WO2011162031A1 - Vehicle air conditioning device - Google Patents

Vehicle air conditioning device Download PDF

Info

Publication number
WO2011162031A1
WO2011162031A1 PCT/JP2011/060707 JP2011060707W WO2011162031A1 WO 2011162031 A1 WO2011162031 A1 WO 2011162031A1 JP 2011060707 W JP2011060707 W JP 2011060707W WO 2011162031 A1 WO2011162031 A1 WO 2011162031A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
refrigerant
compressor
exhaust
Prior art date
Application number
PCT/JP2011/060707
Other languages
French (fr)
Japanese (ja)
Inventor
栄樹 林
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2011162031A1 publication Critical patent/WO2011162031A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3288Additional heat source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Definitions

  • the present invention relates to a vehicle air conditioner that can quickly heat a passenger compartment even immediately after the start of a vehicle drive source such as an engine.
  • an air conditioner that combines a heating device that uses heat of engine cooling water and a cooling device that uses a refrigeration cycle has become common.
  • the cooling water that has become hot due to the absorption of engine heat is circulated inside the heater core installed in the instrument panel to release it from the high-temperature cooling water.
  • the air passing through the heater core is warmed by the generated heat, and the warmed air is blown out from the blowout port of the instrument panel to the passenger compartment to heat the passenger compartment.
  • the engine cooling water is heated by the heat of the high-pressure refrigerant compressed by the compressor of the air conditioner during the cold start, thereby assisting the heating at the start.
  • a heat pump type vehicle air conditioner that directly heats the air in the passenger compartment by the heat of the high-pressure refrigerant compressed by the compressor of the cooling device at the cold start is also conceivable.
  • the conventional vehicle air conditioner has a problem in that sufficient immediate warming performance cannot be obtained immediately after a drive source such as an engine is started.
  • the refrigerant pressure on the suction side of the compressor may become negative when the compressor is started. In such a case, there is a possibility that the air enters the refrigerant pipe and enters the refrigerant.
  • an object of the present invention is to provide a vehicle air conditioner that can quickly heat the passenger compartment even immediately after the start of the vehicle drive source and has a good immediate warming property.
  • a vehicle air conditioner described in claim 1 includes an outdoor heat exchanger, an indoor heat exchanger, and a compressor, and the outdoor heat exchanger and the indoor heat exchange.
  • An exhaust heat exchanger for supplying the exhaust gas is provided, and at the initial start of the vehicle drive source, the exhaust heat generated by the vehicle drive source is transmitted to the intake side of the compressor by the exhaust heat exchanger.
  • the low-pressure refrigerant on the inlet side of the compressor is warmed by supplying the low-pressure refrigerant.
  • the exhaust heat generated by the vehicle drive source is supplied to the low-pressure refrigerant on the inlet side of the compressor by the exhaust heat exchanger at the initial start of the vehicle drive source.
  • the low-pressure refrigerant on the suction port side of the compressor is warmed, so that the low-pressure refrigerant on the suction port side of the compressor is quickly warmed even immediately after the start of the vehicle drive source, and the temperature of the low-pressure refrigerant is set to a predetermined value. Since the temperature can be maintained above the temperature, it is possible to prevent the refrigerant pressure on the inlet side of the compressor from becoming negative when the compressor is started.
  • the temperature of the low-pressure refrigerant on the suction port side of the compressor can be maintained at a predetermined temperature or higher even at the initial start of the vehicle drive source, a sufficient amount of heat is generated from the heat exchanger after the compressor is started. As a result, the air supplied to the passenger compartment is quickly warmed, and instant warming is improved.
  • FIG. 4 is a cross-sectional view of the triple pipe exhaust heat exchanger used in the vehicle air conditioner of Embodiment 1 along a line AA in FIG. 3. It is a block diagram explaining the control unit of the vehicle air conditioner of Example 1.
  • FIG. It is a time chart figure explaining the timing of interception of exhaust gas and cooling water in the air-conditioner for vehicles of an embodiment.
  • the vehicle air conditioner of Example 2 it is a typical circuit diagram explaining the whole structure.
  • Example 3 In the vehicle air conditioner of Example 3, it is a typical circuit diagram explaining the whole structure. In the vehicle air conditioner of Example 4, it is a typical circuit diagram explaining the whole structure. It is a graph which shows the change of the vehicle speed V, the exhaust temperature Tg, and the refrigerant
  • the vehicle air conditioner 1 includes an outdoor heat exchanger 4, an air conditioning unit 5, an indoor heat exchanger 6, and a compressor 7.
  • the heat exchanger 4, the indoor heat exchanger 6, and the compressor 7 are connected by a plurality of pipes to constitute a refrigerant circuit 14.
  • the air conditioning unit 5 incorporates an indoor heat exchanger 6 and a blower 6a, and air cooled or heated by the indoor heat exchanger 6 is supplied to the vehicle interior by the blower 6a.
  • a refrigerant temperature sensor 18b for detecting a refrigerant temperature Td is provided on the refrigerant circuit 14 on the discharge port 7b side of the compressor 7.
  • the outdoor heat exchanger 4 and the indoor heat exchanger 6 according to the vehicle air conditioner 1 of the present embodiment function both as an evaporator and a condenser depending on the direction in which the refrigerant flows.
  • the vehicle air conditioner 1 includes a four-way valve 8, an accumulator 9, expansion valves 10 and 11, and check valves 12 and 13, which are connected by a plurality of pipes, respectively. 14 is constituted.
  • the compressor 7 sucks and compresses the low-pressure refrigerant on the suction port 7a side, and discharges the compressed high-pressure refrigerant to the discharge port 7b side, whereby the refrigerant in the refrigerant circuit 14 becomes the refrigerant circuit 14. Circulate inside.
  • the heat of the compressed high-pressure refrigerant is released to the outside air by the outdoor heat exchanger 4 in the cooling mode, and is released to the air in the vehicle interior by the indoor heat exchanger 6 in the heating mode.
  • the refrigerant circulation direction in the refrigerant circuit 14 becomes the direction of the arrow C shown in FIG. 1, and the outdoor heat exchanger 4 functions as a condenser.
  • the heat exchanger 6 functions as an evaporator, and the vehicle air conditioner 1 is switched to the cooling mode.
  • the circulation direction of the refrigerant in the refrigerant circuit 14 becomes the direction of the arrow H shown in FIG. 2, and the outdoor heat exchanger 4 functions as an evaporator. 6 functions as a capacitor, and the vehicle air conditioner 1 is switched to the heating mode.
  • the heat e of the high-pressure refrigerant in the refrigerant circuit 14 is dissipated in the indoor heat exchanger 6, so that the air e supplied to the vehicle interior is warmed.
  • the exhaust heat of the engine 15 as a drive source of the vehicle 2 is used as a heat source during heating.
  • the vehicle 2 according to the present embodiment is provided with a cooling water circuit 16 for circulating cooling water LLC between a water jacket (not shown) and a radiator (not shown) provided on the outer periphery of the engine 15. ing.
  • the cooling water LLC is circulated between the water jacket and the radiator by a water pump (not shown), and the heat of the cooling water LLC is radiated to the outside air by the radiator so that the engine 15 main body is not overheated.
  • the engine 15 body is cooled.
  • the exhaust gas discharged from the engine 15 is discharged outside the vehicle through an exhaust gas pipe 18 provided in the engine room 3, an exhaust pipe (not shown) extending rearward of the vehicle 2, and a muffler (not shown).
  • the exhaust gas pipe 18 provided in the engine room 3, an exhaust pipe (not shown) extending rearward of the vehicle 2, and a muffler (not shown).
  • the exhaust gas pipe 18 is provided with an exhaust gas temperature sensor 18a for detecting the temperature of the exhaust gas passing through the inside.
  • the vehicle air conditioner 1 of the present embodiment has a heat exchanger 20 for exhaust heat for supplying exhaust heat of the engine 15 to the low-pressure refrigerant on the suction port 7a side of the compressor 7.
  • the heat exchanger 20 for exhaust heat is provided in the refrigerant circuit 14 at a position upstream of the compressor 7 and downstream of the accumulator 9.
  • the heat exchanger 20 for exhaust heat is provided with a conduit for low-pressure refrigerant, a conduit for the exhaust gas tube 18 and a conduit for the cooling water circuit 16 adjacent to each other.
  • piping constituting the refrigerant circuit 14 and piping constituting the cooling water circuit 16 are connected.
  • An engine 15 is connected to the exhaust heat exchanger 20 via an exhaust gas pipe 18, and an exhaust gas supply stop valve is provided between the exhaust heat exchanger 20 and the engine 15 in the exhaust gas pipe 18. 19 is provided.
  • the exhaust gas supply stop valve 19 is provided on the upstream side of the heat exchanger 20 for exhaust heat. Therefore, the exhaust gas of the engine 15 is opened and closed by opening and closing the exhaust gas supply stop valve 19. It is possible to switch between supply and stop of the heat exchanger 20 for exhaust heat.
  • the exhaust gas of the engine 15 is sent to the exhaust heat heat exchanger 20, and the exhaust heat heat exchanger 20 is generated by the heat of the exhaust gas. Warm the refrigerant inside.
  • the exhaust gas of the engine 15 also functions as a heat medium for transporting the exhaust heat of the engine 15.
  • the cooling water circuit 16 is provided with an ON / OFF valve 17 on the upstream side of the heat exchanger 20 for exhaust heat. With this ON / OFF valve 17, supply or stop of the cooling water LLC to the heat exchanger 20 for exhaust heat can be switched.
  • the cooling water LLC of the engine 15 also functions as a heat medium for transporting the exhaust heat of the engine 15.
  • the heat of the exhaust gas fed from the exhaust gas pipe 18 and the inside of the cooling water circuit 16 are circulated by appropriately switching between the exhaust gas supply stop valve 19 and the ON / OFF valve 17.
  • the heat of the cooling water LLC to be transferred can be individually transferred to the low-pressure refrigerant in the refrigerant circuit 14.
  • the ON / OFF valve 17 is closed to exhaust heat from the cooling water LLC. Supply to the exchanger 20 is stopped.
  • the exhaust gas supply stop valve 19 is opened and supply of the exhaust gas to the exhaust heat heat exchanger 20 is started.
  • the exhaust gas supply stop valve 19 When the exhaust gas supply stop valve 19 is opened, the exhaust gas is sent into the heat exchanger 20 for exhaust heat and is delivered to the low-pressure refrigerant on the suction port 7a side of the compressor 7 by this exhaust gas. The refrigerant is warmed.
  • the exhaust gas is exhausted.
  • the gas supply stop valve 19 is closed to stop the supply of exhaust gas to the heat exchanger 20 for exhaust heat, and at the same time, the ON / OFF valve 17 is opened to start supplying the cooling water LLC to the heat exchanger 20 for exhaust heat.
  • the heat of the cooling water LLC of the engine 15 is supplied to the low-pressure refrigerant on the suction port 7a side of the compressor 7 via the heat exchanger 20 for exhaust heat to heat the low-pressure refrigerant.
  • the refrigerant temperature Ts of the refrigerant is increased.
  • the water temperature Twe exceeds a predetermined temperature (here, 70 ° C.) (time point d1 in FIG. 6), or the refrigerant pressure Ps of the low-pressure refrigerant on the suction port 7a side of the compressor 7 becomes a predetermined pressure (here, 312 kPa). If it exceeds (time point d2 in FIG. 6) or the refrigerant superheat (SH) exceeds a predetermined temperature (here, 10 deg) (time point d3 in FIG. 6), the ON / OFF valve 17 is closed and the cooling water The supply to the heat exchanger 20 for exhaust heat of LLC is stopped.
  • a predetermined temperature here, 70 ° C.
  • SH refrigerant superheat
  • the four-way valve 8 in the cooling mode, the four-way valve 8 is switched as shown in FIG. 1, and the circulation direction of the refrigerant in the refrigerant circuit 14 is circulated in the direction of arrow C shown in FIG. Therefore, the outdoor heat exchanger 4 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator.
  • the four-way valve 8 is switched as shown in FIG. 2, and the refrigerant circulation direction in the refrigerant circuit 14 is circulated in the direction of the arrow H shown in FIG. 2, so that the outdoor heat exchanger 4 is connected to the evaporator. And the indoor heat exchanger 6 functions as a condenser.
  • the refrigerant circuit 14 that partially shares the piping configuring the cooling mode refrigeration cycle and the piping configuring the heating mode heat pump cycle is configured. Can do.
  • the exhaust temperature Tg with respect to the elapsed time from the start of the engine in the vehicle rises in a relatively short time from the start point a when the engine 15 is started. Further, since the refrigerant pressure on the suction port 7a side of the compressor 7 is reduced when the compressor 7 is started up, the refrigerant temperature Ts on the suction port 7a side of the compressor 7 temporarily decreases as shown in FIG. Rise gradually over time
  • the exhaust gas supply stop valve 19 When the refrigerant temperature Td on the discharge port 7b side of the compressor 7 is lower than a predetermined temperature at the initial start of the engine 15 in the heating mode, the exhaust gas supply stop valve 19 The high-temperature exhaust gas exhausted by the engine 15 is circulated in the exhaust heat exchanger 20 and then exhausted.
  • the temperature of the low-pressure refrigerant is maintained at a predetermined temperature or more even immediately after the engine 15 is started. It is possible to prevent the refrigerant pressure of the low-pressure refrigerant from becoming negative when the compressor 7 is started.
  • the temperature of the low-pressure refrigerant on the suction port 7 a side of the compressor 7 can be maintained at a predetermined temperature or higher, so that it is sufficient from the indoor heat exchanger 6 after the compressor 7 is started up.
  • the amount of heat can be generated, and the air e supplied into the passenger compartment is quickly warmed, so that the immediate warming property is improved.
  • the compressor 7 is not started from the starting time point a at which the engine 15 shown in FIG. 6 is started to the time point b at which the exhaust gas exhaust temperature Tg reaches a constant temperature.
  • the compression is performed at a time point b (in this case, about 30 seconds after the starting time point a of the engine 15) when it can be determined that the exhaust temperature Tg of the exhaust gas reaches about 50 ° C. and the warm-up of the engine 15 is substantially completed.
  • the machine 7 is activated.
  • the refrigerant pressure Ps on the suction port 7a side temporarily decreases as shown in FIG. 6 and the refrigerant temperature Ts also decreases temporarily.
  • the exhaust heat from the engine 15 is introduced.
  • the heat of the exhaust gas is supplied by the exchanger 20 to the low-pressure refrigerant on the suction port 7a side of the compressor 7, and the refrigerant temperature Ts rises. Accordingly, the refrigerant pressure Ps also rises relatively quickly.
  • the refrigerant temperature Td of the high-pressure refrigerant on the discharge port 7b side also starts to rise relatively quickly.
  • the exhaust gas supply stop valve 19 is closed at the time point c (see FIG. 6) when the refrigerant temperature Td of the high-pressure refrigerant on the discharge port 7b side reaches the water temperature Twe of the cooling water LLC. At the same time, the ON / OFF valve 17 is opened.
  • the heat source of the heat supplied to the low-pressure refrigerant on the suction port 7a side of the compressor 7 is switched from the exhaust gas to the cooling water LLC having a larger heat capacity than the exhaust gas.
  • the exhaust heat of the engine 15 is supplied to the low-pressure refrigerant on the suction port 7a side of the compressor 7 by the cooling water LLC having a larger heat capacity than the exhaust gas, so that the refrigerant temperature Ts of the low-pressure refrigerant on the suction port 7a side is set. It can be stabilized.
  • the water temperature Twe exceeds predetermined temperature (here 70 degreeC) (time point d1 of FIG. 6), or the refrigerant
  • the pressure Ps exceeds a predetermined pressure (here, 312 kPa) (time point d2 in FIG. 6) or the refrigerant superheat degree (SH) exceeds a predetermined temperature (here 10 deg) (time point d3 in FIG. 6)
  • the ON / OFF valve 17 is closed and the supply of the cooling water LLC to the heat exchanger 20 for exhaust heat is stopped.
  • the exhaust heat generated by the engine 15 at the initial start of the engine 15 is transferred to the suction port 7a side of the compressor 7 by the exhaust heat exchanger 20. Since the low-pressure refrigerant on the suction port 7a side of the compressor 7 is warmed by supplying the low-pressure refrigerant, the low-pressure refrigerant on the suction port 7a side of the compressor 7 is quickly warmed even immediately after the start of the engine 15. Since the temperature of the low-pressure refrigerant can be maintained at a predetermined temperature or higher, it is possible to prevent the refrigerant pressure on the suction port 7a side of the compressor 7 from becoming negative when the compressor 7 is started.
  • the temperature of the low-pressure refrigerant on the suction port 7a side of the compressor 7 can be maintained at a predetermined temperature or higher even at the initial start of the engine 15, a sufficient amount of heat is generated from the indoor heat exchanger 6 after the compressor 7 is started.
  • the air supplied to the passenger compartment is quickly warmed, and the immediate warming property is improved.
  • the vehicle air conditioner 1 includes a control unit 21 that controls the air conditioning unit 25.
  • Various sensors such as an exhaust gas temperature sensor 18a, a refrigerant temperature sensor 18b, and a refrigerant pressure sensor 18c are connected to the control unit 21.
  • the refrigerant pressure sensor 18 c detects the refrigerant pressure Ps of the low-pressure refrigerant on the suction port 7 a side of the compressor 7 and transmits it to the control unit 21.
  • control unit 21 Also connected to the control unit 21 are the compressor 7, the cooling / heating switching valve 44, the blower 6a, the exhaust gas supply stop valve 19, the three-way switching valve 42, the door actuators 26 of the inside / outside air supply switching door and the air mix door, and the rod 31. These are driven and controlled in accordance with a control signal output from the control unit 21.
  • the air conditioning unit 25 is provided with a heater unit 30 in which an evaporator 27, a heater core 28 and a condenser 29 are integrally formed in this order along the direction in which air flows inside the case. Further, an inside / outside air supply switching door is provided in the vicinity of the upstream side of the evaporator 27, and an air mix door is provided in the vicinity of the soot heater unit 30.
  • the air flow path can be opened and closed by the inside / outside air supply switching door or the air mix door, and the ratio of the air volume of the cooling / heating air supplied to the passenger compartment side Can be adjusted.
  • the vehicle air conditioner 1 of the present embodiment is provided with a pressure reducing valve 32 and a multi-tube type exhaust heat heat exchanger 40, and the pressure reducing valve 32 is connected to the evaporator 27, and the multi-tube type heat for heat removal is provided.
  • the exchanger 40 is connected between the pressure reducing valve 32 and the suction port 7 a side of the compressor 7 in the refrigerant circuit 14.
  • the multi-tube type heat exhaust heat exchanger 40 functions as a heat exchanger that heats the low-pressure refrigerant on the suction port 7a side of the compressor 7 using the exhaust heat generated at the start of the engine 15.
  • the multi-tube type exhaust heat exchanger 40 includes a large-diameter cylindrical member 34, a medium-diameter cylindrical member 35, a small-diameter cylindrical member 36 having different diameters, and a fixed rib member 37. Has been.
  • the large-diameter cylindrical member 34, the medium-diameter cylindrical member 35, and the small-diameter cylindrical member 36 are arranged coaxially, and a plurality of fixed rib members 37 are arranged radially between their respective walls, thereby each of them.
  • the walls are connected to each other so as to be immovable with a predetermined distance in the radial direction.
  • the space between the medium-diameter tubular member 35 and the small-diameter tubular member 36 of the multi-tube type exhaust heat exchanger 40 is used as the refrigerant flow path 38 through which the low-pressure refrigerant is circulated, and the small-diameter tubular member 36 is used.
  • the cooling water LLC is circulated through the cooling water flow path 39 to circulate the cooling water. Heat exchange is performed between the LLC and the low-pressure refrigerant.
  • the space between the large-diameter cylindrical member 34 and the medium-diameter cylindrical member 35 of the multi-tube type heat exhaust heat exchanger 40 is used as an exhaust gas passage 33 through which exhaust gas is circulated.
  • the cooling water passage 39, the refrigerant passage 38, and the exhaust gas passage 33 are composed of a small-diameter cylindrical member 36 and a medium-diameter cylinder.
  • the cooling water LLC and the exhaust gas are not mixed in the refrigerant because the refrigerant is separated by the member 35.
  • the refrigerant flow path 38 of the multi-tube heat exhaust heat exchanger 40 is connected between the evaporator 27 and the suction port 7a of the compressor 7, and the refrigerant flows from the evaporator 27 toward the suction port 7a.
  • the exhaust gas flow path 33 of the multi-tube exhaust heat exchanger 40 is connected to the exhaust gas pipe 18 of the engine 15, and the engine 15 and the multi-tube exhaust heat exchanger 40 of the exhaust gas pipe 18. Between the two, an exhaust gas supply stop valve 19 is provided.
  • the exhaust gas supply stop valve 19 is provided on the upstream side of the multi-tube type exhaust heat heat exchanger 40. It is possible to switch between supply and stop to the multi-tube type heat exchanger 40 for exhaust heat.
  • the vehicle air conditioner 1 of the present embodiment is provided with a cooling water circuit 43, and the cooling water circuit 43 is constituted by a main circuit 43a and a bypass circuit 43b.
  • the main circuit 43 a connects between a water jacket (not shown) provided in the engine 15 and the heater core 28, and the cooling water LLC in the main circuit 43 a is circulated between the water jacket and the heater core 28.
  • the bypass circuit 43b is connected to the cooling water flow path 39 and the one-way valve 41 of the multi-tube type exhaust heat exchanger 40, and the bypass circuit 43b is connected to the main circuit 43a via the three-way switching valve 42.
  • the cooling water LLC is circulated only between the water jacket and the heater core 28, and the water jacket, the heater core 28, and the multi-tube type heat exchanger 40 for exhaust heat.
  • the state in which the cooling water LLC is circulated can be switched between.
  • a cooling / heating switching valve 44 is provided on the refrigerant circuit 14 on the discharge port 7b side of the compressor 7.
  • cooling / heating switching valve 44 By switching the cooling / heating switching valve 44, it is possible to switch whether the high-pressure refrigerant discharged from the compressor 7 is sent to the outdoor heat exchanger 4 or to the condenser 29.
  • the vehicle air conditioner 1 of the present embodiment is provided with a liquid tank 45 and a one-way valve 46 on the downstream side of the outdoor heat exchanger 4 in the refrigerant circuit 14, and on the downstream side of the one-way valve 46.
  • a pressure reducing valve 32 is connected.
  • the air e passing through the air conditioning unit 25 can be warmed by the heat released by the heater core 28 and the heat released by the condenser 29.
  • the exhaust gas supply stop valve 19 when switching to the heating mode when cold, the exhaust gas supply stop valve 19 is opened at the initial start of the engine 15, and the engine 15 The exhaust gas passes through the exhaust gas flow path 33 in the multi-tube type exhaust heat heat exchanger 40 shown in FIG.
  • the exhaust gas flow path 33 is adjacent to the refrigerant flow path 38, so that the heat of the exhaust gas is transferred to the refrigerant passing through the refrigerant flow path 38.
  • the multi-tube type exhaust of the cooling water LLC is switched by switching the three-way switching valve 42 shown in FIG. 3 until the water temperature Twe of the cooling water LLC sufficiently rises. Supply to the heat exchanger 40 for heat is stopped.
  • the exhaust gas supply shown in FIG. 3 is performed at the time point c (see FIG. 6) when the refrigerant temperature Td of the high-pressure refrigerant on the discharge port 7b side reaches the water temperature Twe of the cooling water LLC. Simultaneously with closing the stop valve 19, the three-way switching valve 42 is switched so that the cooling water LLC is circulated among the water jacket, the heater core 28, and the heat exchanger 40 for multi-tube type exhaust heat.
  • the supply of the exhaust gas to the multi-tube type exhaust heat heat exchanger 40 is stopped, and heat exchange between the exhaust gas and the low-pressure refrigerant is not performed, and at the same time, the multi-tube type exhaust heat of the cooling water LLC is performed.
  • Supply to the heat exchanger 40 is started, and heat exchange between the cooling water LLC and the low-pressure refrigerant is started.
  • heat exchanger 40 heat exchange is performed between the low-pressure refrigerant passing through the refrigerant flow path 38 and the cooling water LLC passing through the cooling water flow path 39 via the tubular member 36. Is called.
  • the heater core 30 and the capacitor 29 are integrally provided in the heater unit 30, the heat dissipation area of the entire heater unit 30 is larger than that in the case where the capacitor 29 is a single body, and the heat to the air e passing therethrough is large. Exchange efficiency can be improved.
  • the immediate warming property can be improved also in this respect.
  • FIG. 7 shows the vehicle air conditioner 1 according to the second embodiment.
  • symbol is attached
  • FIG. 7 shows the vehicle air conditioner 1 according to the second embodiment.
  • symbol is attached
  • the vehicle air conditioner 1 of the present embodiment has a heat exchanger for exhaust heat built in the accumulator instead of the heat exchanger 40 for exhaust heat of the multi-tube type of the first embodiment.
  • a heat exchanger integrated accumulator 50 for exhaust heat is provided.
  • the exhaust heat exchanger-integrated accumulator 50 is provided with an exhaust gas pipe 53 through which the exhaust gas passes and a cooling water pipe 54 through which the cooling water LLC is circulated inside the accumulator housing 50a.
  • the heat exchanger integrated accumulator 50 for exhaust heat is connected to the vicinity of the upstream side of the suction port 7 a of the compressor 7 between the pressure reducing valve 32 and the suction port 7 a of the compressor 7 in the refrigerant circuit 14.
  • the low-pressure refrigerant L passing through the heat exchanger integrated accumulator 50 for exhaust heat can exchange heat with both the exhaust gas and the cooling water LLC.
  • the exhaust gas supply stop valve 19 when switching to the heating mode when cold, the exhaust gas supply stop valve 19 is opened at the initial start of the engine 15, and the engine 15 The exhaust gas passes through the exhaust gas pipe 53 in the heat exchanger integrated accumulator 50 shown in FIG.
  • This heat exchange warms the low-pressure refrigerant on the suction port 7a side of the compressor 7 even at the initial start of the engine 15.
  • the heat exchanger integrated accumulator 50 for exhaust heat is provided in the vicinity of the upstream side of the suction port 7a of the compressor 7, so that the compressor 7 is activated in the heating mode.
  • the refrigerant collected and accumulated in the heat exchanger integrated accumulator 50 for exhaust heat is smoothly delivered to the condenser 29 of the heater unit 30 via the pipe 48.
  • the immediate warming property can be further improved in this respect.
  • FIG. 8 shows the vehicle air conditioner 1 according to the third embodiment.
  • symbol is attached
  • the vehicle air conditioner 1 of this embodiment is provided with a bypass refrigerant circulation circuit 61.
  • the refrigerant sent from the compressor 7 is branched from the cooling refrigerant circuit 14 via the bypass switching valve 49 and circulated.
  • bypass refrigerant circulation circuit 61 is provided with an external heat exchanger 60, and the cooling water LLC of the engine 15 is also circulated through the external heat exchanger 60.
  • the bypass switching valve 49 is provided on the discharge port 7b side of the compressor 7. By switching the bypass switching valve 49, the high-pressure refrigerant on the discharge port 7b side of the compressor 7 is sent to the external heat exchanger 60, thereby The heat of the high-pressure refrigerant that passes through the heat exchanger 60 is transferred to the cooling water LLC that is circulated through the external heat exchanger 60.
  • the cooling water LLC heated by the heat of the high-pressure refrigerant is circulated through the heater core 28, and the air e passing through the heater core 28 toward the passenger compartment is heated by the heat released from the heater core 28.
  • the heat of the refrigerant supplied to the bypass refrigerant circulation circuit 61 is indirectly supplied to the vehicle interior via the cooling water LLC and used for heating the vehicle interior.
  • the refrigerant that has passed through the external heat exchanger 60 returns to the suction port 7a of the compressor 7 again through the refrigerant heat exchange means 62, the one-way valve 64, and the accumulator 63.
  • vehicle air conditioner 1 of this embodiment is further provided with a heat exchanger 66 for exhaust heat.
  • the exhaust heat heat exchanger 66 is provided with a refrigerant flow path 38 through which the refrigerant is circulated and an exhaust gas flow path 33 through which the exhaust gas is circulated, and the refrigerant flow path 38 is provided between the accumulator 63 and the compressor 7. It is connected between the suction port 7a.
  • a one-way valve 64 is provided between the refrigerant heat exchanging means 62 and the accumulator 63, and a one-way valve 65 is provided between the pressure reducing valve 32 and the accumulator 63.
  • the accumulator 63 is fed with a low-pressure refrigerant from one of the one-way valves 64 and 65, and the low-pressure refrigerant is collected and accumulated, and the suction port 7a is passed through the refrigerant flow path 38 of the heat exchanger 66 for exhaust heat. Is sent out.
  • the refrigerant flow path 38 and the exhaust gas flow path 33 of the heat exchanger 66 for exhaust heat are adjacent to each other, so that the engine 15 sends the exhaust gas through the exhaust gas supply stop valve 19.
  • the exhaust gas is passed through the exhaust gas flow path 33 of the heat exchanger 66 for exhaust heat, heat exchange is performed between the exhaust gas and the low-pressure refrigerant.
  • the exhaust gas supply stop valve 19 when switching to the heating mode when cold, the exhaust gas supply stop valve 19 is opened at the initial start of the engine 15, and the engine 15 The exhaust gas passes through the exhaust gas passage 33 in the exhaust heat heat exchanger 66 shown in FIG.
  • This heat exchange warms the low-pressure refrigerant on the suction port 7a side of the compressor 7 even at the initial start of the engine 15.
  • the warmed refrigerant is compressed by the compressor 7 and circulated in the bypass refrigerant circulation circuit 61.
  • the heat of the high-pressure refrigerant heated by the exhaust gas and compressed by the compressor 7 is transferred to the cooling water LLC, and the heated cooling water LLC is exchanged with the heater core 28. Circulated.
  • the heat exchange with the exhaust gas can immediately improve the warmth, and the cooling water LLC is heated by the heat of the exhaust gas, so that the time required for warming up the engine 15 can be shortened. it can.
  • FIG. 9 shows the vehicle air conditioner 1 according to the fourth embodiment.
  • the same or equivalent parts as those in the above embodiment and Examples 1 to 3 will be described with the same reference numerals.
  • an accumulator built-in type exhaust gas that includes an accumulator 70 a instead of the accumulator 63 and the exhaust heat heat exchanger 66 of the air conditioner of the third embodiment.
  • a heat heat exchanger 70 is provided in the vicinity of the upstream side of the suction port 7 a of the compressor 7.
  • the same external heat exchanger 60 as that of the third embodiment is provided between the engine 15 and the heater core 28.
  • the vehicle air conditioner 1 according to the fourth embodiment shown in FIG. 9 includes an accumulator built-in waste heat heat exchanger 70 on the upstream side of the suction port 7 a of the compressor 7, and the suction port of the compressor 7. 7a is provided in the vicinity of the upstream side of the air heater 7a.
  • the compressor 7 When the compressor 7 is started in the heating mode, the refrigerant collected and accumulated in the heat exchanger for exhaust heat with built-in accumulator 70 is stored in the external heat exchanger 60. It is sent out smoothly.
  • this accumulator Due to the action of this accumulator, the warmed refrigerant flows smoothly to the external heat exchanger 60, so the heat of the compressed refrigerant is transferred to the cooling water LLC in the external heat exchanger 60, and the heat of the warmed cooling water LLC is heated.
  • the temperature of the air e released by the heater core 28 and supplied into the passenger compartment quickly rises.
  • the immediate warming property can be further improved in this respect.
  • the heat exchanger 70 for exhaust heat with a built-in accumulator has a built-in accumulator, it is not necessary to provide a separate accumulator, and the number of parts can be reduced to save space.
  • the vehicle air conditioner 1 according to the present invention has been described in detail above with reference to the drawings, but the specific configuration is limited to the configuration of the embodiment and the vehicle air conditioners 1 of Examples 1 to 3.
  • the present invention includes those that have undergone design changes that do not depart from the gist of the present invention.
  • the heat of the exhaust gas of the engine is used as the heat of the vehicle drive source.
  • the heat of the vehicle drive source is not particularly limited, and is generated at the initial start. Any heat source may be used as long as the exhaust heat can be used.
  • the motor may be a motor of an electric vehicle, a driving element that generates heat when the motor is driven, a heat source such as a battery.
  • the multi-tube type heat exhaust heat exchanger 40 of the first embodiment has a multi-tube structure, but the structure of the multi-tube type heat exhaust heat exchanger 40 is not limited to this, and a fin tube shape, etc. Any material may be used as long as it can exchange heat between different heat media such as those used in heat exchangers such as general radiators.
  • the multiple-tube type heat exhaust heat exchanger may be an aggregate of tubes, and the shape, quantity, and material of the tubes constituting the multi-tube type heat exhaust heat exchanger are the same as those in the first embodiment. It is not restricted to the shape, quantity, and material of the tube of the heat exchanger 40 for tube-type exhaust heat.
  • the multi-tube type exhaust heat heat exchanger 40 has a cylindrical shape of a large-diameter cylindrical member 34, a medium-diameter cylindrical member 35, and a small-diameter cylinder having different inner diameters.
  • the triple tube in which the cylindrical members 36 are coaxially arranged is used, the structure of the heat exchanger for the multiple tube type exhaust heat is not particularly limited, and includes, for example, a plurality of layers of quadruple tubes or more.
  • Multiple pipes may be used, and the cooling water pipe or the exhaust gas pipe is separated in the radial direction across the refrigerant pipe, so that the cooling water LLC or the exhaust gas is not mixed with the refrigerant passing through the inside of the refrigerant pipe so that heat exchange can be performed. Anything that can be done.
  • the vehicle air conditioner of the present invention is not limited to a vehicle that uses an engine as a vehicle drive source, but an electric vehicle that uses a vehicle drive source including an electric motor, a drive element that generates heat when the electric motor is driven, a battery, Or it can utilize also for air conditioning apparatuses, such as a hybrid car which has a vehicle drive source of both an engine and an electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is a vehicle air conditioning device which is capable of promptly heating the interior of a vehicle even immediately after a vehicle driving source is started, thus having satisfactory instant heating properties. On that side of a compressor (7) where a suction port (7a) is located, the vehicle air conditioning device (1) comprises an exhaust-heat heat exchanger (20) for supplying exhaust heat of an engine (15) to low-pressure refrigerant on that side of the compressor (7) where the suction port (7a) is located. In an early stage of start of the engine (15), the exhaust heat generated by the engine (15) is supplied by the exhaust-heat heat exchanger (20) to the low-pressure refrigerant on that side of the compressor (7) where the suction port (7a) is located, with the result that the low-pressure refrigerant on that side of the compressor (7) where the suction port (7a) is located, is heated.

Description

車両用空調装置Air conditioner for vehicles
 本発明は、エンジンなどの車両駆動源の始動直後であっても車室内を速やかに暖房できる車両用空調装置に関する。 The present invention relates to a vehicle air conditioner that can quickly heat a passenger compartment even immediately after the start of a vehicle drive source such as an engine.
 車両用の空調装置としては、エンジン冷却水の熱を利用した暖房装置と冷凍サイクルを利用した冷房装置とを組み合わせた空調装置が一般的になっている。 As an air conditioner for a vehicle, an air conditioner that combines a heating device that uses heat of engine cooling water and a cooling device that uses a refrigeration cycle has become common.
 エンジン冷却水の熱を利用した暖房装置では、エンジンの熱を吸収して高温になった冷却水をインストルメントパネル内に設置されたヒーターコアの内部に循環させることによって、高温の冷却水から放出される熱によってヒーターコアを通過する空気を暖め、この暖められた空気をインストルメントパネルの吹出口から車室に吹き出させることにより車室内を暖房する。 In a heating system that uses the heat of engine cooling water, the cooling water that has become hot due to the absorption of engine heat is circulated inside the heater core installed in the instrument panel to release it from the high-temperature cooling water. The air passing through the heater core is warmed by the generated heat, and the warmed air is blown out from the blowout port of the instrument panel to the passenger compartment to heat the passenger compartment.
 しかしながら、このような冷却水の熱を利用した暖房装置では、エンジンの始動後、しばらくは冷却水の温度が低く、その間、車室内に吹き出される空気の温度も低いので、車室内の温度が乗員にとって快適と感じられる温度に達するまで、ある程度時間が掛かるという問題があった。 However, in such a heating device that uses the heat of the cooling water, the temperature of the cooling water is low for a while after the engine is started, and the temperature of the air blown into the vehicle interior is low during that time. There was a problem that it took some time to reach a temperature at which the passengers felt comfortable.
 このような問題を解消するものとして、冷房装置の冷凍サイクルを利用して、エンジンの始動直後に補助暖房を行なう冷却水式の車両用空調装置が知られている(例えば、特許文献1,2等参照)。 In order to solve such a problem, there is known a cooling water type vehicle air conditioner that performs auxiliary heating immediately after the engine is started using the refrigeration cycle of the cooling device (for example, Patent Documents 1 and 2). Etc.).
 この車両用空調装置では、冷間始動時に冷房装置の圧縮機で圧縮した高圧冷媒の熱によってエンジンの冷却水を加熱することにより始動時の暖房を補助する。 In this vehicle air conditioner, the engine cooling water is heated by the heat of the high-pressure refrigerant compressed by the compressor of the air conditioner during the cold start, thereby assisting the heating at the start.
 また、この他に、冷間始動時に冷房装置の圧縮機で圧縮した高圧冷媒の熱により、車室内の空気を直接加熱するヒートポンプ式の車両用空調装置も考えられる。 In addition, a heat pump type vehicle air conditioner that directly heats the air in the passenger compartment by the heat of the high-pressure refrigerant compressed by the compressor of the cooling device at the cold start is also conceivable.
特開平8-310227号公報JP-A-8-310227 特開2002-211234号公報JP 2002-2111234 A
 しかしながら、従来例の車両用空調装置では、エンジンなどの駆動源始動直後に、十分な即暖性能が得られないという問題があった。 However, the conventional vehicle air conditioner has a problem in that sufficient immediate warming performance cannot be obtained immediately after a drive source such as an engine is started.
 また、外気温度が低く、冷媒温度が所定温度より低くなっている場合には、圧縮機の起動時に圧縮機の吸込側の冷媒圧力が負圧になることがある。
 このような場合には、大気が冷媒管路内に進入して冷媒に混入するおそれがあった。
Further, when the outside air temperature is low and the refrigerant temperature is lower than a predetermined temperature, the refrigerant pressure on the suction side of the compressor may become negative when the compressor is started.
In such a case, there is a possibility that the air enters the refrigerant pipe and enters the refrigerant.
 そこで、本発明は、車両駆動源の始動直後であっても車室内を速やかに暖房することができ、即暖性が良好な車両用空調装置を提供することを目的としている。 Therefore, an object of the present invention is to provide a vehicle air conditioner that can quickly heat the passenger compartment even immediately after the start of the vehicle drive source and has a good immediate warming property.
 上記課題を解決するために、請求項1に記載された車両用空調装置は、室外熱交換器と、室内熱交換器と、圧縮機とを有し、前記室外熱交換器と前記室内熱交換器と前記圧縮機とが配管により接続された冷媒回路を備えた車両用空調装置であって、前記圧縮機の吸入口側に該圧縮機の吸入口側の低圧冷媒に車両駆動源の排気熱を供給するための排熱用熱交換器が設けられ、前記車両駆動源の始動初期に、前記車両駆動源が発生する排熱を前記排熱用熱交換器によって前記圧縮機の吸入口側の低圧冷媒に供給することにより該圧縮機の吸入口側の低圧冷媒を暖めることを特徴としている。 In order to solve the above-described problem, a vehicle air conditioner described in claim 1 includes an outdoor heat exchanger, an indoor heat exchanger, and a compressor, and the outdoor heat exchanger and the indoor heat exchange. An air conditioner for a vehicle having a refrigerant circuit in which a compressor and the compressor are connected by a pipe, the low-pressure refrigerant on the suction port side of the compressor on the suction side of the compressor, and the exhaust heat of the vehicle drive source An exhaust heat exchanger for supplying the exhaust gas is provided, and at the initial start of the vehicle drive source, the exhaust heat generated by the vehicle drive source is transmitted to the intake side of the compressor by the exhaust heat exchanger. The low-pressure refrigerant on the inlet side of the compressor is warmed by supplying the low-pressure refrigerant.
 このように構成された請求項1に記載のものは、車両駆動源の始動初期に、車両駆動源が発生する排熱を排熱用熱交換器によって圧縮機の吸入口側の低圧冷媒に供給することにより、この圧縮機の吸入口側の低圧冷媒を暖めるので、車両駆動源の始動直後であっても圧縮機の吸入口側の低圧冷媒が速やかに暖められ、この低圧冷媒の温度を所定温度以上に保つことができるので、圧縮機の起動時に圧縮機の吸入口側の冷媒圧力が負圧になるのを防ぐことができる。 According to the first aspect of the present invention, the exhaust heat generated by the vehicle drive source is supplied to the low-pressure refrigerant on the inlet side of the compressor by the exhaust heat exchanger at the initial start of the vehicle drive source. As a result, the low-pressure refrigerant on the suction port side of the compressor is warmed, so that the low-pressure refrigerant on the suction port side of the compressor is quickly warmed even immediately after the start of the vehicle drive source, and the temperature of the low-pressure refrigerant is set to a predetermined value. Since the temperature can be maintained above the temperature, it is possible to prevent the refrigerant pressure on the inlet side of the compressor from becoming negative when the compressor is started.
 また、車両駆動源の始動初期であっても圧縮機の吸入口側の低圧冷媒の温度を所定温度以上に保つことができるので、圧縮機の起動後に熱交換器から十分な熱量を発生させることができ、車室内に供給される空気が速やかに暖められ、即暖性が向上する。 In addition, since the temperature of the low-pressure refrigerant on the suction port side of the compressor can be maintained at a predetermined temperature or higher even at the initial start of the vehicle drive source, a sufficient amount of heat is generated from the heat exchanger after the compressor is started. As a result, the air supplied to the passenger compartment is quickly warmed, and instant warming is improved.
実施の形態の車両用空調装置において、冷房モードの冷凍サイクルを説明する模式的な回路図である。It is a typical circuit diagram explaining the refrigerating cycle of the air_conditioning | cooling mode in the vehicle air conditioner of embodiment. 実施の形態の車両用空調装置において、暖房モードのヒートポンプサイクルを説明する模式的な回路図である。In the vehicle air conditioner of embodiment, it is a typical circuit diagram explaining the heat pump cycle of heating mode. 実施例1の車両用空調装置において、全体の構成を説明する模式的な回路図である。In the vehicle air conditioner of Example 1, it is a typical circuit diagram explaining the whole structure. 実施例1の車両用空調装置に用いられる三重管排熱交換機を示し、図3のA-A線に沿った断面の断面図である。FIG. 4 is a cross-sectional view of the triple pipe exhaust heat exchanger used in the vehicle air conditioner of Embodiment 1 along a line AA in FIG. 3. 実施例1の車両用空調装置のコントロールユニットを説明するブロック図である。It is a block diagram explaining the control unit of the vehicle air conditioner of Example 1. FIG. 実施の形態の車両用空調装置における排気ガスと冷却水との遮断のタイミングを説明するタイムチャート図である。It is a time chart figure explaining the timing of interception of exhaust gas and cooling water in the air-conditioner for vehicles of an embodiment. 実施例2の車両用空調装置において、全体の構成を説明する模式的な回路図である。In the vehicle air conditioner of Example 2, it is a typical circuit diagram explaining the whole structure. 実施例3の車両用空調装置において、全体の構成を説明する模式的な回路図である。In the vehicle air conditioner of Example 3, it is a typical circuit diagram explaining the whole structure. 実施例4の車両用空調装置において、全体の構成を説明する模式的な回路図である。In the vehicle air conditioner of Example 4, it is a typical circuit diagram explaining the whole structure. 車両におけるエンジン始動時からの経過時間に対する車速V、排気温度Tg、圧縮機の吸入口側の冷媒温度Tsの変化を示すグラフ図である。It is a graph which shows the change of the vehicle speed V, the exhaust temperature Tg, and the refrigerant | coolant temperature Ts by the side of the inlet of a compressor with respect to the elapsed time from the engine starting in a vehicle.
 次に、本発明の実施の形態の車両用空調装置について、図1~図10を参照しつつ説明する。 Next, a vehicle air conditioner according to an embodiment of the present invention will be described with reference to FIGS.
 なお、上述の従来例と同一ないし均等な部分については一部説明を省略する。 Note that a part of the same or equivalent parts as those in the conventional example described above will not be described.
 図1、図2に示すように、本実施の形態の車両用空調装置1は、室外熱交換器4と、空調ユニット5と、室内熱交換器6と、圧縮機7とを有し、室外熱交換器4と室内熱交換器6と圧縮機7とは複数の配管によって接続され、冷媒回路14を構成している。 As shown in FIG. 1 and FIG. 2, the vehicle air conditioner 1 according to the present embodiment includes an outdoor heat exchanger 4, an air conditioning unit 5, an indoor heat exchanger 6, and a compressor 7. The heat exchanger 4, the indoor heat exchanger 6, and the compressor 7 are connected by a plurality of pipes to constitute a refrigerant circuit 14.
 空調ユニット5には室内熱交換器6とブロワ6aとが内蔵され、室内熱交換器6により冷却または加熱された空気がブロワ6aにより車室内に供給される。 The air conditioning unit 5 incorporates an indoor heat exchanger 6 and a blower 6a, and air cooled or heated by the indoor heat exchanger 6 is supplied to the vehicle interior by the blower 6a.
 また、冷媒回路14の、圧縮機7の吐出口7b側には、冷媒温度Tdを検出する冷媒温度センサ18bが設けられている。 Further, a refrigerant temperature sensor 18b for detecting a refrigerant temperature Td is provided on the refrigerant circuit 14 on the discharge port 7b side of the compressor 7.
 本実施の形態の車両用空調装置1に係る室外熱交換器4と室内熱交換器6とは、冷媒が流れる方向に応じてエバポレータとしてもコンデンサとしても機能する。 The outdoor heat exchanger 4 and the indoor heat exchanger 6 according to the vehicle air conditioner 1 of the present embodiment function both as an evaporator and a condenser depending on the direction in which the refrigerant flows.
 このため、冷媒回路14を循環する冷媒の循環方向を切り換えることにより、車室内の冷房に用いる冷凍サイクルと車室内の暖房に用いるヒートポンプサイクルとを切り換えることができる。 Therefore, by switching the circulation direction of the refrigerant circulating in the refrigerant circuit 14, it is possible to switch between the refrigeration cycle used for cooling the passenger compartment and the heat pump cycle used for heating the passenger compartment.
 また、これにより、車室内の冷房に用いる冷凍サイクルと車室内の暖房に用いるヒートポンプサイクルとにおいて、冷媒回路14を構成する配管を一部共用することができる。 Also, this makes it possible to share part of the piping constituting the refrigerant circuit 14 in the refrigeration cycle used for cooling the passenger compartment and the heat pump cycle used for heating the passenger compartment.
 さらに、本実施の形態の車両用空調装置1は、四方弁8、アキュムレータ9、膨張弁10,11、逆止弁12,13を有し、これらは、それぞれ複数の配管によって接続され、冷媒回路14を構成している。 Furthermore, the vehicle air conditioner 1 according to the present embodiment includes a four-way valve 8, an accumulator 9, expansion valves 10 and 11, and check valves 12 and 13, which are connected by a plurality of pipes, respectively. 14 is constituted.
 そして、圧縮機7が、その吸入口7a側の低圧冷媒を吸入して圧縮して、この圧縮された高圧冷媒を吐出口7b側に吐出することにより、冷媒回路14内の冷媒は冷媒回路14内を循環する。 Then, the compressor 7 sucks and compresses the low-pressure refrigerant on the suction port 7a side, and discharges the compressed high-pressure refrigerant to the discharge port 7b side, whereby the refrigerant in the refrigerant circuit 14 becomes the refrigerant circuit 14. Circulate inside.
 この圧縮された高圧冷媒の熱が、冷房モードでは室外熱交換器4によって外気に放出され、暖房モードでは室内熱交換器6によって車室内の空気に放出される。 The heat of the compressed high-pressure refrigerant is released to the outside air by the outdoor heat exchanger 4 in the cooling mode, and is released to the air in the vehicle interior by the indoor heat exchanger 6 in the heating mode.
 具体的には、四方弁8を図1のように切換えると、冷媒回路14内の冷媒の循環方向が図1に示す矢印Cの向きになり、室外熱交換器4がコンデンサとして機能し、室内熱交換器6がエバポレータとして機能して、車両用空調装置1は冷房モードに切り替わる。 Specifically, when the four-way valve 8 is switched as shown in FIG. 1, the refrigerant circulation direction in the refrigerant circuit 14 becomes the direction of the arrow C shown in FIG. 1, and the outdoor heat exchanger 4 functions as a condenser. The heat exchanger 6 functions as an evaporator, and the vehicle air conditioner 1 is switched to the cooling mode.
 また、四方弁8を図2のように切換えると、冷媒回路14内の冷媒の循環方向が図2に示す矢印Hの向きになり、室外熱交換器4がエバポレータとして機能し、室内熱交換器6がコンデンサとして機能して、車両用空調装置1は暖房モードに切り替わる。 Further, when the four-way valve 8 is switched as shown in FIG. 2, the circulation direction of the refrigerant in the refrigerant circuit 14 becomes the direction of the arrow H shown in FIG. 2, and the outdoor heat exchanger 4 functions as an evaporator. 6 functions as a capacitor, and the vehicle air conditioner 1 is switched to the heating mode.
 車両用空調装置1が暖房モードになっている場合には、冷媒回路14内の高圧冷媒の熱が室内熱交換器6において放熱されることにより、車室内へ供給される空気eが暖められる。 When the vehicle air conditioner 1 is in the heating mode, the heat e of the high-pressure refrigerant in the refrigerant circuit 14 is dissipated in the indoor heat exchanger 6, so that the air e supplied to the vehicle interior is warmed.
 以下に述べるように、本実施の形態の車両用空調装置1では、車両2の駆動源としてのエンジン15の排熱を暖房時の熱源として利用している。 As described below, in the vehicle air conditioner 1 of the present embodiment, the exhaust heat of the engine 15 as a drive source of the vehicle 2 is used as a heat source during heating.
 本実施の形態に係る車両2には、エンジン15の外周に設けられたウォータジャケット(図示省略)とラジエータ(図示省略)との間で冷却水LLCを循環させるための冷却水回路16が備えられている。 The vehicle 2 according to the present embodiment is provided with a cooling water circuit 16 for circulating cooling water LLC between a water jacket (not shown) and a radiator (not shown) provided on the outer periphery of the engine 15. ing.
 そして、ウォータポンプ(図示省略)によってウォータジャケットとラジエータとの間で冷却水LLCを循環させて、冷却水LLCの熱をラジエータにより外気に放熱させることによって、エンジン15本体が過熱状態にならないようにエンジン15本体を冷却する。 Then, the cooling water LLC is circulated between the water jacket and the radiator by a water pump (not shown), and the heat of the cooling water LLC is radiated to the outside air by the radiator so that the engine 15 main body is not overheated. The engine 15 body is cooled.
 また、エンジン15から排出される排気ガスは、エンジンルーム3内に設けられた排気ガス管18、車両2の後方に延びる排気管(図示省略)、マフラー(図示省略)を通って車外に排出される。 The exhaust gas discharged from the engine 15 is discharged outside the vehicle through an exhaust gas pipe 18 provided in the engine room 3, an exhaust pipe (not shown) extending rearward of the vehicle 2, and a muffler (not shown). The
 排気ガス管18には、その内部を通過する排気ガスの温度を検出するための排気ガス温度センサ18aが設けられている。 The exhaust gas pipe 18 is provided with an exhaust gas temperature sensor 18a for detecting the temperature of the exhaust gas passing through the inside.
 本実施の形態の車両用空調装置1は、圧縮機7の吸入口7a側の低圧冷媒にエンジン15の排気熱を供給するための排熱用熱交換器20を有している。 The vehicle air conditioner 1 of the present embodiment has a heat exchanger 20 for exhaust heat for supplying exhaust heat of the engine 15 to the low-pressure refrigerant on the suction port 7a side of the compressor 7.
 図1、図2に示すように、排熱用熱交換器20は、冷媒回路14の、圧縮機7の上流側かつアキュムレータ9の下流側の位置に設けられている。 As shown in FIGS. 1 and 2, the heat exchanger 20 for exhaust heat is provided in the refrigerant circuit 14 at a position upstream of the compressor 7 and downstream of the accumulator 9.
 排熱用熱交換器20には、低圧冷媒用の管路と、排気ガス管18用の管路と、冷却水回路16用の管路とが隣接して設けられている。 The heat exchanger 20 for exhaust heat is provided with a conduit for low-pressure refrigerant, a conduit for the exhaust gas tube 18 and a conduit for the cooling water circuit 16 adjacent to each other.
 そして、排熱用熱交換器20には、冷媒回路14を構成する配管と冷却水回路16を構成する配管とが接続されている。 And, to the heat exchanger 20 for exhaust heat, piping constituting the refrigerant circuit 14 and piping constituting the cooling water circuit 16 are connected.
 また、排熱用熱交換器20には排気ガス管18を介してエンジン15が接続され、排気ガス管18の、排熱用熱交換器20とエンジン15との間には排気ガス供給停止弁19が設けられている。 An engine 15 is connected to the exhaust heat exchanger 20 via an exhaust gas pipe 18, and an exhaust gas supply stop valve is provided between the exhaust heat exchanger 20 and the engine 15 in the exhaust gas pipe 18. 19 is provided.
 本実施の形態の車両用空調装置1では、排熱用熱交換器20の上流側に排気ガス供給停止弁19が設けられているので、排気ガス供給停止弁19の開閉によりエンジン15の排気ガスの排熱用熱交換器20への供給と停止とを切り換えることができる。 In the vehicle air conditioner 1 according to the present embodiment, the exhaust gas supply stop valve 19 is provided on the upstream side of the heat exchanger 20 for exhaust heat. Therefore, the exhaust gas of the engine 15 is opened and closed by opening and closing the exhaust gas supply stop valve 19. It is possible to switch between supply and stop of the heat exchanger 20 for exhaust heat.
 そして、エンジン15の始動初期に、排気ガス供給停止弁19を開放することにより、エンジン15の排気ガスを排熱用熱交換器20に送り込み、この排気ガスの熱によって排熱用熱交換器20内の冷媒を暖める。 Then, by opening the exhaust gas supply stop valve 19 at the initial start of the engine 15, the exhaust gas of the engine 15 is sent to the exhaust heat heat exchanger 20, and the exhaust heat heat exchanger 20 is generated by the heat of the exhaust gas. Warm the refrigerant inside.
 このように、本実施の形態の車両用空調装置1では、エンジン15の排気ガスがエンジン15の排気熱を輸送する熱媒体としても機能する。 Thus, in the vehicle air conditioner 1 of the present embodiment, the exhaust gas of the engine 15 also functions as a heat medium for transporting the exhaust heat of the engine 15.
 また、冷却水回路16には、排熱用熱交換器20の上流側にON/OFF弁17が設けられている。
 このON/OFF弁17によって、冷却水LLCの排熱用熱交換器20への供給または停止を切り替えることができる。
The cooling water circuit 16 is provided with an ON / OFF valve 17 on the upstream side of the heat exchanger 20 for exhaust heat.
With this ON / OFF valve 17, supply or stop of the cooling water LLC to the heat exchanger 20 for exhaust heat can be switched.
 後述するように、本実施の形態の車両用空調装置1では、エンジン15の冷却水LLCもエンジン15の排気熱を輸送する熱媒体としても機能する。 As will be described later, in the vehicle air conditioner 1 of the present embodiment, the cooling water LLC of the engine 15 also functions as a heat medium for transporting the exhaust heat of the engine 15.
 本実施の形態の車両用空調装置1では、排気ガス供給停止弁19とON/OFF弁17とを適宜切り換えることにより、排気ガス管18から送り込まれる排気ガスの熱と冷却水回路16内を循環する冷却水LLCの熱とを冷媒回路14内の低圧冷媒に個別に受け渡すことができる。 In the vehicle air conditioner 1 of the present embodiment, the heat of the exhaust gas fed from the exhaust gas pipe 18 and the inside of the cooling water circuit 16 are circulated by appropriately switching between the exhaust gas supply stop valve 19 and the ON / OFF valve 17. The heat of the cooling water LLC to be transferred can be individually transferred to the low-pressure refrigerant in the refrigerant circuit 14.
 本実施の形態の車両用空調装置1では、エンジン15の始動初期に、エンジン15の冷却水LLCの水温Tweが低い場合には、ON/OFF弁17を閉じて冷却水LLCの排熱用熱交換器20への供給を停止する。 In the vehicle air conditioner 1 according to the present embodiment, when the water temperature Twe of the cooling water LLC of the engine 15 is low at the start of the engine 15, the ON / OFF valve 17 is closed to exhaust heat from the cooling water LLC. Supply to the exchanger 20 is stopped.
 そして、圧縮機7の吐出口7b側の冷媒温度Tdが所定の温度より低い場合には、排気ガス供給停止弁19を開いて、排気ガスの排熱用熱交換器20への供給を開始する。 When the refrigerant temperature Td on the discharge port 7b side of the compressor 7 is lower than a predetermined temperature, the exhaust gas supply stop valve 19 is opened and supply of the exhaust gas to the exhaust heat heat exchanger 20 is started. .
 排気ガス供給停止弁19が開放されると、排気ガスが排熱用熱交換器20内に送り込まれ、この排気ガスにより圧縮機7の吸入口7a側の低圧冷媒に受け渡されて、この低圧冷媒が暖められる。 When the exhaust gas supply stop valve 19 is opened, the exhaust gas is sent into the heat exchanger 20 for exhaust heat and is delivered to the low-pressure refrigerant on the suction port 7a side of the compressor 7 by this exhaust gas. The refrigerant is warmed.
 エンジン15を始動した始動時点aから排気ガス温度センサ18aで検出される排気ガスの排気温度Tgが一定温度(ここでは約40℃)に至る時点bまで(ここでは約30秒間)は圧縮機7を起動せず、排気ガスの排気温度Tgが40℃を越えた場合に圧縮機7を起動する。 From the starting time point a when the engine 15 is started to the time point b where the exhaust gas temperature Tg detected by the exhaust gas temperature sensor 18a reaches a constant temperature (about 40 ° C. here) (here about 30 seconds), the compressor 7 And the compressor 7 is started when the exhaust gas exhaust temperature Tg exceeds 40 ° C.
 また、圧縮機7の吐出口7b側の冷媒温度Tdが所定温度(ここではエンジン15を冷却する冷却水LLCの水温Tweと同じ温度)に到達した場合(図6の時点c)には、排気ガス供給停止弁19を閉じて排気ガスの排熱用熱交換器20への供給を停止すると同時に、ON/OFF弁17を開いて冷却水LLCの排熱用熱交換器20への供給を開始する。 When the refrigerant temperature Td on the discharge port 7b side of the compressor 7 reaches a predetermined temperature (here, the same temperature as the water temperature Twe of the cooling water LLC that cools the engine 15) (time point c in FIG. 6), the exhaust gas is exhausted. The gas supply stop valve 19 is closed to stop the supply of exhaust gas to the heat exchanger 20 for exhaust heat, and at the same time, the ON / OFF valve 17 is opened to start supplying the cooling water LLC to the heat exchanger 20 for exhaust heat. To do.
 その後は、圧縮機7の吸入口7a側の低圧冷媒に、エンジン15の冷却水LLCの熱を、排熱用熱交換器20を介して供給することにより、この低圧冷媒を加熱し、この低圧冷媒の冷媒温度Tsを上昇させる。 Thereafter, the heat of the cooling water LLC of the engine 15 is supplied to the low-pressure refrigerant on the suction port 7a side of the compressor 7 via the heat exchanger 20 for exhaust heat to heat the low-pressure refrigerant. The refrigerant temperature Ts of the refrigerant is increased.
 そして、水温Tweが所定の温度(ここでは70℃)を越えるか(図6の時点d1)、圧縮機7の吸入口7a側の低圧冷媒の冷媒圧力Psが所定の圧力(ここでは312kPa)を越えるか(図6の時点d2)、冷媒過熱度(SH)が所定の温度(ここでは10deg)を越えるか(図6の時点d3)した場合に、ON/OFF弁17を閉じて、冷却水LLCの排熱用熱交換器20への供給を停止する。 Then, whether the water temperature Twe exceeds a predetermined temperature (here, 70 ° C.) (time point d1 in FIG. 6), or the refrigerant pressure Ps of the low-pressure refrigerant on the suction port 7a side of the compressor 7 becomes a predetermined pressure (here, 312 kPa). If it exceeds (time point d2 in FIG. 6) or the refrigerant superheat (SH) exceeds a predetermined temperature (here, 10 deg) (time point d3 in FIG. 6), the ON / OFF valve 17 is closed and the cooling water The supply to the heat exchanger 20 for exhaust heat of LLC is stopped.
 次に、本実施の形態の車両用空調装置1の作用効果について説明する。 Next, functions and effects of the vehicle air conditioner 1 according to the present embodiment will be described.
 本実施の形態の車両用空調装置1において、冷房モードでは、四方弁8が図1のように切り換えられて、冷媒回路14内の冷媒の循環方向が図1に示す矢印Cの向きに循環されるので、室外熱交換器4がコンデンサとして機能し、室内熱交換器6がエバポレータとして機能する。 In the vehicle air conditioner 1 of the present embodiment, in the cooling mode, the four-way valve 8 is switched as shown in FIG. 1, and the circulation direction of the refrigerant in the refrigerant circuit 14 is circulated in the direction of arrow C shown in FIG. Therefore, the outdoor heat exchanger 4 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator.
 また、暖房モードでは、四方弁8が図2のように切り換えられて、冷媒回路14内の冷媒の循環方向が図2に示す矢印Hの向きに循環されるので、室外熱交換器4がエバポレータとして機能し、室内熱交換器6がコンデンサとして機能する。 Further, in the heating mode, the four-way valve 8 is switched as shown in FIG. 2, and the refrigerant circulation direction in the refrigerant circuit 14 is circulated in the direction of the arrow H shown in FIG. 2, so that the outdoor heat exchanger 4 is connected to the evaporator. And the indoor heat exchanger 6 functions as a condenser.
 このように、本実施の形態の車両用空調装置1によれば、冷房モードの冷凍サイクルを構成する配管と暖房モードのヒートポンプサイクルを構成する配管とを一部共用した冷媒回路14を構成することができる。 Thus, according to the vehicle air conditioner 1 of the present embodiment, the refrigerant circuit 14 that partially shares the piping configuring the cooling mode refrigeration cycle and the piping configuring the heating mode heat pump cycle is configured. Can do.
 図10に示すように、一般に、車両におけるエンジン始動時からの経過時間に対する排気温度Tgはエンジン15を始動した始動時点aから比較的短い時間で上昇する。
 また、圧縮機7の起動時には圧縮機7の吸入口7a側の冷媒圧力が低下するので、図10に示すように圧縮機7の吸入口7a側の冷媒温度Tsは一旦降下するが、その後、時間の経過と共に徐々に上昇する
As shown in FIG. 10, in general, the exhaust temperature Tg with respect to the elapsed time from the start of the engine in the vehicle rises in a relatively short time from the start point a when the engine 15 is started.
Further, since the refrigerant pressure on the suction port 7a side of the compressor 7 is reduced when the compressor 7 is started up, the refrigerant temperature Ts on the suction port 7a side of the compressor 7 temporarily decreases as shown in FIG. Rise gradually over time
 本実施の形態の車両用空調装置1では、暖房モードにおけるエンジン15の始動初期において、圧縮機7の吐出口7b側の冷媒温度Tdが所定の温度より低い場合には、排気ガス供給停止弁19を開いてエンジン15が排出した高温の排気ガスを排熱用熱交換器20内で循環させた後排出する。 In the vehicle air conditioner 1 of the present embodiment, when the refrigerant temperature Td on the discharge port 7b side of the compressor 7 is lower than a predetermined temperature at the initial start of the engine 15 in the heating mode, the exhaust gas supply stop valve 19 The high-temperature exhaust gas exhausted by the engine 15 is circulated in the exhaust heat exchanger 20 and then exhausted.
 図6に示すように、排気ガスの排気温度Tgはエンジン15が始動された始動時点aから短い時間で上昇するので、この高温の排気ガスを排熱用熱交換器20内で循環させて排熱用熱交換器20内の冷媒を加熱することにより、排熱用熱交換器20内の冷媒の温度を速やかに上昇させることができる。 As shown in FIG. 6, since the exhaust temperature Tg of the exhaust gas rises in a short time from the starting time point a when the engine 15 is started, this high-temperature exhaust gas is circulated in the exhaust heat heat exchanger 20 and exhausted. By heating the refrigerant in the heat exchanger 20 for heat, the temperature of the refrigerant in the heat exchanger 20 for exhaust heat can be quickly raised.
 この加熱された排熱用熱交換器20内の冷媒が圧縮機7の吸入口7a側に送出されるので、エンジン15の始動直後であっても、この低圧冷媒の温度を所定温度以上に保つことができ、圧縮機7の起動時に、この低圧冷媒の冷媒圧力が負圧になるのを防ぐことができる。 Since the heated refrigerant in the exhaust heat exchanger 20 is sent to the suction port 7a side of the compressor 7, the temperature of the low-pressure refrigerant is maintained at a predetermined temperature or more even immediately after the engine 15 is started. It is possible to prevent the refrigerant pressure of the low-pressure refrigerant from becoming negative when the compressor 7 is started.
 また、エンジン15の始動初期であっても、圧縮機7の吸入口7a側の低圧冷媒の温度を所定温度以上に保つことができるので、圧縮機7の起動後に室内熱交換器6から十分な熱量を発生させることができ、車室内に供給される空気eが速やかに暖められ、即暖性が向上する。 Further, even at the initial start of the engine 15, the temperature of the low-pressure refrigerant on the suction port 7 a side of the compressor 7 can be maintained at a predetermined temperature or higher, so that it is sufficient from the indoor heat exchanger 6 after the compressor 7 is started up. The amount of heat can be generated, and the air e supplied into the passenger compartment is quickly warmed, so that the immediate warming property is improved.
 さらに、図6に示すようにエンジン15の始動初期には冷却水LLCの水温Tweが低いので、本実施の形態の車両用空調装置1では、冷却水LLCの水温Tweが十分に上昇するまでの間はON/OFF弁17を閉じることにより、冷却水LLCの排熱用熱交換器20への供給を停止する。 Furthermore, as shown in FIG. 6, since the water temperature Twe of the cooling water LLC is low at the initial start of the engine 15, in the vehicle air conditioner 1 of the present embodiment, the water temperature Twe of the cooling water LLC is sufficiently increased. During this time, the supply of the cooling water LLC to the heat exchanger 20 for exhaust heat is stopped by closing the ON / OFF valve 17.
 このように冷却水LLCの排熱用熱交換器20への供給を停止することにより、低温の冷却水LLCが排熱用熱交換器20を循環することによって冷媒の温度上昇が阻害されるのを防止することができる。 By stopping the supply of the cooling water LLC to the exhaust heat exchanger 20 in this way, the low-temperature cooling water LLC circulates through the exhaust heat exchanger 20 to inhibit the refrigerant temperature rise. Can be prevented.
 また、このように冷却水LLCの排熱用熱交換器20への供給を停止することにより、ウォータジャケット内の冷却水LLCの温度上昇がスムーズに行なわれるので、始動初期におけるエンジン15のウォームアップもスムーズに行なわれる。 Further, by stopping the supply of the cooling water LLC to the heat exchanger 20 for exhaust heat in this way, the temperature of the cooling water LLC in the water jacket rises smoothly, so that the engine 15 is warmed up at the initial start-up. Is also performed smoothly.
 本実施の形態の車両用空調装置1では、図6に示すエンジン15を始動する始動時点aから排気ガスの排気温度Tgが一定温度に至る時点bまでは、圧縮機7を起動しない。 In the vehicle air conditioner 1 of the present embodiment, the compressor 7 is not started from the starting time point a at which the engine 15 shown in FIG. 6 is started to the time point b at which the exhaust gas exhaust temperature Tg reaches a constant temperature.
 具体的には、排気ガスの排気温度Tgが約50℃に達して、エンジン15のウォームアップが略完了したと判断できる時点b(ここではエンジン15の始動時点aから約30秒後)に圧縮機7を起動する。 Specifically, the compression is performed at a time point b (in this case, about 30 seconds after the starting time point a of the engine 15) when it can be determined that the exhaust temperature Tg of the exhaust gas reaches about 50 ° C. and the warm-up of the engine 15 is substantially completed. The machine 7 is activated.
 圧縮機7の起動により、図6に示すように吸入口7a側の冷媒圧力Psが一旦降下し、それに伴い冷媒温度Tsも一旦降下するが、エンジン15の排気ガスの導入によって、排熱用熱交換器20により排気ガスの熱が圧縮機7の吸入口7a側の低圧冷媒に供給され、冷媒温度Tsが上昇するので、それに伴って冷媒圧力Psも比較的速やかに上昇に転じる。 When the compressor 7 is activated, the refrigerant pressure Ps on the suction port 7a side temporarily decreases as shown in FIG. 6 and the refrigerant temperature Ts also decreases temporarily. As a result, the exhaust heat from the engine 15 is introduced. The heat of the exhaust gas is supplied by the exchanger 20 to the low-pressure refrigerant on the suction port 7a side of the compressor 7, and the refrigerant temperature Ts rises. Accordingly, the refrigerant pressure Ps also rises relatively quickly.
 また、圧縮機7の吸入口7a側の低圧冷媒の冷媒温度Tsの上昇により、吐出口7b側の高圧冷媒の冷媒温度Tdも比較的速やかに上昇に転じる。 Also, due to the rise in the refrigerant temperature Ts of the low-pressure refrigerant on the suction port 7a side of the compressor 7, the refrigerant temperature Td of the high-pressure refrigerant on the discharge port 7b side also starts to rise relatively quickly.
 本実施の形態の車両用空調装置1では、吐出口7b側の高圧冷媒の冷媒温度Tdが冷却水LLCの水温Tweに達した時点c(図6参照)で、排気ガス供給停止弁19を閉じると同時にON/OFF弁17を開く。 In the vehicle air conditioner 1 of the present embodiment, the exhaust gas supply stop valve 19 is closed at the time point c (see FIG. 6) when the refrigerant temperature Td of the high-pressure refrigerant on the discharge port 7b side reaches the water temperature Twe of the cooling water LLC. At the same time, the ON / OFF valve 17 is opened.
 これにより、排気ガスの排熱用熱交換器20への供給が停止され、排気ガスと低圧冷媒との間の熱交換が行われなくなると同時に、冷却水LLCの排熱用熱交換器20への供給が開始され、冷却水LLCと低圧冷媒との間の熱交換が開始される。 As a result, the supply of the exhaust gas to the exhaust heat heat exchanger 20 is stopped, the heat exchange between the exhaust gas and the low-pressure refrigerant is not performed, and at the same time, the exhaust heat of the cooling water LLC to the heat exchanger 20 for exhaust heat. Is started, and heat exchange between the cooling water LLC and the low-pressure refrigerant is started.
 これにより、圧縮機7の吸入口7a側の低圧冷媒に供給される熱の熱源が、排気ガスから排気ガスよりも熱容量の大きい冷却水LLCに切り替わる。 Thereby, the heat source of the heat supplied to the low-pressure refrigerant on the suction port 7a side of the compressor 7 is switched from the exhaust gas to the cooling water LLC having a larger heat capacity than the exhaust gas.
 その後は、エンジン15の排熱が、排気ガスよりも熱容量の大きい冷却水LLCにより圧縮機7の吸入口7a側の低圧冷媒に供給されるので、吸入口7a側の低圧冷媒の冷媒温度Tsを安定させることができる。 Thereafter, the exhaust heat of the engine 15 is supplied to the low-pressure refrigerant on the suction port 7a side of the compressor 7 by the cooling water LLC having a larger heat capacity than the exhaust gas, so that the refrigerant temperature Ts of the low-pressure refrigerant on the suction port 7a side is set. It can be stabilized.
  そして、本実施の形態の車両用空調装置1では、水温Tweが所定の温度(ここでは70℃)を越えるか(図6の時点d1)、圧縮機7の吸入口7a側の低圧冷媒の冷媒圧力Psが所定の圧力(ここでは312kPa)を越えるか(図6の時点d2)、冷媒過熱度(SH)が所定の温度(ここでは10deg)を越えるか(図6の時点d3)した場合に、ON/OFF弁17を閉じて、冷却水LLCの排熱用熱交換器20への供給を停止する。 And in the vehicle air conditioner 1 of this Embodiment, the water temperature Twe exceeds predetermined temperature (here 70 degreeC) (time point d1 of FIG. 6), or the refrigerant | coolant of the low pressure refrigerant | coolant by the side of the inlet 7a of the compressor 7 When the pressure Ps exceeds a predetermined pressure (here, 312 kPa) (time point d2 in FIG. 6) or the refrigerant superheat degree (SH) exceeds a predetermined temperature (here 10 deg) (time point d3 in FIG. 6) Then, the ON / OFF valve 17 is closed and the supply of the cooling water LLC to the heat exchanger 20 for exhaust heat is stopped.
 このように、上述の時点d1,d2,d3の何れかにおいて排熱用熱交換器20による熱交換が停止されるので、圧力上昇などの過負荷による圧縮機7の破損などから圧縮機7を保護することができる。 Thus, since the heat exchange by the heat exchanger 20 for exhaust heat is stopped at any one of the above-mentioned time points d1, d2, and d3, the compressor 7 is removed from the damage of the compressor 7 due to an overload such as a pressure increase. Can be protected.
 上述してきたように、本実施の形態の車両用空調装置1では、エンジン15の始動初期に、エンジン15が発生する排熱を排熱用熱交換器20によって圧縮機7の吸入口7a側の低圧冷媒に供給することにより、この圧縮機7の吸入口7a側の低圧冷媒を暖めるので、エンジン15の始動直後であっても圧縮機7の吸入口7a側の低圧冷媒が速やかに暖められ、この低圧冷媒の温度を所定温度以上に保つことができるので、圧縮機7の起動時に圧縮機7の吸入口7a口側の冷媒圧力が負圧になるのを防ぐことができる。 As described above, in the vehicle air conditioner 1 of the present embodiment, the exhaust heat generated by the engine 15 at the initial start of the engine 15 is transferred to the suction port 7a side of the compressor 7 by the exhaust heat exchanger 20. Since the low-pressure refrigerant on the suction port 7a side of the compressor 7 is warmed by supplying the low-pressure refrigerant, the low-pressure refrigerant on the suction port 7a side of the compressor 7 is quickly warmed even immediately after the start of the engine 15. Since the temperature of the low-pressure refrigerant can be maintained at a predetermined temperature or higher, it is possible to prevent the refrigerant pressure on the suction port 7a side of the compressor 7 from becoming negative when the compressor 7 is started.
 また、エンジン15の始動初期であっても圧縮機7の吸入口7a側の低圧冷媒の温度を所定温度以上に保つことができるので、圧縮機7の起動後に室内熱交換器6から十分な熱量を発生させることができ、車室内に供給される空気が速やかに暖められ、即暖性が向上する。 Further, since the temperature of the low-pressure refrigerant on the suction port 7a side of the compressor 7 can be maintained at a predetermined temperature or higher even at the initial start of the engine 15, a sufficient amount of heat is generated from the indoor heat exchanger 6 after the compressor 7 is started. The air supplied to the passenger compartment is quickly warmed, and the immediate warming property is improved.
 図3~図6は、実施例1の車両用空調装置1を示している。
 なお、前記実施の形態と同一ないし均等な部分については同一符号を付して説明する。
3 to 6 show the vehicle air conditioner 1 according to the first embodiment.
In addition, the same code | symbol is attached | subjected and demonstrated about the same or equivalent part as the said embodiment.
 まず、前記実施の形態の車両用空調装置1との構成の相違点を説明する。 First, differences in configuration from the vehicle air conditioner 1 of the above embodiment will be described.
 図5に示すように、実施例1の車両用空調装置1は、空調ユニット25を制御するコントロールユニット21を有している。 As shown in FIG. 5, the vehicle air conditioner 1 according to the first embodiment includes a control unit 21 that controls the air conditioning unit 25.
 コントロールユニット21には、排気ガス温度センサ18a,冷媒温度センサ18b,冷媒圧力センサ18cなどの各種センサが接続されている。 Various sensors such as an exhaust gas temperature sensor 18a, a refrigerant temperature sensor 18b, and a refrigerant pressure sensor 18c are connected to the control unit 21.
 冷媒圧力センサ18cは、圧縮機7の吸入口7a側の低圧冷媒の冷媒圧力Psを検出して、コントロールユニット21に送信する。 The refrigerant pressure sensor 18 c detects the refrigerant pressure Ps of the low-pressure refrigerant on the suction port 7 a side of the compressor 7 and transmits it to the control unit 21.
 また、コントロールユニット21には、圧縮機7,冷暖房切換弁44,ブロワ6a,排気ガス供給停止弁19,三方切換弁42,内外気供給切換ドアおよびエアミックスドアの各ドアアクチュエータ26, 31が接続され、これらはコントロールユニット21から出力される制御信号に応じて各々駆動制御される。 Also connected to the control unit 21 are the compressor 7, the cooling / heating switching valve 44, the blower 6a, the exhaust gas supply stop valve 19, the three-way switching valve 42, the door actuators 26 of the inside / outside air supply switching door and the air mix door, and the rod 31. These are driven and controlled in accordance with a control signal output from the control unit 21.
 図3に示すように、空調ユニット25には、そのケース内部に空気が流れる方向に沿って、エバポレータ27,ヒーターコア28とコンデンサ29とが一体に構成されたヒータユニット30が、この順に設けられ、エバポレータ27の上流側近傍には内外気供給切換ドア, ヒータユニット30の近傍にエアミックスドアが設けられている。 As shown in FIG. 3, the air conditioning unit 25 is provided with a heater unit 30 in which an evaporator 27, a heater core 28 and a condenser 29 are integrally formed in this order along the direction in which air flows inside the case. Further, an inside / outside air supply switching door is provided in the vicinity of the upstream side of the evaporator 27, and an air mix door is provided in the vicinity of the soot heater unit 30.
 そして、各ドアアクチュエータ26,31を駆動制御することによって、内外気供給切換ドアやエアミックスドアにより、空気の流路を開閉することができ、車室側に供給される冷暖房風の風量の比率を調整できる。 By controlling the driving of the door actuators 26 and 31, the air flow path can be opened and closed by the inside / outside air supply switching door or the air mix door, and the ratio of the air volume of the cooling / heating air supplied to the passenger compartment side Can be adjusted.
 また、本実施例の車両用空調装置1には、減圧弁32と多重管型排熱用熱交換器40とが設けられ、減圧弁32はエバポレータ27に接続され、多重管型排熱用熱交換器40は、冷媒回路14の、減圧弁32と圧縮機7の吸入口7a側との間に接続されている。 Further, the vehicle air conditioner 1 of the present embodiment is provided with a pressure reducing valve 32 and a multi-tube type exhaust heat heat exchanger 40, and the pressure reducing valve 32 is connected to the evaporator 27, and the multi-tube type heat for heat removal is provided. The exchanger 40 is connected between the pressure reducing valve 32 and the suction port 7 a side of the compressor 7 in the refrigerant circuit 14.
 多重管型排熱用熱交換器40は、エンジン15の始動初期に発生する排熱を利用して、圧縮機7の吸入口7a側の低圧冷媒を加熱する熱交換器として機能する。 The multi-tube type heat exhaust heat exchanger 40 functions as a heat exchanger that heats the low-pressure refrigerant on the suction port 7a side of the compressor 7 using the exhaust heat generated at the start of the engine 15.
 図4に示すように、多重管型排熱用熱交換器40は、径の異なる大径筒状部材34,中径筒状部材35,小径筒状部材36と、固定リブ部材37とによって構成されている。 As shown in FIG. 4, the multi-tube type exhaust heat exchanger 40 includes a large-diameter cylindrical member 34, a medium-diameter cylindrical member 35, a small-diameter cylindrical member 36 having different diameters, and a fixed rib member 37. Has been.
 大径筒状部材34と中径筒状部材35と小径筒状部材36とは同軸状に配置され、それらの各壁間に複数の固定リブ部材37を放射状に配置することによって、それらの各壁が半径方向に所定間隔を隔てた状態で相互に移動不能に連結されている。 The large-diameter cylindrical member 34, the medium-diameter cylindrical member 35, and the small-diameter cylindrical member 36 are arranged coaxially, and a plurality of fixed rib members 37 are arranged radially between their respective walls, thereby each of them. The walls are connected to each other so as to be immovable with a predetermined distance in the radial direction.
 そして、多重管型排熱用熱交換器40の中径筒状部材35と小径筒状部材36との間の空間を低圧冷媒が循環される冷媒流路38として使用し、小径筒状部材36の内側の空間をエンジン15の冷却水LLCが循環される冷却水流路39として使用する。 Then, the space between the medium-diameter tubular member 35 and the small-diameter tubular member 36 of the multi-tube type exhaust heat exchanger 40 is used as the refrigerant flow path 38 through which the low-pressure refrigerant is circulated, and the small-diameter tubular member 36 is used. Is used as a cooling water flow path 39 through which the cooling water LLC of the engine 15 is circulated.
 冷媒流路38と冷却水流路39とは小径筒状部材36を介して、それらの半径方向に隣接しているので、冷却水流路39にエンジン15の冷却水LLCを循環させることにより、冷却水LLCと低圧冷媒との間で熱交換が行なわれる。 Since the refrigerant flow path 38 and the cooling water flow path 39 are adjacent to each other in the radial direction via the small-diameter cylindrical member 36, the cooling water LLC is circulated through the cooling water flow path 39 to circulate the cooling water. Heat exchange is performed between the LLC and the low-pressure refrigerant.
 また、多重管型排熱用熱交換器40の大径筒状部材34と中径筒状部材35との間の空間を排気ガスが循環される排気ガス流路33として使用する。 In addition, the space between the large-diameter cylindrical member 34 and the medium-diameter cylindrical member 35 of the multi-tube type heat exhaust heat exchanger 40 is used as an exhaust gas passage 33 through which exhaust gas is circulated.
 排気ガス流路33と冷媒流路38とは中径筒状部材35を介して、その半径方向に隣接しているので、排気ガス流路33にエンジン15の排気ガスを循環させることにより、排気ガスと低圧冷媒との間で熱交換が行なわれる。 Since the exhaust gas flow path 33 and the refrigerant flow path 38 are adjacent to each other in the radial direction via the medium-diameter cylindrical member 35, exhaust gas from the engine 15 is circulated through the exhaust gas flow path 33, thereby Heat exchange is performed between the gas and the low-pressure refrigerant.
 本実施例の車両用空調装置1に係る多重管型排熱用熱交換器40では、冷却水流路39と冷媒流路38と排気ガス流路33とが、小径筒状部材36と中径筒状部材35とによって分離されているので、冷媒に冷却水LLCや排気ガスが混入することはない。 In the multi-tube type exhaust heat heat exchanger 40 according to the vehicle air conditioner 1 of the present embodiment, the cooling water passage 39, the refrigerant passage 38, and the exhaust gas passage 33 are composed of a small-diameter cylindrical member 36 and a medium-diameter cylinder. The cooling water LLC and the exhaust gas are not mixed in the refrigerant because the refrigerant is separated by the member 35.
 多重管型排熱用熱交換器40の冷媒流路38は、エバポレータ27と圧縮機7の吸入口7aとの間に接続され、冷媒はエバポレータ27から吸入口7aに向けて流れる。 The refrigerant flow path 38 of the multi-tube heat exhaust heat exchanger 40 is connected between the evaporator 27 and the suction port 7a of the compressor 7, and the refrigerant flows from the evaporator 27 toward the suction port 7a.
 また、多重管型排熱用熱交換器40の排気ガス流路33は、エンジン15の排気ガス管18に接続され、排気ガス管18の、エンジン15と多重管型排熱用熱交換器40との間には排気ガス供給停止弁19が設けられている。 Further, the exhaust gas flow path 33 of the multi-tube exhaust heat exchanger 40 is connected to the exhaust gas pipe 18 of the engine 15, and the engine 15 and the multi-tube exhaust heat exchanger 40 of the exhaust gas pipe 18. Between the two, an exhaust gas supply stop valve 19 is provided.
 本実施例の車両用空調装置1では、排気ガス供給停止弁19は多重管型排熱用熱交換器40の上流側に設けられているので、排気ガス供給停止弁19の開閉により排気ガスの多重管型排熱用熱交換器40への供給と停止とを切り換えることができる。 In the vehicle air conditioner 1 of the present embodiment, the exhaust gas supply stop valve 19 is provided on the upstream side of the multi-tube type exhaust heat heat exchanger 40. It is possible to switch between supply and stop to the multi-tube type heat exchanger 40 for exhaust heat.
 また、本実施例の車両用空調装置1には、冷却水回路43が設けられ、冷却水回路43は主回路43aとバイパス回路43bとによって構成されている。 Further, the vehicle air conditioner 1 of the present embodiment is provided with a cooling water circuit 43, and the cooling water circuit 43 is constituted by a main circuit 43a and a bypass circuit 43b.
 主回路43aはエンジン15に設けられた図示省略のウォータジャケットとヒーターコア28との間を接続し、主回路43a内の冷却水LLCはウォータジャケットとヒーターコア28との間で循環される。 The main circuit 43 a connects between a water jacket (not shown) provided in the engine 15 and the heater core 28, and the cooling water LLC in the main circuit 43 a is circulated between the water jacket and the heater core 28.
 バイパス回路43bには多重管型排熱用熱交換器40の冷却水流路39と一方向弁41とが接続され、バイパス回路43bは三方切換弁42を介して主回路43aに接続されている。 The bypass circuit 43b is connected to the cooling water flow path 39 and the one-way valve 41 of the multi-tube type exhaust heat exchanger 40, and the bypass circuit 43b is connected to the main circuit 43a via the three-way switching valve 42.
 そして、三方切換弁42を切り換えることによって、ウォータジャケットとヒーターコア28との間だけで冷却水LLCを循環させる状態と、ウォータジャケットとヒーターコア28と多重管型排熱用熱交換器40との間で冷却水LLCを循環させる状態とを切り換えることができる。 Then, by switching the three-way switching valve 42, the cooling water LLC is circulated only between the water jacket and the heater core 28, and the water jacket, the heater core 28, and the multi-tube type heat exchanger 40 for exhaust heat. The state in which the cooling water LLC is circulated can be switched between.
 また、本実施例の車両用空調装置1には、冷媒回路14の、圧縮機7の吐出口7b側に冷暖房切換弁44が設けられている。 In the vehicle air conditioner 1 of this embodiment, a cooling / heating switching valve 44 is provided on the refrigerant circuit 14 on the discharge port 7b side of the compressor 7.
 冷暖房切換弁44を切り換えることによって、圧縮機7から吐出される高圧冷媒を室外熱交換器4に送出するか、コンデンサ29に送出するかを切り換えることができる。 By switching the cooling / heating switching valve 44, it is possible to switch whether the high-pressure refrigerant discharged from the compressor 7 is sent to the outdoor heat exchanger 4 or to the condenser 29.
 さらに、本実施例の車両用空調装置1には、冷媒回路14の、室外熱交換器4の下流側にリキッドタンク45と一方向弁46とが設けられ、一方向弁46の下流側には減圧弁32が接続されている。 Further, the vehicle air conditioner 1 of the present embodiment is provided with a liquid tank 45 and a one-way valve 46 on the downstream side of the outdoor heat exchanger 4 in the refrigerant circuit 14, and on the downstream side of the one-way valve 46. A pressure reducing valve 32 is connected.
 そして、本実施例の車両用空調装置1では、冷暖房切換弁44を切り換えて高圧冷媒を室外熱交換器4に送出すると、冷房用の冷凍サイクルが形成されて冷房モードに切り替わる。 And in the vehicle air conditioner 1 of the present embodiment, when the cooling / heating switching valve 44 is switched and the high-pressure refrigerant is sent to the outdoor heat exchanger 4, a cooling refrigeration cycle is formed and the cooling mode is switched.
 また、冷暖房切換弁44を切り換えて高圧冷媒をコンデンサ29に送出すると、暖房用のヒートポンプサイクルが形成されて暖房モードに切り替わる。 Further, when the cooling / heating switching valve 44 is switched and the high-pressure refrigerant is sent to the condenser 29, a heating heat pump cycle is formed and the heating mode is switched.
 そして、暖房モードでは、ヒーターコア28により放出される熱と、コンデンサ29により放出される熱とによって、空調ユニット25内を通過する空気eを暖めることができる。 In the heating mode, the air e passing through the air conditioning unit 25 can be warmed by the heat released by the heater core 28 and the heat released by the condenser 29.
 次に、実施例1の車両用空調装置1の作用効果について説明する。 Next, functions and effects of the vehicle air conditioner 1 according to the first embodiment will be described.
 このように構成された図3に示す実施例1の車両用空調装置1では、冷間時に暖房モードに切り換えると、エンジン15の始動初期に排気ガス供給停止弁19が開放されて、エンジン15の排気ガスが図4に示す多重管型排熱用熱交換器40内の排気ガス流路33を通過して排出される。 In the vehicle air conditioner 1 according to the first embodiment shown in FIG. 3 configured as described above, when switching to the heating mode when cold, the exhaust gas supply stop valve 19 is opened at the initial start of the engine 15, and the engine 15 The exhaust gas passes through the exhaust gas flow path 33 in the multi-tube type exhaust heat heat exchanger 40 shown in FIG.
 多重管型排熱用熱交換器40内において、排気ガス流路33は冷媒流路38に隣接しているので、排気ガスの熱が冷媒流路38内を通過する冷媒に受け渡される。 In the multi-tube type exhaust heat exchanger 40, the exhaust gas flow path 33 is adjacent to the refrigerant flow path 38, so that the heat of the exhaust gas is transferred to the refrigerant passing through the refrigerant flow path 38.
 この熱交換により、エンジン15の始動初期であっても圧縮機7の吸入口7a側の低圧冷媒が暖められるので、圧縮機7の起動時に圧縮機7の吸入口7a側の冷媒圧力が負圧になるのを防ぐことができる。 Due to this heat exchange, the low-pressure refrigerant on the suction port 7a side of the compressor 7 is warmed even at the initial start of the engine 15. Therefore, when the compressor 7 is started, the refrigerant pressure on the suction port 7a side of the compressor 7 is negative. Can be prevented.
 さらに、本実施例の車両用空調装置1では、冷却水LLCの水温Tweが十分に上昇するまでの間は、図3に示す三方切換弁42を切り換えることによって、冷却水LLCの多重管型排熱用熱交換器40への供給を停止する。 Further, in the vehicle air conditioner 1 of the present embodiment, the multi-tube type exhaust of the cooling water LLC is switched by switching the three-way switching valve 42 shown in FIG. 3 until the water temperature Twe of the cooling water LLC sufficiently rises. Supply to the heat exchanger 40 for heat is stopped.
 これにより、低温の冷却水LLCが多重管型排熱用熱交換器40を循環することによって冷媒の温度上昇が阻害されるのを防止することができる。 Thereby, it is possible to prevent the refrigerant from rising in temperature due to the low-temperature cooling water LLC circulating through the multi-tube type exhaust heat heat exchanger 40.
 また、これにより、ウォータジャケット内の冷却水LLCの温度上昇がスムーズに行なわれるので、始動初期におけるエンジン15のウォームアップもスムーズに行なわれる。 In addition, this allows the temperature of the cooling water LLC in the water jacket to rise smoothly, so that the engine 15 can be warmed up early in the start-up.
 また、本実施例の車両用空調装置1では、吐出口7b側の高圧冷媒の冷媒温度Tdが冷却水LLCの水温Tweに達した時点c(図6参照)で、図3に示す排気ガス供給停止弁19を閉じると同時に、三方切換弁42を、ウォータジャケットとヒーターコア28と多重管型排熱用熱交換器40との間で冷却水LLCを循環させるように切り換える。 Further, in the vehicle air conditioner 1 of the present embodiment, the exhaust gas supply shown in FIG. 3 is performed at the time point c (see FIG. 6) when the refrigerant temperature Td of the high-pressure refrigerant on the discharge port 7b side reaches the water temperature Twe of the cooling water LLC. Simultaneously with closing the stop valve 19, the three-way switching valve 42 is switched so that the cooling water LLC is circulated among the water jacket, the heater core 28, and the heat exchanger 40 for multi-tube type exhaust heat.
 これにより、排気ガスの多重管型排熱用熱交換器40への供給が停止され、排気ガスと低圧冷媒との間の熱交換が行われなくなると同時に、冷却水LLCの多重管型排熱用熱交換器40への供給が開始され、冷却水LLCと低圧冷媒との間の熱交換が開始される。 As a result, the supply of the exhaust gas to the multi-tube type exhaust heat heat exchanger 40 is stopped, and heat exchange between the exhaust gas and the low-pressure refrigerant is not performed, and at the same time, the multi-tube type exhaust heat of the cooling water LLC is performed. Supply to the heat exchanger 40 is started, and heat exchange between the cooling water LLC and the low-pressure refrigerant is started.
 このとき、多重管型排熱用熱交換器40では、冷媒流路38を通過する低圧冷媒と冷却水流路39を通過する冷却水LLCとの間で筒状部材36を介して熱交換が行われる。 At this time, in the multi-tube type heat exhaust heat exchanger 40, heat exchange is performed between the low-pressure refrigerant passing through the refrigerant flow path 38 and the cooling water LLC passing through the cooling water flow path 39 via the tubular member 36. Is called.
 しかも、本実施例の車両用空調装置1では、冷暖房切換弁44を切り換えることにより、コンデンサ29に高圧冷媒を供給することによって、コンデンサ29から放出される熱により、車室内に送風される空気eを暖めることができる。 Moreover, in the vehicle air conditioner 1 according to the present embodiment, the air that is blown into the vehicle interior by the heat released from the condenser 29 by supplying the high-pressure refrigerant to the condenser 29 by switching the cooling / heating switching valve 44. Can warm up.
 また、ヒータユニット30にはヒーターコア28とコンデンサ29とが一体に設けられているので、コンデンサ29が単体の場合に比べてヒータユニット30全体での放熱面積が大きく、通過する空気eへの熱交換効率を向上させることができる。 Further, since the heater core 30 and the capacitor 29 are integrally provided in the heater unit 30, the heat dissipation area of the entire heater unit 30 is larger than that in the case where the capacitor 29 is a single body, and the heat to the air e passing therethrough is large. Exchange efficiency can be improved.
 本実施例の車両用空調装置1では、この点においても即暖性を良好なものとすることができる。 In the vehicle air conditioner 1 of the present embodiment, the immediate warming property can be improved also in this respect.
 他の構成および作用効果については、前記実施の形態と同一ないし均等であるので説明を省略する。 Other configurations and operational effects are the same as or equivalent to those of the above-described embodiment, and thus description thereof is omitted.
  図7は、実施例2の車両用空調装置1を示している。
 なお、前記実施の形態および実施例1と同一ないし均等な部分については同一符号を付して説明する。
FIG. 7 shows the vehicle air conditioner 1 according to the second embodiment.
In addition, the same code | symbol is attached | subjected and demonstrated about the same or equivalent part as the said embodiment and Example 1. FIG.
 まず、前記実施の形態および実施例1の車両用空調装置1との構成上の相違点を説明する。 First, differences in configuration from the embodiment and the vehicle air conditioner 1 of Example 1 will be described.
 図7に示すように、本実施例の車両用空調装置1は、実施例1の多重管型排熱用熱交換器40の代わりに、アキュムレータの内部に排熱用熱交換器が内蔵された排熱用熱交換器一体型アキュムレータ50が設けられている。 As shown in FIG. 7, the vehicle air conditioner 1 of the present embodiment has a heat exchanger for exhaust heat built in the accumulator instead of the heat exchanger 40 for exhaust heat of the multi-tube type of the first embodiment. A heat exchanger integrated accumulator 50 for exhaust heat is provided.
 排熱用熱交換器一体型アキュムレータ50には、アキュムレータ筐体50aの内部に、排気ガスを通過させる排気ガス管53と、冷却水LLCを循環させる冷却水管54とが設けられている。 The exhaust heat exchanger-integrated accumulator 50 is provided with an exhaust gas pipe 53 through which the exhaust gas passes and a cooling water pipe 54 through which the cooling water LLC is circulated inside the accumulator housing 50a.
 排熱用熱交換器一体型アキュムレータ50は、冷媒回路14の、減圧弁32と圧縮機7の吸入口7aとの間の、圧縮機7の吸入口7aの上流側近傍に接続されている。 The heat exchanger integrated accumulator 50 for exhaust heat is connected to the vicinity of the upstream side of the suction port 7 a of the compressor 7 between the pressure reducing valve 32 and the suction port 7 a of the compressor 7 in the refrigerant circuit 14.
 排熱用熱交換器一体型アキュムレータ50の内部を通過する低圧冷媒Lは、排気ガスと冷却水LLCとの何れとも熱交換可能となっている。 The low-pressure refrigerant L passing through the heat exchanger integrated accumulator 50 for exhaust heat can exchange heat with both the exhaust gas and the cooling water LLC.
 次に、実施例2の車両用空調装置1の作用効果について説明する。 Next, functions and effects of the vehicle air conditioner 1 according to the second embodiment will be described.
 このように構成された図7に示す実施例2の車両用空調装置1では、冷間時に暖房モードに切り換えると、エンジン15の始動初期に排気ガス供給停止弁19が開放されて、エンジン15の排気ガスが、図7に示す排熱用熱交換器一体型アキュムレータ50内の排気ガス管53を通過して排出される。 In the vehicle air conditioner 1 according to the second embodiment shown in FIG. 7 configured as described above, when switching to the heating mode when cold, the exhaust gas supply stop valve 19 is opened at the initial start of the engine 15, and the engine 15 The exhaust gas passes through the exhaust gas pipe 53 in the heat exchanger integrated accumulator 50 shown in FIG.
 そして、排気ガス管53から放出される熱は、排熱用熱交換器一体型アキュムレータ50を通過する冷媒に受け渡される。 Then, the heat released from the exhaust gas pipe 53 is transferred to the refrigerant passing through the heat exchanger integrated accumulator 50 for exhaust heat.
 この熱交換により、エンジン15の始動初期であっても圧縮機7の吸入口7a側の低圧冷媒が暖められる。 This heat exchange warms the low-pressure refrigerant on the suction port 7a side of the compressor 7 even at the initial start of the engine 15.
 しかも、本実施例の車両用空調装置1では、圧縮機7の吸入口7aの上流側近傍に排熱用熱交換器一体型アキュムレータ50が設けられているので、暖房モードにおいて圧縮機7が起動された際に、排熱用熱交換器一体型アキュムレータ50に回収され蓄圧されていた冷媒が配管48を介してヒータユニット30のコンデンサ29にスムーズに送出される。 Moreover, in the vehicle air conditioner 1 according to the present embodiment, the heat exchanger integrated accumulator 50 for exhaust heat is provided in the vicinity of the upstream side of the suction port 7a of the compressor 7, so that the compressor 7 is activated in the heating mode. When this is done, the refrigerant collected and accumulated in the heat exchanger integrated accumulator 50 for exhaust heat is smoothly delivered to the condenser 29 of the heater unit 30 via the pipe 48.
 これにより、暖められた冷媒がスムーズにコンデンサ29に流れるので、コンデンサ29の熱により車室内に供給される空気eの温度が速やかに上昇する。 Thereby, since the warmed refrigerant flows smoothly into the condenser 29, the temperature of the air e supplied into the vehicle compartment is quickly raised by the heat of the condenser 29.
 本実施例の車両用空調装置1では、この点においても即暖性をさらに向上させることができる。 In the vehicle air conditioner 1 of the present embodiment, the immediate warming property can be further improved in this respect.
  他の構成および作用効果については、前記実施の形態および実施例1と同一ないし均等であるので説明を省略する。 Other configurations and functions and effects are the same as or equivalent to those of the above-described embodiment and Example 1, and thus description thereof is omitted.
  図8は、実施例3の車両用空調装置1を示している。
 なお、前記実施の形態および実施例1,2と同一ないし均等な部分については同一符号を付して説明する。
FIG. 8 shows the vehicle air conditioner 1 according to the third embodiment.
In addition, the same code | symbol is attached | subjected and demonstrated about the same or equivalent part as the said embodiment and Example 1,2.
 まず、前記実施の形態および実施例1,2の車両用空調装置1との構成上の相違点から説明する。 First, the difference from the configuration of the above-described embodiment and the vehicle air conditioner 1 of Examples 1 and 2 will be described.
 図8に示すように、本実施例の車両用空調装置1には、バイパス冷媒循環回路61が設けられている。 As shown in FIG. 8, the vehicle air conditioner 1 of this embodiment is provided with a bypass refrigerant circulation circuit 61.
 バイパス冷媒循環回路61には、圧縮機7から送出された冷媒を冷房用の冷媒回路14からバイパス切換弁49を介して分岐して循環させる。 In the bypass refrigerant circulation circuit 61, the refrigerant sent from the compressor 7 is branched from the cooling refrigerant circuit 14 via the bypass switching valve 49 and circulated.
 また、バイパス冷媒循環回路61には図7に示すように、外部熱交換器60が設けられ、外部熱交換器60にはエンジン15の冷却水LLCも循環する。 Further, as shown in FIG. 7, the bypass refrigerant circulation circuit 61 is provided with an external heat exchanger 60, and the cooling water LLC of the engine 15 is also circulated through the external heat exchanger 60.
 バイパス切換弁49は、圧縮機7の吐出口7b側に設けられ、バイパス切換弁49を切り換えることによって圧縮機7の吐出口7b側の高圧冷媒を外部熱交換器60に送出することによって、外部熱交換器60を通過する高圧冷媒の熱が、外部熱交換器60に循環される冷却水LLCに受け渡される。 The bypass switching valve 49 is provided on the discharge port 7b side of the compressor 7. By switching the bypass switching valve 49, the high-pressure refrigerant on the discharge port 7b side of the compressor 7 is sent to the external heat exchanger 60, thereby The heat of the high-pressure refrigerant that passes through the heat exchanger 60 is transferred to the cooling water LLC that is circulated through the external heat exchanger 60.
 そして、高圧冷媒の熱により暖められた冷却水LLCがヒーターコア28に循環され、ヒーターコア28から放出される熱によって、ヒーターコア28を通過して車室方向に向かう空気eが暖められる。 Then, the cooling water LLC heated by the heat of the high-pressure refrigerant is circulated through the heater core 28, and the air e passing through the heater core 28 toward the passenger compartment is heated by the heat released from the heater core 28.
 従って、バイパス冷媒循環回路61に供給される冷媒の熱が、冷却水LLCを介して間接的に車室内に供給され、車室内の暖房に用いられる。 Therefore, the heat of the refrigerant supplied to the bypass refrigerant circulation circuit 61 is indirectly supplied to the vehicle interior via the cooling water LLC and used for heating the vehicle interior.
 そして、外部熱交換器60を通過した冷媒は、冷媒用熱交換手段62、一方向弁64、アキュムレータ63を通って再び圧縮機7の吸入口7aに戻る。 Then, the refrigerant that has passed through the external heat exchanger 60 returns to the suction port 7a of the compressor 7 again through the refrigerant heat exchange means 62, the one-way valve 64, and the accumulator 63.
 また、本実施例の車両用空調装置1には、さらに排熱用熱交換器66が設けられている。 Further, the vehicle air conditioner 1 of this embodiment is further provided with a heat exchanger 66 for exhaust heat.
 排熱用熱交換器66には冷媒が循環される冷媒流路38と排気ガスが循環される排気ガス流路33とが隣接して設けられ、冷媒流路38はアキュムレータ63と圧縮機7の吸入口7aとの間に接続されている。 The exhaust heat heat exchanger 66 is provided with a refrigerant flow path 38 through which the refrigerant is circulated and an exhaust gas flow path 33 through which the exhaust gas is circulated, and the refrigerant flow path 38 is provided between the accumulator 63 and the compressor 7. It is connected between the suction port 7a.
 また、冷媒用熱交換手段62とアキュムレータ63との間には一方向弁64が設けられ、減圧弁32とアキュムレータ63との間には一方向弁65が設けられている。 Further, a one-way valve 64 is provided between the refrigerant heat exchanging means 62 and the accumulator 63, and a one-way valve 65 is provided between the pressure reducing valve 32 and the accumulator 63.
 アキュムレータ63には、一方向弁64,65の何れか一方から低圧冷媒が送り込まれて、この低圧冷媒が回収され蓄圧されて排熱用熱交換器66の冷媒流路38を介して吸入口7aに送出される。 The accumulator 63 is fed with a low-pressure refrigerant from one of the one- way valves 64 and 65, and the low-pressure refrigerant is collected and accumulated, and the suction port 7a is passed through the refrigerant flow path 38 of the heat exchanger 66 for exhaust heat. Is sent out.
 本実施例の車両用空調装置1では、排熱用熱交換器66の冷媒流路38と排気ガス流路33とが隣接しているので、エンジン15から排気ガス供給停止弁19を介して送出される排気ガスが排熱用熱交換器66の排気ガス流路33内を通過する際に排気ガスと低圧冷媒との間で熱交換が行われる。 In the vehicle air conditioner 1 of the present embodiment, the refrigerant flow path 38 and the exhaust gas flow path 33 of the heat exchanger 66 for exhaust heat are adjacent to each other, so that the engine 15 sends the exhaust gas through the exhaust gas supply stop valve 19. When the exhaust gas is passed through the exhaust gas flow path 33 of the heat exchanger 66 for exhaust heat, heat exchange is performed between the exhaust gas and the low-pressure refrigerant.
  次に、実施例3の車両用空調装置1の作用効果について説明する。 Next, the function and effect of the vehicle air conditioner 1 according to the third embodiment will be described.
 このように構成された図8に示す実施例3の車両用空調装置1では、冷間時に暖房モードに切り換えると、エンジン15の始動初期に排気ガス供給停止弁19が開放されて、エンジン15の排気ガスが図8に示す排熱用熱交換器66内の排気ガス流路33を通過して排出される。 In the vehicle air conditioner 1 of the third embodiment shown in FIG. 8 configured as described above, when switching to the heating mode when cold, the exhaust gas supply stop valve 19 is opened at the initial start of the engine 15, and the engine 15 The exhaust gas passes through the exhaust gas passage 33 in the exhaust heat heat exchanger 66 shown in FIG.
 そして、排気ガス流路33から放出される熱は、排熱用熱交換器66内で冷媒流路38を通過する冷媒に受け渡される。 Then, the heat released from the exhaust gas passage 33 is transferred to the refrigerant passing through the refrigerant passage 38 in the exhaust heat exchanger 66.
 この熱交換により、エンジン15の始動初期であっても圧縮機7の吸入口7a側の低圧冷媒が暖められる。 This heat exchange warms the low-pressure refrigerant on the suction port 7a side of the compressor 7 even at the initial start of the engine 15.
 そして、この暖められた冷媒が圧縮機7により圧縮されて、バイパス冷媒循環回路61内に循環される。 Then, the warmed refrigerant is compressed by the compressor 7 and circulated in the bypass refrigerant circulation circuit 61.
 外部熱交換器60内では、排気ガスにより加熱され、圧縮機7により圧縮された高圧冷媒の熱が、冷却水LLCに受け渡され、この暖められた冷却水LLCはヒーターコア28との間で循環される。 In the external heat exchanger 60, the heat of the high-pressure refrigerant heated by the exhaust gas and compressed by the compressor 7 is transferred to the cooling water LLC, and the heated cooling water LLC is exchanged with the heater core 28. Circulated.
 この排気ガスとの熱交換により、即暖性を向上させることができ、しかも、排気ガスの熱により冷却水LLCを加熱するので、エンジン15のウォームアップに必要とされる時間を短縮することができる。 The heat exchange with the exhaust gas can immediately improve the warmth, and the cooling water LLC is heated by the heat of the exhaust gas, so that the time required for warming up the engine 15 can be shortened. it can.
 他の構成および作用効果については、前記実施の形態および実施例1,2と同一ないし均等であるので説明を省略する。 Other configurations and functions and effects are the same as or equivalent to those of the above-described embodiment and Examples 1 and 2, and the description thereof is omitted.
 図9は、実施例4の車両用空調装置1を示している。
 なお、前記実施の形態および実施例1~3と同一ないし均等な部分については同一符号を付して説明する。
FIG. 9 shows the vehicle air conditioner 1 according to the fourth embodiment.
The same or equivalent parts as those in the above embodiment and Examples 1 to 3 will be described with the same reference numerals.
 まず、前記実施の形態および実施例1~3の車両用空調装置1との構成上の相違点から説明する。 First, a description will be given of differences in configuration from the above-described embodiment and the vehicle air conditioners 1 of Examples 1 to 3.
 図9に示すように、本実施例の車両用空調装置1では、実施例3の空調装置のアキュムレータ63と排熱用熱交換器66との代わりに、アキュムレータ70aが内蔵されたアキュムレータ内蔵型排熱用熱交換器70が、圧縮機7の吸入口7aの上流側近傍に設けられている。 As shown in FIG. 9, in the vehicle air conditioner 1 of the present embodiment, an accumulator built-in type exhaust gas that includes an accumulator 70 a instead of the accumulator 63 and the exhaust heat heat exchanger 66 of the air conditioner of the third embodiment. A heat heat exchanger 70 is provided in the vicinity of the upstream side of the suction port 7 a of the compressor 7.
 また、エンジン15とヒーターコア28との間には、実施例3と同一の外部熱交換器60が設けられている。 Further, the same external heat exchanger 60 as that of the third embodiment is provided between the engine 15 and the heater core 28.
 次に、実施例4の車両用空調装置1の作用効果について説明する。 Next, functions and effects of the vehicle air conditioner 1 according to the fourth embodiment will be described.
 このように構成された図9に示す実施例4の車両用空調装置1では、圧縮機7の吸入口7aの上流側にアキュムレータ内蔵型排熱用熱交換器70が、圧縮機7の吸入口7aの上流側近傍に設けられているので、暖房モードにおいて圧縮機7が起動された際に、アキュムレータ内蔵型排熱用熱交換器70に回収され蓄圧されていた冷媒が外部熱交換器60にスムーズに送出される。 9, the vehicle air conditioner 1 according to the fourth embodiment shown in FIG. 9 includes an accumulator built-in waste heat heat exchanger 70 on the upstream side of the suction port 7 a of the compressor 7, and the suction port of the compressor 7. 7a is provided in the vicinity of the upstream side of the air heater 7a. When the compressor 7 is started in the heating mode, the refrigerant collected and accumulated in the heat exchanger for exhaust heat with built-in accumulator 70 is stored in the external heat exchanger 60. It is sent out smoothly.
 このアキュムレータの作用により、暖められた冷媒がスムーズに外部熱交換器60に流れるので、外部熱交換器60において圧縮冷媒の熱が冷却水LLCに受け渡され、温められた冷却水LLCの熱がヒーターコア28によって放出され、車室内に供給される空気eの温度が速やかに上昇する。 Due to the action of this accumulator, the warmed refrigerant flows smoothly to the external heat exchanger 60, so the heat of the compressed refrigerant is transferred to the cooling water LLC in the external heat exchanger 60, and the heat of the warmed cooling water LLC is heated. The temperature of the air e released by the heater core 28 and supplied into the passenger compartment quickly rises.
 本実施例の車両用空調装置1では、この点においても即暖性をさらに向上させることができる。 In the vehicle air conditioner 1 of the present embodiment, the immediate warming property can be further improved in this respect.
 また、アキュムレータ内蔵型排熱用熱交換器70はアキュムレータを内蔵しているので、別途アキュムレータを設ける必要が無く、部品点数を減少させて省スペース化を図ることができる。 Moreover, since the heat exchanger 70 for exhaust heat with a built-in accumulator has a built-in accumulator, it is not necessary to provide a separate accumulator, and the number of parts can be reduced to save space.
  他の構成および作用効果については、前記実施の形態および実施例1~3と同一ないし均等であるので説明を省略する。 Other configurations and functions and effects are the same as or equivalent to those of the above-described embodiment and Examples 1 to 3, and thus description thereof is omitted.
 以上、図面を参照して、本発明の車両用空調装置1を詳述してきたが、その具体的な構成は、実施の形態および実施例1~3の車両用空調装置1の構成に限定されるものではなく、本発明の要旨を逸脱しない程度の設計的変更を施したものは本発明に含まれる。 The vehicle air conditioner 1 according to the present invention has been described in detail above with reference to the drawings, but the specific configuration is limited to the configuration of the embodiment and the vehicle air conditioners 1 of Examples 1 to 3. However, the present invention includes those that have undergone design changes that do not depart from the gist of the present invention.
 例えば、前記実施の形態では、車両駆動源の熱としてエンジンの排気ガスの熱を利用する例を示して説明したが、車両駆動源の熱は、特にこれに限るものではなく、始動初期に発生する排熱を利用することが可能なものであれば、どのようなものでもよく、例えば、電動車両のモータ、モータの駆動の際に発熱する駆動素子、バッテリなどの熱源であってもよい。 For example, in the above-described embodiment, the example in which the heat of the exhaust gas of the engine is used as the heat of the vehicle drive source has been described. However, the heat of the vehicle drive source is not particularly limited, and is generated at the initial start. Any heat source may be used as long as the exhaust heat can be used. For example, the motor may be a motor of an electric vehicle, a driving element that generates heat when the motor is driven, a heat source such as a battery.
 また、実施例1の多重管型排熱用熱交換器40は多重管構造を呈しているが、多重管型排熱用熱交換器40の構造は、特にこれに限らず、フィンチューブ形状など、一般のラジエータなどの熱交換器に使用されているような異なる熱媒体間で熱交換を行えるものであればどのようなものであってもよい。 Further, the multi-tube type heat exhaust heat exchanger 40 of the first embodiment has a multi-tube structure, but the structure of the multi-tube type heat exhaust heat exchanger 40 is not limited to this, and a fin tube shape, etc. Any material may be used as long as it can exchange heat between different heat media such as those used in heat exchangers such as general radiators.
 さらに、多重管型排熱用熱交換器は、管の集合体などであってもよいし、多重管型排熱用熱交換器を構成する管の形状、数量および材質も実施例1の多重管型排熱用熱交換器40の管の形状、数量および材質に限るものではない。 Further, the multiple-tube type heat exhaust heat exchanger may be an aggregate of tubes, and the shape, quantity, and material of the tubes constituting the multi-tube type heat exhaust heat exchanger are the same as those in the first embodiment. It is not restricted to the shape, quantity, and material of the tube of the heat exchanger 40 for tube-type exhaust heat.
 さらに、実施例1の車両用空調装置1では、多重管型排熱用熱交換器40として、円筒形状を呈する内径寸法の異なる大径筒状部材34,中径筒状部材35,および小径筒状部材36が同軸状に配置された三重管が用いられているが、多重管型排熱用熱交換器の構造は、特にこれに限らず、例えば、四重管以上の複数の層からなる多重管などでもよく、冷却水管または排気ガス管を、冷媒管を挟んで半径方向に分離することにより、冷媒管の内部を通過する冷媒に冷却水LLCまたは排気ガスが混合されずに熱交換が行えるものであればよい。 Furthermore, in the vehicle air conditioner 1 according to the first embodiment, the multi-tube type exhaust heat heat exchanger 40 has a cylindrical shape of a large-diameter cylindrical member 34, a medium-diameter cylindrical member 35, and a small-diameter cylinder having different inner diameters. Although the triple tube in which the cylindrical members 36 are coaxially arranged is used, the structure of the heat exchanger for the multiple tube type exhaust heat is not particularly limited, and includes, for example, a plurality of layers of quadruple tubes or more. Multiple pipes may be used, and the cooling water pipe or the exhaust gas pipe is separated in the radial direction across the refrigerant pipe, so that the cooling water LLC or the exhaust gas is not mixed with the refrigerant passing through the inside of the refrigerant pipe so that heat exchange can be performed. Anything that can be done.
 本発明の車両用空調装置は、車両駆動源としてエンジンを利用する車両に限らず、電動モータ、電動モータの駆動の際に発熱する駆動素子、バッテリなどを含む車両駆動源を利用する電動車両、或いは、エンジンと電動機との両方の車両駆動源を有するハイブリッドカーなどの空気調和装置にも利用できる。 The vehicle air conditioner of the present invention is not limited to a vehicle that uses an engine as a vehicle drive source, but an electric vehicle that uses a vehicle drive source including an electric motor, a drive element that generates heat when the electric motor is driven, a battery, Or it can utilize also for air conditioning apparatuses, such as a hybrid car which has a vehicle drive source of both an engine and an electric motor.

Claims (7)

  1.  室外熱交換器と、室内熱交換器と、圧縮機と、を有し、
     前記室外熱交換器と前記室内熱交換器と前記圧縮機とが配管により接続された冷媒回路を備えた車両用空調装置であって、
     前記圧縮機の吸入口側に該圧縮機の吸入口側の低圧冷媒に車両駆動源の排気熱を供給するための排熱用熱交換器が設けられ、
     前記車両駆動源の始動初期に、前記車両駆動源が発生する排熱を前記排熱用熱交換器によって前記圧縮機の吸入口側の低圧冷媒に供給することにより該圧縮機の吸入口側の低圧冷媒を暖めることを特徴とする車両用空調装置。
    An outdoor heat exchanger, an indoor heat exchanger, and a compressor,
    A vehicle air conditioner comprising a refrigerant circuit in which the outdoor heat exchanger, the indoor heat exchanger, and the compressor are connected by piping,
    A heat exchanger for exhaust heat for supplying exhaust heat of a vehicle drive source to low-pressure refrigerant on the suction port side of the compressor is provided on the suction port side of the compressor;
    At the initial start of the vehicle drive source, exhaust heat generated by the vehicle drive source is supplied to low-pressure refrigerant on the intake side of the compressor by the exhaust heat exchanger, so that the exhaust side of the compressor A vehicle air conditioner that warms a low-pressure refrigerant.
  2.  前記車両駆動源がエンジンであり、前記排熱が該エンジンの排気ガスの熱であることを特徴とする請求項1に記載の車両用空調装置。 The vehicle air conditioner according to claim 1, wherein the vehicle drive source is an engine, and the exhaust heat is heat of exhaust gas of the engine.
  3.  前記圧縮機の吐出口側の高圧冷媒の温度が所定温度に到達した場合に、前記排熱用熱交換器への前記排熱の供給を停止するために該排熱用熱交換器への前記エンジンの排気ガスの供給を停止する排気ガス供給停止弁が設けられていることを特徴とする請求項2に記載の車両用空調装置。 When the temperature of the high-pressure refrigerant on the discharge port side of the compressor reaches a predetermined temperature, the supply of the exhaust heat to the exhaust heat heat exchanger is stopped to stop the supply of the exhaust heat to the exhaust heat heat exchanger. The vehicle air conditioner according to claim 2, wherein an exhaust gas supply stop valve for stopping supply of exhaust gas from the engine is provided.
  4.  前記エンジンの冷却水の熱を前記低圧冷媒に供給するための冷却水熱交換手段が設けられ、
     前記圧縮機の吐出口側の高圧冷媒の温度が所定温度に到達した場合に、前記低圧冷媒への前記冷却水熱交換手段による前記冷却水の熱の供給を開始することを特徴とする請求項3に記載の車両用空調装置。
    Cooling water heat exchange means for supplying heat of the engine cooling water to the low-pressure refrigerant is provided,
    The supply of heat of the cooling water by the cooling water heat exchanging means to the low pressure refrigerant is started when the temperature of the high pressure refrigerant on the discharge port side of the compressor reaches a predetermined temperature. The vehicle air conditioner according to 3.
  5.  前記冷媒回路内の冷媒を、該冷媒回路を分岐して循環させるバイパス冷媒循環回路が設けられ、
     該バイパス冷媒循環回路には、前記圧縮機の吐出口側の高圧冷媒と前記車両の車室内の暖房に用いる冷却水との間で熱交換を行なう外部熱交換器が設けられていることを特徴とする請求項1~請求項4のうち何れか一項に記載の車両用空調装置。
    A bypass refrigerant circulation circuit for branching and circulating the refrigerant in the refrigerant circuit through the refrigerant circuit;
    The bypass refrigerant circulation circuit is provided with an external heat exchanger for exchanging heat between the high-pressure refrigerant on the discharge port side of the compressor and the cooling water used for heating the vehicle interior of the vehicle. The vehicle air conditioner according to any one of claims 1 to 4.
  6.  前記冷媒を回収し蓄圧するアキュムレータと前記排熱用熱交換器とが一体に構成され、前記圧縮機の吸入口の上流側近傍に設けられていることを特徴とする請求項1~請求項4のうち何れか一項に記載の車両用空調装置。 The accumulator for collecting and accumulating the refrigerant and the heat exchanger for exhaust heat are integrally configured and provided in the vicinity of the upstream side of the suction port of the compressor. The vehicle air conditioner according to any one of the above.
  7.  前記排熱用熱交換器が、径の異なる少なくとも2つの筒状部材を同軸状に配置して構成され、
     前記各筒状部材によって分離された空間に排気ガスが循環される排気ガス流路と低圧冷媒が循環される冷媒流路とが前記少なくとも2つの筒状部材の半径方向に隣接して形成された多重管構造を呈する熱交換器であることを特徴とする請求項1~請求項4のうち何れか一項に記載の車両用空調装置。
    The exhaust heat exchanger is configured by coaxially arranging at least two cylindrical members having different diameters,
    An exhaust gas passage through which exhaust gas is circulated in a space separated by each of the tubular members and a refrigerant passage through which low-pressure refrigerant is circulated are formed adjacent to each other in the radial direction of the at least two tubular members. The vehicle air conditioner according to any one of claims 1 to 4, wherein the air conditioner is a heat exchanger having a multiple tube structure.
PCT/JP2011/060707 2010-06-21 2011-05-10 Vehicle air conditioning device WO2011162031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-140628 2010-06-21
JP2010140628A JP2012001182A (en) 2010-06-21 2010-06-21 Auxiliary heating device for vehicle

Publications (1)

Publication Number Publication Date
WO2011162031A1 true WO2011162031A1 (en) 2011-12-29

Family

ID=45371233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060707 WO2011162031A1 (en) 2010-06-21 2011-05-10 Vehicle air conditioning device

Country Status (2)

Country Link
JP (1) JP2012001182A (en)
WO (1) WO2011162031A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098049A1 (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Air conditioning device for vehicle
CN108278795A (en) * 2017-01-06 2018-07-13 通用汽车环球科技运作有限责任公司 Using heat pump come from the system and method for exhaust gas recovery thermal energy

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499055B2 (en) 2012-01-06 2014-05-21 富士重工業株式会社 Engine electric hybrid vehicle battery and fuel tank mounting structure
JP2013195002A (en) * 2012-03-21 2013-09-30 Panasonic Corp Vehicle air conditioner
JP5999332B2 (en) * 2012-07-26 2016-09-28 スズキ株式会社 Vehicle air conditioner
KR101867572B1 (en) * 2012-10-16 2018-06-15 현대자동차주식회사 Self internal heat exchanging type condensor apparatus for a car
CN104197578B (en) * 2014-08-11 2017-03-15 安徽东升机电有限责任公司 A kind of heat pump air conditioner for electric automobile
JP6472266B2 (en) * 2015-02-20 2019-02-20 大阪瓦斯株式会社 Ejector cycle
KR102596049B1 (en) * 2019-09-23 2023-10-31 한온시스템 주식회사 Heat management system of vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074778A (en) * 1993-06-16 1995-01-10 Sanden Corp Heat exchanger for engine heat pump
JPH08219585A (en) * 1995-02-10 1996-08-30 Mitsubishi Heavy Ind Ltd Engine driven type air conditioning equipment
JP2004217087A (en) * 2003-01-15 2004-08-05 Calsonic Kansei Corp Vehicular air conditioner
JP2006273049A (en) * 2005-03-28 2006-10-12 Calsonic Kansei Corp Vehicular air conditioner
JP2007501739A (en) * 2004-05-14 2007-02-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Air conditioner
JP2008195105A (en) * 2007-02-08 2008-08-28 Denso Corp Exhaust gas heat recovery system
JP2010260449A (en) * 2009-05-07 2010-11-18 Nippon Soken Inc Air conditioner for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074778A (en) * 1993-06-16 1995-01-10 Sanden Corp Heat exchanger for engine heat pump
JPH08219585A (en) * 1995-02-10 1996-08-30 Mitsubishi Heavy Ind Ltd Engine driven type air conditioning equipment
JP2004217087A (en) * 2003-01-15 2004-08-05 Calsonic Kansei Corp Vehicular air conditioner
JP2007501739A (en) * 2004-05-14 2007-02-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Air conditioner
JP2006273049A (en) * 2005-03-28 2006-10-12 Calsonic Kansei Corp Vehicular air conditioner
JP2008195105A (en) * 2007-02-08 2008-08-28 Denso Corp Exhaust gas heat recovery system
JP2010260449A (en) * 2009-05-07 2010-11-18 Nippon Soken Inc Air conditioner for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098049A1 (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Air conditioning device for vehicle
CN105745099A (en) * 2013-12-25 2016-07-06 松下知识产权经营株式会社 Air conditioning device for vehicle
JPWO2015098049A1 (en) * 2013-12-25 2017-03-23 パナソニックIpマネジメント株式会社 Air conditioner for vehicles
CN108278795A (en) * 2017-01-06 2018-07-13 通用汽车环球科技运作有限责任公司 Using heat pump come from the system and method for exhaust gas recovery thermal energy

Also Published As

Publication number Publication date
JP2012001182A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2011162031A1 (en) Vehicle air conditioning device
EP4122726A1 (en) Heat pump system for vehicle
JP3736847B2 (en) Air conditioning apparatus and air conditioning method
JP7099392B2 (en) In-vehicle temperature control device
WO2010079818A1 (en) Air conditioning device for vehicle
JP2008201409A (en) Heating-cooling system for bus using motor-driven compressor with high pressure unit
JP2020172178A (en) On-vehicle temperature controller
US20160001635A1 (en) Vehicular air conditioning device, and component unit thereof
JP2011037434A (en) Small temperature control system for vehicle
EP3878670A1 (en) In-vehicle temperature control system
CN113370741B (en) Vehicle-mounted temperature regulating system
JP4023320B2 (en) Heater for air conditioner
JP2010159006A (en) Air conditioner for vehicle
WO2021049339A1 (en) Heat exchange module
US20240278619A1 (en) Air conditioning device for vehicle
JP2002234335A (en) Vehicular air conditioner
JP5465520B2 (en) Air conditioner for vehicles
JP2008286203A (en) Exhaust heat recovery device
JP2006007866A (en) Vehicular air conditioner
JP7458951B2 (en) Vehicle air conditioner
JP2011152863A (en) Heat pump type air-conditioning system for vehicle and heating starting method thereof
JP2009154805A (en) Vehicular air conditioner
JP2023183719A (en) Vehicle air-conditioning device
JP2010159007A (en) Air conditioner for vehicle
JP2006027322A (en) Vehicular air-conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797919

Country of ref document: EP

Kind code of ref document: A1