WO2011161834A1 - NOx PURGING CATALYST - Google Patents

NOx PURGING CATALYST Download PDF

Info

Publication number
WO2011161834A1
WO2011161834A1 PCT/JP2010/061289 JP2010061289W WO2011161834A1 WO 2011161834 A1 WO2011161834 A1 WO 2011161834A1 JP 2010061289 W JP2010061289 W JP 2010061289W WO 2011161834 A1 WO2011161834 A1 WO 2011161834A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
alumina
amount
group metal
supported
Prior art date
Application number
PCT/JP2010/061289
Other languages
French (fr)
Japanese (ja)
Inventor
孝充 浅沼
優一 祖父江
大地 今井
康 菅原
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/061289 priority Critical patent/WO2011161834A1/en
Publication of WO2011161834A1 publication Critical patent/WO2011161834A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts

Definitions

  • the present invention relates to an exhaust gas purification catalyst, and more particularly to a NOx purification catalyst.
  • an Ag / alumina-based NOx purification catalyst in which metal Ag is supported on an alumina carrier is known (Japanese Patent Laid-Open No. 9-290156).
  • the Ag / alumina-based NOx purification catalyst is excellent in NOx adsorption performance at a relatively low temperature (for example, 200 ° C. or less) such as immediately after starting a diesel engine.
  • Low-order NOx (eg, NO) contained in the exhaust gas containing excess oxygen during lean combustion is oxidized on Ag on the alumina surface to become high-order NOx (eg, NO 2 , NO 3 ), and the alumina surface layer portion It is adsorbed and held on the surface of solid solution Ag or alumina.
  • NOx releasing catalyst of the above prior art has a low NOx releasing property even if the NOx releasing process is performed. In order to increase NOx release properties, excessive temperature rise is required, resulting in a problem that fuel consumption deteriorates. Further, NOx cannot be completely released, so that the adsorptive capacity is not recovered. There arises a problem that the purification rate is lowered.
  • an object of the present invention is to provide an Ag / alumina-based NOx purification catalyst having improved release while ensuring excellent adsorption performance.
  • the NOx purification catalyst of the present invention supports Ag and at least one of Pt group metals on an alumina support, and the amount of Pt group metal supported is the amount of Ag supported. It is characterized by 0.045 to 0.45 wt%.
  • the supported amount of the Pt group metal is 0.30% or less of the supported amount of Ag.
  • the Pt group metal is Pd.
  • Ti may be further supported.
  • the Pt group metal may be abbreviated as PGM (platinum group metals).
  • FIG. 1 shows (A) an oxidation adsorption mechanism of NOx under lean combustion in an Ag / alumina-based NOx purification catalyst, (B) an adsorption form of NOx, and (C) a Pt group metal to which a Pt group metal is added according to the present invention.
  • the reduction / desorption (release) mechanism of NOx under rich combustion in the -Ag / alumina-based NOx purification catalyst is schematically shown.
  • FIG. 2 schematically shows an actual engine test system for the engine-catalyst used in the examples.
  • FIG. 3 shows the correspondence between the time-dependent change pattern of the catalyst bed temperature used in the actual machine test in the example and the time-dependent change pattern of NOx adsorption / release.
  • FIG. 1 shows (A) an oxidation adsorption mechanism of NOx under lean combustion in an Ag / alumina-based NOx purification catalyst, (B) an adsorption form of NOx, and (C) a P
  • FIG. 4 shows the time-dependent change in the NOx emission amount corresponding to lean / rich exhaust gas switching for the Pt group metal-Ag / alumina-based NOx purification catalyst of the present invention and the Ag / alumina-based NOx purification catalyst not supporting the Pt group metal. Shown in comparison.
  • FIG. 5 shows a Pt group metal-Ag / alumina-based NOx purification catalyst according to the present invention, a Pt group metal-Ti ⁇ Ag / alumina-based NOx purification catalyst as an application example, and an Ag / alumina-based NOx purification catalyst not supporting a Pt group metal. Shows the relationship between the peak catalyst bed temperature in rich combustion and the NOx desorption rate.
  • FIG. 5 shows a Pt group metal-Ag / alumina-based NOx purification catalyst according to the present invention, a Pt group metal-Ti ⁇ Ag / alumina-based NOx purification catalyst as an application example, and an Ag /
  • FIG. 6 shows a time-dependent change pattern of the gas temperature with catalyst used in the subsize test in the example.
  • FIG. 7 shows the relationship between the supported amount of Pd, which is a Pt group metal, the NOx adsorption amount, and the NOx desorption rate.
  • FIG. 7A shows a wide range of Pd supported amount of 0 to 2 g / L, and FIG. The range of the supported amount of 0 to 0.1 g / L is shown enlarged.
  • FIG. 8 shows the relationship between the loading amount of Rh, which is a Pt group metal, the NOx adsorption amount, and the NOx desorption rate.
  • FIG. 1A shows a NOx adsorption mechanism common to the present invention and the prior art.
  • relatively low-order nitrogen oxides NOx for example, NO
  • relatively high-order nitrogen oxides NOx for example, NO 2).
  • NO 3 relatively high-order nitrogen oxides NOx
  • FIG. 1B shows an adsorption form of NOx (NO 2 , NO 3 ).
  • FIG. 1C shows a NOx reduction / desorption mechanism by the Pt group metal-Ag / alumina-based NOx purification catalyst of the present invention.
  • PGM Pt group metal
  • reducing material for example, CO, THC
  • Example 1 The Pt group metal-Ag / alumina-based NOx purification catalyst of the present invention was prepared according to the following procedure and conditions. ⁇ Alumina carrier coating> 1) Catalyst base material A cordierite base material of 13R square cell was used. 2) Slurry preparation A slurry was obtained by stirring with an attritor for 20 minutes at the following ratio. MI386 powder (made by Rhodia) 1600 g (100 parts) Binder A520 (Nissan Chemical) 710.4 g (44.4 parts) 3600g of water 3) Coating of slurry The obtained slurry was coated on the cordierite substrate. The coating amount was 200 g / L of alumina. 4) Firing treatment The moisture was completely removed by holding at 250 ° C.
  • Impregnation support (Ag support amount: 0.2 mol / L)
  • the calcined alumina carrier was immersed in the prepared aqueous silver nitrate solution for 30 minutes, and the aqueous silver nitrate solution equivalent to the amount of water absorption was absorbed and the Ag loading amount was 0.2 mol / L.
  • Firing treatment Firing at 550 ° C. ⁇ 3r was performed in the air.
  • H 2 reduction treatment Reduction treatment was performed by maintaining 500 ° C. ⁇ 3 hr in an atmosphere in which a 5% H 2 —N 2 mixed gas was circulated at a flow rate of 7 L / min.
  • the Pt group metal-Ag / alumina NOx purification catalyst of the present invention in which Pd, Pt, and Rh were supported as Pt group metals on the Ag / alumina NOx purification catalyst not supporting the Pt group metal was obtained (sample). Name: AgPd0.1, AgPt0.1, AgRh0.1). For comparison, an Ag / alumina-based NOx purification catalyst that does not carry Pt group metal was also produced (sample name: Ag).
  • a Pd—Ag / alumina-based NOx purification catalyst in which the alumina carrier contains 0.5 mol / L of titania was also prepared according to the following procedure and conditions (sample name: AgTiPd0.1).
  • Example name: AgTiPd0.1 aqueous solution of titanium citrate complex
  • Ti was supported on the Ag / alumina-based NOx purification catalyst so as to achieve the above-mentioned supported amount, and then Pd was supported in the same manner as described above. This was baked at 550 ° C. for 5 hours.
  • FIG. 3 shows a temporal pattern of the catalyst bed temperature used in the test and a temporal pattern of NOx adsorption / release.
  • FIG. 4 shows changes in the combustion pattern (lean ⁇ rich ⁇ lean) and NOx emission peak for the present example (Pt group metal-Ag / alumina-based NOx purification catalyst) and the conventional example (Ag / alumina-based NOx purification catalyst). Shows the relationship. As shown in the figure, release of NOx is recognized in any sample during rich combustion. The amount of release evaluated by the area under the release curve is improved by almost 10 times in the present invention compared to the conventional example. The NOx release performance is accurately evaluated by the ratio of the release amount to the adsorption amount.
  • FIG. 5 and Table 1 show a comparison of NOx release rate (percentage of release amount with respect to adsorption amount).
  • the inventive examples show a high release rate of 29.5 to 45.9 times that of the conventional example (Ag).
  • the release rate is improved by 38.5 times compared to the conventional example (Ag).
  • a sub-size (35 cc) sample was produced as an example of the present invention under the same procedure and conditions as described above.
  • the supported amount of the Pt group metal was set to five levels of 0.01, 0.05, 0.1, 1.0, and 2.0 g / L with respect to the base material.
  • the amount of Pd supported is in the range of 0.01 to 0.1 g / L with respect to the substrate. That is, the Pd loading (0.01 to 0.1 g / L) is 0.045 to 0.45 wt% with respect to the Ag loading (21.6 g / L). In order to secure a larger amount of adsorption and to further reduce the material cost of Pd, it is desirable that the amount of Pd supported is 0.30 wt% or less with respect to the amount of Ag supported.
  • FIG. 8 and Table 3 show the measurement results when Rh is supported as a Pt group metal.
  • an Ag / alumina-based NOx purification catalyst that has improved NOx release while ensuring excellent NOx adsorption performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Provided is a NOx purging catalyst in which Ag and at least one Pt group metal are supported on an alumina carrier, and the amount of the Pt group metal supported is 0.045 to 0.45 wt% of the amount of the Ag supported. The Ag/alumina NOx purging catalyst has increased NOx releasability while excellent NOx adsorption capability is also guaranteed.

Description

NOx浄化触媒NOx purification catalyst
 本発明は、排ガス浄化用触媒に関し、詳しくはNOx浄化触媒に関する。 The present invention relates to an exhaust gas purification catalyst, and more particularly to a NOx purification catalyst.
 排ガス浄化用触媒、特にNOx浄化用として、金属Agをアルミナ担体に担持したAg/アルミナ系NOx浄化触媒が知られている(特開平9−290156号公報)。Ag/アルミナ系NOx浄化触媒は、ディーゼルエンジンの始動直後などの比較的低温(例えば200℃以下)におけるNOx吸着性能が優れている。リーン燃焼時の過剰酸素を含む排ガス中に含まれる低次のNOx(例えばNO)が、アルミナ表面のAg上で酸化されて高次のNOx(例えばNO、NO)となり、アルミナ表層部の固溶Agまたはアルミナ表面に吸着して保持される。
 吸着されたNOxを放出させる要求があった際に、昇温によるNOx放出処理を行なう必要があるが、上記従来技術のNOx吸着触媒では該NOx放出処理を行なってもNOx放出性が低い。NOx放出性を高めるには過度な昇温が必要となり、それに起因して燃費が悪化するという問題が生じ、また、NOxが完全に放出できないために吸着能が回復されず、それに起因してNOx浄化率が低下するという問題が生ずる。
As an exhaust gas purification catalyst, particularly for NOx purification, an Ag / alumina-based NOx purification catalyst in which metal Ag is supported on an alumina carrier is known (Japanese Patent Laid-Open No. 9-290156). The Ag / alumina-based NOx purification catalyst is excellent in NOx adsorption performance at a relatively low temperature (for example, 200 ° C. or less) such as immediately after starting a diesel engine. Low-order NOx (eg, NO) contained in the exhaust gas containing excess oxygen during lean combustion is oxidized on Ag on the alumina surface to become high-order NOx (eg, NO 2 , NO 3 ), and the alumina surface layer portion It is adsorbed and held on the surface of solid solution Ag or alumina.
When there is a request to release the adsorbed NOx, it is necessary to perform a NOx releasing process by raising the temperature. However, the NOx releasing catalyst of the above prior art has a low NOx releasing property even if the NOx releasing process is performed. In order to increase NOx release properties, excessive temperature rise is required, resulting in a problem that fuel consumption deteriorates. Further, NOx cannot be completely released, so that the adsorptive capacity is not recovered. There arises a problem that the purification rate is lowered.
 本発明は、優れた吸着性能を確保しつつ放出性を高めたAg/アルミナ系NOx浄化触媒を提供することを目的とする。
 上記の目的を達成するために、本発明のNOx浄化触媒は、アルミナ担体上に、Agと、Pt族金属のうち少なくとも1種とを担持し、Pt族金属の担持量はAgの担持量の0.045~0.45wt%であることを特徴とする。
 望ましい形態においては、Pt族金属の担持量はAgの担持量の0.30%以下である。
 望ましい形態においては、Pt族金属はPdである。
 応用形態において、更にTiを担持してもよい。
 以下、Pt族金属をPGM(platinum group metals)と略称する場合がある。
An object of the present invention is to provide an Ag / alumina-based NOx purification catalyst having improved release while ensuring excellent adsorption performance.
In order to achieve the above object, the NOx purification catalyst of the present invention supports Ag and at least one of Pt group metals on an alumina support, and the amount of Pt group metal supported is the amount of Ag supported. It is characterized by 0.045 to 0.45 wt%.
In a desirable form, the supported amount of the Pt group metal is 0.30% or less of the supported amount of Ag.
In a preferred form, the Pt group metal is Pd.
In the application form, Ti may be further supported.
Hereinafter, the Pt group metal may be abbreviated as PGM (platinum group metals).
 図1は、(A)Ag/アルミナ系NOx浄化触媒におけるリーン燃焼下でのNOxの酸化吸着機構、(B)NOxの吸着形態、および(C)本発明によりPt族金属を付加したPt族金属−Ag/アルミナ系NOx浄化触媒におけるリッチ燃焼下でのNOxの還元脱離(放出)機構を模式的に示す。
 図2は、実施例で用いたエンジン−触媒の実機試験系を模式的に示す。
 図3は、実施例で実機試験に用いた触媒床温の経時変化パターンとNOxの吸着/放出の経時変化パターンとの対応を示す。
 図4は、本発明のPt族金属−Ag/アルミナ系NOx浄化触媒とPt族金属を担持しないAg/アルミナ系NOx浄化触媒について、リーン/リッチの排ガス切り替えに対応したNOx放出量の経時変化を比較して示す。
 図5は、本発明のPt族金属−Ag/アルミナ系NOx浄化触媒および応用例としてのPt族金属−Ti・Ag/アルミナ系NOx浄化触媒とPt族金属を担持しないAg/アルミナ系NOx浄化触媒について、リッチ燃焼でのピーク触媒床温とNOx脱離率との関係を示す。
 図6は、実施例でサブサイズ試験に用いた触媒入りガス温度の経時変化パターンを示す。
 図7は、Pt族金属であるPdの担持量とNOx吸着量およびNOx脱離率との関係を示し、(A)はPd担持量0~2g/Lの広い範囲について、(B)はPd担持量0~0.1g/Lの範囲を拡大して示す。
 図8は、Pt族金属であるRhの担持量とNOx吸着量およびNOx脱離率との関係を示す。
FIG. 1 shows (A) an oxidation adsorption mechanism of NOx under lean combustion in an Ag / alumina-based NOx purification catalyst, (B) an adsorption form of NOx, and (C) a Pt group metal to which a Pt group metal is added according to the present invention. The reduction / desorption (release) mechanism of NOx under rich combustion in the -Ag / alumina-based NOx purification catalyst is schematically shown.
FIG. 2 schematically shows an actual engine test system for the engine-catalyst used in the examples.
FIG. 3 shows the correspondence between the time-dependent change pattern of the catalyst bed temperature used in the actual machine test in the example and the time-dependent change pattern of NOx adsorption / release.
FIG. 4 shows the time-dependent change in the NOx emission amount corresponding to lean / rich exhaust gas switching for the Pt group metal-Ag / alumina-based NOx purification catalyst of the present invention and the Ag / alumina-based NOx purification catalyst not supporting the Pt group metal. Shown in comparison.
FIG. 5 shows a Pt group metal-Ag / alumina-based NOx purification catalyst according to the present invention, a Pt group metal-Ti · Ag / alumina-based NOx purification catalyst as an application example, and an Ag / alumina-based NOx purification catalyst not supporting a Pt group metal. Shows the relationship between the peak catalyst bed temperature in rich combustion and the NOx desorption rate.
FIG. 6 shows a time-dependent change pattern of the gas temperature with catalyst used in the subsize test in the example.
FIG. 7 shows the relationship between the supported amount of Pd, which is a Pt group metal, the NOx adsorption amount, and the NOx desorption rate. FIG. 7A shows a wide range of Pd supported amount of 0 to 2 g / L, and FIG. The range of the supported amount of 0 to 0.1 g / L is shown enlarged.
FIG. 8 shows the relationship between the loading amount of Rh, which is a Pt group metal, the NOx adsorption amount, and the NOx desorption rate.
 図1を参照して、本発明のPt族金属−Ag/アルミナ系NOx浄化触媒におけるNOxの吸着機構および脱離(放出)機構を説明する。
 図1(A)は、本発明と従来技術に共通のNOx吸着機構を示す。リーン燃焼下で排ガス中の相対的に低次の窒素酸化物NOx(例えばNO)が金属Ag上で過剰酸素(O)に酸化されて相対的に高次の窒素酸化物NOx(例えばNO、NO)となり、アルミナ担体に、またはアルミナ担体に固溶したAgに吸着される。
 図1(B)は、NOx(NO、NO)の吸着形態を示す。図中、Mはアルミナまたは固溶Agを示す。NOxとMとの吸着結合はNOxのNまたはOがMと結合して行なわれている。
 図1(C)は、本発明のPt族金属−Ag/アルミナ系NOx浄化触媒によるNOxの還元脱離機構を示す。リッチ燃焼下でNOx吸着結合中の酸素がPt族金属(PGM)上で多量の還元材(例えばCO、THC)で還元されて消費し、酸素を介した吸着結合が破断される。すなわち、相対的に高次のNOx(NO、NO)が相対的に低次のNOx(NO、NO)となって脱離する。これにより脱離性が飛躍的に向上する。Pt族金属を担持しないと上記の機構が作用しないので、NOxの脱離性すなわち放出性が低かった。
With reference to FIG. 1, the NOx adsorption mechanism and desorption (release) mechanism in the Pt group metal-Ag / alumina-based NOx purification catalyst of the present invention will be described.
FIG. 1A shows a NOx adsorption mechanism common to the present invention and the prior art. Under lean combustion, relatively low-order nitrogen oxides NOx (for example, NO) in the exhaust gas are oxidized on the metal Ag to excess oxygen (O 2 ), and relatively high-order nitrogen oxides NOx (for example, NO 2). , NO 3 ) and adsorbed on the alumina carrier or Ag dissolved in the alumina carrier.
FIG. 1B shows an adsorption form of NOx (NO 2 , NO 3 ). In the figure, M represents alumina or solid solution Ag. NOx and M are adsorbed and bonded by combining N or O of NOx with M.
FIG. 1C shows a NOx reduction / desorption mechanism by the Pt group metal-Ag / alumina-based NOx purification catalyst of the present invention. Under rich combustion, oxygen in the NOx adsorption bond is reduced on the Pt group metal (PGM) with a large amount of reducing material (for example, CO, THC) and consumed, and the adsorption bond via oxygen is broken. That is, relatively higher-order NOx (NO 2 , NO 3 ) is desorbed as relatively lower-order NOx (NO, NO 2 ). Thereby, the detachability is greatly improved. If the Pt group metal is not supported, the above mechanism does not work, so that NOx desorption, that is, release is low.
実施例1
 本発明のPt族金属−Ag/アルミナ系NOx浄化触媒を下記の手順および条件で作製した。
 <アルミナ担体のコーティング>
 1)触媒基材
  13R四角セルのコージェライト基材を用いた。
 2)スラリー調製
  下記割合でアトライタにて20分攪拌してスラリーを得た。
   MI386粉末(ローディア製)  1600g(100部)
   バインダA520(日産化学製)  710.4g(44.4部)
   水                3600g
 3)スラリーのコーティング
  得られたスラリーを上記コージェライト基材にコーティングした。コート量はアルミナ200g/Lであった。
 4)焼成処理
  大気中にて250℃×30min保持して水分を完全に除去し、引き続き500℃×1hrの焼成を行なった。焼成後コート品の吸水量は318g/13Rであった。
 <Agの担持>
 1)硝酸銀水溶液の調製(Ag濃度:0.82mol/L)
  硝酸銀(和光純薬工業特級試薬)236.2gにイオン交換水を加えて溶解させ1700ccとし、Ag濃度0.82mol/Lの硝酸銀水溶液を調製した。
 2)含浸担持(Ag担持量:0.2mol/L)
  調製した硝酸銀水溶液に、上記焼成したアルミナ担体を30分浸漬し、吸水量分の硝酸銀水溶液を吸水担持させて、Ag担持量0.2mol/Lとした。
 3)乾燥
  送風型乾燥機(家庭用寝具乾燥機)にて20分乾燥を行った。
 4)焼成処理
  大気中にて550℃×3rの焼成を行なった。
 5)H還元処理
  5%H−N混合ガスを流速7L/minで流通させた雰囲気中に500℃×3hr保持して還元処理を行なった。
 これにより、Pt族金属を担持しないAg/アルミナ系NOx浄化触媒を得た。
 <Pt族金属の担持>
 上記Ag/アルミナ系NOx浄化触媒に、Pt族金属としてPd、PtまたはRhを担持させた。すなわち、硝酸パラジウム水溶液(Pd担持用)、ジニトロジアミン白金硝酸水溶液(Pt担持用)、硝酸ロジウム水溶液(Rh担持用)を用いて、Pd、Pt、Rhを含浸担持させた後、上記<Agの担持>の処理3)~5)を行なった。基材に対する担持量はそれぞれ0.1g/Lとした。Agに対してはPt族金属担持量0.46wt%である。
 すなわち、Ag1molは108gであり、Ag担持量=0.2mol/L=(108g/mol×0.2mol)/L=21.6g/Lである。したがって、Pt族金属の担持量0.1g/Lは、Ag担持量21.6g/Lに対して、0.1/21.6×100=0.46wt%となる。
 以上により、Pt族金属を担持しないAg/アルミナ系NOx浄化触媒にPt族金属としてPd、Pt、Rhをそれぞれ担持した本発明のPt族金属−Ag/アルミナ系NOx浄化触媒が得られた(サンプル名:AgPd0.1、AgPt0.1、AgRh0.1)。
 なお、比較のために、Pt族金属の担持を行なわないAg/アルミナ系NOx浄化触媒も作製した(サンプル名:Ag)。
 また、本発明の応用例として、アルミナ担体がチタニアを0.5mol/L含むPd−Ag/アルミナ系NOx浄化触媒も下記の手順および条件で作製した(サンプル名:AgTiPd0.1)。
 <チタニア入りサンプルの作製手順>
 チタンクエン酸錯体水溶液を用いて、上記の担持量となるようにAg/アルミナ系NOx浄化触媒にTiを担持させ、次に前記と同様にPdを担持させた。これを550℃で5時間焼成した。
 上記の本発明例、従来例、応用例について、フルサイズ(1.0L)のサンプルについて、図2に示す実機排ガス系において、NOxの吸着および放出の試験を行なった。
 <エンジン−触媒系の諸元>
  エンジン:2.2Lディーゼルエンジン
  酸化触媒:容量0.8L、使用Pt族金属1.8g/L
 図3に、試験に用いた触媒床温の経時パターンおよびNOxの吸着/放出の経時パターンを示す。
 図4に、本発例(Pt族金属−Ag/アルミナ系NOx浄化触媒)および従来例(Ag/アルミナ系NOx浄化触媒)について、燃焼パターン(リーン→リッチ→リーン)の変化とNOxの放出ピークとの関係を示す。図示したように、何れのサンプルもリッチ燃焼時にNOxの放出が認められる。放出曲線下の面積で評価した放出量は、本発明例は従来例の10倍近く向上している。NOx放出性能は正確には、吸着量に対する放出量の比率で評価される。
 図5および表1に、NOxの放出率(吸着量に対する放出量のパーセンテージ)を比較して示す。本発明例(AgPd0.1、AgPt0.1、AgRh0.1)は従来例(Ag)に対して29.5~45.9倍の高い放出率を示している。
Figure JPOXMLDOC01-appb-T000001
 アルミナ担体がチタニアを0.5mol/L含む応用例(AgTiPd0.1)は、従来例(Ag)に対して放出率が38.5倍に向上している。
 次に、前述と同様の手順および条件にて、本発明の実施例として、サブサイズ(35cc)のサンプルを作製した。ただし、Pt族金属の担持量は、基材に対して0.01、0.05、0.1、1.0、2.0g/Lの5水準とした。
 下記組成のモデルガスを用いて、図6の入りガス温度変化パターンでNOxの吸着/放出試験を行った。
 <モデルガス組成>
 《触媒パージ 5分》
  ガス温度:600℃、CO:9%、O:8%
 《吸着 10分》
  ガス温度:150℃、NO:300ppm、CO:9%、O:8%、HO:5%
 《脱離 15分》
  ガス温度:250℃、CO:1%、CO:9%、O:0%、HO:5%
 SVは共に26000/hであった。
 図7および表2に、Pt族金属としてPdを担持した場合の測定結果を示す。基材に対するPd担持量が、(A)0~2.0g/Lの試験範囲全体について、(B)0~0.1g/Lの低担持量の範囲について、それぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 図7および表2に示したように、NOx放出率はPd担持量0.01g/L以上であればほぼ100%が得られる。一方、NOx吸着量は、Pd担持量の増加に伴って減少し、Pd担持量0.1g/Lで初期値(0.01g/Lでの値)の約1/2まで減少し、Pd担持量がそれ以上増加しても変化しない。しがたって、Pd担持量は基材に対して0.01~0.1g/Lの範囲とする。すなわち、Pd担持量(0.01~0.1g/L)はAg担持量(21.6g/L)に対して0.045~0.45wt%である。吸着量をより多く確保し、且つ、Pdの材料コストをより低減するために、Pd担持量はAg担持量に対して0.30wt%以下であることが望ましい。
 図8および表3は、Pt族金属としてRhを担持した場合の測定結果を示す。
Figure JPOXMLDOC01-appb-T000003
Example 1
The Pt group metal-Ag / alumina-based NOx purification catalyst of the present invention was prepared according to the following procedure and conditions.
<Alumina carrier coating>
1) Catalyst base material A cordierite base material of 13R square cell was used.
2) Slurry preparation A slurry was obtained by stirring with an attritor for 20 minutes at the following ratio.
MI386 powder (made by Rhodia) 1600 g (100 parts)
Binder A520 (Nissan Chemical) 710.4 g (44.4 parts)
3600g of water
3) Coating of slurry The obtained slurry was coated on the cordierite substrate. The coating amount was 200 g / L of alumina.
4) Firing treatment The moisture was completely removed by holding at 250 ° C. for 30 minutes in the atmosphere, and then firing was performed at 500 ° C. for 1 hour. The water absorption of the coated product after firing was 318 g / 13R.
<Supporting Ag>
1) Preparation of silver nitrate aqueous solution (Ag concentration: 0.82 mol / L)
Ion exchange water was added to 236.2 g of silver nitrate (Wako Pure Chemical Industries special grade reagent) and dissolved to make 1700 cc to prepare an aqueous silver nitrate solution with an Ag concentration of 0.82 mol / L.
2) Impregnation support (Ag support amount: 0.2 mol / L)
The calcined alumina carrier was immersed in the prepared aqueous silver nitrate solution for 30 minutes, and the aqueous silver nitrate solution equivalent to the amount of water absorption was absorbed and the Ag loading amount was 0.2 mol / L.
3) Drying It dried for 20 minutes with the ventilation type dryer (household bedding dryer).
4) Firing treatment Firing at 550 ° C. × 3r was performed in the air.
5) H 2 reduction treatment Reduction treatment was performed by maintaining 500 ° C. × 3 hr in an atmosphere in which a 5% H 2 —N 2 mixed gas was circulated at a flow rate of 7 L / min.
As a result, an Ag / alumina-based NOx purification catalyst not carrying a Pt group metal was obtained.
<Supporting of Pt group metal>
The above Ag / alumina-based NOx purification catalyst was loaded with Pd, Pt or Rh as a Pt group metal. That is, after impregnating and supporting Pd, Pt, and Rh using an aqueous palladium nitrate solution (for supporting Pd), an aqueous dinitrodiamine platinum nitrate solution (for supporting Pt), and an aqueous rhodium nitrate solution (for supporting Rh), the above <Ag The treatments 3) to 5) of loading> were performed. The amount supported on the substrate was 0.1 g / L, respectively. For Ag, the Pt group metal loading is 0.46 wt%.
That is, Ag1 mol is 108 g, and Ag loaded amount = 0.2 mol / L = (108 g / mol × 0.2 mol) /L=21.6 g / L. Therefore, the supported amount of Pt group metal of 0.1 g / L is 0.1 / 21.6 × 100 = 0.46 wt% with respect to the supported amount of Ag of 21.6 g / L.
As described above, the Pt group metal-Ag / alumina NOx purification catalyst of the present invention in which Pd, Pt, and Rh were supported as Pt group metals on the Ag / alumina NOx purification catalyst not supporting the Pt group metal was obtained (sample). Name: AgPd0.1, AgPt0.1, AgRh0.1).
For comparison, an Ag / alumina-based NOx purification catalyst that does not carry Pt group metal was also produced (sample name: Ag).
As an application example of the present invention, a Pd—Ag / alumina-based NOx purification catalyst in which the alumina carrier contains 0.5 mol / L of titania was also prepared according to the following procedure and conditions (sample name: AgTiPd0.1).
<Procedure for preparing a titania-containing sample>
Using an aqueous solution of titanium citrate complex, Ti was supported on the Ag / alumina-based NOx purification catalyst so as to achieve the above-mentioned supported amount, and then Pd was supported in the same manner as described above. This was baked at 550 ° C. for 5 hours.
Regarding the above-described invention examples, conventional examples, and application examples, NOx adsorption and release tests were conducted on full-size (1.0 L) samples in the actual exhaust gas system shown in FIG.
<Specifications of engine-catalyst system>
Engine: 2.2L diesel engine Oxidation catalyst: Capacity 0.8L, Pt group metal 1.8g / L
FIG. 3 shows a temporal pattern of the catalyst bed temperature used in the test and a temporal pattern of NOx adsorption / release.
FIG. 4 shows changes in the combustion pattern (lean → rich → lean) and NOx emission peak for the present example (Pt group metal-Ag / alumina-based NOx purification catalyst) and the conventional example (Ag / alumina-based NOx purification catalyst). Shows the relationship. As shown in the figure, release of NOx is recognized in any sample during rich combustion. The amount of release evaluated by the area under the release curve is improved by almost 10 times in the present invention compared to the conventional example. The NOx release performance is accurately evaluated by the ratio of the release amount to the adsorption amount.
FIG. 5 and Table 1 show a comparison of NOx release rate (percentage of release amount with respect to adsorption amount). The inventive examples (AgPd0.1, AgPt0.1, AgRh0.1) show a high release rate of 29.5 to 45.9 times that of the conventional example (Ag).
Figure JPOXMLDOC01-appb-T000001
In the application example (AgTiPd0.1) in which the alumina carrier contains 0.5 mol / L of titania, the release rate is improved by 38.5 times compared to the conventional example (Ag).
Next, a sub-size (35 cc) sample was produced as an example of the present invention under the same procedure and conditions as described above. However, the supported amount of the Pt group metal was set to five levels of 0.01, 0.05, 0.1, 1.0, and 2.0 g / L with respect to the base material.
Using a model gas having the following composition, an NOx adsorption / release test was performed using the gas temperature change pattern shown in FIG.
<Model gas composition>
《Catalyst purge 5 minutes》
Gas temperature: 600 ° C., CO 2 : 9%, O 2 : 8%
<Adsorption 10 minutes>
Gas temperature: 150 ° C., NO: 300 ppm, CO 2 : 9%, O 2 : 8%, H 2 O: 5%
《Desorption 15 minutes》
Gas temperature: 250 ° C., CO: 1%, CO 2 : 9%, O 2 : 0%, H 2 O: 5%
Both SVs were 26000 / h.
FIG. 7 and Table 2 show the measurement results when Pd is supported as a Pt group metal. The Pd loading on the substrate is shown for (A) the entire test range of 0 to 2.0 g / L, and (B) the range of the low loading of 0 to 0.1 g / L.
Figure JPOXMLDOC01-appb-T000002
As shown in FIG. 7 and Table 2, when the Pd loading is 0.01 g / L or more, the NOx release rate is almost 100%. On the other hand, the NOx adsorption amount decreases as the Pd carrying amount increases, and decreases to about 1/2 of the initial value (value at 0.01 g / L) at the Pd carrying amount of 0.1 g / L. It does not change as the amount increases further. Therefore, the amount of Pd supported is in the range of 0.01 to 0.1 g / L with respect to the substrate. That is, the Pd loading (0.01 to 0.1 g / L) is 0.045 to 0.45 wt% with respect to the Ag loading (21.6 g / L). In order to secure a larger amount of adsorption and to further reduce the material cost of Pd, it is desirable that the amount of Pd supported is 0.30 wt% or less with respect to the amount of Ag supported.
FIG. 8 and Table 3 show the measurement results when Rh is supported as a Pt group metal.
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、優れたNOx吸着性能を確保しつつNOx放出性を高めたAg/アルミナ系NOx浄化触媒が提供される。 According to the present invention, there is provided an Ag / alumina-based NOx purification catalyst that has improved NOx release while ensuring excellent NOx adsorption performance.

Claims (4)

  1. アルミナ担体上に、Agと、Pt族金属のうち少なくとも1種とを担持し、Pt族金属の担持量はAgの担持量の0.045~0.45wt%であることを特徴とするNOx浄化触媒。 NOx purification characterized in that Ag and at least one of Pt group metals are supported on an alumina support, and the supported amount of Pt group metal is 0.045 to 0.45 wt% of the supported amount of Ag. catalyst.
  2. 請求項1において、Pt族金属の担持量がAgの担持量の0.30wt%以下であることを特徴とするNOx浄化触媒。 2. The NOx purification catalyst according to claim 1, wherein the supported amount of the Pt group metal is 0.30 wt% or less of the supported amount of Ag.
  3. 請求項1または2において、Pt族金属がPdであることを特徴とするNOx浄化触媒。 3. The NOx purification catalyst according to claim 1, wherein the Pt group metal is Pd.
  4. 請求項1~3の1項において、アルミナ担体がチタニアを含むことを特徴とするNOx浄化触媒。 4. The NOx purification catalyst according to claim 1, wherein the alumina support contains titania.
PCT/JP2010/061289 2010-06-25 2010-06-25 NOx PURGING CATALYST WO2011161834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061289 WO2011161834A1 (en) 2010-06-25 2010-06-25 NOx PURGING CATALYST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061289 WO2011161834A1 (en) 2010-06-25 2010-06-25 NOx PURGING CATALYST

Publications (1)

Publication Number Publication Date
WO2011161834A1 true WO2011161834A1 (en) 2011-12-29

Family

ID=45371045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061289 WO2011161834A1 (en) 2010-06-25 2010-06-25 NOx PURGING CATALYST

Country Status (1)

Country Link
WO (1) WO2011161834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191305A (en) * 2015-03-30 2016-11-10 株式会社日本自動車部品総合研究所 Nox elimination system control device and reducing agent addition system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372949A (en) * 1989-08-10 1991-03-28 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH07163878A (en) * 1992-12-25 1995-06-27 Riken Corp Nitrogen oxide removing catalyst and method
JPH0824583A (en) * 1993-12-28 1996-01-30 Riken Corp Exhaust gas purifying material and method for purifying exhaust gas
JPH09248457A (en) * 1996-03-18 1997-09-22 Toyota Motor Corp High heat-resistance catalyst
JPH09290156A (en) * 1996-04-26 1997-11-11 Sumitomo Metal Mining Co Ltd Exhaust gas purifying catalyst and exhaust gas purifying method
JPH1066869A (en) * 1997-05-30 1998-03-10 Sakai Chem Ind Co Ltd Nitrogen oxide decomposing catalyst
JPH1199319A (en) * 1997-07-28 1999-04-13 Petroleum Energy Center Found Waste gas purifying method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372949A (en) * 1989-08-10 1991-03-28 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH07163878A (en) * 1992-12-25 1995-06-27 Riken Corp Nitrogen oxide removing catalyst and method
JPH0824583A (en) * 1993-12-28 1996-01-30 Riken Corp Exhaust gas purifying material and method for purifying exhaust gas
JPH09248457A (en) * 1996-03-18 1997-09-22 Toyota Motor Corp High heat-resistance catalyst
JPH09290156A (en) * 1996-04-26 1997-11-11 Sumitomo Metal Mining Co Ltd Exhaust gas purifying catalyst and exhaust gas purifying method
JPH1066869A (en) * 1997-05-30 1998-03-10 Sakai Chem Ind Co Ltd Nitrogen oxide decomposing catalyst
JPH1199319A (en) * 1997-07-28 1999-04-13 Petroleum Energy Center Found Waste gas purifying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191305A (en) * 2015-03-30 2016-11-10 株式会社日本自動車部品総合研究所 Nox elimination system control device and reducing agent addition system

Similar Documents

Publication Publication Date Title
JP4751916B2 (en) Exhaust gas purification catalyst
ES2458499T3 (en) Method for preparing a NOx storage material
CN102909020B (en) Sulfur-resistant catalytic-combustion catalyst and preparation method thereof
EP3064270B1 (en) Carrier for exhaust gas purification catalyst, and exhaust gas purification catalyst
WO2012161091A1 (en) Exhaust gas purifying catalyst and carrier
JP5865110B2 (en) Methane oxidation catalyst and production method thereof
JP2024501748A (en) Three-way catalyst supporting noble metal in single atomic state, preparation method and use thereof
WO2011161834A1 (en) NOx PURGING CATALYST
JP5503155B2 (en) Carbon monoxide removal filter
JP4779461B2 (en) Catalyst carrier, method for producing the same, and exhaust gas purification catalyst
JP7218402B2 (en) Exhaust gas purification catalyst device
JP2010125373A (en) Silver catalyst for oxidation
JP5544921B2 (en) Exhaust gas purification catalyst
JP2006233774A (en) Exhaust emission control device and exhaust emission control method
JP5488402B2 (en) Exhaust gas purification catalyst
JP5488371B2 (en) Exhaust gas purification catalyst
JP6066817B2 (en) Exhaust purification catalyst and exhaust purification device
WO2016002344A1 (en) Catalyst carrier and exhaust gas purifying catalyst
JP3185046B2 (en) NOx adsorbent and method for producing the same
JP2003135963A (en) Catalyst for cleaning exhaust gas and manufacturing method therefor
JP4760599B2 (en) Aldehyde gas removal filter
JP2015131283A (en) Catalyst for exhaust gas purification
JP2016135473A (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
JP2023049914A (en) Exhaust gas purification catalyst device
JP2005296733A (en) Catalyst manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP