WO2011161480A1 - Plaque d'essai multi-puits - Google Patents

Plaque d'essai multi-puits Download PDF

Info

Publication number
WO2011161480A1
WO2011161480A1 PCT/GB2011/051216 GB2011051216W WO2011161480A1 WO 2011161480 A1 WO2011161480 A1 WO 2011161480A1 GB 2011051216 W GB2011051216 W GB 2011051216W WO 2011161480 A1 WO2011161480 A1 WO 2011161480A1
Authority
WO
WIPO (PCT)
Prior art keywords
wells
well
assay plate
partition
plate
Prior art date
Application number
PCT/GB2011/051216
Other languages
English (en)
Inventor
Marie Lis Kirsten
Original Assignee
Imperial Innovations Ltd
Goehring, Natalia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Innovations Ltd, Goehring, Natalia filed Critical Imperial Innovations Ltd
Publication of WO2011161480A1 publication Critical patent/WO2011161480A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • B01L3/527Containers specially adapted for storing or dispensing a reagent for a plurality of reagents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/065Valves, specific forms thereof with moving parts sliding valves

Definitions

  • This invention relates to a multi-well assay plate.
  • Multi-well assay plates have a broad application in biological and life sciences, including cell biology, microbiology, biophysics, pharmacology, toxicology and
  • such assay plates have a standardised design and arrangement of wells so that they are compatible with a multitude of plate readers that determine spectroscopic readouts of each well, for example absorbance, luminescence, fluorescence or microscopy results.
  • Multi-well assay plates are known from, for example, WO 2009/097099, US
  • Embodiments of the present invention find application in a wide spectrum of biological tests related to binding and partitioning and also co-culture of cells. Such studies are important for determining interactions between different entities such as cells, proteins, lipids or DNA. These experiments can be performed by mixing the two entities and separating the unbound entities again, followed by detection of the resulting signal.
  • the present invention seeks to provide multi-well assay plates having advantages not known from the prior art.
  • a multi-well assay plate comprising a plurality of wells defined in a substantially planar substrate, each well in fluid communication via a gateway with at least one neighbouring well to form a well grouping, wherein each gateway is configured to receive a partition for separating the neighbouring wells.
  • neighbouring wells of the assay plate can be connected via a partition and observed independently.
  • the partition may be located permanently in the gateway.
  • the partition may be moulded into the substrate.
  • the partition is removably received in the gateway. In this way, the partition may be selected and/or positioned to match the requirements of the particular assay.
  • the removable partition may be solid, whereby to prevent any fluid
  • a method of using the assay plate of the invention may include the step of removing the solid partition from a gateway in the course of an experimental procedure, whereby to allow fluid communication of a reagent in one well to a
  • the solid partition can be used to release reagents or to retain reagents, for example while they solidify.
  • the partition comprises a semi-permeable membrane which, in use, controls passage of reagents between the wells separated by the partition.
  • the semi-permeable membrane allows the passage of molecules between wells dependent on the pore size of the membrane.
  • the partition may comprise a test material located within a frame.
  • the plate may be used to test the effect of two reagents on opposite sides of the material or to test the barrier properties of the material.
  • the test material may be a human or animal tissue sample, for example a skin sample or a slice taken from an organ.
  • the test material may comprise a cell culture on a support structure.
  • the support structure may be a semi-permeable membrane.
  • the partition is arranged in the gateway substantially perpendicularly to the plane of the substrate.
  • the partition is substantially vertical.
  • the partition sealingly engages the gateway.
  • the partition may form a water tight (liquid-tight) seal at the interface with the gateway.
  • the barrier comprises a semi-permeable membrane, any transfer between the wells is through the membrane.
  • the perimeter of the partition may be formed of elastomeric material to provide sealing engagement with the gateway. Where the partition is solid, the entire partition may be formed of elastomeric material. The elastomeric material may be reinforced to provide stability to the partition.
  • the partition may be rectangular, circular, elliptical or any other suitable shape.
  • the wells may be positioned on the planar substrate in positions corresponding to those of a standard micro-plate, whereby interactions in the wells can be monitored by a standard micro-plate reader.
  • a standard micro-plate reader can be used with the plate of the invention. It is not necessary for the plate of the invention to comprise a well corresponding to every well of a standard micro-plate.
  • the plate of the invention may comprise fewer wells than a standard micro-plate, with each well in a position corresponding to the position of a well of a standard plate.
  • the plate may comprise at least two well groupings, each comprising a plurality of wells in fluid communication via at least one mutual gateway, wherein the wells of each grouping are separated from the wells of the other grouping(s) by the substrate material.
  • Each well grouping may comprise more than two wells.
  • each well grouping may comprise three, four, five or more wells.
  • At least one well of the grouping may be in fluid communication with a plurality of neighbouring wells via respective gateways.
  • one well may be surrounded by a plurality of wells.
  • the central well may be defined substantially by the partition(s) between the central well and the neighbouring wells.
  • a central well is adjoined by two, three, four or more neighbouring wells. Such an arrangement has the advantage that a single reagent in the central well can be applied to a plurality of other (different) reagents in the surrounding wells.
  • a method of using the assay plate of the invention may include depositing a first reagent in the well of the grouping that is in fluid communication with a plurality of neighbouring wells via respective gateways, depositing different second reagents in each of the neighbouring wells and monitoring simultaneously the interaction of the first reagent with each of the second reagents.
  • the first and second reagents may be deposited in any order, as required. Further reagents may be deposited before or after the first and/or second reagents.
  • the further reagent(s) may be the same reagent(s) for each of the neighbouring wells.
  • the second reagents are human or animal cells.
  • the first reagent may be a biologically-active, for example pharmacologically-active substance.
  • Other reagents used in accordance with the invention may be microorganisms, such as E- coli, yeast, fungi and the like, in particular for the study of biotechnological production of substances, for example the selection and/or comparison of clones that convert a substance enzymatically into a desired product.
  • the reagent may be bacterial, human or animals cells.
  • the reagents may be prokaryotic or eukaryotic organisms.
  • a further method of using the assay plate of the invention may include separating the central well of the grouping that is in fluid communication with a plurality of
  • the method has the advantage that the effect of different partitions on the interaction of reagents may be monitored under the same conditions.
  • the reagents in the neighbouring wells may be the same or different.
  • the different partitions may be membranes of different permeability or may be membranes coated or cultured with different materials or may be tissue samples, for example.
  • the plate may comprise at least two, preferably at least four, more preferably at least eight, most preferably at least 16, wells in at least four, preferably at least eight, well groupings.
  • the wells may be substantially cylindrical in form.
  • the bottom of each well may be substantially flat. Other shapes are possible.
  • the wells or the well bottoms may be hemispherical or conical.
  • the substrate may be optically opaque or translucent. In one embodiment, the substrate is substantially optically transparent. This has the advantage that the interactions in the wells can be observed from below through the material of the substrate.
  • a method of using the assay plate of the invention may include the step of locating the planar substrate substantially horizontally and monitoring the progress of a reaction between neighbouring wells of a well grouping from below.
  • a method of using the assay plate of the invention may include the step of locating the planar substrate substantially horizontally and monitoring the progress of a reaction between neighbouring wells of a well grouping from above. The monitoring of the wells may be by microscopy, spectroscopy, in particular fluorescence spectroscopy or absorption spectroscopy, or any other suitable method.
  • the reagents used in assays conducted with the plate of the invention may include, for example, proteins, vesicles, DNA, cells, cell cultures, drug molecules, biomolecules, lipids, sugars, human or animal tissues.
  • the reagents may be bioreactive reagents.
  • the invention may be applied to assays in the fields of, for example, cell culture, biophysical studies, lipid transport studies, dialysis for protein crystallisation, immunology, cell migration, chemotaxis, cell proliferation, cell differentiation, endocrinology, pharmacology, toxicology, efficacy, microbiology, parasitology, drug/tissue interaction, drug partitioning, drug non-specific binding, cell proliferation, gene expression, cell differentiation, oncology and cell invasion.
  • Figure 1 is a top plan view of an exemplary embodiment of a micro-well plate in accordance with the invention with two-well connectivity;
  • Figure 2 is a cross sectional side view along line IV of Figure 1 ;
  • Figure 3 is a top plan view of an exemplary embodiment of a micro-well plate in accordance with the invention with four-well connectivity;
  • Figure 4 is a cross-sectional side view along line VI of Figure 3;
  • Figure 5 is a top plan view of an exemplary embodiment of a micro-well plate in accordance with the invention with five-well connectivity;
  • Figure 6 is a cross-sectional side view along line VIII of Figure 5;
  • Figure 7 is a top plan view of an exemplary embodiment of a micro-well plate in accordance with the invention with total connectivity of all wells and some exemplary inserts;
  • Figure 8 is a perspective side view of a membrane insert surrounded by a stabilising and insulating support
  • Figures 9a and 9b are top plan views of two possible embodiments of the invention (two-well and four-well connectivity) with inserted membrane barriers;
  • Figure 10 is a top plan view of a five-well connectivity design in accordance with the invention with inserted membrane barriers;
  • Figure 1 1 is a schematic depiction of an exemplary experiment to investigate nonspecific binding and efficacy of drugs to different tissues;
  • Figure 12 is a schematic depiction of an exemplary experiment to investigate cell interaction through secretion of soluble compounds
  • Figure 13 is a schematic depiction of an exemplary experiment to investigate competitive binding to vesicles of different lipid compositions.
  • Figure 14 is a schematic depiction of an exemplary experiment to investigate transporting proteins.
  • an embodiment of the invention consists of a multi-well
  • the assay plate I of this embodiment matches the standard design and dimensions for micro plate reader analysis.
  • the centres of the wells II correspond to the locations of the centres of wells in a standard micro-well plate.
  • the location of the wells II corresponds to the locations of wells of a standard 96 well plate, i.e. eight rows (A - H) by twelve columns (1 - 12).
  • the wells II are arranged in four rows of six pairs of interconnected wells II, so that the plate I includes only 48 wells.
  • Each of the 48 wells II of the plate I of Figure 1 is located in a position corresponding to the position of one of the wells in a standard 96 well plate, but less than all of the standard well locations are occupied by a well II in the embodiment of Figure 1.
  • additional rows (B, D, F, H) of five pairs of interconnected wells II may be located in the space between the rows (A, C, E, G) shown in Figure 1 , offset by one well position from the six-pair rows.
  • the first well II of each of the rows is located at column 2.
  • the positions of the centres of the wells II correspond to positions in a standard 96-well plate.
  • the centres of the wells II correspond to positions in a standard 6-well, 12-well, 24-well, 48- well, 384-well or 1 ,536-well plate, for example.
  • the embodiment of Figure 1 consists of a parallelepipedal base (plate) with dimensions compatible with standard micro-plate readers.
  • the plate comprises a multitude of cylindrical open-topped reservoirs (wells) II of which at least pairs of wells are interconnected via a short connecting slot III that allows insertion of a rectangular membrane IX surrounded by a sealing material (e.g. rubber or other elastomer) making the separation between the wells watertight to stops leakage of fluid between wells so that the only connection is via the membrane pores.
  • a sealing material e.g. rubber or other elastomer
  • the plate I may be moulded from a plastics material that does not interfere with the mode of measurement, such as polystyrene, polymethylmetacrylate, low protein binding cyclo olefin polymer, or others. Other non-plastics materials are possible.
  • the surface of the plate I may also be treated appropriately. If very low non-specific protein binding is required, the surface may furthermore be coated with suitable materials.
  • the material of the plate I should be biocompatible. It is desirable for the plate material to be transparent in order that interactions in the wells II can be observed, for example by microscopy, from below the plate I through the transparent bottom of the wells II. Alternatively, the interactions can be observed from above the wells II.
  • the plate (base) I consists of two or more ideally cylindrical flat-bottomed open- topped wells II of which at least two wells are interconnected.
  • the plate I is designed so that all wells II can be connected to their neighbouring wells II by a short slot III.
  • the interconnection is a slot III designed to allow vertical insertion of at least one separate barrier IX.
  • the barrier discs IX may contain a semi-permeable membrane XI of a suitable material and pore size to allow lateral diffusion of small molecules.
  • the membrane barrier IX can separate a wide range of biological motifs including vesicles, proteins, DNA, cells etc. while permitting smaller particles to pass through. In this way each plate I can be custom-designed to each experiment by varying the pattern of connected wells II and choosing suitable membrane materials and pore sizes.
  • the insertable barrier IX may either be impermeable to completely block the interconnection between the wells II or it may contain a semi-permeable membrane XI that allows passage of particles below a defined size.
  • embodiments of the invention is the possibility to monitor all separated wells II in parallel, for example by fluorescence spectroscopy, ultra violet to visible absorption spectroscopy and microscopy, thereby allowing on-line detection and kinetic studies without the need to remove the sample into a separate container for analysis. Due to the modular insertion of the membrane barriers IX, wells II can be connected and blocked in a customised manner. Furthermore, a choice of different membrane materials and pore sizes and different plate materials allows the final set-up to be adjusted to the user's needs.
  • biomolecules including, but not restricted to, drug molecules with different types of human (or animal) tissues in order to compare properties as for example non-specific binding or efficacy in different tissues, such as tumour cells and/or healthy cells.
  • tissue such as tumour cells and/or healthy cells.
  • all wells II are accessible for microscopy and spectroscopy the interaction of the drug with the different tissues can be compared immediately.
  • the plate I according to the invention permits co-culture of two or more cell types in the same assay volume while keeping the cells spatially separated and allowing only molecules below a defined size to pass between the separated wells.
  • the plate according to this embodiment of the invention is different and improved over designs such as described in US 5,962,250 in that:
  • more than two wells II can be separated via a semi-permeable membrane XI due to the modular design of the wells II;
  • each independent cavity can be measured in a standard micro-plate reader with the membranes XI inserted.
  • Additional optional features of the plate I may include a temperature control device attached to the bottom of the plate or within a cavity within the plate I for more efficient heat transfer. Examples may be heating mats, resistive heaters and Peltier heaters etc. to observe biological processes under physiological conditions or to cool down the samples. If required, the plate I may also be equipped with a stirring device in each well.
  • the membrane inserts IX may exemplarily consist of porous materials XI that have appropriate properties for the planned experiments such as low interaction with the involved biomolecules.
  • the pore sizes should be controllable in the manufacturing process of the membranes with a low variance and be definable in a broad range of diameters from a few nanometres to the micrometer range.
  • materials include polytetrafluoroethylene, polyethylene, PET, polycarbonate, cellulose, polypropylene and inorganic materials such as aluminium oxide.
  • the vertical inserts IX seal the connection between the respective wells II water tight.
  • the inserts IX may comprise an elongated top for example of plastics for gripping the insert IX.
  • the insert IX comprises a rubber or elastomer rim X, which provides sealing engagement with the slot III and may be reinforced for stability.
  • the insert IX and/or rim X may be configured to clip into the slot III.
  • the insert IX may support tissue, such as human or animal tissue, rather than a porous membrane. Indeed, cells may be grown on the membrane for study.
  • Figure 9a shows a portion of the plate I of Figure 1 with the barriers IX inserted in some of the slots.
  • FIG. 3 differs from the embodiment of Figure 1 in that in this embodiment the wells are arranged in groupings of four interconnected wells V. Barriers IX can be inserted in the slots provided in the plate to partition the four wells, as shown in Figure 9b.
  • FIG. 5 differs from the preceding embodiments in that in this embodiment the wells are arranged in groupings of five interconnected wells V. In this case, four substantially cylindrical wells surround a central square well defined by the inserted barriers, as shown in Figure 10.
  • Examples of applications of embodiments of the invention include, but are not limited to: biophysical studies, such as protein vesicle binding and partitioning studies, lipid transport studies, dialysis for protein crystallisation; immunology, for example cell interactions through secretion of soluble compounds; cell migration (chemotaxis); cell proliferation and differentiation; endocrinology, e.g. secretion of and response to hormones; pharmacology, e.g. cell toxicity studies; microbiology and parasitology, including interaction between organisms via secreted compounds; drug/tissue interaction; drug partitioning; drug non-specific binding; cell proliferation under drug presence.
  • biophysical studies such as protein vesicle binding and partitioning studies, lipid transport studies, dialysis for protein crystallisation
  • immunology for example cell interactions through secretion of soluble compounds
  • cell migration chemotaxis
  • cell proliferation and differentiation cell proliferation and differentiation
  • endocrinology e.g. secretion of and response to hormones
  • pharmacology e.g. cell
  • One application of an embodiment of the invention provides a method to test competitive binding and efficacy of a drug in different tissue types, as shown in Figure 1 1 . This is a useful way of investigating if an anti-tumour drug preferentially targets or affects tumour cells compared to normal cells.
  • a central well is connected to up to four other cells in equal distance to the central well and the wells are separated by semi- permeable membranes that maintain separation of the different cell types but allow passage and interchange of media components and other small molecules (see Figures 5, 6 and 10).
  • the different cell or tissue types in the outer wells are cultured to optimal confluency.
  • the drug molecules are added to the central well at the start of the
  • the drug molecules should either exhibit intrinsic fluorescence or be fluorescently labelled (or trigger a fluorescent signal in transfected cell lines) and be quantified by fluorescence (or luminescence) spectroscopy in each tissue after binding;
  • the plate according to an embodiment of the invention may be used for the investigation of immunological interactions such as response assays or migration
  • the response of the acceptor cell may furthermore be on the level of protein expression.
  • the secreted molecules may lead to a change in DNA or RNA presence in the acceptor cell type.
  • fluorescence in situ hybridisation FISH
  • FISH fluorescence in situ hybridisation
  • Gene expression may also be observed by reporter genes.
  • a change of absorption or fluorescence of the substrate of the protein of interest upon reaction may be exploited to quantify gene expression.
  • Cell differentiation may also be achieved using the plate according to
  • Cell differentiation can be attained by supplementing the cell media with certain factors that are secreted by other types of cells.
  • bone marrow cells differentiate into macrophages upon treatment with L cell conditioned medium, which is commercially available.
  • the plate according to embodiments of the invention allows co-culture of conditioning cells, thereby bypassing the need to buy expensive conditioning medium.
  • the conditioning cells can be grown in up to four "feeder" wells surrounding the well with the differentiating cells, thereby increasing the
  • lipid binding molecules such as, for example, proteins
  • observation of competitive binding to different types of lipids may be achieved by connection of at least two wells and separation with membranes that allow passage of the proteins and other small soluble molecules but not of vesicles.
  • the vesicle suspension is deposited into the outer wells while the protein is added to the middle well.
  • the protein is intrinsically fluorescent, fluorescently labelled or induces fluorescence at the membrane of the vesicles (e.g. FRET)
  • competitive binding to the differing lipid compositions can be quantified by fluorescence spectroscopy.
  • proteins are known to be involved in delocalisation of molecules such as, for example, lipids, transporting them from one cellular membrane to another. Such processes may be investigated using the plate according to embodiments of the invention.
  • Vesicles of different properties such as lipid composition or vesicle size are deposited into the separate wells.
  • the transport of a specific lipid from one vesicle type to the other can be observed by incorporation of a fluorescently labelled analogue of the respective lipid into the "donor” vesicles.
  • Addition of the lipid transporting protein to the respective well enables the time resolved observation of the transport of the labelled lipid from "donor" vesicles to "acceptor” vesicles.
  • Tris tris(hydroxymethyl)aminomethane
  • DTE Dithioerythritol
  • the second well of the pair is administered with the buffer only. Both wells are then monitored over time and the fluorescence intensity is measured at 524 nm with 488 nm excitation.
  • the two wells are separated with a 1 ⁇ NucleoporeTM membrane.
  • the two wells are separated with a 12 ⁇
  • Cell invasion (e.g. tumour invasion in 2D and 3D) studies can also be carried out.
  • four different collagen concentration matrices can be poured into respective wells of the grouping, with the wells separated by impermeable, removable barriers. The collagen is allowed to set and the barriers are removed. The central space between the wells is filled with a cell line and cell invasion and invasion mechanisms into the different matrices is observed and/or measured.
  • four different matrices e.g. laminen, matrigel, collagen, fibronectin gel
  • Chemotaxis can also be studied using the plate I of Figures 1 and 9a, for example, by co-culturing neutrophils and a cell line producing chemokines in respective wells II of the plate separated by a porous membrane. Rather than using a cell line that produces chemokines, purified chemokines may be provided in the surrounding or neighbouring wells. A concentration gradient can be established and cell migration can be observed and/or measured.
  • embodiments of the invention provide a means for performing biological or biophysical membrane binding and partitioning studies with the possibility for measurement of resulting signals by spectroscopic methods and microscopy.
  • EPI-imaging is also possible.
  • embodiments of the invention provide a plate with interconnected wells separated by exchangeable inserts with porous membranes for lateral diffusion of molecules allowing simultaneous observation of the independent wells.
  • Embodiments of the invention provide a micro-well plate with two or more interconnected compartments (wells) separated vertically by a semi-permeable membrane that allows lateral diffusion of molecules below a certain size, defined by the pore size of the membrane barrier.
  • a multi-well assay plate I comprises a plurality of wells II defined in a substantially planar substrate. Each well is in fluid communication via a gateway III with at least one neighbouring well to form a well grouping. Each gateway is configured to receive a partition for separating the neighbouring wells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

La présente invention concerne une plaque d'essai I multi-puits, comportant une pluralité de puits II définis dans un substrat sensiblement plan. Chacun desdits puits est en communication fluidique, via un passage III, avec au moins un puits voisin, de manière à former un regroupement de puits. Chaque passage est configuré de manière à pouvoir accueillir une cloison destinée à séparer les puits voisins.
PCT/GB2011/051216 2010-06-25 2011-06-27 Plaque d'essai multi-puits WO2011161480A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1010736.5 2010-06-25
GBGB1010736.5A GB201010736D0 (en) 2010-06-25 2010-06-25 IWAP (Interwell assay plate)

Publications (1)

Publication Number Publication Date
WO2011161480A1 true WO2011161480A1 (fr) 2011-12-29

Family

ID=42583010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2011/051216 WO2011161480A1 (fr) 2010-06-25 2011-06-27 Plaque d'essai multi-puits

Country Status (2)

Country Link
GB (1) GB201010736D0 (fr)
WO (1) WO2011161480A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013036997A1 (fr) * 2011-09-14 2013-03-21 The University Of Queensland Appareil d'exposition à une substance
CN103952291A (zh) * 2014-05-15 2014-07-30 山东省千佛山医院 一种细胞迁移实验用的装置
WO2017068376A1 (fr) * 2015-10-22 2017-04-27 University Of Newcastle Upon Tyne Culture cellulaire
GB2553074A (en) * 2016-02-05 2018-02-28 Revivocell Ltd A cell culture device
EP3301443A1 (fr) * 2016-09-29 2018-04-04 Sumitomo Rubber Industries, Ltd. Dispositif d'analyse médicale et procédé d'analyse cellulaire
CN109072150A (zh) * 2016-02-12 2018-12-21 株式会社银岭实验室 多阱型器具
EP3434370A4 (fr) * 2016-04-21 2019-10-30 Quanta Matrix Co., Ltd. Dispositif de test de culture cellulaire à puits multiples pour éprouver rapidement la sensibilité aux antibiotiques
US20200123484A1 (en) * 2018-10-22 2020-04-23 National Tsing Hua University Integrated chip and method for sperm sorting, oocyte incubation, and in vitro fertilization
WO2020118061A1 (fr) * 2018-12-07 2020-06-11 Celtein Biosciences, Llc Appareil de multiplexage d'immunoessai
US11360078B2 (en) 2016-09-29 2022-06-14 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method
US11573232B2 (en) 2018-02-14 2023-02-07 Sumitomo Rubber Industries, Ltd. Method for capturing specific cells
WO2023026034A1 (fr) 2021-08-26 2023-03-02 Newcells Biotech Limited Plaque à circulation de fluide
US11614440B2 (en) 2019-01-24 2023-03-28 Sumitomo Rubber Industries, Ltd. Specific cell fractionating and capturing methods
US11623215B2 (en) 2017-05-10 2023-04-11 Emd Millipore Corporation Multiwell plate with variable compression seal
EP4176972A1 (fr) * 2021-11-04 2023-05-10 Pall Corporation Dispositif à puits multiples et procédé d'utilisation

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183760A (en) 1989-05-19 1993-02-02 Sweetana Stephanie A Apparatus for in vitro determination of substances across membranes, biological tissues, or cell cultures
EP0620274A1 (fr) 1992-09-16 1994-10-19 Universidade De Santiago De Compostela Plaquette pour cultures cellulaires avec systeme de diffusion laterale des molecules a travers une membrane barriere
US5468638A (en) 1992-09-28 1995-11-21 Becton, Dickinson And Company Cell culture insert
US5583037A (en) 1995-03-30 1996-12-10 Becton, Dickinson And Company Trans-membrane co-culture insert and method for using
US5916526A (en) 1995-08-11 1999-06-29 Robbins Scientific Corporation Compartmentalized multi-well container
US5962250A (en) 1997-10-28 1999-10-05 Glaxo Group Limited Split multi-well plate and methods
US6410310B1 (en) 2000-03-30 2002-06-25 Alta Biotech, Inc. Cell culture expansion plate
US6558631B1 (en) 1999-05-20 2003-05-06 Advanced Biotechnologies Ltd. Multi-well plates
US20030215940A1 (en) 2002-05-15 2003-11-20 Lacey William J. Multi-well assembly for growing cultures in-vitro
EP1547686A1 (fr) * 2003-12-22 2005-06-29 F.Hoffmann-La Roche Ag Plaque de microtitrage, système et méthode pour le traitement d'échantillons
DE102006030068A1 (de) * 2006-06-28 2008-01-03 M2P-Labs Gmbh Vorrichtung und Verfahren zur Zu- und Abfuhr von Fluiden in geschüttelten Mikroreaktoren Arrays
DE102007036611A1 (de) * 2007-08-02 2009-02-05 Deutsche Diabetes-Forschungsgesellschaft E.V. Verfahren und Vorrichtung zur Kultivierung lebender Zellen
US7494623B2 (en) 2004-07-08 2009-02-24 Thermo Fisher Scientific (Asheville) Llc Kinetic microplate with reagent wells
WO2009097099A1 (fr) 2008-01-29 2009-08-06 Gn Biosystems Incorporated Dispositif microfluidique pour la culture de cellules
WO2009127647A2 (fr) * 2008-04-15 2009-10-22 Technische Universität Ilmenau Système microfluidique partiellement actif pour la culture cellulaire en 3d et procédé pour sa perfusion
WO2010009199A2 (fr) 2008-07-17 2010-01-21 Douglas Machine Inc. Microplaque et procédés pour sa fabrication
WO2011031386A1 (fr) 2009-09-08 2011-03-17 Biocius Life Sciences, Inc. Micropuits, microplaques et méthodes de chargement d'échantillons liquides
EP2306189A1 (fr) 2004-03-31 2011-04-06 Vertex Pharmaceuticals Incorporated Plaquette à puits multiples pour une utilisation dans des analyses à haut rendement
WO2011047023A2 (fr) 2009-10-13 2011-04-21 Herrmann Mark G Configurations de microplaque améliorées

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183760A (en) 1989-05-19 1993-02-02 Sweetana Stephanie A Apparatus for in vitro determination of substances across membranes, biological tissues, or cell cultures
EP0620274A1 (fr) 1992-09-16 1994-10-19 Universidade De Santiago De Compostela Plaquette pour cultures cellulaires avec systeme de diffusion laterale des molecules a travers une membrane barriere
US5578490A (en) 1992-09-16 1996-11-26 Universidade De Santiago De Compostela Cell culture plate with a system for lateral diffusion of molecules through a barrier membrane
US5468638A (en) 1992-09-28 1995-11-21 Becton, Dickinson And Company Cell culture insert
US5583037A (en) 1995-03-30 1996-12-10 Becton, Dickinson And Company Trans-membrane co-culture insert and method for using
US5916526A (en) 1995-08-11 1999-06-29 Robbins Scientific Corporation Compartmentalized multi-well container
US5962250A (en) 1997-10-28 1999-10-05 Glaxo Group Limited Split multi-well plate and methods
US6558631B1 (en) 1999-05-20 2003-05-06 Advanced Biotechnologies Ltd. Multi-well plates
US6410310B1 (en) 2000-03-30 2002-06-25 Alta Biotech, Inc. Cell culture expansion plate
US20030215940A1 (en) 2002-05-15 2003-11-20 Lacey William J. Multi-well assembly for growing cultures in-vitro
EP1547686A1 (fr) * 2003-12-22 2005-06-29 F.Hoffmann-La Roche Ag Plaque de microtitrage, système et méthode pour le traitement d'échantillons
EP2306189A1 (fr) 2004-03-31 2011-04-06 Vertex Pharmaceuticals Incorporated Plaquette à puits multiples pour une utilisation dans des analyses à haut rendement
US7494623B2 (en) 2004-07-08 2009-02-24 Thermo Fisher Scientific (Asheville) Llc Kinetic microplate with reagent wells
DE102006030068A1 (de) * 2006-06-28 2008-01-03 M2P-Labs Gmbh Vorrichtung und Verfahren zur Zu- und Abfuhr von Fluiden in geschüttelten Mikroreaktoren Arrays
DE102007036611A1 (de) * 2007-08-02 2009-02-05 Deutsche Diabetes-Forschungsgesellschaft E.V. Verfahren und Vorrichtung zur Kultivierung lebender Zellen
WO2009097099A1 (fr) 2008-01-29 2009-08-06 Gn Biosystems Incorporated Dispositif microfluidique pour la culture de cellules
WO2009127647A2 (fr) * 2008-04-15 2009-10-22 Technische Universität Ilmenau Système microfluidique partiellement actif pour la culture cellulaire en 3d et procédé pour sa perfusion
WO2010009199A2 (fr) 2008-07-17 2010-01-21 Douglas Machine Inc. Microplaque et procédés pour sa fabrication
WO2011031386A1 (fr) 2009-09-08 2011-03-17 Biocius Life Sciences, Inc. Micropuits, microplaques et méthodes de chargement d'échantillons liquides
WO2011047023A2 (fr) 2009-10-13 2011-04-21 Herrmann Mark G Configurations de microplaque améliorées

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UBEIRA ET AL., JOURNAL OF IMMUNOLOGICAL METHODS, vol. 159, 1993, pages 107 - 113

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931629B2 (en) 2011-09-14 2018-04-03 The University Of Queensland Substance exposure apparatus
WO2013036997A1 (fr) * 2011-09-14 2013-03-21 The University Of Queensland Appareil d'exposition à une substance
CN103952291A (zh) * 2014-05-15 2014-07-30 山东省千佛山医院 一种细胞迁移实验用的装置
US20190002809A1 (en) * 2015-10-22 2019-01-03 University Of Newcastle Upon Tyne Cell culture
WO2017068376A1 (fr) * 2015-10-22 2017-04-27 University Of Newcastle Upon Tyne Culture cellulaire
EP3766582A1 (fr) * 2015-10-22 2021-01-20 Fibrofind IP Limited Culture cellulaire
US12049611B2 (en) 2015-10-22 2024-07-30 Fibrofind Ip Limited Cell culture
GB2553074A (en) * 2016-02-05 2018-02-28 Revivocell Ltd A cell culture device
US12084642B2 (en) 2016-02-05 2024-09-10 Revivocell Limited Cell culture device
GB2553074B (en) * 2016-02-05 2020-11-18 Revivocell Ltd A cell culture device
US20190046978A1 (en) * 2016-02-12 2019-02-14 Ginreilab Inc. Multiwell instrument
CN109072150A (zh) * 2016-02-12 2018-12-21 株式会社银岭实验室 多阱型器具
EP3415607A4 (fr) * 2016-02-12 2020-03-11 Ginreilab Inc. Instrument multipuits
US11325130B2 (en) 2016-02-12 2022-05-10 Ginreilab Inc. Multiwell instrument
US11377679B2 (en) 2016-04-21 2022-07-05 Quantamatrix Inc. Multi-well-based cell culture test device for rapid antibiotic susceptibility testing
EP3434370A4 (fr) * 2016-04-21 2019-10-30 Quanta Matrix Co., Ltd. Dispositif de test de culture cellulaire à puits multiples pour éprouver rapidement la sensibilité aux antibiotiques
US10941374B2 (en) 2016-09-29 2021-03-09 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method
US11360078B2 (en) 2016-09-29 2022-06-14 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method
EP3301443A1 (fr) * 2016-09-29 2018-04-04 Sumitomo Rubber Industries, Ltd. Dispositif d'analyse médicale et procédé d'analyse cellulaire
US11623215B2 (en) 2017-05-10 2023-04-11 Emd Millipore Corporation Multiwell plate with variable compression seal
US11573232B2 (en) 2018-02-14 2023-02-07 Sumitomo Rubber Industries, Ltd. Method for capturing specific cells
US20200123484A1 (en) * 2018-10-22 2020-04-23 National Tsing Hua University Integrated chip and method for sperm sorting, oocyte incubation, and in vitro fertilization
WO2020118061A1 (fr) * 2018-12-07 2020-06-11 Celtein Biosciences, Llc Appareil de multiplexage d'immunoessai
US11614440B2 (en) 2019-01-24 2023-03-28 Sumitomo Rubber Industries, Ltd. Specific cell fractionating and capturing methods
WO2023026034A1 (fr) 2021-08-26 2023-03-02 Newcells Biotech Limited Plaque à circulation de fluide
EP4176972A1 (fr) * 2021-11-04 2023-05-10 Pall Corporation Dispositif à puits multiples et procédé d'utilisation

Also Published As

Publication number Publication date
GB201010736D0 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2011161480A1 (fr) Plaque d'essai multi-puits
JP7071553B2 (ja) 3d細胞凝集体の生成及び培養のための装置及び方法
US8906685B2 (en) Hanging drop devices, systems and/or methods
US8163537B2 (en) Nested permeable support device and method for using the nested permeable support device
EP1685235B1 (fr) Outil et procede de culture cellulaire
EP2342317B1 (fr) Plaque à gouttes suspendues
EP2356249B1 (fr) Analyse génétique dans des micropuits
Lautenschläger et al. Microfabricated devices for cell biology: all for one and one for all
EP3212759A1 (fr) Insert de culture cellulaire
US20170080426A1 (en) Device and method for testing compounds on living cells
CN116157134A (zh) 用于患者来源的微器官球的方法和装置
EP2895589A1 (fr) Appareil d'exposition à une substance
Chen et al. MEMS microwell and microcolumn arrays: novel methods for high-throughput cell-based assays
Zhang et al. High throughput physiological micro-models for in vitro pre-clinical drug testing: a review of engineering systems approaches
US20220130280A1 (en) Brain blood vessel model and device
KR101208145B1 (ko) 바이오 칩
He et al. Recent development of cell analysis on microfludics
KR20120092985A (ko) 3차원 세포칩 기판 및 이를 이용한 세포 공동배양 방법
WO2024177611A1 (fr) Dispositifs microfluidiques et procédés de détermination de dose-réponse
Kowalski Automating 3-D Cell Culture and Screening by Flow Cytometry and High-Content Imaging
Sheng et al. The design basis and application in urology of the tumor-on-a-chip platform
Mukherjee et al. Microfluidic methods in single cell biology
CN118086049A (zh) 一种三维类组织阵列芯片及物质筛选分析方法
CN117957303A (zh) 细胞培养装置、使用该细胞培养装置的细胞培养方法、包括该细胞培养装置的细胞培养孵箱以及该细胞培养装置的用途
PL242812B1 (pl) Magnetyczne urządzenie mikrofluidalne do szybkich badań przesiewowych

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11730731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11730731

Country of ref document: EP

Kind code of ref document: A1