... Insulating powder, 11 ... Seal part, 21 ... Heating device, 31 ... GCU (energization control device).

Claims (13)

  1.  発熱抵抗体を有して加熱部を構成するグロープラグと、
     前記発熱抵抗体に対する供給電力を調節可能に構成され、前記供給電力の調節により、前記発熱抵抗体の発熱を制御可能な通電制御装置とを備える加熱装置であって、
     前記通電制御装置は、前記加熱部の温度が常温から1000℃に3秒以内で上昇するように、前記発熱抵抗体に対して電力を供給し、
     前記グロープラグは、
     先端部が閉塞し、内部に前記発熱抵抗体が挿通されて前記加熱部を構成する筒状のチューブと、
     前記チューブの後端側開口に設けられ、前記チューブ内を封止状態とするシール部とを備え、
     前記発熱抵抗体は、タングステン又はモリブデンを主成分とする金属材料により形成されるとともに、
     前記チューブは、アルミニウムを0.5質量%以上5.0質量%以下、クロムを20質量%以上40質量%以下含有する合金により形成されることを特徴とする加熱装置。
    A glow plug having a heating resistor and constituting a heating unit;
    A heating device that is configured to be capable of adjusting power supplied to the heating resistor and capable of controlling heat generation of the heating resistor by adjusting the power supply,
    The energization control device supplies power to the heating resistor so that the temperature of the heating unit rises from room temperature to 1000 ° C. within 3 seconds,
    The glow plug is
    A cylindrical tube that has a distal end closed and the heating resistor is inserted into the heating tube;
    Provided in a rear end side opening of the tube, and a seal portion for sealing the inside of the tube,
    The heating resistor is made of a metal material mainly composed of tungsten or molybdenum,
    The said tube is formed with the alloy which contains aluminum 0.5 mass% or more and 5.0 mass% or less, and chromium contains 20 mass% or more and 40 mass% or less, The heating apparatus characterized by the above-mentioned.
  2.  前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における常温抵抗の平均値が、前記発熱抵抗体全体の常温抵抗の平均値よりも大きいことを特徴とする請求項1に記載の加熱装置。 Among the heating resistors, the average value of the room temperature resistance in the region from the tip to the rear end of 6 mm along the central axis of the tube is larger than the average value of the room temperature resistance of the entire heating resistor. The heating device according to claim 1, wherein
  3.  前記発熱抵抗体は、コイル状をなすとともに、その線径が0.2mm以上であり、
     前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における平均ピッチが、前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端よりも後端側に位置する部位における平均ピッチよりも0.9mm以上小さいことを特徴とする請求項1又は2に記載の加熱装置。
    The heating resistor has a coil shape and a wire diameter of 0.2 mm or more,
    Among the heating resistors, the average pitch in the region from the tip to the rear end of 6 mm along the center axis of the tube is 6 mm along the center axis of the tube from the tip of the heating resistor. 3. The heating apparatus according to claim 1, wherein the heating device is 0.9 mm or more smaller than an average pitch at a portion located on the rear end side from the rear end.
  4.  前記グロープラグは、前記チューブ内において前記発熱抵抗体の周囲に充填される絶縁粉末を備え、
     前記絶縁粉末は、酸化マグネシウムを主成分とする粉末であることを特徴とする請求項1乃至3のいずれか1項に記載の加熱装置。
    The glow plug includes an insulating powder filled around the heating resistor in the tube,
    The heating apparatus according to any one of claims 1 to 3, wherein the insulating powder is a powder containing magnesium oxide as a main component.
  5.  前記シール部は、酸素透過率が2.0×10-9(cm3・cm/sec・cm2・cmHg)以下の材料により形成されることを特徴とする請求項1乃至4のいずれか1項に記載の加熱装置。 The said seal | sticker part is formed with the material whose oxygen permeability is 2.0 * 10 < -9 > (cm < 3 > * cm / sec * cm < 2 > * cmHg) or less, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. The heating device according to Item.
  6.  前記チューブの先端部に前記発熱抵抗体の先端部が接合されており、
     前記チューブの先端部は、タングステンを含有せず、前記金属材料におけるクロムの含有量以上のクロムを含むことを特徴とする請求項1乃至5のいずれか1項に記載の加熱装置。
    The tip of the heating resistor is joined to the tip of the tube,
    The heating device according to any one of claims 1 to 5, wherein a tip portion of the tube does not contain tungsten and contains chromium equal to or more than a chromium content in the metal material.
  7.  先端部が閉塞した筒状のチューブと、
     前記チューブ内に挿通された発熱抵抗体と、
     前記チューブの後端側開口に設けられ、前記チューブ内を封止するシール部とを備えたグロープラグであって、
     前記発熱抵抗体は、タングステン又はモリブデンを主成分とする金属材料により形成されるとともに、
     前記チューブは、アルミニウムを0.5質量%以上5.0質量%以下、クロムを20質量%以上40質量%以下含有する合金により形成されることを特徴とするグロープラグ。
    A tubular tube with a closed end,
    A heating resistor inserted through the tube;
    A glow plug provided at a rear end side opening of the tube and having a seal portion for sealing the inside of the tube;
    The heating resistor is made of a metal material mainly composed of tungsten or molybdenum,
    The glow plug is characterized in that the tube is formed of an alloy containing 0.5% by mass or more and 5.0% by mass or less of aluminum and 20% by mass or more and 40% by mass or less of chromium.
  8.  前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における常温抵抗の平均値が、前記発熱抵抗体全体の常温抵抗の平均値よりも大きいことを特徴とする請求項7に記載のグロープラグ。 Among the heating resistors, the average value of the room temperature resistance in the region from the tip to the rear end of 6 mm along the central axis of the tube is larger than the average value of the room temperature resistance of the entire heating resistor. The glow plug according to claim 7, wherein the glow plug is characterized in that:
  9.  前記発熱抵抗体は、コイル状をなすとともに、その線径が0.2mm以上であり、
     前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端までの間の部位における平均ピッチが、前記発熱抵抗体のうち、その先端から前記チューブの中心軸に沿って6mm後端よりも後端側に位置する部位における平均ピッチよりも0.9mm以上小さいことを特徴とする請求項7又は8に記載のグロープラグ。
    The heating resistor has a coil shape and a wire diameter of 0.2 mm or more,
    Among the heating resistors, the average pitch in the region from the tip to the rear end of 6 mm along the center axis of the tube is 6 mm along the center axis of the tube from the tip of the heating resistor. The glow plug according to claim 7 or 8, wherein the glow plug is smaller by 0.9 mm or more than an average pitch at a portion located on the rear end side with respect to the rear end.
  10.  前記チューブ内において、前記発熱抵抗体の周囲に充填される絶縁粉末を備え、
     前記絶縁粉末は、酸化マグネシウムを主成分とする粉末であることを特徴とする請求項7乃至9のいずれか1項に記載のグロープラグ。
    In the tube, comprising an insulating powder filled around the heating resistor,
    The glow plug according to claim 7, wherein the insulating powder is a powder containing magnesium oxide as a main component.
  11.  前記シール部は、酸素透過率が2.0×10-9(cm3・cm/sec・cm2・cmHg)以下の材料により形成されることを特徴とする請求項7乃至10のいずれか1項に記載のグロープラグ。 11. The seal part according to claim 7, wherein the seal part is made of a material having an oxygen permeability of 2.0 × 10 −9 (cm 3 · cm / sec · cm 2 · cmHg) or less. Glow plug according to item.
  12.  前記チューブの先端部に前記発熱抵抗体の先端部が接合されており、
     前記チューブの先端部は、タングステンを含有せず、前記金属材料におけるクロムの含有量以上のクロムを含むことを特徴とする請求項7乃至11のいずれか1項に記載のグロープラグ。
    The tip of the heating resistor is joined to the tip of the tube,
    The glow plug according to any one of claims 7 to 11, wherein a distal end portion of the tube does not contain tungsten and contains chromium equal to or more than a chromium content in the metal material.
  13.  先端部が閉塞した筒状のチューブと、
     前記チューブ内に挿通された発熱抵抗体と、
     前記チューブの後端側開口に設けられ、前記チューブ内を封止するシール部とを備えたグロープラグの製造方法であって、
     タングステン又はモリブデンを主成分とする金属材料により形成された前記発熱抵抗体を、アルミニウムを0.5質量%以上5.0質量%以下、クロムを20質量%以上40質量%以下含有する合金により形成された前記チューブ内に配置する配置工程と、
     前記チューブの後端側開口に前記シール部を設け、前記チューブ内を封止する封止工程と、
     前記封止工程の後において、前記チューブの外表面を加熱する加熱工程とを含むことを特徴とするグロープラグの製造方法。
    A tubular tube with a closed end,
    A heating resistor inserted through the tube;
    A glow plug manufacturing method comprising a seal portion provided in a rear end side opening of the tube and sealing the inside of the tube,
    The heating resistor formed of a metal material mainly composed of tungsten or molybdenum is formed of an alloy containing 0.5% by mass to 5.0% by mass of aluminum and 20% by mass to 40% by mass of chromium. A placement step of placing in the tube,
    A sealing step of providing the seal portion at the rear end side opening of the tube and sealing the inside of the tube;
    A method of manufacturing a glow plug, comprising a heating step of heating the outer surface of the tube after the sealing step.
PCT/JP2011/062373 2010-06-22 2011-05-30 Glowplug, production method thereof and heating device WO2011162074A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011538563A JP5255706B2 (en) 2010-06-22 2011-05-30 Glow plug, manufacturing method thereof, and heating device
EP11794611.1A EP2587156B1 (en) 2010-06-22 2011-05-30 Glowplug, production method thereof and heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010141149 2010-06-22
JP2010-141149 2010-06-22

Publications (1)

Publication Number Publication Date
WO2011162074A1 true WO2011162074A1 (en) 2011-12-29

Family

ID=45091377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062373 WO2011162074A1 (en) 2010-06-22 2011-05-30 Glowplug, production method thereof and heating device

Country Status (4)

Country Link
EP (1) EP2587156B1 (en)
JP (1) JP5255706B2 (en)
DE (1) DE102011077239A1 (en)
WO (1) WO2011162074A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157223A1 (en) * 2012-04-16 2013-10-24 日本特殊陶業株式会社 Glow plug
JP2014031919A (en) * 2012-08-02 2014-02-20 Ngk Spark Plug Co Ltd Glow plug and heating device
JP2014152961A (en) * 2013-02-06 2014-08-25 Ngk Spark Plug Co Ltd Glow plug
JP2015096786A (en) * 2013-11-15 2015-05-21 日本特殊陶業株式会社 Glow plug
JP2015099008A (en) * 2013-10-15 2015-05-28 日本特殊陶業株式会社 Glow plug
JP2015117930A (en) * 2013-11-15 2015-06-25 日本特殊陶業株式会社 Glow plug
JP2015152222A (en) * 2014-02-14 2015-08-24 日本特殊陶業株式会社 glow plug
JP2015169346A (en) * 2014-03-05 2015-09-28 日本特殊陶業株式会社 Glow plug and internal combustion engine
EP3018414A1 (en) * 2014-11-05 2016-05-11 NGK Spark Plug Co., Ltd. Glow plug
JP2016217588A (en) * 2015-05-19 2016-12-22 日本特殊陶業株式会社 Glow plug and heater
JP2016223651A (en) * 2015-05-28 2016-12-28 日本特殊陶業株式会社 Glow plug
JP2017083158A (en) * 2015-10-30 2017-05-18 日本特殊陶業株式会社 Glow plug
JP2017083128A (en) * 2015-10-30 2017-05-18 日本特殊陶業株式会社 Glow plug and glow plug control device
JP2017083157A (en) * 2015-10-30 2017-05-18 日本特殊陶業株式会社 Manufacturing method of glow plug and glow plug
EP3260779A1 (en) 2016-06-22 2017-12-27 NGK Spark Plug Co., Ltd. Glow plug
JP2018031497A (en) * 2016-08-23 2018-03-01 日本特殊陶業株式会社 Glow plug
JP2018096670A (en) * 2016-12-12 2018-06-21 日本特殊陶業株式会社 Glow plug
JP2018194230A (en) * 2017-05-17 2018-12-06 日本特殊陶業株式会社 Glow plug
JP2019032151A (en) * 2017-08-09 2019-02-28 日本特殊陶業株式会社 Glow plug
JP2019095131A (en) * 2017-11-24 2019-06-20 日本特殊陶業株式会社 Glow plug

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211789A1 (en) * 2013-06-21 2014-12-24 Robert Bosch Gmbh Glow plug for annealing temperature control
DE102013212283A1 (en) * 2013-06-26 2014-12-31 Robert Bosch Gmbh Glow tube for a controllable glow plug
JP2015155790A (en) * 2014-01-15 2015-08-27 日本特殊陶業株式会社 Sheath heater and glow plug
EP3012530B1 (en) * 2014-10-21 2019-07-17 NGK Spark Plug Co., Ltd. Glow plug and method for manufacturing the same
DE102015221689A1 (en) 2015-11-05 2017-05-11 Robert Bosch Gmbh Heating insert for use in a glow tube of an electrically heated glow plug
EP3333483B1 (en) * 2016-12-12 2020-08-12 Ngk Spark Plug Co., Ltd. Glow plug
EP3396250B1 (en) * 2017-04-24 2019-12-04 NGK Spark Plug Co., Ltd. Glow plug
JP7018265B2 (en) * 2017-05-19 2022-02-10 日本特殊陶業株式会社 Glow plug
EP3441672B1 (en) * 2017-08-09 2021-05-19 Ngk Spark Plug Co., Ltd. Glow plug
DE202019105668U1 (en) * 2019-10-15 2021-01-19 Türk & Hillinger GmbH Electric tubular heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286086A (en) * 1989-08-04 1990-03-27 Hitachi Ltd Manufacture of ceramic heater
JPH0719474A (en) * 1993-06-30 1995-01-20 Isuzu Ceramics Kenkyusho:Kk Ceramic glow plug
JP2002098333A (en) * 2000-09-26 2002-04-05 Ngk Spark Plug Co Ltd Glow plug
JP2006153306A (en) * 2004-11-25 2006-06-15 Ngk Spark Plug Co Ltd Glow plug
WO2009084453A1 (en) * 2007-12-28 2009-07-09 Ngk Spark Plug Co., Ltd. Sheath heater and glow plug

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158425A (en) 1982-03-15 1983-09-20 Ngk Spark Plug Co Ltd Glow plug
US5084606A (en) * 1990-05-17 1992-01-28 Caterpillar Inc. Encapsulated heating filament for glow plug
KR940014865A (en) * 1992-12-11 1994-07-19 에드워드 에이. 스틴 High Temperature Resistant Nickel-Chrome Alloys
KR0169172B1 (en) * 1994-02-15 1999-01-15 아키모토 유우미 Fe-cr alloy
DE19756988C1 (en) * 1997-12-20 1999-09-02 Daimler Benz Ag Electrically heated glow plug or glow stick for internal combustion engines
DE10041289B4 (en) * 2000-08-22 2005-05-04 Beru Ag glow plug
JP2008014567A (en) * 2006-07-06 2008-01-24 Ngk Spark Plug Co Ltd Sheath heater and glow plug
JP5075477B2 (en) * 2007-05-24 2012-11-21 日本特殊陶業株式会社 Ceramic heater and glow plug
JP2009257666A (en) * 2008-04-16 2009-11-05 Ngk Spark Plug Co Ltd Glow plug and manufacturing method of glow plug
US8319153B2 (en) * 2008-11-17 2012-11-27 Federal-Mogul Italy Srl. Glow plug with metallic heater probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286086A (en) * 1989-08-04 1990-03-27 Hitachi Ltd Manufacture of ceramic heater
JPH0719474A (en) * 1993-06-30 1995-01-20 Isuzu Ceramics Kenkyusho:Kk Ceramic glow plug
JP2002098333A (en) * 2000-09-26 2002-04-05 Ngk Spark Plug Co Ltd Glow plug
JP2006153306A (en) * 2004-11-25 2006-06-15 Ngk Spark Plug Co Ltd Glow plug
WO2009084453A1 (en) * 2007-12-28 2009-07-09 Ngk Spark Plug Co., Ltd. Sheath heater and glow plug

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157223A1 (en) * 2012-04-16 2013-10-24 日本特殊陶業株式会社 Glow plug
JP5584370B2 (en) * 2012-04-16 2014-09-03 日本特殊陶業株式会社 Glow plug
US9702556B2 (en) 2012-04-16 2017-07-11 Ngk Spark Plug Co., Ltd. Glow plug
JP2014031919A (en) * 2012-08-02 2014-02-20 Ngk Spark Plug Co Ltd Glow plug and heating device
JP2014152961A (en) * 2013-02-06 2014-08-25 Ngk Spark Plug Co Ltd Glow plug
JP2015099008A (en) * 2013-10-15 2015-05-28 日本特殊陶業株式会社 Glow plug
JP2015117930A (en) * 2013-11-15 2015-06-25 日本特殊陶業株式会社 Glow plug
JP2015096786A (en) * 2013-11-15 2015-05-21 日本特殊陶業株式会社 Glow plug
JP2015152222A (en) * 2014-02-14 2015-08-24 日本特殊陶業株式会社 glow plug
JP2015169346A (en) * 2014-03-05 2015-09-28 日本特殊陶業株式会社 Glow plug and internal combustion engine
EP3018414A1 (en) * 2014-11-05 2016-05-11 NGK Spark Plug Co., Ltd. Glow plug
JP2016217588A (en) * 2015-05-19 2016-12-22 日本特殊陶業株式会社 Glow plug and heater
JP2016223651A (en) * 2015-05-28 2016-12-28 日本特殊陶業株式会社 Glow plug
JP2017083157A (en) * 2015-10-30 2017-05-18 日本特殊陶業株式会社 Manufacturing method of glow plug and glow plug
JP2017083128A (en) * 2015-10-30 2017-05-18 日本特殊陶業株式会社 Glow plug and glow plug control device
JP2017083158A (en) * 2015-10-30 2017-05-18 日本特殊陶業株式会社 Glow plug
EP3260779A1 (en) 2016-06-22 2017-12-27 NGK Spark Plug Co., Ltd. Glow plug
JP2018031497A (en) * 2016-08-23 2018-03-01 日本特殊陶業株式会社 Glow plug
JP2018096670A (en) * 2016-12-12 2018-06-21 日本特殊陶業株式会社 Glow plug
JP2018194230A (en) * 2017-05-17 2018-12-06 日本特殊陶業株式会社 Glow plug
JP2019032151A (en) * 2017-08-09 2019-02-28 日本特殊陶業株式会社 Glow plug
JP2019095131A (en) * 2017-11-24 2019-06-20 日本特殊陶業株式会社 Glow plug

Also Published As

Publication number Publication date
JPWO2011162074A1 (en) 2013-08-19
JP5255706B2 (en) 2013-08-07
DE102011077239A1 (en) 2011-12-22
EP2587156A4 (en) 2017-12-27
EP2587156A1 (en) 2013-05-01
EP2587156B1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP5255706B2 (en) Glow plug, manufacturing method thereof, and heating device
JP5819651B2 (en) Glow plug
JP2012509452A (en) Glow plug with metal heater probe
JP2016075468A (en) Glow plug
JP2009158431A (en) Sheath heater and glow plug
WO2009084453A1 (en) Sheath heater and glow plug
JP2015078784A (en) Glow plug
JP2012506988A (en) Glow plug with improved seal, heater probe assembly therefor and method of construction thereof
WO2013157223A1 (en) Glow plug
JP2012057820A (en) Glow plug and method for manufacturing the same
JP2015155790A (en) Sheath heater and glow plug
JP6795886B2 (en) Glow plugs and their manufacturing methods
JP2009257666A (en) Glow plug and manufacturing method of glow plug
JP2011012898A (en) Sheath heater and glow plug
JP2009162409A (en) Glow plug
JP2011102690A (en) Glow plug
JP2016142458A (en) Glow plug
JP6946048B2 (en) Glow plug
JP6931566B2 (en) Glow plug
JP2009156560A (en) Sheath heater and glow plug
JP4200045B2 (en) Glow plug
JP6771964B2 (en) Glow plug manufacturing method and glow plug
JP2019095131A (en) Glow plug
JP2006153306A (en) Glow plug
JP2018124030A (en) Glow plug

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011538563

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011794611

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11794611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE