WO2011161824A1 - Composition for solar cell panel sealing material and solar cell panel using the same - Google Patents

Composition for solar cell panel sealing material and solar cell panel using the same Download PDF

Info

Publication number
WO2011161824A1
WO2011161824A1 PCT/JP2010/060873 JP2010060873W WO2011161824A1 WO 2011161824 A1 WO2011161824 A1 WO 2011161824A1 JP 2010060873 W JP2010060873 W JP 2010060873W WO 2011161824 A1 WO2011161824 A1 WO 2011161824A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
acid
cell panel
composition
mgkoh
Prior art date
Application number
PCT/JP2010/060873
Other languages
French (fr)
Japanese (ja)
Inventor
道久 田坂
弘康 管野
Original Assignee
リケンテクノス株式会社
ビーエーエスエフ ソシエタス・ヨーロピア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社, ビーエーエスエフ ソシエタス・ヨーロピア filed Critical リケンテクノス株式会社
Priority to PCT/JP2010/060873 priority Critical patent/WO2011161824A1/en
Publication of WO2011161824A1 publication Critical patent/WO2011161824A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell panel encapsulant composition and a solar cell panel using the same, and in particular, a translucent member disposed on the light receiving surface side of the solar cell and a back member disposed on the back surface side.
  • Composition for solar cell panel encapsulant that is excellent in adhesion, transparency, flexibility, adhesion, tensile strength, weather resistance, especially water resistance and manufacturing cost is suppressed, and solar cell using the same Regarding panels.
  • a solar battery is a solar battery module that electrically connects a single solar battery cell or a plurality of solar battery cells to form one power generation unit, and a plurality of the solar battery modules are connected on a support plate. Used as a solar panel.
  • the solar battery panel further seals the solar battery cell between the translucent member having translucency disposed on the light receiving surface side of the solar battery cell, the back member disposed on the back surface side, and both members. And a sealing material.
  • a solar cell is an energy generating element utilizing the photovoltaic effect of a semiconductor.
  • Crystalline solar cell A p-type or n-type single crystal or polycrystal wafer doped with n-type or p-type impurities to form a pn junction.
  • Amorphous silicon solar battery cell A mono-Si or Silang gas is decomposed by heat, high-frequency electric field or light, and a-Si is generated and deposited.
  • Compound semiconductor solar cell A pn structure formed by liquid phase epitaxial growth of p-type GaAs on n-type GaAs, or a pn structure formed by stacking and firing n-type CdS and p-type CdTe.
  • Other examples include CuInSe 2 solar cells, n-type CdS / p-type CuInS 2 solar cells, and the like.
  • Such a solar cell panel is required to operate stably for 20 to 30 years in an outdoor environment irradiated with sunlight. For special products, it is necessary to operate stably in high vacuum space.
  • the solar cell panel has the following problems. Under solar light irradiation, the solar cell panel is usually heated to about 80 ° C to 100 ° C. At this temperature, the sealing material becomes extremely plasticized, leading to a sharp drop in adhesive strength, and peeling and deformation. As a result, rainwater, humidity, and the like enter, and the operation as a solar cell is significantly impaired. In addition, at night time, since there is no irradiation of sunlight, it is cooled rapidly. For example, a solar cell panel at night may be up to several tens of degrees below zero in an extreme case. Thus, during the day and at night, the temperature may change from a high temperature region of + 80 ° C. to 100 ° C.
  • the solar cell is subjected to severe temperature conditions that repeat high and low temperatures.
  • the constituent material is expanded and contracted, so that the peeling is further promoted and the operation of the solar cell is reduced due to rain water, humidity, and the like.
  • the solar cell panel sealing material has been desired to have improved temperature characteristics and enhanced adhesion.
  • Patent Document 1 US Pat. No. 3,957,537
  • Patent Document 2 US Pat. No. 4,499,658
  • a silicone-based primer and a crosslinking agent such as peroxide are added to ethylene / vinyl acetate binary copolymer or polyvinyl butyral resin as a sealing material. Used.
  • EVA ethylene-vinyl acetate copolymer resin
  • EVA is excellent in physical properties such as transparency, flexibility, tensile strength, weather resistance, etc., but a translucent member (eg, glass or polycarbonate) having translucency disposed on the light receiving surface side of the solar battery cell.
  • Adhesiveness with the back surface member (for example, polyester resin) disposed on the back surface side of the solar battery cell is insufficient, peeling from both members is likely to occur, and the water resistance is inferior due to rainwater, humidity, etc. There is a problem that the operation of the solar cell panel tends to be lowered.
  • the object of the present invention is excellent in adhesiveness between the translucent member arranged on the light receiving surface side of the solar battery cell and the back member arranged on the back surface side, transparency, flexibility, adhesiveness, tensile strength, It is providing the composition for solar cell panel sealing materials which is excellent in weather resistance, especially water resistance, and the manufacturing cost is suppressed, and a solar cell panel using the same.
  • composition containing the following components (a), (b), (c) and (d) in a specific quantitative relationship can solve the above problems.
  • the headline and the present invention were completed.
  • the present invention is as follows. 1. (A) Vinyl ester resin or unsaturated polyester resin 10 to 40% by mass (B) Vinyl monomer and / or (meth) acrylate monomer 30 to 70% by mass (C) modifying agent 5-40% by mass, (However, the total of the components (a) to (c) is 100% by mass) And (d) an ultraviolet curing agent A composition for a solar cell panel encapsulant containing 0.1 to 15 parts by mass with respect to a total of 100 parts by mass of the components (a) to (c). 2. The said component (a) is epoxy (meth) acrylate, The composition for solar cell panel sealing materials of said 1 characterized by the above-mentioned. 3. 3. 3.
  • the component (c) is a polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g; and a polyol (c-2) having a hydroxyl value of 40 to 330 mgKOH / g and an acid value of 2 to 20 mgKOH / g Modified rubber (c-3); at least one selected from the group consisting of compound (c-4) having an epoxy equivalent of 150 to 700 g / mol;
  • the component (c-1) is a castor oil-based polyol (c-1-1) having a hydroxyl value of 40 to 330 mgKOH / g; a polybutadiene-based polyol (c-1-2) having a hydroxyl value of 40 to 330 mgKOH / g; 5.
  • the solar cell panel sealing according to 4 above which is at least one selected from the group consisting of a polyisoprene-based polyol having a value of 40 to 330 mg KOH / g or a hydrogenated product (c-1-3) thereof Material composition. 6). 6.
  • the component (c-2) is a castor oil-based polyol (c-2-1) having a hydroxyl value of 40 to 330 mgKOH / g and an acid value of 2 to 20 mgKOH / g.
  • the composition for solar cell panel sealing materials as described in any one of. 8). 5.
  • a solar cell panel wherein the encapsulant comprises the solar cell panel encapsulant composition as described in any one of 1 to 10 above. 12 12.
  • the composition for a solar cell panel encapsulant of the present invention contains the components (a), (b), (c) and (d) with a specific quantitative relationship, the solar cell receives light. It is excellent in adhesiveness between a translucent member disposed on the surface side, particularly glass or polycarbonate, and a back surface member disposed on the back side, particularly a polyester resin such as polyethylene terephthalate. Therefore, peeling from both members hardly occurs, and intrusion of rainwater, humidity, and the like from the end of the panel is suppressed, and the water resistance is excellent. Thereby, the operation
  • the composition for solar cell panel sealing materials of this invention is excellent also in transparency, a softness
  • the composition for a solar cell panel encapsulant of the present invention can provide stable storage stability that does not separate with time, hardly generate bubbles, and can provide smooth surface properties. Since the solar cell panel of the present invention uses the composition for a solar cell panel encapsulant as an encapsulant, the translucent member, particularly glass or polycarbonate, and the back member, particularly polyethylene terephthalate.
  • Such a polyester resin is excellent in adhesiveness, and the sealing material is hardly peeled off from both members even under severe use environment, and intrusion of rainwater, humidity and the like is suppressed and water resistance is excellent. Thereby, the operation
  • Component (a) of the composition for solar cell panel sealing material of the present invention is a vinyl ester resin or an unsaturated polyester resin.
  • the vinyl ester resin is specifically selected from urethane (meth) acrylate resin, epoxy (meth) acrylate resin, and polyester (meth) acrylate resin, and is excellent in adhesiveness, heat resistance, and water resistance.
  • An epoxy (meth) acrylate resin is mentioned.
  • the (meth) acrylate referred to in the present invention refers to acrylate or methacrylate.
  • Such urethane (meth) acrylate resin is preferably obtained by reaction of polyol, polyisocyanate and (meth) acrylate having one or more hydroxyl groups in one molecule, and two or more (meth) acrylates in one molecule. ) It has an acryloyl group.
  • the polyol used in the urethane (meth) acrylate resin preferably has a number average molecular weight of 200 to 3000, particularly preferably 400 to 2000.
  • Typical examples of the polyol include polyether polyols, polyester polyols, polycarbonate polyols, polybutadiene polyols, and the like. These polyols are used alone or in combination of two or more.
  • the polyether polyol may include a polyol obtained by adding the alkylene oxide to bisphenol A and bisphenol F, in addition to a polyalkylene oxide such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • the polyester polyol is a condensation polymer of dibasic acids and polyhydric alcohols or a ring-opening polymer of a cyclic ester compound such as polycaprolactone.
  • Dibasic acids used here are, for example, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, Hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2 , 3-naphthalenedicarboxylic acid, 2,3-naphthal
  • Polyhydric alcohols include, for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3 -Butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, 1,6-hexanediol, adducts of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, Glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol, 1,4-cycl Hexane dimethanol, paraxylene glycol, bicyclohexyl-4,4'-diol, 2,6-decalin
  • Examples of the polyisocyanate used in the urethane (meth) acrylate resin include 2,4-TDI and its isomer or a mixture of isomers, MDI, HDI, IPDI, XDI, hydrogenated XDI, dicyclohexylmethane diisocyanate, tolidine diisocyanate, and naphthalene.
  • MDI, HDI, IPDI, XDI, hydrogenated XDI, dicyclohexylmethane diisocyanate, tolidine diisocyanate, and naphthalene examples of the polyisocyanate used in the urethane (meth) acrylate resin.
  • Examples of the (meth) acrylate (hydroxyl group-containing (meth) acrylate) having one or more hydroxyl groups per molecule used in the urethane (meth) acrylate resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( Mono (meth) acrylates such as (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, tris (hydroxyethyl) isocyanuric acid di (meth) acrylate, And polyvalent (meth) acrylates such as pentaerythritol tri (meth) acrylate.
  • the epoxy (meth) acrylate resin used as the vinyl ester resin preferably has two or more (meth) acryloyl groups in one molecule, and is an esterification catalyst for epoxy resin and unsaturated monobasic acid. It is obtained by reacting in the presence of.
  • Examples of the epoxy resin mentioned here include a bisphenol type or novolac type epoxy resin alone, or a resin in which a bisphenol type and a novolac type epoxy resin are mixed, and the average epoxy equivalent is preferably 150 to It is in the range of 450.
  • the bisphenol type epoxy resin a glycidyl ether type epoxy resin substantially having two or more epoxy groups in one molecule obtained by the reaction of epichlorohydrin and bisphenol A or bisphenol F is used.
  • An epoxy resin a methyl glycidyl ether-type epoxy resin obtained by reaction of methyl epichlorohydrin and bisphenol A or bisphenol F, an epoxy resin obtained from an alkylene oxide adduct of bisphenol A and epichlorohydrin or methyl epichlorohydrin, or the like.
  • Typical examples of the novolak type epoxy resin include an epoxy resin obtained by a reaction of phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.
  • Typical examples of unsaturated monobasic acids used for epoxy (meth) acrylate resins include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, monomethyl maleate, monopropyl maleate, and monoester maleate. (2-ethylhexyl) or sorbic acid. These unsaturated monobasic acids may be used alone or in combination of two or more.
  • the reaction between the epoxy resin and the unsaturated monobasic acid is preferably carried out using an esterification catalyst at a temperature of 60 to 140 ° C., particularly preferably 80 to 120 ° C.
  • esterification catalyst known catalysts such as tertiary amines such as triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline or diazabicyclooctane, triphenylphosphine or diethylamine hydrochloride Can be used as is.
  • the polyester (meth) acrylate resin used as the vinyl ester resin is a saturated or unsaturated polyester having two or more (meth) acryloyl groups in one molecule, and (meth) acrylic at the end of the saturated or unsaturated polyester. the compound is obtained by reacting.
  • the number average molecular weight of such a resin is preferably 500 to 5,000.
  • the saturated polyester used in the present invention is a condensation reaction between a saturated dibasic acid and a polyhydric alcohol
  • the unsaturated polyester is a dibasic acid containing an ⁇ , ⁇ -unsaturated dibasic acid and a polyhydric alcohol. It is obtained by the condensation reaction.
  • the resin which made the terminal of unsaturated polyester react with the (meth) acryl compound shall be contained in vinyl ester resin in this invention, and shall be distinguished from the unsaturated polyester resin demonstrated below.
  • saturated dibasic acid examples include the compounds shown in the above-mentioned polyester polyol, and examples of the ⁇ , ⁇ -unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, and itaconic acid. And itaconic anhydride.
  • the compound shown to the term of the said polyester polyol can be mentioned also about polyhydric alcohol.
  • the (meth) acrylic compound of the polyester (meth) acrylate resin used as the vinyl ester resin includes unsaturated glycidyl compounds, various unsaturated monobasic acids such as acrylic acid or methacrylic acid, and glycidyl esters thereof. is there.
  • glycidyl (meth) acrylate is used.
  • the unsaturated polyester resin is obtained by polycondensing an acid component and an alcohol component by a known method, and the kind thereof is not particularly limited as long as it is known as a thermosetting resin.
  • the acid component for example, unsaturated dibasic acids such as maleic anhydride, maleic acid, fumaric acid and itaconic acid are used. If necessary, use a saturated dibasic acid such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, and sebacic acid, and acids other than dibasic acids such as benzoic acid and trimellitic acid. be able to.
  • the alcohol component include polyhydric alcohols shown in the above-mentioned polyester polyol section.
  • Component (b) Vinyl monomer and / or (meth) acrylate monomer
  • Component (b) of the composition of the present invention is a vinyl monomer and / or (meth) acrylate monomer.
  • Specific examples include, for example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, tris (2-hydroxyethyl) ) Isocyanurate tri (meth) acrylate, tris (2-hydroxyethyl
  • Others include hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) ) Acrylate, butyl (meth) acrylate, amyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) ) Acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl
  • the component (b) vinyl monomer and / or (meth) acrylate monomer of the composition of the present invention is preferably in view of adhesiveness to an adherend (hereinafter sometimes simply referred to as adhesiveness) and low viscosity expression.
  • Component (b-1) used in the present invention is a compound having a cyclic structure and one ethylenically unsaturated group.
  • the component (b) include alicyclic structure-containing (meth) acrylates such as isobornyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, and dicyclopentanyl (meth) acrylate; Examples include benzyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, acryloylmorpholine, vinylimidazole, vinylpyridine and the like. Furthermore, compounds represented by the following formulas (1) to (3) can be given.
  • R 2 represents a hydrogen atom or a methyl group
  • R 3 represents an alkylene group having 2 to 8 carbon atoms, preferably 2 to 5 carbon atoms
  • R 4 represents a hydrogen atom or a methyl group
  • p is preferably Shows the number from 1 to 4.
  • R 5 , R 6 , R 7 and R 8 are independent of each other and are H or CH 3 , and q is an integer of 1 to 5)
  • component (b) examples include monomers having an N-vinyl group in terms of excellent adhesiveness and low viscosity, such as N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylformamide, N-vinylimidazole. , N-vinylcarbazole and the like. Of these, N-vinylcaprolactam is preferred because of its excellent adhesiveness and low viscosity.
  • the component (b-2) used in the present invention is a diacrylate monomer.
  • the diacrylate monomer used in the present invention include ethylene glycol diacrylate, dipropylene glycol diacrylate (DPGDA), 1,6-hexanediol diacrylate (HDDA), 1,4-butanediol diacrylate, and tetraethylene glycol diacrylate.
  • Examples include acrylate, tripropylene glycol diacrylate (TPGDA), PO-modified neopentyl glycol diacrylate, and modified bisphenol A diacrylate. In terms of transparency, tensile strength, and weather resistance, dipropylene glycol diacrylate and tripropylene glycol diacrylate are preferable.
  • Denaturant Component (c) used in the present invention is a denaturant.
  • the component (c) modifier has a function of improving adhesiveness in the composition of the present invention.
  • the modifier (c) include a polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g; and a polyol (c-) having a hydroxyl value of 40 to 330 mgKOH / g and an acid value of 2 to 20 mgKOH / g. 2); modified rubber (c-3); at least one selected from the group consisting of compound (c-4) having an epoxy equivalent of 150 to 700 g / mol.
  • the hydroxyl value of the component (c) includes a translucent member (in particular, glass or polycarbonate resin) having translucency disposed on the light receiving surface side of the solar cell in the solar cell panel of the present invention, and the solar cell. It contributes to the improvement of the selective adhesiveness with respect to the back surface member (especially polyester resin like polyethylene terephthalate) arrange
  • the translucent member and the back member may be collectively referred to as an “adhered body”.
  • the (i) polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g includes aromatic, aliphatic, polybutadiene, castor oil, polyisoprene, and the like. As long as it is any type, the selective adhesiveness to the adherend is good.
  • the hydroxyl value is preferably 40 to 330 mgKOH / g from the viewpoint of adhesiveness, and more preferably 150 to 300 mgKOH / g.
  • the polyol of component (c) can be used as a mixture of two or more if necessary.
  • the “castor oil” is an oil containing a triester compound of ricinoleic acid and glycerin. Usually, it is a natural fat or oil or a processed natural fat or oil, but it may be a synthetic fat or oil if it contains the above compounds.
  • the ricinoleic acid constituting the triester compound contained in this castor oil is preferably contained in an amount of 90 mol% or more of the fatty acids constituting the whole triester compound.
  • the castor oil may be a processed product such as a hydrogenated product (usually hydrogenated to an intercarbon unsaturated bond in the ricinoleic acid skeleton). Usually, castor oil contains 90 mol% or more (including 100 mol%) of the above-described triester compound (in the case of a hydrogenated product, a hydrogenated product of the triester compound).
  • the “castor oil-based polyol” is an ester compound of ricinoleic acid and / or hydrogenated ricinoleic acid and a polyhydric alcohol. If it has this structure, it may be a polyol obtained by using castor oil as a starting material, or a polyol obtained by using a raw material other than castor oil as a starting material. This polyhydric alcohol is not particularly limited.
  • Castor oil-based polyols include polyols derived from castor oil and polyols obtained by modifying castor oil.
  • the polyol derived from castor oil is a glycerin ester in which part of the ricinoleic acid is replaced with oleic acid, and ricinoleic acid obtained by saponifying castor oil is esterified with trimethylolpropane or other short molecular polyols.
  • fatty acid ester polyols derived from castor oil such as a mixture of these and castor oil.
  • polyols obtained by modifying castor oil include vegetable oil-modified polyols and modified polyols having an aromatic skeleton (such as bisphenol A).
  • a vegetable oil-modified polyol is obtained by replacing a part of glycerin ester ricinoleic acid with a fatty acid obtained from other plants, for example, higher fatty acids such as linoleic acid, linolenic acid, oleic acid obtained from soybean oil, rapeseed oil, olive oil, etc. It is obtained.
  • castor oil-based polyol (c-1-1) having a component (i) hydroxyl value of 40 to 330 mgKOH / g is preferable from the viewpoint of the effect of the present invention. Further, (i) an aromatic castor oil-based polyol (c) having a hydroxyl value of 40 to 330 mgKOH / g in terms of improving toughness (impact resistance), flexibility, and adhesion to an adherend. 1-1-1) is preferred. More preferably, it is 150 to 240 mg KOH / g.
  • the component (c-1-1-1) is a modified polyol derived from castor oil having an aromatic skeleton (for example, bisphenol A).
  • the component (c-1-1-1) is commercially available, and examples thereof include “URIC AC series” (Ito Oil Co., Ltd.).
  • an adduct obtained by adding polyalkylene glycol and bisphenol A to ricinoleic acid has preferable adhesion to an adherend, particularly polycarbonate, glass, and polyester resin, and can be represented by, for example, the following formula (4). .
  • n represents an average number of 2 to 5.
  • Modified polyols derived from castor oil represented by the above formula (4) are, for example, trade names URIC AC-005 (hydroxyl value 194 to 214 mg KOH / mg, viscosity 700 to 1500 mPa ⁇ s / 25 ° C.), AC-006 ( Hydroxyl value 168 to 187 mgKOH / mg, viscosity 3000 to 5000 mPa ⁇ s / 25 ° C., AC-008 (hydroxyl value 180 mgKOH / mg, viscosity 1600 mPa ⁇ s / 25 ° C.), AC-009 (hydroxyl value 225 mgKOH / mg, viscosity 1500 mPa -It can obtain from Ito Oil Co., Ltd. as s / 25 degreeC.
  • polybutadiene-based polyol used in the present invention examples include homopolymers such as 1,2-polybutadiene polyol and 1,4-polybutadiene polyol, poly (pentadiene / butadiene) polyol, poly (butadiene / styrene) polyol, poly ( Examples thereof include copolymers such as butadiene / acrylonitrile) polyols, and hydrogenated polybutadiene-based polyols obtained by adding hydrogen to these polyols.
  • Polybutadiene-based polyols are commercially available.
  • the hydroxyl value of the (c-1-2) polybutadiene-based polyol is preferably 40 to 330 mgKOH / g, more preferably 40 to 110 mgKOH / g.
  • the weight average molecular weight (GPC method) of the polybutadiene-based polyol is preferably 50 to 3000, and more preferably 800 to 1500.
  • Examples of such component (c-1-3) include Polyip (registered trademark) (hydroxyl-terminated liquid polyisoprene) manufactured by Idemitsu. “Poly ip (registered trademark)” (hydroxyl value 46.6 mg KOH / mg, Mn 2500) is a polyisoprene type liquid polymer having a highly reactive hydroxyl group at the molecular end.
  • An example of the hydrogenated product is Epole (registered trademark) (hydroxyl-terminated liquid polyolefin) manufactured by Idemitsu.
  • Epol® hydroxyl value 50.5 mg KOH / mg, Mn 2500
  • the epoxy polyol resin (c-1-4) having a hydroxyl value of 40 to 330 mgKOH / g used in the present invention is obtained by reacting an epoxy resin with an active hydrogen compound.
  • epoxy resin used here examples include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, pyrocatechol, and phloroglucinol; dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis ( Orthocresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4- Hydroxycumylbenzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobis Polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as enol, oxybisphenol, phenol novolak,
  • biphenol methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol (bisphenol AD), isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol), tetrabromobisphenol A
  • bisphenol type epoxy resins such as polyglycidyl ether compounds such as 1,3-bis (4-hydroxycumylbenzene) and 1,4-bis (4-hydroxycumylbenzene) are used It is preferable because of its properties.
  • An epoxy polyol resin (c-1-4) having a hydroxyl value of 40 to 330 mgKOH / g is obtained by reacting an epoxy group of the epoxy resin with an active hydrogen compound such as a carboxylic acid compound, a polyol or an amino compound. It is what
  • carboxylic acid compound examples include acetic acid, propionic acid, 2,2-dimethylolpropionic acid, 12-hydroxystearic acid, lactic acid, butyric acid, octylic acid, ricinoleic acid, lauric acid, benzoic acid, toluic acid, cinnamic acid, phenyl Aliphatic, aromatic or cycloaliphatic monocarboxylic acids such as acetic acid and cyclohexanecarboxylic acid, maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, adipic acid, dimer acid, phthalic acid, isophthalic acid, terephthalic acid, Examples include hexahydro acid and hydroxypolycarboxylic acid.
  • polyol examples include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2-methyl-1,3-propylene glycol, 2,2-dimethyl-1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,2,4-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 1,2-octanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, glycerin, trimethylolpropane, pentaerythritol
  • amino compounds examples include dialkylamine compounds such as dibutylamine and dioctylamine; alkanolamine compounds such as methylethanolamine, butylethanolamine, diethanolamine, diisopropanolamine, and dimethylaminopropylethanolamine; morpholine, piperidine, 4-methylpiperazine And heterocyclic amine compounds such as
  • alkanolamine compounds such as diethanolamine are preferable.
  • the epoxy resin can be chain-extended with a compound having two or more active hydrogen groups such as monoethanolamine and monoisopropanolamine.
  • a normal method of adding the active hydrogen compound to the epoxy resin can be employed.
  • a known catalyst such as a tertiary amine compound or a phosphonium salt.
  • a method in which both are heated to 60 to 200 ° C. and reacted for 3 to 10 hours can be used.
  • a preferable hydroxyl value of the epoxy polyol resin (c-1-4) having a hydroxyl value of 40 to 330 mgKOH / g is 100 to 140 mgKOH / g from the viewpoint of the effect of the present invention.
  • Examples of the epoxy polyol resin (c-1-4) having (i) a hydroxyl value of 40 to 330 mgKOH / g include EPICLON U-125-60BT (hydroxyl value 100 to 140 mgKOH / g) manufactured by DIC Corporation.
  • the polyol (c-2) having a hydroxyl value of 40 to 330 mg KOH / g and (ii) an acid value of 2 to 20 mg KOH / g is aromatic, aliphatic or castor oil-based.
  • the hydroxyl value of (i) and the acid value of (ii) selective adhesion to adherends (especially polycarbonate resin, glass, polyester resin) (especially adhesion between different materials) is improved.
  • the hydroxyl value of (i) is more preferably 230 to 300 mgKOH / g.
  • the acid value of (ii) is more preferably 4 to 15 mg KOH / g.
  • a castor oil-based polyol (c-2-1) having a hydroxyl value of 40 to 330 mg KOH / g and (ii) an acid value of 2 to 20 mg KOH / g is a polyol derived from castor oil. As disclosed in JP-A-2005-89712, it contains a castor oil-based polyol derived from ricinoleic acid, an acidic phosphate ester compound having a total carbon number of 12 or more, and, if necessary, terpene phenols Polyol compositions can also be used. These can be obtained from Ito Refinery under the trade names URIC H-1262 and H2151U, for example.
  • the Ito Oil URIC H-1262 is a polyol containing a castor oil-based polyol and an acidic phosphate ester compound having a total carbon number of 12 or more (viscosity: 3,500 to 8,500 mPa ⁇ s / 25 ° C., hydroxyl value: 240 to 290 (unit mgKOH / g), acid value: 4 to 15 (unit mgKOH / g)), excellent adhesion to adherends (especially polycarbonate resin, glass, polyester resin), especially metal adhesion ( Excellent adhesion to Al) and hydrolysis resistance.
  • the Ito Oil URIC H-2151U is a polyol containing a castor oil-based polyol, an acidic phosphate compound having 12 or more carbon atoms and terpene phenols (viscosity: 3,500 to 8,500 mPa ⁇ s / 25). ° C, hydroxyl value: 240 to 290 (unit mgKOH / g), acid value: 4 to 15 (unit mgKOH / g)), and adherence to adherends (especially polycarbonate resin, glass, polyester resin) Excellent, especially metal adhesion (particularly adhesion to Al) and hydrolysis resistance.
  • the modified rubber (c-3) will be described.
  • Examples of the modified rubber (c-3) used in the present invention include (c-3-1) liquid carboxylated polyisoprene and (c-3-2) carboxylated polybutadiene.
  • (C-3-1) Carboxylated polyisoprene
  • the carboxylated polyisoprene (c-3-1) used in the present invention is mainly used when adhering the composition of the present invention to an adherend. Improves wettability and improves the adhesion.
  • Examples of the component (c-3-1) include LIR-420 manufactured by Kuraray as maleated polyisoprene.
  • the carboxylated polybutadiene (c) used in the present invention functions to improve adhesion when the composition of the present invention is adhered to an adherend.
  • Component (c-3-2) is a liquid liquid which is transparent at room temperature, and has a main chain microstructure of polybutadiene consisting of vinyl 1,2-bond type, trans 1,4-bond type, cis 1,4-bond type. It is a polymer.
  • the vinyl 1,2-bond is preferably 30% by weight or less, and if the vinyl 1,2-bond exceeds 30% by weight, the storage stability of the resulting composition is deteriorated.
  • the cis 1,4-bond is preferably 40% by weight or more. If the cis 1,4-bond is less than 40% by weight, the adhesiveness of the resulting composition is lowered, which is not preferable.
  • the carboxylated polybutadiene (c-3-2) component is obtained by reacting liquid polybutadiene with a carboxyl group-introducing compound, and the ratio of 1,3-butadiene and carboxyl group-introducing compound constituting the liquid polybutadiene is 1,3. -80 to 98% by weight of butadiene and 2 to 20% by weight of the carboxyl group-introducing compound are preferred.
  • the liquid polybutadiene used in the reaction preferably has a number average molecular weight of 500 to 10,000, more preferably 1,000 to 7,000, and a wide molecular weight distribution.
  • the liquid polybutadiene more preferably has an iodine value measured according to DIN 53241, iodine of 30 to 500 g / 100 g of substance.
  • the liquid polybutadiene preferably has a molecular structure of 70 to 90% cis-double bonds, 10 to 30% trans-double bonds and 0 to 3% vinyl double bonds.
  • an ethylenically unsaturated dicarboxy compound for example, an ethylenically unsaturated dicarboxylic acid, its anhydride or monoester
  • the compound include maleic acid, fumaric acid, itaconic acid, 3,6-tetrahydrophthalic acid, itaconic anhydride, 1,2-dimethylmaleic anhydride, maleic acid monomethyl ester and maleic acid monoethyl ester. be able to.
  • maleic anhydride is preferable because of safety, economy and reactivity. (Maleed polybutadiene is preferred.)
  • Production of a polybutadiene / maleic anhydride-addition product comprising polybutadiene and maleic anhydride can be carried out by a known method.
  • the acid value of maleated liquid polybutadiene according to DIN ISO 3682 is preferably 50 to 120 (mgKOH / g), more preferably 70 to 90 (mgKOH / g).
  • the acid value is less than 50 (mgKOH / g)
  • the adhesiveness of the resulting composition is lowered
  • it exceeds 120 (mgKOH / g) the viscosity of the obtained composition is increased and workability is lowered.
  • the maleation rate of the maleated liquid polybutadiene is related to the viscosity, but is preferably 6 to 20%, more preferably 6 to 15%, and still more preferably 7 to 10%.
  • the viscosity (20 ° C.) of maleated liquid polybutadiene measured by DIN 53214 is preferably 3 to 16 Pa ⁇ s, more preferably 5 to 13 Pa ⁇ s, and further preferably 6 to 9 Pa ⁇ s.
  • maleated liquid polybutadiene has a vinyl-double bond of 30% or less, and those having a cis-double bond in the above range have higher flexibility than liquid polybutadiene in which the cis-double bond is less than the above lower limit. And has a high maleation rate (acid value) as described above. Therefore, the obtained composition is rich in adhesiveness and sufficiently polarized, so that it can be made more flexible and the flexibility can be easily adjusted.
  • Liquid polybutadiene having a cis-double bond less than the above lower limit rapidly increases in viscosity as the maleation rate increases, but those having a cis-double bond in the above range have a small increase in viscosity. Since the viscosity is low as in the above range, the reactivity is increased and workability is improved. Moreover, the composition obtained is excellent in terms of low viscosity expression and adhesiveness.
  • Examples of commercially available maleated liquid polybutadiene include POLYVEST OC 800S (registered trademark) and 1200S manufactured by Degussa.
  • One form of the compound (c-4) having an epoxy equivalent of 150 to 700 g / mol used in the present invention is a polyepoxy compound (c-4-1) having an epoxy equivalent of 150 to 250 g / mol. .
  • Examples of the polyepoxy compound (c-4-1) having an epoxy equivalent of 150 to 250 g / mol in the composition of the present invention include mononuclear polyhydric phenols such as hydroquinone, resorcin, pyrocatechol, and phloroglucinol.
  • Examples of the polyepoxy compound (c-4-1) having an epoxy equivalent of 150 to 250 g / mol used in the present invention include biphenol, methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol, isopropyl Ridenbisphenol (bisphenol A), isopropylidenebis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), 1, Polyphenols of bisphenol compounds such as 1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, oxybisphenol, terpene diphenol Glycidyl Jill ether is more preferable in terms of adhesion.
  • polyglycidyl ethers of bisphenol compounds having an epoxy equivalent of 150 to 250 g / mol examples include Adeka Resin EP-4100E (Asahi Denka Kogyo; bisphenol A diglycidyl ether, epoxy equivalent 190).
  • Another form of the compound (c-4) having an epoxy equivalent of 150 to 700 g / mol used in the present invention is a polyolefin polymer (c-4-2) having an epoxy equivalent of 500 to 700 g / mol. It is.
  • a polyolefin polymer having a hydroxyl group at one end and having an epoxy group introduced is preferred. More preferably, it is liquid.
  • a specific example of the polymer (c-4) having an epoxy equivalent of 150 to 700 g / mol is Kuraray L-207 (same as KRATON LIQUID TM L-207 POLYMER).
  • L-207 has a fully saturated skeleton (epoxidized ethylene / propylene / ethylene / butylene-OH structure) having an epoxy equivalent of 590 g / mol, a hydroxyl equivalent of 7000 g / mol, and a glass transition temperature of ⁇ 53 ° C. It is a coalescence and is preferable in terms of adhesiveness.
  • composition for solar cell panel encapsulant of the present invention comprises (d) an ultraviolet curing agent as an essential component.
  • the oligomer component for example, vinyl ester resin or unsaturated polyester resin (a)
  • the oligomer component has a double bond such as a (meth) acryloyl group. Therefore, if an ultraviolet curing agent is added, an ultraviolet fluorescent lamp or It can be easily cured in a short time by ultraviolet irradiation using a high-pressure mercury lamp or the like.
  • ultraviolet curing agent examples include benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, acetophenone, benzoin, benzoin ethyl ether, benzoin-n-propyl ether, benzoin isopropyl ether, benzoin-n-butyl ether.
  • Benzoin isobutyl ether benzyl-1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl1-phenylpropan-1-one, benzyl sulfide, thioxanthone, Examples thereof include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-chlorothixant and the like.
  • composition ratio of the composition In the composition of the present invention, the component (a) is blended in an amount of 10 to 40% by mass from the viewpoint of obtaining water resistance, adhesiveness, transparency and appropriate viscosity. A more preferable blending ratio of component (a) is 15 to 35% by mass in terms of water resistance and adhesiveness.
  • the compounding amount of the component (a) exceeds 40% by mass, the adhesiveness and water resistance are deteriorated, and the viscosity of the prepared composition is out of an appropriate viscosity range described below, and the storage stability is deteriorated. Air bubbles are easily generated and a smooth surface cannot be obtained.
  • the component (b) is blended in an amount of 30 to 70% by mass from the viewpoints of viscosity, adhesiveness, and transparency.
  • a more preferable amount of component (b) is 40 to 65% by mass from the viewpoint of viscosity, adhesiveness, and transparency.
  • the component (c) is blended in an amount of 5 to 40% by mass from the viewpoint of adhesiveness, transparency and viscosity. Further, the blending ratio of the component (c) is 10 to 30% by mass, particularly preferably 10 to 25% by mass in terms of adhesiveness and viscosity.
  • the compounding amount of the component (c) exceeds 40% by mass, the adhesiveness and water resistance are deteriorated, the storage stability is deteriorated, bubbles are easily generated, and a smooth surface cannot be obtained. Moreover, if it is less than 5 mass%, adhesiveness will fall.
  • the component (d) is a total of 100 masses of the components (a) to (c) from the viewpoint of practical photocuring time (irradiation intensity of 500 mJ / cm 2 for 10 seconds or less). 0.1 to 15 parts by mass with respect to the amount.
  • the amount of the component (d) is more preferably 1 to 10 parts by weight, particularly preferably 2 to 5 parts by weight in terms of practical photocuring time (irradiation intensity of 500 mJ / cm 2 for 3 seconds or less). Part.
  • the amount of component (d) exceeds 15 parts by mass, transparency, adhesiveness and water resistance are deteriorated. Moreover, if it is less than 0.1 mass part, photocuring is inadequate.
  • the viscosity of the composition of the present invention at 25 ° C. is, for example, 3,000 mPa ⁇ s or less, more preferably 100 to 2,000 mPa ⁇ s. If the viscosity is within this range, stable storage stability that does not separate with time changes is obtained, bubbles are not easily generated, and smooth surface properties can be obtained. ⁇ The viscosity can be measured with a B-type viscometer.
  • components (b) and (c) are added as reactive diluents to component (a) in a container equipped with a stirrer.
  • the component (b) is added to the component (a) and sufficiently stirred at room temperature. If the viscosity is too high, stirring may be performed while heating at 100 ° C. or lower. If it exceeds 100 ° C., the vapor generation of the component (b) becomes remarkable, which is not preferable in the working environment.
  • component (d) is added, and the mixture is sufficiently stirred so as not to remain undissolved.
  • the composition obtained by stirring is rapidly processed or stored in a cool and dark place.
  • the solar cell panel of the present invention is arranged on one or a plurality of solar cells, a translucent member having translucency arranged on the light receiving surface side of the solar cells, and on the back side of the solar cells.
  • a sealing material for sealing the solar battery cell between the translucent member and the back surface member, and the sealing material is the tail solar battery of the present invention. It consists of a composition for panel sealing materials.
  • the solar cell may be any known one, for example, the above-described crystalline solar cell, amorphous silicon solar cell, compound semiconductor solar cell, CuInSe 2 solar cell, n-type CdS / p-type CuInS 2. Although a photovoltaic cell etc. are mentioned, this invention is not restrict
  • the translucent member glass or polycarbonate resin is preferred in the present invention from the viewpoint that the adhesiveness of the composition is particularly good.
  • the back member include a fluororesin film and a polyester resin film.
  • a polyester resin particularly polyethylene terephthalate (PET) is preferred in the present invention.
  • PET polyethylene terephthalate
  • the thickness of the sealing material is, for example, 20 to 600 ⁇ m, preferably 50 to 400 ⁇ m.
  • the composition for solar cell panel sealing material of the present invention is applied on a light-transmitting member or a back surface member, sandwiched between the light transmitting member and the back surface member, and ultraviolet light is applied.
  • the method of hardening is mentioned.
  • Coating methods include spin coating, (doctor) knife coating, micro gravure coating, direct gravure coating, offset gravure, reverse gravure, reverse roll coating, (Meyer) bar coating, and die coating
  • a method such as spray coating or dip coating can be preferably applied.
  • a manual spinner ASS-301 type manufactured by Able Co., Ltd.
  • ASS-301 type manufactured by Able Co., Ltd. can be cited as an apparatus for spin coating.
  • thermocompression bonding as in the case where conventional EVA is used as a sealing material, which is advantageous in terms of manufacturing cost.
  • the raw materials used in the examples and comparative examples are as follows.
  • Component (b-1) Compound having a cyclic structure and one ethylenically unsaturated group (i) N-vinylcaprolactam boiling point 117 ° C. (10 mm Hg) manufactured by BASF Vapor pressure ⁇ 0.1 mm Hg (20 °C) Flash point 110 ° C Melting point 35 °C Viscosity 3.5 cps (40 ° C)
  • Component (b-2) Diacrylate monomer (i) Dipropylene glycol diacrylate (DPGDA) manufactured by BASF (Ii) BASF, tripropylene glycol diacrylate (TPGDA)
  • Component (c) Modifier (c-1-2) Polybutadiene polyol manufactured by Idemitsu Kosan Co., Ltd., Poly bd R-15HT Viscosity: 1.5 Pa ⁇ s / 30 ° C., hydroxyl value: 102.7 mg KOH / g (C-1-1-1) Aromatic castor oil-based polyol manufactured by Ito Oil Co., Ltd., URIC (trademark) AC-006, a polyol derived from castor oil represented by the above formula (4), viscosity: 0.7 to 1.5 Pa ⁇ s / 25 ° C., hydroxyl value: 194 to 214 mg KOH / g (C-1-3) Polyisoprene-based polyol manufactured by Idemitsu Kosan Co., Ltd.
  • Epol hydroxyl terminated liquid polyolefin (viscosity (Pa ⁇ s / 30 ° C) 75, hydroxyl value (mgKOH / g) 50.5, number average Molecular weight 2500)
  • C-3-1 Maleinized polyisoprene Kuraray LIR-420 (acid value (mgKOH / g) 40)
  • C-3-2 Maleic acid-modified polybutadiene SARTOMER Ricon130MA8 (viscosity (Pa ⁇ s / 30 ° C) 6.5, acid value (mgKOH / g) 46, number average molecular weight 2700)
  • C-3-2 Maleic acid-modified polybutadiene POLYVEST (trademark) OC 800 S manufactured by EVONIK (1,4-cis double bond in polybutadiene: 75%, 1,4-trans double bond: 24%, vinyl bond: 1%, maleation ratio: 7.5 %, Number average molecular weight: 3
  • the characteristics of each polyol were measured as follows.
  • -Viscosity measurement method The viscometer is measured using a single cylindrical rotational viscometer (B type TVC--5) according to JIS K7117-1. 1. A 500ml beaker (standard) is used for the measuring instrument. 2. Standard rotor is selected from two types: M1 to M4 rotors for low and medium viscosity and H1 to H7 rotors for medium and high viscosity. Hydroxyl value measurement method Hydroxyl value is included in 1g of sample. This is the number of mg of potassium hydroxide required to acetylate the OH group. According to JIS K 1557-1, OH groups in the sample are acetylated using acetic anhydride, and acetic acid not used is titrated with potassium hydroxide solution.
  • A Amount of 0.5 mol / l potassium hydroxide ethanol solution used for the blank test (ml)
  • B 0.5mol / l potassium hydroxide ethanol solution used for titration (ml)
  • f Factor
  • -Acid value measuring method It represents with the mg number of potassium hydroxide required to neutralize the acidic component contained in 1g of sample oils.
  • End-point pH measurement Take 10 mL of buffer stock solution B in a 200-mL beaker, add 100 mL of titration solvent, immerse the electrode, and use the pH that changes within 0.1 pH within 30 seconds as the buffer end point.
  • Measurement of acid value 1. Weigh accurately 20 g of sample into a 200 mL beaker. 2. Add 125mL of toluene / 2-propanol / pure water mixed solvent and titrate with 0.1mol / L potassium hydroxide titrant.
  • Component (d) Component UV curing agent manufactured by CIBA, IRGACURE TM 819, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
  • Examples 1 to 20 and Comparative Examples 1 to 6 In the blending ratio (parts by mass) shown in Tables 1 to 7 below, the component (a) is put into a container equipped with a stirrer, then the component (b) is added, and the mixture is sufficiently stirred at room temperature. After adding c) and stirring, when the liquid temperature reached room temperature, the component (d) was added, and the mixture was sufficiently stirred so as not to remain undissolved to obtain a composition. The viscosity (mPa ⁇ s) at 25 ° C. of the obtained composition was measured. That is, using a handy type digital viscometer TVC-7 type viscometer (Toki Sangyo Co., Ltd.), the viscosity at 25 ° C. was measured using an appropriate rotor (No. 0 to No. 5) according to the viscosity. The results are also shown in Tables 1 to 7.
  • the composition was applied by spin coating (coating thickness 15 to 20 ⁇ m), and this was applied under air to 500 mJ.
  • a laminate was prepared by irradiating with UV light having an energy of / cm 2 to be cured.
  • Each adherend used is as follows. ⁇ Polycarbonate PC (trade name Panlite L-1225L, manufactured by Teijin Chemicals Ltd.) ⁇ Glass (slide glass for microscope preparation) ⁇ PET: Unitika Unitika polyester resin MA-2103
  • Transparency test (measurement of haze value and total light transmittance) Using a laminate using glass as the adherend, measurement was performed using a measuring instrument (trade name “COH-300A”) manufactured by Nippon Denshoku Industries Co., Ltd.
  • Adhesion test The obtained laminate was subjected to the following cross-cut tape test.
  • Adhesion test cross-cut tape test
  • the measurement was performed as follows in accordance with the cross cut tape test method described in Japanese Industrial Standard K5400.
  • Adhesion test between different materials An adhesion test between different materials was performed by measuring the shear adhesive strength as shown below.
  • the composition On the polyester resin (B1) having dimensions of 150 mm ⁇ 1 mm thickness ⁇ 25 mm width, the composition is applied by spin coating (coating thickness: 15 to 20 ⁇ m) to form a layer (A) of the composition.
  • the glass or polycarbonate layer (B2) having the same dimensions as the above (B1) shown in Tables 1 to 7 is pressure-bonded, and UV irradiation (wavelength: 325 nm, integrated irradiation intensity) from the layer (B2) (glass or polycarbonate layer) side is applied.
  • the components (a), (b), (c) and (d) are contained in a specific quantitative relationship.
  • Comparative Example 1 since the amount of component (b) added exceeded the upper limit defined in the present invention, the adhesiveness deteriorated, and the water resistance and flexibility also deteriorated.
  • Comparative Example 2 since the amount of component (a) added exceeded the upper limit defined in the present invention, the adhesiveness deteriorated and the water resistance also deteriorated. Since the comparative example 3 did not add the component (c), adhesiveness deteriorated and water resistance also deteriorated. In Comparative Example 4, the amount of component (c) added exceeded the upper limit defined in the present invention, and the adhesion, water resistance, and foreign material adhesion deteriorated. In Comparative Example 5, since the amount of component (d) added was less than the lower limit specified in the present invention, the composition was not cured. In Comparative Example 6, since the amount of component (d) added exceeded the upper limit defined in the present invention, the adhesiveness deteriorated and the water resistance also deteriorated.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The disclosed composition for a solar cell panel sealing material contains (a) a vinyl ester resin or an unsaturated polyester resin (10-40 mass%), (b) vinyl monomers and/or (meth)acrylate monomers (30-70 mass%), (c) a denaturant (5-40 mass%) (wherein the sum of the mass percentages of the aforementioned components (a) to (c) is 100 mass%), and (d) a UV-curing agent (0.1-15 parts mass per 100 parts mass of the aforementioned components (a) to (c) combined).

Description

太陽電池パネル封止材用組成物およびこれを用いた太陽電池パネルComposition for solar cell panel encapsulant and solar cell panel using the same
 本発明は、太陽電池パネル封止材用組成物およびこれを用いた太陽電池パネルに関し、とくに、太陽電池セルの受光面側に配された透光性部材と裏面側に配された裏面部材との接着性に優れ、透明性、柔軟性、接着性、引張強度、耐候性、中でもとくに耐水性に優れ、製造コストも抑制される太陽電池パネル封止材用組成物およびこれを用いた太陽電池パネルに関する。 The present invention relates to a solar cell panel encapsulant composition and a solar cell panel using the same, and in particular, a translucent member disposed on the light receiving surface side of the solar cell and a back member disposed on the back surface side. Composition for solar cell panel encapsulant that is excellent in adhesion, transparency, flexibility, adhesion, tensile strength, weather resistance, especially water resistance and manufacturing cost is suppressed, and solar cell using the same Regarding panels.
 近年、エネルギー需要の急激な増大にともなうエネルギー供給能力の不足から生ずるエネルギー危機あるいは二酸化炭素の増加による温室効果から生ずる温暖化にともなう地球規模の環境破壊を軽減するために、環境に対してやさしいエネルギー供給源が望まれている。
 とりわけ、クリーンで安全性が高く、長期間永続的にエネルギーを供給する能力を有する太陽電池は、上記の要望に対して、最も大きな期待を寄せられる新規なエネルギー供給源である。
In recent years, in order to mitigate the global environmental destruction caused by the global warming caused by the energy crisis caused by the shortage of energy supply capacity accompanying the rapid increase in energy demand or the greenhouse effect due to the increase of carbon dioxide, A source is desired.
In particular, a solar cell that is clean, highly safe, and has the ability to supply energy permanently for a long period of time is a new energy source with the greatest expectations for the above demand.
 一般的に太陽電池は、単一の太陽電池セルまたは複数の太陽電池セルを電気的に接続し、1つの発電単位を形成する太陽電池モジュールとし、さらに該太陽電池モジュールを支持板上で複数連結した太陽電池パネルとして使用されている。太陽電池パネルは、さらに太陽電池セルの受光面側に配置された透光性を有する透光性部材と、裏面側に配置された裏面部材と、両部材間で前記太陽電池セルを封止する封止材とを備えている。 Generally, a solar battery is a solar battery module that electrically connects a single solar battery cell or a plurality of solar battery cells to form one power generation unit, and a plurality of the solar battery modules are connected on a support plate. Used as a solar panel. The solar battery panel further seals the solar battery cell between the translucent member having translucency disposed on the light receiving surface side of the solar battery cell, the back member disposed on the back surface side, and both members. And a sealing material.
 太陽電池セルは半導体の光起電力効果を利用したエネルギー発生素子である。一般的には下記に示すいくつかの太陽電池セルがよく知られている。
1.結晶系太陽電池セル
 p型もしくはn型の単結晶体あるいは多結晶体のウエハーをそれぞれn型もしくはp型の不純物をドープすることでpn接合を形成したもの。
2.アモルファスシリコン系太陽電池セル
 モノシランもしくはシンランガスを熱もしくは高周波電界もしくは光等で分解し、a-Siを生成堆積したもの。
3.化合物半導体太陽電池セル
 n型GaAs上にp型GaAsを液相エピタキシャル生長をさせることでpn構造を形成したもの、あるいはn型CdS及びp型CdTeを積層焼成することでpn構造を形成したもの。
 その他にもCuInSe2太陽電池セル、n型CdS/p型CuInS2太陽電池セル等が挙げられる。
A solar cell is an energy generating element utilizing the photovoltaic effect of a semiconductor. In general, several solar cells shown below are well known.
1. Crystalline solar cell A p-type or n-type single crystal or polycrystal wafer doped with n-type or p-type impurities to form a pn junction.
2. Amorphous silicon solar battery cell A mono-Si or Silang gas is decomposed by heat, high-frequency electric field or light, and a-Si is generated and deposited.
3. Compound semiconductor solar cell A pn structure formed by liquid phase epitaxial growth of p-type GaAs on n-type GaAs, or a pn structure formed by stacking and firing n-type CdS and p-type CdTe.
Other examples include CuInSe 2 solar cells, n-type CdS / p-type CuInS 2 solar cells, and the like.
 かかる太陽電池パネルは、太陽光の照射の屋外環境で20年~30年安定に作動することが要求される。また特殊なものについては、高真空の宇宙空間で安定に作動する必要がある。 Such a solar cell panel is required to operate stably for 20 to 30 years in an outdoor environment irradiated with sunlight. For special products, it is necessary to operate stably in high vacuum space.
 しかし、太陽電池パネルは以下のような問題点がある。
 太陽光照射下において該太陽電池パネルは通常80℃~100℃程度まで昇温する。この温度になると、該封止材は著しく可塑化し、接着力の急激な低下をまねき、剥離、変形を生ずることになる。その結果、雨水、湿度等が侵入して、太陽電池としての作動を著しく損ねることになる。また、夜間においては、太陽光の照射がなくなるので急激に冷却される。例えば、夜間での太陽電池パネルは、はなはだしい場合、零下数十度にまでなることもある。
 このように日中と夜間では、その温度は+80℃~100℃の高温領域から零下数十度の低温領域まで変化することがあり、太陽電池は高低温を繰り返す厳しい温度条件下におかれる。その結果、構成材料が伸縮をともなうことから更に剥離が促進されることとなり、雨水、湿度等による太陽電池の作動低下を招くことになる。
However, the solar cell panel has the following problems.
Under solar light irradiation, the solar cell panel is usually heated to about 80 ° C to 100 ° C. At this temperature, the sealing material becomes extremely plasticized, leading to a sharp drop in adhesive strength, and peeling and deformation. As a result, rainwater, humidity, and the like enter, and the operation as a solar cell is significantly impaired. In addition, at night time, since there is no irradiation of sunlight, it is cooled rapidly. For example, a solar cell panel at night may be up to several tens of degrees below zero in an extreme case.
Thus, during the day and at night, the temperature may change from a high temperature region of + 80 ° C. to 100 ° C. to a low temperature region of several tens of degrees below zero, and the solar cell is subjected to severe temperature conditions that repeat high and low temperatures. As a result, the constituent material is expanded and contracted, so that the peeling is further promoted and the operation of the solar cell is reduced due to rain water, humidity, and the like.
 このような点から、太陽電池パネル封止材には、その温度特性の改良、接着力の増強が望まれていた。
 例えば特許文献1(米国特許第3957537号明細書)においては、ポリビニルブチラール樹脂、エチレン-メチルメタクリレート-メタクリル酸の三元共重体等に代表される加熱接着剤を用い、表面にガラス板等を用いて封止している。また、特許文献2(米国特許第4499658号明細書)においては、エチレン・酢酸ビニル二元共重合もしくはポリビニルブチラール樹脂にシリコン系のプライマー及び過酸化物等の架橋剤を添加し、封止材として用いている。
 しかしながら、これらの提案においてもいまだ太陽電池封止材としての特性を十分に達成しているとは言いがたい。
From such a point, the solar cell panel sealing material has been desired to have improved temperature characteristics and enhanced adhesion.
For example, in Patent Document 1 (US Pat. No. 3,957,537), a heating adhesive represented by a ternary copolymer of polyvinyl butyral resin, ethylene-methyl methacrylate-methacrylic acid, etc. is used, and a glass plate is used on the surface. And sealed. In Patent Document 2 (US Pat. No. 4,499,658), a silicone-based primer and a crosslinking agent such as peroxide are added to ethylene / vinyl acetate binary copolymer or polyvinyl butyral resin as a sealing material. Used.
However, even with these proposals, it cannot be said that the characteristics as a solar cell encapsulant are sufficiently achieved.
 現時点において、太陽電池パネル封止材としては、エチレン-酢酸ビニル共重合樹脂(EVA)が使用されている。EVAは、透明性、柔軟性、引張強度、耐候性等の物性が優れているが、太陽電池セルの受光面側に配置された透光性を有する透光性部材(例えばガラスやポリカーボネート)と、太陽電池セルの裏面側に配置された裏面部材(例えばポリエステル系樹脂)との接着性が不十分であり、両部材からの剥離が生じやすく、雨水、湿度等を原因とする耐水性に劣り、太陽電池パネルの作動低下を招きやすいという問題点がある。
 また太陽電池パネルの製造工程において、EVAを封止材として機能させるためには数十分にもわたる加熱圧着が必要であり、また封止材層の厚さを100~200μmも厚くする必要であり、製造コストが増大するという問題点もある。
At present, ethylene-vinyl acetate copolymer resin (EVA) is used as a solar cell panel sealing material. EVA is excellent in physical properties such as transparency, flexibility, tensile strength, weather resistance, etc., but a translucent member (eg, glass or polycarbonate) having translucency disposed on the light receiving surface side of the solar battery cell. , Adhesiveness with the back surface member (for example, polyester resin) disposed on the back surface side of the solar battery cell is insufficient, peeling from both members is likely to occur, and the water resistance is inferior due to rainwater, humidity, etc. There is a problem that the operation of the solar cell panel tends to be lowered.
Further, in the manufacturing process of the solar cell panel, in order to make EVA function as a sealing material, several tens of minutes of thermocompression bonding is necessary, and the thickness of the sealing material layer needs to be as thick as 100 to 200 μm. In addition, there is a problem that the manufacturing cost increases.
米国特許第3957537号明細書US Pat. No. 3,957,537 米国特許第4499658号明細書U.S. Pat. No. 4,499,658
 したがって本発明の目的は、太陽電池セルの受光面側に配された透光性部材と裏面側に配された裏面部材との接着性に優れ、透明性、柔軟性、接着性、引張強度、耐候性、中でもとくに耐水性に優れ、製造コストも抑制される太陽電池パネル封止材用組成物およびこれを用いた太陽電池パネルを提供することにある。 Therefore, the object of the present invention is excellent in adhesiveness between the translucent member arranged on the light receiving surface side of the solar battery cell and the back member arranged on the back surface side, transparency, flexibility, adhesiveness, tensile strength, It is providing the composition for solar cell panel sealing materials which is excellent in weather resistance, especially water resistance, and the manufacturing cost is suppressed, and a solar cell panel using the same.
 本発明者は鋭意研究を行った結果、下記成分(a)、(b)、(c)および(d)を特定の量的関係でもって含有する組成物が、前記課題を解決し得ることを見出し、本発明を完成した。 As a result of intensive studies, the present inventor has found that a composition containing the following components (a), (b), (c) and (d) in a specific quantitative relationship can solve the above problems. The headline and the present invention were completed.
 すなわち本発明は、以下の通りである。
 1.(a)ビニルエステル樹脂または不飽和ポリエステル樹脂 10~40質量%
(b)ビニルモノマーおよび/または(メタ)アクリレートモノマー 30~70質量%
(c)変性剤 5~40質量%、
(ただし、前記成分(a)~(c)の合計は100質量%である)
および
(d)紫外線硬化剤 前記成分(a)~(c)の合計100質量部に対し0.1~15質量部
を含有する太陽電池パネル封止材用組成物。
 2.前記成分(a)が、エポキシ(メタ)アクリレートであることを特徴とする前記1に記載の太陽電池パネル封止材用組成物。
 3.前記成分(b)が、N-ビニル基を有するモノマーであることを特徴とする前記1または2に記載の太陽電池パネル封止材用組成物。
 4.前記成分(c)が、水酸基価40~330mgKOH/gのポリオール(c-1);および水酸基価40~330mgKOH/gであり、かつ酸価が2~20mgKOH/gであるポリオール(c-2);変性ゴム(c-3);エポキシ当量が150~700g/モルである化合物(c-4)からなる群から選択された少なくとも1種であることを特徴とする前記1~3のいずれかに記載の太陽電池パネル封止材用組成物。
 5.前記成分(c-1)が、水酸基価40~330mgKOH/gのヒマシ油系ポリオール(c-1-1);水酸基価40~330mgKOH/gのポリブタジエン系ポリオール(c-1-2);および水酸基価40~330mgKOH/gのポリイソプレン系ポリオールまたはその水素添加物(c-1-3)からなる群から選択された少なくとも1種であることを特徴とする前記4に記載の太陽電池パネル封止材用組成物。
 6.前記成分(c-1)が、水酸基価40~330mgKOH/gの芳香族系ヒマシ油系ポリオール(c-1-1-1)であることを特徴とする前記5に記載の太陽電池パネル封止材用組成物。
 7.前記成分(c-2)が、水酸基価40~330mgKOH/gであり、かつ酸価が2~20mgKOH/gであるヒマシ油系ポリオール(c-2-1)であることを特徴とする前記4に記載の太陽電池パネル封止材用組成物。
 8.前記成分(c-3)が酸変性ポリブタジエンまたは酸変性ポリイソプレンであることを特徴とする前記4に記載の太陽電池パネル封止材用組成物。
 9.前記成分(c-4)がエポキシ当量が150~250g/モルであるポリエポキシ化合物(c-4-1)であることを特徴とする前記4に記載の太陽電池パネル封止材用組成物。
 10.前記成分(c-4)がエポキシ当量が500~700g/モルである飽和骨格を持つ重合体(c-4-2)であることを特徴とする前記4に記載の太陽電池パネル封止材用組成物。
 11.単一または複数の太陽電池セルと、
 前記太陽電池セルの受光面側に配置された透光性を有する透光性部材と、
 前記太陽電池セルの裏面側に配置された裏面部材と、
 前記透光性部材と前記裏面部材との間に前記太陽電池セルを封止する封止材と、を備えた太陽電池パネルにおいて、
 前記封止材が、前記1~10のいずれかに記載の太陽電池パネル封止材用組成物からなることを特徴とする太陽電池パネル。
 12.前記透光性部材が、ガラスまたはポリカーボネート樹脂であり、前記裏面部材が、ポリエステル樹脂であることを特徴とする前記11に記載の太陽電池パネル。
That is, the present invention is as follows.
1. (A) Vinyl ester resin or unsaturated polyester resin 10 to 40% by mass
(B) Vinyl monomer and / or (meth) acrylate monomer 30 to 70% by mass
(C) modifying agent 5-40% by mass,
(However, the total of the components (a) to (c) is 100% by mass)
And (d) an ultraviolet curing agent A composition for a solar cell panel encapsulant containing 0.1 to 15 parts by mass with respect to a total of 100 parts by mass of the components (a) to (c).
2. The said component (a) is epoxy (meth) acrylate, The composition for solar cell panel sealing materials of said 1 characterized by the above-mentioned.
3. 3. The solar cell panel encapsulant composition as described in 1 or 2 above, wherein the component (b) is a monomer having an N-vinyl group.
4). The component (c) is a polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g; and a polyol (c-2) having a hydroxyl value of 40 to 330 mgKOH / g and an acid value of 2 to 20 mgKOH / g Modified rubber (c-3); at least one selected from the group consisting of compound (c-4) having an epoxy equivalent of 150 to 700 g / mol; The composition for solar cell panel sealing materials of description.
5. The component (c-1) is a castor oil-based polyol (c-1-1) having a hydroxyl value of 40 to 330 mgKOH / g; a polybutadiene-based polyol (c-1-2) having a hydroxyl value of 40 to 330 mgKOH / g; 5. The solar cell panel sealing according to 4 above, which is at least one selected from the group consisting of a polyisoprene-based polyol having a value of 40 to 330 mg KOH / g or a hydrogenated product (c-1-3) thereof Material composition.
6). 6. The solar cell panel sealing according to 5 above, wherein the component (c-1) is an aromatic castor oil-based polyol (c-1-1-1) having a hydroxyl value of 40 to 330 mgKOH / g Material composition.
7). The component (c-2) is a castor oil-based polyol (c-2-1) having a hydroxyl value of 40 to 330 mgKOH / g and an acid value of 2 to 20 mgKOH / g. The composition for solar cell panel sealing materials as described in any one of.
8). 5. The solar cell panel encapsulant composition as described in 4 above, wherein the component (c-3) is acid-modified polybutadiene or acid-modified polyisoprene.
9. 5. The composition for solar cell panel sealing material according to 4 above, wherein the component (c-4) is a polyepoxy compound (c-4-1) having an epoxy equivalent of 150 to 250 g / mol.
10. 5. The solar cell panel sealing material according to 4 above, wherein the component (c-4) is a polymer (c-4-2) having a saturated skeleton having an epoxy equivalent of 500 to 700 g / mol. Composition.
11. Single or multiple solar cells;
A translucent member having translucency disposed on the light-receiving surface side of the solar battery cell;
A back member disposed on the back side of the solar cell;
In a solar battery panel comprising: a sealing material that seals the solar battery cell between the translucent member and the back member;
11. A solar cell panel, wherein the encapsulant comprises the solar cell panel encapsulant composition as described in any one of 1 to 10 above.
12 12. The solar cell panel as described in 11 above, wherein the translucent member is glass or polycarbonate resin, and the back member is polyester resin.
 本発明の太陽電池パネル封止材用組成物は、前記成分(a)、(b)、(c)および(d)を特定の量的関係でもって含有しているので、太陽電池セルの受光面側に配された透光性部材、とくにガラスまたはポリカーボネートと、裏面側に配された裏面部材、とくにポリエチレンテレフタレートのようなポリエステル系樹脂との接着性に優れる。したがって、両部材からの剥離が生じにくく、パネル端部から雨水、湿度等の侵入が抑制され、耐水性に優れる。これにより、太陽電池パネルの作動低下を防止することができる。また該接着性に優れることから、封止材の厚さを薄くすることができるとともに、従来のEVAのような加熱圧着を必要としない。したがって、製造コストを抑制することができる。
 また本発明の太陽電池パネル封止材用組成物は、透明性、柔軟性、引張強度、耐候性にも優れる。さらに本発明の太陽電池パネル封止材用組成物は、経時変化で分離しない安定な貯蔵安定性が得られ、気泡が発生しにくく、平滑な表面性を得ることができる。
 本発明の太陽電池パネルは、前記太陽電池パネル封止材用組成物を封止材として用いたものであるので、前記透光性部材、とくにガラスまたはポリカーボネートと、前記裏面部材、とくにポリエチレンテレフタレートのようなポリエステル系樹脂との接着性に優れ、厳しい使用環境下であっても封止材が両部材から剥離しにくく、雨水、湿度等の侵入が抑制され、耐水性に優れる。これにより、太陽電池パネルの作動低下を防止することができる。また該接着性に優れることから、封止材の厚さを薄くすることができるとともに、従来のEVAのような加熱圧着を必要としない。したがって、製造コストを抑制することができる。また本発明の太陽電池パネルは、透明性、柔軟性、引張強度、耐候性にも優れる。
Since the composition for a solar cell panel encapsulant of the present invention contains the components (a), (b), (c) and (d) with a specific quantitative relationship, the solar cell receives light. It is excellent in adhesiveness between a translucent member disposed on the surface side, particularly glass or polycarbonate, and a back surface member disposed on the back side, particularly a polyester resin such as polyethylene terephthalate. Therefore, peeling from both members hardly occurs, and intrusion of rainwater, humidity, and the like from the end of the panel is suppressed, and the water resistance is excellent. Thereby, the operation | movement fall of a solar cell panel can be prevented. Moreover, since it is excellent in this adhesiveness, while the thickness of a sealing material can be made thin, the thermocompression bonding like the conventional EVA is not required. Therefore, the manufacturing cost can be suppressed.
Moreover, the composition for solar cell panel sealing materials of this invention is excellent also in transparency, a softness | flexibility, tensile strength, and a weather resistance. Furthermore, the composition for a solar cell panel encapsulant of the present invention can provide stable storage stability that does not separate with time, hardly generate bubbles, and can provide smooth surface properties.
Since the solar cell panel of the present invention uses the composition for a solar cell panel encapsulant as an encapsulant, the translucent member, particularly glass or polycarbonate, and the back member, particularly polyethylene terephthalate. Such a polyester resin is excellent in adhesiveness, and the sealing material is hardly peeled off from both members even under severe use environment, and intrusion of rainwater, humidity and the like is suppressed and water resistance is excellent. Thereby, the operation | movement fall of a solar cell panel can be prevented. Moreover, since it is excellent in this adhesiveness, while the thickness of a sealing material can be made thin, the thermocompression bonding like the conventional EVA is not required. Therefore, the manufacturing cost can be suppressed. Moreover, the solar cell panel of this invention is excellent also in transparency, a softness | flexibility, tensile strength, and a weather resistance.
 以下、本発明をさらに詳細に説明する。
(a)ビニルエステル樹脂または不飽和ポリエステル樹脂
 本発明の太陽電池パネル封止材用組成物(以下、単に組成物ということがある)の成分(a)は、ビニルエステル樹脂または不飽和ポリエステル樹脂である。
 ビニルエステル樹脂として、具体的にはウレタン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂から選択されるものであり、接着性、耐熱性、耐水性に優れることから、エポキシ(メタ)アクリレート樹脂が挙げられる。なお本発明でいう(メタ)アクリレートとは、アクリレートまたはメタクリレートを指す。
Hereinafter, the present invention will be described in more detail.
(A) Vinyl ester resin or unsaturated polyester resin Component (a) of the composition for solar cell panel sealing material of the present invention (hereinafter sometimes simply referred to as composition) is a vinyl ester resin or an unsaturated polyester resin. is there.
The vinyl ester resin is specifically selected from urethane (meth) acrylate resin, epoxy (meth) acrylate resin, and polyester (meth) acrylate resin, and is excellent in adhesiveness, heat resistance, and water resistance. An epoxy (meth) acrylate resin is mentioned. In addition, the (meth) acrylate referred to in the present invention refers to acrylate or methacrylate.
 かかるウレタン(メタ)アクリレート樹脂としては、好ましくはポリオール、ポリイソシアネートおよび1分子に1個以上の水酸基を有する(メタ)アクリレートの反応により得られるものであり、1分子中に2個以上の(メタ)アクリロイル基を有するものである。 Such urethane (meth) acrylate resin is preferably obtained by reaction of polyol, polyisocyanate and (meth) acrylate having one or more hydroxyl groups in one molecule, and two or more (meth) acrylates in one molecule. ) It has an acryloyl group.
 前記ウレタン(メタ)アクリレート樹脂に用いられるポリオールとしては、好ましくは数平均分子量が200~3000、特に好ましくは400~2000のものである。
 このポリオールは、代表的にはポリエーテルポリオール、ポリエステルポリオール、ポリカ-ボネ-トポリオール、ポリブタジエンポリオール等が挙げられ、単独または2種以上を併用して用いられる。
The polyol used in the urethane (meth) acrylate resin preferably has a number average molecular weight of 200 to 3000, particularly preferably 400 to 2000.
Typical examples of the polyol include polyether polyols, polyester polyols, polycarbonate polyols, polybutadiene polyols, and the like. These polyols are used alone or in combination of two or more.
 ここで言うポリエーテルポリオールとは、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレンオキサイドの他に、ビスフェノールAおよびビスフェノールFに前記アルキレンオキサイドを付加させたポリオールも含むことができる。 As used herein, the polyether polyol may include a polyol obtained by adding the alkylene oxide to bisphenol A and bisphenol F, in addition to a polyalkylene oxide such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
 また、ポリエステルポリオールとは、二塩基酸類と多価アルコール類の縮合重合体またはポリカプロラクトンの様に環状エステル化合物の開環重合体である。ここで使用する二塩基酸類とは、例えば、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12-ドデカンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4'-ビフェニルジカルボン酸、またこれらのジアルキルエステル等を挙げることができる。また、多価アルコール類とは、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ネオペンチルグリコール、水素化ビスフェノールA、1,4-ブタンジオール、1,6-ヘキサンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,3-プロパンジオール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、1,4-シクロヘキサンジメタノール、パラキシレングリコール、ビシクロヘキシル-4,4'-ジオール、2,6-デカリングリコール、2,7-デカリングリコール等を挙げることができる。 The polyester polyol is a condensation polymer of dibasic acids and polyhydric alcohols or a ring-opening polymer of a cyclic ester compound such as polycaprolactone. Dibasic acids used here are, for example, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, Hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2 , 3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4′-biphenyldicarboxylic acid, and dialkyl esters thereof. Polyhydric alcohols include, for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3 -Butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, 1,6-hexanediol, adducts of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, Glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol, 1,4-cycl Hexane dimethanol, paraxylene glycol, bicyclohexyl-4,4'-diol, 2,6-decalin glycol, and 2,7-decalin glycol, and the like.
 前記ウレタン(メタ)アクリレート樹脂に用いられるポリイソシアネートとしては、2,4-TDIおよびその異性体または異性体の混合物、MDI、HDI、IPDI、XDI、水添XDI、ジシクロヘキシルメタンジイソシアネート、トリジンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート等を挙げることができ、それらの単独または2種以上で使用することができる。 Examples of the polyisocyanate used in the urethane (meth) acrylate resin include 2,4-TDI and its isomer or a mixture of isomers, MDI, HDI, IPDI, XDI, hydrogenated XDI, dicyclohexylmethane diisocyanate, tolidine diisocyanate, and naphthalene. A diisocyanate, a triphenylmethane triisocyanate, etc. can be mentioned, These can be used individually or in mixture of 2 or more types.
 前記ウレタン(メタ)アクリレート樹脂に用いられる1分子に1個以上の水酸基を有する(メタ)アクリレート(水酸基含有(メタ)アクリレート)としては、例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のモノ(メタ)アクリレート類、トリス(ヒドロキシエチル)イソシアヌル酸ジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多価(メタ)アクリレート類等を挙げることができる。 Examples of the (meth) acrylate (hydroxyl group-containing (meth) acrylate) having one or more hydroxyl groups per molecule used in the urethane (meth) acrylate resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( Mono (meth) acrylates such as (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, tris (hydroxyethyl) isocyanuric acid di (meth) acrylate, And polyvalent (meth) acrylates such as pentaerythritol tri (meth) acrylate.
 前記ウレタン(メタ)アクリレート樹脂の製造方法の例を挙げれば、(1)先ずポリイソシアネートとポリオールを好ましくはNCO/OH=1.3~2で反応させ、末端イソシアネート化合物を生成させ、次いでそれに水酸基含有(メタ)アクリレートをイソシアネート基に対して水酸基がほぼ等量になるように反応する方法と、(2)ポリイソシアネート化合物と水酸基含有(メタ)アクリレートをNCO/OH=2以上で反応させ、片末端イソシアネートの化合物を生成させ、次いでポリオールを加えて反応する方法等が挙げられる。 Examples of the method for producing the urethane (meth) acrylate resin include: (1) First, a polyisocyanate and a polyol are preferably reacted at NCO / OH = 1.3 to 2 to form a terminal isocyanate compound, and then a hydroxyl group is produced. A method of reacting the containing (meth) acrylate so that the hydroxyl groups are approximately equal to the isocyanate group, and (2) reacting the polyisocyanate compound and the hydroxyl-containing (meth) acrylate at NCO / OH = 2 or more, Examples include a method in which a compound of a terminal isocyanate is produced and then a polyol is added to react.
 また、ビニルエステル樹脂として用いられるエポキシ(メタ)アクリレート樹脂とは、好ましくは1分子中に2個以上の(メタ)アクリロイル基を有するもので、エポキシ樹脂と不飽和一塩基酸とをエステル化触媒の存在下で反応して得られるものである。 The epoxy (meth) acrylate resin used as the vinyl ester resin preferably has two or more (meth) acryloyl groups in one molecule, and is an esterification catalyst for epoxy resin and unsaturated monobasic acid. It is obtained by reacting in the presence of.
 ここでいうエポキシ樹脂の例を挙げれば、ビスフェノールタイプまたはノボラックタイプのエポキシ樹脂単独、または、ビスフェノールタイプとノボラックタイプのエポキシ樹脂とを混合した樹脂などであって、その平均エポキシ当量が好ましくは150~450の範囲のものである。 Examples of the epoxy resin mentioned here include a bisphenol type or novolac type epoxy resin alone, or a resin in which a bisphenol type and a novolac type epoxy resin are mixed, and the average epoxy equivalent is preferably 150 to It is in the range of 450.
 ここで、前記ビスフェノールタイプのエポキシ樹脂として代表的なものを挙げれば、エピクロルヒドリンとビスフェノールA若しくはビスフェノールFとの反応により得られる実質的に1分子中に2個以上のエポキシ基を有するグリシジルエーテル型のエポキシ樹脂、メチルエピクロルヒドリンとビスフェノールA若しくはビスフェノールFとの反応により得られるメチルグリシジルエーテル型のエポキシ樹脂、あるいはビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリン若しくはメチルエピクロルヒドリンとから得られるエポキシ樹脂などである。また、前記ノボラックタイプのエポキシ樹脂として代表的なものには、フェノールノボラックまたはクレゾールノボラックと、エピクロルヒドリンまたはメチルエピクロルヒドリンとの反応により得られるエポキシ樹脂などがある。 Here, as a typical example of the bisphenol type epoxy resin, a glycidyl ether type epoxy resin substantially having two or more epoxy groups in one molecule obtained by the reaction of epichlorohydrin and bisphenol A or bisphenol F is used. An epoxy resin, a methyl glycidyl ether-type epoxy resin obtained by reaction of methyl epichlorohydrin and bisphenol A or bisphenol F, an epoxy resin obtained from an alkylene oxide adduct of bisphenol A and epichlorohydrin or methyl epichlorohydrin, or the like. Typical examples of the novolak type epoxy resin include an epoxy resin obtained by a reaction of phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.
 また、エポキシ(メタ)アクリレート樹脂に用いられる不飽和一塩基酸として代表的なものには、例えばアクリル酸、メタアクリル酸、桂皮酸、クロトン酸、マレイン酸モノメチル、マレイン酸モノプロピル、マレイン酸モノ(2-エチルヘキシル)あるいはソルビン酸などが挙げられる。なお、これらの不飽和一塩基酸は、単独でも、2種以上混合しても用いられる。前記エポキシ樹脂と不飽和一塩基酸との反応は、好ましくは60~140℃、特に好ましくは80~120℃の温度においてエステル化触媒を用いて行われる。 Typical examples of unsaturated monobasic acids used for epoxy (meth) acrylate resins include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, monomethyl maleate, monopropyl maleate, and monoester maleate. (2-ethylhexyl) or sorbic acid. These unsaturated monobasic acids may be used alone or in combination of two or more. The reaction between the epoxy resin and the unsaturated monobasic acid is preferably carried out using an esterification catalyst at a temperature of 60 to 140 ° C., particularly preferably 80 to 120 ° C.
 前記のエステル化触媒としては、たとえばトリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン若しくはジアザビシクロオクタンなどの如き三級アミン、トリフェニルホスフィンあるいはジエチルアミン塩酸塩などの如き公知の触媒がそのまま使用できる。 As the esterification catalyst, known catalysts such as tertiary amines such as triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline or diazabicyclooctane, triphenylphosphine or diethylamine hydrochloride Can be used as is.
 ビニルエステル樹脂として用いられるポリエステル(メタ)アクリレート樹脂とは、1分子中に2個以上の(メタ)アクリロイル基を有する飽和若しくは不飽和ポリエステルであり、飽和若しくは不飽和ポリエステルの末端に(メタ)アクリル化合物を反応させたものである。かかる樹脂の数平均分子量としては、好ましくは500~5000である。 The polyester (meth) acrylate resin used as the vinyl ester resin is a saturated or unsaturated polyester having two or more (meth) acryloyl groups in one molecule, and (meth) acrylic at the end of the saturated or unsaturated polyester. the compound is obtained by reacting. The number average molecular weight of such a resin is preferably 500 to 5,000.
 本発明で用いられる飽和ポリエステルとは、飽和二塩基酸類と多価アルコール類との縮合反応、また、不飽和ポリエステルとはα,β-不飽和二塩基酸を含む二塩基酸類と多価アルコール類との縮合反応で得られるものである。なお、不飽和ポリエステルの末端に(メタ)アクリル化合物を反応させた樹脂は、本発明においてはビニルエステル樹脂に含まれるものとし、下記で説明する不飽和ポリエステル樹脂とは区別されるものとする。 The saturated polyester used in the present invention is a condensation reaction between a saturated dibasic acid and a polyhydric alcohol, and the unsaturated polyester is a dibasic acid containing an α, β-unsaturated dibasic acid and a polyhydric alcohol. It is obtained by the condensation reaction. In addition, the resin which made the terminal of unsaturated polyester react with the (meth) acryl compound shall be contained in vinyl ester resin in this invention, and shall be distinguished from the unsaturated polyester resin demonstrated below.
 ここでいう飽和二塩基酸類とは、前記のポリエステルポリオールの項に示した化合物を挙げることができ、α,β-不飽和二塩基酸としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を挙げることができる。また、多価アルコール類についても、前記のポリエステルポリオールの項に示した化合物を挙げることができる。 Examples of the saturated dibasic acid herein include the compounds shown in the above-mentioned polyester polyol, and examples of the α, β-unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, and itaconic acid. And itaconic anhydride. Moreover, the compound shown to the term of the said polyester polyol can be mentioned also about polyhydric alcohol.
 また、ビニルエステル樹脂として用いられるポリエステル(メタ)アクリレート樹脂の(メタ)アクリル化合物としては、不飽和グリシジル化合物、アクリル酸またはメタクリル酸の如き各種の不飽和一塩基酸、およびそのグリシジルエステル類等である。好ましくは、グリシジル(メタ)アクリレートの使用が望ましい。 The (meth) acrylic compound of the polyester (meth) acrylate resin used as the vinyl ester resin includes unsaturated glycidyl compounds, various unsaturated monobasic acids such as acrylic acid or methacrylic acid, and glycidyl esters thereof. is there. Preferably, glycidyl (meth) acrylate is used.
 不飽和ポリエステル樹脂とは、酸成分及びアルコール成分を公知の方法により重縮合させて得られるものであり、熱硬化性樹脂として知られているものであればその種類は特に限定されるものではない。酸成分としては、例えば無水マレイン酸、マレイン酸、フマル酸、イタコン酸等の不飽和二塩基酸が用いられる。また必要に応じてフタル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、セバチン酸等の飽和二塩基酸、安息香酸、トリメリット酸等の二塩基酸以外の酸等を用いることができる。アルコール成分としては、前記のポリエステルポリオールの項に示した多価アルコール類を挙げることができる。 The unsaturated polyester resin is obtained by polycondensing an acid component and an alcohol component by a known method, and the kind thereof is not particularly limited as long as it is known as a thermosetting resin. . As the acid component, for example, unsaturated dibasic acids such as maleic anhydride, maleic acid, fumaric acid and itaconic acid are used. If necessary, use a saturated dibasic acid such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, and sebacic acid, and acids other than dibasic acids such as benzoic acid and trimellitic acid. be able to. Examples of the alcohol component include polyhydric alcohols shown in the above-mentioned polyester polyol section.
成分(b)ビニルモノマーおよび/または(メタ)アクリレートモノマー
 本発明の組成物の成分(b)は、ビニルモノマーおよび/または(メタ)アクリレートモノマーである。具体的例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレートが挙げられる。
Component (b) Vinyl monomer and / or (meth) acrylate monomer Component (b) of the composition of the present invention is a vinyl monomer and / or (meth) acrylate monomer. Specific examples include, for example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, tris (2-hydroxyethyl) ) Isocyanurate tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, and tricyclodecane dimethanol di (meth) acrylate.
 その他には、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、ジアセトン(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N,N-ジメチル(メタ)アクリルアミド、t-オクチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、N,N-ジエチル(メタ)アクリルアミド、N,N′-ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ビニルエーテル類である、ヒドロキシブチルビニルエーテル、ラウリルビニルエーテル、セチルビニルエーテル、2-エチルヘキシルビニルエーテルなどを挙げることができる。 Others include hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) ) Acrylate, butyl (meth) acrylate, amyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) ) Acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isode (Meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, benzyl (meth) Acrylate, cyclohexyl (meth) acrylate, phenoxyethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxyethylene glycol (meth) acrylate, ethoxyethoxyethyl (meth) acrylate, methoxypolyethylene glycol (Meth) acrylate, methoxypolypropylene glycol (meth) acrylate, dicyclopentadiene (Meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, tricyclodecanyl (meth) acrylate, isobornyl (meth) acrylate, bornyl (meth) acrylate, diacetone (meth) acrylamide, iso Butoxymethyl (meth) acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N, N-dimethyl (meth) acrylamide, t-octyl (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, N, N-diethyl (meth) acrylamide, N, N'-dimethylaminopropyl (meth) acrylamide, (meth) acryloylmo Examples include ruphorin and vinyl ethers such as hydroxybutyl vinyl ether, lauryl vinyl ether, cetyl vinyl ether, and 2-ethylhexyl vinyl ether.
 本発明の組成物の成分(b)ビニルモノマーおよび/または(メタ)アクリレートモノマーは、被着体に対する接着性(以下、単に接着性ということがある)、低粘度発現性の点で好ましくは、環状構造および1個のエチレン性不飽和基を有する化合物(b-1)、および、ジアクリレート化合物(b-2)から選ばれる少なくとも1種のモノマーであり、該(b-1)および(b-2)を組み合わせて用いるのがさらに好ましい。 The component (b) vinyl monomer and / or (meth) acrylate monomer of the composition of the present invention is preferably in view of adhesiveness to an adherend (hereinafter sometimes simply referred to as adhesiveness) and low viscosity expression. A compound (b-1) having a cyclic structure and one ethylenically unsaturated group, and at least one monomer selected from a diacrylate compound (b-2), wherein (b-1) and (b -2) is more preferably used in combination.
(b-1)環状構造および1個のエチレン性不飽和基を有する化合物
 本発明で用いられる成分(b-1)は、環状構造および1個のエチレン性不飽和基を有する化合物である。
 成分(b)としては、例えば、イソボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;ベンジル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、アクリロイルモルホリン、ビニルイミダゾール、ビニルピリジン等が挙げられる。
 さらに、下記式(1)~(3)で表される化合物を挙げることができる。
(B-1) Compound having a cyclic structure and one ethylenically unsaturated group Component (b-1) used in the present invention is a compound having a cyclic structure and one ethylenically unsaturated group.
Examples of the component (b) include alicyclic structure-containing (meth) acrylates such as isobornyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, and dicyclopentanyl (meth) acrylate; Examples include benzyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, acryloylmorpholine, vinylimidazole, vinylpyridine and the like.
Furthermore, compounds represented by the following formulas (1) to (3) can be given.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R2は水素原子またはメチル基を示し、R3は炭素数2~8、好ましくは2~5のアルキレン基を示し、R4は水素原子またはメチル基を示し、pは好ましくは1~4の数を示す。) (Wherein R 2 represents a hydrogen atom or a methyl group, R 3 represents an alkylene group having 2 to 8 carbon atoms, preferably 2 to 5 carbon atoms, R 4 represents a hydrogen atom or a methyl group, and p is preferably Shows the number from 1 to 4.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R5、R6、R7およびR8は互いに独立で、HまたはCH3であり、qは1~5の整数である) (Wherein R 5 , R 6 , R 7 and R 8 are independent of each other and are H or CH 3 , and q is an integer of 1 to 5)
 また、成分(b)としては接着性、低粘度発現性に優れる点でN-ビニル基を有するモノマーが挙げられ、例えばN-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルホルムアミド、N-ビニルイミダゾール、N-ビニルカルバゾール等が挙げられる。その中でもN-ビニルカプロラクタムが接着性、低粘度発現性に優れる点で好ましい。 Examples of the component (b) include monomers having an N-vinyl group in terms of excellent adhesiveness and low viscosity, such as N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylformamide, N-vinylimidazole. , N-vinylcarbazole and the like. Of these, N-vinylcaprolactam is preferred because of its excellent adhesiveness and low viscosity.
 本発明で用いられる(b-2)成分はジアクリレートモノマーである。
 本発明で用いられるジアクリレートモノマーとしては、エチレングリコールジアクリレート、ジプロピレングリコールジアクリレート(DPGDA)、1,6-ヘキサンジオールジアクリレート(HDDA)、1,4-ブタンジオールジアクリレート、テトラエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート(TPGDA)、PO変性ネオペンチルグリコールジアクリレート、変性ビスフェノールAジアクリレート等を挙げる事ができる。透明性、引張強度、耐候性の点において、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレートが好ましい。
The component (b-2) used in the present invention is a diacrylate monomer.
Examples of the diacrylate monomer used in the present invention include ethylene glycol diacrylate, dipropylene glycol diacrylate (DPGDA), 1,6-hexanediol diacrylate (HDDA), 1,4-butanediol diacrylate, and tetraethylene glycol diacrylate. Examples include acrylate, tripropylene glycol diacrylate (TPGDA), PO-modified neopentyl glycol diacrylate, and modified bisphenol A diacrylate. In terms of transparency, tensile strength, and weather resistance, dipropylene glycol diacrylate and tripropylene glycol diacrylate are preferable.
 該(b-1)および(b-2)を組み合わせて用いる場合、その配合割合は、(b-1)+(b-2)=100質量部としたときに、(b-1)は80~20質量部、好ましくは75~25質量部、(b-2)は20~80質量部、好ましくは25~75質量部である。
 成分(b)と成分(e)を上記割合で併用する場合は透明性と接着性のバランスが優れる。
When (b-1) and (b-2) are used in combination, when the blending ratio is (b-1) + (b-2) = 100 parts by mass, (b-1) is 80 -20 parts by mass, preferably 75-25 parts by mass, and (b-2) is 20-80 parts by mass, preferably 25-75 parts by mass.
When the component (b) and the component (e) are used in the above proportion, the balance between transparency and adhesiveness is excellent.
(c)変性剤
 本発明で用いられる成分(c)は、変性剤である。
 成分(c)変性剤は、本発明の組成物において接着性向上の機能を有する。
 変性剤(c)としては、例えば水酸基価40~330mgKOH/gのポリオール(c-1);および水酸基価40~330mgKOH/gであり、かつ酸価が2~20mgKOH/gであるポリオール(c-2);変性ゴム(c-3);エポキシ当量が150~700g/モルである化合物(c-4)からなる群から選択された少なくとも1種が挙げられる。
(C) Denaturant Component (c) used in the present invention is a denaturant.
The component (c) modifier has a function of improving adhesiveness in the composition of the present invention.
Examples of the modifier (c) include a polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g; and a polyol (c-) having a hydroxyl value of 40 to 330 mgKOH / g and an acid value of 2 to 20 mgKOH / g. 2); modified rubber (c-3); at least one selected from the group consisting of compound (c-4) having an epoxy equivalent of 150 to 700 g / mol.
(i)水酸基価40~330mgKOH/gのポリオール(c-1)について説明する。 (I) The polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g will be described.
 成分(c)の水酸基価は、本発明の太陽電池パネルにおける太陽電池セルの受光面側に配置された透光性を有する透光性部材(とくに、ガラスまたはポリカーボネート樹脂)と、前記太陽電池セルの裏面側に配置された裏面部材(とくにポリエチレンテレフタレートのようなポリエステル系樹脂)に対する選択的な接着性の向上に寄与する。以下、透光性部材および裏面部材を総称して「被着体」と称することがある。 The hydroxyl value of the component (c) includes a translucent member (in particular, glass or polycarbonate resin) having translucency disposed on the light receiving surface side of the solar cell in the solar cell panel of the present invention, and the solar cell. It contributes to the improvement of the selective adhesiveness with respect to the back surface member (especially polyester resin like polyethylene terephthalate) arrange | positioned at the back surface side. Hereinafter, the translucent member and the back member may be collectively referred to as an “adhered body”.
 また、(i)水酸基価40~330mgKOH/gのポリオール(c-1)としては、芳香族系、脂肪族系、ポリブタジエン系、ヒマシ油系、ポリイソプレン系等が挙げられるが水酸基価が上記範囲であればいずれのタイプであっても被着体に対する選択的な接着性は良好である。
 (i)水酸基価は40~330mgKOH/gであるのが上記接着性の観点から好ましく、150~300mgKOH/gであるのがさらに好ましい。
The (i) polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g includes aromatic, aliphatic, polybutadiene, castor oil, polyisoprene, and the like. As long as it is any type, the selective adhesiveness to the adherend is good.
(I) The hydroxyl value is preferably 40 to 330 mgKOH / g from the viewpoint of adhesiveness, and more preferably 150 to 300 mgKOH / g.
 (i)水酸基価40~330mgKOH/gのポリオール(c-1)として、被着体に対する選択的な接着性の点でさらに好ましくは、
(i)水酸基価40~330mgKOH/gのヒマシ油系ポリオール(c-1-1)
(i)水酸基価40~330mgKOH/gのポリブタジエン系ポリオール(c-1-2)
(i)水酸基価40~330mgKOH/gのポリイソプレン系ポリオールまたはその水素添加物(c-1-3)
(i)水酸基価40~330mgKOH/gのエポキシポリオール樹脂(c-1-4)
が挙げられる。
(I) As a polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g, more preferably, from the viewpoint of selective adhesiveness to an adherend,
(I) Castor oil-based polyol (c-1-1) having a hydroxyl value of 40 to 330 mgKOH / g
(I) Polybutadiene-based polyol (c-1-2) having a hydroxyl value of 40 to 330 mgKOH / g
(I) Polyisoprene polyol having a hydroxyl value of 40 to 330 mgKOH / g or a hydrogenated product thereof (c-1-3)
(I) Epoxy polyol resin (c-1-4) having a hydroxyl value of 40 to 330 mgKOH / g
Is mentioned.
 本発明においては、成分(c)のポリオールは必要に応じて2種類以上を混合して用いることができる。 In the present invention, the polyol of component (c) can be used as a mixture of two or more if necessary.
 (i)水酸基価40~330mgKOH/gのヒマシ油系ポリオール(c-1-1)について説明する。 (I) A castor oil-based polyol (c-1-1) having a hydroxyl value of 40 to 330 mgKOH / g will be described.
 前記「ヒマシ油」は、リシノレイン酸とグリセリンとのトリエステル化合物を含む油脂である。通常、天然油脂又は天然油脂加工物であるが、上記化合物を含めば合成油脂であってもよい。このヒマシ油に含まれるトリエステル化合物を構成するリシノレイン酸は、トリエステル化合物全体を構成する脂肪酸のうちの90モル%以上含有されることが好ましい。また、このヒマシ油は、水素添加物(通常、リシノレイン酸骨格中の炭素間不飽和結合に対する水添)等の加工品であってもよい。通常、ヒマシ油には、上記トリエステル化合物(水添物である場合には、上記トリエステル化合物の水添物)が、油脂全体の90モル%以上(100モル%を含む)含有される。 The “castor oil” is an oil containing a triester compound of ricinoleic acid and glycerin. Usually, it is a natural fat or oil or a processed natural fat or oil, but it may be a synthetic fat or oil if it contains the above compounds. The ricinoleic acid constituting the triester compound contained in this castor oil is preferably contained in an amount of 90 mol% or more of the fatty acids constituting the whole triester compound. Further, the castor oil may be a processed product such as a hydrogenated product (usually hydrogenated to an intercarbon unsaturated bond in the ricinoleic acid skeleton). Usually, castor oil contains 90 mol% or more (including 100 mol%) of the above-described triester compound (in the case of a hydrogenated product, a hydrogenated product of the triester compound).
 前記「ヒマシ油系ポリオール」は、リシノレイン酸及び/又は水添リシノレイン酸と多価アルコールとのエステル化合物である。この構成を有すればヒマシ油を出発原料して得られたポリオールであっても、ヒマシ油以外の原料を出発原料として得られたポリオールであってもよい。この多価アルコールは特に限定されない。 The “castor oil-based polyol” is an ester compound of ricinoleic acid and / or hydrogenated ricinoleic acid and a polyhydric alcohol. If it has this structure, it may be a polyol obtained by using castor oil as a starting material, or a polyol obtained by using a raw material other than castor oil as a starting material. This polyhydric alcohol is not particularly limited.
 ヒマシ油系ポリオールとしては、ヒマシ油より誘導されるポリオール、ヒマシ油を変性して得られるポリオールが挙げられる。 Castor oil-based polyols include polyols derived from castor oil and polyols obtained by modifying castor oil.
 ヒマシ油より誘導されるポリオールとは、このグリセリンエステルのリシノレイン酸の一部をオレイン酸に置換したもの、ヒマシ油を鹸化して得られるリシノレイン酸をトリメチロールプロパンその他の短分子ポリオールとエステル化したもの、これらとヒマシ油との混合物等、ヒマシ油由来の脂肪酸エステル系ポリオールである。 The polyol derived from castor oil is a glycerin ester in which part of the ricinoleic acid is replaced with oleic acid, and ricinoleic acid obtained by saponifying castor oil is esterified with trimethylolpropane or other short molecular polyols. These are fatty acid ester polyols derived from castor oil, such as a mixture of these and castor oil.
 ヒマシ油を変性して得られるポリオールとしては、例えば植物油変性ポリオール、芳香族骨格(例えばビスフェノールA等)を有する変性ポリオール等が挙げられる。植物油変性ポリオールは、グリセリンエステルのリシノレイン酸の一部を、他の植物より得られる脂肪酸、例えば大豆油、なたね油、オリーブ油等より得られるリノール酸、リノレン酸、オレイン酸等の高級脂肪酸に置換して得られるものである。 Examples of polyols obtained by modifying castor oil include vegetable oil-modified polyols and modified polyols having an aromatic skeleton (such as bisphenol A). A vegetable oil-modified polyol is obtained by replacing a part of glycerin ester ricinoleic acid with a fatty acid obtained from other plants, for example, higher fatty acids such as linoleic acid, linolenic acid, oleic acid obtained from soybean oil, rapeseed oil, olive oil, etc. It is obtained.
 ヒマシ油系ポリオールの中でも、本発明の効果の点から、前記成分(i)水酸基価40~330mgKOH/gのヒマシ油系ポリオール(c-1-1)が好ましい。
 さらに、封止材の強靭性(耐衝撃性)、柔軟性、および被着体との接着性を向上させる点で(i)水酸基価40~330mgKOH/gの芳香族系ヒマシ油系ポリオール(c-1-1-1)が好ましい。より好ましくは、150~240mgKOH/gである。
Among the castor oil-based polyols, castor oil-based polyol (c-1-1) having a component (i) hydroxyl value of 40 to 330 mgKOH / g is preferable from the viewpoint of the effect of the present invention.
Further, (i) an aromatic castor oil-based polyol (c) having a hydroxyl value of 40 to 330 mgKOH / g in terms of improving toughness (impact resistance), flexibility, and adhesion to an adherend. 1-1-1) is preferred. More preferably, it is 150 to 240 mg KOH / g.
 前記成分(c-1-1-1)は、芳香族骨格(例えばビスフェノールA等)を有する、ヒマシ油から誘導された変性ポリオールである。当該成分(c-1-1-1)は、市販されており、例えば「URIC ACシリーズ」(伊藤製油(株))等が挙げられる。中でも、リシノレイン酸にポリアルキレングリコールとビスフェノールAを付加させた付加物が、被着体、とくにポリカーボネート、ガラス、ポリエステル系樹脂に対する接着性が好ましく、例えば、次の式(4)で表すことができる。 The component (c-1-1-1) is a modified polyol derived from castor oil having an aromatic skeleton (for example, bisphenol A). The component (c-1-1-1) is commercially available, and examples thereof include “URIC AC series” (Ito Oil Co., Ltd.). Among these, an adduct obtained by adding polyalkylene glycol and bisphenol A to ricinoleic acid has preferable adhesion to an adherend, particularly polycarbonate, glass, and polyester resin, and can be represented by, for example, the following formula (4). .
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(4)中、mは平均2~5の数を表し、nは平均2~5の数を表す。 In the formula (4), m represents an average number of 2 to 5, and n represents an average number of 2 to 5.
 前記式(4)で表されるヒマシ油から誘導された変性ポリオールは、例えば商品名URIC  AC―005(水酸基価194~214mgKOH/mg、粘度700~1500mPa・s/25℃)、AC-006(水酸基価168~187mgKOH/mg、粘度3000~5000mPa・s/25℃)、AC-008(水酸基価180mgKOH/mg、粘度1600mPa・s/25℃)、AC-009(水酸基価225mgKOH/mg、粘度1500mPa・s/25℃)として伊藤製油(株)から入手できる。 Modified polyols derived from castor oil represented by the above formula (4) are, for example, trade names URIC AC-005 (hydroxyl value 194 to 214 mg KOH / mg, viscosity 700 to 1500 mPa · s / 25 ° C.), AC-006 ( Hydroxyl value 168 to 187 mgKOH / mg, viscosity 3000 to 5000 mPa · s / 25 ° C., AC-008 (hydroxyl value 180 mgKOH / mg, viscosity 1600 mPa · s / 25 ° C.), AC-009 (hydroxyl value 225 mgKOH / mg, viscosity 1500 mPa -It can obtain from Ito Oil Co., Ltd. as s / 25 degreeC.
 (i)水酸基価40~330mgKOH/gのポリブタジエン系ポリオール(c-1-2)について説明する。 (I) A polybutadiene-based polyol (c-1-2) having a hydroxyl value of 40 to 330 mgKOH / g will be described.
 本発明で使用されるポリブタジエン系ポリオールとしては、例えば、1,2-ポリブタジエンポリオール、1,4-ポリブタジエンポリオール等のホモポリマー、ポリ(ペンタジエン・ブタジエン)ポリオール、ポリ(ブタジエン・スチレン)ポリオール、ポリ(ブタジエン・アクリロニトリル)ポリオール等のコポリマー、それらポリオールに水素を付加した水素添加ポリブタジエン系ポリオールが挙げられる。
 ポリブタジエン系ポリオールは市販されており、例えば、出光興産(株)製の「Poly bd R-15HT(水酸基価102.7mgKOH/mg、Mw1200)」、「Poly bd R-45HT(水酸基価46.6mgKOH/mg、Mw2800)」等が挙げられる。
 また、本発明の効果の点から(c-1-2)ポリブタジエン系ポリオールの水酸基価は40~330mgKOH/gであるのが好ましく、40~110mgKOH/gであるのがさらに好ましい。
 (c-1-2)ポリブタジエン系ポリオールの重量平均分子量(GPC法)は、50~3000であるのが好ましく、800~1500であるのがさらに好ましい。
Examples of the polybutadiene-based polyol used in the present invention include homopolymers such as 1,2-polybutadiene polyol and 1,4-polybutadiene polyol, poly (pentadiene / butadiene) polyol, poly (butadiene / styrene) polyol, poly ( Examples thereof include copolymers such as butadiene / acrylonitrile) polyols, and hydrogenated polybutadiene-based polyols obtained by adding hydrogen to these polyols.
Polybutadiene-based polyols are commercially available. For example, “Poly bd R-15HT (hydroxyl value 102.7 mgKOH / mg, Mw1200)” and “Poly bd R-45HT (hydroxyl value 46.6 mgKOH / manufactured by Idemitsu Kosan Co., Ltd.) are available. mg, Mw2800) "and the like.
In view of the effects of the present invention, the hydroxyl value of the (c-1-2) polybutadiene-based polyol is preferably 40 to 330 mgKOH / g, more preferably 40 to 110 mgKOH / g.
(C-1-2) The weight average molecular weight (GPC method) of the polybutadiene-based polyol is preferably 50 to 3000, and more preferably 800 to 1500.
(i)水酸基価40~330mgKOH/gのポリイソプレン系ポリオールまたはその水素添加物(c-1-3)について説明する。 (I) A polyisoprene-based polyol having a hydroxyl value of 40 to 330 mgKOH / g or a hydrogenated product thereof (c-1-3) will be described.
 このような成分(c-1-3)としては、例えば出光社のPoly ip(登録商標)(水酸基末端液状ポリイソプレン)が挙げられる。「Poly ip(登録商標)」(水酸基価46.6mgKOH/mg、Mn2500)は、分子末端に反応性の高い水酸基を備えたポリイソプレンタイプの液状ポリマーである。
 水素添加物としては、出光社のエポール(登録商標)(水酸基末端液状ポリオレフィン)が挙げられる。「エポール(登録商標)」(水酸基価50.5mgKOH/mg、Mn2500)は、「Poly ip(登録商標)」に水添して得られる液状のポリオレフィンである。分子内に二重結合はほとんど残っていない。
Examples of such component (c-1-3) include Polyip (registered trademark) (hydroxyl-terminated liquid polyisoprene) manufactured by Idemitsu. “Poly ip (registered trademark)” (hydroxyl value 46.6 mg KOH / mg, Mn 2500) is a polyisoprene type liquid polymer having a highly reactive hydroxyl group at the molecular end.
An example of the hydrogenated product is Epole (registered trademark) (hydroxyl-terminated liquid polyolefin) manufactured by Idemitsu. “Epol®” (hydroxyl value 50.5 mg KOH / mg, Mn 2500) is a liquid polyolefin obtained by hydrogenating “Poly ip®”. Almost no double bonds remain in the molecule.
(i)水酸基価40~330mgKOH/gのエポキシポリオール樹脂(c-1-4)について説明する。 (I) The epoxy polyol resin (c-1-4) having a hydroxyl value of 40 to 330 mgKOH / g will be described.
 本発明において使用される(i)水酸基価40~330mgKOH/gのエポキシポリオール樹脂(c-1-4)は、エポキシ樹脂に活性水素化合物を反応させて得られるものである。 (I) The epoxy polyol resin (c-1-4) having a hydroxyl value of 40 to 330 mgKOH / g used in the present invention is obtained by reacting an epoxy resin with an active hydrogen compound.
 ここで使用されるエポキシ樹脂としては、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルシノール等の単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、ビスフェノールAノボラック、ビスフェノールFノボラック、テルペンジフェノール等の多核多価フェノール化合物のポリグリジルエーテル化合物;上記単核多価フェノール化合物あるいは多核多価フェノール化合物のエチレンオキシド及び/又はプロピレンオキシド付加物のポリグリシジルエーテル化合物;上記単核多価フェノール化合物の水添物のポリグリシジルエーテル化合物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキシド付加物等の多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族又は脂環族多塩基酸のグリシジルエステル類及びグリシジルメタクリレートの単独重合体又は共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、ジシクロペンタンジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体、トリグリシジルイソシアヌレート等の複素環化合物が挙げられる。また、これらのエポキシ樹脂は、末端イソシアネートのプレポリマーによって内部架橋されたものでもよい。 Examples of the epoxy resin used here include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, pyrocatechol, and phloroglucinol; dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis ( Orthocresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4- Hydroxycumylbenzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobis Polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as enol, oxybisphenol, phenol novolak, orthocresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, resorcin novolak, bisphenol A novolak, bisphenol F novolak, terpene diphenol; Polyglycidyl ether compound of ethylene oxide and / or propylene oxide adduct of the above mononuclear polyhydric phenol compound or polynuclear polyphenol compound; polyglycidyl ether compound of hydrogenated mononuclear polyhydric phenol compound; ethylene glycol, propylene glycol , Butylene glycol, hexanediol, polyglycol, thiodiglycol, glycerin, Polyglycidyl ethers of polyhydric alcohols such as methylolpropane, pentaerythritol, sorbitol, bisphenol A-ethylene oxide adduct; maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, suberic acid, adipic acid, azelaic acid, sebacin Acid, dimer acid, trimer acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, pyromellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid, aliphatic such as endomethylenetetrahydrophthalic acid, aromatic or Homopolymers or copolymers of glycidyl esters of alicyclic polybasic acids and glycidyl methacrylate; glycidyl such as N, N-diglycidylaniline, bis (4- (N-methyl-N-glycidylamino) phenyl) methane Has an amino group Epoxy compounds; vinylcyclohexene diepoxide, dicyclopentanediene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-6-methylcyclohexanecarboxy Epoxidized products of cyclic olefin compounds such as bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate; epoxidized conjugated diene polymers such as epoxidized polybutadiene and epoxidized styrene-butadiene copolymer, triglycidyl isocyanate And heterocyclic compounds such as nurate. In addition, these epoxy resins may be internally crosslinked by a prepolymer of terminal isocyanate.
 これらのエポキシ樹脂の中でも、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール(ビスフェノールAD)、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)等のポリグリシジルエーテル化合物等のビスフェノール型エポキシ樹脂を使用すると、被着体に対する優れた接着性を示すため好ましい。 Among these epoxy resins, biphenol, methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol (bisphenol AD), isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol), tetrabromobisphenol A, Excellent adhesion to adherends when bisphenol type epoxy resins such as polyglycidyl ether compounds such as 1,3-bis (4-hydroxycumylbenzene) and 1,4-bis (4-hydroxycumylbenzene) are used It is preferable because of its properties.
(i)水酸基価40~330mgKOH/gのエポキシポリオール樹脂(c-1-4)は、上記エポキシ樹脂のエポキシ基と、カルボン酸化合物、ポリオール、アミノ化合物等の活性水素化合物とを反応して得られるものである。 (I) An epoxy polyol resin (c-1-4) having a hydroxyl value of 40 to 330 mgKOH / g is obtained by reacting an epoxy group of the epoxy resin with an active hydrogen compound such as a carboxylic acid compound, a polyol or an amino compound. It is what
 上記カルボン酸化合物としては、酢酸、プロピオン酸、2,2-ジメチロールプロピオン酸、12-ヒドロキシステアリン酸、乳酸、酪酸、オクチル酸、リシノール酸、ラウリン酸、安息香酸、トルイル酸、桂皮酸、フェニル酢酸、シクロヘキサンカルボン酸等の脂肪族、芳香族又は脂環式モノカルボン酸、マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、アジピン酸、ダイマー酸、フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロ酸、ヒドロキシポリカルボン酸等が挙げられる。 Examples of the carboxylic acid compound include acetic acid, propionic acid, 2,2-dimethylolpropionic acid, 12-hydroxystearic acid, lactic acid, butyric acid, octylic acid, ricinoleic acid, lauric acid, benzoic acid, toluic acid, cinnamic acid, phenyl Aliphatic, aromatic or cycloaliphatic monocarboxylic acids such as acetic acid and cyclohexanecarboxylic acid, maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, adipic acid, dimer acid, phthalic acid, isophthalic acid, terephthalic acid, Examples include hexahydro acid and hydroxypolycarboxylic acid.
 上記ポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、2-メチル-1,3-プロピレングリコール、2,2-ジメチル-1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2,4-トリメチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,6-ヘキサンジオール、1,2-オクタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオールが挙げられる。 Examples of the polyol include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2-methyl-1,3-propylene glycol, 2,2-dimethyl-1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,2,4-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 1,2-octanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, glycerin, trimethylolpropane, pentaerythritol Like low molecular weight polyols is.
上記アミノ化合物としては、ジブチルアミン、ジオクチルアミン等のジアルキルアミン化合物;メチルエタノールアミン、ブチルエタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、ジメチルアミノプロピルエタノールアミン等のアルカノールアミン化合物;モルホリン、ピペリジン、4-メチルピペラジン等の複素環式アミン化合物が挙げられる。 Examples of the amino compounds include dialkylamine compounds such as dibutylamine and dioctylamine; alkanolamine compounds such as methylethanolamine, butylethanolamine, diethanolamine, diisopropanolamine, and dimethylaminopropylethanolamine; morpholine, piperidine, 4-methylpiperazine And heterocyclic amine compounds such as
 上記活性水素化合物の中でも、ジエタノールアミン等のアルカノールアミン化合物が好ましい。 Among the above active hydrogen compounds, alkanolamine compounds such as diethanolamine are preferable.
 また、モノエタノールアミン、モノイソプロパノールアミン等の活性水素基を2個以上有する化合物で、エポキシ樹脂を鎖延長することもできる。 Also, the epoxy resin can be chain-extended with a compound having two or more active hydrogen groups such as monoethanolamine and monoisopropanolamine.
 上記エポキシ樹脂に上記活性水素化合物を反応させる際には、エポキシ樹脂に活性水素化合物を付加させる通常の方法を採用することができ、例えば、三級アミン化合物、ホスホニウム塩等の周知の触媒の存在下に、両者を60~200℃に加熱し、3~10時間反応させる方法を用いることができる。 When the active hydrogen compound is reacted with the epoxy resin, a normal method of adding the active hydrogen compound to the epoxy resin can be employed. For example, the presence of a known catalyst such as a tertiary amine compound or a phosphonium salt. Below, a method in which both are heated to 60 to 200 ° C. and reacted for 3 to 10 hours can be used.
(i)水酸基価40~330mgKOH/gのエポキシポリオール樹脂(c-1-4)の好ましい水酸基価は本発明の効果の点から100~140mgKOH/gである。 (I) A preferable hydroxyl value of the epoxy polyol resin (c-1-4) having a hydroxyl value of 40 to 330 mgKOH / g is 100 to 140 mgKOH / g from the viewpoint of the effect of the present invention.
 上記(i)水酸基価40~330mgKOH/gのエポキシポリオール樹脂(c-1-4)の例としてはDIC株式会社製EPICLON U-125-60BT(水酸基価100~140mgKOH/g)が挙げられる。 Examples of the epoxy polyol resin (c-1-4) having (i) a hydroxyl value of 40 to 330 mgKOH / g include EPICLON U-125-60BT (hydroxyl value 100 to 140 mgKOH / g) manufactured by DIC Corporation.
 (i)水酸基価40~330mgKOH/gであり、かつ(ii)酸価が2~20mgKOH/gであるポリオール(c-2)について説明する。 (I) A polyol (c-2) having a hydroxyl value of 40 to 330 mgKOH / g and (ii) an acid value of 2 to 20 mgKOH / g will be described.
 (i)水酸基価40~330mgKOH/gであり、かつ(ii)酸価が2~20mgKOH/gであるポリオール(c-2)としては、芳香族系、脂肪族系、あるいはヒマシ油系であっても(i)の水酸基価、(ii)の酸価を満たすことにより被着体(とくにポリカーボネート樹脂、ガラス、ポリエステル系樹脂)に対する選択的な接着性(特に異材質間の接着性)が向上する。
 (i)の水酸基価は、230~300mgKOH/gであるのがさらに好ましい。
 (ii)の酸価は、4~15mgKOH/gであるのがさらに好ましい。
The polyol (c-2) having a hydroxyl value of 40 to 330 mg KOH / g and (ii) an acid value of 2 to 20 mg KOH / g is aromatic, aliphatic or castor oil-based. However, by satisfying the hydroxyl value of (i) and the acid value of (ii), selective adhesion to adherends (especially polycarbonate resin, glass, polyester resin) (especially adhesion between different materials) is improved. To do.
The hydroxyl value of (i) is more preferably 230 to 300 mgKOH / g.
The acid value of (ii) is more preferably 4 to 15 mg KOH / g.
 (i)かつ(ii)を満たす場合は、
 (i)水酸基価40~330mgKOH/gであり、かつ(ii)酸価が2~20mgKOH/gであるポリオール(c-2)としては、
(i)水酸基価40~330mgKOH/gであり、かつ(ii)酸価が2~20mgKOH/gであるヒマシ油系ポリオール(c-2-1)
が例示される。
If (i) and (ii) are satisfied,
As the polyol (c-2) having a hydroxyl value of 40 to 330 mgKOH / g and (ii) an acid value of 2 to 20 mgKOH / g,
(I) a castor oil-based polyol (c-2-1) having a hydroxyl value of 40 to 330 mgKOH / g and (ii) an acid value of 2 to 20 mgKOH / g
Is exemplified.
 (i)水酸基価40~330mgKOH/gであり、かつ(ii)酸価が2~20mgKOH/gであるヒマシ油系ポリオール(c-2-1)は、ヒマシ油由来のポリオールであり、例えば、特開2005-89712号公報に開示されているように、リシノレイン酸から誘導されたヒマシ油系ポリオールと、全炭素数が12以上の酸性リン酸エステル化合物と、必要に応じてテルペンフェノール類を含有するポリオール組成物も使用することができる。これらは例えば商品名URIC H-1262、H2151Uとして伊藤製油(株)から入手できる。 (I) A castor oil-based polyol (c-2-1) having a hydroxyl value of 40 to 330 mg KOH / g and (ii) an acid value of 2 to 20 mg KOH / g is a polyol derived from castor oil. As disclosed in JP-A-2005-89712, it contains a castor oil-based polyol derived from ricinoleic acid, an acidic phosphate ester compound having a total carbon number of 12 or more, and, if necessary, terpene phenols Polyol compositions can also be used. These can be obtained from Ito Refinery under the trade names URIC H-1262 and H2151U, for example.
 上記伊藤製油 URIC H-1262は、ヒマシ油系ポリオールと全炭素数が12以上の酸性リン酸エステル化合物を含むポリオール(粘度:3,500~8,500mPa・s/25℃、水酸基価:240~290(単位mgKOH/g)、酸価:4~15(単位mgKOH/g))であり、被着体(とくにポリカーボネート樹脂、ガラス、ポリエステル系樹脂)との接着性に優れ、特に金属接着性(とくにAlに対する接着性)、耐加水分解性に優れる。
 また、上記伊藤製油 URIC H-2151Uは、ヒマシ油系ポリオールと全炭素数が12以上の酸性リン酸エステル化合物とテルペンフェノール類を含有するポリオール (粘度:3,500~8,500mPa・s/25℃、水酸基価:240~290(単位mgKOH/g)、酸価:4~15(単位mgKOH/g))であり、被着体(とくにポリカーボネート樹脂、ガラス、ポリエステル系樹脂)との接着性に優れ、特に金属接着性(とくにAlに対する接着性)、耐加水分解性に優れる。
The Ito Oil URIC H-1262 is a polyol containing a castor oil-based polyol and an acidic phosphate ester compound having a total carbon number of 12 or more (viscosity: 3,500 to 8,500 mPa · s / 25 ° C., hydroxyl value: 240 to 290 (unit mgKOH / g), acid value: 4 to 15 (unit mgKOH / g)), excellent adhesion to adherends (especially polycarbonate resin, glass, polyester resin), especially metal adhesion ( Excellent adhesion to Al) and hydrolysis resistance.
The Ito Oil URIC H-2151U is a polyol containing a castor oil-based polyol, an acidic phosphate compound having 12 or more carbon atoms and terpene phenols (viscosity: 3,500 to 8,500 mPa · s / 25). ° C, hydroxyl value: 240 to 290 (unit mgKOH / g), acid value: 4 to 15 (unit mgKOH / g)), and adherence to adherends (especially polycarbonate resin, glass, polyester resin) Excellent, especially metal adhesion (particularly adhesion to Al) and hydrolysis resistance.
 変性ゴム(c-3)について説明する。
本発明で使用される変性ゴム(c-3)としては、(c-3-1)液状のカルボキシル化ポリイソプレン及び(c-3-2)カルボキシル化ポリブタジエンが挙げられる。
The modified rubber (c-3) will be described.
Examples of the modified rubber (c-3) used in the present invention include (c-3-1) liquid carboxylated polyisoprene and (c-3-2) carboxylated polybutadiene.
(c-3-1)カルボキシル化ポリイソプレン
 本発明で使用されるカルボキシル化ポリイソプレン(c-3-1)は、本発明の組成物を被着体と接着させる際に、主として被着体表面のぬれ性を向上させ、接着性を向上させる機能を果たす。
 成分(c-3-1)としては、例えばマレイン化ポリイソプレンとしてクラレ社製のLIR-420が挙げられる。
(C-3-1) Carboxylated polyisoprene The carboxylated polyisoprene (c-3-1) used in the present invention is mainly used when adhering the composition of the present invention to an adherend. Improves wettability and improves the adhesion.
Examples of the component (c-3-1) include LIR-420 manufactured by Kuraray as maleated polyisoprene.
(c-3-2)カルボキシル化ポリブタジエン
 本発明で使用されるカルボキシル化ポリブタジエン(c)は、本発明の組成物を被着体と接着させる際に接着性を向上させる機能を果たす。
 成分(c-3-2)は、ポリブタジエンにおける主鎖のミクロ構造がビニル1,2-結合型、トランス1,4-結合型、シス1,4-結合型からなる、室温において透明な液状の重合体である。ここで、ビニル1,2-結合は30重量%以下であることが好ましく、ビニル1,2-結合が30重量%を超えては、得られる組成物の貯蔵安定性が悪化するため好ましくない。また、シス1,4-結合は、40重量%以上であることが好ましく、シス1,4-結合が40重量%未満では、得られる組成物の接着性が低下するため好ましくない。
(C-3-2) Carboxylated polybutadiene The carboxylated polybutadiene (c) used in the present invention functions to improve adhesion when the composition of the present invention is adhered to an adherend.
Component (c-3-2) is a liquid liquid which is transparent at room temperature, and has a main chain microstructure of polybutadiene consisting of vinyl 1,2-bond type, trans 1,4-bond type, cis 1,4-bond type. It is a polymer. Here, the vinyl 1,2-bond is preferably 30% by weight or less, and if the vinyl 1,2-bond exceeds 30% by weight, the storage stability of the resulting composition is deteriorated. Further, the cis 1,4-bond is preferably 40% by weight or more. If the cis 1,4-bond is less than 40% by weight, the adhesiveness of the resulting composition is lowered, which is not preferable.
 カルボキシル化ポリブタジエン(c-3-2)成分は、液状ポリブタジエンにカルボキシル基導入化合物を反応させて得られ、液状ポリブタジエンを構成する1,3-ブタジエンとカルボキシル基導入化合物との比率は、1,3-ブタジエン80~98重量%とカルボキシル基導入化合物2~20重量%であることが好ましい。 The carboxylated polybutadiene (c-3-2) component is obtained by reacting liquid polybutadiene with a carboxyl group-introducing compound, and the ratio of 1,3-butadiene and carboxyl group-introducing compound constituting the liquid polybutadiene is 1,3. -80 to 98% by weight of butadiene and 2 to 20% by weight of the carboxyl group-introducing compound are preferred.
 反応に用いる液状ポリブタジエンは、数平均として分子量500~10,000であることが好ましく、より好ましくは1,000~7,000であり、分子量分布は広いことが望ましい。また、液状ポリブタジエンは、DIN53241に準じ測定したヨウ素価、ヨウ素30~500g/物質100gを有することがより好ましい。さらに、液状ポリブタジエンは、シス-二重結合70~90%、トランス-二重結合10~30%及びビニル二重結合0~3%の分子構造を有するものであることが好ましい。 The liquid polybutadiene used in the reaction preferably has a number average molecular weight of 500 to 10,000, more preferably 1,000 to 7,000, and a wide molecular weight distribution. The liquid polybutadiene more preferably has an iodine value measured according to DIN 53241, iodine of 30 to 500 g / 100 g of substance. Furthermore, the liquid polybutadiene preferably has a molecular structure of 70 to 90% cis-double bonds, 10 to 30% trans-double bonds and 0 to 3% vinyl double bonds.
 カルボキシル基導入化合物としては、エチレン系不飽和ジカルボキシ化合物、例えば、エチレン系不飽和ジカルボン酸、その無水物又はモノエステルを使用することができる。具体的化合物としては、マレイン酸、フマル酸、イタコン酸、3,6-テトラヒドロフタル酸、無水イタコン酸、1,2-ジメチルマレイン酸無水物、マレイン酸モノメチルエステル又はマレイン酸モノエチルエステル等を挙げることができる。これらの中でも安全性、経済性及び反応性の理由から、無水マレイン酸が好ましい。(マレイン化ポリブタジエンが好ましい。) As the carboxyl group-introducing compound, an ethylenically unsaturated dicarboxy compound, for example, an ethylenically unsaturated dicarboxylic acid, its anhydride or monoester can be used. Specific examples of the compound include maleic acid, fumaric acid, itaconic acid, 3,6-tetrahydrophthalic acid, itaconic anhydride, 1,2-dimethylmaleic anhydride, maleic acid monomethyl ester and maleic acid monoethyl ester. be able to. Among these, maleic anhydride is preferable because of safety, economy and reactivity. (Maleed polybutadiene is preferred.)
 ポリブタジエンと無水マレイン酸からなるポリブタジエン/無水マレイン酸-付加生成物の製造は公知の方法で行うことができる。 Production of a polybutadiene / maleic anhydride-addition product comprising polybutadiene and maleic anhydride can be carried out by a known method.
 また、マレイン化液状ポリブタジエンのDIN ISO 3682に準じた酸価は、50~120(mgKOH/g)が好ましく、更に好ましくは70~90(mgKOH/g)である。酸価が50(mgKOH/g)未満では、得られる組成物の接着性が低下し、120(mgKOH/g)を超えると、得られる組成物の粘度が高くなり作業性が低下する。 The acid value of maleated liquid polybutadiene according to DIN ISO 3682 is preferably 50 to 120 (mgKOH / g), more preferably 70 to 90 (mgKOH / g). When the acid value is less than 50 (mgKOH / g), the adhesiveness of the resulting composition is lowered, and when it exceeds 120 (mgKOH / g), the viscosity of the obtained composition is increased and workability is lowered.
 さらに、マレイン化液状ポリブタジエンのマレイン化率は粘度とのかねあいがあるが、6~20%が好ましく、より好ましくは6~15%、さらに好ましくは7~10%である。 Furthermore, the maleation rate of the maleated liquid polybutadiene is related to the viscosity, but is preferably 6 to 20%, more preferably 6 to 15%, and still more preferably 7 to 10%.
 また、マレイン化液状ポリブタジエンのDIN53214にて測定した粘度(20℃)は、3~16Pa・sが好ましく、より好ましくは5~13Pa・sであり、さらに好ましくは6~9Pa・sである。 Further, the viscosity (20 ° C.) of maleated liquid polybutadiene measured by DIN 53214 is preferably 3 to 16 Pa · s, more preferably 5 to 13 Pa · s, and further preferably 6 to 9 Pa · s.
 さらに、マレイン化液状ポリブタジエンのビニル-二重結合は30%以下であり、シス-二重結合が上記範囲にあるものはシス-二重結合が上記下限未満である液状ポリブタジエンに比べて高い柔軟性と上記のような高いマレイン化率(酸価)を持つ。そのため得られる組成物は接着性に富み、充分に極性が付与されているため、より柔軟化が可能となり、また柔軟性の調整が容易である。
 シス-二重結合が上記下限未満である液状ポリブタジエンはマレイン化率上昇と共に急激に粘度が上昇するが、シス-二重結合が上記範囲にあるものは粘度上昇が少ない。粘度が上記範囲のように低いことから、反応性が高くなり作業性が向上する。また、得られる組成物は低粘度発現性、接着性の点で優れる。
In addition, maleated liquid polybutadiene has a vinyl-double bond of 30% or less, and those having a cis-double bond in the above range have higher flexibility than liquid polybutadiene in which the cis-double bond is less than the above lower limit. And has a high maleation rate (acid value) as described above. Therefore, the obtained composition is rich in adhesiveness and sufficiently polarized, so that it can be made more flexible and the flexibility can be easily adjusted.
Liquid polybutadiene having a cis-double bond less than the above lower limit rapidly increases in viscosity as the maleation rate increases, but those having a cis-double bond in the above range have a small increase in viscosity. Since the viscosity is low as in the above range, the reactivity is increased and workability is improved. Moreover, the composition obtained is excellent in terms of low viscosity expression and adhesiveness.
 マレイン化液状ポリブタジエンの市販品としては、例えば、デグサ社製 POLYVEST OC 800S(登録商標)、1200Sが挙げられる。 Examples of commercially available maleated liquid polybutadiene include POLYVEST OC 800S (registered trademark) and 1200S manufactured by Degussa.
 エポキシ当量が150~700g/モルである化合物(c-4)について説明する。 The compound (c-4) having an epoxy equivalent of 150 to 700 g / mol will be described.
本発明において使用されるエポキシ当量が150~700g/モルである化合物(c-4)の一つの形態は、エポキシ当量が150~250g/モルであるポリエポキシ化合物(c-4-1)である。 One form of the compound (c-4) having an epoxy equivalent of 150 to 700 g / mol used in the present invention is a polyepoxy compound (c-4-1) having an epoxy equivalent of 150 to 250 g / mol. .
 本発明の組成物における、エポキシ当量が150~250g/モルであるポリエポキシ化合物(c-4-1)としては、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルクシノールなどの単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノールなどの多核多価フェノール化合物のポリグリジルエーテル化合物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキシド付加物などの多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族または脂環族多塩基酸のグリシジルエステル類およびグリシジルメタクリレートの単独重合体または共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、ジシクロペンタンジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体、トリグリシジルイソシアヌレート等の複素環化合物などがあげられる。 Examples of the polyepoxy compound (c-4-1) having an epoxy equivalent of 150 to 250 g / mol in the composition of the present invention include mononuclear polyhydric phenols such as hydroquinone, resorcin, pyrocatechol, and phloroglucinol. Polyglycidyl ether compounds of compounds: dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol), tetrabromobisphenol A, 1 , 3-bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2, -Polynuclear polyphenol compounds such as tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, oxybisphenol, phenol novolak, orthocresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, resorcin novolak, terpene phenol Polyglycidyl of polyhydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, hexanediol, polyglycol, thiodiglycol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, bisphenol A-ethylene oxide adduct Ether; maleic acid, fumaric acid, itaconic acid, succinic acid, glu Phosphoric acid, suberic acid, adipic acid, azelaic acid, sebacic acid, dimer acid, trimer acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, pyromellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid, Homopolymers or copolymers of glycidyl esters of aliphatic, aromatic or alicyclic polybasic acids such as endomethylenetetrahydrophthalic acid and glycidyl methacrylate; N, N-diglycidylaniline, bis (4- (N- Epoxy compounds having a glycidylamino group such as methyl-N-glycidylamino) phenyl) methane and diglycidylorthotoluidine; vinylcyclohexene diepoxide, dicyclopentanediene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxy Cyclohexa Epoxides of cyclic olefin compounds such as polycarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-6-methylcyclohexanecarboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate; epoxidized polybutadiene And epoxidized conjugated diene polymers such as epoxidized styrene-butadiene copolymer, and heterocyclic compounds such as triglycidyl isocyanurate.
 本発明で使用されるエポキシ当量が150~250g/モルであるポリエポキシ化合物(c-4-1)としては、例えば、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、テルペンジフェノール等のビスフェノール化合物のポリグリジルエーテルが接着性の点でさらに好ましい。 Examples of the polyepoxy compound (c-4-1) having an epoxy equivalent of 150 to 250 g / mol used in the present invention include biphenol, methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol, isopropyl Ridenbisphenol (bisphenol A), isopropylidenebis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), 1, Polyphenols of bisphenol compounds such as 1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, oxybisphenol, terpene diphenol Glycidyl Jill ether is more preferable in terms of adhesion.
 エポキシ当量が150~250g/モルであるビスフェノール化合物のポリグリジルエーテルの例としては、アデカレジンEP-4100E(旭電化工業  製;ビスフェノールAジグリシジルエーテル、エポキシ当量190)が例示される。 Examples of polyglycidyl ethers of bisphenol compounds having an epoxy equivalent of 150 to 250 g / mol include Adeka Resin EP-4100E (Asahi Denka Kogyo; bisphenol A diglycidyl ether, epoxy equivalent 190).
 本発明において使用されるエポキシ当量が150~700g/モルである化合物(c-4)のもう一つの形態は、エポキシ当量が500~700g/モルであるポリオレフィン系重合体(c-4-2)である。好ましくは、片末端に水酸基を持ちかつエポキシ基を導入されたポリオレフィン系重合体である。さらに好ましくは液状である。 Another form of the compound (c-4) having an epoxy equivalent of 150 to 700 g / mol used in the present invention is a polyolefin polymer (c-4-2) having an epoxy equivalent of 500 to 700 g / mol. It is. A polyolefin polymer having a hydroxyl group at one end and having an epoxy group introduced is preferred. More preferably, it is liquid.
 エポキシ当量が150~700g/モルである重合体(c-4)の具体的な例としてはクラレ社製L-207(KRATON LIQUID(商標)L-207POLYMERに同じ)である。L-207とは、エポキシ当量が590g/モルであり、水酸基当量は7000g/モル、ガラス転移温度-53℃である完全飽和骨格(エポキシ化エチレン・プロピレン-エチレン・ブチレン-OH構造)を持つ重合体であり、接着性の点で好ましい。 A specific example of the polymer (c-4) having an epoxy equivalent of 150 to 700 g / mol is Kuraray L-207 (same as KRATON LIQUID ™ L-207 POLYMER). L-207 has a fully saturated skeleton (epoxidized ethylene / propylene / ethylene / butylene-OH structure) having an epoxy equivalent of 590 g / mol, a hydroxyl equivalent of 7000 g / mol, and a glass transition temperature of −53 ° C. It is a coalescence and is preferable in terms of adhesiveness.
(d)紫外線硬化剤
 本発明の太陽電池パネル封止材用組成物は、(d)紫外線硬化剤を必須成分とする。
(D) Ultraviolet curing agent The composition for solar cell panel encapsulant of the present invention comprises (d) an ultraviolet curing agent as an essential component.
本発明の組成物は、オリゴマー成分(例えばビニルエステル樹脂や不飽和ポリエステル樹脂(a))が、(メタ)アクリロイル基等の二重結合を有するため、紫外線硬化剤を添加すれば紫外線蛍光ランプあるいは高圧水銀灯等を用いた紫外線照射により容易に短時間で硬化させることが可能である。 In the composition of the present invention, the oligomer component (for example, vinyl ester resin or unsaturated polyester resin (a)) has a double bond such as a (meth) acryloyl group. Therefore, if an ultraviolet curing agent is added, an ultraviolet fluorescent lamp or It can be easily cured in a short time by ultraviolet irradiation using a high-pressure mercury lamp or the like.
 紫外線硬化剤としては、例えば、ベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインエチルエーテル、ベンゾイン-n-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、ベンジル-1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル1-フェニルプロパン-1-オン、ベンジルサルファイド、チオキサントン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、および2-クロロチキサント等が挙げられる。 Examples of the ultraviolet curing agent include benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, acetophenone, benzoin, benzoin ethyl ether, benzoin-n-propyl ether, benzoin isopropyl ether, benzoin-n-butyl ether. Benzoin isobutyl ether, benzyl-1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl1-phenylpropan-1-one, benzyl sulfide, thioxanthone, Examples thereof include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-chlorothixant and the like.
(組成物の配合割合)
 本発明の組成物において、成分(a)は、耐水性、接着性、透明性、適切な粘度を得るという観点から、10~40質量%配合される。さらに好ましい成分(a)の配合割合は、耐水性、接着性の点で15~35質量%である。
 成分(a)の配合量が40質量%を超えると接着性、耐水性が悪化し、また調製された組成物の粘度が下記で説明する適切な粘度範囲から外れ、貯蔵安定性が悪化し、気泡が発生しやすく、平滑な表面も得られなくなる。
(Composition ratio of the composition)
In the composition of the present invention, the component (a) is blended in an amount of 10 to 40% by mass from the viewpoint of obtaining water resistance, adhesiveness, transparency and appropriate viscosity. A more preferable blending ratio of component (a) is 15 to 35% by mass in terms of water resistance and adhesiveness.
When the compounding amount of the component (a) exceeds 40% by mass, the adhesiveness and water resistance are deteriorated, and the viscosity of the prepared composition is out of an appropriate viscosity range described below, and the storage stability is deteriorated. Air bubbles are easily generated and a smooth surface cannot be obtained.
 本発明の組成物において、成分(b)は、粘度、接着性、透明性の観点から、30~70質量%配合される。さらに好ましい成分(b)の配合量は、粘度、接着性、透明性の観点から、40~65質量%である。
 成分(b)の配合量が70質量%を超えると接着性、耐水性、柔軟性が低下する。また、30質量%未満では接着性が悪化し、調製された組成物の粘度が下記で説明する適切な粘度範囲から外れ、貯蔵安定性が悪化し、気泡が発生しやすく、平滑な表面も得られなくなる。
In the composition of the present invention, the component (b) is blended in an amount of 30 to 70% by mass from the viewpoints of viscosity, adhesiveness, and transparency. A more preferable amount of component (b) is 40 to 65% by mass from the viewpoint of viscosity, adhesiveness, and transparency.
When the compounding amount of the component (b) exceeds 70% by mass, adhesiveness, water resistance and flexibility are lowered. On the other hand, if it is less than 30% by mass, the adhesiveness is deteriorated, the viscosity of the prepared composition is outside the appropriate viscosity range described below, storage stability is deteriorated, bubbles are easily generated, and a smooth surface is obtained. It becomes impossible.
 本発明の組成物において、成分(c)は、接着性、透明性、粘度の観点から、5~40質量%配合される。さらに好ましい成分(c)の配合割合は、接着性、、粘度の点で10~30質量%であり、とくに好ましくは10~25質量%である。
 成分(c)の配合量が40質量%を超えると接着性、耐水性が悪化し、貯蔵安定性が悪化し、気泡が発生しやすく、平滑な表面も得られなくなる。また、5質量%未満では接着性が低下する。
In the composition of the present invention, the component (c) is blended in an amount of 5 to 40% by mass from the viewpoint of adhesiveness, transparency and viscosity. Further, the blending ratio of the component (c) is 10 to 30% by mass, particularly preferably 10 to 25% by mass in terms of adhesiveness and viscosity.
When the compounding amount of the component (c) exceeds 40% by mass, the adhesiveness and water resistance are deteriorated, the storage stability is deteriorated, bubbles are easily generated, and a smooth surface cannot be obtained. Moreover, if it is less than 5 mass%, adhesiveness will fall.
 本発明の組成物において、成分(d)は、実用的な光硬化時間(照射強さ500mJ /cm2で10秒以下照射)の観点から、前記成分(a)~(c)の合計100質量に対し0.1~15質量部配合される。さらに好ましい成分(d)の配合量は、さらに実用的な光硬化時間(照射強さ500mJ /cm2で3秒以下照射)の点で1~10質量部であり、とくに好ましくは2~5質量部である。
 成分(d)の配合量が15質量部を超えると透明性、接着性、耐水性が悪化する。また、0.1質量部未満では光硬化が不十分である。
In the composition of the present invention, the component (d) is a total of 100 masses of the components (a) to (c) from the viewpoint of practical photocuring time (irradiation intensity of 500 mJ / cm 2 for 10 seconds or less). 0.1 to 15 parts by mass with respect to the amount. The amount of the component (d) is more preferably 1 to 10 parts by weight, particularly preferably 2 to 5 parts by weight in terms of practical photocuring time (irradiation intensity of 500 mJ / cm 2 for 3 seconds or less). Part.
When the amount of component (d) exceeds 15 parts by mass, transparency, adhesiveness and water resistance are deteriorated. Moreover, if it is less than 0.1 mass part, photocuring is inadequate.
 また、本発明の組成物の25℃における粘度は、例えば、3,000mPa・s以下、より好ましくは100~2,000mPa・sであるのがよい。粘度がこの範囲であれば、経時変化で分離しない安定な貯蔵安定性が得られ、気泡が発生しにくく、平滑な表面性を得ることができる。 なお、粘度は、B型粘度計により測定できる。 The viscosity of the composition of the present invention at 25 ° C. is, for example, 3,000 mPa · s or less, more preferably 100 to 2,000 mPa · s. If the viscosity is within this range, stable storage stability that does not separate with time changes is obtained, bubbles are not easily generated, and smooth surface properties can be obtained.粘度 The viscosity can be measured with a B-type viscometer.
 組成物の調製方法としては、例えば、攪拌機を備えた容器に、成分(a)に、反応性希釈剤として成分(b)および(c)を添加する。添加方法としては、まず成分(a)に成分(b)を添加し、常温で十分に攪拌する。粘度が高すぎる場合は100℃以下で加温しながら攪拌しても差し支えない。100℃を超えると成分(b)の蒸気発生が顕著になり作業環境上好ましくない。その後、成分(c)を加え攪拌後、液温が常温になった時点で、成分(d)を添加して、溶け残りがないように十分攪拌する。
 その他の成分を添加する場合は、最後に添加し、十分に攪拌する。
 攪拌して得られた組成物は、速やかに加工するか、冷暗所に保存する。
As a method for preparing the composition, for example, components (b) and (c) are added as reactive diluents to component (a) in a container equipped with a stirrer. As an addition method, first, the component (b) is added to the component (a) and sufficiently stirred at room temperature. If the viscosity is too high, stirring may be performed while heating at 100 ° C. or lower. If it exceeds 100 ° C., the vapor generation of the component (b) becomes remarkable, which is not preferable in the working environment. Thereafter, after adding component (c) and stirring, when the liquid temperature reaches room temperature, component (d) is added, and the mixture is sufficiently stirred so as not to remain undissolved.
When adding other components, add them at the end and stir well.
The composition obtained by stirring is rapidly processed or stored in a cool and dark place.
 本発明の太陽電池パネルは、単一または複数の太陽電池セルと、前記太陽電池セルの受光面側に配置された透光性を有する透光性部材と、前記太陽電池セルの裏面側に配置された裏面部材と、前記透光性部材と前記裏面部材との間に前記太陽電池セルを封止する封止材と、を備えてなり、前記封止材が、前記の本発明尾太陽電池パネル封止材用組成物からなることを特徴としている。
 太陽電池セルとしては、公知のものであればよく、例えば前述の結晶系太陽電池セル、アモルファスシリコン系太陽電池セル、化合物半導体太陽電池セル、CuInSe2太陽電池セル、n型CdS/p型CuInS2太陽電池セル等が挙げられるが、本発明はこれらに制限されない。
 透光性部材としては、組成物の接着性がとくに良好であるという観点から、本発明ではガラスまたはポリカーボネート樹脂が好ましい。また裏面部材は、フッ素樹脂フィルム、ポリエステル系樹脂フィルム等が挙げられるが、組成物の接着性がとくに良好であるという観点から、本発明ではポリエステル系樹脂、とくにポリエチレンテレフタレート(PET)が好ましい。
 太陽電池パネルにおいて、封止材の厚さは、例えば20~600μm、好ましくは50~400μmである。
The solar cell panel of the present invention is arranged on one or a plurality of solar cells, a translucent member having translucency arranged on the light receiving surface side of the solar cells, and on the back side of the solar cells. And a sealing material for sealing the solar battery cell between the translucent member and the back surface member, and the sealing material is the tail solar battery of the present invention. It consists of a composition for panel sealing materials.
The solar cell may be any known one, for example, the above-described crystalline solar cell, amorphous silicon solar cell, compound semiconductor solar cell, CuInSe 2 solar cell, n-type CdS / p-type CuInS 2. Although a photovoltaic cell etc. are mentioned, this invention is not restrict | limited to these.
As the translucent member, glass or polycarbonate resin is preferred in the present invention from the viewpoint that the adhesiveness of the composition is particularly good. Examples of the back member include a fluororesin film and a polyester resin film. From the viewpoint that the adhesiveness of the composition is particularly good, a polyester resin, particularly polyethylene terephthalate (PET) is preferred in the present invention.
In the solar cell panel, the thickness of the sealing material is, for example, 20 to 600 μm, preferably 50 to 400 μm.
 封止材の形成方法としては、例えば透光性部材または裏面部材上に本発明の太陽電池パネル封止材用組成物を塗工し、前記透光性部材および裏面部材間でサンドイッチし、紫外線硬化させる方法が挙げられる。
 塗工方法としては、、スピンコート法、(ドクター)ナイフコート法、マイクログラビヤコート法、ダイレクトグラビヤコート法、オフセットグラビヤ法、リバースグラビヤ法、リバースロールコート法、(マイヤー) バーコート法、ダイコート法、スプレーコート法、ディップコート法等の方法が好ましく適用できる。例えばスピンコート法の装置としてマニュアルスピナー((株)エイブル製ASS-301型))が挙げられる。
 本発明では、従来のEVAを封止材として採用していたときのような、加熱圧着を必要とせず、製造コスト上、有利となる。
As a method for forming the sealing material, for example, the composition for solar cell panel sealing material of the present invention is applied on a light-transmitting member or a back surface member, sandwiched between the light transmitting member and the back surface member, and ultraviolet light is applied. The method of hardening is mentioned.
Coating methods include spin coating, (doctor) knife coating, micro gravure coating, direct gravure coating, offset gravure, reverse gravure, reverse roll coating, (Meyer) bar coating, and die coating A method such as spray coating or dip coating can be preferably applied. For example, a manual spinner (ASS-301 type manufactured by Able Co., Ltd.) can be cited as an apparatus for spin coating.
In the present invention, there is no need for thermocompression bonding as in the case where conventional EVA is used as a sealing material, which is advantageous in terms of manufacturing cost.
 以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to the following examples.
 実施例および比較例で使用した原料は以下の通りである。
成分(a-1)ビニルエステル樹脂
(i)ウレタンアクリレート
 サートマー社製 CN963B80 ウレタンアクリレート(HDDAブレンド)、タイプ=ポリエステル、60℃粘度=1,100、官能基数=2
(ii)ポリエステルアクリレート
 サートマー社製 CN292 ポリエステルアクリレート、タイプ=脂肪族ポリエステル、25℃粘度=630、官能基数=4
(iii)エポキシアクリレート
 サートマー社製 CNUVE151 エポキシアクリレート、タイプ=ポリエステル、25℃粘度=150,000、官能基数=2
(iv)脂肪族ウレタンアクリレート
 サートマー社製 CN966J75 脂肪族ウレタンアクリレート(IBOAブレンド)、タイプ=ポリエステル、60℃粘度=4,240、25℃粘度=105,000、官能基数=2
成分(a-2)不飽和ポリエステル樹脂
 昭和高分子社製、RIGOLAC 21E-A-2(商標)
The raw materials used in the examples and comparative examples are as follows.
Component (a-1) Vinyl ester resin (i) Urethane acrylate Sartomer CN963B80 Urethane acrylate (HDDA blend), Type = Polyester, 60 ° C. viscosity = 1,100, Number of functional groups = 2
(Ii) Polyester acrylate CN292 polyester acrylate manufactured by Sartomer, type = aliphatic polyester, viscosity at 25 ° C. = 630, number of functional groups = 4
(Iii) Epoxy acrylate Sartomer CNUVE151 epoxy acrylate, type = polyester, viscosity at 25 ° C. = 150,000, number of functional groups = 2
(Iv) Aliphatic urethane acrylate manufactured by Sartomer CN966J75 Aliphatic urethane acrylate (IBOA blend), type = polyester, 60 ° C. viscosity = 4,240, 25 ° C. viscosity = 105,000, number of functional groups = 2
Component (a-2) Unsaturated polyester resin RIGOLAC 21E-A-2 (trademark) manufactured by Showa Polymer Co., Ltd.
成分(b-1) 環状構造および1個のエチレン性不飽和基を有する化合物
(i)BASF社製、N-ビニルカプロラクタム
 沸点 117℃(10mm Hg)
 蒸気圧 <0.1 mm Hg (20℃)
 引火点 110℃
 融点 35℃
 粘度 3.5 cps (40℃)
成分(b-2)ジアクリレートモノマー
 (i)BASF社製、ジプロピレングリコールジアクリレート(DPGDA)
 (ii)BASF社製、トリプロピレングリコールジアクリレート(TPGDA)
Component (b-1) Compound having a cyclic structure and one ethylenically unsaturated group (i) N-vinylcaprolactam boiling point 117 ° C. (10 mm Hg) manufactured by BASF
Vapor pressure <0.1 mm Hg (20 ℃)
Flash point 110 ° C
Melting point 35 ℃
Viscosity 3.5 cps (40 ° C)
Component (b-2) Diacrylate monomer (i) Dipropylene glycol diacrylate (DPGDA) manufactured by BASF
(Ii) BASF, tripropylene glycol diacrylate (TPGDA)
成分(c) 変性剤
(c-1-2)ポリブタジエン系ポリオール
出光興産社製、Poly bd R-15HT
粘度:1.5Pa・s/30℃、水酸基価:102.7mgKOH/g
(c-1-1-1)芳香族系ヒマシ油系ポリオール
伊藤製油社製、URIC(商標)AC-006、前記式(4)で表されるヒマシ油由来のポリオール、粘度:0.7~1.5Pa・s/25℃、水酸基価:194~214mgKOH/g
(c-1-3)ポリイソプレン系ポリオール
出光興産社製、Poly ip(登録商標)分子末端に反応性の高い水酸基を備えたポリイソプレンタイプの液状ポリマー(水酸基価46.6mgKOH/mg、数平均分子量Mn=2500)
(c-2-1)ヒマシ油系ポリオール
伊藤製油 URIC H-1262
ヒマシ油系ポリオールと全炭素数が12以上の酸性リン酸エステル化合物を含むポリオール 粘度:3,500~8,500Pa・s/25℃、酸価:4~15(単位mgKOH/g)、水酸基価:240~290(単位mgKOH/g)
(c-2-1)ヒマシ油系ポリオール
伊藤製油 URIC H-2151U
ヒマシ油系ポリオールと全炭素数が12以上の酸性リン酸エステル化合物とテルペンフェノール類を含有するポリオール 粘度:3,500~8,500Pa・s/25℃、酸価:4~15(単位mgKOH/g)、水酸基価:240~290(単位mgKOH/g)
(c-1-3)ポリイソプレン系ポリオールの水素添加物
出光興産社製 エポール(商標)水酸基末端液状ポリオレフィン
(粘度(Pa・s/30℃)75、水酸基価(mgKOH/g) 50.5、数平均分子量2500)
(c-3-1)マレイン化ポリイソプレン
株式会社 クラレ LIR-420  (酸価(mgKOH/g) 40)
(c-3-2)マレイン酸変性ポリブタジエン
SARTOMER社製 Ricon130MA8  (粘度(Pa・s/30℃)6.5、酸価(mgKOH/g) 46、数平均分子量2700)
(c-3-2)マレイン酸変性ポリブタジエン
EVONIK社製 POLYVEST(商標) OC 800 S  (ポリブタジエンにおける1,4-シス二重結合:75%、1,4-トランス二重結合:24%、ビニル結合:1%、マレイン化率:7.5%、数平均分子量:3300(GPC)、重量平均分子量:13,600(GPC)、粘度(20℃):6~9Pa・s(DIN53214にて測定)、酸価:70~90mgKOH/g、ヨウ素価:380~420g/100g、(チグラー-ナッタ触媒で重合))
(c-1-4)エポキシポリオール樹脂
DIC株式会社 EPICLON(商標)U-125-60BT
(粘度(Pa・s/30℃)70、水酸基価(mgKOH/g) 120)
(c-4-1)エポキシ当量が150~250g/モルであるポリエポキシ化合物
アデカレジンEP-4100E(旭電化工業  製;ビスフェノールAジグリシジルエーテル、エポキシ当量190)
(c-4-2)エポキシ当量が500~700g/モルである飽和骨格を持つ重合体
クラレ社製L-207(KRATON LIQUID(商標)L-207POLYMERに同じ) (エポキシ当量が590g/モルで、水酸基当量は7000g/モル、ガラス転移温度-53℃、完全飽和骨格(エポキシ化エチレン・プロピレン-エチレン・ブチレン-OH構造)を持つ重合体)
Component (c) Modifier (c-1-2) Polybutadiene polyol manufactured by Idemitsu Kosan Co., Ltd., Poly bd R-15HT
Viscosity: 1.5 Pa · s / 30 ° C., hydroxyl value: 102.7 mg KOH / g
(C-1-1-1) Aromatic castor oil-based polyol manufactured by Ito Oil Co., Ltd., URIC (trademark) AC-006, a polyol derived from castor oil represented by the above formula (4), viscosity: 0.7 to 1.5 Pa · s / 25 ° C., hydroxyl value: 194 to 214 mg KOH / g
(C-1-3) Polyisoprene-based polyol manufactured by Idemitsu Kosan Co., Ltd. Polyisoprene type liquid polymer having a highly reactive hydroxyl group at the molecular end (hydroxyl value 46.6 mgKOH / mg, number average) Molecular weight Mn = 2500)
(C-2-1) Castor oil-based polyol Ito Oil URIC H-1262
Polyol containing a castor oil-based polyol and an acidic phosphate ester compound having a total carbon number of 12 or more Viscosity: 3,500 to 8,500 Pa · s / 25 ° C., acid value: 4 to 15 (unit mgKOH / g), hydroxyl value : 240-290 (unit mgKOH / g)
(C-2-1) Castor oil-based polyol Ito Oil URIC H-2151U
A polyol containing a castor oil-based polyol, an acidic phosphate ester compound having 12 or more carbon atoms and terpene phenols Viscosity: 3,500 to 8,500 Pa · s / 25 ° C., acid value: 4 to 15 (unit: mgKOH / g), hydroxyl value: 240 to 290 (unit: mgKOH / g)
(C-1-3) Hydrogenated polyisoprene polyol manufactured by Idemitsu Kosan Co., Ltd. Epol (trademark) hydroxyl terminated liquid polyolefin (viscosity (Pa · s / 30 ° C) 75, hydroxyl value (mgKOH / g) 50.5, number average Molecular weight 2500)
(C-3-1) Maleinized polyisoprene Kuraray LIR-420 (acid value (mgKOH / g) 40)
(C-3-2) Maleic acid-modified polybutadiene
SARTOMER Ricon130MA8 (viscosity (Pa · s / 30 ° C) 6.5, acid value (mgKOH / g) 46, number average molecular weight 2700)
(C-3-2) Maleic acid-modified polybutadiene
POLYVEST (trademark) OC 800 S manufactured by EVONIK (1,4-cis double bond in polybutadiene: 75%, 1,4-trans double bond: 24%, vinyl bond: 1%, maleation ratio: 7.5 %, Number average molecular weight: 3300 (GPC), weight average molecular weight: 13,600 (GPC), viscosity (20 ° C.): 6 to 9 Pa · s (measured with DIN 53214), acid value: 70 to 90 mg KOH / g, iodine Value: 380 to 420 g / 100 g, (polymerized with Ziegler-Natta catalyst)
(C-1-4) Epoxy polyol resin
DIC Corporation EPICLON (trademark) U-125-60BT
(Viscosity (Pa · s / 30 ° C) 70, hydroxyl value (mgKOH / g) 120)
(C-4-1) Polyepoxy compound Adeka Resin EP-4100E having an epoxy equivalent of 150 to 250 g / mol (Asahi Denka Kogyo; bisphenol A diglycidyl ether, epoxy equivalent 190)
(C-4-2) Polymer having a saturated skeleton having an epoxy equivalent of 500 to 700 g / mol L-207 manufactured by Kuraray (same as KRATON LIQUID ™ L-207 POLYMER) (Epoxy equivalent is 590 g / mol, Hydroxyl equivalent weight is 7000 g / mol, glass transition temperature -53 ° C, polymer with fully saturated skeleton (epoxidized ethylene / propylene / ethylene / butylene-OH structure)
 各ポリオールの特性は、次のようにして測定した。
・粘度測定方法
 粘度計は、JIS K7117-1に従って、単一円筒型回転粘度計(B形TVC--5 )を用いて測定。
 1. 測定器に500mlビーカ(標準)を使用。
 2. 標準ロータは、低・中粘度用としてのM1~M4ロータ、中・高粘度用としてのH1~H7ロータの2種から選択
・水酸基価測定方法
 水酸基価とは、試料1g中に含まれるOH基をアセチル化するために要する水酸化カリウムのmg数である。JIS K 1557-1に準じて、無水酢酸を用いて試料中のOH基をアセチル化し、使われなかった酢酸を水酸化カリウム溶液で滴定する。
The characteristics of each polyol were measured as follows.
-Viscosity measurement method The viscometer is measured using a single cylindrical rotational viscometer (B type TVC--5) according to JIS K7117-1.
1. A 500ml beaker (standard) is used for the measuring instrument.
2. Standard rotor is selected from two types: M1 to M4 rotors for low and medium viscosity and H1 to H7 rotors for medium and high viscosity. Hydroxyl value measurement method Hydroxyl value is included in 1g of sample. This is the number of mg of potassium hydroxide required to acetylate the OH group. According to JIS K 1557-1, OH groups in the sample are acetylated using acetic anhydride, and acetic acid not used is titrated with potassium hydroxide solution.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
A:空試験に用いた0.5mol/l水酸化カリウムエタノール溶液の量(ml)
B:滴定に用いた0.5mol/l水酸化カリウムエタノール溶液の量(ml)
f:ファクター
A: Amount of 0.5 mol / l potassium hydroxide ethanol solution used for the blank test (ml)
B: 0.5mol / l potassium hydroxide ethanol solution used for titration (ml)
f: Factor
・酸価測定方法
 試料油1gに含まれる酸性成分を中和するのに要する水酸化カリウムのmg数で表す。JIS K 1557-5に準じて、
(1)終点pHの測定
 200mLビーカに緩衝貯蔵液Bを10mL採取し、滴定溶剤を100mL加えて電極を浸け、30秒間で0.1pH以内の変化となったpHを緩衝の終点とする。
(2)酸価の測定
 1.試料20gを200mLビーカに正確に秤量する。
 2.トルエン・2-プロパノール・純水混合溶剤125mLを加え、0.1mol/L水酸化カリウム滴定液で滴定する。
(1)の結果 11.72 pHを終点として設定し、次式で酸価を求める。また、同手順でブランクを求める。
酸価(mgKOH/g)=(D-B)×K×F×M/S
 D:滴定値(mL)
 B:ブランク(0.085mL)
 K:KOHの分子量(56.1)
 F:滴定液のファクタ(1.000)
 M:滴定液のモル濃度(0.1mol/L)
 S:試料採取量(g)
-Acid value measuring method It represents with the mg number of potassium hydroxide required to neutralize the acidic component contained in 1g of sample oils. According to JIS K 1557-5,
(1) End-point pH measurement Take 10 mL of buffer stock solution B in a 200-mL beaker, add 100 mL of titration solvent, immerse the electrode, and use the pH that changes within 0.1 pH within 30 seconds as the buffer end point.
(2) Measurement of acid value 1. Weigh accurately 20 g of sample into a 200 mL beaker.
2. Add 125mL of toluene / 2-propanol / pure water mixed solvent and titrate with 0.1mol / L potassium hydroxide titrant.
Result of (1) 11.72 Set pH as the end point and calculate the acid value by the following formula. Moreover, a blank is calculated | required in the same procedure.
Acid value (mgKOH / g) = (D−B) × K × F × M / S
D: Titration value (mL)
B: Blank (0.085mL)
K: Molecular weight of KOH (56.1)
F: Factor of titrant (1.000)
M: Molar concentration of titrant (0.1 mol / L)
S: Sampling amount (g)
成分(d)成分 紫外線硬化剤
CIBA社製、IRGACURE(商標)819、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド
Component (d) Component UV curing agent manufactured by CIBA, IRGACURE ™ 819, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
実施例1~20、比較例1~6
 下記表1~7に示す配合割合(質量部)において、攪拌機を備えた容器中に成分(a)を入れ、続いて成分(b)を添加し、常温で十分に攪拌し、その後、成分(c)を加え攪拌後、液温が常温になった時点で、成分(d)を添加して、溶け残りがないように十分攪拌し、組成物を得た。得られた組成物の25℃における粘度(mPa・s)を測定した。 すなわち、ハンディタイプのデジタル粘度計TVC-7形粘度計(東機産業社)を用いて、粘度に合わせた適当なロータ(0号~5号)を用いて、25℃粘度を測定した。結果を表1~7に併せて示す。
Examples 1 to 20 and Comparative Examples 1 to 6
In the blending ratio (parts by mass) shown in Tables 1 to 7 below, the component (a) is put into a container equipped with a stirrer, then the component (b) is added, and the mixture is sufficiently stirred at room temperature. After adding c) and stirring, when the liquid temperature reached room temperature, the component (d) was added, and the mixture was sufficiently stirred so as not to remain undissolved to obtain a composition. The viscosity (mPa · s) at 25 ° C. of the obtained composition was measured. That is, using a handy type digital viscometer TVC-7 type viscometer (Toki Sangyo Co., Ltd.), the viscosity at 25 ° C. was measured using an appropriate rotor (No. 0 to No. 5) according to the viscosity. The results are also shown in Tables 1 to 7.
 次に、表1~7に示す各被着体(寸法:150mm×25mm×厚さ1mm)上に、スピンコート法により組成物を塗布し(塗布厚15~20μm)、これを空気下で500mJ/cm2のエネルギーの紫外線を照射して硬化させ、積層体を調製した。 Next, on each adherend shown in Tables 1 to 7 (dimensions: 150 mm × 25 mm × thickness 1 mm), the composition was applied by spin coating (coating thickness 15 to 20 μm), and this was applied under air to 500 mJ. A laminate was prepared by irradiating with UV light having an energy of / cm 2 to be cured.
 使用した各被着体は、次の通りである。
・ポリカーボネートPC(帝人化成社製、商品名パンライトL-1225L)
・ガラス(顕微鏡プレパラート用スライドグラス)
・PET:ユニチカ ユニチカポリエステル樹脂MA-2103
Each adherend used is as follows.
・ Polycarbonate PC (trade name Panlite L-1225L, manufactured by Teijin Chemicals Ltd.)
・ Glass (slide glass for microscope preparation)
・ PET: Unitika Unitika polyester resin MA-2103
透明性試験
(ヘーズ値および全光線透過率の測定)
 被着体としてガラスを用いた積層体を用いて、日本電色工業社製の測定器(商品名「COH-300A」)を用いて測定を行った。
Transparency test (measurement of haze value and total light transmittance)
Using a laminate using glass as the adherend, measurement was performed using a measuring instrument (trade name “COH-300A”) manufactured by Nippon Denshoku Industries Co., Ltd.
接着性試験
 得られた積層体について、以下の碁盤目テープ試験を行なった。
(密着性試験:碁盤目テープ試験)
 日本工業規格K5400に記載されている碁盤目テープ試験法に準拠して以下のように測定を行った。
 碁盤目テープ試験(Cross-cut  Test、塗布厚15~20μm(スピンコート法)):試験面(組成物の層側)にカッターナイフを用いて、1×1mm四方の碁盤目の切り傷を入れる。カッターガイドを使用する。碁盤目の数は、縦10個×横10個=100個入れる。碁盤目を入れた所にセロハンテープを強く圧着させ、テープの端を45°の角度で急速に引き剥がし、碁盤目の状態(剥離しないで残った碁盤目の個数)を見る。
Adhesion test The obtained laminate was subjected to the following cross-cut tape test.
(Adhesion test: cross-cut tape test)
The measurement was performed as follows in accordance with the cross cut tape test method described in Japanese Industrial Standard K5400.
Cross-cut test (Cross-cut Test, coating thickness 15-20 μm (spin coating method)): A 1 × 1 mm square cut is made on the test surface (the layer side of the composition) using a cutter knife. Use the cutter guide. The number of grids is 10 vertical x 10 horizontal = 100. Strongly press the cellophane tape into the grid, and peel off the end of the tape rapidly at an angle of 45 ° to see the grid pattern (number of grids remaining without peeling).
耐水性試験
 各積層体に対して、サンプルを沸騰水中(純水) に1時間浸せきした後に室内で自然乾燥させ、組成物の層の外観の悪化の有無について目視観察した。
○:剥離やクラックの発生なし(1時間浸せき)
×:剥離やクラックの発生あり(1時間浸せき)
Water Resistance Test Each laminate was immersed in boiling water (pure water) for 1 hour and then naturally dried indoors, and visually observed for deterioration of the appearance of the composition layer.
○: No peeling or cracking (immersion for 1 hour)
×: Peeling or cracking occurred (immersion for 1 hour)
異材質接着試験
 異材質間の接着試験を次に示すようなせん断接着力測定により行った。
 寸法150mm×1mm厚×25mm巾のポリエステル系樹脂(B1)上に、スピンコート法で上記組成物を塗布し(塗布厚15~20μm)、組成物の層(A)を形成し、さらにその上に、表1~7に示す、上記(B1)と同じ寸法のガラスまたはポリカーボネート層(B2)を圧着させ、層(B2)(ガラス又はポリカーボネート層)側からUV照射(波長:325nm、積算照射強さ:50mJ/cm2)してUV硬化させ、積層体を調製した後、層(B2)を、組成物の層(A)の接合面と平行な方向に引張り、破断時の引張強さを測定した。
 結果を表1~7に示す。なお表1~7では、上記(B1)-(A)-(B2)からなる積層体を、(B1)vs(B2)のように示した。例えば、(B1)がポリエステル系樹脂(PET)であり、(B2)がガラスである場合は、「ポリエステル系樹脂(PET) vsガラス」のように示した。
Adhesion test between different materials An adhesion test between different materials was performed by measuring the shear adhesive strength as shown below.
On the polyester resin (B1) having dimensions of 150 mm × 1 mm thickness × 25 mm width, the composition is applied by spin coating (coating thickness: 15 to 20 μm) to form a layer (A) of the composition. The glass or polycarbonate layer (B2) having the same dimensions as the above (B1) shown in Tables 1 to 7 is pressure-bonded, and UV irradiation (wavelength: 325 nm, integrated irradiation intensity) from the layer (B2) (glass or polycarbonate layer) side is applied. 50 mJ / cm 2 ) and UV-cured to prepare a laminate, and then the layer (B2) is pulled in a direction parallel to the bonding surface of the layer (A) of the composition to obtain a tensile strength at break. It was measured.
The results are shown in Tables 1-7. In Tables 1 to 7, the laminate composed of (B1)-(A)-(B2) is shown as (B1) vs (B2). For example, when (B1) is a polyester resin (PET) and (B2) is glass, it is shown as “polyester resin (PET) vs glass”.
耐候性試験
 各積層体に対して、サンシャインウエザーメータを用いてブラックパネル温度63℃で、降雨12分、乾燥48分のサイクルで2000時間暴露後、外観の評価を行った。
○:外観変化なし
×:白化、黄変、剥離あり
Weather resistance test Each laminate was exposed to 2000 hours in a cycle of 12 minutes of rain and 48 minutes of drying at a black panel temperature of 63 ° C. using a sunshine weather meter, and the appearance was evaluated.
○: No change in appearance ×: Whitening, yellowing, peeling
柔軟性
 試験方法:各積層体に対し、90度折り曲げ試験を行い以下の基準で評価を行った。
○:剥離しない
△:一部剥離・割れ
×:全面剥離・割れ
 結果を表1~7に示す。
Flexibility test method: Each laminate was subjected to a 90-degree bending test and evaluated according to the following criteria.
○: Not peeled Δ: Partially peeled / cracked X: Whole surface peeled / cracked The results are shown in Tables 1-7.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表より明らかなように、本発明の実施例1~20では、前記成分(a)、(b)、(c)および(d)を特定の量的関係でもって含有しているので、太陽電池セルの受光面側に配される透光性部材、とくにガラスまたはポリカーボネートと、裏面側に配される裏面部材、とくにポリエチレンテレフタレートのようなポリエステル系樹脂との接着性に優れ、耐水性に優れている。また、透明性、柔軟性、引張強度、耐候性にも優れる。
 一方、比較例1は、成分(b)の添加量が本発明で規定する上限を超えているので、接着性が悪化し、耐水性、柔軟性も悪化した。
 比較例2は、成分(a)の添加量が本発明で規定する上限を超えているので、接着性が悪化し、耐水性も悪化した。
 比較例3は、成分(c)を添加していないので、接着性が悪化し、耐水性も悪化した。
 比較例4は、成分(c)の添加量が本発明で規定する上限を超え、接着性、耐水性、異材質接着性が悪化した。
 比較例5は、成分(d)の添加量が本発明で規定する下限未満であるので、組成物が硬化しなかった。
 比較例6は、成分(d)の添加量が本発明で規定する上限を超えているので、接着性が悪化し、耐水性も悪化した。
As is apparent from the table, in Examples 1 to 20 of the present invention, the components (a), (b), (c) and (d) are contained in a specific quantitative relationship. Translucent member placed on the light-receiving surface side of the cell, especially glass or polycarbonate, and back side member placed on the back side, especially excellent adhesion to polyester resin such as polyethylene terephthalate, excellent water resistance Yes. It is also excellent in transparency, flexibility, tensile strength, and weather resistance.
On the other hand, in Comparative Example 1, since the amount of component (b) added exceeded the upper limit defined in the present invention, the adhesiveness deteriorated, and the water resistance and flexibility also deteriorated.
In Comparative Example 2, since the amount of component (a) added exceeded the upper limit defined in the present invention, the adhesiveness deteriorated and the water resistance also deteriorated.
Since the comparative example 3 did not add the component (c), adhesiveness deteriorated and water resistance also deteriorated.
In Comparative Example 4, the amount of component (c) added exceeded the upper limit defined in the present invention, and the adhesion, water resistance, and foreign material adhesion deteriorated.
In Comparative Example 5, since the amount of component (d) added was less than the lower limit specified in the present invention, the composition was not cured.
In Comparative Example 6, since the amount of component (d) added exceeded the upper limit defined in the present invention, the adhesiveness deteriorated and the water resistance also deteriorated.

Claims (12)

  1. (a)ビニルエステル樹脂または不飽和ポリエステル樹脂 10~40質量%
    (b)ビニルモノマーおよび/または(メタ)アクリレートモノマー 30~70質量%
    (c)変性剤 5~40質量%、
    (ただし、前記成分(a)~(c)の合計は100質量%である)
    および
    (d)紫外線硬化剤 前記成分(a)~(c)の合計100質量部に対し0.1~15質量部
    を含有する太陽電池パネル封止材用組成物。
    (A) Vinyl ester resin or unsaturated polyester resin 10 to 40% by mass
    (B) Vinyl monomer and / or (meth) acrylate monomer 30 to 70% by mass
    (C) modifying agent 5-40% by mass,
    (However, the total of the components (a) to (c) is 100% by mass)
    And (d) an ultraviolet curing agent A composition for a solar cell panel encapsulant containing 0.1 to 15 parts by mass with respect to a total of 100 parts by mass of the components (a) to (c).
  2.  前記成分(a)が、エポキシ(メタ)アクリレートであることを特徴とする請求項1に記載の太陽電池パネル封止材用組成物。 The composition for a solar cell panel encapsulant according to claim 1, wherein the component (a) is an epoxy (meth) acrylate.
  3.  前記成分(b)が、N-ビニル基を有するモノマーであることを特徴とする請求項1または2に記載の太陽電池パネル封止材用組成物。 The composition for a solar cell panel sealing material according to claim 1 or 2, wherein the component (b) is a monomer having an N-vinyl group.
  4.  前記成分(c)が、水酸基価40~330mgKOH/gのポリオール(c-1);および水酸基価40~330mgKOH/gであり、かつ酸価が2~20mgKOH/gであるポリオール(c-2);変性ゴム(c-3);エポキシ当量が150~700g/モルである化合物(c-4)からなる群から選択された少なくとも1種であることを特徴とする請求項1~3のいずれかに記載の太陽電池パネル封止材用組成物。 The component (c) is a polyol (c-1) having a hydroxyl value of 40 to 330 mgKOH / g; and a polyol (c-2) having a hydroxyl value of 40 to 330 mgKOH / g and an acid value of 2 to 20 mgKOH / g The modified rubber (c-3) is at least one selected from the group consisting of the compound (c-4) having an epoxy equivalent of 150 to 700 g / mol. The composition for solar cell panel sealing materials as described in any one of.
  5.  前記成分(c-1)が、水酸基価40~330mgKOH/gのヒマシ油系ポリオール(c-1-1);水酸基価40~330mgKOH/gのポリブタジエン系ポリオール(c-1-2);および水酸基価40~330mgKOH/gのポリイソプレン系ポリオールまたはその水素添加物(c-1-3)からなる群から選択された少なくとも1種であることを特徴とする請求項4に記載の太陽電池パネル封止材用組成物。 The component (c-1) is a castor oil-based polyol (c-1-1) having a hydroxyl value of 40 to 330 mgKOH / g; a polybutadiene-based polyol (c-1-2) having a hydroxyl value of 40 to 330 mgKOH / g; The solar cell panel seal according to claim 4, which is at least one selected from the group consisting of a polyisoprene-based polyol having a value of 40 to 330 mgKOH / g or a hydrogenated product thereof (c-1-3). Stopping composition.
  6.  前記成分(c-1)が、水酸基価40~330mgKOH/gの芳香族系ヒマシ油系ポリオール(c-1-1-1)であることを特徴とする請求項5に記載の太陽電池パネル封止材用組成物。 The solar cell panel seal according to claim 5, wherein the component (c-1) is an aromatic castor oil-based polyol (c-1-1-1) having a hydroxyl value of 40 to 330 mgKOH / g. Stopping composition.
  7.  前記成分(c-2)が、水酸基価40~330mgKOH/gであり、かつ酸価が2~20mgKOH/gであるヒマシ油系ポリオール(c-2-1)であることを特徴とする請求項4に記載の太陽電池パネル封止材用組成物。 The component (c-2) is a castor oil-based polyol (c-2-1) having a hydroxyl value of 40 to 330 mgKOH / g and an acid value of 2 to 20 mgKOH / g. 4. The composition for solar cell panel sealing material according to 4.
  8.  前記成分(c-3)が酸変性ポリブタジエンまたは酸変性ポリイソプレンであることを特徴とする請求項4に記載の太陽電池パネル封止材用組成物。 The composition for a solar cell panel sealing material according to claim 4, wherein the component (c-3) is acid-modified polybutadiene or acid-modified polyisoprene.
  9.  前記成分(c-4)がエポキシ当量が150~250g/モルであるポリエポキシ化合物(c-4-1)であることを特徴とする請求項4に記載の太陽電池パネル封止材用組成物。 The composition for solar cell panel sealing material according to claim 4, wherein the component (c-4) is a polyepoxy compound (c-4-1) having an epoxy equivalent of 150 to 250 g / mol. .
  10.  前記成分(c-4)がエポキシ当量が500~700g/モルである飽和骨格を持つ重合体(c-4-2)であることを特徴とする請求項4に記載の太陽電池パネル封止材用組成物。 The solar cell panel sealing material according to claim 4, wherein the component (c-4) is a polymer (c-4-2) having a saturated skeleton having an epoxy equivalent of 500 to 700 g / mol. Composition.
  11.  単一または複数の太陽電池セルと、
     前記太陽電池セルの受光面側に配置された透光性を有する透光性部材と、
     前記太陽電池セルの裏面側に配置された裏面部材と、
     前記透光性部材と前記裏面部材との間に前記太陽電池セルを封止する封止材と、を備えた太陽電池パネルにおいて、
     前記封止材が、請求項1~10のいずれかに記載の太陽電池パネル封止材用組成物からなることを特徴とする太陽電池パネル。
    Single or multiple solar cells;
    A translucent member having translucency disposed on the light-receiving surface side of the solar battery cell;
    A back member disposed on the back side of the solar cell;
    In a solar battery panel comprising: a sealing material that seals the solar battery cell between the translucent member and the back member;
    A solar cell panel, wherein the encapsulant comprises the composition for a solar cell panel encapsulant according to any one of claims 1 to 10.
  12.  前記透光性部材が、ガラスまたはポリカーボネート樹脂であり、前記裏面部材が、ポリエステル樹脂であることを特徴とする請求項11に記載の太陽電池パネル。 The solar cell panel according to claim 11, wherein the translucent member is glass or polycarbonate resin, and the back member is a polyester resin.
PCT/JP2010/060873 2010-06-25 2010-06-25 Composition for solar cell panel sealing material and solar cell panel using the same WO2011161824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060873 WO2011161824A1 (en) 2010-06-25 2010-06-25 Composition for solar cell panel sealing material and solar cell panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060873 WO2011161824A1 (en) 2010-06-25 2010-06-25 Composition for solar cell panel sealing material and solar cell panel using the same

Publications (1)

Publication Number Publication Date
WO2011161824A1 true WO2011161824A1 (en) 2011-12-29

Family

ID=45371036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060873 WO2011161824A1 (en) 2010-06-25 2010-06-25 Composition for solar cell panel sealing material and solar cell panel using the same

Country Status (1)

Country Link
WO (1) WO2011161824A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551542A (en) * 1991-06-12 1993-03-02 Japan Synthetic Rubber Co Ltd Ultraviolet curable coating composition
JP2006332091A (en) * 2005-05-23 2006-12-07 Toppan Printing Co Ltd Sheet for sealing rear surface of solar cell
WO2008133848A2 (en) * 2007-04-23 2008-11-06 E. I. Du Pont De Nemours And Company Fluoropolymer coated film, process for forming the same, and fluoropolymer liquid composition
JP2009158951A (en) * 2007-12-07 2009-07-16 Sharp Corp Surface protective sheet for solar battery, and solar battery module
JP2009260274A (en) * 2008-03-21 2009-11-05 Mitsubishi Rayon Co Ltd Transparent member for solar cell, and solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551542A (en) * 1991-06-12 1993-03-02 Japan Synthetic Rubber Co Ltd Ultraviolet curable coating composition
JP2006332091A (en) * 2005-05-23 2006-12-07 Toppan Printing Co Ltd Sheet for sealing rear surface of solar cell
WO2008133848A2 (en) * 2007-04-23 2008-11-06 E. I. Du Pont De Nemours And Company Fluoropolymer coated film, process for forming the same, and fluoropolymer liquid composition
JP2009158951A (en) * 2007-12-07 2009-07-16 Sharp Corp Surface protective sheet for solar battery, and solar battery module
JP2009260274A (en) * 2008-03-21 2009-11-05 Mitsubishi Rayon Co Ltd Transparent member for solar cell, and solar cell

Similar Documents

Publication Publication Date Title
JP5368635B2 (en) Coating composition for solar cell backsheet and solar cell backsheet
JP5813646B2 (en) Floor paints and flooring
WO2011152404A1 (en) Composition for use as coating material and adhesive, method for adhesive bonding, and laminated products
WO2010147090A1 (en) Urethane resin, adhesive curable with actinic energy rays, and back protective sheet for solar cell
JPWO2015129625A1 (en) Adhesive composition, adhesive sheet, and electronic device
JP5560326B2 (en) Hard coat paint and molded body
JP5825105B2 (en) Easy adhesive for solar cell protective sheet, solar cell protective sheet, and solar cell module
JP5664170B2 (en) Urethane / urea resin having (meth) acryloyl group, active energy ray-curable adhesive containing the urethane / urea resin, and back surface protection sheet for solar cell
JP5086967B2 (en) Adhesive resin composition and film using the adhesive resin composition
JP2017114937A (en) Polyol composition for polyisocyanate-curable adhesive coating agent, adhesive coating agent, cured material thereof, adhesive sheet, and solar battery module
WO2011151890A1 (en) Adhesive composition, bonding method, and laminate
JP6303502B2 (en) Easy adhesive for solar cell protective sheet, solar cell protective sheet, and solar cell module
WO2011158362A1 (en) Two-component curable epoxy resin composition and laminate
WO2011161824A1 (en) Composition for solar cell panel sealing material and solar cell panel using the same
WO2011151891A1 (en) Coating material and laminate
WO2012017552A1 (en) Paint for metallized film and laminated body
WO2011161827A1 (en) Adhesive composition and laminate body
WO2011161812A1 (en) Coating material and laminate body
WO2012017510A1 (en) Paint and laminated body
WO2012032588A1 (en) Coating and laminate
WO2012017553A1 (en) Coating composition and laminate
JP6084020B2 (en) Weather-resistant resin layer, laminate and solar cell module
CN114133842A (en) Coating for solar cell back panel and prepared solar cell back panel
JP2011240614A (en) Laminated sheet and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10853684

Country of ref document: EP

Kind code of ref document: A1