WO2011161290A1 - Modificación de escorias salinas de los procesos de segunda fusión del aluminio y uso como adsorbentes de los productos obtenidos - Google Patents

Modificación de escorias salinas de los procesos de segunda fusión del aluminio y uso como adsorbentes de los productos obtenidos Download PDF

Info

Publication number
WO2011161290A1
WO2011161290A1 PCT/ES2011/070431 ES2011070431W WO2011161290A1 WO 2011161290 A1 WO2011161290 A1 WO 2011161290A1 ES 2011070431 W ES2011070431 W ES 2011070431W WO 2011161290 A1 WO2011161290 A1 WO 2011161290A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
salt
aqueous solution
aluminum
slags
Prior art date
Application number
PCT/ES2011/070431
Other languages
English (en)
French (fr)
Inventor
Antonio Gil Bravo
Sophia A. Korili
Original Assignee
Universidad Pública de Navarra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Pública de Navarra filed Critical Universidad Pública de Navarra
Priority to EP11797651.4A priority Critical patent/EP2586525A1/en
Publication of WO2011161290A1 publication Critical patent/WO2011161290A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the present invention relates to materials based on salt slags from aluminum recycling processes by fusion with heavy metal retention capacity (Cd 2+ , Cu 2+ , Pb 2+ and Zn 2+ ) present in liquid streams, as well as its activation procedure by treatment with aqueous solutions using various concentrations of acids or bases and different temperatures.
  • Cd 2+ , Cu 2+ , Pb 2+ and Zn 2+ heavy metal retention capacity
  • the basis of aluminum production is the Hall-Héroult process [1], electrolytic process by which aluminum metal is obtained from aluminum oxide.
  • the aluminum obtained according to this process is called primary.
  • the aluminum oxide used as raw material is obtained from natural bauxite through the Bayer process [1].
  • Aluminum recycling is of great importance because it can be recovered almost completely, without loss of quality of the final product.
  • the aluminum obtained in these processes is called secondary, since it comes from an existing metal aluminum.
  • Aluminum recycling is an essential part of the aluminum industry.
  • Aluminum for recycling can be divided into two categories: by-products of the transformation of aluminum and scrap of old parts already used. By-products have their origin in the manufacturing process of aluminum materials. Its quality and composition is known. It can be melted without previous treatments.
  • Scrap is aluminum material from used and discarded aluminum items at the end of their life cycle. In this type of scrap it is necessary to carry out processes of treatment and prior separation to recover as much aluminum as possible. By fusion, by-products and scrap metal are transformed in various ways for later commercialization. If the energy needed to produce the two types of aluminum is compared, the secondary aluminum only consumes between 5 and 20% of the energy needed for the production of the primary aluminum [1]. Despite this important advantage, primary aluminum is still necessary because global demand cannot be satisfied only through secondary production.
  • Salt slags from the second fusion processes of aluminum are classified as hazardous waste with the LER code (European Waste List) 100308 [11]. They are generated when salts are used to cover the molten material and prevent oxidation of aluminum, increase performance, increase thermal efficiency and mechanically disperse oxides and solid metal or non-metallic substances present in the melting furnace. The amount of flux used and slags generated depends on the impurities of the by-products and scrap aluminum, the type of furnace used, as well as the melting conditions.
  • the average composition of salt slags can be summarized as: aluminum metal, various oxides (called this fraction as non-metallic products), fluxes (salts, normally NaCl and KC1 in a 70/30 ratio) and other compounds in a smaller proportion (Nal, C3AI4, AI2S3, YES3P4, Na 2 S0 4 , Na 2 S, cryolite, C, etc.) [2].
  • aluminum salt slags are an important by-product of great economic value that can be recovered as long as the process is economically viable.
  • the management of salt slags is carried out either by separating their components for possible recovery, or by storage in controlled landfills [12,13].
  • the recovery process consists of an initial separation of the metallic aluminum present in the salt slags by means of mechanical and electromagnetic treatments [14]. This process is viable if the metal aluminum content is greater than 4-6% by weight. The remaining residue consists of non-metallic products and salts that can be recovered using the process called Hanse [2]. This process is about separating the salt fraction from the oxides. The salt fraction would initially be concentrated by, for example, electrodialysis, to subsequently obtain the salt by evaporation [15]. On the other hand, the oxides fraction would try to get salt free. It should be noted that the composition of non-metallic products can be very variable. It depends on the nature of the recycled material, being very difficult to give generic solutions.
  • New foundry technologies such as rotary tilting ovens, make the economic viability of slag recycling even less. The reasons are several.
  • the amount of salt slags generated is minimized significantly.
  • the quantities of aluminum and, above all, of salt residues present in these slags are smaller than those obtained in salt slags produced in traditional rotary kilns with a fixed axis.
  • the process refers to slags in general, only slags from the manufacture and treatment of iron or steel are specifically cited, as well as blast furnaces and furnaces heated by electrical means.
  • the composition of the slags that are considered particularly suitable have a higher content of CaO (30-50%), Si0 2 (25-40%), Fe oxides (5-15%) and MgO (2-8%) to of the slags from the second fusion processes of aluminum, the percentage of A1 2 0 3 (8-20%) present being lower.
  • British patent application GB2054547 [17] refers to the removal of heavy metal cations (such as, for example, Hg, Cd, Cu, Pb, Cr, Zn, Cu, Fe and Mn) from wastewater , using as a adsorbent a product in the form of powder obtained from a slag from the steel manufacture.
  • heavy metal cations such as, for example, Hg, Cd, Cu, Pb, Cr, Zn, Cu, Fe and Mn
  • slags from steel manufacturing usually contain, among other components, 9-20% Si0 2 , 37-59% CaO, 5-20% FeO, 0.6 -8.0% MgO, 0.06-0.25% S and 1.5-2.3% P 2 0 3 . Its percentage of A1 2 0 3 is only 0.1 - 2.5%.
  • the pulverized slag is added to the liquid containing the heavy metals and a contact time is left, so that the heavy metals can be adsorbed on the slag; the contact can occur in a tank with agitation or, even, in a column in which the slag is present, through which the liquid is flowed with heavy metals.
  • the pH of the liquid can be adjusted to 7 so that this is the pH at which the contact between solution and slag occurs
  • the possibilities of the contact pH between solution and slag are also acidic are contemplated, even below 1.
  • some metal cations, such as Cd, Pb and Cr are not affected by pH, while, for the specific case of Hg, the use of an acidic pH is recommended.
  • the use of fine particles is recommended, so that the increase in surface area favors an increase in adsorption capacity, although there is no direct relationship between the particle size and the specific surface. It is necessary to emphasize that there is no reference to the possible influence of the pore size of the slag.
  • q t (C 0 - C,) -—
  • Co is the initial concentration of metal cation (100 ppm in all cases, a concentration that, since it is aqueous solutions, can be considered equivalent to 100 mg / liter)
  • C t the concentration of metal cation at a certain time t of the experiment ( in this case, the 30 minutes of treatment, after which the remaining concentration of cation ranged between 0.01 ppm for the Cr present in the solution at pH 2.0 and 0.21 ppm for the case of Pb present in a pH 7.0 solution)
  • V the volume of solution used (0.1 liter in this case) and W the weight of salt slag used in the adsorption experiment (1.0 g).
  • the composition of the slag used in this Korean patent application (see Table 1 thereof) has a higher content of CaO (35-45%), Si0 2 (30 - 40%) and MgO (5 - 8%>) to slags from the second fusion processes of aluminum, the percentage of A1 2 0 3 (10-15%) present being also lower.
  • the slag undergoes a process of treatment with an alkaline solution for 6 hours, dried for 24 hours and calcined at 250-350 ° C, for 6-20 hours, it being preferred that the temperature does not exceed 350 ° C so that there is no degradation of the scum.
  • Application KR20050065755 mentions that the treatment results in an increase in the surface area of the slag, which becomes 52 m 2 / g. With this, the experiments performed to test the adsorption of Pb show an adsorption capacity of 96.6%>, from an initial concentration of 100 ppm to a final concentration of 3.4 ppm, when injecting in a column 1 liter of dissolution with Pb at a rate of 1 liter / minute.
  • the slag is dissolved in an aqueous solution of an inorganic acid (which can be, for example, hydrochloric, nitric or sulfuric acid, preferably per 100 cm 3 of HC1 4N per 14 g of slag), after which increases the pH to values close to 10 (preferably, with aqueous NaOH), resulting in a precipitate that is filtered, washed, dehydrated, dried and sprayed or heated to 300-900 ° C (preferably, 400-600 ° C) for 20 minutes - 2 hours.
  • an inorganic acid which can be, for example, hydrochloric, nitric or sulfuric acid, preferably per 100 cm 3 of HC1 4N per 14 g of slag
  • the invention relates, in a first aspect, to a process for the transformation of salt slags from processes of second fusion of aluminum comprising the steps of:
  • step a) contacting the salt slag from a second fusion process of aluminum with an aqueous, acidic, basic or neutral solution; b) separating the activated saline slag obtained in step a) from the aqueous solution;
  • the invention also relates to a salt slag characterized by having been obtained by subjecting the salt slag from a second fusion process of aluminum to the above procedure.
  • the invention further relates to the use of that saline slag obtained by application of the process of the invention for the adsorption of metal cations present in liquid streams.
  • Fig. 1 Surface area, expressed in square meters per gram of slag, of the salt slags treated with solutions of various concentrations of H 2 SO 4 , (between 0 and 2 mol / liter, as indicated on the abscissa axis ), during different contact times.
  • Fig. 2 Pore volume, expressed in cubic centimeters per gram of slag, of salt slags treated with solutions of various concentrations of H 2 SO 4 , (between 0 and 2 mol / liter, as indicated on the axis of abscissa), during different contact times.
  • Fig. 3 Scanning electron micrographs representative of chemically treated salt slags. In the lower part of each photomicrograph the number of increases to which it was taken is indicated, as well as the actual length, expressed in micrometers, to which each centimeter of the photomicrograph corresponds.
  • Fig. 4 Evolution in time (indicated in minutes on the abscissa axis) of the amount of adsorbed metal (expressed in milligrams of metal per gram of slag) by a slag obtained by the process of the invention.
  • the metallic cation tested is indicated in the upper left of each graph. It represents a curve for each initial concentration of cation tested. The initial concentrations were: ⁇ : 50 mg goal i / liter; ⁇ : 100 mg goal i / liter yo: 300 mg goal i / liter.
  • Fig. 5 Evolution of the amount of adsorbed metal (expressed in milligrams of metal per gram of slag) by a slag obtained by the process of the invention.
  • Fig. 6 Amount of adsorbed Pb (expressed in milligrams of metal per gram of slag) in the stages of the reuse test for a slag obtained by the process of the invention, previously used for adsorption of metals and regenerated by treatment with solutions acidic
  • the present invention relates to a process for the transformation of slags from the second melting processes of aluminum into a product that can be used as adsorbent of heavy metal cations present in contaminated liquid streams, as well as to the adsorbent product obtained by said process and to the use of said product for the adsorption of heavy metal cations.
  • the process of transforming the slags of second fusion of aluminum into a stable adsorbent allows to give a valuation to these slags, which are residues that are produced in large quantities and are classified as dangerous, not only because their danger decreases but also because enables its application in the industry.
  • the process consists in treating the slags from the second fusion of aluminum with aqueous solutions, which can be solutions of various concentrations of acids, bases or even water to which no acids or bases have been added, subsequently separating the slag obtained and stabilized by treatment at high temperatures (200 ° C - 500 ° C), different treatment and heating times being possible.
  • aqueous solutions which can be solutions of various concentrations of acids, bases or even water to which no acids or bases have been added
  • composition of a salt slag from a second aluminum melting process which could be the object of the transformation process of the invention, would be the following: Table 1.- Chemical composition of a salt slag from a second fusion process of aluminum.
  • the process of the invention allows to obtain products whose metal adsorption properties Heavy weights are higher than those of the adsorbents obtained from slags from iron and / or steel related industries, with values of q e that reach 54.5 - 71.7 mg / g of slag in the case of Pb (II).
  • the values obtained are, in many cases, particularly, when the treatment with the aqueous solution occurs under reflux conditions, higher than the surface area values obtained by applying the procedure of the Korean patent application K 20050065755 [18] to slags from blast furnaces, a circumstance that was not expected, particularly if it is taken into account that they are products obtained after being subjected to high temperature processes (about 700 ° C), since the temperature changes the materials and, in general, reduces the specific surface of them.
  • a first aspect of the invention relates to a process for the transformation of salt slags from processes of second fusion of aluminum comprising the steps of:
  • step a) contacting the salt slag from a second fusion process of aluminum with an aqueous, acidic, basic or neutral solution; b) separating the activated saline slag obtained in step a) from the aqueous solution;
  • step b) heating the activated saline slag obtained in step b) under conditions that allow stabilizing the porous structure generated.
  • the slags to which the process of transformation of the invention is applied are the slags mentioned in Order MAM / 304/2002 [11] as "100308: Slags of second melting salt", included in section 1003: Waste from the thermometallurgy of aluminum. It is especially preferred that the salt slags that are subjected to the process of the invention be slags from a rotary kiln with a fixed axis, especially when they are smaller than 1 mm in size. The typical chemical composition of this type of salt slag was previously shown in Table 1.
  • the process of the invention can also be applied to salt slags from other second fusion processes. of aluminum, as can slags from a rotary kiln with a tilting shaft.
  • stage a) of chemical activation can be any, as long as they give rise to the modification of the structure of the salt slag.
  • the variables of the chemical activation process it is the pH of the activation solution, the concentration of the chemical agents, the time and the contact temperature that most influence the characteristics of the final product obtained.
  • the temperature of the contact process is generally the ambient temperature, but it may be in the range between 20 ° C and the reflux temperature, which will be approximately 100 ° C at a pressure of 101.33 kPa (1 atmosphere).
  • the pressure at which this stage is carried out may be atmospheric pressure, but it can also be carried out at higher pressures.
  • the contact time depends largely on the reaction temperature, but is generally in the range of 0.5 to 24 hours.
  • Step a) can be carried out in a container with stirring although, optionally and / or after a first stirring step, it can be carried out under reflux conditions.
  • the treatment under reflux conditions especially when carried out with water to which no acid or base has been added, is what gives rise to the final product. with higher specific surface values. Therefore, in a preferred embodiment of the invention, step a) is carried out under reflux conditions.
  • aqueous solution encompasses not only liquid compositions composed of water in which one or more compounds are dissolved, especially when said compounds confer an acidic or basic pH to the solution as they are present therein, but also to the solvent medium itself, to the water to which no compound of an acidic or basic character has been added and which, therefore, will have a neutral pH or very close to neutrality.
  • the pH of the aqueous solution that comes into contact with the salt slag is one of the variables that greatly influences the final characteristics of the product obtained because, among other things, it influences the chemical activation of the compounds that are part of the slag and, with it, in the reaction and adsorption capacity of the product finally obtained with the possible substances to be eliminated present in polluting effluents that want to be treated with the product obtained from the slag, substances to be eliminated among which the heavy metal cations stand out. Therefore, it is preferred that the pH of the activation solution is less than 2 or greater than 10, although it is possible that the aqueous solution of step a) has other pH values, including the neutral pH value.
  • a suitable ratio is to treat 10 g of the aluminum salt slag with 0.1 liter of the aqueous solution.
  • the aqueous solution may be an aqueous, acidic or alkaline solution, in which one more acidic compounds or one or more basic compounds is present at concentrations, preferably between 0 and 2 mol / liter.
  • the acids may be of organic or mineral origin and nitric (HNO 3 ), sulfuric (H 2 SO 4 ) or hydrochloric (HC1) acids may be cited as examples.
  • nitric (HNO 3 ), sulfuric (H 2 SO 4 ) or hydrochloric (HC1) acids may be cited as examples.
  • NaOH sodium hydroxide
  • the aqueous solution may also lack added acidic or basic compounds and may only be water.
  • the aqueous solution with which the slag is treated is water to which no acid or base has been added. It is a particularly preferred embodiment of the invention that in which the contact between the salt slag from a second melting process of aluminum and water occurs under reflux conditions, since this treatment results in products with a high specific surface area.
  • step b) of separation of the salt slag any separation technique can be used, such as filtration, centrifugation, decantation of the supernatant after resting the mixture of salt slag and solution and the like.
  • centrifugation is preferred. Said centrifugation can be carried out, for example, at 4500 r.p.m.
  • the salt slag obtained in stage b) is calcined in stage c) to achieve stabilization of the structure, preferably in air, but also in any gaseous mixture with the presence of oxygen. It is preferred that, prior to calcination, a preheating between 50 and 200 ° C at atmospheric pressure occurs, to dry the product. After this optional drying stage, the salt slag is heated so that calcination occurs. At atmospheric pressure, the calcination conditions comprise a temperature that is preferably in the range of 200 to 500 ° C. The warm-up period generally ranges from 0.1 to 100 hours, most commonly between 0.5 and 48 hours.
  • a particularly preferred embodiment of the process of the invention is that in which the conditions that give rise to said activated slag are used, that is, the process in which a salt slag from a fixed-axis rotary kiln is placed in contact with water under reflux conditions for 4 hours, after which the slag is separated from the water by centrifugation at 4500 rpm, the solid obtained is dried for 16 hours at 60 ° C at atmospheric pressure and calcined at 500 ° C for 4 hours.
  • composition of the salt slag obtained and its textural properties will depend on the specific conditions in which the activation reaction (stage a)) of the process and the thermal treatment of the slag (stage c)) are carried out.
  • the product obtained after subjecting the process of the invention salt slags from second-melting processes of aluminum constitutes a second aspect of the invention.
  • a porous solid product is obtained, which we can call “activated slags” or "adsorbent slags”, in which the volume of micropores varies between 0.030 and 0.250 cm 3 / g and the specific surface area varies between 30 and 200 m 2 / g, both deducted by adsorption tests of N 2 at -196 ° C.
  • the activated slags of the invention that in which the slag is obtained by applying the set of preferred conditions specified above, that is, the process in which a saline slag from a Fixed shaft rotary kiln is brought into contact with water under reflux conditions for 4 hours, after which the slag is separated from the water by centrifugation at 4500 rpm, the solid obtained is dried for 16 hours at 60 ° C at atmospheric pressure and It is calcined at 500 ° C for 4 hours.
  • these activated salt slags of the invention have good adsorption / retention properties of heavy metal cations and can be used, for example, to adsorb heavy metal cations present in contaminated liquid streams. Therefore, a further aspect of the invention is the use of the product resulting from the application of the process of the invention, that is to say the "adsorbent slags" or "activated slags” obtained, for adsorption of metal cations contained in liquid streams .
  • the invention relates to a method for the preparation of an adsorbent of heavy metal cations present in liquid streams comprising the preparation of the adsorbent from salt slags from processes of second fusion of aluminum (the steps a) to c) previously discussed), as well as at least one additional optional step in which said adsorbent is contacted with the liquid stream from which heavy metal cations are to be removed.
  • the invention can also be defined as a process for adsorbing / removing metal cations from liquid streams containing them, comprising the step of contacting the liquid stream with a solid adsorbent prepared from salt slags from second processes.
  • the invention would also comprise the product to be used as an adsorbent, the "adsorbent slag” or "activated slag".
  • Example 2 of the present application demonstrate that activated slags of the invention are useful for retaining cations of different heavy metals, as evidenced by tests performed with Cd 2+ , Cu 2+ , Zn 2+ and Pb 2+ . Therefore, a possible embodiment is one in which the slags of the invention are used to adsorb at least one cation selected from the group of Cd 2+ , Cu 2+ , Zn 2+ and Pb 2+ , or combinations thereof.
  • the results show that adsorption occurs at different pH values of the liquid in which heavy metals are present, for example, the pH values of 4 and 6 and the range between them being suitable, the pH 6 value being preferred, because better results are obtained.
  • the tests demonstrate that Pb 2+ is the cation for which better results are obtained, so a preferred embodiment is that in which slags are used to adsorb Pb 2+ .
  • the possibility of reusing salt slags was also taken into account, obtaining that the aluminum salt slags of the present invention can be reused as adsorbents of heavy metal cations.
  • the first adsorption test of the metal cations was carried out according to the methodology described so far: Example 2. Once the salt slag was used as an adsorbent, this solid is treated again with an acid solution to desorber / clean the metal cation detained. It is washed with water, dried and reused as an adsorbent as it had been done initially. This process was repeated up to four times, four cycles, observing that saline slag can be regenerated and reused as an adsorbent.
  • the slags that are used are activated slags obtained by the process of the invention, which are used, once obtained for the adsorption of metals and which, subsequently, are reused after being subjected to a regeneration process comprising at least four activation cycles, in each of which the slag used is contacted with acid solutions as in step a) of the process of the invention, is separated from the acid solution, it is washed with deionized water and dried at a temperature between 50 ° C and 200 ° C at atmospheric pressure.
  • a possible embodiment of the use of the invention, comprised within the foregoing, is that in which the acid is HNO 3 and the slag treated therewith is dried in an oven at 60 ° C at atmospheric pressure.
  • the chemical activation was carried out using aqueous solutions of HN0 3 (65%, Panreac), H 2 S0 4 (98%, Panreac) and NaOH (Panreac).
  • the chemical activation was carried out using five solutions of each chemical reagent in various concentrations. Specifically, concentrations between 0 and 2 mol / liter.
  • the reaction time with each of these solutions was also a parameter studied, being between 0.5 and 24 hours. Briefly, at each activation, 10 g of saline slag are contacted with 100 cm 3 of chemical reagent solution. The stirring speed of the suspensions was 500 rpm.
  • the suspensions were centrifuged for 20 minutes at 4500 rpm and at room temperature using a Rotonta 460 S centrifuge to separate the slag from the activating solution. The process was repeated several times, replacing the intercalation solution with deionized water each time in order to wash the scum of chemical agent.
  • the solids obtained were dried in an oven for 16 hours at 60 ° C at atmospheric pressure and subsequently for 4 hours at 500 ° C.
  • each sample is XYt, where X is the concentration of the acid or base reagent solution used, Y the reagent used in the chemical activation and t the time, in hours, of contact between the slag and the chemical reagent solution .
  • X is the concentration of the acid or base reagent solution used
  • Y the reagent used in the chemical activation
  • t the time, in hours, of contact between the slag and the chemical reagent solution.
  • the sample referred to as 0- N-4 h is a slag treated with a solution 0 mol / liter (with water) of HNO 3 (N) for 4 hours.
  • the textural properties of the activated slags obtained were determined by adsorption of N 2 (Air Liquide, 99.999%) at -196 ° C in a commercial static volumetric equipment (ASAP 2010 of the Micro meritics commercial house).
  • the samples were previously degassed for 24 h at 200 ° C and at a pressure below 0.1 Pa.
  • the amount of sample used in the experiment was 0.2 g.
  • the adsorption of N 2 provides a series of quantitative properties such as surface area and pore volume. The surface area can be calculated by applying the BET equation [22]: plp
  • V - (l -p / p °) V m CV m C the relative pressure being p / p °
  • V m the volume of monolayer and C a constant.
  • the linear adjustment of the BET equation in the relative pressure range between 0.05 and 0.20, allows to ensure the formation of a monolayer and calculate the volume of monolayer. With the volume of monolayer the surface area of the slag can be calculated using the equation:
  • V m S the surface area
  • V m the volume of monolayer, to the area occupied by a molecule of N 2 adsorbed on the surface of the clay (16.2 ⁇ 2 / molec)
  • N A Avogadro's number 6.023- 10 23 m or read / mol
  • V the volume occupied by one mole of N 2 at 25 ° C and 1 atmosphere (22,386 cm 3 / mol).
  • Total pore volumes are estimated from the volumes of N 2 adsorbed at a relative pressure value of 0.99 [22], assuming that the density of the nitrogen in the pores is equal to that of liquid nitrogen a -196 ° C (0.81 g / cm 3 ) [22].
  • the process of the invention allows to obtain "activated slags" of aluminum with specific surface values higher than those obtained from steel slag, although the highest values are obtained with the lower concentrations of chemical reagent, especially in the concentration value 0, such as that of the ON-4 h sample, corresponding to water.
  • the specific surface area decreases with the concentration of the chemical reagent used. To a lesser extent so does the pore volume. This is explained because the materials that have in their structure AI 2 O 3 or Si0 2 can be attacked by acid chemical reagents or bases. Initially it can be a small solution of the oxide that allows to increase the textural properties of the initial material and even modify the surface of the solid with new adsorption centers.
  • Adsorption tests of heavy metal cations consist of two phases. Initially, the adsorption kinetics of each of the metals are studied. It is intended to study the influence of time on the adsorption capacity of slags and determine from which moment the adsorption remains constant and has reached equilibrium. In addition to the adsorption time, the influence of the initial concentration of the metal cation is studied, in which case the concentrations tested are between 50 and 300 mg / liter. Once this moment is identified, the equilibrium test is carried out studying the effect of solutions with several initial concentrations of metal cation. The latter is intended to see what effect the initial concentration has and the pH on the amount of adsorbed metal.
  • the studies were carried out on a batch basis, using 0.05 g of adsorbent slag sample in each experiment and metal cation concentrations between 50 and 300 mg / liter.
  • the adsorbent used corresponds to a saline slag treated only with water (sample O-H-4 h (reflux) of Example 1), which has the best textural properties.
  • the adsorption of metal cations by a material is controlled by physical and chemical surface properties [24]. As physical surface properties it is possible to mention the specific surface and the volume of pores. The chemical properties depend on the functional groups. In this case, the material with the highest specific surface was chosen.
  • the solution containing the non-adsorbed metal cation was separated from the solid by centrifugation at 4500 rpm. Subsequently, the metal content of the solution was determined by inductive coupling plasma analysis (ICP).
  • ICP inductive coupling plasma analysis
  • the amount of metal cation retained by the slag is represented as
  • Co being the initial concentration of metal cation
  • C t the concentration of metal cation at a certain time t of the experiment
  • V the volume of solution used
  • W the weight of salt slag used in the adsorption experiment.
  • the amount of metal cation retained by the slag is represented as
  • Co is the initial concentration of metal cation, C and the concentration of metal cation after 4 hours of adsorption, VQ ⁇ volume of solution used and J the weight of salt slag used in the adsorption experiment.
  • the first adsorption stage was identical to that described in Example 2, the salt slag being used 2-N-4 h and the fixed adsorption time of 24 hours.
  • the solution containing the non-adsorbed metal cation was separated from the solid by centrifugation at 4500 rpm. Subsequently, the metal content of the solution was determined by inductive coupling plasma analysis (ICP).
  • the solid was then treated with 50 cm 3 of 0.5 mol / liter nitric acid for 4 hours, preferably the acid used for initial chemical activation is used to desorb the retained metal cation. Then, the acid solution with the metal cation was separated from the solid by centrifugation at 4500 rpm and the solid was repeatedly washed with deionized water.
  • the solid was dried in an oven for 16 hours at 60 ° C at atmospheric pressure and reused as an adsorbent, as was done in the first stage. The process is repeated four times.
  • the adsorbed amount of Pb as a function of the number of reuse stages is presented in Fig. 6. Similar behaviors were obtained for the other metal cations included in this application, which allows to affirm that chemically activated salt slags can be reused as adsorbents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Modificación de escorias salinas procedentes de los procesos de segunda fusión del aluminio y uso como adsorbentes de los productos obtenidos. Se describe la activación de escorias salinas procedentes de procesos de segunda fusión del aluminio mediante contacto con disoluciones acuosas, ácidas, básicas o neutras, separación de la disolución acuosa y calcinación a altas temperaturas. El procedimiento de la invención permite obtener materiales con una alta superficie específica, incluso superior a 200 m2, particularmente cuando la escoria se pone en contacto con agua en condiciones de reflujo. Las escorias activadas obtenidas pueden ser utilizadas como adsorbentes de metales pesados presentes en disoluciones acuosas. Una vez utilizadas, puede regenerarse mediante tratamiento con disoluciones ácidas, lavado y secado y reutilizarse.

Description

MODIFICACIÓN DE ESCORIAS SALINAS DE LOS PROCESOS DE
SEGUNDA FUSIÓN DEL ALUMINIO Y USO COMO ADSORBENTES DE LOS PRODUCTOS OBTENIDOS CAMPO TÉCNICO
La presente invención se refiere a materiales basados en escorias salinas procedentes de los procesos de reciclaje de aluminio mediante fusión con capacidad de retención de metales pesados (Cd2+, Cu2+, Pb2+ y Zn2+) presentes en corrientes líquidas, así como a su procedimiento de activación mediante tratamiento con disoluciones acuosas empleando varias concentraciones de ácidos o bases y distintas temperaturas.
ANTECEDENTES DE LA INVENCIÓN
La base de la producción del aluminio es el proceso Hall-Héroult [1], proceso electrolítico por el que se obtiene aluminio metal a partir de óxido de aluminio. El aluminio obtenido según este proceso se denomina primario. El óxido de aluminio que se emplea como materia prima se obtiene a partir de la bauxita natural mediante el proceso Bayer [1].
El reciclaje del aluminio tiene gran importancia debido a que se puede recuperar casi de manera completa, sin pérdida de calidad del producto final. El aluminio que se obtiene en estos procesos se denomina secundario, dado que proviene de un aluminio metal ya existente. El reciclado del aluminio es una parte esencial de la industria del aluminio. El aluminio destinado al reciclaje se puede dividir en dos categorías: subproductos de la transformación del aluminio y chatarras de piezas viejas ya usadas. Los subproductos tienen su origen en el proceso de fabricación de materiales de aluminio. Se conoce su calidad y su composición. Puede fundirse sin que haya que realizar tratamientos previos. La chatarra es material de aluminio procedente de artículos de aluminio usados y desechados al final de su ciclo de vida. En este tipo de chatarra es necesario realizar procesos de tratamiento y separación previa para recuperar la mayor cantidad posible de aluminio. Mediante fusión, los subproductos y chatarras son transformados en diversas formas para su posterior comercialización. Si se compara la energía necesaria para producir los dos tipos de aluminio, el aluminio secundario sólo consume entre el 5 y el 20 % de la energía necesaria para la producción del aluminio primario [1]. A pesar de esta importante ventaja, el aluminio primario sigue siendo necesario porque la demanda mundial no puede ser satisfecha únicamente mediante producción secundaria.
Desde el punto de vista medioambiental, la producción del aluminio secundario presenta un menor impacto medioambiental [2]. En el caso de los residuos, durante el proceso primario se producen los denominados barros rojos procedentes de la fusión alcalina de la bauxita. La cantidad y sus características dependen del tipo de bauxita empleada, presentando como componentes mayoritarios óxidos de hierro, aluminio, silicio y titanio, entre otros. La gestión de este residuo se lleva a cabo normalmente mediante vertido controlado. Recientemente han aparecido en la bibliografía algunas aplicaciones de este tipo de residuos [3-10]. Durante el proceso de segunda fusión del aluminio se generan varios tipos de residuos: polvos procedentes de tratamiento de los gases del horno de fusión y de los procesos de molienda, espumas, natas y escorias salinas. De entre ellos destacan las escorias salinas por la cantidad que se genera.
Las escorias salinas procedentes de los procesos de segunda fusión del aluminio están catalogadas como residuos peligrosos con el código LER (Lista Europea de Residuos) 100308 [11]. Son generadas cuando se emplean sales para cubrir el material fundido y prevenir la oxidación del aluminio, incrementar el rendimiento, aumentar la eficacia térmica y dispersar mecánicamente los óxidos y sustancias metálicas o no metálicas sólidas presentes en el horno de fusión. La cantidad de fundente empleado y de escorias generadas depende de las impurezas de los subproductos y chatarras de aluminio, del tipo de horno empleado, así como de las condiciones de fundición. La composición promedio de las escorias salinas puede resumirse como: aluminio metal, óxidos diversos (denominada esta fracción como productos no metálicos), fundentes (sales, normalmente NaCl y KC1 en una relación 70/30) y otros compuestos en menor proporción (Nal, C3AI4, AI2S3, SÍ3P4, Na2S04, Na2S, criolita, C, etc.) [2]. A partir de su composición, las escorias salinas de aluminio son un importante subproducto de gran valor económico que puede ser recuperado en la medida que el proceso sea económicamente viable. La gestión de las escorias salinas se realiza bien mediante la separación de sus componentes para su posible valorización, bien mediante almacenamiento en vertederos controlados [12,13]. El proceso de valorización consiste en una separación inicial del aluminio metálico presente en las escorias salinas mediante tratamientos mecánicos y electromagnéticos [14]. Este proceso es viable si el contenido en aluminio metálico es superior al 4 - 6 % en peso. El residuo remanente consiste en productos no metálicos y sales que pueden ser valorizadas mediante el proceso denominado Hanse [2]. En este proceso se trata de separar la fracción salina de los óxidos. La fracción salina se trataría inicialmente de concentrar mediante, por ejemplo, electrodiálisis, para posteriormente obtener la sal por evaporación [15]. Por otro lado, la fracción de óxidos se trataría de obtener libre de sal. Hay que resaltar que la composición de los productos no metálicos puede ser muy variable. Depende de la naturaleza del material reciclado, siendo muy difícil dar soluciones genéricas. Aparte de la problemática de su composición con objeto de pensar en alguna aplicación concreta, otro de los problemas añadidos que surge es obtener esta fracción libre de sal [14]. La consideración de libre significa que contenga una cantidad de sal inferior al 2 % en peso. Hay que decir finalmente que para que la valorización de estos dos productos, sales y productos no metálicos, sea económicamente viable se deben de obtener corrientes concentradas de sal y residuos limpio de productos no metálicos. El principal inconveniente, aparte de la posible aplicación posterior, es que estos dos condicionantes no pueden obtenerse simultáneamente, lo que provoca la inviabilidad económica. Por tanto, hasta el momento la mejor solución sigue siendo maximizar la recuperación del aluminio y disponer los residuos en vertederos controlados.
Las nuevas tecnologías de fundición, como los hornos rotatorios basculantes, hacen que la viabilidad económica del reciclado de las escorias sea aún mucho menor. Las razones son varias. Se minimiza de forma importante la cantidad de escorias salinas generadas. Las cantidades de aluminio y sobre todo de residuos salinos presentes en estas escorias son menores que las que se obtienen en las escorias salinas producidas en hornos rotatorios tradicionales de eje fijo.
Por tanto, como conclusión final cabe resaltar que las escorias salinas procedentes de los procesos de la segunda fusión del aluminio son una parte importante de los residuos generados y que gran parte de los esfuerzos de implantación de nuevas técnicas van dirigidos hacia su minimización. Actualmente no existe una salida comercial para este tipo de residuos.
Para las escorias procedentes de las plantas de transformación de hierro y de la manufactura de una de sus aleaciones, el acero, se han propuesto en algunos usos relacionados con la descontaminación de residuos. Así, por ejemplo, la solicitud de patente de EE.UU. publicada como US 4124405 [16] propone la utilización de escorias para la solidificación de contaminantes solubles en agua, tales como distintos cationes de metales, dando lugar a un producto estable en el que no se produce la lixiviación de los iones retenidos. El proceso comprende la mezcla del residuo líquido con la escoria, preferiblemente en forma particulada, en condiciones de pH alcalino (superior a 8,5) y requiere, además, la adición de un agente que promueva la hidratación de la escoria, agentes que, preferiblemente, son productos que contienen iones sulfato e iones de metales alcalinos. Aunque, en principio, el proceso se refiere a escorias en general, sólo se citan específicamente las escorias procedentes de la manufactura y tratamiento del hierro o el acero, así como las de altos hornos y hornos calentados por medios eléctricos. La composición de las escorias que se consideran particularmente adecuadas tiene un contenido superior de CaO (30 - 50%), Si02 (25 - 40%), óxidos de Fe (5 - 15%) y MgO (2 - 8%) al de las escorias procedentes de los procesos de segunda fusión del aluminio, siendo en cambio menor el porcentaje de A1203 (8 - 20%) presente.
De manera similar, la solicitud de patente británica GB2054547 [17] se refiere a la eliminación de cationes de metales pesados (como, por ejemplo, Hg, Cd, Cu, Pb, Cr, Zn, Cu, Fe y Mn) de aguas residuales, usando como adsorbente un producto en forma de polvo obtenido a partir de una escoria procedente de la manufactura de acero. En la descripción del documento de patente se menciona que las escorias procedentes de la manufactura del acero contienen habitualmente, entre otros componentes, 9-20% de Si02, 37-59% de CaO, 5-20% de FeO, 0,6-8,0% de MgO, 0,06-0,25% de S y 1,5-2,3% de P203. Su porcentaje de A1203 es de sólo 0,1 - 2,5%. En cuanto al procedimiento descrito para que se produzca la adsorción, consiste en que la escoria pulverizada se añade al líquido que contiene los metales pesados y se deja un tiempo de contacto, de manera que los metales pesados puedan quedar adsorbidos en la escoria; el contacto puede producirse en un tanque con agitación o, incluso, en una columna en la que esté presente la escoria, por la cual se hace fluir el líquido con metales pesados.
En la descripción de la solicitud de patente GB2054547 [17] se comenta que, aunque el mecanismo de adsorción de metales por parte de los productos derivados de estas escorias no está completamente dilucidado, las propiedades observadas se atribuyen a la capacidad de adsorción de CaO, Si02 y los compuestos del ácido fosfórico, al efecto de coprecipitación causado por el Fe, al efecto de precipitación causado por el S, a la sustitución de iones debidas al CaO y al MgO y a la precipitación de hidróxidos provocada por el alto valor del pH (pH 10,5 ± 1,0). Por ello, aunque se menciona que el pH del líquido puede ajustarse a 7 para que ése sea el pH al cual se produce el contacto entre disolución y escoria, se contemplan también las posibilidades de que el pH de contacto entre disolución y escoria sea ácido, incluso por debajo de 1. Igualmente, la idea de realizar una activación previa, mediante el tratamiento con un ácido, de las partículas del polvo de la escoria, para después utilizar la escoria para el tratamiento de líquidos con un pH alcalino, de 10-11, lo cual favorece la precipitación de los cationes de metales pesados como hidróxidos. Sin embargo, también se menciona que algunos cationes de metales, como Cd, Pb y Cr, no se ven afectados por el pH, mientras que, para el caso concreto del Hg, se recomienda el uso de un pH ácido.
Respecto a la superficie de la escoria, se recomienda el uso de partículas finas, para que el aumento de área superficial favorezca un aumento de la capacidad de adsorción, a pesar de que no hay relación directa entre el tamaño de partícula y la superficie específica. Es necesario resaltar que no se hace alusión a la posible influencia del tamaño de poro de la escoria.
Los experimentos realizados con varios cationes de metales pesados distintos del Hg (Cd, Pb, Cr, Cu, Ni, Zn, Mn y As), que aparecen en la Tabla 8 del documento, indican que un tiempo de contacto (t) de 30 minutos da lugar a una cantidad de catión retenido (qt) de aproximadamente 10 mg de catión por gramo de escoria, calculándolo a partir de la siguiente fórmula:
qt = (C0 - C,) -— siendo Co la concentración inicial de catión metálico (100 ppm en todos los casos, concentración que, por tratarse de disoluciones acuosas, puede considerarse equivalente a 100 mg/litro), Ct la concentración de catión metálico a un determinado tiempo t del experimento (en este caso, los 30 minutos de tratamiento, tras los cuales, la concentración remanente de catión oscilaba entre 0,01 ppm para el Cr presente en la disolución a pH 2,0 y 0,21 ppm para el caso del Pb presente en una disolución de pH 7,0), V el volumen de disolución empleado (0,1 litro en este caso) y W el peso de escoria salina utilizada en el experimento de adsorción (1,0 g).
La solicitud de patente en Corea del Sur KR20050065755 [18], por su parte, se refiere a la eliminación de metales pesados contenidos en efluentes utilizando como adsorbente una escoria procedente de procesos metalúrgicos que, en este caso, es una escoria procedente de altos hornos de preparación de acero. De nuevo, la composición de la escoria utilizada en esta solicitud de patente coreana (véase la Tabla 1 de la misma) presenta un contenido superior de CaO (35 - 45%), Si02 (30 - 40%) y MgO (5 - 8%>) al de las escorias procedentes de los procesos de segunda fusión del aluminio, siendo también menor el porcentaje de A1203 (10 - 15%) presente. La escoria sufre un proceso de tratamiento con una disolución alcalina durante 6 horas, secado durante 24 horas y calcinado a 250 - 350 °C, durante 6 - 20 horas, prefiriéndose que la temperatura no sea superior a 350 °C para que no haya degradación de la escoria. La solicitud KR20050065755 menciona que el tratamiento da lugar a que se aumente el área superficial de la escoria, que pasa a ser de 52 m2/g. Con ello, los experimentos realizados para ensayar la adsorción de Pb muestran una capacidad de adsorción del 96,6%>, se pasa de una concentración inicial de 100 ppm a una concentración final de 3,4 ppm, al inyectar en una columna 1 litro de disolución con Pb a una velocidad de 1 litro/minuto.
De forma análoga, en la patente japonesa JP57031448 [19], se describe un método similar para adsorbentes en el tratamiento de aguas residuales, en el que se parte de una escoria granulada, mencionándose las escorias procedentes de plantas de fabricación de acero como posible ejemplo. La escoria se disuelve en una disolución acuosa de un ácido inorgánico (que puede ser, por ejemplo, ácido clorhídrico, nítrico o sulfúrico, con preferencia por 100 cm3 de HC1 4N por cada 14 g de escoria), tras lo cual se aumenta el pH hasta valores próximos a 10 (preferiblemente, con NaOH acuoso), dando lugar a un precipitado que se filtra, lava, deshidrata, seca y se pulveriza o se calienta a 300 - 900 °C (preferiblemente, 400 - 600 °C) durante 20 minutos - 2 horas.
Sería interesante encontrar también para las escorias de aluminio un procedimiento de transformación que las valorizase y que, preferiblemente, permitiera la aplicación del producto obtenido en la industria, abriendo nuevas vías para ser incorporados en la cadena económica. En la actualidad, sin embargo, la apertura de estas nuevas vías para las escorias de aluminio está por realizar. De hecho, trabajos publicados en el año 2005, con posterioridad, por ejemplo, a la publicación correspondiente a la solicitud patente británica GB2054547 [17], calificaban de inviable económicamente la valorización integral mediante separación de todos o parte de sus componentes de las escorias procedentes de los procesos de segunda fusión de aluminio, recomendando la minimización de su producción [20,21]. La presente invención proporciona una solución a este problema.
Referencias bibliográficas
1. Aluminium Handbook. Vol. 1. Fundamentáis and Materials. Aluminium-Verlag
Marketing & Komunikation GmbH, (2003).
2. Aluminium Handbook. Vol. 2. Forming, Casting, Surface Treatment, Recycling and Ecology. Aluminium-Verlag Marketing & Komunikation GmbH, (2003). 3. V.K. Gupta, M. Gupta, S. Sharma. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste. Water Research, 35, (2001), 1125-1134.
4. H.S. Altundogan, S. Altundogan, F. Turnen, M. Bildik. Arsenic adsorption from aqueous solutions by activated red mud. Waste Management, 22, (2002), 357-
363.
5. A. Tor, Y. Cengeloglu, M.E. Aydin, M. Ersoz. Removal of phenol from aqueous phase by using neutralized red mud. Journal of Colloid and Interface Science, 300, (2006), 498-503. 6. Y. Li, Ch. Liu, Z. Luán, X. Peng, Ch. Zhu, Z. Chen, Z. Zhang, J. Fan, Z. Jia. Phosphate remo val from aqueous solutions using raw and activated red mud and fly ash. Journal of Hazardous Materials, B137, (2006), 374-383.
7. Y. Cengeloglu, A. Tor, M. Ersoz, G. Arslan. Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51, (2006),
374-378.
8. A. Tor, Y. Cengeloglu. Removal of congo red from aqueous solution by adsorption onto acid activated red mud. Journal of Hazardous Materials, B138, (2006), 409-415.
9. J.R. Paredes, S. Ordoñez, A. Vega, F.V. Diez. Catalytic combustión of methane over red mud-based catalysts. Applied Catalysis B: Environmental, 47, (2004), 37-45.
10. S. Sushil, V.S. Batra. Catalytic applications of red mud, an aluminium industry waste: a review. Applied Catalysis B: Environmental, 81, (2008), 64-77.
11. Orden MAM/304/2002, de 8 de febrero, por la que se publican las operaciones de valorización y eliminación de residuos y la lista europea de residuos. BOE 43/2002, de 19 de febrero de 2002.
12. "Gestión de las escorias salinas de la segunda fusión del aluminio". Informe Técnico, Serie Reciclado de Materiales, Instituto para la Sostenibilidad de los Recursos, Madrid (2002).
13. B.J. Jody, E.J. Daniels, P.V. Bonsignore, D.E. Karvelas, "Recycling of aluminum salt cake", Journal of Resource Management and Technology, 20, (1992), 38-49.
14. J.N. Hryn, E.J. Daniels, T.B. Gurganus, K.M. Tomaswick, "Products from salt cake residue-oxide", Third International Symposium on Recycling of Metals and Engineering Materials, P.B. Queneau and R.D. Peterson, Eds. The Minerals,
Metals & Materials Society, (1995), 905-916.
15. K. Sreenivasarao, F. Patsiogiannis, J.N. Hryn, "Concentration and precipitation of NaCl and KC1 from salt cake leach solutions by eletrodialysis", Light Metals, R. Hunglen, Ed. The Minerals, Metals & Materials Society, (1997), 1153-1158. 16. US 4124405 A. (J. Quiénot et al.).Fecha publicación: 7 Noviembre 1978.
17. GB 2054547 A (Nippon Kokan Kabushiki Kaisha). Fecha publicación. (18 Febrero 1981) 18. KR 20050065755 A. (Research Institute of Industrial Science Technology) Fecha publicación: 30 Junio 2005..
19. JP 57031448 B. (Kogyo Gijutsuin; Kankyo Gijutsu Kaihatsu). Fecha publicación:
5 Marzo 1980.
20. A. Gil. Management of the salt cake from secondary aluminium fusión processes.
Industrial & Engineering Chemistry Research, 44, (2005), 8852-8857.
21. A. Gil. Gestión de las escorias salinas de los procesos de segunda fusión del aluminio. Ingeniería Química, 425 (2005), 171-181.
22. S.J. Gregg y K.S.W. Sing. Adsorption, Surface Area and Porosity. Academic Press (1991).
23. M. A. Vicente Rodríguez, J. de D. López González y M. A. Bañares Muñoz.
Preparation of microporous solids by acid treatment of a saponite. Microporous Materials, 4, (1995), 251-264.
24. A.W.M. Ip, J.P. Barford y G. McKay. Reactive Black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface área. Journal of Colloid and Interface Science, 337, (2009), 32-38.
25. D.D. Do. Adsorption analysis: equilibria and kinetics. Imperial College Press (1998).
COMPENDIO DE LA INVENCIÓN
La invención se refiere, en un primer aspecto, a un procedimiento para la transformación de escorias salinas procedentes de procesos de segunda fusión del aluminio que comprende las etapas de:
a) poner en contacto la escoria salina procedente de un proceso de segunda fusión del aluminio con una disolución acuosa, ácida, básica o neutra; b) separar la escoria salina activada obtenida en la etapa a) de la disolución acuosa;
c) calentar la escoria salina activada obtenida en la etapa b) en condiciones que permitan estabilizar la estructura porosa generada. En un segundo aspecto, la invención se refiere también a una escoria salina caracterizada por haber sido obtenida al someter la escoria salina procedente de un proceso de segunda fusión del aluminio al procedimiento anterior.
En un aspecto adicional, la invención se refiere además al uso de esa escoria salina obtenida por aplicación del procedimiento de la invención para la adsorción de cationes metálicos presentes en corrientes líquidas.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Fig. 1: Área superficial, expresada en metros cuadrados por gramo de escoria, de las escorias salinas tratadas con disoluciones de varias concentraciones de H2SO4, (comprendidas entre 0 y 2 mol/litro, según se indica en el eje de abscisas), durante diferentes tiempos de contacto. Curvas: o : escoria tratada durante 0,5 horas con disoluciones de varias concentraciones de H2SO4; · : escoria tratada durante 4 horas con disoluciones de varias concentraciones de H2SO4;■: escoria tratada durante 24 horas con disoluciones de varias concentraciones de H2SO4.
Fig. 2: Volumen de poros, expresado en centímetros cúbicos por gramo de escoria, de las escorias salinas tratadas con disoluciones de varias concentraciones de H2SO4, (comprendidas entre 0 y 2 mol/litro, según se indica en el eje de abscisas), durante diferentes tiempos de contacto. Curvas: o : escoria tratada durante 0,5 horas con disoluciones de varias concentraciones de H2SO4; · : escoria tratada durante 4 horas con disoluciones de varias concentraciones de H2SO4;■: escoria tratada durante 24 horas con disoluciones de varias concentraciones de H2SO4.
Fig. 3: Micrografías electrónicas de barrido representativas de escorias salinas tratadas químicamente. En la parte inferior de cada microfotografía se indica el número de aumentos al que se tomó, así como la longitud real, expresada en micrómetros, a la que corresponde cada centímetro de la microfotografía.
Fig. 4: Evolución en el tiempo (indicado en minutos en el eje de abscisas) de la cantidad de metal adsorbida (expresada en miligramos de metal por gramo de escoria) por una escoria obtenida por el procedimiento de la invención. El catión metálico ensayado se indica en la parte superior izquierda de cada gráfico. Se representa una curva por cada concentración inicial de catión ensayado. Las concentraciones iniciales fueron: · : 50 mgmetai/litro;□: 100 mgmetai/litro y o : 300 mgmetai/litro.
Fig. 5: Evolución de la cantidad de metal adsorbida (expresada en miligramos de metal por gramo de escoria) por una escoria obtenida por el procedimiento de la invención. Los valores de pH de las disoluciones de adsorción fueron: · : pH=4 y□: pH=6.
Fig. 6: Cantidad de Pb adsorbida (expresada en miligramos de metal por gramo de escoria) en las etapas del ensayo de reutilización por una escoria obtenida por el procedimiento de la invención, utilizada previamente para la adsorción de metales y regenerada mediante tratamiento con disoluciones ácidas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Tal como se ha comentado previamente, la presente invención se refiere a un procedimiento para la transformación de escorias procedentes de los procesos de segunda fusión del aluminio en un producto que puede ser utilizado como adsorbente de cationes metálicos pesados presentes en corrientes líquidas contaminadas, así como al producto adsorbente obtenido por dicho procedimiento y al uso de dicho producto para la adsorción de cationes metálicos pesados. El procedimiento de transformación de las escorias de segunda fusión del aluminio en un adsorbente estable permite darle una valorización a estas escorias, que son residuos que se producen en grandes cantidades y están catalogados como peligrosos, no sólo porque disminuye su peligrosidad sino porque, además, posibilita su aplicación en la industria.
El proceso consiste en tratar las escorias procedentes de la segunda fusión del aluminio con disoluciones acuosas, que pueden ser disoluciones de varias concentraciones de ácidos, de bases o, incluso, agua a la que no se le ha añadido ni ácidos ni bases, separando posteriormente la escoria obtenida y estabilizándola mediante tratamiento a altas temperaturas (200 °C - 500 °C), siendo posibles distintos tiempos de tratamiento y calentamiento.
Un ejemplo de composición de una escoria salina procedente de un proceso de segunda fusión de aluminio, que podría ser objeto del proceso de transformación de la invención, sería el siguiente: Tabla 1.- Composición química de una escoria salina procedente de un proceso de segunda fusión del aluminio.
Componente (% en peso)
A1203 29,60
NaCl 19,50
KC1 10,40
Si02 2,75
Na20 2,35
MgO 1,90
CaO 1,43
Fe203 1,37
N 0,40
S03 < 0,10
Sorprendentemente, a pesar de las diferencias en la composición con las escorias procedentes de procesos de transformación del hierro y/o de obtención de una de sus aleaciones, el acero, el procedimiento de la invención permite la obtención de productos cuyas propiedades de adsorción de metales pesados son superiores a las de los adsorbentes obtenidos de las escorias procedentes de industrias relacionadas con el hierro y/o el acero, con valores de qe que llegan a ser de 54,5 - 71,7 mg/g de escoria en el caso del Pb (II). Y esto es así a pesar de que, de acuerdo con las enseñanzas de la patente británica GB2054547 [17], sería esperable que la capacidad de adsorción fuera menor, por presentar las escorias procedentes de procesos de segunda fusión del aluminio menor cantidad de CaO, Si02 y compuestos del ácido fosfórico, que darían lugar a una menor adsorción, menor cantidad de compuestos de Fe, lo que debería hacer disminuir el efecto de coprecipitación, y menor proporción de MgO, lo que, junto con la menor proporción de CaO, debería dar lugar a una menor capacidad de sustitución de iones. Los valores de qe mencionados para el Pb (II), además, se obtienen a pH ácido (4 ó 6), por lo que tampoco sería esperable una influencia significativa de un posible efecto de precipitación de hidróxidos. La elevada capacidad de adsorción observada en los productos obtenidos tras la aplicación del procedimiento de la invención a las escorias procedentes de procesos de segunda fusión del aluminio parece deberse en parte a la elevada superficie específica que se consigue mediante la aplicación del procedimiento de la presente invención, superficie específica que varía entre valores próximos a 30 y 200 m2/g de escoria tratada. Así, sorprendentemente, los valores obtenidos son, en muchos casos, particularmente, cuando el tratamiento con la disolución acuosa se produce en condiciones de reflujo, superiores a los valores del área superficial obtenidos mediante la aplicación del procedimiento de la solicitud de patente coreana K 20050065755 [18] a escorias procedentes de altos hornos, circunstancia que no era esperable, particularmente si se tiene en cuenta que se trata de productos que se obtienen después de ser sometidos a procesos a altas temperaturas (unos 700 °C), pues la temperatura modifica los materiales y, en general, reduce la superficie específica de los mismos.
Por tanto, un primer aspecto de la invención se refiere a un procedimiento para la transformación de escorias salinas procedentes de procesos de segunda fusión del aluminio que comprende las etapas de:
a) poner en contacto la escoria salina procedente de un proceso de segunda fusión del aluminio con una disolución acuosa, ácida, básica o neutra; b) separar la escoria salina activada obtenida en la etapa a) de la disolución acuosa;
c) calentar la escoria salina activada obtenida en la etapa b) en condiciones que permitan estabilizar la estructura porosa generada.
Las escorias a las que se aplica el procedimiento de transformación de la invención son las escorias mencionadas en la Orden MAM/304/2002 [11] como "100308: Escorias de sal de segunda fusión", comprendidas dentro del apartado 1003: Residuos de la termometalurgia del aluminio. Se prefiere especialmente que las escorias salinas que se someten al procedimiento de la invención sean escorias procedentes de un horno rotatorio de eje fijo, muy especialmente cuando presentan un tamaño inferior a 1 mm. La composición química típica de este tipo de escorias salinas se mostró previamente en la Tabla 1. El procedimiento de la invención puede aplicarse también a escorias salinas procedentes de otros procesos de segunda fusión del aluminio, como pueden las escorias procedentes de un horno rotatorio de eje basculante.
Las condiciones en las que se lleva a cabo la etapa a) de activación química pueden ser cualesquiera, siempre y cuando den lugar a la modificación de la estructura de la escoria salina. De todas las variables del proceso de activación química, son el pH de la disolución de activación, la concentración de los agentes químicos, el tiempo y la temperatura de contacto los que más influyen en las características del producto final obtenido.
La temperatura del proceso de contacto generalmente es la temperatura ambiente, pero puede estar en el intervalo comprendido entre 20 °C y la temperatura de reflujo, que será de aproximadamente 100 °C a una presión de 101,33 kPa (1 atmósfera). La presión a la que se lleva a cabo esta etapa puede ser la presión atmosférica, pero también puede llevarse a cabo a presiones superiores. El tiempo de contacto depende en gran medida de la temperatura de reacción, pero generalmente está en el intervalo de 0,5 a 24 horas.
La etapa a) puede llevarse a cabo en un recipiente con agitación aunque, opcionalmente y/o con posterioridad a un primer paso de agitación, puede llevarse a cabo en condiciones de reflujo. Tal como se muestra más adelante en los Ejemplos de la presente invención, el tratamiento en condiciones de reflujo, especialmente cuando se lleva a cabo con agua a la que no se ha añadido ningún ácido o ninguna base, es el que da lugar al producto final con valores de superficie específica más elevados. Por ello, en una realización preferida de la invención, la etapa a) se lleva a cabo en condiciones de reflujo.
Tal como se utiliza en la presente solicitud, el término "disolución acuosa" abarca no sólo las composiciones líquidas compuestas por agua en la que se encuentran disueltos uno o más compuestos, especialmente cuando dichos compuestos confieren un pH ácido o básico a la disolución al estar presentes en la misma, sino también al medio disolvente en sí, al agua a la que no se le ha añadido ningún compuesto de carácter ácido o básico y que, por tanto, tendrá un pH neutro o muy próximo a la neutralidad. El pH de la disolución acuosa que entra en contacto con la escoria salina es una de las variables que influye bastante en las características finales del producto obtenido pues, entre otras cosas, influye en la activación química de los compuestos que forman parte de la escoria y, con ello, en la capacidad de reacción y adsorción del producto finalmente obtenido con las posibles sustancias a eliminar presentes en efluentes contaminantes que quieran ser tratados con el producto obtenido a partir de la escoria, sustancias a eliminar entre las que destacan los cationes de metales pesados. Por ello, se prefiere que el pH de la disolución de activación sea inferior a 2 o superior a 10, aunque es posible que la disolución acuosa de la etapa a) presente otros valores de pH, incluido el valor de pH neutro.
Respecto a la relación entre la escoria salina de aluminio y la disolución acuosa, una relación adecuada es la de tratar 10 g de la escoria salina de aluminio con 0,1 litro de la disolución acuosa.
La disolución acuosa puede ser una disolución acuosa, ácida o alcalina, en la que esté presente uno más compuestos ácidos o uno o más compuestos básicos a concentraciones comprendidas, preferiblemente, entre 0 y 2 mol/litro. Los ácidos pueden ser de origen orgánico o mineral y pueden citarse como ejemplos los ácidos nítrico (HNO3), sulfúrico (H2SO4) o clorhídrico (HC1). Entre los posibles compuestos de carácter básico que pueden añadirse para conseguir disoluciones alcalinas destaca el hidróxido sódico (NaOH).
La disolución acuosa, como se ha comentado antes, puede también carecer de compuestos ácidos o básicos añadidos y puede tratarse únicamente de agua. De hecho, en una realización preferida de la invención, la disolución acuosa con la que se trata la escoria es agua a la que no se le ha añadido ningún ácido o base. Es una realización particularmente preferida de la invención aquella en la que el contacto entre la escoria salina procedente de un proceso de segunda fusión del aluminio y el agua se produce en condiciones de reflujo, pues este tratamiento da lugar a productos con una alta superficie específica.
Para llevar a cabo la etapa b) de separación de la escoria salina, puede utilizarse cualquier técnica de separación, tal como filtración, centrifugación, decantación del sobrenadante tras dejar en reposo la mezcla de escoria salina y disolución y otros similares. En la presente invención, se prefiere la utilización de centrifugación. Dicha centrifugación puede llevarse a cabo, por ejemplo, a 4500 r.p.m.
La escoria salina obtenida en la etapa b) se calcina en la etapa c) para conseguir la estabilización de la estructura, preferiblemente en aire, pero también en cualquier mezcla gaseosa con presencia de oxígeno. Se prefiere que, antes de llevar a cabo la calcinación, se produzca una calentamiento previo entre 50 y 200 °C a presión atmosférica, para secar el producto. Posteriormente a esta etapa opcional de secado, la escoria salina se calienta para que se produzca su calcinación. A presión atmosférica, las condiciones de calcinación comprenden una temperatura que preferiblemente se encuentra en el intervalo de 200 a 500 °C. El período de tiempo de calentamiento generalmente oscila entre 0,1 y 100 horas, siendo lo más habitual entre 0,5 y 48 horas.
Los ensayos de adsorción que se muestran más adelante en el Ejemplo 2 se realizaron con una escoria activada obtenida por la aplicación del procedimiento de la invención en la que la superficie específica resultó ser especialmente alta, superior a 200 m2/g. Por ello, una realización particularmente preferida del procedimiento de la invención es aquella en la que se utilizan las condiciones que dan lugar a dicha escoria activada, es decir, el procedimiento en el que una escoria salina procedente de un horno rotatorio de eje fijo se pone en contacto con agua en condiciones de reflujo durante 4 horas, tras lo cual se separa la escoria del agua mediante centrifugación a 4500 r.p.m., se seca el sólido obtenido durante 16 horas a 60 °C a presión atmosférica y se calcina a 500 °C durante 4 horas.
La composición de la escoria salina obtenida y sus propiedades texturales dependerán de las condiciones concretas en las que se lleven a cabo la reacción de activación (etapa a)) del procedimiento y el tratamiento térmico de la escoria (etapa c)). En cualquier caso, el producto obtenido tras someter al procedimiento de la invención escorias salinas procedentes de procesos de segunda fusión del aluminio constituye un segundo aspecto de la invención. En general, se obtiene un producto sólido poroso, al que podemos denominar "escorias activadas" o "escorias adsorbentes", en las que el volumen de los microporos varía entre 0,030 y 0,250 cm3/g y la superficie específica varía entre 30 y 200 m2/g, ambas deducidas mediante ensayos de adsorción de N2 a -196 °C. Se tiene preferencia por aquellas que muestren valores de superficie específica superiores a 52 m2/g, especialmente si los valores de superficie específica son superiores a 100 m2/g. Igualmente, es una realización especialmente preferida de las escorias activadas de la invención aquella en la que la escoria es la obtenida aplicando el conjunto de condiciones preferidas antes especificado, es decir, el procedimiento en el que una escoria salina procedente de un horno rotatorio de eje fijo se pone en contacto con agua en condiciones de reflujo durante 4 horas, tras lo cual se separa la escoria del agua mediante centrifugación a 4500 r.p.m., se seca el sólido obtenido durante 16 horas a 60 °C a presión atmosférica y se calcina a 500 °C durante 4 horas.
Tal como se ha comentado previamente, estas escorias salinas activadas de la invención tienen buenas propiedades de adsorción/retención de cationes de metales pesados y pueden utilizarse, por ejemplo, para adsorber cationes de metales pesados presentes en corrientes líquidas contaminadas. Por ello, un aspecto más de la invención es el uso del producto resultante de la aplicación del procedimiento de la invención, es decir, las "escorias adsorbentes" o "escorias activadas" obtenidas, para la adsorción de cationes de metales contenidos en corrientes líquidas. Por tanto, puede considerarse también que la invención se refiere a un método para la preparación de un adsorbente de cationes de metales pesados presentes en corrientes líquidas que comprende la preparación del adsorbente a partir de escorias salinas procedentes de procesos de segunda fusión del aluminio (las etapas a) a c) anteriormente discutidas), así como al menos una etapa opcional adicional en la que dicho adsorbente se pone en contacto con la corriente líquida de la que se quieren retirar cationes de metales pesados. Igualmente, puede también definirse la invención como un procedimiento para adsorber/retirar cationes de metales de corrientes líquidas que los contienen, que comprende la etapa de poner en contacto la corriente líquida con un adsorbente sólido preparado a partir de escorias salinas procedentes de procesos de segunda fusión del aluminio y que, opcionalmente, comprende también las etapas de preparación de dicho adsorbente sólido poroso. En cualquiera de las formulaciones, la invención comprendería también el producto a utilizar como adsorbente, la "escoria adsorbente" o "escoria activada".
Los ensayos que se muestran más adelante en el Ejemplo 2 de la presente solicitud demuestran que las escorias activadas de la invención son útiles para retener cationes de distintos metales pesados, como demuestran los ensayos realizados con Cd2+, Cu2+, Zn2+ y Pb2+. Por ello, una posible realización es aquella en la que las escorias de la invención se utilizan para adsorber al menos un catión seleccionado del grupo de Cd2+, Cu2+, Zn2+ y Pb2+, o combinaciones de los mismos. Los resultados demuestran que la adsorción se produce a distintos valores de pH del líquido en el que están presentes los metales pesados, siendo adecuados, por ejemplo, los valores de pH de 4 y 6 y el intervalo comprendido entre ellos, prefiriéndose el valor de pH 6, por obtenerse mejores resultados. Por otro lado, los ensayos demuestran que el Pb2+ es el catión para el cual se obtienen mejores resultados, por lo que una realización preferida es aquella en la que las escorias se utilizan para adsorber Pb2+.
También se tuvo en cuenta la posibilidad de reusar las escorias salinas, obteniéndose que las escorias salinas de aluminio de la presente invención pueden reutilizarse como adsorbentes de cationes de metales pesados. El primer ensayo de adsorción de los cationes metálicos se llevó a cabo según la metodología descrita hasta ahora: Ejemplo 2. Una vez utilizada la escoria salina como adsorbente, este sólido se vuelve a tratar con una disolución de ácido para desorber/limpiar el catión metálico retenido. Se lava con agua, se seca y se vuelve a utilizar como adsorbente tal y como se había realizado inicialmente. Este proceso se repitió hasta cuatro veces, cuatro ciclos, observándose que la escoria salina puede regenerarse y volverse a utilizar como adsorbente. Estos ensayos se explican con más detalle en el Ejemplo 3 de la presente solicitud, donde se demuestra la posibilidad de reutilizar escorias activadas previamente ya utilizadas para adsorber cationes. Por ello, en una posible realización del uso de la invención, las escorias que se utilizan son escorias activadas obtenidas mediante el procedimiento de la invención, que se utilizan, una vez obtenidas para la adsorción de metales y que, posteriormente, se reutilizan tras ser sometidas a un proceso de regeneración que comprende al menos cuatro ciclos de activación, en cada uno de los cuales la escoria utilizada se pone en contacto con disoluciones ácidas como en la etapa a) del procedimiento de la invención, se separa de la disolución ácida, se lava con agua desionizada y se seca a temperatura entre 50 °C y 200 °C a presión atmosférica. Un posible realización del uso de la invención, comprendida dentro de la anterior, es aquélla en la que el ácido es HNO3 y la escoria tratada con el mismo se seca en una estufa a 60 °C a presión atmosférica.
La invención se explicará ahora con más detalle por medio de los Ejemplos y las Figuras incluidas a continuación. EJEMPLOS
Ejemplo 1.- Obtención de escorias salinas activadas químicamente
En el presente Ejemplo, se utilizó una escoria salina procedente de un horno rotatorio de eje fijo y de un tamaño inferior a 1 mm para su activación mediante agentes químicos. Su composición se indicó anteriormente en la Tabla 1.
La activación química se llevó a cabo empleando disoluciones acuosas de HN03 (65 %, Panreac), H2S04 (98%, Panreac) y NaOH (Panreac). La activación química se llevó a cabo empleando cinco disoluciones de cada reactivo químico en varias concentraciones. Concretamente, concentraciones comprendidas entre 0 y 2 mol/litro. El tiempo de reacción con cada una de estas disoluciones también fue un parámetro estudiado, estando comprendido entre 0,5 y 24 horas. Brevemente, en cada activación, 10 g de escoria salina se ponen en contacto con 100 cm3 de disolución de reactivo químico. La velocidad de agitación de las suspensiones fue de 500 r.p.m. Transcurrido el tiempo de reacción, las suspensiones se centrifugaron durante 20 minutos a 4500 r.p.m. y a temperatura ambiente empleando una centrífuga Rotonta 460 S para separar la escoria de la disolución activante. El proceso se repitió varias veces, sustituyendo cada vez la disolución de intercalación por agua desionizada con el objetivo de lavar la escoria de agente químico. Los sólidos obtenidos se secaron en una estufa durante 16 horas a 60 °C a presión atmosférica y posteriormente durante 4 horas a 500 °C.
La nomenclatura utilizada para cada muestra es X-Y-t, donde X es la concentración de la disolución de reactivo ácido o base utilizada, Y el reactivo utilizado en la activación química y t el tiempo, en horas, de contacto entre la escoria y la disolución de reactivo químico. Así, por ejemplo, la muestra denominada como 0- N-4 h, es una escoria tratada con una disolución 0 mol/litro (con agua) de HNO3 (N) durante 4 horas.
Las propiedades texturales de las escorias activadas obtenidas se determinaron mediante adsorción de N2 (Air Liquide, 99,999 %) a -196 °C en un equipo volumétrico estático comercial (ASAP 2010 de la casa comercial Micro meritics). Las muestras fueron desgasificadas previamente durante 24 h a 200 °C y a una presión inferior a 0,1 Pa. La cantidad de muestra utilizada en el experimento fue de 0,2 g. La adsorción de N2 proporciona una serie de propiedades cuantitativas como son el área superficial y el volumen de poros. El área superficial se puede calcular mediante la aplicación de la ecuación de B.E.T. [22]: plp
+&-^ - pip°
V - (l -p/p°) Vm C Vm C siendo p/p° la presión relativa, V el volumen de N2 adsorbido en equilibrio por la muestra a la presión relativa p/p°, Vm el volumen de monocapa y C una constante. El ajuste lineal de la ecuación de B.E.T. en el rango de presión relativa comprendido entre 0,05 y 0,20, permite asegurarse la formación de una monocapa y calcular el volumen de monocapa. Con el volumen de monocapa se puede calcular el área superficial de la escoria mediante la ecuación:
γ siendo S el área superficial, Vm el volumen de monocapa, a el área ocupada por una molécula de N2 adsorbido sobre la superficie de la arcilla (16,2 Á2/molec), NA el número de Avogadro (6,023- 1023 mo lee/mol) y V el volumen ocupado por un mol de N2 a 25 °C y 1 atmósfera (22.386 cm3/mol).
Los volúmenes de poros totales (Vpiotai) se estiman a partir de los volúmenes de N2 adsorbidos a un valor de presión relativa de 0,99 [22], asumiendo que la densidad del nitrógeno en los poros es igual a la del nitrógeno líquido a -196 °C (0,81 g/cm3) [22].
Los resultados referentes a las propiedades texturales obtenidos para la escoria tratada con varias concentraciones de HNO3 durante 4 horas se muestran a continuación en la Tabla 2. Tabla 2.- Propiedades texturales derivadas de la adsorción de N2 a -196 °C para una escoria salina tratada con disoluciones de HNO3.
Muestra Vpiotal"
(m2/gc) (cm3/gc)
O-N-4 h 109 0,125
0.5-N-4 h 102 0,121
l-N-4 h 58 0,085
l,5-N-4 h 31 0,052
2-N-4 h 31 0,046
Superficie específica;
* Volumen de poros total;
c gramos de escoria desgasificada
La evolución de las propiedades texturales (superficie específica y volumen de poros) de la escoria tratada con disoluciones de varias concentraciones de H2SO4 y varios tiempos se representa en las Fig. 1 y 2.
Estos materiales también fueron caracterizados mediante microscopía electrónica de barrido utilizando un microscopio JEOL, modelo JSM5610LV. Un ejemplo representativo de una escoria tratada con H2SO4, muestra 2-N-4 h, se presenta en la Fig. 3.
Los resultados indican que el procedimiento de la invención permite obtener "escorias activadas" de aluminio con valores de superficie específica superiores a los obtenidos de escorias de acerías, aunque los valores más altos se obtienen con las concentraciones inferiores de reactivo químico, especialmente, en el valor de concentración 0, como el de la muestra O-N-4 h, correspondiente al agua. Así, la superficie específica disminuye con la concentración del reactivo químico empleado. En menor medida también lo hace el volumen de poros. Esto se explica porque los materiales que presentan en su estructura AI2O3 ó Si02 pueden ser atacados por reactivos químicos ácidos o bases. Inicialmente puede tratarse de una pequeña disolución del óxido que permite aumentar las propiedades texturales del material inicial e inclusive modificar la superficie del sólido con nuevos centros de adsorción. Si el ataque es prolongado en el tiempo, o si las concentraciones de los reactivos químicos son elevadas, se puede producir la disolución del material con pérdida de las propiedades iniciales [23]. También se estudió el efecto de las condiciones de reflujo en las propiedades texturales de las escorias salinas de aluminio, utilizando disoluciones acuosas anteriormente descritas de los ácidos sulfúrico o nítrico o disoluciones acuosas de hidróxido sódico, en concentraciones de 0 y 2 mol/litro. El tiempo de tratamiento en este caso fue de 4 horas, con los mismos tratamientos anteriormente descritos para obtener las escorias salinas activadas químicamente.
Los resultados referentes a las propiedades texturales obtenidos para la escoria tratada con varias disoluciones acuosas de reactivos químicos durante 4 horas bajo condiciones de reflujo se muestran a continuación en la Tabla 3.
Tabla 3.- Propiedades texturales derivadas de la adsorción de N2 a -196 °C para una escoria salina tratada con disoluciones de NaOH (H), H2S04 (S) y HNO3 (N) bajo condiciones de reflujo.
Muestra S5 VpW
(m2/gc) (cm3/gc)
O-H-4 h (reflujo) 203 0,251
2-H-4 h (reflujo) 40 0,102
2-S-4 h (reflujo) 34 0,123
2-N-4 h (reflujo) 38 0,098
a Superficie específica;
* Volumen de poros total;
c gramos de escoria desgasificada
Los resultados indican que el tratamiento de la escoria salina con la disolución acuosa en condiciones de reflujo, especialmente cuando la disolución acuosa es agua a la que no se le ha añadido ningún ácido o base (muestra O-H-4 h (reflujo)), da lugar a un aumento significativo de la superficie específica, alcanzándose valores superiores a 200 m2/g. Se observa también un efecto positivo en el volumen total de poros.
Ejemplo 2.- Evaluación de la capacidad de adsorción de metales pesados
A continuación, se procedió a evaluar la capacidad de retención de metales
(Cd2+, Cu2+, Pb2+ y Zn2+) de las escorias salinas obtenidas mediante tratamiento químico descritas en el Ejemplo 1. Los ensayos de adsorción de cationes metálicos pesados constan de dos fases. Inicialmente se estudia la cinética de adsorción de cada uno de los metales. Se pretende estudiar la influencia del tiempo en la capacidad de adsorción de las escorias y determinar a partir de qué momento la adsorción se mantiene constante y ha alcanzado el equilibrio. Además del tiempo de adsorción, se estudia la influencia de la concentración inicial del catión metálico, siendo en este caso entre 50 y 300 mg/litro las concentraciones ensayadas. Una vez identificado este momento, se realiza el ensayo de equilibrio estudiando el efecto de disoluciones con varias concentraciones iniciales de catión metálico. Con este último se pretende ver qué efecto tiene la concentración inicial y el pH en la cantidad de metal adsorbido.
2.1. Cinética de adsorción
Los estudios se realizaron en régimen discontinuo, empleando 0,05 g de muestra de escoria adsorbente en cada experimento y concentraciones de catión metálico entre 50 y 300 mg/litro. El adsorbente utilizado corresponde a una escoria salina tratada únicamente con agua (la muestra O-H-4 h (reflujo) del Ejemplo 1), que es la que presenta mejores propiedades texturales. La adsorción de cationes metálicos por un material está controlada por las propiedades superficiales físicas y químicas [24]. Como propiedades superficiales físicas cabe citar la superficie específica y el volumen de poros. Las propiedades químicas dependen de los grupos funcionales. En este caso se eligió el material que presentaba la superficie específica más elevada. La disolución que contiene el catión metálico no adsorbido se separó del sólido mediante centrifugación a 4500 r.p.m. Posteriormente, se determinó el contenido en metal de la disolución mediante análisis por plasma de acoplamiento inductivo (ICP).
La cantidad de catión metálico retenido por la escoria se representa como
qt = (C0 - C,) -—
siendo Co la concentración inicial de catión metálico, Ct la concentración de catión metálico a un determinado tiempo t del experimento, V el volumen de disolución empleado y W el peso de escoria salina utilizada en el experimento de adsorción. La evolución con el tiempo de las cantidades adsorbidas de varias disoluciones de los metales, utilizando la escoria activada antes mencionada, se incluyen en la Fig. 4.
Comparando los resultados obtenidos se observa que la cantidad adsorbida aumenta con la cantidad de catión metálico presente en la disolución. Para las concentraciones más bajas, 50 y 100 mg/litro, sólo se observa diferencia importante cuando se estudia la adsorción de Pb(II) (catión Pb2+). Es precisamente para este catión metálico donde se observa mayor capacidad de adsorción por parte de la escoria salina. Zn(II) y Cd(II) (cationes Zn2+ y Cd2+, respectivamente) presentan una capacidad parecida, siendo menor en el caso de la de Cu(II) (catión Cu2+). En todas las condiciones se alcanza el equilibrio, la máxima cantidad de catión metálico retenido, transcurridos 250 minutos de adsorción. Este tiempo es el que se fija para realizar los ensayos de equilibrio que aparecen en los ejemplos de la Fig. 5. 2.2. Efecto del pH en la adsorción
Una vez determinados los tiempos a los que se alcanza el equilibrio, se realizaron estudios en los que se evaluó la influencia de la concentración inicial y del pH en la capacidad de adsorción, utilizando la misma escoria activada del apartado anterior. El tiempo fijado de equilibrio fue de 4 horas. La disolución que contiene el catión metálico no adsorbido se separa del sólido mediante centrifugación a 4500 r.p.m. Posteriormente, se determina el contenido en metal de la disolución mediante análisis por plasma de acoplamiento inductivo (ICP).
La cantidad de catión metálico retenido por la escoria se representa como
qe = (C0 - Ce) - ^
siendo Co la concentración inicial de catión metálico, Ce la concentración de catión metálico tras 4 horas de adsorción, V Q\ volumen de disolución empleado y J el peso de escoria salina utilizada en el experimento de adsorción.
La evolución de las cantidades adsorbidas de varias disoluciones de los metales se incluyen en la Fig. 5. A medida que aumenta la concentración inicial del catión metálico aumenta la cantidad retenida hasta que se alcanza una meseta. Esta situación se alcanza en los casos de Cd (II) y Cu (II) para bajas concentraciones de los cationes metálicos. En los casos de Pb (II) y Zn (II) se requieren concentraciones más elevadas.
Las condiciones de pH en las que se llevan acabo las adsorciones también afectan a las cantidades de cationes metálicos retenidos. Así, y en todos los casos, a pH=6 la adsorción esta más favorecida que a pH=4. Los resultados experimentales pueden ajustarse bien si se emplea la ecuación de Toth [25]. Mediante este modelo se pretende describir el proceso de adsorción, obteniéndose información a través de las constantes de la ecuación que permita predecir el comportamiento de sistemas reales.
Figure imgf000026_0001
donde, qe es la cantidad de catión metálico adsorbida por unidad de masa de escoria salina cuando el sistema alcanza el equilibrio; Ce, la concentración de catión metálico que permanece en disolución; y qT y kr son las constantes de Toth, la capacidad de adsorción de la monocapa y la energía de adsorción. Finalmente, ηΐτ es una constante empírica que se obtiene para cada caso al ajustar los resultados a la ecuación de Toth. Los parámetros de la ecuación de Toth obtenidos en la adsorción de Cd (II) y Cu (II) se muestran a continuación en la Tabla 4.
Tabla 4.- Parámetros de la ecuación de Toth en la adsorción de cationes metálicos.
Cd (II) Cu (II)
pH = 4 pH = 6 pH = 4 pH = 6
qT (mg/g) 8,7 13,7 6,2 1 1 ,5
kr (litro/mg) 0,05 0,45 0, 19 2,6
3,5 0,7 0,5 2,7
Ra 0,98 0,990 0,995 0,98
Factor de regresión Las cantidades máximas de cationes metálicos retenidos por una escoria salina tratada químicamente se presentan en la Tabla 5. Como puede observarse, el Pb2+ es el catión metálico que se adsorbe en mayor cantidad en la escoria tratada. Este mismo comportamiento se observa independientemente del valor del pH de la disolución. Para los cuatro cationes ensayados, el valor de pH=6 parece favorecer la adsorción respecto al valor de pH=4.
Tabla 5.- Capacidad de adsorción de una escoria salina de cationes metálicos pesados presentes en disoluciones acuosas.
qe (mg/g) qe (mg/g)
pH = 4 pH = 6
Cd (II) 8 fU
Cu (II) 6,3 11,7
Pb (II) 54,5 71,7
Zn (II) 10,3 14,5
Ejemplo 3.- Reutilización de las escorias como adsorbentes de cationes de metales pesados
A continuación, se procedió a evaluar la capacidad de reutilización de las escorias salinas en la retención de metales (Cd2+, Cu2+, Pb2+ y Zn2+) siguiendo la metodología descrita en el Ejemplo 2.
La primera etapa de adsorción fue idéntica a la descrita en el Ejemplo 2 siendo la escoria salina utilizada 2-N-4 h y el tiempo de adsorción fijado de 24 horas. La disolución que contiene el catión metálico no adsorbido se separó del sólido mediante centrifugación a 4500 r.p.m. Posteriormente, se determinó el contenido en metal de la disolución mediante análisis por plasma de acoplamiento inductivo (ICP). A continuación se trató el sólido con 50 cm3 de ácido nítrico de concentración 0,5 mol/litro durante 4 horas, preferentemente se emplea el ácido que se ha utilizado para la activación química inicial, para desorber el catión metálico retenido. A continuación, la disolución ácida con el catión metálico se separó del sólido mediante centrifugación a 4500 r.p.m. y el sólido se lavó repetidamente con agua desionizada. El sólido se secó en una estufa durante 16 horas a 60 °C a presión atmosférica y se vuelve a utilizar como adsorbente, tal y como se había realizado en la primera etapa. El proceso se repite cuatro veces. La cantidad adsorbida de Pb en función del número de etapas de reutilización se presenta en la Fig. 6. Comportamientos parecidos entre sí se obtuvieron para los otros cationes metálicos que se incluyen en esta solicitud, lo que permite afirmar que las escorias salinas activadas químicamente pueden ser reutilizadas como adsorbentes.

Claims

REIVINDICACIONES
1. Un procedimiento para la transformación de escorias salinas procedentes de procesos de segunda fusión del aluminio que comprende las etapas de:
a) poner en contacto la escoria salina procedente de un proceso de segunda fusión del aluminio con una disolución acuosa, ácida, básica o neutra; b) separar la escoria salina activada obtenida en la etapa a) de la disolución acuosa;
c) calentar la escoria salina activada obtenida en la etapa b) en condiciones que permitan estabilizar la estructura porosa generada.
2. Procedimiento según la reivindicación 1, en el que la escoria salina procede de hornos rotatorios de eje fijo o de eje basculante.
3. Procedimiento según la reivindicación 1 ó 2, en el que la escoria salina se pone en contacto con la disolución acuosa a una temperatura comprendida entre temperatura ambiente y la temperatura de reflujo.
4. Procedimiento según la reivindicación 3, en el que la escoria salina se pone en contacto con la disolución acuosa a presión atmosférica o superior.
5. Procedimiento según una cualquiera de las reivindicaciones 1 a 4, en el que el tiempo de contacto oscila entre 0,5 y 24 horas.
6. Procedimiento según una cualquiera de las reivindicaciones precedentes, en el que la disolución acuosa es agua.
7. Procedimiento según una cualquiera de las reivindicaciones 1 a 5, en el que la disolución acuosa es una disolución ácida.
8. Procedimiento según la reivindicación 7, en el que el pH de la disolución acuosa es inferior a 2.
9. Procedimiento según la reivindicación 7, en la que está presente uno o más compuestos ácidos, orgánicos o minerales.
10. Procedimiento según la reivindicación 9, en el que la disolución acuosa contiene uno o más ácidos del grupo del ácido clorhídrico, ácido sulfúrico o ácido nítrico.
11. Procedimiento según la reivindicación 9 ó 10, en el que la concentración de los ácidos es de 2 mol/litro o inferior.
12. Procedimiento según una cualquiera de las reivindicaciones 1 a 5, en el que la disolución acuosa es una disolución básica.
13. Procedimiento según la reivindicación 12, en el que el pH de la disolución acuosa es superior a 10.
14. Procedimiento según la reivindicación 12, en la que está presente uno o más compuestos básicos.
15. Procedimiento según la reivindicación 14, en el que la disolución acuosa contiene NaOH.
16. Procedimiento según la reivindicación 14 ó 15, en el que la concentración del compuesto o compuestos básicos es de 2 mol/litro o inferior.
17. Procedimiento según una cualquiera de las reivindicaciones anteriores, en el que el contacto entre la escoria salina y la disolución acuosa tiene lugar a temperatura de reflujo, opcionalmente con agitación previa.
18. Procedimiento según la reivindicación 17, en el que la disolución acuosa es agua.
19. Procedimiento según una cualquiera de las reivindicaciones anteriores, en el que la etapa b) de separación de la escoria salina se lleva a cabo mediante filtración, centrifugación o decantación del sobrenadante tras dejar en reposo la mezcla de escoria salina y disolución acuosa.
20. Procedimiento según la reivindicación 19, en el que la separación se lleva a cabo mediante centrifugación a 4500 r.p.m.
21. Procedimiento según una cualquiera de las reivindicaciones anteriores, en el que la escoria salina obtenida en la etapa b) sea objeto de un calentamiento previo a la etapa c) de calcinación, para secar el producto, a una temperatura entre 50°C y 200°C a presión atmosférica.
22. Procedimiento según una cualquiera de las reivindicaciones anteriores, en el que la escoria salina obtenida en la etapa b), opcionalmente tras haber sido objeto de un proceso de secado, se calcina a una temperatura comprendida entre 200°C y 500 °C, a presión atmosférica.
23. Procedimiento según la reivindicación 22, en el que la escoria salina obtenida en la etapa b) se calcina durante un tiempo que oscila entre 0,1 y 100 horas.
24. Procedimiento según la reivindicación 1, en el que una escoria salina procedente de un horno rotatorio de eje fijo se pone en contacto con agua en condiciones de reflujo durante 4 horas, tras lo cual se separa la escoria del agua mediante centrifugación a 4500 r.p.m., se seca el sólido obtenido durante 16 horas a 60°C a presión atmosférica y se calcina a 500 °C durante 4 horas.
25. Una escoria salina, caracterizada por haber sido obtenida al someter la escoria salina procedente de un proceso de segunda fusión del aluminio al procedimiento de una cualquiera de las reivindicaciones 1 a 24.
26. Escoria según la reivindicación 25, en la que el volumen de poros varía entre 0,030 y 0,250 cm3/g y la superficie específica varía entre 30 y 200 m2/g.
27. Escoria según la reivindicación 26, en la que la superficie específica es superior a 52 m2/g.
28. Escoria según la reivindicación 25, obtenida al someter la escoria salina procedente de un proceso de segunda fusión del aluminio al procedimiento de la reivindicación 24.
29. Uso de una escoria salina según una cualquiera de las reivindicaciones 25 a 28 para la adsorción de cationes metálicos presentes en corrientes líquidas.
30. Uso según la reivindicación 29, para la adsorción de al menos un catión
2"!" 2"!" 2"!" 2 i
seleccionado del grupo de Cd , Cu , Zn y Pb o combinaciones de los mismos.
31. Uso según la reivindicación 30, en el que el pH es de 4-6.
32. Uso según la reivindicación 30 ó 31, en el que el catión es Pb2+.
33. Uso según una cualquiera de las reivindicaciones 29 a 32, en el que la escoria es la escoria de la reivindicación 28.
34. Uso según una cualquiera de las reivindicaciones 29 a 32, en el que una escoria obtenida por el procedimiento de una cualquiera de las reivindicaciones 1 a 24 ha sido previamente utilizada para la adsorción de cationes metálicos presentes en corrientes líquidas y se reutiliza tras ser sometida a un proceso de regeneración que comprende al menos cuatro ciclos de activación, en cada uno de los cuales la escoria utilizada se pone en contacto con disoluciones ácidas como en la etapa a) de la reivindicación 1, se separa de la disolución ácida, se lava con agua desionizada y se seca a temperatura entre 50 °C y 200 °C a presión atmosférica.
35. Uso según la reivindicación 34, en el que la disolución ácida es HNO3 a una concentración de 0,5 mol/litro y el secado se produce a 60 °C a presión atmosférica.
PCT/ES2011/070431 2010-06-23 2011-06-15 Modificación de escorias salinas de los procesos de segunda fusión del aluminio y uso como adsorbentes de los productos obtenidos WO2011161290A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11797651.4A EP2586525A1 (en) 2010-06-23 2011-06-15 Modification of saline slags from the processes of second smelting of aluminium and the use thereof as adsorbents of the products obtained

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201030970 2010-06-23
ES201030970A ES2350435B2 (es) 2010-06-23 2010-06-23 Modificación de escorias salinas de los procesos de segunda fusión del aluminio y uso como adsorbentes de los productos obtenidos.

Publications (1)

Publication Number Publication Date
WO2011161290A1 true WO2011161290A1 (es) 2011-12-29

Family

ID=43430951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070431 WO2011161290A1 (es) 2010-06-23 2011-06-15 Modificación de escorias salinas de los procesos de segunda fusión del aluminio y uso como adsorbentes de los productos obtenidos

Country Status (3)

Country Link
EP (1) EP2586525A1 (es)
ES (1) ES2350435B2 (es)
WO (1) WO2011161290A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197095B1 (ja) * 2016-12-14 2017-09-13 新日鉄住金エンジニアリング株式会社 被処理水中のリンの回収方法
EP3825426A1 (en) * 2019-11-22 2021-05-26 Befesa Aluminio, S.L. Process for transforming secondary aluminium oxide into alternative raw material and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368070A (en) * 1979-11-27 1983-01-11 A. Tonolli & C.S.P.A. Method for scrubbing the flues and for recovering _the salts in a process for the production of secondary aluminum
EP0537635A1 (en) * 1991-10-18 1993-04-21 CONTENTO TRADE di Cioffi Ilaria e C. S.A.S. Expansion agent for ceramic material, consisting of mixtures of wastes from aluminium production
CA2085056A1 (en) * 1992-12-10 1994-06-11 Edward J. Daniels Process to recycle aluminum salt cake waste and to convert aluminum oxide to hydrated aluminum
ES2223218B1 (es) * 2002-03-21 2006-06-01 Refineria Diaz, S.A. Procedimiento para el tratamiento, inertizacion y aglutinado de escorias de aluminio de segunda fusion en hornos no rotativos.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368070A (en) * 1979-11-27 1983-01-11 A. Tonolli & C.S.P.A. Method for scrubbing the flues and for recovering _the salts in a process for the production of secondary aluminum
EP0537635A1 (en) * 1991-10-18 1993-04-21 CONTENTO TRADE di Cioffi Ilaria e C. S.A.S. Expansion agent for ceramic material, consisting of mixtures of wastes from aluminium production
CA2085056A1 (en) * 1992-12-10 1994-06-11 Edward J. Daniels Process to recycle aluminum salt cake waste and to convert aluminum oxide to hydrated aluminum
ES2223218B1 (es) * 2002-03-21 2006-06-01 Refineria Diaz, S.A. Procedimiento para el tratamiento, inertizacion y aglutinado de escorias de aluminio de segunda fusion en hornos no rotativos.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAS ET AL.: "Production of eta-alumina from waste aluminium dross", MINERALS ENGINEERING, vol. 20, 2007, pages 252 - 258, XP005880787 *

Also Published As

Publication number Publication date
ES2350435A1 (es) 2011-01-24
EP2586525A1 (en) 2013-05-01
ES2350435B2 (es) 2011-06-13

Similar Documents

Publication Publication Date Title
Ghanim et al. Removal of vanadium from aqueous solution using a red mud modified saw dust biochar
Lin et al. Effect of pre-treatment of bentonite with sodium and calcium ions on phosphate adsorption onto zirconium-modified bentonite
Zhan et al. Role of zeolite's exchangeable cations in phosphate adsorption onto zirconium-modified zeolite
CN103212364B (zh) 一种铁锰复合氧化物及其制备方法和水体除砷的应用
Zhang et al. Ammonium removal from aqueous solution by zeolites synthesized from low-calcium and high-calcium fly ashes
Wang et al. Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes
Golder et al. Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation
Ravi et al. Benzene triamido-tetraphosphonic acid immobilized on mesoporous silica for adsorption of Nd3+ ions in aqueous solution
Karanac et al. Efficient multistep arsenate removal onto magnetite modified fly ash
CA2543958C (en) Process for reduction of inorganic contaminants from waste streams
Gil et al. Valorization of the saline slags generated during secondary aluminium melting processes as adsorbents for the removal of heavy metal ions from aqueous solutions
CN101119934A (zh) 制备羟基氧化铁的方法和含有羟基氧化铁的吸附材料
Carvalheiras et al. Metakaolin/red mud-derived geopolymer monoliths: Novel bulk-type sorbents for lead removal from wastewaters
Zhao et al. The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents
Çoruh et al. Adsorption of copper (II) ions on montmorillonite and sepiolite clays: equilibrium and kinetic studies
Agrawal et al. Systematic studies on adsorption of lead on sea nodule residues
WO2011161290A1 (es) Modificación de escorias salinas de los procesos de segunda fusión del aluminio y uso como adsorbentes de los productos obtenidos
JP2015521539A (ja) 流体の精製手段、その製造法、その利用法
WO2013136677A1 (ja) アンモニア性窒素及びリンの回収剤及びその製造方法
JP2005270933A (ja) 陰イオン吸着材、陰イオンの除去方法、陰イオン吸着材の再生方法および元素回収方法
CA3239484A1 (en) Regeneratable system for contaminant removal
JP2007117923A (ja) 陰イオン吸着材、その製造方法、陰イオンの除去方法、陰イオン吸着材の再生方法および元素回収方法
Khalid et al. Applicability of solid process residues as sorbents for the treatment of industrial wastewaters
Jeyaseelan et al. Microfabrication of covalent organic framework-based magnetic bio-ceramic beads for defluoridation of water
Assameur et al. Contribution to the removal study of Co2+ ions by acid-activated clay from Maghnia (Algeria): equilibrium and kinetic studies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011797651

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011797651

Country of ref document: EP