WO2011161758A1 - Power supplying system - Google Patents

Power supplying system Download PDF

Info

Publication number
WO2011161758A1
WO2011161758A1 PCT/JP2010/060500 JP2010060500W WO2011161758A1 WO 2011161758 A1 WO2011161758 A1 WO 2011161758A1 JP 2010060500 W JP2010060500 W JP 2010060500W WO 2011161758 A1 WO2011161758 A1 WO 2011161758A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
vehicle storage
capacity
vehicle
Prior art date
Application number
PCT/JP2010/060500
Other languages
French (fr)
Japanese (ja)
Inventor
恭子 大越
松澤 真一
原 信彦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2012521195A priority Critical patent/JP5422741B2/en
Priority to PCT/JP2010/060500 priority patent/WO2011161758A1/en
Publication of WO2011161758A1 publication Critical patent/WO2011161758A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging

Definitions

  • the present invention relates to a power supply system that supplies electric power from an in-vehicle storage battery to an electric power system or supplies electric power from the electric power system to the in-vehicle storage battery.
  • HEV hybrid electric vehicles
  • PHEV plug-in hybrid cars
  • EV Electric Vehicle
  • in-vehicle storage batteries installed in HEV, PHEV, EV, etc. are used to store low-cost nighttime power or power from renewable energy generation, and power from the in-vehicle storage battery during daytime power consumption peaks.
  • a system for supplying power to the grid has been devised. Such a mechanism is called V2G (Vehicle to Grid).
  • Patent Document 1 discloses a power supply system that uses the V2G mechanism to equalize power supply.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a power supply system capable of leveling power supply with a simple configuration.
  • a predetermined capacity of the storage capacity of the in-vehicle storage battery is assigned as a dedicated capacity for transmitting and receiving power to and from the power system, and is dedicated when transmitting and receiving power to and from the power system.
  • Use capacity preferentially.
  • the predetermined range of the storage capacity of the in-vehicle storage battery is a dedicated capacity for transmitting and receiving power to and from the power system, the influence each in-vehicle storage battery has on the power system, It can be limited within the range of dedicated capacity.
  • variation for every vehicle-mounted storage battery can be suppressed in a predetermined range, the necessity of implementing separate control response
  • FIG. 1 is a configuration diagram of a power supply system 1000 according to Embodiment 1.
  • FIG. FIG. 3 is a detailed diagram showing a connection relationship between each component of the power supply system 1000. It is a figure which shows the detailed structure of the vehicle-mounted storage battery. It is a figure explaining operation
  • FIG. It is a figure which shows a mode that electric power consumption peak cut and electrical storage of surplus electric power are implemented using the electric power supply system 1000 which concerns on Embodiment 1.
  • FIG. 1 is a configuration diagram of a power supply system 1000 according to Embodiment 1 of the present invention.
  • the power supply system 1000 includes a vehicle 1, an in-vehicle storage battery management server 2, a power system control system 3, a power consumer 4, a solar / wind power generation system 5, and a power system grid 6.
  • Each system is connected by a power transmission network and an information network.
  • the thick line in FIG. 1 indicates a power transmission network, and the thin line indicates an information network.
  • the power transmission network is a network mainly used for transmitting and receiving power transmission and control commands therefor.
  • the information network is a network in which the in-vehicle storage battery management server 2 mainly transmits and receives information for managing each in-vehicle storage battery. Details will be described later.
  • each network may be arbitrary.
  • a power transmission network generally used by electric power companies can be used as the power transmission network.
  • the power grid 6 itself may be used as a power transmission network.
  • the information network for example, the Internet can be used.
  • the vehicle 1 is equipped with an in-vehicle storage battery.
  • the in-vehicle storage battery can supply power to the power grid 6 or can supply power from the power grid 6 to the in-vehicle storage battery.
  • the number of vehicles 1 may be arbitrary, but it is generally assumed that a large number of vehicles 1 are connected to the power grid 6.
  • the in-vehicle storage battery management server 2 manages the position of each vehicle 1.
  • the position referred to here is an electrical position on the electric power system that indicates which part of the electric power grid 6 is connected to the vehicle 1. Therefore, it does not necessarily match the geographical position.
  • the in-vehicle storage battery management server 2 instructs the power system control system 3 based on the position of each vehicle 1 which vehicle in-vehicle storage battery of the vehicle 1 and the power system grid 6 should transmit and receive power. Details will be described later.
  • the power system control system 3 controls the power transmission operation and power reception operation of the power system grid 6. Specifically, a power transmission operation and a power reception operation are instructed to a power generation system such as the solar / wind power generation system 5.
  • the power consumer 4 receives power from the power grid 6 and consumes it.
  • each household electrical device corresponds to the power consumer 4.
  • the solar / wind power generation system 5 generates electric power and transmits it to the power grid 6 or receives the electric power transmitted by the in-vehicle storage battery mounted on each vehicle 1.
  • the solar power / wind power generation system 5 is described as an example of the power generation system, but other power generation systems such as a thermal power generation system and a nuclear power generation system may be connected to the power grid 6.
  • the power grid 6 is a power network such as a transmission and distribution network owned by a power company.
  • the power grid 6 includes not only wiring for transmitting and receiving power but also a network for transmitting and receiving related control commands.
  • FIG. 2 is a detailed diagram showing a connection relationship between each component of the power supply system 1000. Hereinafter, each component shown in FIG. 2 will be described.
  • the vehicle 1 includes a host vehicle information management unit 11, an in-vehicle storage battery control unit 12, and an in-vehicle storage battery 13.
  • the own vehicle information management unit 11 manages the position of the vehicle 1 in the power grid 6.
  • the in-vehicle storage battery control unit 12 controls an operation in which the in-vehicle storage battery 13 transmits power to the power grid 6 or receives power from the power grid 6.
  • the in-vehicle storage battery 13 transmits power to the power grid 6 according to an instruction from the in-vehicle storage battery control unit 12 or receives power from the power grid 6 to store the power.
  • the in-vehicle storage battery control unit 12 allocates a part of the storage capacity of the in-vehicle storage battery 13 as the power system dedicated capacity 131.
  • the power system dedicated capacity 131 is a storage capacity for preferential use when transmitting power to the power system grid 6 or receiving power from the power system grid 6.
  • the in-vehicle storage battery control unit 12 does not necessarily need to physically separate the in-vehicle storage battery 13 as the power system dedicated capacity 131, and may treat a part of the storage capacity of the in-vehicle storage battery 13 as the power system dedicated capacity 131 virtually. .
  • the in-vehicle storage battery management server 2 includes a vehicle information management unit 21.
  • the vehicle information management unit 21 receives position information indicating the position of the vehicle 1 from the own vehicle information management unit 11 of each vehicle 1 and manages it for each vehicle 1.
  • the vehicle information management unit 21 determines which vehicle-mounted storage battery 13 mounted in any vehicle 1 should transmit / receive power to / from the power grid 6 and notifies the power system control system 3. Details will be described later.
  • the power system control system 3 includes a power control information management unit 31, a power generation amount monitoring unit 32, a power consumption monitoring unit 33, a power supply control unit 34, and a power storage control unit 35.
  • the power control information management unit 31 receives an instruction from the vehicle information management unit 21 as to which vehicle-mounted storage battery 13 mounted on which vehicle 1 should transmit and receive power to and from the power grid 6, and supplies power according to the instruction.
  • the control unit 34 or the power storage control unit 35 is controlled.
  • the power generation amount monitoring unit 32 monitors the power generation amount in the power grid 6 and notifies the power control information management unit 31.
  • the power consumption monitoring unit 33 monitors the power consumption in the power grid 6 and notifies the power control information management unit 31. Details of these will be described later.
  • the power supply control unit 34 instructs the in-vehicle storage battery control unit 12 included in the vehicle 1 to transmit power to the power grid 6.
  • the power storage control unit 35 instructs the in-vehicle storage battery control unit 12 included in the vehicle 1 to receive power from the power grid 6 and store it. These instructions are transmitted / received via the power transmission network.
  • the own vehicle information management unit 11, the in-vehicle storage battery control unit 12, the vehicle information management unit 21, the power control information management unit 31, the power generation amount monitoring unit 32, the power consumption monitoring unit 33, the power supply control unit 34, and the power storage control unit 35 It can also be configured using hardware such as a circuit device that realizes these functions, or can be configured using an arithmetic device such as a microcomputer or CPU (Central Processing Unit) and software that defines its operation. . These can be combined as appropriate. In addition, necessary components such as measuring instruments and communication interfaces are provided as appropriate.
  • FIG. 3 is a diagram showing a detailed configuration of the in-vehicle storage battery 13.
  • the in-vehicle storage battery control unit 12 converts the power system dedicated capacity 131 into a power receiving capacity 1311 for receiving power from the power system grid 6 and storing it, and a power transmission capacity 1312 for transmitting power to the power system grid 6. , Virtually partition.
  • the in-vehicle storage battery 13 does not necessarily need to be physically separated as the power system dedicated capacity 131, and a part of the power storage capacity of the power system dedicated capacity 131 may be virtually handled as the power receiving capacity 1311 and the power transmission capacity 1312. .
  • the in-vehicle storage battery control unit 12 virtually divides the storage capacity of the in-vehicle storage battery 13, the actual capacity classification of the in-vehicle storage battery 13 may not necessarily match.
  • the in-vehicle storage battery 13 is configured by a plurality of sub storage batteries, it is not always necessary to make the sub storage battery and each section actually correspond to 1: 1.
  • the in-vehicle storage battery control unit 12 can, for example, consolidate the capacities of the sub storage batteries, virtually consolidate them as a single in-vehicle storage battery 13, and handle a part of them as the power system dedicated capacity 131. Similarly, a part of the power system dedicated capacity 131 can be handled as the power receiving capacity 1311 and the rest as the power transmitting capacity 1312.
  • the in-vehicle storage battery control unit 12 As a specific technique for the in-vehicle storage battery control unit 12 to handle a part of the in-vehicle storage battery 13 as the power system dedicated capacity 131 and further classify into the power receiving capacity 1311 and the power transmitting capacity 1312, for example, the following technique examples Can be considered.
  • the in-vehicle storage battery control unit 12 handles, for example, half of the power system dedicated capacity 131 as the power receiving capacity 1311 and the other half as the power transmitting capacity 1312. In the case of the above example, the capacity is 10 for both the power receiving capacity 1311 and the power transmitting capacity 1312.
  • FIG. 4 is a diagram for explaining the operation of the power supply system 1000 in a time zone in which the power consumption reaches a peak. Hereinafter, each step of FIG. 4 will be described.
  • the vehicle information management unit 11 of the vehicle 1 determines whether or not the vehicle can cooperate with the power grid 6. Specifically, the in-vehicle storage battery control unit 12 may be inquired as to whether or not the power system dedicated capacity 131 is provided in the in-vehicle storage battery 13. The own vehicle information management part 11 transmits the positional information which shows the position of the own vehicle to the vehicle-mounted storage battery management server 2, when the own vehicle can cooperate with the electric power grid 6.
  • the vehicle information management unit 21 of the in-vehicle storage battery management server 2 receives the position information of the vehicle from the own vehicle information management unit 11 of the vehicle 1 and records it in an appropriate storage device such as an HDD (Hard Disk Drive).
  • the vehicle information management unit 21 similarly collects and records the position information of each vehicle.
  • the power consumption monitoring unit 33 of the power system control system 3 monitors the power consumption in the power system grid 6. Based on the monitoring result, the power consumption monitoring unit 33 determines whether or not the power consumption peak cut is necessary, and the power amount to be cut, and notifies the power control information management unit 31 of the determination.
  • Step S430 Supplement
  • the term “power consumption peak cut” as used herein refers to supplementing a shortage of power in accordance with a time zone in which the power consumption in the power grid 6 reaches a peak. Specifically, it means that the electric power stored in the in-vehicle storage battery 13 of each vehicle 1 is transmitted to the power grid 6.
  • Step S440 The power control information management unit 31 transmits the information received from the power consumption monitoring unit 33 to the in-vehicle storage battery management server 2.
  • Step S450 The vehicle information management unit 21 of the in-vehicle storage battery management server 2 determines which vehicle 1 should correspond to the power consumption peak cut, and instructs the power system control system 3 to do so. Since this instruction relates to power control, the vehicle storage battery management server 2 does not directly instruct each vehicle 1 but directs it via the power system control system 3 via the power transmission network. For example, the following criteria can be used as a criterion for determining which vehicle 1 should respond.
  • Step S450 Criteria Example 1
  • the vehicle 1 corresponding to the power consumption peak cut needs to be connected to the power grid 6. Whether or not the vehicle 1 is connected to the power grid 6 can be determined based on the position information of each vehicle collected in step S410.
  • Step S450 Criteria Example 2
  • the vehicle 1 corresponding to the power consumption peak cut needs to be provided with a power system dedicated capacity 131 in the in-vehicle storage battery 13.
  • step S410 if only the vehicle 1 capable of cooperating with the power grid 6 transmits position information to the in-vehicle storage battery management server 2, this condition is automatically satisfied.
  • Step S450 Criteria Example 3
  • the position is an electrical position under the power grid 6 and does not necessarily match the geographical position.
  • the position of each vehicle 1 can be grasped based on the position information of each vehicle collected in step S410.
  • Step S450 Supplement
  • Step S460 The power control information management unit 31 of the power system control system 3 receives the instruction in step S450 from the vehicle information management unit 21 of the in-vehicle storage battery management server 2. The power control information management unit 31 further notifies the power supply control unit 34 of the instruction.
  • Step S470 Based on the instruction received from the power control information management unit 31 in step S460, the power supply control unit 34 instructs the corresponding vehicle 1 to transmit the stored power to the power grid 6.
  • Step S480 The in-vehicle storage battery control unit 12 of the vehicle 1 receives the instruction transmitted by the power supply control unit 34 in step S470 via an appropriate interface or the like.
  • the in-vehicle storage battery control unit 12 transmits the power stored in the power system dedicated capacity 131 of the in-vehicle storage battery 13 to the power system grid 6 in accordance with the instruction.
  • FIG. 5 is a diagram for explaining the operation of the power supply system 1000 when the in-vehicle storage battery 13 receives power from the power grid 6 and stores it in the power system dedicated capacity 131. Hereinafter, each step of FIG. 5 will be described.
  • Steps S510 to S520 These steps are the same as steps S410 to S420 in FIG.
  • Step S530 The power generation amount monitoring unit 32 of the power system control system 3 monitors the power generation amount in the power system grid 6. Based on the monitoring result, the power generation amount monitoring unit 32 determines whether or not power storage is necessary and the total power amount to be stored, and notifies the power control information management unit 31 of the determination.
  • the state where power storage is required refers to a state where the amount of power generation is excessive with respect to the power demand at that point in the power grid 6.
  • the power grid 6 it is necessary to balance the power generation amount and the power consumption. Therefore, if surplus power is generated, the power generation amount is suppressed to balance the power generation amount and the power consumption, or the surplus power is temporarily stored. It is necessary to discharge the surplus from the power grid 6 by storing the power in the power grid.
  • the in-vehicle storage battery 13 provided in each vehicle 1 plays a role as a power storage facility.
  • Step S540 The power control information management unit 31 transmits the information received from the power generation amount monitoring unit 32 to the in-vehicle storage battery management server 2.
  • Step S550 The vehicle information management unit 21 of the in-vehicle storage battery management server 2 determines which vehicle 1 should store power and instructs the power system control system 3 to that effect. Since this instruction relates to power control, it is not directly instructed to each vehicle 1 from the in-vehicle storage battery management server 2 but via the power transmission network via the power system control system 3 as in step S450 of FIG. Instruct.
  • Step S550 Supplement
  • the power control information management unit 31 of the power system control system 3 receives the instruction in step S550 from the vehicle information management unit 21 of the in-vehicle storage battery management server 2. The power control information management unit 31 further notifies the power storage control unit 35 of the instruction.
  • Step S570 Based on the instruction received from the power control information management unit 31 in step S560, the power storage control unit 35 instructs the corresponding vehicle 1 to receive power from the power grid 6 and store it.
  • the in-vehicle storage battery control unit 12 of the vehicle 1 receives the instruction transmitted by the power storage control unit 35 in step S570 via an appropriate interface or the like.
  • the in-vehicle storage battery control unit 12 receives power from the power system grid 6 according to the instruction and stores the power in the power system dedicated capacity 131 of the in-vehicle storage battery 13.
  • the in-vehicle storage battery control unit 13 is a dedicated capacity that transmits and receives a part of the storage capacity of the in-vehicle storage battery 13 to and from the power grid 6. Allocate as a power system dedicated capacity 131. Thereby, the electric energy which each vehicle-mounted storage battery 13 transmits to the electric power grid 6 or the electric energy which the electric power grid 6 transmits to each vehicle-mounted storage battery 13 can be limited within the range of the electric power system dedicated capacity 131.
  • the in-vehicle storage battery control unit 13 handles the power system dedicated capacity 131 as a virtual storage capacity. Thereby, no matter what physical configuration the in-vehicle storage battery 13 has, the power system dedicated capacity 131 itself can always be handled in the same way.
  • the in-vehicle storage battery 13 is configured by two sub storage batteries, and one of them is allocated as the power system dedicated capacity 131.
  • the power charged in the sub storage battery allocated as the power system dedicated capacity 131 is depleted first, even if power remains in the other storage battery, no more power is transmitted to the power system grid 6. Can not do.
  • the power system dedicated capacity 131 is virtually assigned as in the first embodiment, it is sufficient if the power system dedicated capacity 131 can be provided as a total of each storage battery.
  • the power transmission / reception with the power grid 6 can be processed flexibly without being restricted by the division.
  • the in-vehicle storage battery control unit 13 prioritizes the power system dedicated capacity 131 over other capacity when the in-vehicle storage battery 13 transmits and receives power to and from the power system grid 6. Can be handled. For example, when the in-vehicle storage battery 13 is normally charged, the power system dedicated capacity 131 and the remaining capacity are charged equally, and when the surplus power is received from the power grid 6 and stored, the power system dedicated capacity 131 is given priority. Can be charged. Similarly, when power is transmitted from the in-vehicle storage battery 13 to the power grid 6, the power stored in the power system dedicated capacity 131 can be preferentially taken out. By preferentially handling the power system dedicated capacity 131 in this way, the power system dedicated capacity 131 is used up first, so that it becomes easy to distinguish between the power system dedicated capacity 131 and the remaining capacity, and control is performed. It can be simplified.
  • the host vehicle information management unit 11 and the in-vehicle storage battery management server 2 specify the respective vehicles 1 and manage the position information, but the intent is to specify the in-vehicle storage battery 13. Is to manage. Therefore, the position may be managed by specifying the individual in-vehicle storage battery 13 more directly. The same applies to the following embodiments.
  • the vehicle-mounted storage battery management part 12 was provided for every vehicle 1, it replaced with this and the vehicle-mounted storage battery management server 2 or the electric power system control system 3 replaced the vehicle-mounted storage battery management part 12 with this. It is also possible to remotely control the operation of the in-vehicle storage battery 13 of each vehicle 1. The same applies to the following embodiments.
  • FIG. 6 is a diagram illustrating a state in which power consumption peak cut and surplus power storage are performed using the power supply system 1000 according to the first embodiment. As a rule of thumb, it is known that the power consumption reaches a peak during the day almost in the time zone after noon.
  • the power system control system 3 controls each power generation system so that the power generation amount reaches a peak during this time period, but it is difficult to perfectly match the peak of the power generation amount and the peak of power consumption.
  • the power supply system 1000 according to the first embodiment is used to absorb the mismatched portion.
  • the power supply system 1000 performs the operation described with reference to FIG. 5 of the first embodiment, and stores surplus power in the storage capacitor 1311.
  • the power consumption reaches a peak at a time slightly after noon on the first day. At this time, since the peak of the power generation amount has passed, the power generation amount is insufficient. Therefore, the power supply system 1000 performs the operation described in FIG. 4 of the first embodiment, and transmits power from the power transmission capacity 1312 to the power grid 6 to compensate for the insufficient power.
  • the power is stored in the power storage capacitor 1311 and the power stored in the power transmission capacitor 1312 disappears. Therefore, the power storage amount of the power receiving capacitor 1311 and the power storage amount of the power transmission capacitor 1312 are opposite to each other. Become. Therefore, the in-vehicle storage battery control unit 13 replaces the power receiving capacity 1311 and the power transmitting capacity 1312 on the second day. Similarly, the in-vehicle storage battery control unit 13 switches the roles of the power receiving capacity 1311 and the power transmitting capacity 1312 each time the power receiving capacity 1311 and the power transmitting capacity 1312 are used up. Since the power receiving capacity 1311 and the power transmitting capacity 1312 are virtually allocated, such a role change can be easily performed.
  • the power receiving capacity 1311 and the power transmission capacity 1312 are fixedly assigned to a specific sub-storage battery, the above-described arbitrary replacement cannot be performed, so that power is stored and transmitted in addition to normal charging and discharging. There is no means and it becomes difficult to operate flexibly.
  • the power receiving capacity 1311 and the power transmitting capacity 1312 are interchanged as necessary, so that the power supply can be flexibly dealt with without being restricted by a specific storage battery. be able to.
  • the in-vehicle storage battery control unit 13 interchanges the power receiving capacity 1311 and the power transmitting capacity 1312 as necessary. Specifically, when the power receiving capacity 1311 is used up, the role of the power receiving capacity 1311 is switched to the power transmitting capacity 1312 thereafter. Similarly, when the power transmission capacity 1312 is used up, the role of the power transmission capacity 1312 is switched to the power reception capacity 1311 thereafter. Thereby, the restriction
  • the power receiving capacity 1311 and the power transmitting capacity 1312 can be switched every predetermined period.
  • the power receiving capacity 1311 and the power transmitting capacity 1312 may be switched every 24 hours. The effect similar to the above example can be exhibited by appropriately setting the period for replacement.
  • the power system dedicated capacity 131, the power receiving capacity 1311, and the power transmitting capacity 1312 may be rewritten from the outside of the vehicle 1.
  • the in-vehicle storage battery management server 2 designates the capacity of the power system dedicated capacity 131 and the capacity of the power receiving capacity 1311 and the capacity for power transmission 1312 or the ratio of each capacity to the total capacity, etc.
  • the in-vehicle storage battery control unit 12 may reflect the designation thereafter.
  • the power system dedicated capacity 131, the power receiving capacity 1311, and the power transmitting capacity 1312 are virtually allocated, it is possible to easily cope with such a dynamic capacity change.
  • the values of the power system dedicated capacity 131, the power receiving capacity 1311, and the power transmitting capacity 1312 of each vehicle 1 are the same at least at a certain point in time. If these values are the same for each vehicle 1, it is only necessary to determine the number of vehicles 1 that should respond to the excess or deficiency of the electric energy, so the in-vehicle storage battery management server 2 needs to determine the difference for each vehicle 1. The control calculation can be simplified.
  • the ratio of each capacity to the total capacity is determined for each vehicle 1. It may be the same.
  • the control calculation of the in-vehicle storage battery management server 2 can be simplified.
  • FIG. 7 is a diagram illustrating an operation example when there are two power grids.
  • the power consumption and power generation amount of each grid may be different. Therefore, it is desirable for management to identify each power grid individually.
  • Each vehicle 1 does not always exist under the same power grid, and may move to another power grid. From this viewpoint, it is desirable to manage the cooperative relationship between each vehicle 1 and each power grid.
  • each time each vehicle 1 transmits power to the power grid or each vehicle 1 receives power from the power grid its operation log is recorded, and the in-vehicle storage battery management server 2 Centrally manage action logs.
  • FIG. 8 is a diagram illustrating a configuration and data example of the cooperation log 14 held by each vehicle 1.
  • the in-vehicle storage battery control unit 12 records the operation content in the linkage log 14 each time the in-vehicle storage battery 13 transmits power to the power grid or the in-vehicle storage battery 13 receives power from the power grid.
  • An appropriate non-volatile storage device such as a flash memory or an HDD may be used as the storage location of the cooperation log 14.
  • the cooperation log 14 includes a vehicle ID column 141, a power system cooperation date / time column 142, a power storage / power transmission column 143, a power system grid ID column 144, and a vehicle position column 145.
  • the vehicle ID column 141 holds an identifier of each vehicle 1.
  • the power system cooperation date / time column 142 holds the date / time when the in-vehicle storage battery 13 transmits power to the power system grid or the in-vehicle storage battery 13 receives power from the power system grid.
  • the value of the power storage / power transmission column 143 indicates whether the vehicle 1 has transmitted power to the power system grid at the date and time indicated by the power system linkage date / time column 142 or whether each vehicle 1 has received power from the power system grid.
  • the power grid ID column 144 holds an identifier for identifying a plurality of individual power grids.
  • the vehicle position column 145 holds the position of the vehicle 1 at the date and time indicated by the power system linkage date and time column 142.
  • the value of the vehicle position column 145 does not necessarily have to be a geographical position, but if it is convenient for management, an easily processable data format such as latitude and longitude may be adopted.
  • FIG. 9 is a diagram for explaining the operation of the power supply system 1000 in a time zone in which the power consumption reaches a peak. Since steps S410 to S480 are the same as those in FIG. 4, only the added steps will be described below.
  • Step S491 The in-vehicle storage battery control unit 12 of the vehicle 1 records the operation of step S480 in the linkage log 14 and transmits it to the in-vehicle storage battery management server 2.
  • the vehicle information management unit 21 of the in-vehicle storage battery management server 2 receives the cooperation log 14 from the in-vehicle storage battery control unit 12 and stores it in an appropriate storage device such as an HDD.
  • the in-vehicle storage battery management server 2 determines which vehicle 1 transmits power to the power grid based on the description of the linkage log 14 collected from each vehicle 1 and which vehicle 1 is from the power grid. Whether to receive power can be equally assigned to each vehicle 1. Specific examples will be described below.
  • the vehicle information management unit 21 of the in-vehicle storage battery management server 2 equally assigns the vehicles 1 to be linked with the power grid to each vehicle 1 based on the value of the power grid linkage date / time column 142. For example, the vehicle 1 transmitted to the power grid is not selected as a vehicle to be transmitted until a predetermined period has elapsed. The same applies to power reception. Or the method of making the frequency
  • the vehicle information management unit 21 of the in-vehicle storage battery management server 2 equally assigns the vehicles 1 to be linked with the power grid to each vehicle 1 based on the value of the power storage / power transmission column 143. For example, for the vehicle 1 whose last operation linked to the power grid is “power transmission”, “storage” is preferentially assigned for the next operation. Similarly, for the vehicle 1 whose last operation associated with the power grid is “power storage”, “power transmission” is preferentially assigned for the next operation.
  • the vehicle information management unit 21 receives power from the power system and the date and time when power is transmitted to the power system based on the power system cooperation date and time column 142 of the cooperation log 14.
  • the date and time to be assigned are assigned to be equal for each vehicle 1 or each vehicle-mounted storage battery 13. Thereby, the power transmission / reception burden for every vehicle 1 can be equalized.
  • the vehicle information management unit 21 performs an operation in which each vehicle 1 cooperates with the last power grid on the basis of the power storage / power transmission column 143 of the cooperation log 14. Know which one is.
  • the vehicle information management unit 21 preferentially assigns a power reception operation to the vehicle 1 that has transmitted power last, and preferentially assigns a power transmission operation to the vehicle 1 that has received power last. Thereby, the power transmission / reception burden for every vehicle 1 can be equalized.
  • 1 vehicle, 11: own vehicle information management unit, 12: vehicle storage battery control unit, 13: vehicle storage battery, 131: dedicated capacity for power system, 1311: capacity for receiving power, 1312: capacity for power transmission, 141: vehicle ID column, 142 : Power system linkage date / time column, 143: Power storage / power transmission column, 144: Power system grid ID column, 145: Vehicle position column, 2: In-vehicle storage battery management server, 21: Vehicle information management unit, 3: Power system control system, 31 : Power control information management unit, 32: power generation amount monitoring unit, 33: power consumption monitoring unit, 34: power supply control unit, 35: power storage control unit, 4: power consumer, 5: solar power / wind power generation system, 6: Power grid, 1000: Power supply system.

Abstract

Provided is a power supplying system, wherein power supplying can be leveled with a simple configuration. In the power supplying system, a prescribed capacity potion of the storage capacity of a vehicle-mounted storage battery is assigned as a dedicated capacity for transmitting/receiving power to/from a power grid, and the dedicated capacity is used in priority upon transmitting/receiving power to/from the power grid.

Description

電力供給システムPower supply system
 本発明は、車載蓄電池から電力系統に電力を供給し、または前記電力系統から前記車載蓄電池に電力を供給する電力供給システムに関するものである。 The present invention relates to a power supply system that supplies electric power from an in-vehicle storage battery to an electric power system or supplies electric power from the electric power system to the in-vehicle storage battery.
 近年、ハイブリッドカー(Hybrid Electric Vehicle:HEV)、プラグインハイブリッドカー(Plugin Hybrid Electric Vehicle:PHEV)、電気自動車(Electric Vehicle:EV)などの電気を動力源とする自動車が脚光を浴び、需要が高まっている。これらの自動車が普及すると、これら自動車へ電力を供給する必要性が高まり、電力消費状況が変化するので、電力供給を安定化するための新たな対策が必要になってくる懸念がある。 In recent years, electric vehicles such as hybrid electric vehicles (HEV), plug-in hybrid cars (Plugin Hybrid Electric Vehicle: PHEV), and electric vehicles (Electric Vehicle: EV) have attracted more and more demand. ing. As these vehicles become widespread, the need to supply power to these vehicles increases and the power consumption changes, so there is a concern that new measures will be required to stabilize the power supply.
 一方、太陽光発電、風力発電などの、再生可能エネルギーを利用した発電手法が注目を集め、導入事例が徐々に増えつつある。 On the other hand, power generation methods using renewable energy such as solar power generation and wind power generation have attracted attention, and the number of introduction cases is gradually increasing.
 上記状況に鑑みて、HEV、PHEV、EVなどが搭載している車載蓄電池を利用し、安価な夜間電力や再生可能エネルギー発電による電力を蓄電しておき、昼間の電力消費ピーク時に車載蓄電池から電力系統へ電力を供給するシステムが考案されている。このような仕組みは、V2G(Vehicle to Grid)などと呼ばれる。 In view of the above situation, in-vehicle storage batteries installed in HEV, PHEV, EV, etc. are used to store low-cost nighttime power or power from renewable energy generation, and power from the in-vehicle storage battery during daytime power consumption peaks. A system for supplying power to the grid has been devised. Such a mechanism is called V2G (Vehicle to Grid).
 下記特許文献1には、V2Gの仕組みを利用して電力供給を平準化する電力供給システムが開示されている。 The following Patent Document 1 discloses a power supply system that uses the V2G mechanism to equalize power supply.
特開2009-183086号公報JP 2009-183086 A
 上記特許文献1に記載の技術では、各車載蓄電池が対応することができる電力容量が個々に異なったり、経時変化したりするため、複雑なシステムになりやすい。 In the technique described in Patent Document 1, the power capacity that can be accommodated by each in-vehicle storage battery is different or changes with time, so that the system tends to be complicated.
 本発明は、上記のような課題を解決するためになされたものであり、簡易な構成で電力供給を平準化することのできる電力供給システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a power supply system capable of leveling power supply with a simple configuration.
 本発明に係る電力供給システムでは、車載蓄電池の蓄電容量のうち所定容量を、電力系統との間で送受電するための専用容量として割り当てておき、電力系統との間で送受電するときは専用容量を優先的に用いる。 In the power supply system according to the present invention, a predetermined capacity of the storage capacity of the in-vehicle storage battery is assigned as a dedicated capacity for transmitting and receiving power to and from the power system, and is dedicated when transmitting and receiving power to and from the power system. Use capacity preferentially.
 本発明に係る電力供給システムによれば、車載蓄電池の蓄電容量のうち所定範囲を、電力系統との間の送受電するための専用容量とするので、各車載蓄電池が電力系統に与える影響を、専用容量の範囲内に限定することができる。これにより、個々の車載蓄電池毎のばらつきを所定範囲内に抑えることができるので、車載蓄電池毎に個別の制御対応を実施する必要性も同様に抑えられ、制御を簡易化することができる。 According to the power supply system according to the present invention, since the predetermined range of the storage capacity of the in-vehicle storage battery is a dedicated capacity for transmitting and receiving power to and from the power system, the influence each in-vehicle storage battery has on the power system, It can be limited within the range of dedicated capacity. Thereby, since the dispersion | variation for every vehicle-mounted storage battery can be suppressed in a predetermined range, the necessity of implementing separate control response | compatibility for every vehicle-mounted storage battery can also be suppressed similarly, and control can be simplified.
実施の形態1に係る電力供給システム1000の構成図である。1 is a configuration diagram of a power supply system 1000 according to Embodiment 1. FIG. 電力供給システム1000の各構成要素間の接続関係を示す詳細図である。FIG. 3 is a detailed diagram showing a connection relationship between each component of the power supply system 1000. 車載蓄電池13の詳細構成を示す図である。It is a figure which shows the detailed structure of the vehicle-mounted storage battery. 電力消費がピークに達する時間帯における電力供給システム1000の動作を説明する図である。It is a figure explaining operation | movement of the electric power supply system 1000 in the time slot | zone when electric power consumption reaches the peak. 車載蓄電池13が電力系統グリッド6から電力を受電して電力系統専用容量131に蓄電する際の電力供給システム1000の動作を説明する図である。It is a figure explaining operation | movement of the electric power supply system 1000 when the vehicle-mounted storage battery 13 receives electric power from the electric power grid 6, and stores it in the electric power system exclusive capacity | capacitance 131. FIG. 実施形態1に係る電力供給システム1000を用いて、電力消費ピークカットと余剰電力の蓄電を実施する様子を示す図である。It is a figure which shows a mode that electric power consumption peak cut and electrical storage of surplus electric power are implemented using the electric power supply system 1000 which concerns on Embodiment 1. FIG. 2つの電力系統グリッドが存在する場合の動作例を示す図である。It is a figure which shows the operation example in case two electric power grids exist. 各車両1が保持する連携ログ14の構成とデータ例を示す図である。It is a figure which shows the structure and data example of the cooperation log 14 which each vehicle 1 hold | maintains. 電力消費がピークに達する時間帯における電力供給システム1000の動作を説明する図である。It is a figure explaining operation | movement of the electric power supply system 1000 in the time slot | zone when electric power consumption reaches the peak.
<実施の形態1>
 図1は、本発明の実施の形態1に係る電力供給システム1000の構成図である。電力供給システム1000は、車両1、車載蓄電池管理サーバ2、電力系統制御システム3、電力消費体4、太陽光/風力発電システム5、電力系統グリッド6を有する。
<Embodiment 1>
FIG. 1 is a configuration diagram of a power supply system 1000 according to Embodiment 1 of the present invention. The power supply system 1000 includes a vehicle 1, an in-vehicle storage battery management server 2, a power system control system 3, a power consumer 4, a solar / wind power generation system 5, and a power system grid 6.
 各システム等は、送電ネットワークと情報ネットワークによって接続されている。図1の太線は送電ネットワーク、細線は情報ネットワークを示す。送電ネットワークは、主に電力送電とそのための制御命令を送受信するために用いるネットワークである。情報ネットワークは、主に車載蓄電池管理サーバ2が各車載蓄電池を管理するための情報を送受信するネットワークである。詳細は後述する。 Each system is connected by a power transmission network and an information network. The thick line in FIG. 1 indicates a power transmission network, and the thin line indicates an information network. The power transmission network is a network mainly used for transmitting and receiving power transmission and control commands therefor. The information network is a network in which the in-vehicle storage battery management server 2 mainly transmits and receives information for managing each in-vehicle storage battery. Details will be described later.
 各ネットワークの具体的な実装手法は任意でよい。例えば送電ネットワークとして、電力会社が一般的に用いている送電網を用いることができる。電力系統グリッド6そのものを送電ネットワークとして用いてもよい。また情報ネットワークとして、例えばインターネットを用いることができる。 The specific implementation method for each network may be arbitrary. For example, a power transmission network generally used by electric power companies can be used as the power transmission network. The power grid 6 itself may be used as a power transmission network. As the information network, for example, the Internet can be used.
 車両1は、車載蓄電池を搭載している。車載蓄電池は電力系統グリッド6に電力を供給し、または電力系統グリッド6から車載蓄電池に電力を供給することができる。車両1の台数は任意でよいが、一般的には多数の車両1が電力系統グリッド6に接続されているものと想定される。 The vehicle 1 is equipped with an in-vehicle storage battery. The in-vehicle storage battery can supply power to the power grid 6 or can supply power from the power grid 6 to the in-vehicle storage battery. The number of vehicles 1 may be arbitrary, but it is generally assumed that a large number of vehicles 1 are connected to the power grid 6.
 車載蓄電池管理サーバ2は、各車両1の位置を管理する。ここでいう位置とは、電力系統グリッド6のどの部分に車両1が接続されているかを示す、いわば電力系統上の電気的位置である。したがって、必ずしも地理的な位置とは一致しない。また車載蓄電池管理サーバ2は、各車両1の位置に基づき、いずれの車両1の車載蓄電池と電力系統グリッド6が電力を送受電すべきかを、電力系統制御システム3に指示する。詳細は後述する。 The in-vehicle storage battery management server 2 manages the position of each vehicle 1. The position referred to here is an electrical position on the electric power system that indicates which part of the electric power grid 6 is connected to the vehicle 1. Therefore, it does not necessarily match the geographical position. Further, the in-vehicle storage battery management server 2 instructs the power system control system 3 based on the position of each vehicle 1 which vehicle in-vehicle storage battery of the vehicle 1 and the power system grid 6 should transmit and receive power. Details will be described later.
 電力系統制御システム3は、電力系統グリッド6の送電動作と受電動作を制御する。具体的には、太陽光/風力発電システム5などの発電システムに対して、送電動作と受電動作を指示する。 The power system control system 3 controls the power transmission operation and power reception operation of the power system grid 6. Specifically, a power transmission operation and a power reception operation are instructed to a power generation system such as the solar / wind power generation system 5.
 電力消費体4は、電力系統グリッド6から電力を受け取って消費する。例えば各家庭の電気機器などが電力消費体4に相当する。 The power consumer 4 receives power from the power grid 6 and consumes it. For example, each household electrical device corresponds to the power consumer 4.
 太陽光/風力発電システム5は、電力を発電して電力系統グリッド6に送電し、または各車両1が搭載する車載蓄電池が送電する電力を受電する。ここでは発電システムの例として太陽光/風力発電システム5のみを記載したが、その他の発電システム、例えば火力発電システムや原子力発電システムを電力系統グリッド6に接続してもよい。 The solar / wind power generation system 5 generates electric power and transmits it to the power grid 6 or receives the electric power transmitted by the in-vehicle storage battery mounted on each vehicle 1. Here, only the solar power / wind power generation system 5 is described as an example of the power generation system, but other power generation systems such as a thermal power generation system and a nuclear power generation system may be connected to the power grid 6.
 電力系統グリッド6は、電力会社などが保有する送配電網などの電力ネットワークである。電力を送受電する配線のみならず、関連する制御命令を送受信するネットワークも、電力系統グリッド6に含まれる。 The power grid 6 is a power network such as a transmission and distribution network owned by a power company. The power grid 6 includes not only wiring for transmitting and receiving power but also a network for transmitting and receiving related control commands.
 図2は、電力供給システム1000の各構成要素間の接続関係を示す詳細図である。以下、図2に示す各構成要素について説明する。 FIG. 2 is a detailed diagram showing a connection relationship between each component of the power supply system 1000. Hereinafter, each component shown in FIG. 2 will be described.
 車両1は、自車情報管理部11、車載蓄電池制御部12、車載蓄電池13を備える。自車情報管理部11は、当該車両1の電力系統グリッド6内における位置を管理する。車載蓄電池制御部12は、車載蓄電池13が電力系統グリッド6に対して送電し、または電力系統グリッド6から受電する動作を制御する。車載蓄電池13は、車載蓄電池制御部12からの指示にしたがって、電力系統グリッド6に対して送電し、または電力系統グリッド6から受電してその電力を蓄電する。 The vehicle 1 includes a host vehicle information management unit 11, an in-vehicle storage battery control unit 12, and an in-vehicle storage battery 13. The own vehicle information management unit 11 manages the position of the vehicle 1 in the power grid 6. The in-vehicle storage battery control unit 12 controls an operation in which the in-vehicle storage battery 13 transmits power to the power grid 6 or receives power from the power grid 6. The in-vehicle storage battery 13 transmits power to the power grid 6 according to an instruction from the in-vehicle storage battery control unit 12 or receives power from the power grid 6 to store the power.
 車載蓄電池制御部12は、車載蓄電池13の蓄電容量のうち一部を、電力系統専用容量131として割り当てる。電力系統専用容量131は、電力系統グリッド6に対して送電し、または電力系統グリッド6から受電する際に優先的に用いるための蓄電容量である。 The in-vehicle storage battery control unit 12 allocates a part of the storage capacity of the in-vehicle storage battery 13 as the power system dedicated capacity 131. The power system dedicated capacity 131 is a storage capacity for preferential use when transmitting power to the power system grid 6 or receiving power from the power system grid 6.
 車載蓄電池制御部12は、必ずしも車載蓄電池13を電力系統専用容量131として物理的に区分する必要はなく、車載蓄電池13の蓄電容量のうち一部を仮想的に電力系統専用容量131として取り扱えばよい。 The in-vehicle storage battery control unit 12 does not necessarily need to physically separate the in-vehicle storage battery 13 as the power system dedicated capacity 131, and may treat a part of the storage capacity of the in-vehicle storage battery 13 as the power system dedicated capacity 131 virtually. .
 車載蓄電池管理サーバ2は、車両情報管理部21を備える。車両情報管理部21は、各車両1の自車情報管理部11から当該車両1の位置を示す位置情報を受け取って車両1毎に管理する。また、車両情報管理部21は、いずれの車両1が搭載する車載蓄電池13が電力系統グリッド6との間で電力を送受電すべきかを判定し、電力系統制御システム3に通知する。詳細は後述する。 The in-vehicle storage battery management server 2 includes a vehicle information management unit 21. The vehicle information management unit 21 receives position information indicating the position of the vehicle 1 from the own vehicle information management unit 11 of each vehicle 1 and manages it for each vehicle 1. In addition, the vehicle information management unit 21 determines which vehicle-mounted storage battery 13 mounted in any vehicle 1 should transmit / receive power to / from the power grid 6 and notifies the power system control system 3. Details will be described later.
 電力系統制御システム3は、電力制御情報管理部31、発電量監視部32、電力消費量監視部33、電力供給制御部34、蓄電制御部35を備える。 The power system control system 3 includes a power control information management unit 31, a power generation amount monitoring unit 32, a power consumption monitoring unit 33, a power supply control unit 34, and a power storage control unit 35.
 電力制御情報管理部31は、いずれの車両1が搭載する車載蓄電池13が電力系統グリッド6との間で電力を送受電すべきかの指示を車両情報管理部21から受け取り、その指示にしたがって電力供給制御部34または蓄電制御部35を制御する。 The power control information management unit 31 receives an instruction from the vehicle information management unit 21 as to which vehicle-mounted storage battery 13 mounted on which vehicle 1 should transmit and receive power to and from the power grid 6, and supplies power according to the instruction. The control unit 34 or the power storage control unit 35 is controlled.
 発電量監視部32は、電力系統グリッド6内の発電量を監視し、電力制御情報管理部31に通知する。電力消費量監視部33は、電力系統グリッド6内の電力消費量を監視し、電力制御情報管理部31に通知する。これらの詳細は後述する。 The power generation amount monitoring unit 32 monitors the power generation amount in the power grid 6 and notifies the power control information management unit 31. The power consumption monitoring unit 33 monitors the power consumption in the power grid 6 and notifies the power control information management unit 31. Details of these will be described later.
 電力供給制御部34は、車両1が備える車載蓄電池制御部12に対し、電力系統グリッド6へ電力を送電するように指示する。蓄電制御部35は、車両1が備える車載蓄電池制御部12に対し、電力系統グリッド6から電力を受電して蓄電するよう指示する。これらの指示は、送電ネットワークを介して送受信される。 The power supply control unit 34 instructs the in-vehicle storage battery control unit 12 included in the vehicle 1 to transmit power to the power grid 6. The power storage control unit 35 instructs the in-vehicle storage battery control unit 12 included in the vehicle 1 to receive power from the power grid 6 and store it. These instructions are transmitted / received via the power transmission network.
 自車情報管理部11、車載蓄電池制御部12、車両情報管理部21、電力制御情報管理部31、発電量監視部32、電力消費量監視部33、電力供給制御部34、蓄電制御部35は、これらの機能を実現する回路デバイスなどのハードウェアを用いて構成することもできるし、マイコンやCPU(Central Processing Unit)などの演算装置とその動作を規定するソフトウェアを用いて構成することもできる。これらを適宜組み合わせることもできる。また、計測器や通信インターフェースなどの必要な構成を適宜備える。 The own vehicle information management unit 11, the in-vehicle storage battery control unit 12, the vehicle information management unit 21, the power control information management unit 31, the power generation amount monitoring unit 32, the power consumption monitoring unit 33, the power supply control unit 34, and the power storage control unit 35 It can also be configured using hardware such as a circuit device that realizes these functions, or can be configured using an arithmetic device such as a microcomputer or CPU (Central Processing Unit) and software that defines its operation. . These can be combined as appropriate. In addition, necessary components such as measuring instruments and communication interfaces are provided as appropriate.
 図3は、車載蓄電池13の詳細構成を示す図である。車載蓄電池制御部12は、電力系統専用容量131を、電力系統グリッド6から電力を受電して蓄電するための受電用容量1311と、電力系統グリッド6に電力を送電するための送電用容量1312に、仮想的に区分けする。必ずしも車載蓄電池13を電力系統専用容量131として物理的に区分する必要はなく、電力系統専用容量131の蓄電容量のうち一部を、仮想的に受電用容量1311および送電用容量1312として取り扱えばよい。 FIG. 3 is a diagram showing a detailed configuration of the in-vehicle storage battery 13. The in-vehicle storage battery control unit 12 converts the power system dedicated capacity 131 into a power receiving capacity 1311 for receiving power from the power system grid 6 and storing it, and a power transmission capacity 1312 for transmitting power to the power system grid 6. , Virtually partition. The in-vehicle storage battery 13 does not necessarily need to be physically separated as the power system dedicated capacity 131, and a part of the power storage capacity of the power system dedicated capacity 131 may be virtually handled as the power receiving capacity 1311 and the power transmission capacity 1312. .
 車載蓄電池制御部12は、車載蓄電池13の蓄電容量を仮想的に区分するので、各区分と車載蓄電池13の実際の容量区分は必ずしも一致しなくともよい。例えば、車載蓄電池13が複数のサブ蓄電池によって構成されている場合、必ずしもサブ蓄電池と各区分を実際に1:1に対応させる必要はない。 Since the in-vehicle storage battery control unit 12 virtually divides the storage capacity of the in-vehicle storage battery 13, the actual capacity classification of the in-vehicle storage battery 13 may not necessarily match. For example, when the in-vehicle storage battery 13 is configured by a plurality of sub storage batteries, it is not always necessary to make the sub storage battery and each section actually correspond to 1: 1.
 車載蓄電池制御部12は、例えば、各サブ蓄電池の容量を集約して単一の車載蓄電池13として仮想的に取りまとめ、その一部を電力系統専用容量131として取り扱うことができる。同様に、電力系統専用容量131の一部を受電用容量1311、残りを送電用容量1312として取り扱うことができる。 The in-vehicle storage battery control unit 12 can, for example, consolidate the capacities of the sub storage batteries, virtually consolidate them as a single in-vehicle storage battery 13, and handle a part of them as the power system dedicated capacity 131. Similarly, a part of the power system dedicated capacity 131 can be handled as the power receiving capacity 1311 and the rest as the power transmitting capacity 1312.
 このように蓄電容量を仮想的に取り扱うことにより、必ずしも電力系統専用容量131を特定のサブ蓄電池に固定的に割り当てる必要がなくなり、電力系統専用容量131をより柔軟に取り扱うことができる。同様の考え方は、記憶装置の記憶容量仮想化などにも見られる。本発明では、記憶容量仮想化と同様の考え方を蓄電池の容量仮想化として応用したということもできる。 By virtually handling the storage capacity in this way, it is not always necessary to fixedly allocate the power system dedicated capacity 131 to a specific sub storage battery, and the power system dedicated capacity 131 can be handled more flexibly. The same idea can be seen in storage capacity virtualization of storage devices. In the present invention, it can be said that the same idea as storage capacity virtualization is applied as capacity virtualization of a storage battery.
 車載蓄電池制御部12が車載蓄電池13のうち一部を電力系統専用容量131として取り扱い、さらに受電用容量1311と送電用容量1312に区分するための具体的な手法として、例えば以下のような手法例が考えられる。 As a specific technique for the in-vehicle storage battery control unit 12 to handle a part of the in-vehicle storage battery 13 as the power system dedicated capacity 131 and further classify into the power receiving capacity 1311 and the power transmitting capacity 1312, for example, the following technique examples Can be considered.
(電力系統専用容量131を割り当てる手法)
 車載蓄電池制御部12は、車載蓄電池13が充電している電力を、電力系統専用容量131とその他の容量の間で均等に割り当てる。例えば、車載蓄電池13の全容量が100であると仮定し、そのうち20を電力系統専用容量131として取り扱うものとする。車載蓄電池13を通常充電することにより、蓄電電力が全容量の40%に達しているとき、電力系統専用容量131も40%蓄電されているものとして取り扱う。この場合、電力系統専用容量131に蓄電されている電力は、20×40%=8となる。
(Method of allocating power system dedicated capacity 131)
The in-vehicle storage battery control unit 12 allocates the power charged by the in-vehicle storage battery 13 equally between the power system dedicated capacity 131 and other capacity. For example, it is assumed that the total capacity of the in-vehicle storage battery 13 is 100, and 20 of them is handled as the power system dedicated capacity 131. When the in-vehicle storage battery 13 is normally charged and the stored power reaches 40% of the total capacity, the power system dedicated capacity 131 is also handled as 40% stored. In this case, the power stored in the power system dedicated capacity 131 is 20 × 40% = 8.
(受電用容量1311と送電用容量1312を区分する手法)
 車載蓄電池制御部12は、例えば電力系統専用容量131のうち半分を受電用容量1311、残り半分を送電用容量1312として取り扱う。上記例の場合、受電用容量1311、送電用容量1312ともに容量は10となる。
(Method for distinguishing between power receiving capacity 1311 and power transmitting capacity 1312)
The in-vehicle storage battery control unit 12 handles, for example, half of the power system dedicated capacity 131 as the power receiving capacity 1311 and the other half as the power transmitting capacity 1312. In the case of the above example, the capacity is 10 for both the power receiving capacity 1311 and the power transmitting capacity 1312.
 以上、電力供給システム1000の各構成要素について説明した。次に、電力供給システム1000の動作について説明する。 In the above, each component of the power supply system 1000 has been described. Next, the operation of the power supply system 1000 will be described.
 図4は、電力消費がピークに達する時間帯における電力供給システム1000の動作を説明する図である。以下、図4の各ステップについて説明する。 FIG. 4 is a diagram for explaining the operation of the power supply system 1000 in a time zone in which the power consumption reaches a peak. Hereinafter, each step of FIG. 4 will be described.
(図4:ステップS410)
 車両1の自車情報管理部11は、自車が電力系統グリッド6と連携可能であるか否かを判定する。具体的には、車載蓄電池13内に電力系統専用容量131が設けられているか否かを、車載蓄電池制御部12に照会すればよい。自車情報管理部11は、自車が電力系統グリッド6と連携可能である場合は、自車の位置を示す位置情報を車載蓄電池管理サーバ2に送信する。
(FIG. 4: Step S410)
The vehicle information management unit 11 of the vehicle 1 determines whether or not the vehicle can cooperate with the power grid 6. Specifically, the in-vehicle storage battery control unit 12 may be inquired as to whether or not the power system dedicated capacity 131 is provided in the in-vehicle storage battery 13. The own vehicle information management part 11 transmits the positional information which shows the position of the own vehicle to the vehicle-mounted storage battery management server 2, when the own vehicle can cooperate with the electric power grid 6.
(図4:ステップS420)
 車載蓄電池管理サーバ2の車両情報管理部21は、車両1の自車情報管理部11から当該車両の位置情報を受け取り、HDD(Hard Disk Drive)などの適当な記憶装置に記録する。車両情報管理部21は、各車両の位置情報を同様に収集し、記録しておく。
(FIG. 4: Step S420)
The vehicle information management unit 21 of the in-vehicle storage battery management server 2 receives the position information of the vehicle from the own vehicle information management unit 11 of the vehicle 1 and records it in an appropriate storage device such as an HDD (Hard Disk Drive). The vehicle information management unit 21 similarly collects and records the position information of each vehicle.
(図4:ステップS430)
 電力系統制御システム3の電力消費量監視部33は、電力系統グリッド6内の電力消費量を監視する。電力消費量監視部33は、その監視結果に基づき、電力消費ピークカットが必要であるか否か、およびカットすべき電力量を判断し、電力制御情報管理部31に通知する。
(FIG. 4: Step S430)
The power consumption monitoring unit 33 of the power system control system 3 monitors the power consumption in the power system grid 6. Based on the monitoring result, the power consumption monitoring unit 33 determines whether or not the power consumption peak cut is necessary, and the power amount to be cut, and notifies the power control information management unit 31 of the determination.
(図4:ステップS430:補足)
 ここでいう電力消費ピークカットとは、電力系統グリッド6内の電力消費がピークに達する時間帯に合わせて、不足気味の電力量を補うことをいう。具体的には、各車両1の車載蓄電池13が蓄電している電力を電力系統グリッド6に送電することをいう。
(FIG. 4: Step S430: Supplement)
The term “power consumption peak cut” as used herein refers to supplementing a shortage of power in accordance with a time zone in which the power consumption in the power grid 6 reaches a peak. Specifically, it means that the electric power stored in the in-vehicle storage battery 13 of each vehicle 1 is transmitted to the power grid 6.
(図4:ステップS440)
 電力制御情報管理部31は、電力消費量監視部33から受け取った情報を、車載蓄電池管理サーバ2に送信する。
(FIG. 4: Step S440)
The power control information management unit 31 transmits the information received from the power consumption monitoring unit 33 to the in-vehicle storage battery management server 2.
(図4:ステップS450)
 車載蓄電池管理サーバ2の車両情報管理部21は、いずれの車両1が電力消費ピークカットに対応すべきかを判断し、電力系統制御システム3にその旨を指示する。この指示は電力制御に関するものであるため、車載蓄電池管理サーバ2から各車両1に対して直接指示するのではなく、電力系統制御システム3を介して送電ネットワーク経由で指示する。いずれの車両1が対応すべきかの判断基準として、例えば以下のような基準を用いることができる。
(FIG. 4: Step S450)
The vehicle information management unit 21 of the in-vehicle storage battery management server 2 determines which vehicle 1 should correspond to the power consumption peak cut, and instructs the power system control system 3 to do so. Since this instruction relates to power control, the vehicle storage battery management server 2 does not directly instruct each vehicle 1 but directs it via the power system control system 3 via the power transmission network. For example, the following criteria can be used as a criterion for determining which vehicle 1 should respond.
(図4:ステップS450:判断基準例その1)
 電力消費ピークカットに対応する車両1は、電力系統グリッド6に接続されている必要がある。車両1が電力系統グリッド6に接続されているか否かは、ステップS410で収集した各車両の位置情報に基づき判断することができる。
(FIG. 4: Step S450: Criteria Example 1)
The vehicle 1 corresponding to the power consumption peak cut needs to be connected to the power grid 6. Whether or not the vehicle 1 is connected to the power grid 6 can be determined based on the position information of each vehicle collected in step S410.
(図4:ステップS450:判断基準例その2)
 電力消費ピークカットに対応する車両1は、車載蓄電池13内に電力系統専用容量131が設けられている必要がある。ステップS410において、電力系統グリッド6と連携可能である車両1のみが車載蓄電池管理サーバ2に位置情報を送信するようにしておけば本条件は自動的に満たされる。
(FIG. 4: Step S450: Criteria Example 2)
The vehicle 1 corresponding to the power consumption peak cut needs to be provided with a power system dedicated capacity 131 in the in-vehicle storage battery 13. In step S410, if only the vehicle 1 capable of cooperating with the power grid 6 transmits position information to the in-vehicle storage battery management server 2, this condition is automatically satisfied.
(図4:ステップS450:判断基準例その3)
 電力消費ピークカットに対応する車両1は、電力の配分が不足気味になっている電力消費体4の近くに位置していることが望ましい。ここでいう位置とは、電力系統グリッド6の配下における電気的な位置のことであり、必ずしも地理的な位置とは一致しない。各車両1の位置は、ステップS410で収集した各車両の位置情報に基づき把握することができる。
(FIG. 4: Step S450: Criteria Example 3)
It is desirable that the vehicle 1 corresponding to the power consumption peak cut is located near the power consumer 4 in which power distribution is insufficient. The position here is an electrical position under the power grid 6 and does not necessarily match the geographical position. The position of each vehicle 1 can be grasped based on the position information of each vehicle collected in step S410.
(図4:ステップS450:補足)
 不足気味である電力量は、必ずしも1台の車両1のみで補うことができるとは限らないので、本ステップにおける対象車両は複数台であってもよい。
(FIG. 4: Step S450: Supplement)
Since the amount of electric power that is insufficient is not necessarily supplemented by only one vehicle 1, there may be a plurality of target vehicles in this step.
(図4:ステップS460)
 電力系統制御システム3の電力制御情報管理部31は、車載蓄電池管理サーバ2の車両情報管理部21からステップS450の指示を受け取る。電力制御情報管理部31は、その指示をさらに電力供給制御部34へ通知する。
(FIG. 4: Step S460)
The power control information management unit 31 of the power system control system 3 receives the instruction in step S450 from the vehicle information management unit 21 of the in-vehicle storage battery management server 2. The power control information management unit 31 further notifies the power supply control unit 34 of the instruction.
(図4:ステップS470)
 電力供給制御部34は、ステップS460で電力制御情報管理部31から受け取った指示に基づき、該当する車両1へ、蓄電している電力を電力系統グリッド6に送電するよう指示する。
(FIG. 4: Step S470)
Based on the instruction received from the power control information management unit 31 in step S460, the power supply control unit 34 instructs the corresponding vehicle 1 to transmit the stored power to the power grid 6.
(図4:ステップS480)
 車両1の車載蓄電池制御部12は、適当なインターフェースなどを介して、ステップS470で電力供給制御部34が送信した指示を受け取る。車載蓄電池制御部12は、その指示にしたがって、車載蓄電池13の電力系統専用容量131に蓄電されている電力を電力系統グリッド6に送電する。
(FIG. 4: Step S480)
The in-vehicle storage battery control unit 12 of the vehicle 1 receives the instruction transmitted by the power supply control unit 34 in step S470 via an appropriate interface or the like. The in-vehicle storage battery control unit 12 transmits the power stored in the power system dedicated capacity 131 of the in-vehicle storage battery 13 to the power system grid 6 in accordance with the instruction.
 図5は、車載蓄電池13が電力系統グリッド6から電力を受電して電力系統専用容量131に蓄電する際の電力供給システム1000の動作を説明する図である。以下、図5の各ステップについて説明する。 FIG. 5 is a diagram for explaining the operation of the power supply system 1000 when the in-vehicle storage battery 13 receives power from the power grid 6 and stores it in the power system dedicated capacity 131. Hereinafter, each step of FIG. 5 will be described.
(図5:ステップS510~S520)
 これらのステップは、図4のステップS410~S420と同様である。
(FIG. 5: Steps S510 to S520)
These steps are the same as steps S410 to S420 in FIG.
(図5:ステップS530)
 電力系統制御システム3の発電量監視部32は、電力系統グリッド6内の発電量を監視する。発電量監視部32は、その監視結果に基づき、蓄電が必要な状態であるか否か、および蓄電すべき総電力量を判断し、電力制御情報管理部31に通知する。
(FIG. 5: Step S530)
The power generation amount monitoring unit 32 of the power system control system 3 monitors the power generation amount in the power system grid 6. Based on the monitoring result, the power generation amount monitoring unit 32 determines whether or not power storage is necessary and the total power amount to be stored, and notifies the power control information management unit 31 of the determination.
(図5:ステップS530:補足)
 蓄電が必要な状態とは、電力系統グリッド6内のその時点における電力需要に対して、発電量が余剰である状態をいう。電力系統グリッド6内では、発電量と電力消費量が均衡する必要があるため、余剰電力が生じた場合、発電量を抑えて発電量と電力消費量を均衡させるか、または余剰電力を一時的に蓄電しておくなどして余剰分を電力系統グリッド6から排出する必要がある。ここでは、各車両1が備えている車載蓄電池13が、蓄電設備としての役割を果たす。
(FIG. 5: Step S530: Supplement)
The state where power storage is required refers to a state where the amount of power generation is excessive with respect to the power demand at that point in the power grid 6. In the power grid 6, it is necessary to balance the power generation amount and the power consumption. Therefore, if surplus power is generated, the power generation amount is suppressed to balance the power generation amount and the power consumption, or the surplus power is temporarily stored. It is necessary to discharge the surplus from the power grid 6 by storing the power in the power grid. Here, the in-vehicle storage battery 13 provided in each vehicle 1 plays a role as a power storage facility.
(図5:ステップS540)
 電力制御情報管理部31は、発電量監視部32から受け取った情報を、車載蓄電池管理サーバ2に送信する。
(FIG. 5: Step S540)
The power control information management unit 31 transmits the information received from the power generation amount monitoring unit 32 to the in-vehicle storage battery management server 2.
(図5:ステップS550)
 車載蓄電池管理サーバ2の車両情報管理部21は、いずれの車両1が蓄電すべきかを判断し、電力系統制御システム3にその旨を指示する。この指示は電力制御に関するものであるため、車載蓄電池管理サーバ2から各車両1に対して直接指示するのではなく、図4のステップS450と同様に電力系統制御システム3を介して送電ネットワーク経由で指示する。
(FIG. 5: Step S550)
The vehicle information management unit 21 of the in-vehicle storage battery management server 2 determines which vehicle 1 should store power and instructs the power system control system 3 to that effect. Since this instruction relates to power control, it is not directly instructed to each vehicle 1 from the in-vehicle storage battery management server 2 but via the power transmission network via the power system control system 3 as in step S450 of FIG. Instruct.
(図5:ステップS550:補足)
 余剰な発電量は、必ずしも1台の車両1のみで蓄電ことができるとは限らないので、本ステップにおける対象車両は複数台であってもよい。
(FIG. 5: Step S550: Supplement)
Since the surplus power generation amount cannot always be stored by only one vehicle 1, there may be a plurality of target vehicles in this step.
(図5:ステップS560)
 電力系統制御システム3の電力制御情報管理部31は、車載蓄電池管理サーバ2の車両情報管理部21からステップS550の指示を受け取る。電力制御情報管理部31は、その指示をさらに蓄電制御部35へ通知する。
(FIG. 5: Step S560)
The power control information management unit 31 of the power system control system 3 receives the instruction in step S550 from the vehicle information management unit 21 of the in-vehicle storage battery management server 2. The power control information management unit 31 further notifies the power storage control unit 35 of the instruction.
(図5:ステップS570)
 蓄電制御部35は、ステップS560で電力制御情報管理部31から受け取った指示に基づき、該当する車両1へ、電力系統グリッド6から電力を受電して蓄電するよう指示する。
(FIG. 5: Step S570)
Based on the instruction received from the power control information management unit 31 in step S560, the power storage control unit 35 instructs the corresponding vehicle 1 to receive power from the power grid 6 and store it.
(図5:ステップS580)
 車両1の車載蓄電池制御部12は、適当なインターフェースなどを介して、ステップS570で蓄電制御部35が送信した指示を受け取る。車載蓄電池制御部12は、その指示にしたがって、電力系統グリッド6から電力を受電して車載蓄電池13の電力系統専用容量131に蓄電する。
(FIG. 5: Step S580)
The in-vehicle storage battery control unit 12 of the vehicle 1 receives the instruction transmitted by the power storage control unit 35 in step S570 via an appropriate interface or the like. The in-vehicle storage battery control unit 12 receives power from the power system grid 6 according to the instruction and stores the power in the power system dedicated capacity 131 of the in-vehicle storage battery 13.
<実施の形態1:まとめ>
 以上のように、本実施形態1に係る電力供給システム1000において、車載蓄電池制御部13は、車載蓄電池13の蓄電容量のうち一部を、電力系統グリッド6との間で送受電する専用容量である電力系統専用容量131として割り当てる。これにより、各車載蓄電池13が電力系統グリッド6に送電する電力量、または電力系統グリッド6が各車載蓄電池13に送電する電力量を、電力系統専用容量131の範囲内に限定することができる。したがって、個々の車載蓄電池13毎のばらつきを電力系統専用容量131の範囲内に抑えることができるので、車載蓄電池13毎に個別の制御対応を実施する必要性がなくなり、制御を簡易化することができる。各車両1の電力系統専用容量131の容量が同一であれば、制御を簡易化する観点ではより好ましい。
<Embodiment 1: Summary>
As described above, in the power supply system 1000 according to the first embodiment, the in-vehicle storage battery control unit 13 is a dedicated capacity that transmits and receives a part of the storage capacity of the in-vehicle storage battery 13 to and from the power grid 6. Allocate as a power system dedicated capacity 131. Thereby, the electric energy which each vehicle-mounted storage battery 13 transmits to the electric power grid 6 or the electric energy which the electric power grid 6 transmits to each vehicle-mounted storage battery 13 can be limited within the range of the electric power system dedicated capacity 131. Therefore, since the dispersion | variation for every vehicle-mounted storage battery 13 can be restrained in the range of the electric power system exclusive capacity | capacitance 131, it becomes unnecessary to implement separate control response for every vehicle-mounted storage battery 13, and control can be simplified. it can. If the capacity | capacitance of the electric power system exclusive capacity | capacitance 131 of each vehicle 1 is the same, it is more preferable from a viewpoint which simplifies control.
 また、本実施形態1に係る電力供給システム1000において、車載蓄電池制御部13は、電力系統専用容量131を仮想的な蓄電容量として取り扱う。これにより、車載蓄電池13がどのような物理的構成を有しているとしても、電力系統専用容量131自体は常に同じように取り扱うことができる。 Further, in the power supply system 1000 according to the first embodiment, the in-vehicle storage battery control unit 13 handles the power system dedicated capacity 131 as a virtual storage capacity. Thereby, no matter what physical configuration the in-vehicle storage battery 13 has, the power system dedicated capacity 131 itself can always be handled in the same way.
 例えば、車載蓄電池13が2つのサブ蓄電池によって構成されており、そのうち1つを電力系統専用容量131として割り当てることを想定する。この場合、電力系統専用容量131として割り当てたサブ蓄電池に充電されている電力が先に枯渇してしまうと、もう1つの蓄電池に電力が残存していたとしても、それ以上電力系統グリッド6に送電することができなくなる。この点、本実施形態1のように電力系統専用容量131を仮想的に割り当てた場合は、各蓄電池の総合体として電力系統専用容量131を提供することができれば足りるので、蓄電池本体の物理的な区分に制約を受けず、電力系統グリッド6との間の送受電を柔軟に処理することができる。 For example, it is assumed that the in-vehicle storage battery 13 is configured by two sub storage batteries, and one of them is allocated as the power system dedicated capacity 131. In this case, if the power charged in the sub storage battery allocated as the power system dedicated capacity 131 is depleted first, even if power remains in the other storage battery, no more power is transmitted to the power system grid 6. Can not do. In this regard, when the power system dedicated capacity 131 is virtually assigned as in the first embodiment, it is sufficient if the power system dedicated capacity 131 can be provided as a total of each storage battery. The power transmission / reception with the power grid 6 can be processed flexibly without being restricted by the division.
 また、本実施形態1に係る電力供給システム1000において、車載蓄電池制御部13は、車載蓄電池13が電力系統グリッド6との間で送受電するときには、電力系統専用容量131を他の容量に優先して取り扱うことができる。例えば、車載蓄電池13を通常充電するときは電力系統専用容量131と残りの容量を均等に充電し、電力系統グリッド6から余剰電力を受電して蓄電するときは電力系統専用容量131を優先的に充電することができる。車載蓄電池13から電力系統グリッド6に送電するときも同様に、電力系統専用容量131が蓄電している電力を優先的に取り出すことができる。このように電力系統専用容量131を優先的に取り扱うことにより、電力系統専用容量131を最初に使い切ることになるので、電力系統専用容量131と残りの容量の間の切り分けが容易になり、制御を簡易化することができる。 In the power supply system 1000 according to the first embodiment, the in-vehicle storage battery control unit 13 prioritizes the power system dedicated capacity 131 over other capacity when the in-vehicle storage battery 13 transmits and receives power to and from the power system grid 6. Can be handled. For example, when the in-vehicle storage battery 13 is normally charged, the power system dedicated capacity 131 and the remaining capacity are charged equally, and when the surplus power is received from the power grid 6 and stored, the power system dedicated capacity 131 is given priority. Can be charged. Similarly, when power is transmitted from the in-vehicle storage battery 13 to the power grid 6, the power stored in the power system dedicated capacity 131 can be preferentially taken out. By preferentially handling the power system dedicated capacity 131 in this way, the power system dedicated capacity 131 is used up first, so that it becomes easy to distinguish between the power system dedicated capacity 131 and the remaining capacity, and control is performed. It can be simplified.
 なお、本実施形態1において、車載蓄電池管理サーバ2と電力系統制御システム3は別個の構成要素として説明したが、これらを一体化することもできる。以下の実施形態でも同様である。 In addition, in this Embodiment 1, although the vehicle-mounted storage battery management server 2 and the electric power system control system 3 were demonstrated as a separate component, these can also be integrated. The same applies to the following embodiments.
 また、本実施形態1において、自車情報管理部11および車載蓄電池管理サーバ2は、各車両1を特定して位置情報を管理することとしたが、その意図するところは車載蓄電池13を特定し管理することである。そこで、より直接的に、個々の車載蓄電池13を特定して位置を管理するようにしてもよい。以下の実施形態でも同様である。 In the first embodiment, the host vehicle information management unit 11 and the in-vehicle storage battery management server 2 specify the respective vehicles 1 and manage the position information, but the intent is to specify the in-vehicle storage battery 13. Is to manage. Therefore, the position may be managed by specifying the individual in-vehicle storage battery 13 more directly. The same applies to the following embodiments.
 また、本実施形態1において、車載蓄電池管理部12は各車両1毎に設けられていることとしたが、これに代えて車載蓄電池管理サーバ2または電力系統制御システム3が車載蓄電池管理部12を備え、各車両1の車載蓄電池13の動作を遠隔制御するようにしてもよい。以下の実施形態でも同様である。 Moreover, in this Embodiment 1, although the vehicle-mounted storage battery management part 12 was provided for every vehicle 1, it replaced with this and the vehicle-mounted storage battery management server 2 or the electric power system control system 3 replaced the vehicle-mounted storage battery management part 12 with this. It is also possible to remotely control the operation of the in-vehicle storage battery 13 of each vehicle 1. The same applies to the following embodiments.
<実施の形態2>
 本発明の実施形態2では、電力系統専用容量131の受電用容量1311と送電用容量1312を必要に応じて入れ替える動作例を説明する。電力供給システム1000の構成は実施形態1と同様である。
<Embodiment 2>
In the second embodiment of the present invention, an operation example in which the power reception capacity 1311 and the power transmission capacity 1312 of the power system dedicated capacity 131 are replaced as necessary will be described. The configuration of the power supply system 1000 is the same as that of the first embodiment.
 図6は、実施形態1に係る電力供給システム1000を用いて、電力消費ピークカットと余剰電力の蓄電を実施する様子を示す図である。経験則として、1日のうち電力消費がピークに達するのは、概ね正午前後の時間帯であることが分かっている。 FIG. 6 is a diagram illustrating a state in which power consumption peak cut and surplus power storage are performed using the power supply system 1000 according to the first embodiment. As a rule of thumb, it is known that the power consumption reaches a peak during the day almost in the time zone after noon.
 電力系統制御システム3は、発電量がこの時間帯にピークになるように各発電システムを制御するが、発電量のピークと電力消費のピークを完全に一致させることは難しい。そこで実施形態1に係る電力供給システム1000を用いて、一致していない部分を吸収することを図る。 The power system control system 3 controls each power generation system so that the power generation amount reaches a peak during this time period, but it is difficult to perfectly match the peak of the power generation amount and the peak of power consumption. Thus, the power supply system 1000 according to the first embodiment is used to absorb the mismatched portion.
 図6の「1日目」に示すグラフにおいて、電力消費ピークよりも前に発電量がピークに到達している。電力系統グリッド6内において、発電量と電力消費量は一致しなければならないので、このとき余剰電力が生じる。そこで電力供給システム1000は、実施形態1の図5で説明した動作を実施し、余剰電力を蓄電用容量1311に蓄電する。 In the graph shown in “Day 1” in FIG. 6, the power generation amount reaches the peak before the power consumption peak. Since the power generation amount and the power consumption amount must coincide in the power grid 6, surplus power is generated at this time. Therefore, the power supply system 1000 performs the operation described with reference to FIG. 5 of the first embodiment, and stores surplus power in the storage capacitor 1311.
 1日目の正午をやや過ぎた時間帯において、電力消費量がピークに達する。このとき発電量のピークは過ぎているので、発電量が不足する。そこで電力供給システム1000は、実施形態1の図4で説明した動作を実施し、送電用容量1312から電力系統グリッド6へ送電し、不足している電力を補う。 The power consumption reaches a peak at a time slightly after noon on the first day. At this time, since the peak of the power generation amount has passed, the power generation amount is insufficient. Therefore, the power supply system 1000 performs the operation described in FIG. 4 of the first embodiment, and transmits power from the power transmission capacity 1312 to the power grid 6 to compensate for the insufficient power.
 以上の動作により、蓄電用容量1311に電力が蓄電され、送電用容量1312に蓄電されていた電力はなくなるので、受電用容量1311の蓄電量と送電用容量1312の蓄電量はそれ以前の反対になる。そこで車載蓄電池制御部13は、2日目において、受電用容量1311と送電用容量1312を入れ替える。以下同様に、車載蓄電池制御部13は、受電用容量1311と送電用容量1312を使い切る毎に両者の役割を入れ替える。受電用容量1311と送電用容量1312が仮想的に割り当てられているため、このような役割変更を容易に実施することができる。 With the above operation, the power is stored in the power storage capacitor 1311 and the power stored in the power transmission capacitor 1312 disappears. Therefore, the power storage amount of the power receiving capacitor 1311 and the power storage amount of the power transmission capacitor 1312 are opposite to each other. Become. Therefore, the in-vehicle storage battery control unit 13 replaces the power receiving capacity 1311 and the power transmitting capacity 1312 on the second day. Similarly, the in-vehicle storage battery control unit 13 switches the roles of the power receiving capacity 1311 and the power transmitting capacity 1312 each time the power receiving capacity 1311 and the power transmitting capacity 1312 are used up. Since the power receiving capacity 1311 and the power transmitting capacity 1312 are virtually allocated, such a role change can be easily performed.
 この点、受電用容量1311と送電用容量1312が特定のサブ蓄電池に固定的に割り当てられていると、上述のような任意の入れ替えができないので、通常の充放電による以外に蓄電と送電をする手段がなく、柔軟な運用をすることが難しくなる。実施形態1~2で説明した手法によれば、受電用容量1311と送電用容量1312を必要に応じて入れ替えることにより、特定の蓄電池に制約されることなく、電力の過不足に柔軟に対応することができる。 In this regard, if the power receiving capacity 1311 and the power transmission capacity 1312 are fixedly assigned to a specific sub-storage battery, the above-described arbitrary replacement cannot be performed, so that power is stored and transmitted in addition to normal charging and discharging. There is no means and it becomes difficult to operate flexibly. According to the method described in the first and second embodiments, the power receiving capacity 1311 and the power transmitting capacity 1312 are interchanged as necessary, so that the power supply can be flexibly dealt with without being restricted by a specific storage battery. be able to.
<実施の形態2:まとめ>
 以上のように、本実施形態2に係る電力供給システム1000によれば、車載蓄電池制御部13は、受電用容量1311と送電用容量1312を必要に応じて入れ替える。具体的には、受電用容量1311を使い切ると、以後は受電用容量1311の役割を送電用容量1312に切り替える。同様に、送電用容量1312を使い切ると、以後は送電用容量1312の役割を受電用容量1311に切り替える。これにより、車載蓄電池13の物理的な蓄電容量による制約を緩和し、電力の過不足に柔軟に対応することができる。
<Embodiment 2: Summary>
As described above, according to the power supply system 1000 according to the second embodiment, the in-vehicle storage battery control unit 13 interchanges the power receiving capacity 1311 and the power transmitting capacity 1312 as necessary. Specifically, when the power receiving capacity 1311 is used up, the role of the power receiving capacity 1311 is switched to the power transmitting capacity 1312 thereafter. Similarly, when the power transmission capacity 1312 is used up, the role of the power transmission capacity 1312 is switched to the power reception capacity 1311 thereafter. Thereby, the restriction | limiting by the physical electrical storage capacity of the vehicle-mounted storage battery 13 can be eased, and it can respond flexibly to the excess and deficiency of electric power.
 なお、本実施形態2において、受電用容量1311と送電用容量1312を所定期間毎に入れ替えることもできる。例えば図6に示した例では、24時間毎に受電用容量1311と送電用容量1312を入れ替えるとよい。入れ替える期間を適切に設定することにより、上記例と同様の効果を発揮することができる。 In the second embodiment, the power receiving capacity 1311 and the power transmitting capacity 1312 can be switched every predetermined period. For example, in the example shown in FIG. 6, the power receiving capacity 1311 and the power transmitting capacity 1312 may be switched every 24 hours. The effect similar to the above example can be exhibited by appropriately setting the period for replacement.
<実施の形態3>
 実施の形態1~2において、電力系統専用容量131、および受電用容量1311と送電用容量1312は、車両1の外部から書き換えることができるように構成してもよい。例えば、車載蓄電池管理サーバ2から車載蓄電池制御部12に対し、電力系統専用容量131の容量、および受電用容量1311と送電用容量1312の容量、あるいは各容量の全容量に対する割合などを指定し、車載蓄電池制御部12は以後その指定を反映するようにすればよい。本発明では、電力系統専用容量131、受電用容量1311、送電用容量1312を仮想的に割り当てているため、このような動的な容量変更にも容易に対応することができる。
<Embodiment 3>
In the first and second embodiments, the power system dedicated capacity 131, the power receiving capacity 1311, and the power transmitting capacity 1312 may be rewritten from the outside of the vehicle 1. For example, the in-vehicle storage battery management server 2 designates the capacity of the power system dedicated capacity 131 and the capacity of the power receiving capacity 1311 and the capacity for power transmission 1312 or the ratio of each capacity to the total capacity, etc. The in-vehicle storage battery control unit 12 may reflect the designation thereafter. In the present invention, since the power system dedicated capacity 131, the power receiving capacity 1311, and the power transmitting capacity 1312 are virtually allocated, it is possible to easily cope with such a dynamic capacity change.
 なお、制御を簡易化するためには、各車両1の電力系統専用容量131、受電用容量1311、送電用容量1312それぞれの値は、少なくともある時点において同一であることが望ましい。これらの値が各車両1について同一であれば、電力量の過不足に対応すべき車両1の台数のみ定めれば済むので、車載蓄電池管理サーバ2は個々の車両1毎の差異を判別する必要がなくなり、制御演算を簡易化することができる。 In order to simplify the control, it is desirable that the values of the power system dedicated capacity 131, the power receiving capacity 1311, and the power transmitting capacity 1312 of each vehicle 1 are the same at least at a certain point in time. If these values are the same for each vehicle 1, it is only necessary to determine the number of vehicles 1 that should respond to the excess or deficiency of the electric energy, so the in-vehicle storage battery management server 2 needs to determine the difference for each vehicle 1. The control calculation can be simplified.
 また、各車両1の電力系統専用容量131、受電用容量1311、送電用容量1312それぞれの値そのものを同一とすることに代えて、全容量に対して上記各容量が占める割合を各車両1について同一にしてもよい。この場合も同様に、車載蓄電池管理サーバ2の制御演算を簡易化することができる。 Further, instead of making the values of the power system dedicated capacity 131, the power receiving capacity 1311, and the power transmitting capacity 1312 of each vehicle 1 the same, the ratio of each capacity to the total capacity is determined for each vehicle 1. It may be the same. Similarly in this case, the control calculation of the in-vehicle storage battery management server 2 can be simplified.
<実施の形態4>
 本発明の実施形態4では、電力系統グリッド6が2以上存在する場合の動作例を説明する。その他の構成要素は実施形態1~3と同様である。車載蓄電池管理サーバ2と電力系統制御システム3は、各グリッドについて共通である。
<Embodiment 4>
In the fourth embodiment of the present invention, an operation example when there are two or more power grids 6 will be described. Other components are the same as those in the first to third embodiments. The in-vehicle storage battery management server 2 and the power system control system 3 are common to each grid.
 図7は、2つの電力系統グリッドが存在する場合の動作例を示す図である。図7の上図において、グリッド1の配下には6台の車両1が存在し、グリッド2の配下には3台の車両1が存在する。 FIG. 7 is a diagram illustrating an operation example when there are two power grids. In the upper diagram of FIG. 7, there are six vehicles 1 under the grid 1, and there are three vehicles 1 under the grid 2.
 各電力系統グリッドの電力消費量や発電量は、それぞれ異なる場合がある。そのため、管理上は各電力系統グリッドを個別に識別することが望ましい。また、各車両1は常に同一の電力系統グリッドの配下に存在しているわけではなく、他の電力系統グリッドに移動する場合もある。この観点では、各車両1と各電力系統グリッドの連携関係を管理することが望ましい。 The power consumption and power generation amount of each grid may be different. Therefore, it is desirable for management to identify each power grid individually. Each vehicle 1 does not always exist under the same power grid, and may move to another power grid. From this viewpoint, it is desirable to manage the cooperative relationship between each vehicle 1 and each power grid.
 そこで本実施形態4では、各車両1が電力系統グリッドに対して送電し、または各車両1が電力系統グリッドから受電する毎に、その動作ログを記録しておき、車載蓄電池管理サーバ2がその動作ログを集中管理する。 Therefore, in the fourth embodiment, each time each vehicle 1 transmits power to the power grid or each vehicle 1 receives power from the power grid, its operation log is recorded, and the in-vehicle storage battery management server 2 Centrally manage action logs.
 図8は、各車両1が保持する連携ログ14の構成とデータ例を示す図である。車載蓄電池制御部12は、車載蓄電池13が電力系統グリッドに対して送電し、または車載蓄電池13が電力系統グリッドから受電する毎に、連携ログ14にその動作内容を記録する。連携ログ14の保存場所としては、フラッシュメモリやHDDなどの適当な不揮発性記憶装置を用いればよい。 FIG. 8 is a diagram illustrating a configuration and data example of the cooperation log 14 held by each vehicle 1. The in-vehicle storage battery control unit 12 records the operation content in the linkage log 14 each time the in-vehicle storage battery 13 transmits power to the power grid or the in-vehicle storage battery 13 receives power from the power grid. An appropriate non-volatile storage device such as a flash memory or an HDD may be used as the storage location of the cooperation log 14.
 連携ログ14は、車両ID列141、電力系統連携日時列142、蓄電/送電列143、電力系統グリッドID列144、車両位置列145を有する。 The cooperation log 14 includes a vehicle ID column 141, a power system cooperation date / time column 142, a power storage / power transmission column 143, a power system grid ID column 144, and a vehicle position column 145.
 車両ID列141は、各車両1の識別子を保持する。 The vehicle ID column 141 holds an identifier of each vehicle 1.
 電力系統連携日時列142は、車載蓄電池13が電力系統グリッドに対して送電し、または車載蓄電池13が電力系統グリッドから受電した日時を保持する。 The power system cooperation date / time column 142 holds the date / time when the in-vehicle storage battery 13 transmits power to the power system grid or the in-vehicle storage battery 13 receives power from the power system grid.
 蓄電/送電列143の値は、電力系統連携日時列142が示す日時において、当該車両1が電力系統グリッドに送電したのか、それとも各車両1が電力系統グリッドから受電したのかを示す。 The value of the power storage / power transmission column 143 indicates whether the vehicle 1 has transmitted power to the power system grid at the date and time indicated by the power system linkage date / time column 142 or whether each vehicle 1 has received power from the power system grid.
 電力系統グリッドID列144は、複数存在する個々の電力系統グリッドを識別する識別子を保持する。 The power grid ID column 144 holds an identifier for identifying a plurality of individual power grids.
 車両位置列145は、電力系統連携日時列142が示す日時における、当該車両1の位置を保持する。車両位置列145の値は、必ずしも地理的な位置でなくともよいが、管理上便宜である場合は、例えば緯度経度などの処理し易いデータ形式を採用してもよい。 The vehicle position column 145 holds the position of the vehicle 1 at the date and time indicated by the power system linkage date and time column 142. The value of the vehicle position column 145 does not necessarily have to be a geographical position, but if it is convenient for management, an easily processable data format such as latitude and longitude may be adopted.
 図9は、電力消費がピークに達する時間帯における電力供給システム1000の動作を説明する図である。ステップS410~S480は図4と同様であるため、以下では追加したステップのみ説明する。 FIG. 9 is a diagram for explaining the operation of the power supply system 1000 in a time zone in which the power consumption reaches a peak. Since steps S410 to S480 are the same as those in FIG. 4, only the added steps will be described below.
(図9:ステップS491)
 車両1の車載蓄電池制御部12は、ステップS480の動作を連携ログ14に記録し、車載蓄電池管理サーバ2に送信する。
(FIG. 9: Step S491)
The in-vehicle storage battery control unit 12 of the vehicle 1 records the operation of step S480 in the linkage log 14 and transmits it to the in-vehicle storage battery management server 2.
(図9:ステップS492)
 車載蓄電池管理サーバ2の車両情報管理部21は、車載蓄電池制御部12から連携ログ14を受け取り、HDDなどの適当な記憶装置に格納する。
(FIG. 9: Step S492)
The vehicle information management unit 21 of the in-vehicle storage battery management server 2 receives the cooperation log 14 from the in-vehicle storage battery control unit 12 and stores it in an appropriate storage device such as an HDD.
<実施の形態4:まとめ>
 以上、本実施形態4では、車載蓄電池13が電力系統グリッドに対して送電し、または車載蓄電池13が電力系統グリッドから受電した動作を、連携ログ14として記録する例を説明した。本実施形態4によれば、複数の電力系統グリッドが存在する環境下において各車両1と各電力系統グリッドの連携履歴を管理することができる。
<Embodiment 4: Summary>
As described above, in the fourth embodiment, the example in which the in-vehicle storage battery 13 transmits power to the power grid or the in-vehicle storage battery 13 receives power from the power grid is recorded as the cooperation log 14. According to the fourth embodiment, it is possible to manage the cooperation history of each vehicle 1 and each power grid in an environment where a plurality of power grids exist.
<実施の形態5>
 実施の形態4において、車載蓄電池管理サーバ2は、各車両1から収集した連携ログ14の記述に基づき、いずれの車両1が電力系統グリッドに送電するか、およびいずれの車両1が電力系統グリッドから受電するかを、各車両1に対して均等に割り当てることができる。以下、その具体例を説明する。
<Embodiment 5>
In the fourth embodiment, the in-vehicle storage battery management server 2 determines which vehicle 1 transmits power to the power grid based on the description of the linkage log 14 collected from each vehicle 1 and which vehicle 1 is from the power grid. Whether to receive power can be equally assigned to each vehicle 1. Specific examples will be described below.
(実施の形態5:電力系統連携日時列142を用いる場合)
 車載蓄電池管理サーバ2の車両情報管理部21は、電力系統連携日時列142の値に基づき、電力系統グリッドと連携すべき車両1を各車両1について均等に割り当てる。例えば、電力系統グリッドに対して送電した車両1については、所定期間が経過するまでは送電すべき車両として選択しないことにする。受電についても同様である。あるいは、電力系統グリッドと連携する月毎の回数が、各車両1について均等になるようにする、などの手法も考えられる。
(Embodiment 5: When using power system cooperation date / time column 142)
The vehicle information management unit 21 of the in-vehicle storage battery management server 2 equally assigns the vehicles 1 to be linked with the power grid to each vehicle 1 based on the value of the power grid linkage date / time column 142. For example, the vehicle 1 transmitted to the power grid is not selected as a vehicle to be transmitted until a predetermined period has elapsed. The same applies to power reception. Or the method of making the frequency | count of every month which cooperates with an electric power grid | grid become equal about each vehicle 1 is also considered.
(実施の形態5:蓄電/送電列143を用いる場合)
 車載蓄電池管理サーバ2の車両情報管理部21は、蓄電/送電列143の値に基づき、電力系統グリッドと連携すべき車両1を各車両1について均等に割り当てる。例えば、最後に電力系統グリッドと連携した動作が「送電」である車両1については、次回の動作は「蓄電」を優先的に割り当てる。同様に、最後に電力系統グリッドと連携した動作が「蓄電」である車両1については、次回の動作は「送電」を優先的に割り当てる。
(Embodiment 5: Case of using power storage / power transmission train 143)
The vehicle information management unit 21 of the in-vehicle storage battery management server 2 equally assigns the vehicles 1 to be linked with the power grid to each vehicle 1 based on the value of the power storage / power transmission column 143. For example, for the vehicle 1 whose last operation linked to the power grid is “power transmission”, “storage” is preferentially assigned for the next operation. Similarly, for the vehicle 1 whose last operation associated with the power grid is “power storage”, “power transmission” is preferentially assigned for the next operation.
<実施の形態5:まとめ>
 以上のように、本実施形態5に係る電力供給システム1000において、車両情報管理部21は、連携ログ14の電力系統連携日時列142に基づき、電力系統に対して送電する日時と電力系統から受電する日時が、各車両1または各車載蓄電池13について均等になるように割り当てる。これにより、車両1毎の送受電負担を均一化することができる。
<Embodiment 5: Summary>
As described above, in the power supply system 1000 according to the fifth embodiment, the vehicle information management unit 21 receives power from the power system and the date and time when power is transmitted to the power system based on the power system cooperation date and time column 142 of the cooperation log 14. The date and time to be assigned are assigned to be equal for each vehicle 1 or each vehicle-mounted storage battery 13. Thereby, the power transmission / reception burden for every vehicle 1 can be equalized.
 また、本実施形態5に係る電力供給システム1000において、車両情報管理部21は、連携ログ14の蓄電/送電列143に基づき、各車両1が最後の電力系統グリッドと連携した動作が送電/受電のいずれであるかを把握する。車両情報管理部21は、最後に送電した車両1については受電動作を優先的に割り当て、最後に受電した車両1については送電動作を優先的に割り当てる。これにより、車両1毎の送受電負担を均一化することができる。 Further, in the power supply system 1000 according to the fifth embodiment, the vehicle information management unit 21 performs an operation in which each vehicle 1 cooperates with the last power grid on the basis of the power storage / power transmission column 143 of the cooperation log 14. Know which one is. The vehicle information management unit 21 preferentially assigns a power reception operation to the vehicle 1 that has transmitted power last, and preferentially assigns a power transmission operation to the vehicle 1 that has received power last. Thereby, the power transmission / reception burden for every vehicle 1 can be equalized.
 1:車両、11:自車情報管理部、12:車載蓄電池制御部、13:車載蓄電池、131:電力系統専用容量、1311:受電用容量、1312:送電用容量、141:車両ID列、142:電力系統連携日時列、143:蓄電/送電列、144:電力系統グリッドID列、145:車両位置列、2:車載蓄電池管理サーバ、21:車両情報管理部、3:電力系統制御システム、31:電力制御情報管理部、32:発電量監視部、33:電力消費量監視部、34:電力供給制御部、35:蓄電制御部、4:電力消費体、5:太陽光/風力発電システム、6:電力系統グリッド、1000:電力供給システム。 1: vehicle, 11: own vehicle information management unit, 12: vehicle storage battery control unit, 13: vehicle storage battery, 131: dedicated capacity for power system, 1311: capacity for receiving power, 1312: capacity for power transmission, 141: vehicle ID column, 142 : Power system linkage date / time column, 143: Power storage / power transmission column, 144: Power system grid ID column, 145: Vehicle position column, 2: In-vehicle storage battery management server, 21: Vehicle information management unit, 3: Power system control system, 31 : Power control information management unit, 32: power generation amount monitoring unit, 33: power consumption monitoring unit, 34: power supply control unit, 35: power storage control unit, 4: power consumer, 5: solar power / wind power generation system, 6: Power grid, 1000: Power supply system.

Claims (8)

  1.  車載蓄電池から電力系統に電力を供給し、または前記電力系統から前記車載蓄電池に電力を供給する電力供給システムであって、
     前記車載蓄電池が前記電力系統に対して送電する処理、および前記車載蓄電池が前記電力系統から受電して蓄電する処理を制御する車載蓄電池制御部と、
     前記車載蓄電池を特定し、いずれの前記車載蓄電池が前記電力系統に対して送電すべきか、およびいずれの前記車載蓄電池が前記電力系統から余剰電力を受電して蓄電すべきかを管理する車載蓄電池管理装置と、
     前記電力系統の送電動作および受電動作を制御する電力系統制御システムと、
     を有し、
     前記車載蓄電池制御部は、
      前記車載蓄電池の蓄電容量のうち所定容量を、前記電力系統との間で送電または受電するための専用容量として仮想的に割り当て、
      前記車載蓄電池が前記電力系統に対して送電するときは前記専用容量から電力を優先的に取り出し、前記車載蓄電池が前記電力系統から余剰電力を受電するときは前記専用容量に電力を優先的に蓄電する
     ことを特徴とする電力供給システム。
    An electric power supply system that supplies electric power from an in-vehicle storage battery to an electric power system, or supplies electric power from the electric power system to the in-vehicle storage battery,
    An in-vehicle storage battery control unit that controls a process in which the in-vehicle storage battery transmits power to the power system, and a process in which the in-vehicle storage battery receives power from the power system and stores the power;
    An in-vehicle storage battery management device that identifies the in-vehicle storage battery, manages which in-vehicle storage battery should transmit power to the power system, and which in-vehicle storage battery should receive and store surplus power from the power system When,
    A power system control system for controlling power transmission operation and power reception operation of the power system;
    Have
    The in-vehicle storage battery controller is
    A predetermined capacity of the storage capacity of the in-vehicle storage battery is virtually allocated as a dedicated capacity for power transmission or reception with the power system,
    When the in-vehicle storage battery transmits power to the power system, power is preferentially extracted from the dedicated capacity, and when the in-vehicle storage battery receives surplus power from the power system, power is preferentially stored in the dedicated capacity. A power supply system characterized by that.
  2.  前記車載蓄電池制御部は、
      前記専用容量を、前記車載蓄電池が前記電力系統に対して送電するときに用いる送電用容量と、前記車載蓄電池が前記電力系統から受電するときに用いる受電用容量とに仮想的に区分し、
      前記送電用容量に蓄電されている電力を使い切ると当該送電用容量を前記受電用容量に切り替えて使用し、
      前記受電用容量が蓄電することができる容量を使い切ると当該受電用容量を前記送電用容量に切り替えて使用する
     ことを特徴とする請求項1記載の電力供給システム。
    The in-vehicle storage battery controller is
    The dedicated capacity is virtually divided into a power transmission capacity used when the in-vehicle storage battery transmits power to the power system and a power receiving capacity used when the in-vehicle storage battery receives power from the power system,
    When the power stored in the power transmission capacity is used up, the power transmission capacity is switched to the power reception capacity and used.
    The power supply system according to claim 1, wherein when the capacity that can be stored by the power receiving capacity is used up, the power receiving capacity is switched to the power transmission capacity.
  3.  前記車載蓄電池制御部は、
      前記専用容量を、前記車載蓄電池が前記電力系統に対して送電するときに用いる送電用容量と、前記車載蓄電池が前記電力系統から受電するときに用いる受電用容量とに仮想的に区分し、
      前記受電用容量と前記送電用容量を所定期間毎に切り替える
     ことを特徴とする請求項1記載の電力供給システム。
    The in-vehicle storage battery controller is
    The dedicated capacity is virtually divided into a power transmission capacity used when the in-vehicle storage battery transmits power to the power system and a power receiving capacity used when the in-vehicle storage battery receives power from the power system,
    The power supply system according to claim 1, wherein the power receiving capacity and the power transmitting capacity are switched every predetermined period.
  4.  前記車載蓄電池管理装置は、
      複数の前記車載蓄電池の前記専用容量が、ある時点において同一になるように前記車載蓄電池制御部に対して指示し、
     前記車載蓄電池制御部は、
      前記車載蓄電池管理装置から前記指示を受け取り、その指示にしたがって前記車載蓄電池の前記専用容量を変更する
     ことを特徴とする請求項1記載の電力供給システム。
    The in-vehicle storage battery management device is
    Instructing the in-vehicle storage battery control unit so that the dedicated capacities of the plurality of in-vehicle storage batteries are the same at a certain point in time,
    The in-vehicle storage battery controller is
    The power supply system according to claim 1, wherein the instruction is received from the in-vehicle storage battery management device, and the dedicated capacity of the in-vehicle storage battery is changed according to the instruction.
  5.  前記車載蓄電池制御部は、
      前記専用容量を、前記車載蓄電池の総蓄電容量の所定割合以下に設定し、
     前記所定割合は、複数の前記車載蓄電池それぞれについて同一である
     ことを特徴とする請求項1記載の電力供給システム。
    The in-vehicle storage battery controller is
    The dedicated capacity is set to a predetermined ratio or less of the total storage capacity of the in-vehicle storage battery,
    The power supply system according to claim 1, wherein the predetermined ratio is the same for each of the plurality of in-vehicle storage batteries.
  6.  前記車載蓄電池管理装置は、
      複数の前記車載蓄電池それぞれに対して、前記電力系統に対して送電する動作、および前記電力系統から受電する動作を均等に割り当てる
     ことを特徴とする請求項1記載の電力供給システム。
    The in-vehicle storage battery management device is
    The power supply system according to claim 1, wherein an operation of transmitting power to the power system and an operation of receiving power from the power system are equally allocated to each of the plurality of in-vehicle storage batteries.
  7.  前記車載蓄電池制御部は、
      前記車載蓄電池が前記電力系統に対して送電する動作を実行した日時のログ、および前記車載蓄電池が前記電力系統から受電する動作を実行した日時のログを前記車載蓄電池管理装置に対して送信し、
     前記車載蓄電池管理装置は、
      前記車載蓄電池が前記電力系統に対して送電した日時、および前記車載蓄電池が前記電力系統から受電した日時を、前記ログに基づいて把握し、
      前記電力系統に対して送電する日時と前記電力系統から受電する日時が各前記車載蓄電池について均等になるように、前記電力系統に対して送電する動作、および前記電力系統から受電する動作を割り当てる
     ことを特徴とする請求項6記載の電力供給システム。
    The in-vehicle storage battery controller is
    A log of the date and time when the in-vehicle storage battery has performed an operation of transmitting power to the power system, and a log of date and time of the operation of the in-vehicle storage battery performing an operation of receiving power from the power system are transmitted to the in-vehicle storage battery management device
    The in-vehicle storage battery management device is
    Based on the log, the date and time when the in-vehicle storage battery transmits power to the power system, and the date and time when the in-vehicle storage battery receives power from the power system,
    Assigning an operation of transmitting power to the power system and an operation of receiving power from the power system so that the date and time of transmitting power to the power system and the date and time of receiving power from the power system are equal for each in-vehicle storage battery. The power supply system according to claim 6.
  8.  前記車載蓄電池制御部は、
      前記車載蓄電池が前記電力系統に対して送電する動作、および前記車載蓄電池が前記電力系統から受電する動作のいずれを実行したかを示すログを前記車載蓄電池管理装置に対して送信し、
     前記車載蓄電池管理装置は、
      前記車載蓄電池が前記電力系統との間で最後に実施した動作が、前記電力系統に対して送電する動作、および前記電力系統から受電する動作のいずれであるかを、前記ログに基づいて把握し、
      前記車載蓄電池が前記電力系統との間で最後に実施した動作が、前記電力系統に対して送電する動作である場合は、当該車載蓄電池の次回動作として前記電力系統から受電する動作を優先的に割り当て、
      前記車載蓄電池が前記電力系統との間で最後に実施した動作が、前記電力系統から受電する動作である場合は、当該車載蓄電池の次回動作として前記電力系統に対して送電する動作を優先的に割り当てる
     ことを特徴とする請求項6記載の電力供給システム。
    The in-vehicle storage battery controller is
    Transmitting to the in-vehicle storage battery management device a log indicating which of the operation that the in-vehicle storage battery transmits to the power system and the operation that the in-vehicle storage battery receives power from the power system;
    The in-vehicle storage battery management device is
    Based on the log, the last operation performed by the in-vehicle storage battery with the power system is either an operation of transmitting power to the power system or an operation of receiving power from the power system. ,
    When the last operation performed by the in-vehicle storage battery with respect to the power system is an operation to transmit power to the power system, the operation to receive power from the power system is given priority as the next operation of the in-vehicle storage battery. allocation,
    When the last operation performed by the in-vehicle storage battery with respect to the power system is an operation for receiving power from the power system, the operation for transmitting power to the power system as a next operation of the in-vehicle storage battery is given priority. The power supply system according to claim 6, wherein the power supply system is assigned.
PCT/JP2010/060500 2010-06-22 2010-06-22 Power supplying system WO2011161758A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012521195A JP5422741B2 (en) 2010-06-22 2010-06-22 Power supply system
PCT/JP2010/060500 WO2011161758A1 (en) 2010-06-22 2010-06-22 Power supplying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060500 WO2011161758A1 (en) 2010-06-22 2010-06-22 Power supplying system

Publications (1)

Publication Number Publication Date
WO2011161758A1 true WO2011161758A1 (en) 2011-12-29

Family

ID=45370972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060500 WO2011161758A1 (en) 2010-06-22 2010-06-22 Power supplying system

Country Status (2)

Country Link
JP (1) JP5422741B2 (en)
WO (1) WO2011161758A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093614A (en) * 2016-12-02 2018-06-14 本田技研工業株式会社 Power storage system, transport machine and control method for power storage system
JP2018093613A (en) * 2016-12-02 2018-06-14 本田技研工業株式会社 Electric power transmission management device and electric power transmission method
JP2019037068A (en) * 2017-08-15 2019-03-07 株式会社Nttファシリティーズ Secondary battery control device, secondary battery control system, secondary battery control method, and program
EP3626505A1 (en) * 2018-09-18 2020-03-25 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH A system and method for providing redundant electric power
WO2023170932A1 (en) * 2022-03-11 2023-09-14 本田技研工業株式会社 Battery management system and battery management method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204081A (en) * 2004-12-24 2006-08-03 Hitachi Ltd Supply and demand adjusting method, system and service by distributed power source
JP2007282383A (en) * 2006-04-07 2007-10-25 Kyushu Institute Of Technology Method and system for levelling power load
JP2010081722A (en) * 2008-09-25 2010-04-08 Hitachi Ltd Charge/discharge control apparatus
JP2010098793A (en) * 2008-10-14 2010-04-30 Osaka Gas Co Ltd Power demand and supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204081A (en) * 2004-12-24 2006-08-03 Hitachi Ltd Supply and demand adjusting method, system and service by distributed power source
JP2007282383A (en) * 2006-04-07 2007-10-25 Kyushu Institute Of Technology Method and system for levelling power load
JP2010081722A (en) * 2008-09-25 2010-04-08 Hitachi Ltd Charge/discharge control apparatus
JP2010098793A (en) * 2008-10-14 2010-04-30 Osaka Gas Co Ltd Power demand and supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093614A (en) * 2016-12-02 2018-06-14 本田技研工業株式会社 Power storage system, transport machine and control method for power storage system
JP2018093613A (en) * 2016-12-02 2018-06-14 本田技研工業株式会社 Electric power transmission management device and electric power transmission method
JP2019037068A (en) * 2017-08-15 2019-03-07 株式会社Nttファシリティーズ Secondary battery control device, secondary battery control system, secondary battery control method, and program
EP3626505A1 (en) * 2018-09-18 2020-03-25 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH A system and method for providing redundant electric power
WO2020057989A1 (en) * 2018-09-18 2020-03-26 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH A system and method for providing redundant electric power
US11804727B2 (en) 2018-09-18 2023-10-31 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh System and method for providing redundant electric power
WO2023170932A1 (en) * 2022-03-11 2023-09-14 本田技研工業株式会社 Battery management system and battery management method

Also Published As

Publication number Publication date
JPWO2011161758A1 (en) 2013-08-19
JP5422741B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US11007885B2 (en) Charger for electric vehicles with distributed power converter arbitration
TWI694936B (en) Reservation method of rechargeable battery and electric vehicle system
JP5422741B2 (en) Power supply system
JP5647057B2 (en) Charging apparatus, charging control unit, and charging control method
WO2018145633A1 (en) Mobile internet based automobile integrated energy supplement system and method and storage medium
KR101998411B1 (en) Controller and method of controlling a power system
JP7448578B2 (en) Management device, management method, and program
US11101691B2 (en) Method for coordinating an exchange of power between a plurality of technical small units and an electrical transmission network
US10228667B2 (en) System and a method of controlling a plurality of devices
US8825247B2 (en) System for managing battery charge of electric vehicle and method thereof
US11400827B2 (en) Power network management
JP2011130575A (en) Method and system for charging battery
JP2012029533A (en) Energy management system
US20130033230A1 (en) Device and method for storing electrical energy
JPWO2020032082A1 (en) Control device and control method
WO2021132695A1 (en) Control device, charging device, program, and control method
JP6269675B2 (en) Power management system and power management method
JP2021176063A (en) Charge management device, charge management method and charge management program
CN110356259A (en) The reserving method and electric carrier system of rechargeable battery
US11491887B2 (en) Charge control device, vehicle, charging system, and charge control method
KR20230062997A (en) Operating system of battery exchange station based on vehicle&#39;s battery exchange urgency and operating method of battery exchange station using the same
JP6992698B2 (en) Information management device
EP3309921A1 (en) Charging system
WO2022088052A1 (en) Charge and discharge management method, charge and discharge management apparatus, charge and discharge management controller, and charge and discharge management system
KR101561941B1 (en) Rechargeable device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521195

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853618

Country of ref document: EP

Kind code of ref document: A1