JP4521558B2 - Photocatalytic device using light emitting diode - Google Patents

Photocatalytic device using light emitting diode Download PDF

Info

Publication number
JP4521558B2
JP4521558B2 JP2005124320A JP2005124320A JP4521558B2 JP 4521558 B2 JP4521558 B2 JP 4521558B2 JP 2005124320 A JP2005124320 A JP 2005124320A JP 2005124320 A JP2005124320 A JP 2005124320A JP 4521558 B2 JP4521558 B2 JP 4521558B2
Authority
JP
Japan
Prior art keywords
emitting diode
light emitting
photocatalytic
photocatalyst
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005124320A
Other languages
Japanese (ja)
Other versions
JP2006296811A (en
Inventor
康 平島
敏昌 香川
敏夫 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokushima Prefecture
Original Assignee
Tokushima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokushima Prefecture filed Critical Tokushima Prefecture
Priority to JP2005124320A priority Critical patent/JP4521558B2/en
Publication of JP2006296811A publication Critical patent/JP2006296811A/en
Application granted granted Critical
Publication of JP4521558B2 publication Critical patent/JP4521558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発光ダイオードと光触媒を組み合わせて消臭等を行う光触媒装置に関する。   The present invention relates to a photocatalytic device that performs deodorization and the like by combining a light emitting diode and a photocatalyst.

光触媒は、光源により活性化させて光触媒反応を生じさせ、消臭・脱臭、抗菌・殺菌、防汚・防曇効果を発揮し、悪臭除去や空気清浄、除菌、殺菌等に利用される。従来、光源としては太陽光の他、水銀ランプやブラックライト、殺菌灯が用いられてきた。しかしながら、これらの光源は寿命が数千時間であるため、連続点灯で使用した場合1年程度で交換する必要がある。また、電気−光変換効率が20%程度であり発熱量が多く、エネルギー消費が大きい。これに対し、近年発光ダイオード(LED)を光触媒反応用光源とする試みがなされている。例えば紫外線発光ダイオード(UV−LED)は、寿命が約5万時間と大変長く、消費電力の80%以上が光に変換されるため、低消費電力であり、蛍光灯に替わる将来の光源として期待されている。さらに、LEDはパルス照射や電流制御が可能であるという利点もある。また、小型素子ゆえ、デザインが多様であるという点から装置設計の柔軟性へと繋がる。   The photocatalyst is activated by a light source to cause a photocatalytic reaction, exhibits deodorization / deodorization, antibacterial / sterilization, antifouling / antifogging effects, and is used for malodor removal, air purification, sterilization, sterilization, and the like. Conventionally, mercury lamps, black lights, and germicidal lamps have been used as light sources in addition to sunlight. However, since these light sources have a lifetime of several thousand hours, they need to be replaced in about one year when used in continuous lighting. In addition, the electro-optical conversion efficiency is about 20%, the heat generation amount is large, and the energy consumption is large. In contrast, in recent years, attempts have been made to use light-emitting diodes (LEDs) as light sources for photocatalytic reactions. For example, an ultraviolet light emitting diode (UV-LED) has a very long life of about 50,000 hours, and more than 80% of the power consumption is converted to light. Therefore, it has low power consumption and is expected as a future light source to replace fluorescent lamps. Has been. Further, the LED has an advantage that pulse irradiation and current control are possible. In addition, since it is a small element, it leads to flexibility in device design from the point that design is diverse.

また光触媒として用いられる半導体には、ガリウムリン(GaP)、ガリウム砒素(GaAs)等がある。これら大部分の半導体は水に入れて光を当てると、陽イオンと陰イオンになって溶解してしまう光溶解反応が生じ、半導体が溶出して無くなってしまう。一方で、酸化チタンは化学的に極めて安定なのでそのような溶解を起こさない。溶解現象を起こさない材料として他にないわけではないが、そうした物質はバンドギャップエネルギーが酸化チタンより大きい。すなわち、よりエネルギーの高い紫外線が光触媒作用のために必要となる。酸化チタンは可視光を吸収しないが、可視光に近い紫外線を吸収でき、太陽光や蛍光灯に含まれるわずかな紫外線を利用することができるという点で、光触媒として有利である。   Examples of the semiconductor used as the photocatalyst include gallium phosphide (GaP) and gallium arsenide (GaAs). When most of these semiconductors are put in water and exposed to light, a photodissolution reaction occurs in which cations and anions are dissolved and the semiconductor is eluted and disappears. On the other hand, titanium oxide is chemically very stable and does not cause such dissolution. There is no other material that does not cause a dissolution phenomenon, but such a material has a band gap energy greater than that of titanium oxide. That is, higher energy ultraviolet rays are required for the photocatalytic action. Titanium oxide does not absorb visible light, but can absorb ultraviolet light that is close to visible light, and is advantageous as a photocatalyst in that it can utilize the slight ultraviolet light contained in sunlight and fluorescent lamps.

このような観点から、近年、半導体の光触媒に、光源として発光ダイオードを組み合わせ、発光ダイオードからの発光で光触媒を活性化させる空気清浄機が提案されている(特許文献1参照)。例えば、空気清浄機の空気流路に、ここを流れる空気流を浄化する光触媒物質を有する光触媒層を配置して、発光ダイオードで光触媒層の光触媒物質を活性化させ、空気中のにおい物質を分解、除去する。
特開2002−98375号公報
From such a viewpoint, in recent years, an air cleaner that combines a semiconductor photocatalyst with a light emitting diode as a light source and activates the photocatalyst by light emission from the light emitting diode has been proposed (see Patent Document 1). For example, a photocatalyst layer having a photocatalyst material that purifies the airflow that flows through the air flow path of the air cleaner is disposed, and the photocatalyst material of the photocatalyst layer is activated by a light emitting diode, and the odorous substance in the air is decomposed. ,Remove.
JP 2002-98375 A

従来、酸化チタン系等半導体の光触媒と発光ダイオード等の半導体素子を組み合わせた消臭装置において、消臭能力を向上させるためには、発光ダイオードの出力を向上させることがよいと考えられてきた。しかしながら、本発明者らの行った研究によれば、単に発光ダイオードを連続照射するのみでは、十分な光触媒の能力を発揮させることができないことが判明した。この原因は、光触媒が光触媒効果を発揮するのは、対象となるガスを吸着した場合であり、十分な吸着が行われない時には消臭等の効果が十分に発揮されないためであると考えられる。   Conventionally, in a deodorizing apparatus that combines a semiconductor photocatalyst such as a titanium oxide-based semiconductor and a semiconductor element such as a light-emitting diode, it has been considered that the output of the light-emitting diode should be improved in order to improve the deodorizing ability. However, according to research conducted by the present inventors, it has been found that sufficient photocatalytic ability cannot be exhibited simply by continuously irradiating a light emitting diode. The reason for this is considered that the photocatalyst exhibits the photocatalytic effect when the target gas is adsorbed, and the effect of deodorization or the like is not sufficiently exhibited when sufficient adsorption is not performed.

また、このような消臭・脱臭方式では、対象ガスが低濃度になった場合、境膜拡散抵抗により除去効率が著しく低下するという問題もあった。対象ガスが低濃度である場合、濃度差によって生じる濃度勾配によって吸着駆動力も低くなるため、二酸化チタンに対する対象ガスの吸着速度が遅く、除去効率が悪くなる。この傾向は、濃度が低くなるほど顕著となる。このため、従来の二酸化チタンを用いた従来の処理方法では、一段当たりの除去効率が低いため、通常は数段から十数段の処理や閉鎖空間での循環使用といった方法が採用されている。しかしながら、触媒層を多段にする構成は専有スペースが大きくなり、各触媒層に励起光を照射する光源の配置も問題となり、コストもかかる。また閉鎖空間での循環利用は、循環設備や閉鎖空間の構成が必要となる上、利用できる条件が限られている等の問題があった。このため、より効率よく光触媒を悪臭ガス等の分解対象物と接触させて光触媒反応を生じさせることのできる光触媒装置が求められるところである。   In addition, such a deodorization / deodorization method has a problem in that when the target gas has a low concentration, the removal efficiency is remarkably lowered due to the boundary film diffusion resistance. When the target gas has a low concentration, the adsorption driving force is also lowered due to the concentration gradient caused by the concentration difference, so that the adsorption speed of the target gas with respect to titanium dioxide is slow and the removal efficiency is deteriorated. This tendency becomes more prominent as the concentration decreases. For this reason, in the conventional processing method using the conventional titanium dioxide, since the removal efficiency per one stage is low, methods such as processing of several to ten or more stages and circulation use in a closed space are usually employed. However, the configuration in which the catalyst layers are multi-stages requires a large space, and the arrangement of light sources for irradiating each catalyst layer with excitation light also becomes a problem and costs are high. In addition, circulation use in a closed space has problems such as the need for a circulation facility and a configuration of the closed space, and the conditions that can be used are limited. For this reason, there is a need for a photocatalytic device capable of causing a photocatalytic reaction by bringing the photocatalyst into contact with an object to be decomposed such as malodorous gas more efficiently.

本発明は、このような問題点を解決するためになされたものである。本発明の主な目的は、発光ダイオードで効率よく光触媒を光励起し、光触媒効果を発揮し得る発光ダイオードを用いた光触媒装置を提供することにある。   The present invention has been made to solve such problems. A main object of the present invention is to provide a photocatalytic device using a light emitting diode that can efficiently excite a photocatalyst with a light emitting diode and exhibit a photocatalytic effect.

上記の目的を達成するために、本発明の第1の側面に係る発光ダイオードを用いた光触媒装置は、光触媒物質よりなる又は光触媒物質を担持した光触媒層と、光触媒層の光触媒物質を活性化させるための光を照射可能な発光ダイオードと、発光ダイオードを駆動する駆動回路と、駆動回路を制御して発光ダイオードの点灯時間を制御可能なパルス制御回路とを有する光触媒装置であって、パルス制御回路が、光触媒装置の使用時における発光ダイオードの点灯時間を、30ms以下でかつデューティ比50%以下でパルス点灯させるよう駆動回路を制御する。このように点灯時間を同じかそれよりも短い消灯時間を設けて発光ダイオードをON/OFFすることにより、光触媒反応を促進することができる。   In order to achieve the above object, a photocatalytic device using a light emitting diode according to the first aspect of the present invention activates a photocatalytic layer made of or carrying a photocatalytic material, and the photocatalytic material of the photocatalytic layer. A photocatalytic device having a light emitting diode capable of irradiating light, a driving circuit for driving the light emitting diode, and a pulse control circuit capable of controlling a lighting time of the light emitting diode by controlling the driving circuit, the pulse control circuit However, the driving circuit is controlled so that the lighting time of the light emitting diode when using the photocatalytic device is pulsed at 30 ms or less and at a duty ratio of 50% or less. Thus, the photocatalytic reaction can be promoted by turning on / off the light emitting diode by providing the light-off time with the same or shorter lighting time.

また本発明の第2の側面に係る発光ダイオードを用いた光触媒装置は、パルス制御回路が、発光ダイオードの点灯時間をデューティ比10%以下でパルス点灯させるよう駆動回路を制御する。このように点灯時間を短くすることで、消灯時間に新たな反応物を供給して、効率よく光触媒反応を行うことができる。またデューティ比を小さくすることで省電力化が図られ、電池駆動も実現可能とできる。   In the photocatalyst device using the light emitting diode according to the second aspect of the present invention, the pulse control circuit controls the drive circuit so that the lighting time of the light emitting diode is pulse-lit with a duty ratio of 10% or less. By shortening the lighting time in this way, a new reactant can be supplied during the light-off time, and the photocatalytic reaction can be performed efficiently. Further, by reducing the duty ratio, power saving can be achieved and battery driving can be realized.

さらに、本発明の第3の側面に係る発光ダイオードを用いた光触媒装置は、パルス制御回路が、発光ダイオードの点灯周期を50Hz〜5kHzの周期でパルス点灯させるよう駆動回路を制御する。このように短い点灯時間でパルス点灯させ、ON/OFF点灯させることにより、光触媒反応を促進することができる。   Furthermore, in the photocatalyst device using the light emitting diode according to the third aspect of the present invention, the pulse control circuit controls the drive circuit so that the lighting cycle of the light emitting diode is pulsed at a frequency of 50 Hz to 5 kHz. Thus, the photocatalytic reaction can be promoted by performing pulse lighting with a short lighting time and lighting ON / OFF.

さらにまた、本発明の第4の側面に係る発光ダイオードを用いた光触媒装置はさらに、駆動回路の駆動源として、太陽電池を備える。これによって、太陽電池で昼間の駆動電力を確保し、省電力で駆動できる。また商用電源との併用により、光触媒装置を昼夜にわたり使用可能とできる。   Furthermore, the photocatalyst device using the light emitting diode according to the fourth aspect of the present invention further includes a solar cell as a drive source of the drive circuit. Thereby, driving power can be secured in the daytime with the solar cell, and can be driven with power saving. Moreover, a photocatalyst apparatus can be used day and night by using together with a commercial power source.

さらにまた、本発明の第5の側面に係る発光ダイオードを用いた光触媒装置はさらに、光触媒層を振動させる振動付与手段を備える。これによって、光触媒層と光触媒反応の対象物との表面積を大きくでき、光触媒反応をさらに促進できる。   Furthermore, the photocatalyst device using the light emitting diode according to the fifth aspect of the present invention further includes vibration applying means for vibrating the photocatalyst layer. Thereby, the surface area of the photocatalyst layer and the target of the photocatalytic reaction can be increased, and the photocatalytic reaction can be further promoted.

さらにまた、本発明の第6の側面に係る発光ダイオードを用いた光触媒装置は、発光ダイオードが、紫外線照射発光ダイオードである。   Furthermore, in the photocatalyst device using the light emitting diode according to the sixth aspect of the present invention, the light emitting diode is an ultraviolet irradiation light emitting diode.

さらにまた、本発明の第7の側面に係る発光ダイオードを用いた光触媒装置は、光触媒物質が二酸化チタンである。   Furthermore, in the photocatalyst device using the light emitting diode according to the seventh aspect of the present invention, the photocatalytic substance is titanium dioxide.

本発明の発光ダイオードを用いた光触媒装置によれば、光触媒を励起する励起光を照射する発光ダイオードの点灯タイミングを制御することで、効率よく光触媒反応を生じさせ高効率の光触媒装置を得ることができる。特に、光触媒表面への有機物の吸着は点灯時より消灯時の方が効率よく行われ、しかも光分解は短時間で行われるとの知見に基づき、点灯時間を抑えることで連続点灯よりも優れた効率を達成でき、しかも消費電力を少なく、発熱量も低減した長寿命で信頼性の高い光触媒装置とできる。   According to the photocatalyst device using the light emitting diode of the present invention, it is possible to efficiently generate a photocatalytic reaction and obtain a highly efficient photocatalyst device by controlling the lighting timing of the light emitting diode that irradiates the excitation light that excites the photocatalyst. it can. In particular, the adsorption of organic substances on the photocatalyst surface is more efficient when turned off than when turned on, and based on the knowledge that photolysis is performed in a short time, it is superior to continuous lighting by suppressing the lighting time. It is possible to achieve a long-life and highly reliable photocatalyst device that can achieve efficiency, consumes less power, and generates less heat.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための発光ダイオードを用いた光触媒装置を例示するものであって、本発明は発光ダイオードを用いた光触媒装置を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a photocatalyst device using a light emitting diode for embodying the technical idea of the present invention, and the present invention uses a photocatalyst device using a light emitting diode as follows. Not specified. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, but are merely described. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

本発明者らは、このような光触媒装置における光触媒効果の発現程度と、光照射の関係を調べた結果、光源を光触媒に連続照射するよりもパルス照射する方が良好な結果を示す知見を得、本発明を成すに至った。以下、そのメカニズムについて図1に基づき説明する。   As a result of investigating the relationship between the degree of photocatalytic effect in such a photocatalytic device and the light irradiation, the present inventors have obtained knowledge showing that the pulse irradiation is better than the continuous irradiation of the light source to the photocatalyst. The present invention has been achieved. Hereinafter, the mechanism will be described with reference to FIG.

酸化チタン等の光触媒物質に光が照射されるとラジカルが発生し、このラジカルが有機物を分解する。この分解反応は、光触媒物質自体が分解対象物と接触している必要がある。光源を点灯し続けて連続照射する場合は、光触媒物質と有機物との接触部分で分解が生じるが、その結果発生するガスの影響で、新たな有機物の吸着が少ない。吸着が少ないと光触媒反応も少なくなり、その結果処理能力が低下する。一方、パルス点灯する場合は、光源を消灯する期間があるため、この期間には分解反応は生じず、その結果新たな有機物が吸着し易くなる。より多くの有機物が光触媒物質に吸着するようになると、光触媒反応も活発になり分解が促進される。また、本発明者らの行った試験によれば、光触媒反応は短時間の照射で行われるため、ON時間がたとえ一瞬であっても十分な分解効果が得られることが判明した。したがってON時間を短くし、またOFF時間を分解対象物の有機物の吸着が十分に得られる長さに設定することで、極めて効率よく光源を発光させて光触媒反応を得ることができる。またON時間を短くすることは、光源の消費電力の低減にもつながり、発熱量を抑えて光源の発光ダイオード素子の寿命を長くし、長期にわたって信頼性高く利用できることにも繋がる。   When light is irradiated onto a photocatalytic substance such as titanium oxide, radicals are generated and the radicals decompose organic substances. In this decomposition reaction, the photocatalytic substance itself needs to be in contact with an object to be decomposed. When the light source is continuously turned on and continuously irradiated, decomposition occurs at the contact portion between the photocatalyst substance and the organic substance, but there is little adsorption of new organic substance due to the influence of the resulting gas. Less adsorption results in less photocatalytic reaction, resulting in lower processing capacity. On the other hand, in the case of pulse lighting, since there is a period during which the light source is turned off, the decomposition reaction does not occur during this period, and as a result, new organic substances are easily adsorbed. When more organic substances are adsorbed on the photocatalytic substance, the photocatalytic reaction becomes active and decomposition is promoted. Further, according to the test conducted by the present inventors, it was found that a sufficient catalytic effect can be obtained even if the ON time is momentary because the photocatalytic reaction is performed with a short irradiation. Therefore, by shortening the ON time and setting the OFF time to a length that sufficiently adsorbs the organic matter of the decomposition target, the light source can emit light and a photocatalytic reaction can be obtained. In addition, shortening the ON time also leads to reduction of power consumption of the light source, suppressing the amount of heat generation, extending the life of the light emitting diode element of the light source, and leading to reliable use over a long period.

この性質を利用して、光触媒反応を利用した有機物の分解や殺菌作用を用いた消臭・脱臭装置や殺菌装置、防汚機器等の光触媒装置の高効率化が実現できる。以下、本発明の一実施の形態として、光触媒装置として広く利用されている消臭・空気清浄機能に着目し、悪臭を浄化する悪臭浄化装置に本発明を適用した例について説明する。
(実施の形態1)
Utilizing this property, it is possible to achieve high efficiency of photocatalytic devices such as deodorizing / deodorizing devices, sterilizing devices, and antifouling devices using the decomposition and sterilizing action of organic substances using photocatalytic reactions. Hereinafter, as an embodiment of the present invention, an example in which the present invention is applied to a malodor purification apparatus that purifies malodors will be described by paying attention to a deodorizing / air cleaning function widely used as a photocatalytic device.
(Embodiment 1)

図2に、本発明の実施の形態1に係る悪臭浄化装置を示す。この光触媒装置100は、光触媒物質よりなる又は光触媒物質を担持した光触媒層10と、この光触媒層10に光を照射可能な位置に固定された光源として、複数の発光ダイオード12と、発光ダイオード12を駆動する駆動回路14と、駆動回路14を制御して発光ダイオード12の点灯時間を制御可能なパルス制御回路16と、これらを駆動する電源18とを有する。
(発光ダイオード12)
FIG. 2 shows the malodor purification apparatus according to Embodiment 1 of the present invention. The photocatalyst device 100 includes a photocatalyst layer 10 made of or carrying a photocatalyst material, a plurality of light-emitting diodes 12 and light-emitting diodes 12 as light sources fixed at positions where the photocatalyst layer 10 can be irradiated with light. A driving circuit 14 for driving, a pulse control circuit 16 capable of controlling the lighting time of the light emitting diode 12 by controlling the driving circuit 14, and a power source 18 for driving them.
(Light emitting diode 12)

発光ダイオード12は、360〜400nmの紫外線を含む光を発光するものが利用できる。発光波長は、使用される光触媒の励起光の波長に応じて選択される。このような発光ダイオードの材料としては、BN、SiC、ZnSeやGaN、InGaN、InAlGaN、AlGaN、BAlGaN、BInAlGaN等種々の半導体を挙げることができる。同様に、これらの元素に不純物元素としてSiやZn等を含有させ発光中心とすることもできる。光触媒を効率良く励起できる紫外領域の短波長を効率よく発光可能な発光層の材料として特に、窒化物半導体(例えば、AlやGaを含む窒化物半導体、InやGaを含む窒化物半導体としてIn X Al Y Ga 1-X-Y N(0<X<1、0<Y<1、X+Y≦1)がより好適に挙げられる。また、半導体の構造としては、MIS接合、PIN接合やpn接合等を有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが好適に挙げられる。半導体層の材料やその混晶比によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることでより出力を向上させることもできる。発光ダイオード12の数は1個でも良いし、多数個並設しても良い。なお、本明細書において発光ダイオードとは、必ずしも可視光成分を含む光を発光する必要はなく、紫外領域の短波長を出力可能なダイオードを含む意味で使用する。また高出力のパワー系LEDや半導体レーザ(LD)も含む概念で使用する。
(光触媒物質)
As the light emitting diode 12, a light emitting diode that emits light including ultraviolet rays of 360 to 400 nm can be used. The emission wavelength is selected according to the wavelength of the excitation light of the photocatalyst used. Examples of the material of such a light emitting diode include various semiconductors such as BN, SiC, ZnSe, GaN, InGaN, InAlGaN, AlGaN, BAlGaN, and BInAlGaN. Similarly, these elements can contain Si, Zn, or the like as an impurity element to serve as a light emission center. In particular, a nitride semiconductor (eg, a nitride semiconductor containing Al or Ga, a nitride semiconductor containing In or Ga, or In X as a material for a light emitting layer capable of efficiently emitting a short wavelength in the ultraviolet region that can excite a photocatalyst efficiently. Al Y Ga 1-XY N (0 <X <1, 0 <Y <1, X + Y ≦ 1) is more preferable, and the semiconductor structure includes a MIS junction, a PIN junction, a pn junction, and the like. Preferred examples include those having a homo structure, a hetero structure, or a double hetero structure, and various emission wavelengths can be selected depending on the material of the semiconductor layer and its mixed crystal ratio. The output can be further improved by forming the single quantum well structure or the multiple quantum well structure, and the number of the light emitting diodes 12 may be one or a large number may be arranged in parallel. In the specification, a light-emitting diode does not necessarily need to emit light including a visible light component, and includes a diode capable of outputting a short wavelength in the ultraviolet region, and is used as a high-power power LED or semiconductor laser ( LD) is used in the concept including.
(Photocatalytic substance)

光触媒物質は、半導体系の物質を利用し、好ましくは光溶解反応で溶出する半導体の量が少なく、効果の持続性が高いものを使用する。ここではバンドギャップエネルギーが比較的小さく、可視光に近い紫外線で励起可能な光触媒物質として酸化チタンを利用した。
(酸化チタン)
As the photocatalytic substance, a semiconductor-based substance is used, and preferably, a substance having a small effect of elution by a photodissolution reaction and a high effect sustainability is used. Here, titanium oxide was used as a photocatalytic substance having a relatively small band gap energy and capable of being excited by ultraviolet rays close to visible light.
(Titanium oxide)

酸化チタンの反応機構を、以下説明する。酸化チタンには、ルチル、アナターゼ、ブルッカイトの3種の結晶形がある。ブルッカイトは他に比べて不安定であり、純粋な結晶を合成するのは難しい。塗料中の顔料として広く用いられているのはルチルで、光触媒としてはアナターゼが主として用いられている。酸化チタンはn型半導性を示し、光電極や光触媒の材料として太陽エネルギー変換材料への応用が注目されていた。一般の光化学反応は反応基質の光励起によって起こる。これに対して酸化チタンの光触媒反応は、3〜3.2eV程度のバンドギャップ以上の光(紫外線)のエネルギーを吸収すると、次式のように伝導帯に電子(e - )、荷電子帯に正孔(h + )を生成する。 The reaction mechanism of titanium oxide will be described below. Titanium oxide has three crystal forms: rutile, anatase, and brookite. Brookite is unstable compared to others and it is difficult to synthesize pure crystals. Rutile is widely used as a pigment in paints, and anatase is mainly used as a photocatalyst. Titanium oxide exhibits n-type semiconductivity, and its application to solar energy conversion materials has attracted attention as a material for photoelectrodes and photocatalysts. A general photochemical reaction occurs by photoexcitation of a reaction substrate. On the other hand, the photocatalytic reaction of titanium oxide absorbs light (ultraviolet light) energy over a band gap of about 3 to 3.2 eV, and in the conduction band, the electron (e ) Holes (h + ) are generated.

[化1]
TiO 2 +近紫外線→e - (電子)+h + (正孔)
[Chemical 1]
TiO 2 + near UV → e - (electron) + h + (holes)

この電子は、酸素を還元してスーパーオキシドイオン(O 2- )を生成する。その後、スーパーオキシドイオンは水分と反応して過酸化水素を経てヒドロキシルラジカルが生成すると思われる。また、正孔もヒドロキシルラジカル生成へ関与している。この様子を次式に示す。 The electrons reduce oxygen to produce superoxide ions (O 2− ). Thereafter, superoxide ions react with moisture to generate hydroxyl radicals through hydrogen peroxide. Holes are also involved in hydroxyl radical generation. This is shown in the following equation.

[化2]
O2+e - →O 2-
2- +2H + →H 2 2
2 2 +e - +H + →OH+H 2
+ +H 2 O→OH+OH -
[Chemical 2]
O2 + e → O 2−
O 2- + 2H + → H 2 O 2
H 2 O 2 + e + H + → OH + H 2 O
h + + H 2 O → OH + OH

ヒドロキシルラジカル、スーパーオキシドイオン等は活性酸素と呼ばれ、ヒドロキシルラジカルはその中で最も反応性が高く、最も酸化力が強い。そのため、あらゆる有機物を分解して水と二酸化炭素に変化させる。
(光触媒層10)
Hydroxyl radicals, superoxide ions, and the like are called active oxygens, and hydroxyl radicals have the highest reactivity and the strongest oxidizing power. Therefore, it breaks down any organic matter and changes it into water and carbon dioxide.
(Photocatalyst layer 10)

光触媒物質自体を造粒・焼成し、又は光触媒物質を布地、陶器、金属等の他の部材に担持させて光触媒層10を形成する。担持には、例えばバインダを使用できる。
(駆動回路14)
The photocatalyst material itself is granulated and fired, or the photocatalyst material is supported on other members such as cloth, ceramics, and metal to form the photocatalyst layer 10. For carrying, for example, a binder can be used.
(Drive circuit 14)

またLEDの駆動回路14は、LEDをON/OFFさせるスイッチング回路であり、FET等により構成される。またパルス制御回路16は、駆動回路14を制御してLEDに供給される電流量や点灯周期を調整する。またLEDのON時間を規定するデューティ比を調整可能なPWM制御を行う。デューティ比は、パルス周期に対するLED照射時間の比率(点灯時間/周期)である。パルス制御回路16は、例えばパルス周期を120μs〜999sまで可変とし、LED1素子あたりの電流量を最大100mA、タイマを0.5h間隔で0.5〜9.5h可変にできる。この光触媒装置は、発光ダイオード12を駆動回路14で駆動して励起光を光触媒物質に照射することにより光触媒物質を活性化させる。この際の点灯周期やデューティ比を調整することで、光触媒効率を向上させる。
(電源18)
The LED drive circuit 14 is a switching circuit for turning on / off the LED, and is composed of an FET or the like. The pulse control circuit 16 controls the drive circuit 14 to adjust the amount of current supplied to the LED and the lighting cycle. Further, PWM control capable of adjusting the duty ratio that defines the LED ON time is performed. The duty ratio is the ratio of the LED irradiation time to the pulse period (lighting time / cycle). For example, the pulse control circuit 16 can change the pulse period from 120 μs to 999 s, the maximum current amount per LED element is 100 mA, and the timer can be changed from 0.5 to 9.5 h at intervals of 0.5 h. In this photocatalytic device, the photocatalytic substance is activated by driving the light emitting diode 12 with the drive circuit 14 and irradiating the photocatalytic substance with excitation light. The photocatalytic efficiency is improved by adjusting the lighting cycle and the duty ratio.
(Power supply 18)

駆動回路14は、電源18と接続される。電源18は、商用電源の他、一次電池や二次電池等とすることもできる。一般にLEDは通常の紫外線ランプや紫外線蛍光灯に比較して電力消費量が低い。ただ、LEDを用いた場合でも連続照射やデューティ比の高いパルス照射では、商用電源等の電力供給が必要となる。これに対して、本実施の形態では、デューティ比を1〜50%に抑えたパルス駆動とすることで、消費電力を抑え、電池等の携帯電源での駆動を可能とできる。これにより、電源線の接続が不要で取り回しの容易な光触媒装置や、電源設備のない場所で利用可能な携帯型の光触媒装置が実現できる。さらに電源18として、太陽電池を利用することもできる。昼間は太陽光に含まれる紫外光を利用して光励起する一方で太陽電池で電力を蓄えておき、夜間には蓄えられた電力を利用することで、昼夜にわたって連続駆動可能とできる。なお、電源18として商用電源と蓄電池、太陽電池のいずれかを併用したり、これらを切り替えて利用可能とする構成も採用できることはいうまでもない。
(実施の形態2)
The drive circuit 14 is connected to a power source 18. The power source 18 may be a primary battery, a secondary battery, or the like in addition to a commercial power source. In general, LEDs consume less power than ordinary ultraviolet lamps or ultraviolet fluorescent lamps. However, even when an LED is used, power supply such as a commercial power source is required for continuous irradiation or pulse irradiation with a high duty ratio. On the other hand, in the present embodiment, pulse driving with the duty ratio suppressed to 1 to 50% can suppress power consumption and drive with a portable power source such as a battery. Thereby, it is possible to realize a photocatalyst device that does not require connection of a power supply line and is easy to handle, and a portable photocatalyst device that can be used in a place without power supply equipment. Further, a solar cell can be used as the power source 18. In the daytime, it is possible to drive continuously by day and night by using the ultraviolet light contained in the sunlight to excite light and storing the electric power in the solar cell and using the stored electric power in the nighttime. Needless to say, it is possible to employ a configuration in which either a commercial power source, a storage battery, or a solar cell is used in combination as the power source 18 or these can be switched for use.
(Embodiment 2)

また、悪臭浄化装置等の光触媒装置には、光触媒層10を振動させる振動付与手段20を付加してもよい。図3に、本発明の実施の形態2に係る光触媒装置200として、振動付与手段20を付加した悪臭浄化装置を示す。なお、図2に示した部材と同じ部材については、同じ番号を付し、詳細説明を省略する。図3に示す振動付与手段20は、低周波振動器であり、振動数を0〜300Hzまで可変できる。微細振動を付加することで、光触媒層10と光触媒反応の対象物との接触確率を増加させ、光触媒反応をさらに促進できる。特に、悪臭ガス等有機物の分解・除去が困難な低濃度域での除去率の向上させることができる。
(実施例1)
Moreover, you may add the vibration provision means 20 which vibrates the photocatalyst layer 10 to photocatalyst apparatuses, such as a malodor purification apparatus. In FIG. 3, the malodor purification apparatus which added the vibration provision means 20 is shown as the photocatalyst apparatus 200 which concerns on Embodiment 2 of this invention. The same members as those shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. The vibration applying means 20 shown in FIG. 3 is a low frequency vibrator and can vary the frequency from 0 to 300 Hz. By adding fine vibrations, the contact probability between the photocatalyst layer 10 and the target of the photocatalytic reaction can be increased, and the photocatalytic reaction can be further promoted. In particular, it is possible to improve the removal rate in a low concentration region where it is difficult to decompose and remove organic substances such as malodorous gases.
Example 1

以下、実施例1として図2の悪臭浄化装置を用いて、悪臭物質を含む対象ガスを流し、LEDパルス照射と連続照射とを行いガス濃度を測定して、それぞれの除去率を演算した。
(ガス濃度測定)
Hereinafter, using the malodor purification apparatus of FIG. 2 as Example 1, the target gas containing the malodorous substance was allowed to flow, LED pulse irradiation and continuous irradiation were performed, the gas concentration was measured, and the respective removal rates were calculated.
(Gas concentration measurement)

ガス濃度の測定及び分析する機器として、ここでは気体検知管(検知管式気体測定器)を使用した。気体検知管は対象とする気体の濃度を測定する機器で、対象気体に反応して変色する粒状の検知剤を一定内径のガラス管に緊密に充填し、両端が熔封されたガラス管の表面に濃度目盛りを印刷したものである。充填する検知剤には、乾燥剤となるシリカゲルやアルミナ等粒体に各試薬をコーティングしており、その試薬は測定対象の気体のみ反応して鮮明な変色層を示し、長時間にわたって安定しているものが用いられる。
(悪臭物質)
Here, a gas detector tube (detector tube type gas measuring device) was used as an instrument for measuring and analyzing the gas concentration. A gas detector tube is a device that measures the concentration of the target gas. The surface of the glass tube is filled with a granular detector that changes color in response to the target gas and is tightly packed into a glass tube with a constant inner diameter. Is printed with a density scale. The detection agent to be filled is coated with each reagent on a granular material such as silica gel or alumina as a desiccant, and the reagent reacts only with the gas to be measured to show a clear discoloration layer and is stable over a long period of time. What is used is used.
(Odorous substance)

本実施例では、アセトアルデヒドとホルムアルデヒドの2種類の悪臭物質を用いた。
(アセトアルデヒド)
In this example, two types of malodorous substances, acetaldehyde and formaldehyde, were used.
(Acetaldehyde)

アセトアルデヒド(CH 3 CHO)は刺激臭のある無色の化学物質で、沸点は20.8℃、融点は−123.3℃であり、エチレンを酸化する方法等によって合成され、酢酸、ブタノール、合成高分子等の製造原料となる。大気中への排出は、アセトアルデヒドの製造工程、アセトアルデヒドを原料とする物質の製造工程から、また自動車排出ガスやたばこの煙から等がある。悪臭の原因となる物質として、特定悪臭物質に指定されている。臭気を感知できる濃度(検知閾値濃度)は0.002ppm、悪臭防止法により都道府県知事が規制基準として定めることのできる濃度範囲(臭気強度2.5〜3.5)は0.05〜0.5ppmである。
(ホルムアルデヒド)
Acetaldehyde (CH 3 CHO) is a colorless chemical substance with an irritating odor, has a boiling point of 20.8 ° C. and a melting point of −123.3 ° C., and is synthesized by a method such as oxidizing ethylene, acetic acid, butanol, synthetic high It becomes a raw material for producing molecules and the like. Emissions to the atmosphere include acetaldehyde production processes, production processes of substances using acetaldehyde as a raw material, automobile exhaust gas and cigarette smoke. It is designated as a specific malodorous substance as a substance causing bad odor. The concentration at which odor can be detected (detection threshold concentration) is 0.002 ppm, and the concentration range (odor intensity 2.5 to 3.5) that can be established as a regulation standard by the prefectural governor by the Odor Control Act is 0.05 to 0.00. 5 ppm.
(Formaldehyde)

ホルムアルデヒド(HCHO)は、刺激臭のある無色の気体で、沸点は−19.3℃、融点は−118.3〜−117.8℃である。40%程度水に溶かしたものがホルマリンと呼ばれる水溶液で、フェノール樹脂、メラニン樹脂、ユリア樹脂等の樹脂、接着剤、塗料やホルマリン漬標本等に代表される防腐、殺菌剤等に広く使用されている。低濃度でも人によっては、シックハウス症候群のような障害を起こすことがある。VOC(揮発性有機化合物)の一種である。
(LED悪臭浄化装置)
Formaldehyde (HCHO) is a colorless gas with an irritating odor and has a boiling point of −19.3 ° C. and a melting point of −118.3 to −117.8 ° C. What is dissolved in about 40% water is an aqueous solution called formalin, which is widely used in antiseptic and sterilizing agents such as phenolic resin, melanin resin, urea resin, adhesives, paints, and formalin samples. Yes. Even at low concentrations, some people may experience disorders such as sick house syndrome. It is a kind of VOC (volatile organic compound).
(LED malodor purification device)

LEDを光源に用いた悪臭浄化装置は、図2に示すように対象ガスが光触媒層10を通過するような連続接触型浄化装置とした。なお実施例においては、UV−LEDとして日亜化学工業株式会社製NSHU550を使用した。そのピーク波長は375nm、パルス順電流の最大定格は50mAである。このUV−LEDを光触媒層10の上下に各々6個ずつ設置した。   The malodor purification apparatus using the LED as the light source is a continuous contact purification apparatus in which the target gas passes through the photocatalyst layer 10 as shown in FIG. In the examples, NSHU550 manufactured by Nichia Corporation was used as the UV-LED. Its peak wavelength is 375 nm, and the maximum rating of the pulse forward current is 50 mA. Six UV-LEDs were installed above and below the photocatalyst layer 10 respectively.

また光触媒物質として、MILLENNIUM社のアナターゼ型二酸化チタン(TiO 2 )PC−500粉末を使用した。装置への応用の前処理として、水で混練することで造粒した後500、600、800℃で焼成処理を行った。その他、石膏10%を加え70℃で乾燥処理した試料も作製した。 Also as a photocatalytic substance, using anatase type titanium dioxide (TiO 2) PC-500 powder MILLENNIUM Corporation. As pretreatment for application to the apparatus, the mixture was granulated by kneading with water and then subjected to baking treatment at 500, 600 and 800 ° C. In addition, a sample prepared by adding 10% gypsum and drying at 70 ° C. was also prepared.

以上のようにして作製された試料の粒子は微小球状であり、二酸化チタンを主要成分としている。この光触媒物質を60メッシュのステンレスメッシュで担持し、光触媒層10とした。光触媒層10の面積は約4.32cm 2 、光触媒層10の厚みは約2mm、光触媒量は約1.1gである。またLEDと光触媒層10の距離を約9mmとし、平均照度は0.6mW/cm 2 とした。この浄化装置のLEDのパルス制御回路16でパルス周期やデューティ比を変化させ、パルス出力を制御する。 The particles of the sample produced as described above are microspherical and contain titanium dioxide as a main component. This photocatalytic substance was supported by a 60 mesh stainless steel mesh to form a photocatalytic layer 10. The area of the photocatalyst layer 10 is about 4.32 cm 2 , the thickness of the photocatalyst layer 10 is about 2 mm, and the amount of photocatalyst is about 1.1 g. The distance between the LED and the photocatalyst layer 10 was about 9 mm, and the average illuminance was 0.6 mW / cm 2 . The pulse period and duty ratio are changed by the LED pulse control circuit 16 of this purification device to control the pulse output.

処理前のガスを浄化装置に通過させるために、浄化装置の出口側にポンプ26を取り付けた。ポンプ26にはミニポンプ(0.05〜3l/min)を使用した。また、光触媒層近傍でのLED照射による発熱を発散するために、必要に応じて送風機を設置する。光触媒による酸化反応は環境温度に影響されるため、試験は20〜25℃の恒温室内で行った。   A pump 26 was attached to the outlet side of the purification device in order to pass the gas before treatment through the purification device. A mini pump (0.05 to 3 l / min) was used as the pump 26. Moreover, in order to diverge the heat | fever by LED irradiation in the photocatalyst layer vicinity, a fan is installed as needed. Since the oxidation reaction by the photocatalyst is influenced by the environmental temperature, the test was performed in a constant temperature room at 20 to 25 ° C.

図2の浄化装置を用いて、以下の手順で測定を行った。まず試験ガス調製用テドラーバッグ22を用いてアセトアルデヒドを空気で希釈し、アセトアルデヒド濃厚ガス(約6000ppm)を作製した。この濃厚ガスを目的に応じた濃度に希釈し、テドラーバッグ22に入れ、処理前のガスとした。ガス流量や紫外線LEDの照射方法は、測定目的に応じて設定する。浄化装置始動後、装置内(デッドスペース)の気体を別のバッグに取り除き、新たに試験ガス採取用テドラーバッグ24を取り付けた。この回収したガスを試験後のガスとした。そして回収した処理後のガスの濃度を測定した。測定された濃度に基づき、下記の数1を用いて、除去率によって性能を評価した。   The measurement was performed by the following procedure using the purification apparatus of FIG. First, acetaldehyde was diluted with air using a test gas preparation Tedlar bag 22 to produce a concentrated acetaldehyde gas (about 6000 ppm). This rich gas was diluted to a concentration according to the purpose, put into the Tedlar bag 22, and used as a gas before treatment. The gas flow rate and ultraviolet LED irradiation method are set according to the measurement purpose. After the purification device was started, the gas in the device (dead space) was removed in another bag, and a test gas sampling tedlar bag 24 was newly attached. This recovered gas was used as a gas after the test. And the density | concentration of the collect | recovered gas after the process was measured. Based on the measured concentration, the performance was evaluated by the removal rate using the following formula 1.

他の悪臭成分であるホルムアルデヒドに対しても、同様の操作で試験を行った。
(焼成処理による二酸化チタンの影響)
The test was conducted in the same manner for formaldehyde, which is another malodorous component.
(Influence of titanium dioxide due to firing)

二酸化チタンのXRD結果とBET法による比表面積測定の結果を図4〜図5に示す。未焼成の試料(原料)から焼成温度900℃の試料については、アナターゼが観察された。しかし、1000℃焼成した試料については、アナターゼの他にルチルも確認された。焼成温度が高くなるにつれて、二酸化チタンの比表面積は減少し、500℃で77、600℃で43、800℃で13m 2 /gとなった。 The XRD results of titanium dioxide and the results of specific surface area measurement by the BET method are shown in FIGS. Anatase was observed from the unfired sample (raw material) to the sample at a firing temperature of 900 ° C. However, for the sample fired at 1000 ° C., rutile was also confirmed in addition to anatase. As the firing temperature increased, the specific surface area of titanium dioxide decreased to 77 at 500 ° C., 43 at 600 ° C., and 13 m 2 / g at 800 ° C.

図6〜図7に用いた試料表面のSEM写真を示す。図6の(a)は未焼成の粉末、(b)は石膏を用いて押し出し造粒したもの、(c)及び(d)は造粒装置で顆粒にしたものである。(b)は、石膏により粒子が大きくなっており、(c)及び(d)はよく似た粒状の外観であることが分かる。さらに、倍率は異なるが図7で詳しく観察すると焼成温度が高くなるに従って空隙が少なくなり、粒子が詰まっていることが分かる。また、(d)は、(c)と比較すると粒成長しており、焼結が進んでいることも分かる
(粉末試料による光触媒性能評価)
The SEM photograph of the sample surface used for FIGS. 6-7 is shown. (A) of FIG. 6 is an unbaked powder, (b) is extruded and granulated using gypsum, and (c) and (d) are granulated with a granulator. In (b), the particles are enlarged by gypsum, and it can be seen that (c) and (d) have a similar granular appearance. Furthermore, although the magnification is different, it can be seen in detail in FIG. 7 that the voids decrease and the particles are clogged as the firing temperature increases. It can also be seen that (d) is grain-grown and sintered as compared with (c) (photocatalytic performance evaluation by powder sample).

図8にガスバッグB法によるアセトアルデヒドの除去率を示す。図8の実験に限り、紫外線光源にはブラックライトを用い、紫外線強度は1.0mW/cm 2 とした。未焼成の二酸化チタンから、700℃で焼成した二酸化チタンまでの光触媒活性度には、大きな違いは見られず、焼成温度が800℃以上の試料のものから除去速度は遅くなった。これは、比表面積と光触媒活性に直接的な関係はなく、吸着や分解の起こるための十分な比表面積があれば分解反応が起こるものと考えられる。
(アセトアルデヒドに対するLED悪臭浄化装置の効果)
FIG. 8 shows the removal rate of acetaldehyde by the gas bag B method. Only in the experiment of FIG. 8, black light was used as the ultraviolet light source, and the ultraviolet intensity was 1.0 mW / cm 2 . There was no significant difference in the photocatalytic activity from uncalcined titanium dioxide to titanium dioxide calcined at 700 ° C., and the removal rate was slower from that of the sample having a calcining temperature of 800 ° C. or higher. This is because there is no direct relationship between the specific surface area and the photocatalytic activity, and it is considered that the decomposition reaction occurs if there is a sufficient specific surface area for adsorption and decomposition.
(Effect of LED malodor purification device for acetaldehyde)

図9に、パルス周期に対するアセトアルデヒドの除去率変化を示す。試験条件は、ガス濃度20ppm、電流値20mA、線速度0.0042m/s、温度20℃、デューティ比50%、紫外線強度0.6mW/cm 2 として600℃で焼成した二酸化チタンを用いた。周期約0.2〜2msまでは連続照射と同程度、あるいはそれ以上の除去率であった。周期約2ms以後では、除去率は徐々に減少し、約10ms前後では連続照射の約1/2になった。 FIG. 9 shows changes in the removal rate of acetaldehyde with respect to the pulse period. As test conditions, titanium dioxide baked at 600 ° C. with a gas concentration of 20 ppm, a current value of 20 mA, a linear velocity of 0.0042 m / s, a temperature of 20 ° C., a duty ratio of 50%, and an ultraviolet intensity of 0.6 mW / cm 2 was used. The removal rate was about the same as or higher than that of continuous irradiation up to a period of about 0.2 to 2 ms. After a period of about 2 ms, the removal rate gradually decreased, and after about 10 ms, it was about ½ of continuous irradiation.

これらのことから、アセトアルデヒドの除去機構は、上述した図1に従うと考えられる。すなわち、パルス周期が1ms前後の場合は、LED消灯時の吸着量が点灯時の処理量より十分に大きいため、除去効率が連続点灯と同等、あるいはそれ以上となる。一方、点灯時は、分解が発生するためそれによる発生ガスの影響で吸着が少なくなる。パルス周期が約10ms前後で除去率が約1/2となった原因は、光触媒層上の吸着が飽和状態となり、消灯時の吸着の効果が失われたためと考えられる。このようにアセトアルデヒドは、主としてLED点灯時に吸着、分解が同時に起こり、消灯時には吸着のみが起こることによって除去される。消灯時の吸着は、点灯時より大きいものの、時間の経過と共に急速に減少する。一方、点灯が瞬時であっても十分な分解が得られる。このことから、LEDの点灯周期は消灯時間が支配的となり、有機物の光触媒物質への吸着効果が発揮できる時間に設定する。好ましくは、消灯時間は吸着が飽和するよりも短い時間とする。一方、消費電力節約の観点からは、点灯時間を短くすることが好ましいが、LEDの駆動回路14のスイッチング速度の高速化やコスト等の面から、0.1ms〜30ms、好ましくは1〜20ms、より好ましくは2ms〜5msとする。また点灯周期は、50Hz〜5kHz程度の周期とする。さらにデューティ比は50%以下、好ましくは10%以下とする。これら点灯時間及び点灯周期は、使用される光触媒物質やLEDの出力、電源の種類等に応じて、最適に調製される。   From these things, it is thought that the removal mechanism of acetaldehyde follows FIG. 1 mentioned above. That is, when the pulse period is around 1 ms, the amount of adsorption when the LED is turned off is sufficiently larger than the processing amount when the LED is turned on, so that the removal efficiency is equal to or higher than that of continuous lighting. On the other hand, since decomposition occurs at the time of lighting, adsorption is reduced due to the influence of the generated gas. The reason why the removal rate becomes about 1/2 when the pulse period is about 10 ms is considered that the adsorption on the photocatalyst layer is saturated and the adsorption effect at the time of extinction is lost. Thus, acetaldehyde is mainly removed by simultaneous adsorption and decomposition when the LED is turned on and only adsorption when the LED is turned off. Although the adsorption at the time of turning off is larger than that at the time of turning on, it decreases rapidly with the passage of time. On the other hand, even if lighting is instantaneous, sufficient decomposition can be obtained. For this reason, the lighting cycle of the LED is set to a time during which the extinguishing time becomes dominant and the adsorption effect of the organic matter on the photocatalytic substance can be exhibited. Preferably, the turn-off time is shorter than the time when the adsorption is saturated. On the other hand, from the viewpoint of saving power consumption, it is preferable to shorten the lighting time. However, from the viewpoint of increasing the switching speed of the LED drive circuit 14 and cost, 0.1 ms to 30 ms, preferably 1 to 20 ms, More preferably, it is 2 ms to 5 ms. The lighting cycle is about 50 Hz to 5 kHz. Furthermore, the duty ratio is 50% or less, preferably 10% or less. The lighting time and lighting cycle are optimally adjusted according to the photocatalyst material used, the output of the LED, the type of power source, and the like.

以下説明する実施例では、特記するものを除いて600℃で焼成した二酸化チタンを用いて、線速度0.0042m/s、温度20℃でLED照射を実施した。   In the examples described below, LED irradiation was performed at a linear velocity of 0.0042 m / s and a temperature of 20 ° C. using titanium dioxide baked at 600 ° C., unless otherwise specified.

まず、アセトアルデヒドのガス濃度20ppm、パルス周期を1msとし、デューティ比を変化させたときの除去率を測定した。この結果を図10に示す。アセトアルデヒドの分解は、デューティ比が10〜80%の範囲で連続照射よりも良好な除去効率を示した。デューティ比が10%の場合でも連続照射より優れた除去効率を示した原因は、アセトアルデヒドに対しての酸化チタンの分解能力が余剰にあるため、処理されたものと推測される。したがって、効率的な分解が行われていないことが確認できる。そのため、酸化チタンと表面で十分に接触するように工夫すれば、この10倍程度の化学量の処理も可能となる。またデューティ比が80%以上になると、連続照射と同程度の除去率になった。これは、前述の通りLED点灯時は分解が起こるため、分解による発生ガスの影響で吸着が阻害されるためと考えられる。   First, the removal rate when the gas ratio of acetaldehyde was 20 ppm, the pulse period was 1 ms, and the duty ratio was changed was measured. The result is shown in FIG. The decomposition of acetaldehyde showed better removal efficiency than continuous irradiation in the duty ratio range of 10-80%. The reason why the removal efficiency superior to continuous irradiation was exhibited even when the duty ratio was 10% was presumed to be that the titanium oxide was decomposed with respect to acetaldehyde because of its excessive ability to decompose. Therefore, it can be confirmed that efficient decomposition is not performed. Therefore, if it is devised to make sufficient contact with the titanium oxide on the surface, it is possible to process a chemical amount about 10 times this. When the duty ratio was 80% or more, the removal rate was comparable to that of continuous irradiation. This is presumably because the decomposition occurs when the LED is lit as described above, and the adsorption is hindered by the influence of the gas generated by the decomposition.

次に、アセトアルデヒドの濃度を5ppmとした場合のパルス周期に対する除去率の変化を測定した。この結果を図11に示す。ここでのデューティ比は50%とした。測定の結果、図9に示すアセトアルデヒド20ppmでの場合と異なり、パルス幅が70〜1msになるに従ってアセトアルデヒドの除去率は減少した。20ppmの試験の場合と比べて、濃度勾配が小さく、前述のモデルのLED消灯時の吸着量が少なく、そのままガスが通過したと考えられる。なおグラフのばらつきについては、低濃度であるため検知管の値が判別し難いことによる誤差と思われる。
(実施例2)
Next, the change in removal rate with respect to the pulse period when the concentration of acetaldehyde was 5 ppm was measured. The result is shown in FIG. The duty ratio here is 50%. As a result of the measurement, unlike the case of 20 ppm acetaldehyde shown in FIG. 9, the removal rate of acetaldehyde decreased as the pulse width became 70 to 1 ms. Compared to the case of the 20 ppm test, the concentration gradient is small, the amount of adsorption when the LED of the above-mentioned model is turned off is small, and it is considered that the gas passed as it is. Note that the variation in the graph seems to be an error due to the fact that the value of the detector tube is difficult to distinguish because of its low concentration.
(Example 2)

次に、低濃度での吸着効率を向上させるために、振動付与手段20を付加した図3に示す実施の形態2を使用して、対象ガスの除去率を測定した。一般に実施例1のような消臭・脱臭方式では、対象ガスが低濃度になった場合、境膜拡散抵抗により除去効率が著しく低下する。そこで、アセトアルデヒドが触媒内を通過する装置の下部に振動付与手段20として低周波振動器を設置し、光触媒と対象ガスとの接触確率を高めることで低濃度での吸着効率の向上効果を確認した。   Next, in order to improve the adsorption efficiency at a low concentration, the removal rate of the target gas was measured using the second embodiment shown in FIG. In general, in the deodorization / deodorization system as in the first embodiment, when the target gas has a low concentration, the removal efficiency is significantly reduced due to the boundary film diffusion resistance. Therefore, a low-frequency vibrator was installed as a vibration imparting means 20 at the lower part of the apparatus through which acetaldehyde passes through the catalyst, and the effect of improving the adsorption efficiency at a low concentration was confirmed by increasing the contact probability between the photocatalyst and the target gas. .

実施例2として、低濃度域で振動数60Hzの微細振動を付与し、デューティ比を変化させてアセトアルデヒドの除去能力を測定した結果を図12に示す。比較例として、連続照射を行った場合のアセトアルデヒドの除去能力は、60%前後であった。一方、実施例2としてパルス周期を1ms前後とすると、連続照射試験のときよりも良好な除去率を示した。これは、パルス周期が短い場合、LED点灯時と消灯直後の濃度勾配は等しく、消灯時のより大きな吸着が有効に作用したものと考えられる。一方でパルス周期が長くなると濃度勾配が小さくなるため、LED消灯時の吸着量も小さくなる。したがって、低濃度でのアセトアルデヒドの除去には、微細振動の付与と1ms前後のパルス照射が効果的であることが判明した。
(光触媒物質の比表面積とパルス周期の関係)
As Example 2, FIG. 12 shows the results of measuring the acetaldehyde removal ability by applying a fine vibration with a frequency of 60 Hz in a low concentration region and changing the duty ratio. As a comparative example, the ability to remove acetaldehyde in the case of continuous irradiation was around 60%. On the other hand, when the pulse period was around 1 ms as Example 2, the removal rate was better than that in the continuous irradiation test. This is considered to be because when the pulse period is short, the concentration gradient at the time of turning on the LED is the same as that immediately after the turning off, and the larger adsorption at the time of turning off the light works effectively. On the other hand, as the pulse period becomes longer, the concentration gradient becomes smaller, so the adsorption amount when the LED is turned off also becomes smaller. Therefore, it was proved that application of fine vibration and pulse irradiation of around 1 ms are effective for removing acetaldehyde at a low concentration.
(Relationship between specific surface area of photocatalytic substance and pulse period)

さらに、アセトアルデヒドの除去試験で用いた二酸化チタンの比表面積と最適なパルス周期との関係を調べた。この結果を図13〜図15に示す。図13は、70℃で乾燥した二酸化チタン試料に対してガス濃度20ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を50%としてLEDを照射した場合の除去率を示している。また図14は、同一の条件で試料として500℃で焼成した二酸化チタン試料を使用した場合の除去率、図15は同じく800℃で焼成した二酸化チタン試料を使用した場合の除去率をそれぞれ示している。各試料ともパルス照射の方が連続照射より良好な除去率を示す部分が見出された。図12〜図15の試験において、除去率がピークとなるパルス周期を、図16に示す。この図に示すように、除去率がピークとなるパルス周期は、70℃、500℃、800℃の試料につき、それぞれ50、30、5msとなった。パルス照射の場合は、図1のような対象ガスの吸脱着が生じる。これらの例では、光触媒物質の比表面積が大きく、吸着量が大きいものについては、パルス周期を長くしても除去できることが判る。   Furthermore, the relationship between the specific surface area of titanium dioxide used in the acetaldehyde removal test and the optimum pulse period was investigated. The results are shown in FIGS. FIG. 13 shows the removal rate when an LED is irradiated at a room temperature of 20 ° C. with a duty ratio of 50% by flowing acetaldehyde with a gas concentration of 20 ppm at a linear velocity of 0.0042 m / s on a titanium dioxide sample dried at 70 ° C. Is shown. 14 shows the removal rate when using a titanium dioxide sample calcined at 500 ° C. as a sample under the same conditions, and FIG. 15 shows the removal rate when using a titanium dioxide sample calcined at 800 ° C. Yes. In each sample, a portion where the pulse irradiation showed a better removal rate than the continuous irradiation was found. FIG. 16 shows the pulse period at which the removal rate reaches a peak in the tests of FIGS. As shown in this figure, the pulse periods at which the removal rate peaks were 50, 30, and 5 ms for samples of 70 ° C., 500 ° C., and 800 ° C., respectively. In the case of pulse irradiation, adsorption / desorption of the target gas as shown in FIG. 1 occurs. In these examples, it can be seen that the photocatalytic substance having a large specific surface area and a large adsorption amount can be removed even if the pulse period is increased.

一方で、比較例として行った連続照射では、70、500、800℃と処理温度を高くするに従い、除去率は65、60、30%と低下した。また、70℃乾燥試料と500℃の焼成試料では除去効率に大きな差は見られなかった。これは、LED連続照射の場合、比表面積とアセトアルデヒドの除去とに直接的な関係はなく、吸着や分解が起こるための充分な比表面積があれば分解反応が起こるという図8と同様の現象であると思われる。   On the other hand, in the continuous irradiation performed as a comparative example, the removal rate decreased to 65, 60, and 30% as the processing temperature was increased to 70, 500, and 800 ° C. Further, there was no significant difference in removal efficiency between the 70 ° C. dried sample and the 500 ° C. fired sample. This is the same phenomenon as FIG. 8 in which there is no direct relationship between the specific surface area and the removal of acetaldehyde in the case of LED continuous irradiation, and the decomposition reaction occurs if there is a sufficient specific surface area for adsorption and decomposition. It appears to be.

800℃焼成試料は、光触媒活性が低いが機械的強度は高い。機械的強度が高ければ、装置として使うのに有利である。しかしながら、除去率は30%程度である。そこで、低周波振動を付与することでアセトアルデヒドの除去率の向上を試みた。   The 800 ° C. calcined sample has low photocatalytic activity but high mechanical strength. A high mechanical strength is advantageous for use as a device. However, the removal rate is about 30%. Then, the improvement of the removal rate of acetaldehyde was tried by giving a low frequency vibration.

ここで、図15と同様の条件で、パルス周期を10ms、振動数180Hzの振動を付与しデューティ比を変化させた。この結果を図17に示す。この結果を図15と比較すると、パルス周期が10msの時、振動を加えることにより除去率が2倍以上向上した。振動の付与により、アセトアルデヒドと試料との接触確率が増加し吸着が促進された結果、反応性が向上したことが原因と考えられる。また、デューティ比が20〜60%の範囲で連続照射より良好な値を示した。これは、LED消灯時の吸着量が点灯時より大きく、全体として処理量が増加したためと思われる。デューティ比が80%以上で除去効率が低下した原因は、アセトアルデヒドが分解されることでガスが発生し吸着が起こり難くなり、吸着量が少なくなったためと思われる。
(ホルムアルデヒドに対するLED悪臭浄化装置の効果)
Here, under the same conditions as in FIG. 15, the duty cycle was changed by applying a vibration with a pulse period of 10 ms and a vibration frequency of 180 Hz. The result is shown in FIG. Comparing this result with FIG. 15, when the pulse period was 10 ms, the removal rate was improved more than twice by applying vibration. As a result of the application of vibration, the contact probability between the acetaldehyde and the sample is increased and the adsorption is promoted. Moreover, a value better than continuous irradiation was shown when the duty ratio was in the range of 20 to 60%. This seems to be because the amount of adsorption when the LED was turned off was larger than when the LED was turned on, and the processing amount as a whole increased. The reason why the removal efficiency is reduced when the duty ratio is 80% or more is thought to be that gas is generated due to decomposition of acetaldehyde, adsorption becomes difficult to occur, and adsorption amount is reduced.
(Effect of LED malodor purification device for formaldehyde)

次に悪臭物質として、アセトアルデヒドに代わりホルムアルデヒドを使用した除去試験を行った。近年シックハウス症候群のような低濃度域での大気汚染が問題になっており、VOCの中でもその主成分となっているホルムアルデヒドは優先的取り組みの対象として一番目に取り上げられている。ここでは、ガス濃度を0.5ppm、3ppm及び4ppmとし、振動数を200Hz、図13で使用した70℃乾燥試料、デューティ比100%にて試験を行った。この結果を図24に示す。この図から、ガス濃度が3ppm以上では、除去率が80%以上を示した。3ppmが4ppmよりも除去効率が高いのは、濃度範囲が広い検知管を使用したことによる測定誤差だと思われる。また、0.5ppmでは除去率が40%程度となり4ppmの1/2に減少した。これは、アセトアルデヒド5ppmと場合と同様、濃度勾配が小さく二酸化チタンの吸着が少ないためだと考えられる。   Next, the removal test which used formaldehyde instead of acetaldehyde as a malodorous substance was done. In recent years, air pollution in a low concentration range such as sick house syndrome has become a problem, and formaldehyde, which is the main component of VOC, is first picked up as a target of priority efforts. Here, the test was performed with gas concentrations of 0.5 ppm, 3 ppm, and 4 ppm, a frequency of 200 Hz, a 70 ° C. dry sample used in FIG. 13, and a duty ratio of 100%. The results are shown in FIG. From this figure, the removal rate was 80% or more when the gas concentration was 3 ppm or more. The reason why the removal efficiency of 3 ppm is higher than that of 4 ppm seems to be a measurement error due to the use of a detector tube with a wide concentration range. At 0.5 ppm, the removal rate was about 40%, which was reduced to 1/2 of 4 ppm. This is probably because the concentration gradient is small and the adsorption of titanium dioxide is small as in the case of acetaldehyde of 5 ppm.

さらに、低濃度でのホルムアルデヒドの除去効率を向上するために、ガス濃度0.5ppm、デューティ比50%、振動数200Hzで、パルス周期を変化させたときの除去率を測定した。この結果を図25に示す。この図に示すように、パルス照射と振動を付与することで、低濃度のホルムアルデヒドでも80%程度の除去率になることが示された。これは、前述のアセトアルデヒドの場合と同様、パルス照射を行うことによりLED消灯時の吸着量がLED点灯時の処理量より十分に大きくなったためと考えられる。しかし、パルス周期が1msの場合の除去率は、LED連続照射時の1/2の20%しかなかった。   Furthermore, in order to improve the removal efficiency of formaldehyde at a low concentration, the removal rate was measured when the pulse period was changed at a gas concentration of 0.5 ppm, a duty ratio of 50%, and a vibration frequency of 200 Hz. The result is shown in FIG. As shown in this figure, it was shown that by applying pulse irradiation and vibration, a removal rate of about 80% can be achieved even with a low concentration of formaldehyde. This is considered to be because the adsorption amount when the LED is turned off is sufficiently larger than the processing amount when the LED is turned on by performing pulse irradiation as in the case of the acetaldehyde described above. However, the removal rate when the pulse period was 1 ms was only 20%, which was 1/2 of the LED continuous irradiation.

そこで、図25の試験をパルス周期1msで、デューティ比を変化させることよって除去率への影響を調べた。この結果を図26に示す。デューティ比が1%の場合の除去率は、デューティ比が20〜80%の場合と比べて上昇した。これは、LED消灯時の吸着量が大きいためと考えられる。また、試験ガス濃度に対して酸化チタンの吸着能力が十分にあればデューティ比を小さくしても高除去率を得ることができると分かった。従ってシックハウス症候群対策等では、デューティ比を小さく設定すれば、低消費電力で、しかもLEDの長寿命化が可能となることが示された。   Therefore, the influence on the removal rate was examined by changing the duty ratio in the test of FIG. 25 at a pulse period of 1 ms. The result is shown in FIG. The removal rate when the duty ratio is 1% is higher than that when the duty ratio is 20 to 80%. This is considered to be because the amount of adsorption when the LED is turned off is large. It was also found that a high removal rate can be obtained even if the duty ratio is reduced if the adsorption ability of titanium oxide is sufficient with respect to the test gas concentration. Accordingly, it has been shown that, as a countermeasure against sick house syndrome, if the duty ratio is set small, the power consumption can be reduced and the life of the LED can be extended.

以上のように、パルス周期を長くしデューティ比を小さくしても高除去率を維持できる。アセトアルデヒドやホルムアルデヒドの分解試験では、連続照射より数〜数十m秒周期のパルス照射を行った方が除去率が優れていた。また、デューティ比が1〜50%で良好な除去率を示した。また、長時間使用可能な悪臭浄化装置に使用する酸化チタンには、LEDパルス照射時において短時間で吸脱着が可能で、しかも光触媒活性の高い材料が有効である。詳細には、アセトアルデヒドが20ppmのとき、光触媒物質として600℃で焼成した二酸化チタンを用いた場合、LED連続照射試験において除去率80%を達成した。また、デューティ比50%のLEDパルス照射試験では、周期約0.2〜2msでは連続照射と同程度の処理能力が得られる。二酸化チタンは、焼成温度が高くなるにつれて除去率が低下傾向にある。このため、高比表面積であるほど酸化チタンに対象ガスが吸着することが判明した。さらに、光触媒物質に微細振動を付与すると、対象ガスと光触媒物質との接触確率が増加し吸着が促進される結果、反応性が向上する。例えば、800℃で焼成した二酸化チタンに微細振動を付与すると、アセトアルデヒドの除去率が向上する。振動を付与することにより、パルス周期が10msの場合で除去率が2倍以上に向上した。また対象ガス濃度が低い場合、デューティ比を小さく設定しても高い除去率を示し、さらに低消費電力でLEDの長寿命化も図れる。例えば、ホルムアルデヒド0.5ppmに70℃で乾燥した二酸化チタンに200Hzの振動を付与し、デューティ比を変化させたときの除去率を測定した結果、デューティ比が1%であってもデューティ比が40%の場合と同程度の除去率を示した。このように、二酸化チタンに照射する光源としてLEDを使用して、さらにデューティ比を適切に設定したパルス照射を行うことで、二酸化チタンの対象ガスに対する吸着力を向上させて処理能力を高めることができる。また、点灯期間を短くすることで消費電力量を著しく低減させ、電池や二次電池での使用も可能となる。同時に太陽電池と組み合わせて、夜間の稼働も可能とすることもできる。   As described above, a high removal rate can be maintained even if the pulse period is increased and the duty ratio is decreased. In the decomposition test of acetaldehyde and formaldehyde, the removal rate was better when pulse irradiation with a period of several to several tens of milliseconds was performed than continuous irradiation. Further, a good removal rate was exhibited at a duty ratio of 1 to 50%. In addition, for the titanium oxide used in the malodor purification apparatus that can be used for a long period of time, a material that can be adsorbed and desorbed in a short time during LED pulse irradiation and that has high photocatalytic activity is effective. Specifically, when acetaldehyde was 20 ppm, when titanium dioxide baked at 600 ° C. was used as the photocatalytic substance, a removal rate of 80% was achieved in the LED continuous irradiation test. Further, in the LED pulse irradiation test with a duty ratio of 50%, a processing capability comparable to that of continuous irradiation can be obtained in a cycle of about 0.2 to 2 ms. The removal rate of titanium dioxide tends to decrease as the firing temperature increases. For this reason, it became clear that target gas adsorb | sucks to a titanium oxide, so that it is a high specific surface area. Furthermore, when fine vibration is imparted to the photocatalyst substance, the contact probability between the target gas and the photocatalyst substance is increased and the adsorption is promoted. As a result, the reactivity is improved. For example, when fine vibration is applied to titanium dioxide baked at 800 ° C., the acetaldehyde removal rate is improved. By applying vibration, the removal rate was improved more than twice when the pulse period was 10 ms. In addition, when the target gas concentration is low, a high removal rate is exhibited even if the duty ratio is set small, and the life of the LED can be extended with low power consumption. For example, as a result of measuring the removal rate when applying 200 Hz vibration to titanium dioxide dried at 70 ° C. in 0.5 ppm formaldehyde and changing the duty ratio, the duty ratio is 40% even when the duty ratio is 1%. %, The removal rate was comparable. In this way, by using an LED as a light source for irradiating titanium dioxide and performing pulse irradiation with an appropriately set duty ratio, the adsorption power of titanium dioxide to the target gas can be improved and the processing capacity can be increased. it can. Further, by shortening the lighting period, the amount of power consumption is remarkably reduced, and use with a battery or a secondary battery is also possible. At the same time, it can be combined with a solar cell to enable operation at night.

本発明の発光ダイオードを用いた光触媒装置は、消臭・脱臭装置に限られず、殺菌装置、防汚機器等に好適に適用できる。   The photocatalyst device using the light emitting diode of the present invention is not limited to the deodorization / deodorization device, and can be suitably applied to a sterilization device, an antifouling device, and the like.

パルス照射によって光触媒効果が発現する過程を示す説明図である。It is explanatory drawing which shows the process in which the photocatalytic effect is expressed by pulse irradiation. 本発明の実施の形態1に係る発光ダイオードを用いた光触媒装置のブロック図である。It is a block diagram of the photocatalyst device using the light emitting diode which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る発光ダイオードを用いた光触媒装置のブロック図である。It is a block diagram of the photocatalyst apparatus using the light emitting diode which concerns on Embodiment 2 of this invention. 二酸化チタンのXRD結果を示すグラフである。It is a graph which shows the XRD result of titanium dioxide. 二酸化チタンのBET法による比表面積測定の結果を示すグラフである。It is a graph which shows the result of the specific surface area measurement by BET method of titanium dioxide. 試料表面のSEM写真を示すイメージ図である。It is an image figure which shows the SEM photograph of the sample surface. 試料表面のSEM写真を示すイメージ図である。It is an image figure which shows the SEM photograph of the sample surface. ガスバッグB法によるアセトアルデヒドの除去率を示すグラフである。It is a graph which shows the removal rate of acetaldehyde by the gas bag B method. 600℃で焼成した二酸化チタン試料に対し、ガス濃度20ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を50%とし、パルス周期を変化させてLEDを照射した場合の除去率を示すグラフである。When a sample of titanium dioxide fired at 600 ° C is irradiated with acetaldehyde with a gas concentration of 20 ppm at a linear velocity of 0.0042 m / s, the duty ratio is 50% at room temperature of 20 ° C, and the pulse period is changed to irradiate the LED It is a graph which shows the removal rate of. 600℃で焼成した二酸化チタン試料に対し、ガス濃度20ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でパルス周期を1msとし、デューティ比を変化させてLEDを照射した場合の除去率を示すグラフである。When a sample of titanium dioxide fired at 600 ° C. is irradiated with acetaldehyde having a gas concentration of 20 ppm at a linear velocity of 0.0042 m / s, a pulse period of 1 ms at a room temperature of 20 ° C., and a duty ratio is changed to irradiate an LED. It is a graph which shows a removal rate. 600℃で焼成した二酸化チタン試料に対し、ガス濃度5ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を50%とし、パルス周期を変化させてLEDを照射した場合の除去率を示すグラフである。When a sample of titanium dioxide fired at 600 ° C is flowed with acetaldehyde with a gas concentration of 5 ppm at a linear velocity of 0.0042 m / s, the duty ratio is 50% at a room temperature of 20 ° C, and the pulse period is changed to irradiate the LED. It is a graph which shows the removal rate of. 600℃で焼成した二酸化チタン試料に振動数60Hzの微細振動を付与し、ガス濃度5ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を変化させてLEDを照射した場合の除去率を示すグラフである。A titanium dioxide sample fired at 600 ° C. was given a fine vibration of a frequency of 60 Hz, acetaldehyde with a gas concentration of 5 ppm was flowed at a linear velocity of 0.0042 m / s, and the duty ratio was changed at room temperature of 20 ° C. to irradiate the LED. It is a graph which shows the removal rate in a case. 70℃で乾燥した二酸化チタン試料に対してガス濃度20ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を50%としてLEDを照射した場合の除去率を示すグラフである。It is a graph showing the removal rate when acetaldehyde with a gas concentration of 20 ppm is flowed at a linear velocity of 0.0042 m / s on a titanium dioxide sample dried at 70 ° C., and the LED is irradiated at a duty ratio of 50% at a room temperature of 20 ° C. is there. 500℃で焼成した二酸化チタン試料に対してガス濃度20ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を50%としてLEDを照射した場合の除去率を示すグラフである。It is a graph showing the removal rate when acetaldehyde with a gas concentration of 20 ppm is flowed at a linear velocity of 0.0042 m / s on a titanium dioxide sample fired at 500 ° C., and the LED is irradiated at a duty ratio of 50% at a room temperature of 20 ° C. is there. 800℃で焼成した二酸化チタン試料に対してガス濃度20ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を50%としてLEDを照射した場合の除去率を示すグラフである。A graph showing the removal rate when a 20% acetaldehyde gas was flowed at a linear velocity of 0.0042 m / s on a titanium dioxide sample fired at 800 ° C., and the LED was irradiated at a duty ratio of 50% at a room temperature of 20 ° C. is there. 図12〜図15において、除去率がピークとなるパルス周期を示すグラフである。12 to 15 are graphs showing pulse periods at which the removal rate reaches a peak. 800℃で焼成した二酸化チタン試料に振動数180Hzの振動を付与し、図15と同様にガス濃度20ppmのアセトアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を変化させてLEDを照射した場合の除去率を示すグラフである。A vibration with a frequency of 180 Hz was applied to a titanium dioxide sample calcined at 800 ° C., and acetaldehyde with a gas concentration of 20 ppm was flowed at a linear velocity of 0.0042 m / s as in FIG. 15, and the duty ratio was changed at a room temperature of 20 ° C. It is a graph which shows the removal rate at the time of irradiating LED. 70℃で乾燥した二酸化チタン試料に振動数200Hzの振動を付与し、ガス濃度0.5ppm、3ppm、4ppmのホルムアルデヒドを線速度0.0042m/sで流し、20℃の室温でLEDを連続照射した場合の除去率を示すグラフである。A titanium dioxide sample dried at 70 ° C. was given a vibration at a frequency of 200 Hz, and formaldehyde with a gas concentration of 0.5 ppm, 3 ppm, and 4 ppm was flowed at a linear velocity of 0.0042 m / s, and the LED was continuously irradiated at a room temperature of 20 ° C. It is a graph which shows the removal rate in a case. 70℃で乾燥した二酸化チタン試料に振動数200Hzの振動を付与し、ガス濃度0.5ppmのホルムアルデヒドを線速度0.0042m/sで流し、20℃の室温でデューティ比を50%としパルス周期を変化させてLEDを照射した場合の除去率を示すグラフである。A titanium dioxide sample dried at 70 ° C. is given a vibration of 200 Hz, formaldehyde with a gas concentration of 0.5 ppm is flowed at a linear velocity of 0.0042 m / s, a duty ratio is 50% at a room temperature of 20 ° C., and a pulse cycle is set. It is a graph which shows the removal rate at the time of changing and irradiating LED. 70℃で乾燥した二酸化チタン試料に振動数200Hzの振動を付与し、ガス濃度0.5ppmのホルムアルデヒドを線速度0.0042m/sで流し、20℃の室温でパルス周期を1msとし、デューティ比を変化させてLEDを照射した場合の除去率を示すグラフである。A titanium dioxide sample dried at 70 ° C. is given a vibration at a frequency of 200 Hz, formaldehyde with a gas concentration of 0.5 ppm is flowed at a linear velocity of 0.0042 m / s, a pulse period is 1 ms at a room temperature of 20 ° C., and a duty ratio is set. It is a graph which shows the removal rate at the time of changing and irradiating LED.

100、200…光触媒装置
10…光触媒層
12…発光ダイオード
14…駆動回路
16…パルス制御回路
18…電源
20…振動付与手段
22…調製用テドラーバッグ
24…採取用テドラーバッグ
26…ポンプ
DESCRIPTION OF SYMBOLS 100, 200 ... Photocatalyst apparatus 10 ... Photocatalyst layer 12 ... Light emitting diode 14 ... Drive circuit 16 ... Pulse control circuit 18 ... Power supply 20 ... Vibration applying means 22 ... Preparation Tedlar bag 24 ... Extraction Tedlar bag 26 ... Pump

Claims (7)

光触媒物質よりなる又は光触媒物質を担持した光触媒層と、
前記光触媒層の光触媒物質を活性化させるための光を照射可能な発光ダイオードと、
前記発光ダイオードを駆動する駆動回路と、
前記駆動回路を制御して前記発光ダイオードの点灯時間を制御可能なパルス制御回路と、
を有する光触媒装置であって、
前記パルス制御回路が、光触媒装置の使用時における前記発光ダイオードの点灯時間を、30ms以下でかつデューティ比50%以下でパルス点灯させるよう前記駆動回路を制御することを特徴とする光触媒装置。
A photocatalytic layer made of or carrying a photocatalytic material;
A light emitting diode capable of irradiating light for activating the photocatalytic substance of the photocatalytic layer;
A drive circuit for driving the light emitting diode;
A pulse control circuit capable of controlling the driving circuit to control the lighting time of the light emitting diode;
A photocatalytic device comprising:
The photocatalyst device , wherein the pulse control circuit controls the drive circuit so that the lighting time of the light emitting diode when using the photocatalyst device is 30 ms or less and the duty ratio is 50% or less .
請求項1に記載の発光ダイオードを用いた光触媒装置であって、
前記パルス制御回路が、前記発光ダイオードの点灯時間をデューティ比10%以下でパルス点灯させるよう前記駆動回路を制御することを特徴とする光触媒装置。
A photocatalytic device using the light-emitting diode according to claim 1,
The photocatalyst device characterized in that the pulse control circuit controls the drive circuit so that the light emitting diode is pulse-lit with a lighting time of 10% or less.
請求項に記載の発光ダイオードを用いた光触媒装置であって、
前記パルス制御回路が、前記発光ダイオードの点灯周期を50Hz〜5kHzの周期でパルス点灯させるよう前記駆動回路を制御することを特徴とする光触媒装置。
A photocatalytic device using the light emitting diode according to claim 2 ,
The photocatalyst device, wherein the pulse control circuit controls the drive circuit so that the lighting cycle of the light-emitting diode is pulse-lit at a cycle of 50 Hz to 5 kHz.
請求項1からのいずれかに記載の発光ダイオードを用いた光触媒装置であって、さらに、
前記駆動回路の駆動源として、太陽電池を備えることを特徴とする光触媒装置。
A photocatalytic device using a light emitting diode according to any one of claims 1 to 3, further
A photocatalyst device comprising a solar cell as a drive source of the drive circuit.
請求項1からのいずれかに記載の発光ダイオードを用いた光触媒装置であって、さらに、
前記光触媒層を振動させる振動付与手段を備えることを特徴とする発光ダイオードを用いた光触媒装置。
A photocatalytic device using a light emitting diode according to any one of claims 1 to 4, further
A photocatalyst apparatus using a light emitting diode, comprising vibration imparting means for vibrating the photocatalyst layer.
請求項1からのいずれかに記載の発光ダイオードを用いた光触媒装置であって、
前記発光ダイオードが、紫外線照射発光ダイオードであることを特徴とする発光ダイオードを用いた光触媒装置。
A photocatalytic device using a light emitting diode according to any one of claims 1 to 5,
A photocatalytic device using a light emitting diode, wherein the light emitting diode is an ultraviolet light emitting light emitting diode.
請求項1から6のいずれかに記載の発光ダイオードを用いた光触媒装置であって、
前記光触媒物質が二酸化チタンであることを特徴とする発光ダイオードを用いた光触媒装置。
A photocatalytic device using the light-emitting diode according to claim 1,
A photocatalytic device using a light emitting diode, wherein the photocatalytic substance is titanium dioxide.
JP2005124320A 2005-04-21 2005-04-21 Photocatalytic device using light emitting diode Active JP4521558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124320A JP4521558B2 (en) 2005-04-21 2005-04-21 Photocatalytic device using light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124320A JP4521558B2 (en) 2005-04-21 2005-04-21 Photocatalytic device using light emitting diode

Publications (2)

Publication Number Publication Date
JP2006296811A JP2006296811A (en) 2006-11-02
JP4521558B2 true JP4521558B2 (en) 2010-08-11

Family

ID=37465626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124320A Active JP4521558B2 (en) 2005-04-21 2005-04-21 Photocatalytic device using light emitting diode

Country Status (1)

Country Link
JP (1) JP4521558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9662626B2 (en) 2014-06-25 2017-05-30 Honeywell International Inc. Photocatalyst air purification system with ultraviolet light emitting diodes operated with a duty cycle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003400B2 (en) * 2007-10-12 2012-08-15 株式会社明電舎 Photocatalyst excitation method, purification method, and apparatuses thereof
WO2010004902A1 (en) * 2008-07-07 2010-01-14 Hara Akira Spray dampener for printing machine
CN101401947A (en) * 2008-11-05 2009-04-08 黄永卫 Air cleaning apparatus for refrigerated container
JP2013192966A (en) * 2012-03-15 2013-09-30 Nanoteco Corp Photocatalyst deodorizing apparatus
JP5961447B2 (en) * 2012-05-24 2016-08-02 シャープ株式会社 Water purification equipment
US9101904B2 (en) 2012-05-25 2015-08-11 Honeywell International Inc. Air purification system using ultraviolet light emitting diodes and photocatalyst-coated supports
JP2015031502A (en) * 2013-08-07 2015-02-16 日立アプライアンス株式会社 Refrigerator
AU2015256213B2 (en) 2014-05-05 2018-10-25 Synexis Llc Purified Hydrogen Peroxide Gas generation methods and devices
JP2018052344A (en) * 2016-09-29 2018-04-05 グエン チー カンパニー リミテッド Filter device
KR102597874B1 (en) * 2016-12-28 2023-11-06 한온시스템 주식회사 Photocatalyst Device and Air Conditioner for Vehicle
WO2019186708A1 (en) * 2018-03-27 2019-10-03 グエン チー カンパニー リミテッド Filter apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098375A (en) * 2000-09-26 2002-04-05 Toyoda Gosei Co Ltd Light emitting diode lighter, optical catalyst device and air cleaner
JP2004242865A (en) * 2003-02-13 2004-09-02 Koha Co Ltd Photocatalyst module and cleaning device using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098375A (en) * 2000-09-26 2002-04-05 Toyoda Gosei Co Ltd Light emitting diode lighter, optical catalyst device and air cleaner
JP2004242865A (en) * 2003-02-13 2004-09-02 Koha Co Ltd Photocatalyst module and cleaning device using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9662626B2 (en) 2014-06-25 2017-05-30 Honeywell International Inc. Photocatalyst air purification system with ultraviolet light emitting diodes operated with a duty cycle

Also Published As

Publication number Publication date
JP2006296811A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4521558B2 (en) Photocatalytic device using light emitting diode
CN102985116B (en) Photocatalyst deodorization device
KR101334970B1 (en) Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and appatarus for preparation of oxidizing agent
KR101260937B1 (en) System for ventilating barn and cleaning air
WO2007088891A1 (en) Photocatalyst material and, containing the same, photocatalyst composition and photocatalyst product
JP2009131751A (en) Photocatalytic activation device and its usage
TW201511822A (en) Led photocatalysts module using photocatalysts
KR20060004629A (en) Air clean sensor lamp use ultra violet led
US20090263298A1 (en) Photocatalyst device
JP2004166996A (en) Photocatalyst unit, deodorizer and refrigerator
CN104456237A (en) All-weather photocatalyst air-purifying LED daylight lamp
KR101249885B1 (en) Photocatalyst water purifier using plasmon
KR100355667B1 (en) photocatalytic purifier for LED
JP5943391B2 (en) Photocatalyst deodorization device
JP5003400B2 (en) Photocatalyst excitation method, purification method, and apparatuses thereof
JP2008183522A (en) Photocatalytic air cleaner
JP2002126066A (en) Deodorizing device
JP2005026275A (en) Porous semiconductor device and its manufacturing method
CN205783387U (en) A kind of air purification and disinfection apparatus
JPH0938192A (en) Air cleaner
TWI609718B (en) Photocatalytic filter for degrading mixed gas and manufacturing method thereof
TW200946213A (en) Photocatalyst device
CN101905070A (en) Method for photocatalytic degradation of organic pollutants by taking light-emitting diode as light source
KR100376045B1 (en) photo-catalytic ecology diode lamp and gas purification system using this
TWI618550B (en) Photocatalyst air purifier and method for purifying air using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

R150 Certificate of patent or registration of utility model

Ref document number: 4521558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160604

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250