WO2011160293A1 - Écran thermique efficace pour four à monocristaux de silicium - Google Patents

Écran thermique efficace pour four à monocristaux de silicium Download PDF

Info

Publication number
WO2011160293A1
WO2011160293A1 PCT/CN2010/074285 CN2010074285W WO2011160293A1 WO 2011160293 A1 WO2011160293 A1 WO 2011160293A1 CN 2010074285 W CN2010074285 W CN 2010074285W WO 2011160293 A1 WO2011160293 A1 WO 2011160293A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat shield
single crystal
module
battery module
inner layer
Prior art date
Application number
PCT/CN2010/074285
Other languages
English (en)
Chinese (zh)
Inventor
张志强
黄振飞
黄强
袁为进
Original Assignee
常州天合光能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州天合光能有限公司 filed Critical 常州天合光能有限公司
Priority to PCT/CN2010/074285 priority Critical patent/WO2011160293A1/fr
Publication of WO2011160293A1 publication Critical patent/WO2011160293A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the invention relates to the technical field of photoelectric conversion material manufacturing equipment, in particular to a silicon single crystal furnace high efficiency heat screen.
  • the Czochralski method is a CZ straight-drawing single crystal method.
  • the polycrystalline silicon contained in the quartz crucible is melted by resistance heating and maintained at a temperature slightly higher than the melting point of silicon. Under the protection of an inert gas, the crystal is introduced and placed. Shoulder, shoulder, equal diameter growth, finishing, crystal removal, etc., complete the growth of silicon single crystal. Due to the higher melting point of silicon (1420 ° C), a large amount of electrical energy is required in the process of pulling a single crystal. Therefore, from the consideration of reducing energy consumption and arranging the gas flow field in the single crystal furnace, the single crystal thermal field has basically introduced a heat shield device. Compared to the open thermal field, energy consumption is greatly reduced and the life of the thermal field components is improved. At the same time, due to the introduction of the heat shield device, the longitudinal temperature gradient of the crystal is increased, the pulling speed is increased to some extent, the productivity is increased, and the cycle is shortened.
  • the conventional heat shield device is generally an inner and outer composite device, the outer layer is made of graphite or carbon/carbon composite material, and the inner layer is made of heat insulating material.
  • the average speed of the average is 0. 6 ⁇ 0. 9mm/min, the average speed is 0. 6 ⁇ 0. 9mm/min.
  • the above formula is the theoretical value of the crystal growth rate. It can be seen from the above formula that the larger the longitudinal temperature gradient of the crystal, the larger the crystal growth rate is 3 ⁇ 4 ⁇ . Due to the limitation of the maximum longitudinal temperature gradient that the heat shield can provide, the space for the rise in speed is very limited.
  • the technical problem to be solved by the present invention is:
  • the conventional heat shield is improved to realize the reuse of the high-temperature heat energy emitted from the surface of the ingot and to increase the pulling speed of the single crystal production.
  • a high-efficiency heat screen of a silicon single crystal furnace comprising an outer layer of a heat shield and an inner layer of a heat shield, filling a space between the outer layer of the heat shield and the inner layer of the heat shield Insulation material, a temperature difference battery module and a cold end module are arranged between the outer layer of the heat shield and the inner layer of the heat shield, and the cold end module is closely attached to the outer layer of the temperature difference battery module.
  • the temperature difference battery module is in close contact with the inner layer of the heat shield.
  • the cold end module is a coiled or tubular heat exchanger that uses liquid or gas as a coolant.
  • the coolant of the cold junction module is water or argon.
  • the cone angle of the thermoelectric cell module and the cold junction module is the same as or less than 5 degrees from the cone angle of the inner layer of the heat shield.
  • thermoelectric module and the cold junction module account for 20% and 80% of the total height of the thermal screen, and the thickness of the cold junction module is 10 30.
  • the distance between the lower edge of the cold junction module and the lower edge of the heat shield is 2 (T300m m
  • the invention has the beneficial effects that the inner layer of the heat shield and the cold end module constitute the high temperature and low temperature ends of the temperature difference battery module, so that electric energy can be output.
  • the surface temperature of the inner layer of the heat shield is lowered by heat conduction, the radiation heat exchange between the inner layer of the crystal rod and the heat shield is enhanced, and the longitudinal temperature gradient in the crystal rod is increased.
  • the growth rate of the crystal can be indirectly promoted. Under the premise of not affecting the crystal quality, the crystal pulling speed can be greatly improved, the production efficiency is improved, and the production efficiency is lowered. Cost.
  • the present invention is directed to a key part that affects the pulling rate, and provides a solution that can realize waste heat utilization and increase the longitudinal temperature gradient of the ingot and increase the pulling speed. It does not occupy the cavity space, does not affect the flow of gas in the cavity, and does not affect the appearance detection of the single crystal rod and the capture of the diameter control signal.
  • Figure 2 The present invention causes a change in the longitudinal temperature gradient in the ingot
  • a high-efficiency heat shield of a silicon single crystal furnace of the present invention comprises a heat shield outer layer 1, a heat shield inner layer 2, a heat insulating material 3, a temperature difference battery module 4, a cold end module 5, and a coolant pipe 7 , Temperature difference battery cable 8.
  • the temperature difference battery module 4 is disposed adjacent to the inner layer 2 of the heat shield, and the cold end module 5 is disposed after the temperature difference battery module 4, and the space between the cold end module 5 and the outer layer 1 of the heat shield is filled with the heat insulating material 3.
  • the surface temperature of the inner layer 2 of the heat shield is usually above 500 ° C.
  • the cold end module 5 serves as the cold end of the temperature difference battery module 4, and the high temperature region conducts heat to the low temperature region.
  • the partial heat is converted into electric energy by the temperature difference battery module 4, and the purpose of reusing waste heat is achieved.
  • the surface temperature of the inner layer 2 of the heat shield is also lowered, thereby contributing to enhancing the longitudinal temperature gradient inside the crystal and increasing the growth rate of the crystal.
  • the material of the heat shield inner layer 2 and the heat shield outer layer 1 may be any one of isostatic graphite, carbon/carbon composite material or metal molybdenum.
  • the cold end module 5 is a coil type or tubular heat exchanger which uses a liquid or a gas as a coolant, and has a truncated cone shape in cross section.
  • the cold end module 5 is internally provided with a coolant passage. In order to maintain the temperature required for the cold junction of the battery module 4.
  • the cold end module 5 has a thickness of 10 to 30 ⁇ .
  • the temperature difference battery module 4 and the cold end module 5 have the same taper angle as the inner layer 2 of the heat shield, and the height is 20% to 80% of the total height of the heat shield.
  • the present invention is placed on the heat shield support plate 6 to form a closed thermal field.
  • the flow rate of the coolant is adjusted by detecting the coolant outlet temperature and the set draw speed.
  • the temperature of the outer surface of the inner layer 2 of the heat shield is indirectly controlled to control the longitudinal temperature gradient of the crystal to match the set pull speed value.
  • Comparison 1 Comparison of longitudinal temperature gradients in the crystal.
  • the invention is applied in a single crystal furnace.
  • the longitudinal temperature in the crystal is compared from the crystal interface to the height of the crystal 500 ⁇ as shown in Fig. 2.
  • the longitudinal temperature gradient in the crystal rises from the original 3500 K/m to 6000 K/m, which is nearly doubled. If the coolant flow rate is increased and the wall temperature of the cold junction module is lowered, the longitudinal temperature gradient in the crystal will be lower and the crystal pulling speed will be higher.
  • the defects in the Czochralski crystal are basically formed during crystal growth and cooling, and are related to the growth rate and temperature gradient of the crystal interface. It is generally considered that the closer the V/G of the crystal interface is to the critical value, the better the crystal quality is. 00134cnT2/min. k ⁇ The value of the critical value is generally considered to be 0. 00134cnT2/min. k.
  • the range of the value of the V/G ratio of the crystallization interface is 0. 002 ⁇ 0. 003. It can be seen that, after applying the invention, after the crystal pulling speed is increased by 120%, the V/G value of the crystal interface does not increase but decreases. That is, after application of the present invention greatly improve the pulling rate, the quality of the crystal 41 no adverse to violence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un écran thermique efficace pour four à monocristaux de silicium, qui comporte une couche extérieure (1) de l'écran thermique, une couche intérieure (2) de l'écran thermique, un module (4) de batterie thermoélectrique, un module (5) de source froide et des matériaux isolants thermiques (3). Le module (4) de batterie thermoélectrique, de l'autre côté duquel est situé le module (5) de source froide, est placé de façon à s'accrocher à la couche intérieure (2) de l'écran thermique. L'espace entre le module (5) de source froide et la couche extérieure (1) est comblé par les matériaux isolants thermiques (3). Au cours de la traction du monocristal, la température de surface de la couche intérieure (2), qui fait fonction de source chaude du module (4) de batterie thermoélectrique, est généralement supérieure à 500°C et le module (5) de source froide est utilisé comme source froide du module (4) de batterie thermoélectrique. La chaleur est conduite de la zone à haute température jusqu'à la zone à basse température de telle façon qu'une chaleur dégagée puisse être réutilisée après avoir été en partie convertie en puissance électrique par le module (4) de batterie thermoélectrique. Pendant ce temps, la température de surface du côté intérieur de l'écran thermique est réduite sous l'action du module (5) de source froide, contribuant ainsi à l'augmentation du gradient longitudinal de température à l'intérieur du cristal, et donc à l'augmentation de la vitesse de croissance du cristal.
PCT/CN2010/074285 2010-06-23 2010-06-23 Écran thermique efficace pour four à monocristaux de silicium WO2011160293A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074285 WO2011160293A1 (fr) 2010-06-23 2010-06-23 Écran thermique efficace pour four à monocristaux de silicium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074285 WO2011160293A1 (fr) 2010-06-23 2010-06-23 Écran thermique efficace pour four à monocristaux de silicium

Publications (1)

Publication Number Publication Date
WO2011160293A1 true WO2011160293A1 (fr) 2011-12-29

Family

ID=45370835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074285 WO2011160293A1 (fr) 2010-06-23 2010-06-23 Écran thermique efficace pour four à monocristaux de silicium

Country Status (1)

Country Link
WO (1) WO2011160293A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316759A (zh) * 2014-07-02 2016-02-10 安徽旭特电子科技有限公司 一种带有内部水冷单晶炉用涂层热屏
CN115044974A (zh) * 2022-06-28 2022-09-13 晶科能源股份有限公司 一种低氧单晶炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316742A (en) * 1991-06-24 1994-05-31 Komatsu Electronic Metals Co., Ltd. Single crystal pulling apparatus
CN1608147A (zh) * 2001-03-23 2005-04-20 Memc电子材料有限公司 用于拉晶机的热屏蔽组件
CN101534077A (zh) * 2009-03-31 2009-09-16 浙江大学 太阳能温差发电装置
CN201312277Y (zh) * 2008-12-03 2009-09-16 河南久大电子电器有限公司 利用余热温差发电装置
CN201506845U (zh) * 2009-10-16 2010-06-16 常州天合光能有限公司 单晶炉用热屏
CN201506847U (zh) * 2009-09-29 2010-06-16 常州天合光能有限公司 单晶硅拉制两截可挂式热屏

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316742A (en) * 1991-06-24 1994-05-31 Komatsu Electronic Metals Co., Ltd. Single crystal pulling apparatus
CN1608147A (zh) * 2001-03-23 2005-04-20 Memc电子材料有限公司 用于拉晶机的热屏蔽组件
CN201312277Y (zh) * 2008-12-03 2009-09-16 河南久大电子电器有限公司 利用余热温差发电装置
CN101534077A (zh) * 2009-03-31 2009-09-16 浙江大学 太阳能温差发电装置
CN201506847U (zh) * 2009-09-29 2010-06-16 常州天合光能有限公司 单晶硅拉制两截可挂式热屏
CN201506845U (zh) * 2009-10-16 2010-06-16 常州天合光能有限公司 单晶炉用热屏

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316759A (zh) * 2014-07-02 2016-02-10 安徽旭特电子科技有限公司 一种带有内部水冷单晶炉用涂层热屏
CN115044974A (zh) * 2022-06-28 2022-09-13 晶科能源股份有限公司 一种低氧单晶炉
CN115044974B (zh) * 2022-06-28 2023-08-18 晶科能源股份有限公司 一种低氧单晶炉

Similar Documents

Publication Publication Date Title
CN103215633A (zh) 一种多晶硅的铸锭方法
CN103924293B (zh) 一种底部增强冷却装置及其冷却方法
CN103849928A (zh) 一种多片式导模法蓝宝石晶片生长工艺
Zhang et al. Nucleation and bulk growth control for high efficiency silicon ingot casting
CN202989351U (zh) 基于多加热器的铸锭炉热场结构
CN104131339A (zh) 一种多晶硅片的制备方法
CN208562590U (zh) 一种应用于单晶炉的冷却装置及单晶炉
CN103132142B (zh) 多晶硅锭及其制造方法
CN103420380A (zh) 电子束熔炼与定向凝固技术耦合制备多晶硅的方法及装置
CN102965727B (zh) 多晶硅锭及其铸造方法
CN103741210A (zh) 一种电子束熔炼多晶硅除氧与连续铸锭的方法及设备
CN103243392A (zh) 多晶硅铸锭炉与制备均匀细小晶粒多晶硅铸锭的方法
CN112301416A (zh) 一种单晶炉热屏导流筒
CN208667897U (zh) 一种可提升拉速的单晶硅连续生产结晶的单晶炉
WO2011160293A1 (fr) Écran thermique efficace pour four à monocristaux de silicium
CN106222735A (zh) 提高直拉单晶硅拉速的装置及方法
CN103420379B (zh) 电子束连续化熔炼制备太阳能级多晶硅的方法及其装置
TWI726505B (zh) 一種晶體生長爐的導流筒和晶體生長爐
CN103351002B (zh) 多晶硅定向凝固装置
CN203065635U (zh) 一种底部增强冷却装置
CN103882510A (zh) 一种提升单晶硅生长速度的导流筒
CN203021676U (zh) 一种提升单晶硅生长速度的导流筒
CN203144557U (zh) 一种晶体生长设备中双向强化气体冷却装置
CN103409789B (zh) 一种多晶硅定向凝固装置
CN213652720U (zh) 一种单晶炉热屏导流筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853436

Country of ref document: EP

Kind code of ref document: A1