WO2011162059A1 - Photocatalyst deodorization device - Google Patents

Photocatalyst deodorization device Download PDF

Info

Publication number
WO2011162059A1
WO2011162059A1 PCT/JP2011/061750 JP2011061750W WO2011162059A1 WO 2011162059 A1 WO2011162059 A1 WO 2011162059A1 JP 2011061750 W JP2011061750 W JP 2011061750W WO 2011162059 A1 WO2011162059 A1 WO 2011162059A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
sheet
glass fiber
led
particles
Prior art date
Application number
PCT/JP2011/061750
Other languages
French (fr)
Japanese (ja)
Inventor
将 新井田
和 須加崎
良夫 猪越
Original Assignee
株式会社 パールライティング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010141863A external-priority patent/JP5672792B2/en
Application filed by 株式会社 パールライティング filed Critical 株式会社 パールライティング
Priority to CN201180030739.1A priority Critical patent/CN102985116B/en
Publication of WO2011162059A1 publication Critical patent/WO2011162059A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • A61L9/205Ultra-violet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0415Treating air flowing to refrigeration compartments by purification by deodorizing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Disclosed is a long-life photocatalyst deodorization device (1) which effectively excites photocatalysts over the entire surface of a photocatalyst sheet and is capable of maintaining deodorization performance over a long period. Substrates (5 and 7) upon which vent holes (4) have been provided are disposed in parallel, and upon at least one substrate (5) of the two substrates, LEDs (3) are mounted. Between the two substrates, photocatalyst sheets (6) constituted by woven glass fiber material (6A) carrying photocatalyst particles (6B) and a frame (6C) supporting the material are disposed. The photocatalyst sheets and the two substrates are fixed to a housing (8), whereupon emitting surfaces of the LED light sources for exciting the photocatalysts and the photocatalyst sheets are disposed in parallel. Air fed from the vent holes is caused to pass through the photocatalyst sheets. The photocatalyst sheets are constituted by bundling glass fibers and weaving the fibers in a crisscross manner so as to have a predetermined aperture ratio such that ventilation is possible under low wind speed. The photocatalyst particles are mechanically held in contact between the glass fibers of the photocatalyst sheets.

Description

光触媒脱臭装置Photocatalyst deodorization device
 本発明は、光触媒を利用して空気中の臭気成分や有機ガス分子を分解することにより脱臭を行う光触媒脱臭装置に関する。 The present invention relates to a photocatalyst deodorization apparatus that performs deodorization by decomposing odor components and organic gas molecules in the air using a photocatalyst.
 近年、居住空間や車内などの所謂、準閉鎖空間における空気の清浄化改善の要望が高まっており、食物から発生し、あるいはタバコ副流煙として発生するアンモニアや、建材などから発生するVOC(揮発性有機物質。例えば、アセトアルデヒド)などを除去する脱臭装置が特に望まれている。 In recent years, there has been a growing demand for improvement in air purification in so-called semi-enclosed spaces such as living spaces and in cars. VOCs (volatilization) generated from ammonia generated from food or as sidestream smoke of tobacco, and from building materials, etc. In particular, a deodorizing apparatus that removes an organic substance (for example, acetaldehyde) is desired.
 従来、この種の脱臭装置には、臭気成分を吸着する吸着材料と当該臭気成分を分解する光触媒材料とを多孔質セラミックス表面層や無機基板に練り込み、若しくは担持したものをハニカム状に形成し、当該ハニカム孔に通風しながら光源から励起光を照射することにより空気の浄化を行う光触媒脱臭装置を採用していた(特許第2574840号公報―特許文献1)。そして光源としては、蛍光管ランプを使用する場合が多かった。 Conventionally, in this type of deodorizing apparatus, an adsorbing material that adsorbs an odor component and a photocatalytic material that decomposes the odor component are kneaded or supported on a porous ceramic surface layer or an inorganic substrate in a honeycomb shape. In addition, a photocatalytic deodorization apparatus that purifies air by irradiating excitation light from a light source while ventilating the honeycomb holes has been employed (Japanese Patent No. 2574840-Patent Document 1). In many cases, a fluorescent tube lamp is used as the light source.
 しかしながら、従来の光触媒脱臭装置では、吸着剤としての活性炭上に光触媒の粒子が担持されている光触媒ユニットをハニカム構造としていたために、光触媒の触媒性能(脱臭性能)が十分に発揮できないという技術的課題があった。すなわち、ハニカム構造となっているが故に、光触媒ユニットの正面に配置された光触媒励起源のランプから照射された光がハニカム構造の壁に遮られてしまい、ハニカム孔の内部に光照射強度が低い、したがって光触媒活性の低い領域が発生することが不可避となり、脱臭性能を十分高くできない問題点があった。また、活性炭はそれ自体が光を伝播しないので、励起光を照射した場合に活性炭と接触している光触媒の粒子の部分は光触媒の粒子自体の影となってしまい、光触媒粒子の表面積を増加させ、光触媒能を向上させようにもその効果が半減されてしまい、事実上、脱臭能力が制約されてしまう問題点があった。そして、第2の課題として圧力損失が経年的に増加するという別の技術的課題もあった。 However, in the conventional photocatalyst deodorization apparatus, the photocatalyst unit in which the photocatalyst particles are supported on the activated carbon as the adsorbent has a honeycomb structure, so that the catalytic performance (deodorization performance) of the photocatalyst cannot be sufficiently exhibited. There was a problem. That is, because of the honeycomb structure, the light irradiated from the photocatalyst excitation source lamp disposed in front of the photocatalyst unit is blocked by the honeycomb structure wall, and the light irradiation intensity is low inside the honeycomb holes. Therefore, it is inevitable that a region having a low photocatalytic activity is generated, and there is a problem that the deodorizing performance cannot be sufficiently increased. Moreover, since activated carbon itself does not propagate light, the portion of the photocatalyst particles that are in contact with the activated carbon when exposed to excitation light becomes a shadow of the photocatalyst particles themselves, increasing the surface area of the photocatalyst particles. In order to improve the photocatalytic ability, the effect is halved, and the deodorizing ability is practically restricted. And there was another technical problem that the pressure loss increased with time as the second problem.
 上の技術的課題を解決するために、励起光源を複数配置することにより、ハニカム構造の壁に遮られて発生する影の領域を減らすことは可能である。しかし、そのようにした場合には、複数の光源が空気の流れを阻害する流路抵抗となってしまい、圧力損失が増大する結果になる。 In order to solve the above technical problem, it is possible to reduce the shadow area generated by being blocked by the walls of the honeycomb structure by arranging a plurality of excitation light sources. However, in such a case, the plurality of light sources become channel resistances that obstruct the air flow, resulting in an increase in pressure loss.
 この圧力損失の増加を避けるために、また、ハニカム構造の壁にできる影の領域を減らすために、ハニカムの壁の厚みを小さくすることが考えられる。しかしながら、その場合には形状安定性が低下し、同時に、光触媒担持量が低下して脱臭性能が低下する別の問題を招いてしまうので、ハニカムの壁の厚みを小さくすることは有効な解決策とはならない。 In order to avoid this increase in pressure loss and to reduce the shadow area formed on the walls of the honeycomb structure, it is conceivable to reduce the thickness of the honeycomb walls. However, in that case, the shape stability is lowered, and at the same time, the amount of the supported photocatalyst is lowered, resulting in another problem that the deodorizing performance is lowered. Therefore, reducing the thickness of the honeycomb wall is an effective solution. It will not be.
 従来技術の第3の課題は、励起光源が短寿命であり、環境負荷が大きいことである。光源として蛍光管ランプを使用する場合が多いが、ランプ寿命が短い。例えば耐久消費財などに利用される場合、通常5年から10年の寿命が必要とされるが、かかる長寿命の蛍光管ランプはコストが非常に高く非実用的である。また、製造段階で蛍光管内に水銀の使用が余儀なくされており、昨今の厳しい環境事情を背景に、製品廃棄の段階での環境負荷に対する課題への対応が困難となっている。 The third problem of the prior art is that the excitation light source has a short life and a large environmental load. In many cases, a fluorescent tube lamp is used as the light source, but the lamp life is short. For example, when used for durable consumer goods and the like, a life of 5 to 10 years is usually required, but such a long-life fluorescent tube lamp is very expensive and impractical. In addition, mercury is forced to be used in the fluorescent tube at the manufacturing stage, and it is difficult to cope with the environmental load problem at the product disposal stage against the backdrop of severe environmental conditions.
 このような従来技術の課題を解決するため、蛍光管を使用せず、例えば、高電圧放電によってオゾンや紫外線を発生させ、この紫外線により活性化された光触媒モジュールで空気中に含まれる臭気成分や有害物質などの分解を行い、併せて高電圧放電手段により発生させたオゾンをオゾン分解手段で分解するようにした脱臭装置が提案されている(特許公開2003-339839号公報―特許文献2)。 In order to solve such problems of the prior art, for example, ozone and ultraviolet rays are generated by high voltage discharge without using a fluorescent tube, and odor components contained in the air are activated by the photocatalyst module activated by the ultraviolet rays. There has been proposed a deodorizing apparatus that decomposes harmful substances and the like and decomposes ozone generated by a high-voltage discharge means by ozone decomposing means (Japanese Patent Publication No. 2003-339839-Patent Document 2).
 しかしながら、アセトアルデヒドのような臭気ガスを分解するためには、酸化電位のより深い(したがって、価電子帯の上限電位のより大きな)触媒反応が必要であり、オゾンによる分解では水と炭酸ガスまでに分解する最終的な完全分解は困難であって、酢酸などの中間酸化物が生成され易い。この生成された酢酸は、光触媒材料を覆ってしまって分解速度を著しく低下させる原因となる問題点がある。また、オゾンそのものの有害性から、残留臭気ガス分解後も、オゾン除去のために二酸化マンガン層などのオゾン分解触媒層を設置しており、コスト高の一因になっていた。 However, in order to decompose an odorous gas such as acetaldehyde, a catalytic reaction with a deeper oxidation potential (and therefore a higher valence band upper limit potential) is required. The final complete decomposition that decomposes is difficult, and an intermediate oxide such as acetic acid is easily generated. The generated acetic acid has a problem that it covers the photocatalytic material and causes a significant decrease in the decomposition rate. In addition, due to the harmful nature of ozone itself, an ozone decomposition catalyst layer such as a manganese dioxide layer was installed to remove ozone even after decomposition of residual odor gas, which contributed to high costs.
 従来技術の第4の課題は、脱臭装置が対象とする基質ガスの性質に起因する課題である。分解の対象となる基質ガスはアンモニアのように空気中の水分に容易に溶け込んで弱アルカリ性を示すものや、エチレンガスのように水に難溶性であって、溶けても中性を示すものがある。 The fourth problem of the prior art is a problem caused by the nature of the substrate gas targeted by the deodorization apparatus. The substrate gas to be decomposed is easily dissolved in moisture in the air such as ammonia and shows weak alkalinity, or is hardly soluble in water such as ethylene gas and is neutral even if dissolved. is there.
 光触媒による気質ガスの分解反応を高めるためには、酸化電位の深い光触媒材料、例えば酸化タングステン(WO)が有望であるが、酸化タングステンをアルカリ雰囲気中で長年使用すると、化学反応を起こし触媒活性が低下する恐れがある。 A photocatalytic material having a deep oxidation potential, such as tungsten oxide (WO 3 ), is promising in order to enhance the decomposition reaction of the gas by the photocatalyst. However, when tungsten oxide is used in an alkaline atmosphere for many years, a chemical reaction occurs and the catalytic activity is increased. May decrease.
 また、ガラス繊維織物に酸化チタン(TiO)を担持した場合、アンモニアの酸化チタンへの吸着が大きくなり、アンモニアの分解反応速度が低下する。 In addition, when titanium oxide (TiO 2 ) is supported on a glass fiber fabric, adsorption of ammonia to titanium oxide increases, and the decomposition reaction rate of ammonia decreases.
 本来、あるべき光触媒脱臭装置の姿は、基質ガスの環境pHに左右されず、一定の分解能力を有することが望ましく、かかる上記の状況は光触媒脱臭装置の使用の制限を示唆するものであり、広く利用されることに対する阻害要因となっている。 Originally, the shape of the photocatalyst deodorization apparatus should be independent of the environmental pH of the substrate gas and desirably has a certain decomposition ability, and the above situation suggests that the use of the photocatalyst deodorization apparatus is limited, It is an obstacle to being widely used.
 従来技術の第5の課題は、LEDの長期安定性に関する課題である。光触媒で使用するLEDの波長λは、酸化チタン(TiO)や酸化タングステン(WO)のバンドギャップから考えて、λが370nm~380nm以下、窒素や硫黄をドープした酸化チタンや酸化タングステンでもλが450nm以下での使用が、量子収率の低下を回避する意味でも好ましい。 The fifth problem of the prior art is a problem related to the long-term stability of the LED. The wavelength λ of the LED used in the photocatalyst is λ of 370 nm to 380 nm or less, considering the band gap of titanium oxide (TiO 2 ) or tungsten oxide (WO 3 ), and even if titanium oxide or tungsten oxide doped with nitrogen or sulfur is λ Is preferably 450 nm or less from the viewpoint of avoiding a decrease in quantum yield.
 上記のような短波長(近紫外域もしくはUV光)で、かつ、アンモニアを分解することを想定した場合、アンモニアの封止樹脂(例えばエポキシ樹脂やシリコン樹脂)への浸透性が極めて高い上に、短波長による封止樹脂への劣化が重なり、若しくは封止樹脂を浸透してLEDダイやLEDダイと金の下地電極を直接に腐食してしまい、LEDの照度低下を招き、商品化できないという問題点がある。 When the short wavelength (near ultraviolet region or UV light) as described above is assumed and ammonia is decomposed, the permeability of ammonia to the sealing resin (for example, epoxy resin or silicon resin) is extremely high. The deterioration of the sealing resin due to short wavelengths overlaps, or the sealing resin penetrates and directly corrodes the LED die and the LED die and the gold base electrode, leading to a decrease in the illuminance of the LED, and cannot be commercialized. There is a problem.
特許第2574840号公報Japanese Patent No. 2574840 特許公開2003-339839号公報Japanese Patent Publication No. 2003-339839
 本発明は、上記従来技術の課題に鑑みてなされたもので、光触媒の励起光源にLEDを採用し、光触媒ユニットにガラス繊維の光触媒シートを採用することで、励起光源からの光が光触媒ユニットの全体に影を作ることなく照射でき、光触媒シートの全面で効果的に光触媒を励起させて脱臭性能を長期間維持でき、同時に、通過する空気の圧力損失を小さくして空気の通過を妨げることもなく、さらに長寿命化が図れる光触媒脱臭装置を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and adopts an LED as an excitation light source of a photocatalyst and a photocatalyst sheet of glass fiber as a photocatalyst unit, so that light from the excitation light source is emitted from the photocatalyst unit. Irradiate without shadowing the entire surface, effectively excite the photocatalyst on the entire surface of the photocatalyst sheet to maintain the deodorizing performance for a long period of time, and at the same time reduce the pressure loss of the passing air and prevent the passage of air It is another object of the present invention to provide a photocatalyst deodorization apparatus that can further extend the service life.
 また、本発明は、基質ガスの環境pHに左右されず、一定の分解能力を有する光触媒脱臭装置を提供することを目的とする。 Another object of the present invention is to provide a photocatalyst deodorization apparatus having a certain decomposition ability regardless of the environmental pH of the substrate gas.
 本発明は、通風孔を設けた基板を平行に配置し、前記2枚の基板のうちの少なくとも1枚の基板にLEDを実装し、前記2枚の基板間に、光触媒粒子が担持されたガラス繊維織物及び当該織物を支持するフレームから構成される光触媒シートを配置し、前記光触媒シートと前記2枚の基板を筐体に固定し、前記光触媒を励起するためのLED光源の発光面と前記光触媒シートとを平行に配置して、前記通風孔から送入された空気が前記光触媒シートを通過するようにした光触媒脱臭装置であって、前記光触媒シートは、ガラス繊維を束ねて構成したもと糸を、低風速下での通気が可能な所定の開口率を持つように縦横に織って構成し、前記光触媒粒子は、前記光触媒シートのガラス繊維間に機械的に接触保持させたことを特徴とする。 The present invention is a glass in which substrates provided with ventilation holes are arranged in parallel, LEDs are mounted on at least one of the two substrates, and photocatalyst particles are supported between the two substrates. A photocatalytic sheet composed of a fiber fabric and a frame that supports the fabric is disposed, the photocatalytic sheet and the two substrates are fixed to a housing, and a light emitting surface of an LED light source for exciting the photocatalyst and the photocatalyst A photocatalyst deodorizing apparatus in which a sheet is arranged in parallel so that air sent from the vent hole passes through the photocatalyst sheet, wherein the photocatalyst sheet is a base yarn formed by bundling glass fibers. Characterized in that the photocatalyst particles are mechanically held between the glass fibers of the photocatalyst sheet so as to have a predetermined opening ratio that allows ventilation at low wind speeds. To do.
 本発明の光触媒脱臭装置によれば、光触媒の励起光源にLEDを採用し、光触媒ユニットにガラス繊維の光触媒シートを採用することで、励起光源からの光が光触媒ユニットの全体に影を作ることなく照射でき、光触媒シートの全面で効果的に光触媒を励起させて脱臭性能を長期間維持でき、同時に、通過する空気の圧力損失を小さくして庫内を循環する冷気の通過を妨げることもなく、さらに長寿命化が図れる。 According to the photocatalyst deodorization apparatus of the present invention, an LED is used as an excitation light source of the photocatalyst, and a photocatalyst sheet of glass fiber is used as the photocatalyst unit, so that light from the excitation light source does not make a shadow on the entire photocatalyst unit. It can irradiate and can effectively excite the photocatalyst on the entire surface of the photocatalyst sheet to maintain the deodorizing performance for a long time, and at the same time, it reduces the pressure loss of the air passing therethrough and does not hinder the passage of cold air circulating in the warehouse, In addition, the life can be extended.
 上記の本発明の光触媒脱臭装置においては、前記光触媒シートの開口率を30%~60%とすることができる。このようにガラス繊維織物の開口率30%以上60%以下とした光触媒脱臭装置によれば、30%を切ると光触媒粒子の担持量が増加し脱臭性能は増すものの圧力損失が急激に増大するのを防ぎ、また60%を超えると光触媒担持量が少なくなりすぎて脱臭機能を十分に発揮できなくするのを防ぐことができる。 In the photocatalyst deodorization apparatus of the present invention, the opening ratio of the photocatalyst sheet can be set to 30% to 60%. As described above, according to the photocatalyst deodorization apparatus in which the opening ratio of the glass fiber fabric is 30% or more and 60% or less, the load of the photocatalyst particles increases and the deodorization performance increases, but the pressure loss increases rapidly. Moreover, when it exceeds 60%, it is possible to prevent the amount of the photocatalyst supported from being excessively reduced so that the deodorizing function cannot be sufficiently exhibited.
 また、上記の本発明の光触媒脱臭装置においては、前記光触媒シートのガラス繊維を、SiOを50%以上の成分比とする素材で成るものとすることができる。このように、光脱臭シートのガラス繊維の組成をSiOが50%以上の成分とした光触媒脱臭装置によれば、光の透過性が高まり、光がガラス繊維中を十分伝播できるようになり、その結果、微細なガラス繊維間で担持された光触媒の粒子がLED放射光から直接、照射を受けるのと同時に、ガラス繊維中を伝播或いはガラス繊維表面によって反射・散乱された光が光触媒の粒子の裏側まで到達でき、LED励起光を十分に有効活用することができる。 In the photocatalyst deodorization apparatus of the present invention, the glass fiber of the photocatalyst sheet can be made of a material having a component ratio of 50% or more of SiO 2 . Thus, according to the composition of the glass fiber of light deodorization sheet photocatalytic deodorizing apparatus SiO 2 is 50% or more of the ingredients, increased permeability of the light, the light will be able to sufficiently propagate in the glass fiber, As a result, the photocatalyst particles supported between the fine glass fibers are directly irradiated from the LED radiation, and at the same time, the light propagating in the glass fibers or reflected / scattered by the glass fiber surface is the photocatalyst particles. It can reach the back side, and LED excitation light can be fully utilized effectively.
 さらに、本発明の光触媒脱臭装置によれば、ガラス繊維の組成をSiOが50%以上の成分とすることで、シリコンと酸素の二重結合が非常に大きく化学的に安定しているので、例えばバンドギャップが3.2eVのアナタース型TiO光触媒の粒子が励起光を吸収した時に発生する、強力な酸化還元電位を有する還元電子若しくは酸化正孔による担持材料の劣化への影響を事実上、使用するのに問題のないレベルにすることができる。 Furthermore, according to the photocatalyst deodorization apparatus of the present invention, the double bond between silicon and oxygen is very large and chemically stable because the composition of the glass fiber is SiO 2 50% or more. For example, an anatase type TiO 2 photocatalyst particle having a band gap of 3.2 eV has a strong effect on the deterioration of the support material due to reduced electrons or holes having a strong redox potential, which is generated when the excitation light is absorbed. It can be at a level that is not problematic to use.
 また、上記の本発明の光触媒脱臭装置においては、前記光触媒シートのガラス繊維の直径を、10μm以下とすることができる。このように光触媒シートのガラス繊維の直径を10μm以下とした光触媒脱臭装置によれば、10μmを超えると光触媒の粒子を担持する力が低下し、例えば風速数m/秒の低風速下でもガラス繊維間の隙間から光触媒粒子が脱落してしまうのを防ぎ、長期間にわたり脱臭効果を維持できる。 Moreover, in the photocatalyst deodorization apparatus of the present invention, the diameter of the glass fiber of the photocatalyst sheet can be 10 μm or less. Thus, according to the photocatalyst deodorizing apparatus in which the diameter of the glass fiber of the photocatalyst sheet is 10 μm or less, if it exceeds 10 μm, the force for supporting the photocatalyst particles decreases, and the glass fiber is used even under a low wind speed of, for example, a wind speed of several m / second It is possible to prevent the photocatalyst particles from dropping from the gaps between them and maintain the deodorizing effect over a long period of time.
 さらに、上記の本発明の光触媒脱臭装置においては、風速0.2m~3m/秒の低風速下で使用するものとすることができる。 Furthermore, the above-described photocatalytic deodorization apparatus of the present invention can be used at a low wind speed of 0.2 m to 3 m / sec.
 また本発明は、通風孔を設けた基板を平行に配置し、前記2枚の基板のうちの少なくとも1枚の基板にLEDを実装し、前記2枚の基板間に、光触媒粒子が担持されたガラス繊維織物及び当該織物を支持するフレームから構成される光触媒シートを配置し、前記光触媒シートと前記2枚の基板を筐体に固定し、前記光触媒を励起するためのLED光源の発光面と前記光触媒シートとを平行に配置して、前記通風孔から送入された空気が前記光触媒シートを通過するようにした光触媒脱臭装置であって、前記光触媒シートは、ガラス繊維を整然と束ねた横糸群と、ガラス繊維を乱雑に束ねた縦糸群から構成される織物であり、前記光触媒粒子は、前記光触媒シートのガラス繊維間及びガラス繊維上に付着し保持されていることを特徴とする。 Further, in the present invention, a substrate provided with ventilation holes is arranged in parallel, an LED is mounted on at least one of the two substrates, and photocatalyst particles are supported between the two substrates. A photocatalytic sheet composed of a glass fiber woven fabric and a frame that supports the woven fabric is disposed, the photocatalytic sheet and the two substrates are fixed to a housing, a light emitting surface of an LED light source for exciting the photocatalyst, and the It is a photocatalyst deodorizing device in which a photocatalyst sheet is arranged in parallel so that the air sent from the vent hole passes through the photocatalyst sheet, the photocatalyst sheet comprising a group of weft yarns in which glass fibers are bundled in an orderly manner. The photocatalyst particles are adhered to and held between the glass fibers of the photocatalyst sheet, and are held by a fabric composed of warp yarns in which glass fibers are randomly bundled.
 このようにガラス繊維を整然と束ねた横糸群と、ガラス繊維を乱雑に束ねた縦糸群とを織物状に織込んだものを光触媒シートとした光触媒脱臭装置によれば、光触媒シートのガラス繊維への光触媒粒子の密着力を強くでき、例えば風速の高い5m/秒の大型空調機の脱臭装置にも適用できる。 Thus, according to the photocatalyst deodorizing apparatus in which the weft group of glass fibers bundled in an orderly manner and the warp group of glass fibers bundled up randomly is woven into a photocatalyst sheet, the photocatalyst sheet is applied to the glass fiber. The adhesion of the photocatalyst particles can be strengthened, and for example, it can be applied to a deodorizing device of a large air conditioner with a high wind speed of 5 m / sec.
 上記の本発明の光触媒脱臭装置においては、前記光触媒シートを構成するガラス繊維は、直径1μm以下の孔を有する多孔質ガラス繊維とすることもできる。 In the photocatalyst deodorization apparatus of the present invention described above, the glass fiber constituting the photocatalyst sheet may be a porous glass fiber having pores having a diameter of 1 μm or less.
 本発明の光触媒脱臭装置では、LED実装基板上に通風孔を設けたことによって、構造上、励起光源であるLEDを支持すると同時に、空気の流路抵抗を減らす。また、光触媒が担持されたガラス繊維織物及び当該織物を支持するフレームから構成される光触媒シートとLED実装基板と平行に配置したことによって、LED光源からの励起光を最大限に光触媒に吸収させる。 In the photocatalyst deodorization apparatus of the present invention, by providing ventilation holes on the LED mounting substrate, the LED as an excitation light source is structurally supported and at the same time the air flow resistance is reduced. Moreover, the photocatalyst sheet | seat comprised from the glass fiber fabric with which the photocatalyst was carry | supported, and the flame | frame which supports the said fabric, and LED mounting board | substrate are arrange | positioned in parallel, and the photocatalyst absorbs the excitation light from a LED light source to the maximum.
 さらに、光触媒シートのガラス繊維織物を採用したことにより、LED光源からの励起光がガラス繊維によって影を作り、厚み方向の奥まで届かなくなることを防止し、光触媒シートの全体に対し光量を十分確保し、光触媒を効果的に励起する。 Furthermore, by adopting the glass fiber fabric of the photocatalyst sheet, it prevents the excitation light from the LED light source from being shaded by the glass fiber and reaching the back in the thickness direction, ensuring a sufficient amount of light for the entire photocatalyst sheet And effectively excite the photocatalyst.
 またさらに、本発明の光触媒脱臭装置では、ガラス繊維を整然と束ねた横糸群と、ガラス繊維を乱雑に束ねた縦糸群とを織物状に織込んだものを光触媒シートとすることにより、光触媒粒子へのガラス密着力が強い。 Furthermore, in the photocatalyst deodorization apparatus of the present invention, a photocatalyst sheet is obtained by using a weave group of weft yarns in which glass fibers are orderly bundled and warp yarn groups in which glass fibers are randomly bundled to form a photocatalyst sheet. Strong glass adhesion.
 また、一般的に光触媒材料の触媒活性が触媒粒子の粒度の減少と共に高まることが知られているが、ガラス繊維を直径1μm以下の孔を持つ多孔質ガラスとすることにより、触媒活性の高い1μm以下の光触媒粒子を、ガラス繊維に存在する直径1μm以下の孔にトラップし、光触媒粒子のガラス密着力が強められる。 In addition, it is generally known that the catalytic activity of the photocatalytic material increases as the particle size of the catalyst particles decreases. However, by making the glass fiber porous glass having pores having a diameter of 1 μm or less, 1 μm having a high catalytic activity. The following photocatalyst particles are trapped in holes having a diameter of 1 μm or less present in the glass fiber, and the glass adhesion of the photocatalyst particles is strengthened.
 さらにまた、本発明は、通風孔を設けた基板を平行に配置し、前記2枚の基板の内、少なくとも1枚の基板にLEDを実装し、前記2枚の基板間に、光触媒粒子が担持されたガラス繊維織物及び当該織物を支持するフレームから構成される光触媒シートを配置し、前記光触媒シートと前記2枚の基板を筺体に固定し、前記光触媒粒子を励起するためのLED光源の発光面と前記光触媒シートとを平行に配置して、前記通風孔から送入された空気が前記光触媒シートを通過するようにした光触媒脱臭装置であって、アナタースを主相とする酸化チタン光触媒微粒子をガラス繊維織物に担持した前記光触媒シートを当該光触媒脱臭装置の空気導入側に、また酸化タングステンを主成分とする光触媒微粒子をガラス繊維織物に担持した前記光触媒シートを当該光触媒脱臭装置の空気排出側に、それぞれ配置したことを特徴とする。 Furthermore, in the present invention, a substrate provided with ventilation holes is arranged in parallel, an LED is mounted on at least one of the two substrates, and photocatalyst particles are supported between the two substrates. A light-emitting surface of an LED light source for exciting the photocatalyst particles by disposing a photocatalytic sheet composed of a glass fiber woven fabric and a frame supporting the woven fabric, fixing the photocatalytic sheet and the two substrates to a housing And the photocatalyst sheet are arranged in parallel so that the air sent from the vent hole passes through the photocatalyst sheet, and titanium oxide photocatalyst fine particles containing anatase as a main phase are made of glass. The photocatalyst sheet supported on a fiber fabric is supported on the air introduction side of the photocatalyst deodorizing apparatus, and the photocatalyst fine particles mainly composed of tungsten oxide are supported on a glass fiber fabric. The over bets on the air discharge side of the photocatalytic deodorizing apparatus, characterized by being arranged.
 基質ガスがアンモニアのような弱アルカリ性ガスとアセトアルデヒドのような中性ガス並びにNOXのような酸性ガスから構成される混合ガスを分解する場合、酸化チタン(アナタースを主相)光触媒微粒子をガラス繊維織物に担持した光触媒シートを当該光触媒脱臭装置の空気導入側にすることによって、まず弱アルカリ成分となるアンモニアが酸化チタンによって吸着・分解する。十分にアンモニア濃度が低下した状況下で、第2層となる酸化タングステンを担持した光触媒シートを光触媒脱臭装置の排出側に設置することによって、今度は残留中性ガスを除去する。酸性ガスの場合は、どちらの光触媒微粒子の触媒活性を損なうものではなく、両者によって除去される。 When the substrate gas decomposes a mixed gas composed of a weak alkaline gas such as ammonia, a neutral gas such as acetaldehyde, and an acid gas such as NOX, titanium oxide (main phase of anatase) photocatalyst fine particles are made of glass fiber fabric. By making the photocatalyst sheet supported on the air introduction side of the photocatalyst deodorizing apparatus, ammonia that is a weak alkali component is first adsorbed and decomposed by titanium oxide. In a situation where the ammonia concentration is sufficiently lowered, a photocatalytic sheet supporting tungsten oxide as a second layer is installed on the discharge side of the photocatalyst deodorizing apparatus, thereby removing residual neutral gas. In the case of acid gas, it does not impair the catalytic activity of either photocatalyst fine particle, and is removed by both.
 本発明では、光触媒シートを上記の配置にすることによって、酸化電位が深く、したがって酸化分解能力の高いが、弱アルカリ環境下で使用すると触媒活性が低下する酸化タングステン光触媒の課題を解決する。 In the present invention, the arrangement of the photocatalyst sheet described above solves the problem of a tungsten oxide photocatalyst that has a deep oxidation potential and thus high oxidative decomposition ability, but whose catalytic activity decreases when used in a weak alkaline environment.
 また、LEDの封止材料の中をガスが浸透する場合を考えると、概して封止材料の分子間骨格間で形成される自由体積の存在により、ガスが封止材料中を浸透することが考えられるが、この封止材料をガラスのようなシリコン酸化物とすることにより、基質ガス中の水分やアンモニアの浸入をほぼ完全に防ぐ。 Further, considering the case where the gas penetrates into the sealing material of the LED, it is considered that the gas penetrates into the sealing material due to the existence of a free volume formed between the intermolecular skeletons of the sealing material. However, the sealing material is made of silicon oxide such as glass, so that the intrusion of moisture and ammonia in the substrate gas is almost completely prevented.
 このように本発明によれば、基質ガスの環境pHに左右されず、一定の分解能力を有し、また、腐食環境中でも長時間使用可能なLEDを光源とする光触媒脱臭装置が提供できる。 Thus, according to the present invention, it is possible to provide a photocatalytic deodorization apparatus using an LED as a light source, which has a certain decomposition ability regardless of the environmental pH of the substrate gas and can be used for a long time even in a corrosive environment.
図1は、本発明の第1~第5の実施の形態の光触媒脱臭装置を搭載した冷蔵庫の一部破断断面図である。FIG. 1 is a partially cutaway sectional view of a refrigerator equipped with a photocatalyst deodorizing apparatus according to first to fifth embodiments of the present invention. 図2は、本発明の第1~第3の実施の形態の光触媒脱臭装置の一部破断した斜視図である。FIG. 2 is a partially broken perspective view of the photocatalyst deodorizing apparatus according to the first to third embodiments of the present invention. 図3は、本発明の第1~第3の実施の形態の光触媒脱臭装置の一部省略した断面図である。FIG. 3 is a cross-sectional view in which the photocatalyst deodorizing apparatus according to the first to third embodiments of the present invention is partially omitted. 図4(a)は、本発明の第1~第3の実施の形態の光触媒脱臭装置に用いる光触媒シートの正面図、図4(b)はその平面図である。FIG. 4 (a) is a front view of a photocatalyst sheet used in the photocatalyst deodorization apparatus according to the first to third embodiments of the present invention, and FIG. 4 (b) is a plan view thereof. 図5は、本発明の第1、第2の実施の形態の光触媒脱臭装置に用いる光触媒シート内のガラス繊維織物の拡大図である。FIG. 5 is an enlarged view of the glass fiber fabric in the photocatalyst sheet used in the photocatalyst deodorization apparatus according to the first and second embodiments of the present invention. 図6は、本発明の第1、第2の実施の形態の光触媒脱臭装置に用いる光触媒シート内のガラス繊維による光触媒粒子の担持状態の顕微鏡写真である。FIG. 6 is a photomicrograph of photocatalyst particles supported by glass fibers in the photocatalyst sheet used in the photocatalyst deodorization apparatus according to the first and second embodiments of the present invention. 図7は、本発明の第1の実施の形態の光触媒脱臭装置における光触媒シートの開口率と圧力損失・光触媒担持量との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the opening ratio of the photocatalyst sheet and the pressure loss / photocatalyst carrying amount in the photocatalyst deodorizing apparatus according to the first embodiment of the present invention. 図8は、本発明の第1の実施の形態の光触媒脱臭装置における光触媒シートのガラス繊維直径と光触媒脱落率との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the glass fiber diameter of the photocatalyst sheet and the photocatalyst dropout rate in the photocatalyst deodorization apparatus according to the first embodiment of the present invention. 図9は、本発明の実施例1の光触媒脱臭装置のアセトアルデヒド分解性能を従来例と対比して示すグラフである。FIG. 9 is a graph showing the acetaldehyde decomposition performance of the photocatalytic deodorization apparatus of Example 1 of the present invention in comparison with the conventional example. 図10は、本発明の実施例2の光触媒脱臭装置のアンモニア分解性能を従来例と対比して示すグラフである。FIG. 10 is a graph showing the ammonia decomposition performance of the photocatalytic deodorization apparatus of Example 2 of the present invention in comparison with the conventional example. 図11は、本発明の第3の実施の形態の光触媒脱臭装置に用いる光触媒シート内のガラス繊維織物の拡大図である。FIG. 11 is an enlarged view of the glass fiber fabric in the photocatalyst sheet used in the photocatalyst deodorization apparatus according to the third embodiment of the present invention. 図12は、本発明の第3の実施の形態の光触媒脱臭装置に用いる光触媒シート内のガラス繊維による光触媒粒子の担持状態の説明図である。FIG. 12 is an explanatory diagram of a state in which photocatalyst particles are supported by glass fibers in the photocatalyst sheet used in the photocatalyst deodorization apparatus according to the third embodiment of the present invention. 図13は、本発明の第3の実施の形態の光触媒脱臭装置における光触媒シートの風速と光触媒脱落率との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the wind speed of the photocatalyst sheet and the photocatalyst dropout rate in the photocatalyst deodorization apparatus according to the third embodiment of the present invention. 図14は、本発明の第4の実施の形態の光触媒脱臭装置の一部破断した斜視図である。FIG. 14 is a partially broken perspective view of the photocatalyst deodorizing apparatus according to the fourth embodiment of the present invention. 図15は、本発明の第4の実施の形態の光触媒脱臭装置の一部省略した断面図である。FIG. 15 is a cross-sectional view in which a part of the photocatalytic deodorization apparatus according to the fourth embodiment of the present invention is omitted. 図16(a)は、本発明の第4の実施の形態の光触媒脱臭装置に用いる光触媒シートの正面図、図16(b)はその平面図である。FIG. 16 (a) is a front view of a photocatalyst sheet used in the photocatalyst deodorization apparatus of the fourth embodiment of the present invention, and FIG. 16 (b) is a plan view thereof. 図17は、本発明の第4の実施の形態の光触媒脱臭装置に用いる光触媒シート内のガラス繊維織物の拡大図である。FIG. 17 is an enlarged view of a glass fiber fabric in a photocatalyst sheet used in the photocatalyst deodorization apparatus according to the fourth embodiment of the present invention. 図18は、本発明の第4の実施の形態の光触媒脱臭装置に用いる光触媒シート内のガラス繊維による光触媒粒子の担持状態の顕微鏡写真である。FIG. 18 is a photomicrograph of photocatalyst particles supported by glass fibers in the photocatalyst sheet used in the photocatalyst deodorization apparatus according to the fourth embodiment of the present invention. 図19は、本発明の実施例3の光触媒脱臭装置のアセトアルデヒド分解性能を比較例1と対比して示すグラフである。FIG. 19 is a graph showing the acetaldehyde decomposition performance of the photocatalyst deodorization apparatus of Example 3 of the present invention in comparison with Comparative Example 1. 図20は、本発明の実施例3の光触媒脱臭装置のアンモニア分解性能を比較例1と対比して示すグラフである。FIG. 20 is a graph showing the ammonia decomposition performance of the photocatalytic deodorization apparatus of Example 3 of the present invention in comparison with Comparative Example 1. 図21は、本発明の実施例3の光触媒脱臭装置の照度維持時間特性をと比較例1,2と対比して示すグラフである。FIG. 21 is a graph showing the illuminance maintenance time characteristics of the photocatalytic deodorization apparatus of Example 3 of the present invention in comparison with Comparative Examples 1 and 2.
 以下、本発明の実施の形態を図に基づいて詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1の実施の形態]
 本発明の1つの実施の形態の光触媒脱臭装置1は、図1に示すように冷蔵庫100の庫内に脱臭のために設置する装置である。冷蔵庫100の庫内では、冷却ファン101にて冷気102は低風速、例えば0.2m/秒~3m/秒の風速にて庫内を循環する。本実施の形態の光触媒脱臭装置1は、このような低風速下で空気の流れを阻害せず、光触媒により庫内空気を脱臭するために冷気通路103に設置して用いられる。
[First Embodiment]
The photocatalyst deodorization apparatus 1 of one embodiment of the present invention is an apparatus installed for deodorization in the refrigerator 100 as shown in FIG. In the refrigerator 100, the cool air 102 circulates in the refrigerator at a low wind speed, for example, 0.2 m / sec to 3 m / sec. The photocatalyst deodorization apparatus 1 according to the present embodiment is installed and used in the cold air passage 103 in order to deodorize the internal air by the photocatalyst without inhibiting the air flow under such a low wind speed.
 図2~図4に示すように、本実施の形態の光触媒脱臭装置1は、担持された光触媒の粒子を励起するためのLED3と複数の通風孔4を設け、かつLED3を実装したLED実装基板5、それと略平行に配置された複数の光触媒シート6、LED実装基板5と対向し、略平行に配置された通風孔4を設けた対向基板7、そして、これらの板材の位置を保持し、形状を保持し補強する枠体で成る筐体8から構成されている。本実施の形態にあって、光触媒シート6は3枚、装着されている。 As shown in FIGS. 2 to 4, the photocatalyst deodorizing apparatus 1 according to the present embodiment includes an LED 3 and a plurality of ventilation holes 4 for exciting the supported photocatalyst particles, and the LED mounting substrate on which the LED 3 is mounted. 5, a plurality of photocatalyst sheets 6 arranged substantially parallel to it, a counter substrate 7 provided with ventilation holes 4 opposed to the LED mounting substrate 5 and arranged substantially in parallel, and holding the positions of these plate members, It is comprised from the housing | casing 8 which consists of a frame which hold | maintains and reinforces a shape. In the present embodiment, three photocatalyst sheets 6 are mounted.
 筐体8の材料は、紫外線に対する高い耐候性と臭気ガスに対する変色が少ない観点から、アクリル樹脂(ポリメタクリル酸メチル樹脂)でもよいし、さらにはアクリル樹脂であっても特に発臭を抑え重合度を10,000~15,000程度に高めた材料でもよい。また比較的コストが安価で成型性の良好なABS樹脂(アクリルニトリル-ブタジエン-スチレン共重合合成樹脂)でもよいし、強度向上のためABS樹脂にガラス繊維を混錬させコンパウンドとした強化ABS樹脂でもよい。上記材料は、金型を用い所定の形状になるよう成型される。 The material of the housing 8 may be an acrylic resin (polymethyl methacrylate resin) from the viewpoint of high weather resistance against ultraviolet rays and less discoloration to odor gas, and even an acrylic resin may suppress the odor, and the degree of polymerization. It is also possible to use a material in which is increased to about 10,000 to 15,000. Also, an ABS resin (acrylonitrile-butadiene-styrene copolymer synthetic resin) with relatively low cost and good moldability may be used, or a reinforced ABS resin obtained by kneading glass fibers into ABS resin to improve the strength. Good. The material is molded into a predetermined shape using a mold.
 LED実装基板5は、設置場所の環境に合わせ適切な分布密度で分布するように通風孔4が適数個を設けられたガラスエポキシ基板上に電極パターンをプリントしたもので、かつ、紫外線波長λ=375nm、光量Po=5.8mW、順方向電流30mAのLEDダイ3を実装したものである。 The LED mounting substrate 5 is obtained by printing an electrode pattern on a glass epoxy substrate provided with an appropriate number of ventilation holes 4 so as to be distributed at an appropriate distribution density according to the environment of the installation site, and has an ultraviolet wavelength λ The LED die 3 with = 375 nm, light intensity Po = 5.8 mW, and forward current 30 mA is mounted.
 このLED実装基板5は、次のようにして作成している。設置場所の環境に合わせ適切な分布密度で分布するように通風孔4が適数個を設けられたガラスエポキシ基板上に電極パターンをプリントし、LEDダイ3を用意し、マウンターで基板の所定の面に配置した後、低融点リフロー炉で240℃、10秒で基板に融着させる。この融着後の基板上のLEDダイ3の基板電極への結線は、ワイヤーボンダー機にてアノード側とカソード側の2本を30μmの金線で行う。さらに、結線後の基板は、LEDダイのP-Nジャンクション保護のため、シリコン樹脂でLEDダイ3ヘポッディングを行い、LED実装基板5としている。 This LED mounting board 5 is prepared as follows. An electrode pattern is printed on a glass epoxy substrate provided with an appropriate number of ventilation holes 4 so as to be distributed at an appropriate distribution density according to the environment of the installation location, an LED die 3 is prepared, and a predetermined number of substrates is mounted with a mounter After being placed on the surface, it is fused to the substrate at 240 ° C. for 10 seconds in a low melting point reflow furnace. The connection of the LED die 3 on the substrate after the fusion to the substrate electrode is performed with a 30 μm gold wire on the anode side and the cathode side using a wire bonder machine. Further, the substrate after the wiring is made into an LED mounting substrate 5 by padding the LED die 3 with silicon resin for protecting the PN junction of the LED die.
 LED実装基板5におけるLEDダイ3の搭載個数は、LED1個あたりの光量Poと、光触媒材料を担持したガラス繊維製の光触媒シート6の面積と、光触媒シート6とLED発光面間距離とから割り出して、複数の光触媒シート6のいずれも、その光触媒シート6上での光照射強度が1mW/cm以上となるよう設計し、10個~20個とする。 The number of LED dies 3 mounted on the LED mounting substrate 5 is calculated from the light amount Po per LED, the area of the photocatalyst sheet 6 made of glass fiber carrying the photocatalyst material, and the distance between the photocatalyst sheet 6 and the LED light emitting surface. Each of the plurality of photocatalyst sheets 6 is designed so that the light irradiation intensity on the photocatalyst sheet 6 is 1 mW / cm 2 or more, and is 10 to 20 pieces.
 光触媒シート6のガラス繊維織物6Aのガラス繊維間に担持させる光触媒6Bは、アナタース型構造の酸化チタン80体積%とルチル型構造の酸化チタン20体積%とから成る酸化チタンTiOで構成され、約50m/gの表面積を有し、結晶子径が20nm(粉体の凝集前の粒子径)の材料を出発原料とした。 The photocatalyst 6B supported between the glass fibers of the glass fiber fabric 6A of the photocatalyst sheet 6 is composed of titanium oxide TiO 2 composed of 80% by volume of anatase-type titanium oxide and 20% by volume of a rutile-type titanium oxide. A material having a surface area of 50 m 2 / g and a crystallite diameter of 20 nm (particle diameter before powder aggregation) was used as a starting material.
 ここで、アナタース型とルチル型の構成相の相分率と結晶子径は、CuのKα線を用いたX線回折法を用い、アナタース型構造酸化チタンとルチル型構造酸化チタンの反射X線の強度比及び反射X線の強度をデバイーシェラーの式に代入しそれぞれ求めた。表面積はBET法に基づく窒素の単分子吸着特性より割り出した。 Here, the phase fraction and crystallite size of the anatase type and rutile type constituent phases are determined by using an X-ray diffraction method using Cu Kα rays, and reflected X-rays of anatase type structural titanium oxide and rutile type titanium oxide. The intensity ratio and the intensity of the reflected X-ray were substituted into the Debye-Scherrer equation, respectively. The surface area was determined from the monomolecular adsorption characteristics of nitrogen based on the BET method.
 上記光触媒出発原料は、純水で満たされた超音波洗浄機に投入され、光触媒粒子が純水中で十分に分散していることを確認した上で、ガラス繊維織物6Aを浸漬して当該ガラス繊維織物6Aのガラス繊維間に担持させる。尚、本実施の形態では、純水を使用した場合を説明したが、光触媒材料の粒子の分散性を改良するため、分散材(界面活性剤)を0.1%から数%(光触媒材料に対する重量比)を水に混ぜてもよいし、臭気ガス吸着特性を改良するために吸着剤を混ぜてもよい。ガラス繊維織物6Aへの光触媒材料の目付け量は、ガラス繊維織物6Aから光触媒粒子の脱落性と脱臭性能の確保の観点から、200~500g/mとなるよう行う。図5にガラス繊維織物6Aの顕微鏡写真、図6にガラス繊維6Aに対する光触媒である酸化チタンの粒子が担持されている状態の顕微鏡写真を示す。 The photocatalyst starting material is put into an ultrasonic cleaning machine filled with pure water, and after confirming that the photocatalyst particles are sufficiently dispersed in pure water, the glass fiber fabric 6A is immersed in the glass. It is made to support between the glass fibers of the fiber fabric 6A. In this embodiment, the case where pure water is used has been described. However, in order to improve the dispersibility of the particles of the photocatalytic material, the dispersion material (surfactant) is changed from 0.1% to several percent (relative to the photocatalytic material (Weight ratio) may be mixed with water, or an adsorbent may be mixed to improve odor gas adsorption characteristics. The basis weight of the photocatalyst material on the glass fiber fabric 6A is set to 200 to 500 g / m 2 from the viewpoint of securing the photocatalyst particle shedding from the glass fiber fabric 6A and the deodorizing performance. FIG. 5 shows a photomicrograph of the glass fiber fabric 6A, and FIG. 6 shows a photomicrograph in a state where titanium oxide particles as a photocatalyst for the glass fiber 6A are supported.
 ガラス繊維織物6Aに用いるガラス繊維は、直径が約2~10μmでSiO成分が50%以上(より好ましくは60%以上)のものが好適で、ガラス繊維の密度は、縦が20本のもと糸、横の密度が18本のもと糸を使用して縦横に織ってガラス繊維織物としている。 The glass fiber used for the glass fiber fabric 6A is preferably a glass fiber having a diameter of about 2 to 10 μm and a SiO 2 component of 50% or more (more preferably 60% or more). The yarn is woven vertically and horizontally using 18 yarns having a horizontal density of 18 to create a glass fiber fabric.
 このガラス繊維織物6Aについては、開口率を20%から約10%刻みで試験した結果、図7のグラフに示すように、開口率が小さいほど光触媒の単位担持量g/mは大きいが、開口率が30%以下になると圧力損失が増大し、機械的に担持させているだけの光触媒粒子が脱落して急激に脱臭性能が低下するので、開口率は30%以上が好ましい。また、開口率が60%を超えるようになると、光触媒の絶対的な存在量が激減して効果的な脱臭効果が得られなくなる。 About this glass fiber fabric 6A, as a result of testing the aperture ratio in increments of about 10% from 20%, as shown in the graph of FIG. 7, the smaller the aperture ratio, the larger the unit loading g / m 2 of the photocatalyst, When the aperture ratio is 30% or less, the pressure loss increases, and the photocatalyst particles that are mechanically supported fall off, and the deodorization performance is rapidly reduced. Therefore, the aperture ratio is preferably 30% or more. On the other hand, when the aperture ratio exceeds 60%, the absolute abundance of the photocatalyst is drastically reduced and an effective deodorizing effect cannot be obtained.
 上記のプロセスで得られた光触媒粒子を担持したガラス繊維織物6Aは、かかる状態では形状の安定性が欠如しているので、図4に示すように、耐光性の高い樹脂からなるフレーム6Cで周囲を押さえて保形し、光触媒シート6としている。 The glass fiber woven fabric 6A carrying the photocatalyst particles obtained by the above process lacks shape stability in such a state. Therefore, as shown in FIG. 4, the frame 6C is made of a resin having high light resistance. The photocatalyst sheet 6 is formed by holding the shape.
 上記構成の光触媒脱臭装置1は、図1に示したように例えば、冷蔵庫100内の空気通路103に設置して使用し、LED3を点灯させて発光させ、その光にてガラス繊維織物6Aに担持されている光触媒粒子6Bを励起させ、空気中に含有される臭気物質を分解して脱臭する。 As shown in FIG. 1, the photocatalyst deodorization apparatus 1 having the above-described configuration is used by being installed in the air passage 103 in the refrigerator 100, for example, lighting the LED 3 to emit light, and supporting the light on the glass fiber fabric 6A with the light. The photocatalyst particles 6B are excited to decompose and deodorize odorous substances contained in the air.
 以上のように、本実施の形態の光触媒脱臭装置1によれば、光触媒シート6に採用した光透過性のガラス繊維織物6Aのガラス繊維間に光触媒粒子6Bを担持させ、LED3を照射して光触媒6Bを励起させて臭気物質を分解させるものなので、ガラス繊維の光透過性の故にLED3の光を光触媒シート6の全面、表裏両面に到達させて光触媒に照射して光触媒を励起させることができ、効果的に脱臭できる。また、光源がLEDであるために交換することなく長期間連続使用できる利点もある。 As described above, according to the photocatalyst deodorizing apparatus 1 of the present embodiment, the photocatalyst particles 6B are supported between the glass fibers of the light-transmitting glass fiber fabric 6A employed in the photocatalyst sheet 6, and the LED 3 is irradiated to irradiate the photocatalyst. 6B is excited to decompose the odorous substance, so that the photocatalyst can be excited by irradiating the photocatalyst by irradiating the photocatalyst sheet 6 with the light of the LED 3 due to the light transmittance of the glass fiber. Deodorize effectively. In addition, since the light source is an LED, there is an advantage that it can be used continuously for a long time without replacement.
 また、光触媒シート6の開口率を30%~60%とすることで、圧力損失を抑えることができる。また、光触媒シート6のガラス繊維を、SiOを50%以上の成分比とする素材で成るものとしたことにより、光透過性が良好であり、上記のように光触媒シート6の全面、表裏両面に到達させて光触媒に照射して励起させることができ、効果的に脱臭できる。 Further, the pressure loss can be suppressed by setting the opening ratio of the photocatalyst sheet 6 to 30% to 60%. In addition, the glass fiber of the photocatalyst sheet 6 is made of a material having a component ratio of 50% or more of SiO 2 , so that the light transmittance is good. Can be excited by irradiating the photocatalyst and effectively deodorizing.
 また、図8のグラフに示すように、光触媒シート6のガラス繊維の直径を10μm以上とすれば光触媒のガラス繊維からの脱落が顕著となり光触媒による分解性能が低下するが、10μm以下とすることでガラス繊維間に光触媒の粒子を密度高く効果的に安定して担持させることができて、大きな光触媒作用が得られるようにできる。 Moreover, as shown in the graph of FIG. 8, when the diameter of the glass fiber of the photocatalyst sheet 6 is 10 μm or more, the photocatalyst is detached from the glass fiber significantly, and the decomposition performance by the photocatalyst is reduced. The photocatalyst particles can be efficiently and stably supported between the glass fibers, and a large photocatalytic action can be obtained.
 さらに、本実施の形態の光触媒脱臭装置1は、風速0.2m~3m/秒の低風速下で使用するものであるが、このような低風速下では、ガラス繊維間に光触媒の粒子を単に機械的に担持させた状態でも粒子を空気の流れによって脱落させることなく使用でき、この面からも長期間連続使用が可能となる。 Furthermore, the photocatalyst deodorization apparatus 1 according to the present embodiment is used at a low wind speed of 0.2 m to 3 m / sec. However, at such a low wind speed, the photocatalyst particles are simply placed between the glass fibers. Even in the state of being mechanically supported, the particles can be used without being dropped by the flow of air, and from this aspect, they can be used continuously for a long time.
 さらに、本実施の形態によれば、ガラス繊維間に光触媒の粒子を機械的に担持させるだけであり、粘着あるいは接着させるための薬剤を用いることなく光触媒シートにガラス繊維に光触媒粒子を担持させるので、製造コストの低下も図れる利点がある。 Furthermore, according to the present embodiment, the photocatalyst particles are merely mechanically supported between the glass fibers, and the photocatalyst particles are supported on the glass fibers on the photocatalyst sheet without using an agent for adhesion or adhesion. There is an advantage that the manufacturing cost can be reduced.
 [第2の実施の形態]
 次に、本発明の第2の実施の形態の光触媒脱臭装置1について説明する。本実施の形態の光触媒脱臭装置1も、図1に示すように冷蔵庫100の庫内に脱臭のために設置する装置である。また、本実施の形態の構造は、第1の実施の形態と同様であり、図2~図4に示すものであり、担持された光触媒の粒子を励起するためのLED3と複数の通風孔4を設け、かつLED3を実装したLED実装基板5、それと略平行に配置された複数の光触媒シート6、LED実装基板5と対向し、略平行に配置された通風孔4を設けた対向基板7、そして、これらの板材の位置を保持し、形状を保持し補強する枠体で成る筐体8から構成されている。
[Second Embodiment]
Next, the photocatalyst deodorization apparatus 1 of the 2nd Embodiment of this invention is demonstrated. The photocatalyst deodorization apparatus 1 of this Embodiment is also an apparatus installed for deodorization in the refrigerator 100 as shown in FIG. The structure of the present embodiment is the same as that of the first embodiment, and is as shown in FIGS. 2 to 4. The LED 3 and the plurality of ventilation holes 4 for exciting the supported photocatalyst particles are used. LED mounting substrate 5 on which LED 3 is mounted, a plurality of photocatalyst sheets 6 disposed substantially parallel to the LED mounting substrate 5, a counter substrate 7 provided with ventilation holes 4 facing the LED mounting substrate 5 and disposed substantially in parallel, And it is comprised from the housing | casing 8 which consists of a frame body which hold | maintains the position of these board | plate materials, and hold | maintains and reinforces a shape.
 本実施の形態の場合、LED実装基板5に実装するLED3の波長が第1の実施の形態のものとは異なり、近紫外線の可視光の波長λ=405nm、光量Po=6.2mW、順方向電流30mAのLEDダイを実装している。この実装基板5の作成方法は、第1の実施の形態と同様である。 In the case of the present embodiment, the wavelength of the LED 3 mounted on the LED mounting substrate 5 is different from that of the first embodiment, the wavelength λ = 405 nm of visible light of near ultraviolet light, the light amount Po = 6.2 mW, the forward direction. An LED die with a current of 30 mA is mounted. The method for creating the mounting substrate 5 is the same as that in the first embodiment.
 本実施の形態の場合にも、LED実装基板5におけるLEDダイ3の搭載個数は、LED1個あたりの光量Poと、光触媒材料を担持したガラス繊維製の光触媒シート6の面積と、光触媒シート6とLED発光面間距離とから割り出して、複数の光触媒シート6のいずれも、その光触媒シート6上での光照射強度が1mW/cm以上となるよう設計し、10個~20個とする。 Also in the case of the present embodiment, the number of LED dies 3 mounted on the LED mounting substrate 5 includes the light amount Po per LED, the area of the photocatalytic sheet 6 made of glass fiber carrying the photocatalytic material, the photocatalytic sheet 6 Calculated from the distance between the LED light emitting surfaces, each of the plurality of photocatalyst sheets 6 is designed so that the light irradiation intensity on the photocatalyst sheet 6 is 1 mW / cm 2 or more, and is 10 to 20 pieces.
 光触媒シート6のガラス繊維織物6Aのガラス繊維間に担持させる光触媒6Bは、市販の窒素をドーピングし可視光域(紫色、λ=400~450nm)で触媒活性が知られている市販の可視光型光触媒材料(平均粒度は約2μm。フィッシャー型サブシーブサイザーによる測定)を出発原料とした。この光触媒粒子をガラス繊維織物6Aのガラス繊維間に担持させる方法は、第1の実施の形態と共通である。 The photocatalyst 6B supported between the glass fibers of the glass fiber fabric 6A of the photocatalyst sheet 6 is a commercially available visible light type doped with commercially available nitrogen and known for its catalytic activity in the visible light region (purple, λ = 400 to 450 nm). A photocatalyst material (average particle size is about 2 μm, measured with a Fischer-type sub-sieving sizer) was used as a starting material. The method for supporting the photocatalyst particles between the glass fibers of the glass fiber fabric 6A is the same as that in the first embodiment.
 ガラス繊維織物6Aに用いるガラス繊維は第1の実施の形態と同様であり、直径が約2~10μmでSiO成分が50%以上(より好ましくは60%以上)のものが好適で、ガラス繊維の密度は、縦が20本のもと糸、横の密度が18本のもと糸を使用して縦横に織ってガラス繊維織物としている。 The glass fiber used for the glass fiber fabric 6A is the same as that of the first embodiment, and preferably has a diameter of about 2 to 10 μm and a SiO 2 component of 50% or more (more preferably 60% or more). The density of the woven fabric is a glass fiber fabric by weaving vertically and horizontally using 20 yarns in the vertical direction and 18 yarns in the horizontal direction.
 このガラス繊維織物6Aの開口率も、第1の実施の形態と同様であり、30%以上が好まく、また60%を超えない範囲とする。 The aperture ratio of the glass fiber fabric 6A is the same as that in the first embodiment, and is preferably 30% or more and not more than 60%.
 上記のプロセスで得られた可視光型光触媒の粒子を担持したガラス繊維織物6Aは、かかる状態では形状の安定性が欠如しているので、第1の実施の形態と同様、図4に示したように、耐光性の高い樹脂からなるフレーム6Cで周囲を押さえて保形し、光触媒シート6とする。 Since the glass fiber fabric 6A carrying the visible light photocatalyst particles obtained by the above process lacks shape stability in such a state, it is shown in FIG. 4 as in the first embodiment. As described above, the photocatalyst sheet 6 is formed by holding the periphery of the frame 6C made of a highly light-resistant resin and holding the shape.
 上記構成の光触媒脱臭装置1は、図1に示したように空気通路103に設置して使用し、LED3を点灯させて発光させ、その光にてガラス繊維織物6Aに担持されている光触媒粒子6Bを励起させ、空気中に含有される臭気物質を分解して脱臭する。本実施の形態の光触媒脱臭装置1によっても、第1の実施の形態と同様の作用、効果が得られる。本実施の形態では特に、実施例2で説明するようにアンモニア成分を効果的に脱臭する。 The photocatalyst deodorization apparatus 1 having the above-described configuration is used by being installed in the air passage 103 as shown in FIG. 1, and the LED 3 is turned on to emit light, and the photocatalyst particles 6B carried on the glass fiber fabric 6A by the light. Is excited to decompose and deodorize odorous substances contained in the air. Also by the photocatalyst deodorizing apparatus 1 of the present embodiment, the same operations and effects as those of the first embodiment can be obtained. Particularly in the present embodiment, the ammonia component is effectively deodorized as described in Example 2.
 [実施例1]
 第1の実施の形態の光触媒脱臭装置1を用い、光触媒シートの面積50cm、光触媒には酸化チタン(アナタース型80%、ルチル型20%)を1g担持させ、紫外線発光のLED3による光の照射強度2mW/cmとした光触媒脱臭装置1を用い、初期濃度5ppmのアルデヒドが存在する冷蔵庫内で脱臭性能試験を行った。図9のグラフに示すように、従来例の光触媒脱臭装置による脱臭性能と比べると、本実施例1の光触媒脱臭装置の方が約10%程度アルデヒドの分解性能が高いことが確認できた。
[Example 1]
Using the photocatalyst deodorizing apparatus 1 of the first embodiment, the photocatalyst sheet has an area of 50 cm 2 , 1 g of titanium oxide (anatase type 80%, rutile type 20%) is supported on the photocatalyst, and light is emitted from the LED 3 that emits ultraviolet light. Using the photocatalyst deodorization apparatus 1 having an intensity of 2 mW / cm 2 , a deodorization performance test was performed in a refrigerator in which an aldehyde having an initial concentration of 5 ppm was present. As shown in the graph of FIG. 9, it was confirmed that the photocatalytic deodorization apparatus of Example 1 has a higher aldehyde decomposition performance by about 10% than the deodorization performance of the conventional photocatalytic deodorization apparatus.
 [実施例2]
 第2の実施の形態の光触媒脱臭装置1を用い、光触媒シートの面積50cm、光触媒には可視光光触媒を1.5g担持させ、近紫外線発光のLED3による光の照射強度2.5mW/cmとした光触媒脱臭装置1を用い、初期濃度20ppmのアンモニアが存在する冷蔵庫内で脱臭性能試験を行った。図10のグラフに示すように、従来例の光触媒脱臭装置による脱臭性能と比べると、開始初期でのアンモニア分解性能が従来例よりも約35%程度高く、また時間が経過した後も約9%程度アンモニアの分解性能が高いことが確認できた。
[Example 2]
The photocatalyst deodorizing apparatus 1 of the second embodiment is used, the photocatalyst sheet has an area of 50 cm 2 , the photocatalyst carries 1.5 g of visible light photocatalyst, and the light irradiation intensity by the near ultraviolet light emitting LED 3 is 2.5 mW / cm 2. Using the photocatalyst deodorizing apparatus 1 described above, a deodorizing performance test was performed in a refrigerator in which ammonia with an initial concentration of 20 ppm was present. As shown in the graph of FIG. 10, compared with the deodorizing performance of the conventional photocatalytic deodorizing apparatus, the ammonia decomposition performance at the beginning of the start is about 35% higher than that of the conventional example, and about 9% after the passage of time. It was confirmed that the ammonia decomposition performance was high.
 [第3の実施の形態]
 次に、本発明の第3の実施の形態の光触媒脱臭装置1について説明する。本実施の形態の光触媒脱臭装置1の構造は、第1の実施の形態と同様、図2~図4に示すものであり、担持された光触媒の粒子を励起するためのLED3と複数の通風孔4を設け、かつLED3を実装したLED実装基板5、それと略平行に配置された複数の光触媒シート6、LED実装基板5と対向し、略平行に配置された通風孔4を設けた対向基板7、そして、これらの板材の位置を保持し、形状を保持し補強する枠体で成る筐体8から構成されている。尚、本実施の形態の光触媒脱臭装置1は、冷蔵庫の庫内の脱臭だけでなく、例えば風速5m/秒を超えるような大型空調機の脱臭装置にも適用でき、特に用途が限定されるものではない。
[Third Embodiment]
Next, the photocatalyst deodorization apparatus 1 of the 3rd Embodiment of this invention is demonstrated. Similar to the first embodiment, the structure of the photocatalyst deodorization apparatus 1 is as shown in FIGS. 2 to 4, and the LED 3 and a plurality of ventilation holes for exciting the supported photocatalyst particles. 4 and LED mounting substrate 5 on which LED 3 is mounted, a plurality of photocatalyst sheets 6 arranged substantially parallel to the LED mounting substrate 5, a counter substrate 7 provided with ventilation holes 4 facing the LED mounting substrate 5 and arranged substantially parallel to the LED mounting substrate 5. And it is comprised from the housing | casing 8 which consists of a frame body which hold | maintains the position of these board | plate materials, and maintains and reinforces a shape. In addition, the photocatalyst deodorization apparatus 1 of this Embodiment can be applied not only to the deodorization in the refrigerator compartment, but also to a deodorization apparatus of a large air conditioner that has a wind speed exceeding 5 m / second, for example, and its use is particularly limited. is not.
 本実施の形態の場合、LED実装基板5に実装するLED3の波長は第1の実施の形態のものと同様である。これには、第2の実施の形態のものを採用することもできる。 In the case of the present embodiment, the wavelength of the LED 3 mounted on the LED mounting substrate 5 is the same as that of the first embodiment. For this, the second embodiment can be adopted.
 本実施の形態の場合、LED実装基板5におけるLEDダイの搭載個数も第1の実施の形態と同様に設計する。光触媒シート6のガラス繊維織物6A1のガラス繊維間及びガラス繊維上に担持させる光触媒6Bも第1の実施の形態と同様である。 In the case of the present embodiment, the number of LED dies mounted on the LED mounting substrate 5 is also designed in the same manner as in the first embodiment. The photocatalyst 6B carried between the glass fibers of the glass fiber fabric 6A1 of the photocatalyst sheet 6 and on the glass fibers is the same as in the first embodiment.
 本実施の形態の特徴は、図11の写真に示すガラス繊維織物6Aにあり、直径1μm以下の孔の多孔質ガラス繊維を用い、かつ、この多孔質ガラス繊維を整然と束ねた横糸群6A1と、多孔質ガラス繊維を乱雑に束ねた縦糸群6A2から織物を構成している点にある。ガラス繊維は、市販の多孔質ガラス繊維を用いる。当該ガラス繊維を縦糸15~20本、横糸10~20本束ね、織物状に加工してガラス繊維織物6Aとしている。ガラス繊維織物6Aの開口率は、第1の実施の形態と同様、30%以上が好まく、また60%を超えない範囲とする。 A feature of the present embodiment is the glass fiber fabric 6A shown in the photograph of FIG. 11, which uses porous glass fibers having pores with a diameter of 1 μm or less, and a weft group 6A1 in which the porous glass fibers are bundled in an orderly manner, The woven fabric is composed of a warp group 6A2 in which porous glass fibers are randomly bundled. As the glass fiber, a commercially available porous glass fiber is used. The glass fiber is bundled with 15 to 20 warp yarns and 10 to 20 weft yarns, and processed into a woven fabric to form a glass fiber fabric 6A. As in the first embodiment, the opening ratio of the glass fiber fabric 6A is preferably 30% or more, and not more than 60%.
 図12に示すように、このガラス繊維織物6Aをエマルジョン溶液中で10分間、超音波を印加した状態で浸漬することによりガラス繊維間及びガラス繊維上に光触媒粒子6Bを担持させている。この光触媒粒子6Bの担持は、例えば、純水に燐酸を加えPH(水素イオン濃度)を2~7に調整した水溶液に上記光触媒粒子を加えたエマルジョン溶液を作成し、そのエマルジョン溶液中にガラス繊維織物6Aを10分間浸漬することにより行う。 As shown in FIG. 12, the photocatalyst particles 6B are supported between the glass fibers and on the glass fibers by immersing the glass fiber woven fabric 6A in the emulsion solution for 10 minutes while applying ultrasonic waves. The photocatalyst particles 6B are supported by, for example, preparing an emulsion solution in which the photocatalyst particles are added to an aqueous solution in which phosphoric acid is added to pure water and the pH (hydrogen ion concentration) is adjusted to 2 to 7, and the glass fiber is added to the emulsion solution. It is performed by immersing the fabric 6A for 10 minutes.
 上記のプロセスで得られた可視光型光触媒の粒子を担持したガラス繊維織物6Aは、かかる状態では形状の安定性が欠如しているので、第1の実施の形態と同様、図4に示したように、耐光性の高い樹脂から成るフレーム6Cで周囲を押さえて保形し、光触媒シート6とする。 Since the glass fiber fabric 6A carrying the visible light photocatalyst particles obtained by the above process lacks shape stability in such a state, it is shown in FIG. 4 as in the first embodiment. As described above, the photocatalyst sheet 6 is formed by holding the periphery of the frame 6C made of a highly light-resistant resin and holding the shape.
 上記構成の第3の実施の形態の光触媒脱臭装置1は、図1に示したように空気通路103に設置して使用し、LED3を点灯させて発光させ、その光にてガラス繊維織物6Aに担持されている光触媒粒子6Bを励起させ、空気中に含有される臭気物質を分解して脱臭する。本実施の形態では特に、アンモニア成分を効果的に脱臭する。 The photocatalyst deodorizing apparatus 1 of the third embodiment having the above configuration is used by being installed in the air passage 103 as shown in FIG. 1, and the LED 3 is turned on to emit light, and the light is applied to the glass fiber fabric 6A. The supported photocatalyst particles 6B are excited to decompose and deodorize odorous substances contained in the air. Particularly in the present embodiment, the ammonia component is effectively deodorized.
 本実施の形態の光触媒脱臭装置1によれば、ガラス繊維を整然と束ねた横糸群6A1と、ガラス繊維を乱雑に束ねた縦糸群6A2とを織物状に織込んだガラス繊維織物6Aを光触媒シート6とすることにより、光触媒微粒子6Bのガラス繊維への密着力が格段に向上する。これはガラス繊維を乱雑に束ねた縦糸群6A2の存在により、乱れたガラス繊維が元の直線状の形状に戻ろうとする力が働き、この復元力が光触媒粒子を抑えることに作用すると思われる。また、一般的に光触媒材料の触媒活性が光触媒粒子の粒度の減少と共に高まることが知られているが、ガラス繊維を直径1μm以下の孔を持つ多孔質ガラスとすることにより、図12に示したように触媒活性の高い1μm以下の光触媒粒子6Bをガラス繊維6Aに存在する直径1μm以下の孔6A3にトラップすることができて、長期間脱落することになく担持でき、光触媒能力を長期間にわたり維持できる。このため、本実施の形態の光触媒脱臭装置は、図1に示したような冷蔵庫に使用できるだけでなく、例えば風速の高い5m/秒の大型空調機にも適用が可能である。 According to the photocatalyst deodorizing apparatus 1 of the present embodiment, the photocatalyst sheet 6 is made of a glass fiber fabric 6A in which a weft group 6A1 in which glass fibers are orderly bundled and a warp group 6A2 in which glass fibers are randomly bundled is woven in a woven shape. As a result, the adhesion of the photocatalyst fine particles 6B to the glass fibers is remarkably improved. This is considered to be due to the presence of the warp group 6A2 in which glass fibers are randomly bundled, and a force that causes the disturbed glass fibers to return to the original linear shape works, and this restoring force acts to suppress the photocatalyst particles. Further, it is generally known that the catalytic activity of the photocatalytic material increases with a decrease in the particle size of the photocatalyst particles. However, the glass fiber is a porous glass having pores having a diameter of 1 μm or less, as shown in FIG. In this way, the photocatalytic particles 6B having a high catalytic activity of 1 μm or less can be trapped in the holes 6A3 having a diameter of 1 μm or less existing in the glass fiber 6A, and can be supported without dropping for a long time, and the photocatalytic performance is maintained for a long time. it can. For this reason, the photocatalyst deodorization apparatus of this Embodiment can be applied not only to the refrigerator as shown in FIG. 1 but also to, for example, a large air conditioner with a high wind speed of 5 m / sec.
 図13は、本実施の形態の光触媒脱臭装置1における光触媒シート6の風速と光触媒脱落率との関係を示すグラフであり、風速5m/秒に至るまで光触媒粒子の脱落率がほとんど見られないことが確認できた。 FIG. 13 is a graph showing the relationship between the wind speed of the photocatalyst sheet 6 and the photocatalyst removal rate in the photocatalyst deodorization apparatus 1 of the present embodiment, and almost no photocatalyst particle dropout rate is seen until the wind speed reaches 5 m / sec. Was confirmed.
 [第1~第3の実施の形態の変形例]
 第1~第3の実施の形態の光触媒脱臭装置1では、光触媒シート6を3枚用い、片側のLED実装基板5から光を照射する構成にしたが、これに限られるものでない。例えば、LED実装基板5は2枚用い、光触媒シート6の表裏両側から光を照射する構成にすることができる。また、それらの場合に、光触媒シート6を1枚あるいは2枚だけ用いることもでき、4枚以上用いることも可能である。
[Modifications of the first to third embodiments]
In the photocatalyst deodorizing apparatus 1 of the first to third embodiments, three photocatalyst sheets 6 are used and light is emitted from the LED mounting substrate 5 on one side, but the present invention is not limited to this. For example, two LED mounting substrates 5 can be used and light can be irradiated from both the front and back sides of the photocatalytic sheet 6. In those cases, only one or two photocatalyst sheets 6 can be used, and four or more photocatalyst sheets 6 can be used.
 [第4の実施の形態]
 次に、本発明の第4の実施の形態の光触媒脱臭装置1について説明する。本実施の形態の光触媒脱臭装置1も、図1に示すように冷蔵庫100の庫内に脱臭のために設置する装置である。ただし、他の場所の消臭、脱臭用途に用いることを妨げるものでもない。
[Fourth Embodiment]
Next, the photocatalyst deodorization apparatus 1 of the 4th Embodiment of this invention is demonstrated. The photocatalyst deodorization apparatus 1 of this Embodiment is also an apparatus installed for deodorization in the refrigerator 100 as shown in FIG. However, it does not preclude use in other places for deodorization and deodorization.
 図14~図16に示すように、本実施の形態の光触媒脱臭装置1は、複数の通風孔4を設け、かつガラス繊維に担持された光触媒の微粒子を励起するためのLED3を実装したLED実装基板5と、それと略平行に配置された複数種、複数枚の光触媒シート61,62、及びLED実装基板5と対向し略平行に配置された、同じく複数の通風孔4を設けた対向基板7、そして、これらの板材の位置を保持し、形状を保持し補強する枠体で成る筐体8、そして天板9から構成されている。本実施の形態にあって、光触媒シート61,62は3枚、装着されている。光触媒シート61が2枚、光触媒シート62が1枚である。なお、前述の対向基板7は、脱臭性能向上のため、LED3を実装したLED実装基板5と同じものであってもよい。 As shown in FIGS. 14 to 16, the photocatalyst deodorizing apparatus 1 according to the present embodiment is provided with a plurality of ventilation holes 4 and an LED mounting on which an LED 3 for exciting photocatalyst fine particles carried on glass fibers is mounted. Opposite substrate 7 provided with a plurality of vent holes 4 which are arranged substantially parallel to the substrate 5 and a plurality of types, a plurality of photocatalyst sheets 61 and 62 arranged substantially parallel to the substrate 5 and the LED mounting substrate 5. The casing 8 is composed of a frame body that holds the position of these plate members, maintains the shape, and reinforces them, and a top plate 9. In the present embodiment, three photocatalytic sheets 61 and 62 are mounted. There are two photocatalyst sheets 61 and one photocatalyst sheet 62. In addition, the above-mentioned opposing board | substrate 7 may be the same as the LED mounting board 5 which mounted LED3 for the deodorizing performance improvement.
 すなわち、第4の実施の形態における光触媒脱臭装置1は、図2~図4に示した第1の実施の形態における光触媒脱臭装置1と基本的な構成は共通である。本実施の形態における光触媒脱臭装置1が第1の実施の形態における光触媒脱臭装置1と異なる点は、第1の実施の形態における3枚の光触媒シート6は全て同一の物であったが、本実施の形態における3枚の光触媒シートは2種類の光触媒シート61,62から成る点である。よって、図14~図16における図2~図4と共通する部材に関しては同一の符号を用いる。 That is, the basic structure of the photocatalyst deodorizing apparatus 1 in the fourth embodiment is the same as that of the photocatalytic deodorizing apparatus 1 in the first embodiment shown in FIGS. The photocatalyst deodorizing apparatus 1 in the present embodiment is different from the photocatalyst deodorizing apparatus 1 in the first embodiment in that the three photocatalyst sheets 6 in the first embodiment are all the same. The three photocatalyst sheets in the embodiment are two types of photocatalyst sheets 61 and 62. Therefore, the same reference numerals are used for members common to FIGS. 2 to 4 in FIGS.
 本実施の形態における筺体8の材料は、第1の実施の形態と同様に、紫外線に対する高い耐候性と基質ガスに対する変色が少ない観点から、アクリル樹脂(ポリメタクリル酸メチル樹脂)でもよいし、さらにはアクリル樹脂であっても発臭を抑えた、重合度を10,000~15,000程度に高めた材料でもよい。また比較的コストが安価で成型性の良好なABS樹脂(アクリルニトリル-ブタジエン-スチレン共重合合成樹脂)でもよいし、強度向上のためABS樹脂にガラス繊維を混錬させコンパウンドとした強化ABS樹脂を使用してもよい。上記材料は、金型を用い所定の形状になるよう成型される。 As in the first embodiment, the material of the casing 8 in the present embodiment may be an acrylic resin (polymethyl methacrylate resin) from the viewpoint of high weather resistance to ultraviolet rays and less discoloration to the substrate gas, May be an acrylic resin, which suppresses odor generation and has a degree of polymerization increased to about 10,000 to 15,000. Also, an ABS resin (acrylonitrile-butadiene-styrene copolymer synthetic resin) that is relatively inexpensive and has good moldability may be used, or a reinforced ABS resin that is a compound obtained by kneading glass fiber into ABS resin to improve strength. May be used. The material is molded into a predetermined shape using a mold.
 本実施の形態におけるLED実装基板5は、設置場所の環境に合わせ適切な分布密度で分布するように、通風孔4を適数個設けたガラスエポキシ基板上に電極パターンをプリントしたものであり、波長λ=405nm、光量Po=6.2mW(順方向電流30mA)のLEDダイ3を実装している。このLEDダイ3は、ガラスエポキシ基板上にLEDダイをマウンターで配置後、低融点リフロー炉で240℃、10秒で同基板に融着させることにより実装する。そして、融着後のガラスエポキシ基板上のLEDダイ3の基板電極への結線は、ワイヤーボンダー機にてアノード側とカソード側の2本を25μmの金線で行う。この結線後の基板には、LEDの耐環境性の改善のため、液体ガラスを塗布し40℃で16時間乾燥して固化した後、さらに4日間常温放置する処理をし、最終的なLED実装基板5を得る。 The LED mounting substrate 5 in the present embodiment is obtained by printing an electrode pattern on a glass epoxy substrate provided with an appropriate number of ventilation holes 4 so as to be distributed with an appropriate distribution density according to the environment of the installation location. An LED die 3 having a wavelength λ = 405 nm and a light amount Po = 6.2 mW (forward current 30 mA) is mounted. The LED die 3 is mounted by placing the LED die on a glass epoxy substrate with a mounter and then fusing the LED die 3 to the substrate in a low melting point reflow furnace at 240 ° C. for 10 seconds. And the wire connection to the board | substrate electrode of LED die 3 on the glass epoxy board | substrate after a fusion | bonding is performed with a 25 micrometer gold | metal wire by the wire bonder machine two on the anode side and the cathode side. In order to improve the environmental resistance of the LED, the substrate after this connection is coated with liquid glass, dried at 40 ° C. for 16 hours and solidified, and then left to stand at room temperature for 4 days to obtain the final LED mounting. A substrate 5 is obtained.
 本実施の形態におけるLED実装基板5上のLEDダイ3の搭載個数は、第1の実施の形態と同様に、LED1個あたりの光量Poと、光触媒シート6の面積と、光触媒シート6とLED発光面間距離とから割り出して、複数の光触媒シート6上での光照射強度が1mW/cm以上となるよう設計し、10個~20個とする。 As in the first embodiment, the number of LED dies 3 mounted on the LED mounting substrate 5 in the present embodiment is the light amount Po per LED, the area of the photocatalyst sheet 6, the photocatalyst sheet 6 and the LED emission. Designed so that the light irradiation intensity on the plurality of photocatalyst sheets 6 is 1 mW / cm 2 or more, calculated from the distance between the surfaces, the number is 10 to 20.
 光触媒シート61のガラス繊維6A間に担持させる光触媒粒子61Bは、窒素をドーピングし可視光域(紫色、λ=400~450nm)で触媒活性が知られている市販の可視光型光触媒材料(平均粒度は約40μm)である。また、光触媒シート62のガラス繊維6A間に担持させる光触媒粒子62Bは、酸化タングステン可視光型光触媒材料(平均粒度は約130μm)である。 The photocatalyst particles 61B supported between the glass fibers 6A of the photocatalyst sheet 61 are commercially available visible light type photocatalyst materials (average particle size) doped with nitrogen and known for catalytic activity in the visible light region (purple, λ = 400 to 450 nm). Is about 40 μm). The photocatalyst particles 62B carried between the glass fibers 6A of the photocatalyst sheet 62 are tungsten oxide visible light photocatalyst materials (average particle size is about 130 μm).
 ガラス繊維6Aにより2種類それぞれの光触媒粒子61B,62Bの担持は、純水に燐酸を加えpH(水素イオン濃度)を2~7に調整したアルコール系水溶液に上記光触媒材料を加えた分散溶液にガラス繊維6Aを10分間浸漬し、その後100℃で2時間乾燥することにより行う。こうして、2種類それぞれの光触媒粒子61B,62Bがガラス繊維間に担持された2種類のガラス繊維織物61A,62Aを得ている。 The two types of photocatalyst particles 61B and 62B are supported by the glass fiber 6A in a dispersion obtained by adding phosphoric acid to pure water and adjusting the pH (hydrogen ion concentration) to 2 to 7. The fiber 6A is immersed for 10 minutes and then dried at 100 ° C. for 2 hours. Thus, two types of glass fiber fabrics 61A and 62A in which two types of photocatalyst particles 61B and 62B are supported between the glass fibers are obtained.
 上記プロセスで得られた光触媒粒子61B,62Bそれぞれを担持したガラス繊維織物61A,62Aそれぞれの端部を、形状の安定性を付与する目的で、耐光性の高い樹脂からなるフレーム6Cで押さえ、光触媒シート61,62それぞれとしている。 The ends of the glass fiber fabrics 61A and 62A carrying the photocatalyst particles 61B and 62B obtained by the above-described process are pressed by a frame 6C made of a highly light-resistant resin for the purpose of imparting shape stability. The sheets 61 and 62 are respectively used.
 そして、図14に示すように、酸化チタン(TiO)光触媒粒子61Bを担持した光触媒シート61の2枚を筺体8の空気導入側Inに、酸化タングステン(WO)光触媒粒子62Bを担持した光触媒シート62の1枚を筺体8の空気導入側Outに嵌め込み、さらにそれらの両側において、予め作製しておいたLED実装基板5、対向基板7を筺体8に嵌め込み、天板9を閉じて光触媒脱臭装置1としている。 Then, as shown in FIG. 14, two photocatalyst sheets 61 carrying titanium oxide (TiO 2 ) photocatalyst particles 61B are placed on the air introduction side In of the housing 8 and the photocatalyst carrying tungsten oxide (WO 3 ) photocatalyst particles 62B. One of the sheets 62 is fitted into the air introduction side Out of the casing 8, and the LED mounting substrate 5 and the counter substrate 7 prepared in advance are fitted into the casing 8 on both sides thereof, the top plate 9 is closed, and the photocatalyst deodorization is performed. The apparatus 1 is used.
 尚、本実施の形態では純水を使用した場合を説明したが、光触媒材料の微粒子の分散性を改良するため、分散材(界面活性剤)を0.1wt%から数wt%(光触媒材料に対する重量比)を水に混ぜてもよいし、臭気ガス吸着特性を改良するため吸着剤を混ぜてもよい。また、基質ガスの分解は、光により励起された光触媒微粒子上で行われることから、送風手段があっても本発明の本質はいささかも損なわれない。 In this embodiment, the case where pure water is used has been described. However, in order to improve the dispersibility of the fine particles of the photocatalyst material, the dispersion material (surfactant) is changed from 0.1 wt% to several wt% (relative to the photocatalyst material). (Weight ratio) may be mixed with water, or an adsorbent may be mixed to improve odor gas adsorption characteristics. Further, since the decomposition of the substrate gas is performed on the photocatalyst fine particles excited by light, the essence of the present invention is not impaired even if there is a blowing means.
 ガラス繊維織物61A,62Aの光触媒粒子61B,62Bの目付け量は、ガラス繊維6Aから光触媒粒子の脱落性と脱臭性能の確保の観点から、200~500g/mとなるよう行う。図17にガラス繊維6Aの顕微鏡写真、図18にガラス繊維織物61Aにおけるガラス繊維6Aに対する光触媒である酸化チタン粒子61Bが担持されている状態の顕微鏡写真を示す。ガラス繊維織物62Aについても、そのガラス繊維6Aに対する酸化タングステン光触媒粒子62Bの担持状態は同様である。尚、図17の顕微鏡写真に示すように、ガラス繊維織物61A,62Aについては、縦糸のガラス繊維6Aは整然と束ねてあるが、横糸のガラス繊維6Aはほぐして不揃いな並びにしている。これにより、光触媒粒子61B,62Bを担持しやすくしている。また、縦糸と横糸は逆にしてもよい。 The basis weight of the photocatalyst particles 61B and 62B of the glass fiber fabric 61A and 62A is set to 200 to 500 g / m 2 from the viewpoint of securing the detachability of the photocatalyst particles from the glass fiber 6A and the deodorizing performance. FIG. 17 shows a photomicrograph of glass fiber 6A, and FIG. 18 shows a photomicrograph of a state in which titanium oxide particles 61B as a photocatalyst for glass fiber 6A in glass fiber fabric 61A are supported. The supporting state of the tungsten oxide photocatalyst particles 62B on the glass fibers 6A is the same for the glass fiber fabric 62A. As shown in the micrograph of FIG. 17, in the glass fiber fabrics 61A and 62A, the warp glass fibers 6A are bundled in an orderly manner, but the weft glass fibers 6A are loosely arranged. As a result, the photocatalyst particles 61B and 62B are easily carried. The warp and weft may be reversed.
 ガラス繊維織物61A,62Aに用いるガラス繊維6Aは、直径が約2~10μmでSiO成分が50%以上(より好ましくは60%以上)のものが好適で、ガラス繊維織物としては、ガラス繊維6Aの密度が、例えば、縦が20本のもと糸、横の密度が18本のもと糸を使用して縦横に織ってガラス繊維織物としている。 The glass fibers 6A used for the glass fiber fabrics 61A and 62A are preferably those having a diameter of about 2 to 10 μm and an SiO 2 component of 50% or more (more preferably 60% or more). For example, a glass fiber woven fabric is obtained by weaving vertically and horizontally using, for example, 20 yarns having a vertical length and 18 yarns having a horizontal density.
 このガラス繊維織物61A,62Aについては、開口率が30%以下になると圧力損失が増大し、機械的に担持させているだけの光触媒粒子が脱落して急激に脱臭性能が低下するので、開口率は30%以上が好ましい。また、開口率が60%を超えるようになると、光触媒の絶対的な存在量が激減して効果的な脱臭効果が得られなくなる。 With respect to the glass fiber fabrics 61A and 62A, the pressure loss increases when the aperture ratio is 30% or less, and the photocatalyst particles that are merely supported mechanically fall off, and the deodorization performance decreases rapidly. Is preferably 30% or more. On the other hand, when the aperture ratio exceeds 60%, the absolute abundance of the photocatalyst is drastically reduced and an effective deodorizing effect cannot be obtained.
 上記構成の光触媒脱臭装置1は、図1に示したように例えば、冷蔵庫100内の空気通路103に設置して使用し、LED3を点灯させて発光させ、その光にてガラス繊維織物61A,62Aに担持されている光触媒粒子61B,62Bを励起させ、空気中に含有される臭気物質を分解して脱臭する。 As shown in FIG. 1, the photocatalyst deodorization apparatus 1 having the above configuration is used by being installed in the air passage 103 in the refrigerator 100, for example, lighting the LED 3 to emit light, and the glass fiber fabrics 61A and 62A by the light. The photocatalyst particles 61B and 62B carried on the substrate are excited to decompose and deodorize odorous substances contained in the air.
 本実施の形態の光触媒脱臭装置1によれば、光触媒シート61,62に採用した光透過性のガラス繊維織物61A,62Aにそのガラス繊維6A間に光触媒粒子61B,62Bを担持させ、LED3を照射して光触媒粒子61B,62Bを励起させて臭気物質を分解させるので、ガラス繊維織物61A,62Aの光透過性の故にLED3の光を光触媒シート61,62の全面、表裏両面に到達させて光触媒に照射して励起させることができ、効果的に脱臭できる。また、光源がLED3であるために交換することなく長期間連続使用できる利点もある。 According to the photocatalyst deodorizing apparatus 1 of the present embodiment, the light-transmitting glass fiber fabrics 61A and 62A employed in the photocatalyst sheets 61 and 62 are supported by the photocatalyst particles 61B and 62B between the glass fibers 6A, and the LED 3 is irradiated. Then, the photocatalyst particles 61B and 62B are excited to decompose the odor substance, so that the light of the LED 3 reaches the entire surface of the photocatalyst sheets 61 and 62 and both the front and back surfaces due to the light transmittance of the glass fiber fabrics 61A and 62A. It can be excited by irradiation and effectively deodorized. Moreover, since the light source is LED3, there is an advantage that it can be used continuously for a long time without replacement.
 また、光触媒シート61,62の開口率を30%~60%とすることで、圧力損失を抑えることができる。また、光触媒シート61,62のガラス繊維6Aを、SiOを50%以上の成分比とする素材で成るものとしたことにより、光透過性が良好であり、上記のように光触媒シート61,62の全面、表裏両面に到達させて光触媒に照射して励起させることができ、効果的に脱臭できる。 Moreover, pressure loss can be suppressed by setting the aperture ratio of the photocatalyst sheets 61 and 62 to 30% to 60%. Further, the glass fiber 6A of the photocatalyst sheets 61 and 62, by which the SiO 2 and be composed of a material that is 50% or more of the component ratio, optical transparency is excellent, as described above photocatalyst sheets 61 and 62 Can be excited by irradiating the photocatalyst by irradiating the entire surface, both front and back surfaces, and effectively deodorizing.
 また、光触媒シート61,62のガラス繊維6Aの直径を10μm以上とすれば光触媒のガラス繊維からの脱落が顕著となり光触媒による分解性能が低下するが、10μm以下とすることでガラス繊維6A間に光触媒の粒子を密度高く効果的に安定して担持させることができて、大きな光触媒作用が得られる。 Moreover, if the diameter of the glass fiber 6A of the photocatalyst sheets 61 and 62 is 10 μm or more, the photocatalyst is dropped off from the glass fiber and the decomposition performance by the photocatalyst is degraded. However, if the diameter is 10 μm or less, the photocatalyst is interposed between the glass fibers 6A. The particles can be supported efficiently with high density and a large photocatalytic action can be obtained.
 本実施の形態の光触媒脱臭装置1は、風速0.2m~3m/秒の低風速下で使用するものであるが、このような低風速下では、ガラス繊維6A間に光触媒粒子61B,62Bを単に機械的に担持させた状態でも粒子を空気の流れによって脱落させることなく使用でき、この面からも長期間連続使用が可能となる。 The photocatalyst deodorizing apparatus 1 of the present embodiment is used at a low wind speed of 0.2 m to 3 m / sec. Under such a low wind speed, the photocatalyst particles 61B and 62B are placed between the glass fibers 6A. Even in a state where the particles are simply mechanically supported, the particles can be used without being dropped by the flow of air. From this aspect, the particles can be used continuously for a long time.
 また、本実施の形態によれば、ガラス繊維6A間に光触媒粒子61B,62Bを機械的に担持させているだけであり、粘着あるいは接着させるための薬剤を用いることなく光触媒シート61,62のガラス繊維6Aに光触媒粒子61B,62Bを担持させるので、製造コストの低下も図れる。 Further, according to the present embodiment, the photocatalyst particles 61B and 62B are merely mechanically supported between the glass fibers 6A, and the glass of the photocatalyst sheets 61 and 62 is used without using an adhesive or adhesive agent. Since the photocatalyst particles 61B and 62B are supported on the fiber 6A, the manufacturing cost can be reduced.
 さらに、本実施の形態の光触媒脱臭装置1では、基質ガスがアンモニアのような弱アルカリ性ガスとアセトアルデヒドのような中性ガス並びにNOXのような酸性ガスから構成される混合ガスを分解する場合、酸化チタン(アナタースを主相)光触媒微粒子61Bをガラス繊維織物61Aに担持した光触媒シート61を当該光触媒脱臭装置1の空気導入側Inにすることによって、まず弱アルカリ成分となるアンモニアが酸化チタン(TiO)によって吸着・分解する。十分にアンモニア濃度が低下した状況下で、第2層となる酸化タングステン(WO)を主成分とした光触媒微粒子62Bをガラス繊維織物62Aに担持した光触媒シート62を光触媒脱臭装置1の排出側Outに設置することによって、残留中性ガスを除去する。酸性ガスの場合は、どちらの光触媒微粒子61B,62Bの触媒活性を損なうものではなく除去される。 Furthermore, in the photocatalytic deodorization apparatus 1 of the present embodiment, when the mixed gas composed of a weak alkaline gas such as ammonia, a neutral gas such as acetaldehyde, and an acidic gas such as NOx is decomposed, the substrate gas is oxidized. By making the photocatalyst sheet 61 carrying the titanium (main phase of anatase) photocatalyst fine particles 61B on the glass fiber fabric 61A into the air introduction side In of the photocatalyst deodorizing apparatus 1, first, ammonia as a weak alkali component is titanium oxide (TiO 2 ) To adsorb and decompose. Under a situation where the ammonia concentration is sufficiently lowered, the photocatalyst sheet 62 in which the photocatalyst fine particles 62B mainly composed of tungsten oxide (WO 3 ) as the second layer are supported on the glass fiber fabric 62A is disposed on the discharge side Out of the photocatalyst deodorizing apparatus 1. To remove residual neutral gas. In the case of acid gas, it is removed without impairing the catalytic activity of either photocatalyst fine particle 61B, 62B.
 これにより、本実施の形態の光触媒脱臭装置1では、酸化電位が深く、したがって酸化分解能力が高いけれども、弱アルカリ環境下で使用すると触媒活性が低下する酸化タングステン光触媒の課題が解決でき、その酸化分解能力を活用できる。 As a result, the photocatalytic deodorization apparatus 1 of the present embodiment can solve the problem of the tungsten oxide photocatalyst whose catalytic activity is reduced when used in a weak alkaline environment, although the oxidation potential is deep and therefore the oxidative decomposition ability is high. Decomposition ability can be utilized.
 また、LED3の封止材料の中をガスが浸透する場合を考えると、概して封止材料の分子間骨格間で形成される自由体積の存在により、ガスが封止材料中を浸透することが考えられているが、この封止材料をシリコン酸化物(ガラス―SiO)とすることにより、基質ガス中の水分やアンモニアの浸入をほぼ完全に防ぐことができる。 Considering the case where the gas penetrates into the sealing material of the LED 3, it is considered that the gas penetrates into the sealing material due to the existence of a free volume formed between the intermolecular skeletons of the sealing material. However, by using silicon oxide (glass-SiO 2 ) as the sealing material, it is possible to almost completely prevent moisture and ammonia from entering the substrate gas.
 [実施例3]
 実施例3として、面積50cmの光触媒シート61、光触媒には酸化チタン粒子(アナタース型80%、ルチル型20%)を1g担持させたもの、面積50cmの光触媒シート62、光触媒には酸化タングステン粒子を1g担持させたもの、これら2枚の光触媒シート61,62をそれぞれ空気入口側In、出口側Outに配置し、紫外線発光のLED3による光の照射強度2mW/cmとした光触媒脱臭装置1を用いた。さらに、実施例3では、LED3の封止材には、シリコン酸化物(ガラス―SiO)を用いた。
[Example 3]
Example 3, the photocatalyst sheet 61 of an area 50 cm 2, the photocatalytic titanium oxide particles (anatase-type 80%, rutile 20%) which was allowed to 1g supported photocatalyst sheet 62 of an area 50 cm 2, the photocatalytic oxide of tungsten A photocatalyst deodorizing apparatus 1 in which 1 g of particles are supported and these two photocatalyst sheets 61 and 62 are arranged on the air inlet side In and the outlet side Out, respectively, and the light irradiation intensity of the LED 3 emitting ultraviolet light is 2 mW / cm 2. Was used. Furthermore, in Example 3, silicon oxide (glass-SiO 2 ) was used as the sealing material of the LED 3.
 比較例1として、実施例3とは逆に、酸化タングステン光触媒シート62を入り口In側に、酸化チタン光触媒シート61を出口側Outに配置した光触媒脱臭装置を用いた。 As Comparative Example 1, a photocatalyst deodorizing apparatus in which the tungsten oxide photocatalyst sheet 62 is disposed on the entrance In side and the titanium oxide photocatalyst sheet 61 is disposed on the exit side Out, contrary to Example 3, was used.
 そして、初期濃度30ppmのアルデヒドと初期濃度20ppmのアンモニアが存在する冷蔵庫内で脱臭性能試験を行った。図19、図20のグラフに示すように、比較例1の光触媒脱臭装置による脱臭性能と比べると、本実施例の光触媒脱臭装置の方が約20ポイント程度アンモニアの分解性能が高いことが確認できた。 Then, a deodorization performance test was performed in a refrigerator in which an aldehyde having an initial concentration of 30 ppm and ammonia having an initial concentration of 20 ppm were present. As shown in the graphs of FIGS. 19 and 20, it can be confirmed that the photocatalytic deodorization apparatus of this example has a higher ammonia decomposition performance by about 20 points than the deodorization performance of the photocatalytic deodorization apparatus of Comparative Example 1. It was.
 また、比較例2として、LED実装基板5として、LED3に封止材としてビスフェノール型エポキシ樹脂を塗布、乾燥させたもの、比較例3として、LED3に封止材としてフェニール系シリコン樹脂を塗布、乾燥させたものについて、実施例3のLED実装基板と照射時間-照度維持特性について比較した。結果は図21のグラフの通りであり、比較例2,3のLED実装基板は1000時間、2000時間までに相対照度がほとんど0に低下したのに対して、実施例3に用いたLED実装基板5では3000時間までほとんど相対照度が低下しないことが確認できた。 Further, as Comparative Example 2, the LED mounting substrate 5 was coated with a bisphenol-type epoxy resin as a sealing material on the LED 3 and dried, and as Comparative Example 3, a phenyl silicone resin was applied as a sealing material to the LED 3 and dried. The LED mounted substrate of Example 3 and the irradiation time-illuminance maintenance characteristics were compared with those obtained. The results are as shown in the graph of FIG. 21, and the LED mounting boards of Comparative Examples 2 and 3 had the relative illuminance decreased to almost 0 by 1000 hours and 2000 hours, whereas the LED mounting boards used in Example 3 5, it was confirmed that the relative illuminance hardly decreased until 3000 hours.
 [第5の実施の形態]
 第4の実施の形態におけるガラス繊維織物61A,62Aに、例えば、直径1μm以下の孔の多孔質ガラス繊維を用い、かつ、この多孔質ガラス繊維を図17のように整然と束ねた縦糸群と、多孔質ガラス繊維を乱雑に束ねた横糸群とから成る織物を採用することができる。尚、縦糸と横糸とは逆にしてもよい。
[Fifth Embodiment]
For the glass fiber fabrics 61A and 62A in the fourth embodiment, for example, a porous glass fiber having pores with a diameter of 1 μm or less and a group of warp yarns in which the porous glass fibers are orderly bundled as shown in FIG. A woven fabric composed of a weft group in which porous glass fibers are randomly bundled can be employed. The warp and weft may be reversed.
 この場合、光触媒微粒子61B,62Bへのガラス密着力がさらに向上する。これはガラス繊維を乱雑に束ねた縦糸群の存在により、乱れたガラス繊維が元の直線状の形状に戻ろうとする力が働き、この復元力が光触媒粒子を抑えることに作用すると思われる。また、一般的に光触媒材料の触媒活性が光触媒粒子の粒度の減少と共に高まることが知られているが、ガラス繊維を直径1μm以下の孔を持つ多孔質ガラスとすることにより、触媒活性の高い1μm以下の光触媒粒子61B(62B)をガラス繊維6Aに存在する直径1μm以下の孔にトラップすることができて、長期間脱落することになく担持でき、光触媒能力を長期間にわたり維持できる。このため、この実施の形態の光触媒脱臭装置は、図1に示したような冷蔵庫に使用できるだけでなく、例えば風速の高い5m/秒の大型空調機にも適用が可能である。 In this case, the glass adhesion to the photocatalyst fine particles 61B and 62B is further improved. This is thought to be due to the presence of a group of warp yarns in which glass fibers are randomly bundled, and the force that the disturbed glass fibers return to the original linear shape works, and this restoring force acts to suppress the photocatalyst particles. Further, it is generally known that the catalytic activity of the photocatalytic material increases with a decrease in the particle size of the photocatalytic particles. However, by making the glass fiber porous glass having pores having a diameter of 1 μm or less, 1 μm having high catalytic activity. The following photocatalyst particles 61B (62B) can be trapped in holes having a diameter of 1 μm or less present in the glass fiber 6A, can be supported without dropping for a long time, and the photocatalytic ability can be maintained for a long time. For this reason, the photocatalyst deodorization apparatus of this embodiment can be applied not only to the refrigerator as shown in FIG. 1 but also to, for example, a large air conditioner with a high wind speed of 5 m / sec.
 [第4,5の実施の形態の変形例]
 第4,5の実施の形態の光触媒脱臭装置1では、光触媒シート61を2枚、光触媒シート62を1枚用い、片側のLED実装基板5から光を照射する構成にしたが、これに限られるものでない。対向基板7にもLED実装基板を用いることにより、光触媒シート61,62に対してそれらの表裏両側から光を照射する構成にすることができる。また、光触媒シート61,62の使用枚数は、それぞれを少なくとも1枚ずつ用いればよいのであって、光触媒シート61,62を2枚ずつ用いたり、光触媒シート61を3枚、光触媒シート62を2枚以上用いたりすることも可能である。
[Modifications of Embodiments 4 and 5]
In the photocatalyst deodorization apparatus 1 according to the fourth and fifth embodiments, two photocatalyst sheets 61 and one photocatalyst sheet 62 are used and light is irradiated from the LED mounting substrate 5 on one side. Not a thing. By using an LED mounting substrate for the counter substrate 7 as well, the photocatalyst sheets 61 and 62 can be irradiated with light from both the front and back sides. Also, the number of photocatalyst sheets 61 and 62 used may be at least one for each, so that two photocatalyst sheets 61 and 62 may be used, or three photocatalyst sheets 61 and two photocatalyst sheets 62 may be used. It is also possible to use the above.

Claims (13)

  1.  通風孔を設けた基板を平行に配置し、前記2枚の基板のうちの少なくとも1枚の基板にLEDを実装し、前記2枚の基板間に、光触媒粒子が担持されたガラス繊維織物及び当該織物を支持するフレームから構成される光触媒シートを配置し、前記光触媒シートと前記2枚の基板を筐体に固定し、前記光触媒を励起するためのLED光源の発光面と前記光触媒シートとを平行に配置して、前記通風孔から送入された空気が前記光触媒シートを通過するようにした光触媒脱臭装置であって、
     前記光触媒シートは、ガラス繊維を束ねて構成したもと糸を、低風速下での通気が可能な所定の開口率を持つように縦横に織って構成し、
     前記光触媒粒子は、前記光触媒シートのガラス繊維間に機械的に接触保持させてあることを特徴とする光触媒脱臭装置。
    A glass fiber fabric in which a substrate provided with ventilation holes is arranged in parallel, an LED is mounted on at least one of the two substrates, and photocatalyst particles are supported between the two substrates, and A photocatalytic sheet composed of a frame that supports a fabric is disposed, the photocatalytic sheet and the two substrates are fixed to a casing, and a light emitting surface of an LED light source for exciting the photocatalyst is parallel to the photocatalytic sheet. A photocatalyst deodorizing device arranged so that the air sent from the vent hole passes through the photocatalyst sheet,
    The photocatalyst sheet is configured by weaving a base yarn formed by bundling glass fibers vertically and horizontally so as to have a predetermined opening ratio that allows ventilation at a low wind speed,
    The photocatalyst deodorizing apparatus, wherein the photocatalyst particles are mechanically held between glass fibers of the photocatalyst sheet.
  2.  前記光触媒シートの開口率は、30%~60%であることを特徴とする請求項1に記載の光触媒脱臭装置。 2. The photocatalyst deodorization apparatus according to claim 1, wherein the photocatalyst sheet has an aperture ratio of 30% to 60%.
  3.  前記光触媒シートのガラス繊維は、SiOを50%以上の成分比とする素材で成ることを特徴とする請求項1又は2に記載の光触媒脱臭装置。 Glass fibers of the photocatalyst sheet, photocatalytic deodorizing apparatus according to claim 1 or 2, characterized in that it comprises a material according to the SiO 2 50% or more of component ratio.
  4.  前記光触媒シートのガラス繊維の直径は、10μm以下であることを特徴とする請求項1又は2に記載の光触媒脱臭装置。 The photocatalyst deodorizing apparatus according to claim 1 or 2, wherein the diameter of the glass fiber of the photocatalyst sheet is 10 µm or less.
  5.  前記光触媒シートのガラス繊維の直径は、10μm以下であることを特徴とする請求項3に記載の光触媒脱臭装置。 The photocatalyst deodorization apparatus according to claim 3, wherein the diameter of the glass fiber of the photocatalyst sheet is 10 µm or less.
  6.  風速0.2m~3m/秒の低風速下で使用することを特徴とする請求項1又は2に記載の光触媒脱臭装置。 3. The photocatalyst deodorization apparatus according to claim 1, wherein the photocatalyst deodorization apparatus is used at a low wind speed of 0.2 m to 3 m / sec.
  7.  風速0.2m~3m/秒の低風速下で使用することを特徴とする請求項3に記載の光触媒脱臭装置。 The photocatalyst deodorization device according to claim 3, wherein the photocatalyst deodorization device is used at a low wind speed of 0.2 m to 3 m / sec.
  8.  風速0.2m~3m/秒の低風速下で使用することを特徴とする請求項4に記載の光触媒脱臭装置。 The photocatalyst deodorizing apparatus according to claim 4, wherein the photocatalyst deodorizing apparatus is used at a low wind speed of 0.2 m to 3 m / sec.
  9.  風速0.2m~3m/秒の低風速下で使用することを特徴とする請求項5に記載の光触媒脱臭装置。 6. The photocatalyst deodorization apparatus according to claim 5, wherein the photocatalyst deodorization apparatus is used at a low wind speed of 0.2 m to 3 m / sec.
  10.  通風孔を設けた基板を平行に配置し、前記2枚の基板のうちの少なくとも1枚の基板にLEDを実装し、前記2枚の基板間に、光触媒粒子が担持されたガラス繊維織物及び当該織物を支持するフレームから構成される光触媒シートを配置し、前記光触媒シートと前記2枚の基板を筐体に固定し、前記光触媒を励起するためのLED光源の発光面と前記光触媒シートとを平行に配置して、前記通風孔から送入された空気が前記光触媒シートを通過するようにした光触媒脱臭装置であって、
     前記光触媒シートは、ガラス繊維を整然と束ねた横糸群と、ガラス繊維を乱雑に束ねた縦糸群から構成される織物であって、
     前記光触媒粒子は、前記光触媒シートのガラス繊維間及びガラス繊維上に付着し保持されていることを特徴とする光触媒脱臭装置。
    A glass fiber fabric in which a substrate provided with ventilation holes is arranged in parallel, an LED is mounted on at least one of the two substrates, and photocatalyst particles are supported between the two substrates, and A photocatalytic sheet composed of a frame that supports a fabric is disposed, the photocatalytic sheet and the two substrates are fixed to a casing, and a light emitting surface of an LED light source for exciting the photocatalyst is parallel to the photocatalytic sheet. A photocatalyst deodorizing device arranged so that the air sent from the vent hole passes through the photocatalyst sheet,
    The photocatalytic sheet is a woven fabric composed of a weft group in which glass fibers are orderly bundled and a warp group in which glass fibers are randomly bundled,
    The photocatalyst deodorizing apparatus, wherein the photocatalyst particles are attached and held between the glass fibers of the photocatalyst sheet and on the glass fibers.
  11.  前記光触媒シートを構成するガラス繊維は、直径1μm以下の孔を有する多孔質ガラス繊維であることを特徴とする請求項10に記載の光触媒脱臭装置。 The photocatalyst deodorizing apparatus according to claim 10, wherein the glass fiber constituting the photocatalyst sheet is a porous glass fiber having pores having a diameter of 1 μm or less.
  12.  通風孔を設けた基板を平行に配置し、前記2枚の基板の内、少なくとも1枚の基板にLEDを実装し、前記2枚の基板間に、光触媒粒子が担持されたガラス繊維織物及び当該織物を支持するフレームから構成される光触媒シートを配置し、前記光触媒シートと前記2枚の基板を筺体に固定し、前記光触媒を励起するためのLED光源の発光面と前記光触媒シートとを平行に配置して、前記通風孔から送入された空気が前記光触媒シートを通過するようにした光触媒脱臭装置であって、
     酸化チタン光触媒粒子をガラス繊維織物に担持した前記光触媒シートを当該光触媒脱臭装置の空気導入側に、酸化タングステンを主成分とする光触媒粒子をガラス繊維織物に担持した前記光触媒シートを当該光触媒脱臭装置の空気排出側に、それぞれ配置したことを特徴とする光触媒脱臭装置。
    A substrate provided with ventilation holes is arranged in parallel, an LED is mounted on at least one of the two substrates, and a glass fiber fabric in which photocatalyst particles are supported between the two substrates and the substrate A photocatalytic sheet composed of a frame that supports a fabric is disposed, the photocatalytic sheet and the two substrates are fixed to a housing, and a light emitting surface of an LED light source for exciting the photocatalyst is parallel to the photocatalytic sheet. It is a photocatalyst deodorizing device that is arranged so that the air sent from the vent hole passes through the photocatalyst sheet,
    The photocatalyst sheet carrying titanium oxide photocatalyst particles on a glass fiber fabric is provided on the air introduction side of the photocatalyst deodorizing device, and the photocatalyst sheet carrying photocatalyst particles mainly composed of tungsten oxide on the glass fiber fabric is provided on the photocatalyst deodorizing device. A photocatalyst deodorizing apparatus, which is disposed on each of the air discharge sides.
  13.  材料としてシリコン酸化物を用い、前記LEDを前記基板上に封止したことを特徴とする請求項12に記載の光触媒脱臭装置。 The photocatalyst deodorization apparatus according to claim 12, wherein silicon oxide is used as a material, and the LED is sealed on the substrate.
PCT/JP2011/061750 2010-06-22 2011-05-23 Photocatalyst deodorization device WO2011162059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180030739.1A CN102985116B (en) 2010-06-22 2011-05-23 Photocatalyst deodorization device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010141863A JP5672792B2 (en) 2009-12-01 2010-06-22 Photocatalyst deodorization device
JP2010-141863 2010-06-22
JP2010-260306 2010-11-22
JP2010260306 2010-11-22

Publications (1)

Publication Number Publication Date
WO2011162059A1 true WO2011162059A1 (en) 2011-12-29

Family

ID=45371256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061750 WO2011162059A1 (en) 2010-06-22 2011-05-23 Photocatalyst deodorization device

Country Status (4)

Country Link
JP (1) JP2012125756A (en)
CN (1) CN102985116B (en)
TW (1) TWI478770B (en)
WO (1) WO2011162059A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169408A (en) * 2012-02-22 2013-09-02 Pearl Lighting Co Ltd Photocatalytic deodorizing device
US9101904B2 (en) 2012-05-25 2015-08-11 Honeywell International Inc. Air purification system using ultraviolet light emitting diodes and photocatalyst-coated supports
EP2765372A3 (en) * 2013-02-12 2017-03-01 LG Electronics, Inc. Refrigerator and method of manufacturing metal photocatalyst filter of the refrigerator
EP3745037A4 (en) * 2018-01-26 2021-11-17 Seoul Viosys Co., Ltd Fluid treatment device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623868B (en) * 2013-07-17 2015-09-30 上海市环境科学研究院 Sodium bismuthate/epoxy resin/glass fiber compound material and preparation method thereof and its application process in degradation of organic waste water
CN105903417B (en) * 2016-06-16 2018-02-23 华侨大学 A kind of LED light catalytic reactor
CN111295205A (en) * 2017-11-16 2020-06-16 东亚合成株式会社 Deodorant-containing processing liquid, method for producing deodorant product, deodorant filter medium, deodorant filter unit, and deodorant device
KR102444444B1 (en) 2017-12-26 2022-09-20 한온시스템 주식회사 Photocatalyst device and air conditioner including thereof
WO2019131124A1 (en) * 2017-12-27 2019-07-04 ウシオ電機株式会社 Gas processing device
JP2020044527A (en) * 2018-09-21 2020-03-26 東芝ライテック株式会社 Photocatalyst filter, and photocatalyst apparatus
KR102652716B1 (en) * 2018-10-05 2024-04-01 서울바이오시스 주식회사 Air cleaning module and refrigerator having the same
WO2020071840A1 (en) * 2018-10-05 2020-04-09 서울바이오시스 주식회사 Air purification module and refrigerator comprising same
US10981102B2 (en) * 2018-10-17 2021-04-20 The Boeing Company Aircraft air purification and volatile organic compounds reduction unit
WO2022081135A1 (en) * 2020-10-13 2022-04-21 Hewlett-Packard Development Company, L.P. Ozone gas generating keyboard
JP7337332B2 (en) * 2021-03-04 2023-09-04 東芝ライテック株式会社 Sterilization purification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209985A (en) * 1993-01-13 1994-08-02 Toto Ltd Sterilization treatment in room
JP2006281043A (en) * 2005-03-31 2006-10-19 Shizuoka Prefecture Photocatalyst deodorization device
JP2009183919A (en) * 2008-02-08 2009-08-20 Stac Co Ltd Air cleaning apparatus
JP2009226531A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Chuck handle
JP2009247546A (en) * 2008-04-04 2009-10-29 Sharp Corp Air cleaning filter and air cleaner

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267762A (en) * 1985-05-22 1986-11-27 Hoya Corp Production of photomask
JP2000102598A (en) * 1998-09-30 2000-04-11 Hitachi Ltd Air purifying membrane and article provided with it
JP2001190952A (en) * 2000-01-11 2001-07-17 Matsushita Electric Ind Co Ltd Air cleaner
JP2003290664A (en) * 2002-01-31 2003-10-14 Toshiba Lighting & Technology Corp Photocatalyst device, deodorizing device and refrigerator
JP2003232547A (en) * 2002-02-07 2003-08-22 Koha Co Ltd Air cleaner
JP4624007B2 (en) * 2004-06-07 2011-02-02 三洋電機株式会社 Filter and air conditioner
US7348193B2 (en) * 2005-06-30 2008-03-25 Corning Incorporated Hermetic seals for micro-electromechanical system devices
JP5374747B2 (en) * 2006-02-01 2013-12-25 東芝マテリアル株式会社 Photocatalyst material, photocatalyst composition using the same, and photocatalyst product
JP2007252974A (en) * 2006-03-20 2007-10-04 Sharp Corp Photocatalyst film, semiconductive photo-electrode for water decomposition and water decomposition device using the same
JP2008104739A (en) * 2006-10-26 2008-05-08 Sharp Corp Air cleaning apparatus
JP2008264713A (en) * 2007-04-23 2008-11-06 Nitta Ind Corp Gas filter
JP2009072430A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Air cleaner
JP5262219B2 (en) * 2008-03-25 2013-08-14 パナソニック株式会社 Photocatalyst deodorizer
JP2010042188A (en) * 2008-08-18 2010-02-25 Panasonic Corp Deodorizing machine
JP3163195U (en) * 2010-01-08 2010-10-07 李 漢明 Light-emitting diode fixing structure for lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209985A (en) * 1993-01-13 1994-08-02 Toto Ltd Sterilization treatment in room
JP2006281043A (en) * 2005-03-31 2006-10-19 Shizuoka Prefecture Photocatalyst deodorization device
JP2009183919A (en) * 2008-02-08 2009-08-20 Stac Co Ltd Air cleaning apparatus
JP2009226531A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Chuck handle
JP2009247546A (en) * 2008-04-04 2009-10-29 Sharp Corp Air cleaning filter and air cleaner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169408A (en) * 2012-02-22 2013-09-02 Pearl Lighting Co Ltd Photocatalytic deodorizing device
US9101904B2 (en) 2012-05-25 2015-08-11 Honeywell International Inc. Air purification system using ultraviolet light emitting diodes and photocatalyst-coated supports
EP2765372A3 (en) * 2013-02-12 2017-03-01 LG Electronics, Inc. Refrigerator and method of manufacturing metal photocatalyst filter of the refrigerator
US9803910B2 (en) 2013-02-12 2017-10-31 Lg Electronics, Inc. Refrigerator and method of manufacturing metal photocatalyst filter of the refrigerator
EP3745037A4 (en) * 2018-01-26 2021-11-17 Seoul Viosys Co., Ltd Fluid treatment device
US11788746B2 (en) 2018-01-26 2023-10-17 Seoul Viosys Co., Ltd. Fluid treatment device

Also Published As

Publication number Publication date
JP2012125756A (en) 2012-07-05
TW201213011A (en) 2012-04-01
CN102985116A (en) 2013-03-20
CN102985116B (en) 2015-02-25
TWI478770B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2011162059A1 (en) Photocatalyst deodorization device
AU2021200781B2 (en) Purified hydrogen peroxide gas generation methods and devices
US8080214B2 (en) Air cleaner
JP4521558B2 (en) Photocatalytic device using light emitting diode
US20130129565A1 (en) Filter and device for treating air
JP3710323B2 (en) Deodorizing device
JP5672792B2 (en) Photocatalyst deodorization device
JP2012152452A (en) Photocatalytic deodorizer
KR102524465B1 (en) Photocatalyst composition for adsorption and decomposition of gas
JP2013169408A (en) Photocatalytic deodorizing device
JP5072795B2 (en) Photocatalyst structure
TWI609718B (en) Photocatalytic filter for degrading mixed gas and manufacturing method thereof
JP2000042093A (en) Deodorant material, deodorization filter and air conditioning unit for vehicle
JPH11276906A (en) Air permeable photocatalytic sheet and its utilization
KR102446719B1 (en) Surfur compound purification photocatalyst
KR102454332B1 (en) Air purifier
JP2006297319A (en) Deodorant product
JP2013252175A (en) Photocatalytic deodorizing device
WO2018020920A1 (en) Thin air-purification apparatus and indoor air-purification system
JP2006141880A (en) Air cleaner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030739.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797946

Country of ref document: EP

Kind code of ref document: A1