WO2011158774A1 - Optical glass - Google Patents

Optical glass Download PDF

Info

Publication number
WO2011158774A1
WO2011158774A1 PCT/JP2011/063466 JP2011063466W WO2011158774A1 WO 2011158774 A1 WO2011158774 A1 WO 2011158774A1 JP 2011063466 W JP2011063466 W JP 2011063466W WO 2011158774 A1 WO2011158774 A1 WO 2011158774A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
sio
mass
optical glass
Prior art date
Application number
PCT/JP2011/063466
Other languages
French (fr)
Japanese (ja)
Inventor
聡子 此下
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN2011800296185A priority Critical patent/CN102947234A/en
Publication of WO2011158774A1 publication Critical patent/WO2011158774A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Definitions

  • the present invention relates to optical glass.
  • the refractive index nd is 1.
  • So-called BK type glass having an optical constant of 48 to 1.54 and an Abbe number ⁇ d of 59 to 67 is used.
  • molten glass is dropped from the tip of a nozzle to produce a glass droplet once, and then a preform glass is produced by grinding, polishing and washing.
  • a molten glass is rapidly cast to produce a glass block, which is similarly ground, polished and washed to produce a preform glass.
  • the so-called mold press molding method is widely used, in which the preform glass is heated to a softened state, pressed with a precision-processed mold, and the surface shape of the mold is transferred to the glass. Yes.
  • Patent Documents 1 to 5 show BK type glass compositions.
  • Japanese Unexamined Patent Publication No. 2000-53441 Japanese Unexamined Patent Publication No. 2000-247678 Japanese Unexamined Patent Publication No. 2005-104824 Japanese Laid-Open Patent Publication No. 5-1931979 Japanese Unexamined Patent Publication No. 2002-201037
  • the glass transition point of the glass disclosed in Patent Document 1 is as high as 550 ° C. or higher, and mass production by a press is difficult.
  • Patent Documents 2 to 5 disclose glass compositions having a glass transition point of 550 ° C. or less and excellent press mass productivity.
  • the glasses disclosed in Patent Documents 2 and 3 contain TiO 2 as an essential component in order to increase chemical durability.
  • TiO 2 may cause the glass to be colored and is not suitable for glass used for lens applications. It is.
  • TiO 2 also makes the glass highly viscous. For this reason, the clarity of glass deteriorates and a large amount of Sb 2 O 3 is often required as a fining agent.
  • the glass disclosed in Patent Document 4 has a high viscosity at 1250 to 1300 ° C., and there is a possibility that a method of forming droplet glass by spontaneously dropping molten glass from a nozzle may not be adopted.
  • the less Al 2 O 3, chemical durability such as acid resistance tends to be lower.
  • the total amount of B 2 O 3 and the alkali component is as large as 37% or more, so there is a concern that the chemical durability is low.
  • the object of the present invention is a low refractive index and low dispersion (specifically, a refractive index nd of 1.48 to 1) having a low glass transition point, good clarity and excellent chemical durability. And an optical glass having an Abbe number ⁇ d of 59 to 67).
  • the optical glass of the present invention is, by mass%, SiO 2 45.5 to 70%, B 2 O 3 10 to 44%, Al 2 O 3 7.2 to 20%, TiO 2 0 to 7%, Na 2 O. 1-20%, Li 2 O 0-9%, R 2 O 3-30% (R 2 O is the total amount of Na 2 O, Li 2 O and K 2 O), ZrO 2 0-2%, Sb 2 O 3 0 to less than 0.1%, (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is 0.16 to 0.80 and is substantially free of PbO To do.
  • substantially free of PbO means that PbO is not intentionally added to the glass, and does not mean that unavoidable impurities are completely eliminated. More objectively, it means that the content of PbO including impurities is 0.01% or less.
  • a component defined as “0 to” means “0%”, that is, it may not be included at all.
  • the refractive index nd is preferably 1.48 to 1.54 and the Abbe number ⁇ d is 59 to 67.
  • the glass transition point is preferably 530 ° C. or lower.
  • the glass of the present invention is preferably used for mold press molding.
  • the method for producing an optical glass of the present invention is a method for producing the glass, characterized in that sulfate is used as a fining agent.
  • the clarity of the glass can be improved, and an optical glass with better foam quality can be produced.
  • the amount of sulfate added is preferably 5% by mass or less with respect to 100% by mass of the glass raw material.
  • the optical glass of the present invention can achieve an optical constant of low refractive index and low dispersion used for an optical lens of an optical pickup lens of various optical disk systems such as a photographing lens of a general digital camera or a video camera.
  • a refractive index nd of 1.48 to 1.54 and an Abbe number ⁇ d of 59 to 67 or more can be easily achieved.
  • From The possible high-temperature viscosity is low, it is possible to clear one less than wt% Sb 2 O 3.
  • the glass transition point is low and the press temperature can be lowered, the glass component is hardly volatilized, and the mold accuracy is not lowered, and the mold is not deteriorated or contaminated.
  • the weather resistance is good, the physical properties are not deteriorated and the surface is not deteriorated during the production process or use of the product. Therefore, the optical glass of the present invention is excellent in mass productivity of preform glass.
  • the optical glass of the present invention SiO 2 45.5 ⁇ 70% by mass%, B 2 O 3 10 ⁇ 44%, Al 2 O 3 7.2 ⁇ 20%, TiO 2 0 ⁇ 7%, Na 2 O 1 -20%, Li 2 O 0-9%, R 2 O 3-30% (R 2 O is the total amount of Na 2 O, Li 2 O and K 2 O), ZrO 2 0-2%, Sb 2 O 3 0 ⁇ less than 0.1%, (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2) is SiO 2 -B 2 O 3 -Al 2 O having a composition of 0.16 to 0.80 It is a 3 series glass. Moreover, since a PbO component is an environmentally unpreferable component, it does not contain substantially.
  • SiO 2 and Al 2 O 3 function to lower the refractive index and Abbe number of glass.
  • B 2 O 3 and Na 2 O have a function of increasing the Abbe number.
  • R 2 O and B 2 O 3 have the effect of reducing the viscosity.
  • the weather resistance tends to deteriorate and the mass productivity tends to decrease.
  • Al 2 O 3 and SiO 2 have the effect of improving the weather resistance, but deteriorate the clarity because the glass is made highly viscous. Therefore, in the present invention, (a total amount of Al 2 O 3 amount and SiO 2 amount), (B 2 O 3 amount and R 2 O amount) in order to achieve both low viscosity of glass and prevention of deterioration of weather resistance.
  • the ratio of (total amount) (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is adjusted to 0.16 to 0.80 by mass ratio. When this value is in the range of 0.16 to 0.80, it is possible to obtain weather resistance excellent in mass productivity while keeping the viscosity low. If (B 2 O 3 + R 2 O) / (SiO 2 + Al 2 O 3 ) is in the range of 0.40 to 0.75, it becomes easy to obtain a glass particularly excellent in weather resistance.
  • R 2 O and B total amount of 2 O 3 increases the chemical durability of the glass decreases.
  • the total amount of these components exceeds 37%, even when (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is adjusted to a mass ratio in the range of 0.16 to 0.80, It becomes difficult to obtain good weather resistance. Therefore, the total amount of B 2 O 3 and R 2 O is preferably 37% or less.
  • the content of SiO 2 is set to 45.5% or more, preferably 47% or more, more preferably 50%. Is done.
  • the content of SiO 2 should be set to 70% or less, preferably 65% or less, more preferably 60% or less, still more preferably 59% or less, and particularly 58% or less.
  • B 2 O 3 has the effect of increasing the Abbe number, lowering the viscosity of the glass, and further lowering the glass transition point.
  • chemical durability, particularly acid resistance is significantly deteriorated.
  • volatilization during the press increases and the press die is deteriorated.
  • the content of B 2 O 3 is limited to 10 to 44%, preferably 12 to 40%, more preferably 15 to 35%, still more preferably 16 to 25%, and particularly preferably 17 to 22%. Should.
  • Al 2 O 3 is an effective component for enhancing chemical durability.
  • a highly alkali-containing glass containing 13% or more of R 2 O can improve acid resistance, water resistance and weather resistance.
  • the content of Al 2 O 3 is 7.2 to 20%, preferably 7.5 to 18%, more preferably 8 to 15%, and particularly preferably 8.5 to 11%.
  • Na 2 O, Li 2 O, and K 2 O are components that lower the high-temperature viscosity of glass to improve clarity and lower the glass transition point. Furthermore, there is an effect of lowering the refractive index.
  • the content of R 2 O representing the total amount of alkali metal oxides is 3% or more, preferably 5% or more, 8% or more, 10% or more, 13% or more. It is set to 14.5% or more, particularly preferably 15% or more.
  • the content of R 2 O should be set to 30% or less, preferably 25% or less, more preferably less than 18%.
  • Na 2 O has an effect of lowering the high temperature viscosity, and is an essential component for obtaining excellent clarity. It is also effective for lowering the glass transition point, and the press temperature can be lowered.
  • the content of Na 2 O is set to 3% or more, preferably 6% or more, particularly preferably 7% or more. Weather resistance is lowered and the content of Na 2 O is large. Also, it volatilizes during pressing and contaminates the mold. For this reason, the content of Na 2 O should be set to 20% or less, preferably 15% or less, more preferably 12% or less, and particularly preferably 9.5% or less.
  • Li 2 O is not an essential component, but it is desirable to contain 1% or more, particularly 2.5% or more.
  • Li 2 when the content of O is too large tends to weather resistance is deteriorated.
  • the content of Li 2 O exceeds 9% even if (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is adjusted to 0.16 to 0.80 in terms of mass ratio, Durability tends to decrease, and weather resistance deteriorates significantly. Further, in the glass of the present invention, the refractive index is unduly raised. For these reasons, the content of Li 2 O should be limited to 9% or less, further 7% or less, and particularly 5% or less.
  • K 2 O has the effect of lowering the high temperature viscosity of the glass and improving the clarity, like Na 2 O and Li 2 O. Further lowering the viscosity without changing the refractive index as compared to Na 2 O and Li 2 O, has the effect of lowering the glass transition point.
  • a preferable content of K 2 O is 0 to 10%, more preferably 1 to 8%, still more preferably 2 to 7%, and particularly preferably 3 to 5.5%.
  • the content of ZrO 2 is 2% or less. When the content of ZrO 2 exceeds 2%, the refractive index becomes too high to obtain a desired refractive index, and the value of (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) Even if it is 0.16 or more, it becomes difficult to sufficiently reduce the viscosity of the glass and the clarity is deteriorated, and it is difficult to make the glass transition point 530 ° C. or less.
  • the content of ZrO 2 is less than 1%. In addition, it is better not to contain ZrO 2 unless there is a special circumstance in which ZrO 2 should be used.
  • the content of Sb 2 O 3 is 0 to less than 0.1%.
  • Sb 2 O 3 has an effect of defoaming, and also has an effect of suppressing coloring due to Pt ions (mixed in the glass as impurities by several ppm).
  • Pt ions mixed in the glass as impurities by several ppm.
  • the content of Sb 2 O 3 is large, the glass surface becomes clouded during pressing.
  • Sb 2 O 3 has a strong oxidizing power, so if its amount is too large, it will oxidize metals such as Pt and Rh used in the melting vessel, resulting in a decrease in mass productivity.
  • the preferred content of Sb 2 O 3 is 0 to 0.09%, in particular 0 to 0.08%.
  • various components other than the above components can be added. Adding for example TiO 2, ZnO, MgO, CaO , BaO, SrO, and La 2 O 3, Gd 2 O 3, Y 2 O 3, Nb 2 O 5, Ta 2 O 5, GeO 2, P 2 O 5 , etc. be able to.
  • the content of TiO 2 is preferably 7% or less. When the content of TiO 2 is too large, the glass is remarkably colored, or the refractive index becomes too high, making it difficult to obtain a desired refractive index. Moreover, it becomes difficult to make a glass transition point 530 degrees C or less.
  • the content of TiO 2 exceeds 7%, the viscosity of the glass is sufficiently lowered even if the value of (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is 0.16 or more. It becomes difficult to clarify.
  • the content of TiO 2 is 0.1% or more, the acid resistance of the glass can be improved.
  • the content of TiO 2 is 2% or less, particularly less than 1%. It is preferable. Note Without special circumstances should use TiO 2, it is better not contain in order to reliably avoid coloration and clarity problems.
  • ZnO, MgO, CaO, BaO and SrO are components that increase the refractive index and can be used as adjustment of optical constants. However, if the content of each component exceeds 5%, the weather resistance decreases.
  • the preferred range of each component is 0 to 3%, especially 0 to 1%.
  • La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 are components that increase the refractive index while maintaining the Abbe number, and can be used as adjustment of optical constants.
  • the content of each component exceeds 5%, it becomes difficult to make the refractive index nd 1.54 or less.
  • the preferred range for each component is less than 1% each.
  • Nb 2 O 5 and Ta 2 O 5 are components that remarkably increase the refractive index, and can be used for adjusting the optical constant. If the content of each component exceeds 2%, it is difficult to make the refractive index nd 1.54 or less. The preferred range for each component is less than 1% each.
  • GeO 2 can be added for the purpose of increasing the stability and refractive index of the glass.
  • GeO 2 is a rare raw material, if the amount used is increased, the raw material cost increases. Therefore, even if GeO 2 is used, its content is preferably small, specifically 0 to 3%, more preferably 0 to 1%, particularly preferably 0 to 0.001%.
  • P 2 O 5 can be added for the purpose of adjusting the glass transition point and viscosity characteristics. However, since the weather resistance of glass falls or devitrification resistance deteriorates, it is not preferable to contain a large amount. Therefore, even if P 2 O 5 is used, its content is preferably small, specifically 0 to 10%, more preferably 0 to 1%. Note it is preferable not contain Without special circumstances should be used P 2 O 5.
  • a clarifying agent can be added to improve clarity.
  • sulfates such as sodium sulfate, potassium sulfate, calcium sulfate, barium sulfate, strontium sulfate, and aluminum sulfate is effective.
  • clarified bubbles are released at 1200 to 1500 ° C., and the glass can be clarified effectively.
  • SO 2 gas is generated during pressing to contaminate the mold, or bubbles remain in the glass due to excessive clarification.
  • the amount of sulfate added is preferably 5% by mass or less, more preferably 1% by mass or less, based on 100% by mass of the glass raw material.
  • the amount of SO 3 in the obtained glass composition is preferably 0.005 to 0.5% by mass, particularly 0.01 to 0.3% by mass.
  • SnO 2 or CeO 2 as a clarifier other than sulfate is also conceivable.
  • SnO 2 may cause whitening of the glass surface at the time of pressing in the same manner as Sb 2 O 3 , so addition of a large amount should be avoided.
  • the SnO 2 content is preferably less than 0.1%.
  • CeO 2 may be colored, so it should be avoided to add a large amount.
  • the CeO 2 content is preferably less than 0.1%.
  • the total amount of Sb 2 O 3 , SnO 2 and CeO 2 is preferably less than 0.1% and 0.001% or more.
  • the Cl component is apt to volatilize from the glass during pressing, and it is not preferable to contain it substantially because it significantly accelerates the deterioration of the press mold.
  • “substantially free of As 2 O 3 ”, “free of F” and “substantially free of Cl” means that these components are not intentionally added to the glass. It does not mean that unavoidable impurities are completely eliminated. More objectively, it means that the content of these components including impurities is 0.00001% or less for As 2 O 3 , 0.01% or less for F, and 0.01% or less for Cl. To do.
  • Cu and Ag are components for coloring the glass, it is preferable not to contain them.
  • the optical glass having the above composition can easily achieve optical constants having a refractive index nd of 1.48 to 1.54 and an Abbe number ⁇ d of 59 to 67.
  • a glass having an optical constant in the range of refractive index nd of 1.50 to 1.52 and Abbe number ⁇ d of 60 to 63 can be obtained.
  • the optical glass having the above composition can easily achieve a glass transition point of 530 ° C. or lower. Furthermore, a glass transition point of 520 ° C. or lower, particularly 510 ° C. or lower can be easily achieved.
  • the viscosity of the glass corresponding to 1300 ° C. is preferably 10 2.0 dPa ⁇ s or less, more preferably 10 1.9 dPa ⁇ s or less. If the viscosity at 1300 ° C. is in the above range, the bubbles contained in the glass are likely to rise, so that clarification becomes easy.
  • the internal transmittance ( ⁇ 330 nm ) at 330 nm with a thickness of 10 mm is 85% or more, more preferably 88% or more. If the internal transmittance is in the above range, high transmittance can be maintained even with a large-diameter lens. In order to obtain the internal transmittance, it can be achieved by selecting an oxide with a small amount of Fe 2 O 3 mixed in the raw material manufacturing process. For example, MgO and CaO raw materials often contain Fe 2 O 3 as impurities. In such cases, it is preferable to avoid using MgO or CaO. Fe 2 O 3 is preferably 40 ppm or less.
  • glass raw materials are prepared so as to have a desired composition and then melted in a glass melting furnace.
  • the melting temperature of the glass is preferably 1150 ° C. or higher. Furthermore, 1200 degreeC or more is preferable, and it is especially preferable that it is 1250 degreeC or more. From the viewpoint of preventing glass coloring due to Pt melting from platinum metal constituting the melting vessel, the melting temperature is preferably 1450 ° C. or lower, more preferably 1400 ° C. or lower, particularly preferably 1350 ° C. or lower, most preferably 1300 ° C. The following is preferred.
  • the melting time is preferably 2 hours or more, and more preferably 3 hours or more.
  • the melting time is preferably within 8 hours, particularly within 5 hours.
  • the depth of the glass melt in the melting vessel is preferably 30 mm or more, particularly 50 mm or more, because the productivity becomes worse if it is too shallow. On the other hand, if it is too deep, it takes time for the bubbles to rise, and therefore it is 1 m or less, preferably 0.5 m or less.
  • molten glass is dropped from the tip of the nozzle to once produce droplet glass to obtain preform glass.
  • a molten glass is rapidly cast to produce a glass block, which is then ground, polished and washed to obtain a preform glass.
  • This molding method is called a mold press molding method and is widely used. In this way, an optical pickup lens and a photographing lens can be obtained.
  • optical glass of the present invention will be described in detail based on examples.
  • Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 11), and Table 4 shows comparative examples (samples No. 12 to 16).
  • glass raw materials carbonates and oxides prepared to have the compositions shown in Tables 1 to 4 were put in a platinum crucible and melted at 1300 ° C. for 2 hours, respectively.
  • soda ash was used as the Na 2 O raw material.
  • the molten glass was poured out on the carbon plate, cooled and solidified, and then annealed to prepare a sample. Various characteristics of the sample thus obtained were evaluated. The results are shown in each table.
  • the refractive index nd is indicated by a measured value at the d-line (wavelength: 587.6 nm) of a helium lamp using a refractometer (Karnew Kashiwa KPR-200).
  • Abbe's number ⁇ d was measured using the refractometer (Karnew KPR-200), d line, hydrogen lamp F line (wavelength: 486.1 nm), and hydrogen lamp C line (wavelength: 656.3 nm). Refractive indexes were respectively measured, and the values thereof were defined as ⁇ (nd-1) / (nF-nC) ⁇ when nd, nF, and nC were used.
  • the glass transition point (Tg) was determined from the intersection of the low temperature line and the high temperature line in the thermal expansion curve.
  • Water resistance was evaluated according to the measuring method (powder method) of JOGIS chemical durability.
  • Acid resistance was evaluated according to the measuring method (powder method) of JOGIS chemical durability.
  • the weather resistance is obtained by observing the surface after being kept at 60 ° C.-90% RH for 24 hours. “O” indicates that the surface is not cloudy, and “X” indicates that the cloudiness is observed. did.
  • the clarity was evaluated as follows. First, the once formed glass was pulverized and classified into a pulverized glass of 2 mm or less. Subsequently, crushed glass was put into a 300 cc platinum crucible, and the glass amount was adjusted so that the glass height was 30 mm. Next, after holding at 1300 ° C. for 1 hour in an electric furnace, a sample molded into a plate shape having a thickness of 10 mm was mirror-polished, and parallel light was incident from the side of the sample to count bubbles.
  • the viscosity of the glass corresponding to 1300 ° C. was measured by a platinum ball pulling method.
  • each of the samples 1 to 11 had a refractive index nd of 1.485 to 1.530 and an Abbe number ⁇ d of 57.8 to 64.1.
  • the glass transition point was 490 to 530 ° C.
  • the viscosity at 1300 ° C. was 10 1.2 to 10 2.0 dPa ⁇ s, and the number of bubbles in the glass was 0 to 4 per 1 cm 3 .
  • the JOGIS water resistance (powder method) was 1 to 3 and the weather resistance evaluation was good.
  • Nos. 12, 13, and 15 had a viscosity at 1300 ° C. of 10 2.2 to 10 3.2 dPa ⁇ s, and 5 to 20 bubbles / cm 3 remained, so the clarity was low.
  • No. No. 15 has a glass transition point as high as 560 ° C., and mold press molding is expected to be difficult.
  • No. No. 14 had a JOGIS water resistance (powder method) of grade 5, and the weather resistance was poor.
  • No. No. 16 had little Al 2 O 3 , JOGIS acid resistance (powder method) was grade 4, and mass productivity was poor.
  • the amount of SO 3 in the glass was measured by ion chromatography after alkali melting of the glass and ion exchange of the liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The disclosed optical glass has a low glass transition temperature (Tg) and exhibits high clarity, excellent chemical durability, a low index of refraction, and low dispersion (specifically, an index of refraction (nd) between 1.48 and 1.54 and an Abbe number (νd) between 59 and 67). Said optical glass is characterized by containing essentially no PbO and containing, by mass, 45.5-70% SiO2, 10-44% B2O3, 7.2-20% Al2O3, 0-7% TiO2, 1-20% Na2O, 0-9% Li2O, 0-2% ZrO2, and less than 0.1% Sb2O3, with the sum of the amounts of Na2O, Li2O, and K2O being between 3% and 30% and the sum of the amounts of B2O3, Na2O, Li2O, and K2O divided by the sum of the amounts of Al2O3 and SiO2 being between 0.16 and 0.80.

Description

光学ガラスOptical glass
 本発明は光学ガラスに関するものである。 The present invention relates to optical glass.
 CD、MD、DVDその他各種光ディスクシステムの光ピックアップレンズ、デジタルカメラ、ビデオカメラ、カメラ付き携帯電話機等の撮像用レンズ、光通信に使用される送受信用レンズ等の用途では、屈折率ndが1.48~1.54、アッベ数νdが59~67の光学定数を持つ、いわゆるBKタイプのガラスが使用されている。 For applications such as optical pickup lenses for CD, MD, DVD and other optical disk systems, imaging lenses for digital cameras, video cameras, camera-equipped mobile phones, and transmission / reception lenses used for optical communication, the refractive index nd is 1. So-called BK type glass having an optical constant of 48 to 1.54 and an Abbe number νd of 59 to 67 is used.
 これらの撮影用レンズに用いられるガラスは、まず、溶融ガラスをノズルの先端から滴下して一旦液滴状ガラスを作製し、研削、研磨、洗浄してプリフォームガラスを作製する。または溶融ガラスを急冷鋳造して一旦ガラスブロックを作製し、同じく研削、研磨、洗浄してプリフォームガラスを作製する。次にプリフォームガラスを軟化状態になるように加熱しながら、精密加工を施した金型で加圧成形し、金型の表面形状をガラスに転写させる、いわゆるモールドプレス成形法が広く用いられている。 For the glass used in these photographing lenses, first, molten glass is dropped from the tip of a nozzle to produce a glass droplet once, and then a preform glass is produced by grinding, polishing and washing. Alternatively, a molten glass is rapidly cast to produce a glass block, which is similarly ground, polished and washed to produce a preform glass. Next, the so-called mold press molding method is widely used, in which the preform glass is heated to a softened state, pressed with a precision-processed mold, and the surface shape of the mold is transferred to the glass. Yes.
 特許文献1~5にはBKタイプのガラス組成が呈示されている。 Patent Documents 1 to 5 show BK type glass compositions.
日本国特開2000-53441号公報Japanese Unexamined Patent Publication No. 2000-53441 日本国特開2000-247678号公報Japanese Unexamined Patent Publication No. 2000-247678 日本国特開2005-104824号公報Japanese Unexamined Patent Publication No. 2005-104824 日本国特開平5-193979号公報Japanese Laid-Open Patent Publication No. 5-1931979 日本国特開2002-201037号公報Japanese Unexamined Patent Publication No. 2002-201037
 特許文献1に開示されているガラスのガラス転移点は550℃以上と高く、プレスによる量産が困難である。 The glass transition point of the glass disclosed in Patent Document 1 is as high as 550 ° C. or higher, and mass production by a press is difficult.
 一方、特許文献2~5にはガラス転移点が550℃以下であり、プレス量産性に優れるガラス組成が開示されている。ところで特許文献2、3に開示のガラスは、化学耐久性を上げるためにTiOを必須成分として含有するが、TiOはガラスを着色させる恐れがあり、レンズ用途で使用されるガラスには不向きである。またTiOはガラスを高粘性化する。このため、ガラスの清澄性が悪化し、清澄剤として多量のSbを必要とする場合が多い。 On the other hand, Patent Documents 2 to 5 disclose glass compositions having a glass transition point of 550 ° C. or less and excellent press mass productivity. The glasses disclosed in Patent Documents 2 and 3 contain TiO 2 as an essential component in order to increase chemical durability. However, TiO 2 may cause the glass to be colored and is not suitable for glass used for lens applications. It is. TiO 2 also makes the glass highly viscous. For this reason, the clarity of glass deteriorates and a large amount of Sb 2 O 3 is often required as a fining agent.
 特許文献4に開示されたガラスは1250~1300℃における粘性が高く、溶融ガラスをノズルから自然滴下して液滴状ガラスを成型する方法を採用できないおそれがある。またAlが少なく、耐酸性などの化学的耐久性が低い傾向がある。特許文献5に開示されているガラス組成は、Bとアルカリ成分の合量が37%以上と多いので、化学耐久性が低いことが懸念される。 The glass disclosed in Patent Document 4 has a high viscosity at 1250 to 1300 ° C., and there is a possibility that a method of forming droplet glass by spontaneously dropping molten glass from a nozzle may not be adopted. The less Al 2 O 3, chemical durability such as acid resistance tends to be lower. In the glass composition disclosed in Patent Document 5, the total amount of B 2 O 3 and the alkali component is as large as 37% or more, so there is a concern that the chemical durability is low.
 本発明の目的は上記課題に鑑み、ガラス転移点が低く、しかも清澄性が良好であり、かつ化学耐久性に優れた低屈折率低分散(具体的には屈折率ndが1.48~1.54、アッベ数νdが59~67)の光学ガラスを提供することである。 In view of the above problems, the object of the present invention is a low refractive index and low dispersion (specifically, a refractive index nd of 1.48 to 1) having a low glass transition point, good clarity and excellent chemical durability. And an optical glass having an Abbe number νd of 59 to 67).
 本発明の光学ガラスは、質量%で、SiO 45.5~70%、B  10~44%、Al  7.2~20%、TiO 0~7%、NaO  1~20%、LiO  0~9%、RO 3~30%(ROはNaO、LiO及びKOの合量)、ZrO 0~2%、Sb0~0.1%未満、(B+RO)/(Al+SiO)が0.16~0.80であり、実質的にPbOを含まないことを特徴とする。なお本発明において、「実質的にPbOを含まない」とは、PbOを意図的にガラス中に添加しないという意味であり、不可避的不純物まで完全に排除するということを意味するものではない。より客観的には、不純物を含めたPbOの含有量が、0.01%以下であるということを意味する。また本発明における「含有する」という用語に関し、「0~」と規定された成分については、「0%」即ち、全く含まない場合もあり得ることを意味している。 The optical glass of the present invention is, by mass%, SiO 2 45.5 to 70%, B 2 O 3 10 to 44%, Al 2 O 3 7.2 to 20%, TiO 2 0 to 7%, Na 2 O. 1-20%, Li 2 O 0-9%, R 2 O 3-30% (R 2 O is the total amount of Na 2 O, Li 2 O and K 2 O), ZrO 2 0-2%, Sb 2 O 3 0 to less than 0.1%, (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is 0.16 to 0.80 and is substantially free of PbO To do. In the present invention, “substantially free of PbO” means that PbO is not intentionally added to the glass, and does not mean that unavoidable impurities are completely eliminated. More objectively, it means that the content of PbO including impurities is 0.01% or less. In addition, regarding the term “containing” in the present invention, a component defined as “0 to” means “0%”, that is, it may not be included at all.
 本発明においては、質量%で、SiO 47~60%、B  10~35%、Al  7.2~20%、TiO 0~2%、NaO  1~20%、LiO  0~9%、RO  3~30%(ROはNaO、LiO及びKOの合量)、ZrO 0~2%、Sb0~0.1%未満、(B+RO)/(Al+SiO)が0.16~0.80であり、実質的にPbOを含有しないことが好ましい。 In the present invention, by mass, SiO 2 47 to 60%, B 2 O 3 10 to 35%, Al 2 O 3 7.2 to 20%, TiO 2 0 to 2%, Na 2 O 1 to 20% Li 2 O 0-9%, R 2 O 3-30% (R 2 O is the total amount of Na 2 O, Li 2 O and K 2 O), ZrO 2 0-2%, Sb 2 O 3 0- It is preferably less than 0.1%, (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) being 0.16 to 0.80, and substantially not containing PbO.
 本発明においては、さらにSOを0.005~0.5質量%含有することが好ましい。 In the present invention, it is preferable to further contain 0.003 to 0.5% by mass of SO 3 .
 上記構成によれば、ガラスの清澄性が改善されることから、より高い泡品位を達成することができる。 According to the above configuration, since the clarity of the glass is improved, higher foam quality can be achieved.
 本発明においては、屈折率nd 1.48~1.54、アッベ数νd 59~67であることが好ましい。 In the present invention, the refractive index nd is preferably 1.48 to 1.54 and the Abbe number νd is 59 to 67.
 上記構成によれば、BKタイプのガラスとして使用可能となる。 According to the above configuration, it can be used as BK type glass.
 本発明においては、ガラス転移点が530℃以下であることが好ましい。 In the present invention, the glass transition point is preferably 530 ° C. or lower.
 上記構成によれば、優れたプレス量産性を得ることができる。 According to the above configuration, excellent press mass productivity can be obtained.
 本発明のガラスは、モールドプレス成形用であることが好ましい。 The glass of the present invention is preferably used for mold press molding.
 本発明の光学ガラスの製造方法は、上記ガラスを製造する方法であって、清澄剤として硫酸塩を使用することを特徴とする。 The method for producing an optical glass of the present invention is a method for producing the glass, characterized in that sulfate is used as a fining agent.
 上記構成によれば、ガラスの清澄性が向上し、より泡品位に優れた光学ガラスを製造することができる。 According to the above configuration, the clarity of the glass can be improved, and an optical glass with better foam quality can be produced.
 本発明の方法においては、硫酸塩の添加量が、ガラス原料100質量%に対して5質量%以下であることが好ましい。 In the method of the present invention, the amount of sulfate added is preferably 5% by mass or less with respect to 100% by mass of the glass raw material.
 本発明の光学ガラスは、一般のデジタルカメラやビデオカメラの撮影用レンズ等、各種光ディスクシステムの光ピックアップレンズの光学レンズに使用される低屈折率低分散の光学定数を達成できる。特に1.48~1.54の屈折率nd、59~67以上のアッベ数νdを容易に達成することができる。また高温粘性が低いことから、1質量%未満のSbで清澄することが可能である。さらにガラス転移点が低くプレス温度を下げることができることから、ガラス成分が揮発し難く、金型精度の低下および金型の劣化や汚染が生じない。しかも耐候性が良好であるため、製造工程や製品の使用中に物性の劣化や表面の変質を起こすことがない。それゆえ本発明の光学ガラスはプリフォームガラスの量産性に優れている。 The optical glass of the present invention can achieve an optical constant of low refractive index and low dispersion used for an optical lens of an optical pickup lens of various optical disk systems such as a photographing lens of a general digital camera or a video camera. In particular, a refractive index nd of 1.48 to 1.54 and an Abbe number νd of 59 to 67 or more can be easily achieved. From The possible high-temperature viscosity is low, it is possible to clear one less than wt% Sb 2 O 3. Further, since the glass transition point is low and the press temperature can be lowered, the glass component is hardly volatilized, and the mold accuracy is not lowered, and the mold is not deteriorated or contaminated. Moreover, since the weather resistance is good, the physical properties are not deteriorated and the surface is not deteriorated during the production process or use of the product. Therefore, the optical glass of the present invention is excellent in mass productivity of preform glass.
 本発明の光学ガラスは、質量%でSiO 45.5~70%、B  10~44%、Al 7.2~20%、TiO 0~7%、NaO  1~20%、LiO  0~9%、RO  3~30%(ROはNaO、LiO及びKOの合量)、ZrO 0~2%、Sb0~0.1%未満、(B+RO)/(Al+SiO)が0.16~0.80の組成を有するSiO-B-Al系ガラスである。またPbO成分は環境上好ましくない成分であるため実質的に含有しない。 The optical glass of the present invention, SiO 2 45.5 ~ 70% by mass%, B 2 O 3 10 ~ 44%, Al 2 O 3 7.2 ~ 20%, TiO 2 0 ~ 7%, Na 2 O 1 -20%, Li 2 O 0-9%, R 2 O 3-30% (R 2 O is the total amount of Na 2 O, Li 2 O and K 2 O), ZrO 2 0-2%, Sb 2 O 3 0 ~ less than 0.1%, (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2) is SiO 2 -B 2 O 3 -Al 2 O having a composition of 0.16 to 0.80 It is a 3 series glass. Moreover, since a PbO component is an environmentally unpreferable component, it does not contain substantially.
 上記成分のうち、SiO及びAlはガラスの屈折率とアッベ数を低下させる働きがある。一方、B及びNaOはアッベ数を高める働きがある。 Of the above components, SiO 2 and Al 2 O 3 function to lower the refractive index and Abbe number of glass. On the other hand, B 2 O 3 and Na 2 O have a function of increasing the Abbe number.
 また上記成分のうちROとBは粘性を低下させる効果がある。ところがROとBを多く含有させると耐候性が悪化し、量産性が低下する傾向がある。一方、AlやSiOは耐候性を向上させる効果があるが、ガラスを高粘性にすることから清澄性を悪化させる。そこで本発明では、ガラスの低粘性化と耐候性悪化防止を両立させることを目的として、(Al量とSiO量の合量)と(B量とRO量の合量)の比率(B+RO)/(Al+SiO)を質量比で0.16~0.80に調節している。この値が0.16~0.80の範囲であれば、粘性を低く抑えながら量産性に優れた耐候性を得ることが可能になる。(B+RO)/(SiO+Al)が0.40~0.75の範囲であれば特に耐候性に優れたガラスを得やすくなる。 Of the above components, R 2 O and B 2 O 3 have the effect of reducing the viscosity. However, if a large amount of R 2 O and B 2 O 3 is contained, the weather resistance tends to deteriorate and the mass productivity tends to decrease. On the other hand, Al 2 O 3 and SiO 2 have the effect of improving the weather resistance, but deteriorate the clarity because the glass is made highly viscous. Therefore, in the present invention, (a total amount of Al 2 O 3 amount and SiO 2 amount), (B 2 O 3 amount and R 2 O amount) in order to achieve both low viscosity of glass and prevention of deterioration of weather resistance. The ratio of (total amount) (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is adjusted to 0.16 to 0.80 by mass ratio. When this value is in the range of 0.16 to 0.80, it is possible to obtain weather resistance excellent in mass productivity while keeping the viscosity low. If (B 2 O 3 + R 2 O) / (SiO 2 + Al 2 O 3 ) is in the range of 0.40 to 0.75, it becomes easy to obtain a glass particularly excellent in weather resistance.
 なおROとBの合量が多くなるとガラスの化学耐久性が低下する。特にこれらの成分の合量が37%を超えると、(B+RO)/(Al+SiO)を質量比で0.16~0.80の範囲に調整した場合でも、良好な耐候性を得ることが難しくなる。それゆえ、BとROの合量は37%以下とすることが好ましい。 Note R 2 O and B total amount of 2 O 3 increases the chemical durability of the glass decreases. In particular, when the total amount of these components exceeds 37%, even when (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is adjusted to a mass ratio in the range of 0.16 to 0.80, It becomes difficult to obtain good weather resistance. Therefore, the total amount of B 2 O 3 and R 2 O is preferably 37% or less.
 また清澄性の観点からはSbが多いほど好ましいが、Sbが多すぎると、プレス時にガラス表面が白濁し、また金型形状を劣化させて金型の寿命を短くしてしまう。従って、Sbの上限は0.1%未満に制限される。 Also in terms of clarity, but preferably larger the Sb 2 O 3, when Sb 2 O 3 is too large, the glass surface became cloudy during pressing, also shorten the life of the mold to deteriorate the mold shape End up. Therefore, the upper limit of Sb 2 O 3 is limited to less than 0.1%.
 以下に、各成分の含有量を上記のように特定した理由を詳述する。なお、特に断りが無い場合、以下の「%」は「質量%」を意味する。 Hereinafter, the reason for specifying the content of each component as described above will be described in detail. Unless otherwise specified, the following “%” means “mass%”.
 本発明において、SiOの含有量が少ないと屈折率を低下させることが困難になることから、SiOの含有量は45.5%以上、好ましくは47%以上、より好ましくは50%に設定される。SiOの含有量が多すぎると、ガラスの高温粘度が高くなり、清澄性が悪化する。またガラス転移点が上がり、プレス性が悪化する。このような理由からSiOの含有量は70%以下、好ましくは65%以下、より好ましくは60%以下、さらに好ましくは59%以下、特に58%以下に設定すべきである。 In the present invention, if the content of SiO 2 is small, it is difficult to lower the refractive index. Therefore, the content of SiO 2 is set to 45.5% or more, preferably 47% or more, more preferably 50%. Is done. When the content of SiO 2 is too much, the high temperature viscosity of the glass becomes high, clarity is deteriorated. Further, the glass transition point is increased and the pressability is deteriorated. For these reasons, the content of SiO 2 should be set to 70% or less, preferably 65% or less, more preferably 60% or less, still more preferably 59% or less, and particularly 58% or less.
 Bはアッベ数を上げ、またガラスの粘性を下げ、さらにガラス転移点を低下させる効果がある。しかしBを多量に含有させると化学的耐久性、特に耐酸性が著しく悪化する。またプレス時の揮発も多くなり、プレス金型を劣化させる。このような理由からBの含有量は10~44%、好ましくは12~40%、より好ましくは15~35%、さらに好ましくは16~25%、特に好ましくは17~22%に制限すべきである。 B 2 O 3 has the effect of increasing the Abbe number, lowering the viscosity of the glass, and further lowering the glass transition point. However, when a large amount of B 2 O 3 is contained, chemical durability, particularly acid resistance, is significantly deteriorated. In addition, the volatilization during the press increases and the press die is deteriorated. For this reason, the content of B 2 O 3 is limited to 10 to 44%, preferably 12 to 40%, more preferably 15 to 35%, still more preferably 16 to 25%, and particularly preferably 17 to 22%. Should.
 Alは化学的耐久性を高めるのに効果的な成分である。特にROを13%以上含有するような高アルカリ含有ガラスであっても、耐酸性、耐水性及び耐候性を向上させることができる。しかしAlを多量に含有させると、高温でのガラスの粘性が高くなり、清澄性が著しく悪化する。またガラス転移点が著しく上昇し、プレス性が悪化する。Alの含有量は7.2~20%、好ましくは7.5~18%、さらに好ましくは8~15%、特に好ましくは8.5~11%である。 Al 2 O 3 is an effective component for enhancing chemical durability. In particular, even a highly alkali-containing glass containing 13% or more of R 2 O can improve acid resistance, water resistance and weather resistance. However, when a large amount of Al 2 O 3 is contained, the viscosity of the glass at high temperature increases and the clarity is remarkably deteriorated. Further, the glass transition point is remarkably increased and the pressability is deteriorated. The content of Al 2 O 3 is 7.2 to 20%, preferably 7.5 to 18%, more preferably 8 to 15%, and particularly preferably 8.5 to 11%.
 NaO、LiO及びKOは、ガラスの高温粘性を下げて清澄性を向上させ、またガラス転移点を低下させる成分である。さらに屈折率を下げる効果がある。 Na 2 O, Li 2 O, and K 2 O are components that lower the high-temperature viscosity of glass to improve clarity and lower the glass transition point. Furthermore, there is an effect of lowering the refractive index.
 アルカリ金属酸化物(NaO、LiO及びKO)の合量を表すROの含有量は3%以上、好ましくは5%以上、8%以上、10%以上、13%以上、14.5%以上、特に好ましくは15%以上に設定される。一方、ROの含有量が多すぎるとプレス時のガラスからの揮発が多くなり、プレス金型を劣化させる。また溶融時の揮発も多くなり、溶融窯や溶融器具を劣化させ、量産性が悪化する。このような理由からROの含有量は30%以下、好ましくは25%以下、さらに好ましくは18%未満に設定すべきである。 The content of R 2 O representing the total amount of alkali metal oxides (Na 2 O, Li 2 O and K 2 O) is 3% or more, preferably 5% or more, 8% or more, 10% or more, 13% or more. It is set to 14.5% or more, particularly preferably 15% or more. On the other hand, when the content of R 2 O is too large increases volatilization from the glass during pressing, deteriorating the press die. Moreover, the volatilization at the time of melting increases, which deteriorates the melting kiln and the melting apparatus, and the mass productivity deteriorates. For this reason, the content of R 2 O should be set to 30% or less, preferably 25% or less, more preferably less than 18%.
 NaOはアルカリ成分のなかでも、特に高温粘性を低くする効果があり、優れた清澄性を得るための必須成分である。またガラス転移点の低下にも効果的であり、プレス温度を下げることができる。NaOの含有量は3%以上、好ましくは6%以上、特に好ましくは7%以上に設定される。NaOの含有量が多いと耐候性が低下する。またプレス時に揮発して金型を汚染する。このような理由からNaOの含有量は20%以下、好ましくは15%以下、さらに好ましくは12%以下、特に好ましくは9.5%以下に設定すべきである。 Among the alkali components, Na 2 O has an effect of lowering the high temperature viscosity, and is an essential component for obtaining excellent clarity. It is also effective for lowering the glass transition point, and the press temperature can be lowered. The content of Na 2 O is set to 3% or more, preferably 6% or more, particularly preferably 7% or more. Weather resistance is lowered and the content of Na 2 O is large. Also, it volatilizes during pressing and contaminates the mold. For this reason, the content of Na 2 O should be set to 20% or less, preferably 15% or less, more preferably 12% or less, and particularly preferably 9.5% or less.
 LiOは必須成分ではないが、1%以上、特に2.5%以上含有させることが望ましい。ただしLiOの含有量が多すぎると耐候性が悪化する傾向にある。LiOの含有量が9%を超えると、(B+RO)/(Al+SiO)を質量比で0.16~0.80に調節しても、化学的耐久性が低下しやすく、また耐候性が著しく劣化する。また本発明のガラスにおいては屈折率を不当に上昇させる。このような理由からLiOの含有量は9%以下、さらには7%以下、特に5%以下に制限すべきである。 Li 2 O is not an essential component, but it is desirable to contain 1% or more, particularly 2.5% or more. However Li 2 when the content of O is too large tends to weather resistance is deteriorated. When the content of Li 2 O exceeds 9%, even if (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is adjusted to 0.16 to 0.80 in terms of mass ratio, Durability tends to decrease, and weather resistance deteriorates significantly. Further, in the glass of the present invention, the refractive index is unduly raised. For these reasons, the content of Li 2 O should be limited to 9% or less, further 7% or less, and particularly 5% or less.
 KOはNaOやLiOと同様にガラスの高温粘性を下げて清澄性を向上させる効果がある。またNaOやLiOに比べて屈折率を変動させることなく粘性を下げたり、ガラス転移点を下げたりする効果がある。KOの好ましい含有量は0~10%、より好ましくは1~8%、さらに好ましくは2~7%、特に好ましくは3~5.5%である。 K 2 O has the effect of lowering the high temperature viscosity of the glass and improving the clarity, like Na 2 O and Li 2 O. Further lowering the viscosity without changing the refractive index as compared to Na 2 O and Li 2 O, has the effect of lowering the glass transition point. A preferable content of K 2 O is 0 to 10%, more preferably 1 to 8%, still more preferably 2 to 7%, and particularly preferably 3 to 5.5%.
 ZrOの含有量は2%以下である。ZrOの含有量が2%を超えると、屈折率が高くなりすぎて所望の屈折率が得にくくなり、また(B+RO)/(Al+SiO)の値を0.16以上にしても、ガラスの粘性を十分に低下させることが困難になって清澄性が悪化する、またガラス転移点を530℃以下にすることが困難になる。ZrOの含有量は1%未満である。なおZrOを使用すべき特段の事情がなければ含有しない方がよい。 The content of ZrO 2 is 2% or less. When the content of ZrO 2 exceeds 2%, the refractive index becomes too high to obtain a desired refractive index, and the value of (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) Even if it is 0.16 or more, it becomes difficult to sufficiently reduce the viscosity of the glass and the clarity is deteriorated, and it is difficult to make the glass transition point 530 ° C. or less. The content of ZrO 2 is less than 1%. In addition, it is better not to contain ZrO 2 unless there is a special circumstance in which ZrO 2 should be used.
 Sbの含有量は0~0.1%未満である。Sbは脱泡の効果があり、またPtイオン(不純物としてガラス中に数ppm混入)による着色を抑える効果がある。しかし、Sbの含有量が多いとプレス時にガラス表面を白濁させる。またSbは強い酸化力を有するため、その量が多すぎると溶融容器に使用するPtやRhといった金属を酸化し、量産性が低下する。Sbの好適な含有量は0~0.09%、特に0~0.08%である。 The content of Sb 2 O 3 is 0 to less than 0.1%. Sb 2 O 3 has an effect of defoaming, and also has an effect of suppressing coloring due to Pt ions (mixed in the glass as impurities by several ppm). However, if the content of Sb 2 O 3 is large, the glass surface becomes clouded during pressing. Moreover, Sb 2 O 3 has a strong oxidizing power, so if its amount is too large, it will oxidize metals such as Pt and Rh used in the melting vessel, resulting in a decrease in mass productivity. The preferred content of Sb 2 O 3 is 0 to 0.09%, in particular 0 to 0.08%.
 また本発明においては上記成分以外にも種々の成分を添加することができる。例えばTiO、ZnO、MgO、CaO、BaO、SrO、La、Gd、Y、Nb、Ta、GeO、P等を添加することができる。
 TiOの含有量は7%以下であることが好ましい。TiOの含有量が多くなり過ぎると、ガラスを著しく着色させたり、屈折率が高くなりすぎて所望の屈折率が得難くなったりする。またガラス転移点を530℃以下にすることが困難になる。さらにTiOの含有量が7%を超えると、(B+RO)/(Al+SiO)の値を0.16以上にしても、ガラスの粘性を十分に低下させることが困難になって清澄性が悪化する。TiOを0.1%以上含有させるとガラスの耐酸性を向上させることができるが、上記した不都合を生じるおそれが大きいことから、TiOの含有量は2%以下、特に1%未満とすることが好ましい。なおTiOを使用すべき特段の事情がなければ、着色や清澄性の問題を確実に回避するために含有しない方がよい。
In the present invention, various components other than the above components can be added. Adding for example TiO 2, ZnO, MgO, CaO , BaO, SrO, and La 2 O 3, Gd 2 O 3, Y 2 O 3, Nb 2 O 5, Ta 2 O 5, GeO 2, P 2 O 5 , etc. be able to.
The content of TiO 2 is preferably 7% or less. When the content of TiO 2 is too large, the glass is remarkably colored, or the refractive index becomes too high, making it difficult to obtain a desired refractive index. Moreover, it becomes difficult to make a glass transition point 530 degrees C or less. Further, when the content of TiO 2 exceeds 7%, the viscosity of the glass is sufficiently lowered even if the value of (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is 0.16 or more. It becomes difficult to clarify. When the content of TiO 2 is 0.1% or more, the acid resistance of the glass can be improved. However, since the above disadvantages are likely to occur, the content of TiO 2 is 2% or less, particularly less than 1%. It is preferable. Note Without special circumstances should use TiO 2, it is better not contain in order to reliably avoid coloration and clarity problems.
 ZnO、MgO、CaO、BaO及びSrOは屈折率を高める成分であり、光学定数の調整として使用することができるが、各成分の含有量が5%を超えると耐候性が低下する。各成分の好ましい範囲は各々0~3%、特に各々0~1%である。 ZnO, MgO, CaO, BaO and SrO are components that increase the refractive index and can be used as adjustment of optical constants. However, if the content of each component exceeds 5%, the weather resistance decreases. The preferred range of each component is 0 to 3%, especially 0 to 1%.
 La、Gd、Yはアッベ数を維持しながら、屈折率を高める成分であり、光学定数の調整として使用することができる。各成分の含有量が5%を超えると屈折率ndを1.54以下にすることが困難になる。各成分の好ましい範囲は各々1%未満である。 La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 are components that increase the refractive index while maintaining the Abbe number, and can be used as adjustment of optical constants. When the content of each component exceeds 5%, it becomes difficult to make the refractive index nd 1.54 or less. The preferred range for each component is less than 1% each.
 Nb、Taは屈折率を顕著に高める成分であり、光学定数の調整として使用することができる。各成分の含有量が2%を超えると屈折率ndを1.54以下にすることが困難になる。各成分の好ましい範囲は各々1%未満である。 Nb 2 O 5 and Ta 2 O 5 are components that remarkably increase the refractive index, and can be used for adjusting the optical constant. If the content of each component exceeds 2%, it is difficult to make the refractive index nd 1.54 or less. The preferred range for each component is less than 1% each.
 GeOはガラスの安定性や屈折率を高める目的で添加することができる。しかしGeOは稀少原料であるため、使用量が増えると原料コストの高騰に繋がる。それゆえGeOを使用するとしても、その含有量は少ない方が好ましく、具体的には0~3%、さらには0~1%、特に0~0.001%であることが好ましい。 GeO 2 can be added for the purpose of increasing the stability and refractive index of the glass. However, since GeO 2 is a rare raw material, if the amount used is increased, the raw material cost increases. Therefore, even if GeO 2 is used, its content is preferably small, specifically 0 to 3%, more preferably 0 to 1%, particularly preferably 0 to 0.001%.
 Pはガラス転移点や粘度特性の調整を目的として添加することができる。しかしガラスの耐候性が低下したり、耐失透性を悪化させたりするため、多量に含有することは好ましくない。それゆえPを使用するとしても、その含有量は少ない方が好ましく、具体的には0~10%、さらには0~1%であることが好ましい。なおPを使用すべき特段の事情がなければ含有しない方が好ましい。 P 2 O 5 can be added for the purpose of adjusting the glass transition point and viscosity characteristics. However, since the weather resistance of glass falls or devitrification resistance deteriorates, it is not preferable to contain a large amount. Therefore, even if P 2 O 5 is used, its content is preferably small, specifically 0 to 10%, more preferably 0 to 1%. Note it is preferable not contain Without special circumstances should be used P 2 O 5.
 なお上記以外にも、ガラスの特性を損なわない限り他の成分を添加してもよい。 In addition to the above, other components may be added as long as the properties of the glass are not impaired.
 例えば清澄性を向上させるために清澄剤を添加することができる。中でも硫酸ナトリウム、硫酸カリウム、硫酸カルシウム、硫酸バリウム、硫酸ストロンチウム、硫酸アルミニウムなどの硫酸塩の使用が効果的である。硫酸塩を使用すると、1200~1500℃で清澄泡を放出し、効果的にガラスを清澄することができる。ただし、硫酸塩の使用量が多すぎると、プレス時にSOガスが発生して金型を汚染したり、過剰の清澄作用によりガラスに泡が残存したりする。硫酸塩の添加量は、ガラス原料100質量%に対して5質量%以下が好ましく、1質量%以下がより好ましい。また得られるガラス組成中のSO量は、0.005~0.5質量%、特に0.01~0.3質量%であることが望ましい。 For example, a clarifying agent can be added to improve clarity. Of these, the use of sulfates such as sodium sulfate, potassium sulfate, calcium sulfate, barium sulfate, strontium sulfate, and aluminum sulfate is effective. When sulfate is used, clarified bubbles are released at 1200 to 1500 ° C., and the glass can be clarified effectively. However, if the amount of sulfate used is too large, SO 2 gas is generated during pressing to contaminate the mold, or bubbles remain in the glass due to excessive clarification. The amount of sulfate added is preferably 5% by mass or less, more preferably 1% by mass or less, based on 100% by mass of the glass raw material. The amount of SO 3 in the obtained glass composition is preferably 0.005 to 0.5% by mass, particularly 0.01 to 0.3% by mass.
 硫酸塩以外の清澄剤として、SnO、CeOの使用も考えられる。ただしSnOは、Sbと同様にプレス時にガラス表面を白濁させる原因となる恐れがあるため、多量の添加は避けるべきである。SnOの含有量は0.1%未満であることが好ましい。またCeOは着色する恐れがあるので、やはり多量の添加は避けるべきである。CeOの含有量は0.1%未満であることが好ましい。さらにSb、SnO及びCeOの合量は、0.1%未満で0.001%以上であることが好ましい。 The use of SnO 2 or CeO 2 as a clarifier other than sulfate is also conceivable. However, SnO 2 may cause whitening of the glass surface at the time of pressing in the same manner as Sb 2 O 3 , so addition of a large amount should be avoided. The SnO 2 content is preferably less than 0.1%. Moreover, CeO 2 may be colored, so it should be avoided to add a large amount. The CeO 2 content is preferably less than 0.1%. Furthermore, the total amount of Sb 2 O 3 , SnO 2 and CeO 2 is preferably less than 0.1% and 0.001% or more.
 なお清澄剤として広く知られているAsは有害であるので、実質的に含有しないことが望ましい。またF成分は環境に悪影響を及ぼすおそれがあることから実質的に含有しないことが好ましい。Cl成分はプレス時にガラスから揮発しやすく、プレス金型の劣化を著しく促進するため実質的に含有させることは好ましくない。ここで「Asを実質的に含有しない」、「Fを含有しない」及び「Clを実質的に含有しない」とは、これらの成分を意図的にガラス中に添加しないという意味であり、不可避的不純物まで完全に排除するということを意味するものではない。より客観的には、不純物を含めたこれらの成分の含有量が、Asで0.00001%以下、Fで0.01%以下、Clで0.01%以下であるということを意味する。 Note that As 2 O 3, which is widely known as a fining agent, is harmful, so it is desirable not to contain it substantially. Further, it is preferable that the F component is not substantially contained because it may adversely affect the environment. The Cl component is apt to volatilize from the glass during pressing, and it is not preferable to contain it substantially because it significantly accelerates the deterioration of the press mold. Here, “substantially free of As 2 O 3 ”, “free of F” and “substantially free of Cl” means that these components are not intentionally added to the glass. It does not mean that unavoidable impurities are completely eliminated. More objectively, it means that the content of these components including impurities is 0.00001% or less for As 2 O 3 , 0.01% or less for F, and 0.01% or less for Cl. To do.
 また、CuやAgはガラスを着色させる成分であることから、含有しないことが好ましい。 Further, since Cu and Ag are components for coloring the glass, it is preferable not to contain them.
 以上の組成を有する光学ガラスは、屈折率ndが1.48~1.54、アッベ数νdが59~67の光学定数を容易に達成することができる。特に屈折率ndが1.50~1.52、アッベ数νdが60~63の範囲の光学定数をもつガラスを得ることができる。 The optical glass having the above composition can easily achieve optical constants having a refractive index nd of 1.48 to 1.54 and an Abbe number νd of 59 to 67. In particular, a glass having an optical constant in the range of refractive index nd of 1.50 to 1.52 and Abbe number νd of 60 to 63 can be obtained.
 また上記組成を有する光学ガラスは、530℃以下のガラス転移点を容易に達成することができる。さらに520℃以下、特に510℃以下のガラス転移点を容易に達成することができる。 The optical glass having the above composition can easily achieve a glass transition point of 530 ° C. or lower. Furthermore, a glass transition point of 520 ° C. or lower, particularly 510 ° C. or lower can be easily achieved.
 また1300℃に相当するガラスの粘度が102.0dPa・s以下、より好ましくは101.9dPa・s以下であることが好ましい。1300℃での粘度が上記の範囲であれば、ガラス中に含まれる泡が浮上し易くなることから、清澄が容易になる。 Further, the viscosity of the glass corresponding to 1300 ° C. is preferably 10 2.0 dPa · s or less, more preferably 10 1.9 dPa · s or less. If the viscosity at 1300 ° C. is in the above range, the bubbles contained in the glass are likely to rise, so that clarification becomes easy.
 さらに330nmでの10mm厚での内部透過率(λ330nm)が85%以上、より好ましくは88%以上である。内部透過率が上記の範囲であれば、大径レンズであっても高透過を維持することが可能である。上記内部透過率を得るためには、原料の製造工程で混入するFeが少ない酸化物を選定するなどで達成することができる。例えば、MgOやCaOの原料は不純物としてFeを含む場合が多く、このような場合はMgOやCaOの使用は避けたほうが好ましい。またFeは40ppm以下であることが好ましい。 Further, the internal transmittance (λ 330 nm ) at 330 nm with a thickness of 10 mm is 85% or more, more preferably 88% or more. If the internal transmittance is in the above range, high transmittance can be maintained even with a large-diameter lens. In order to obtain the internal transmittance, it can be achieved by selecting an oxide with a small amount of Fe 2 O 3 mixed in the raw material manufacturing process. For example, MgO and CaO raw materials often contain Fe 2 O 3 as impurities. In such cases, it is preferable to avoid using MgO or CaO. Fe 2 O 3 is preferably 40 ppm or less.
 次に、本発明の光学ガラスを用いて光ピックアップレンズや撮影用レンズ等を製造する方法を述べる。 Next, a method for manufacturing an optical pickup lens, a photographing lens, etc. using the optical glass of the present invention will be described.
 まず、所望の組成になるようにガラス原料を調合した後、ガラス溶融炉で溶融する。 First, glass raw materials are prepared so as to have a desired composition and then melted in a glass melting furnace.
 清澄剤としてSbや硫酸塩を使用するという観点から、ガラスの溶融温度は1150℃以上であることが好ましい。さらに1200℃以上が好ましく、特に1250℃以上であることが好ましい。なお溶融容器を構成する白金金属からのPt溶け込みによるガラス着色を防止する観点から、溶融温度は1450℃以下が好ましく、さらには1400℃以下が好ましく、特に1350℃以下が好ましく、最適には1300℃以下が好ましい。 From the viewpoint of using Sb 2 O 3 or sulfate as a fining agent, the melting temperature of the glass is preferably 1150 ° C. or higher. Furthermore, 1200 degreeC or more is preferable, and it is especially preferable that it is 1250 degreeC or more. From the viewpoint of preventing glass coloring due to Pt melting from platinum metal constituting the melting vessel, the melting temperature is preferably 1450 ° C. or lower, more preferably 1400 ° C. or lower, particularly preferably 1350 ° C. or lower, most preferably 1300 ° C. The following is preferred.
 また溶融時間が短すぎると、十分に清澄できない可能性があるので、溶融時間は2時間以上であることが好ましく、さらに3時間以上が好ましい。ただし溶融容器からのPt溶け込みによるガラス着色を防止する観点から、溶融時間は8時間以内、特に5時間以内であることが好ましい。 Further, if the melting time is too short, there is a possibility that it cannot be clarified sufficiently. Therefore, the melting time is preferably 2 hours or more, and more preferably 3 hours or more. However, from the viewpoint of preventing glass coloring due to Pt penetration from the melting vessel, the melting time is preferably within 8 hours, particularly within 5 hours.
 また溶融容器内のガラス融液の深さは、浅すぎると生産性が悪くなるため、30mm以上、特に50mm以上であることが好ましい。一方、深すぎると泡の浮上に時間がかかるため、1m以下、好ましくは0.5m以下が好ましい。 Also, the depth of the glass melt in the melting vessel is preferably 30 mm or more, particularly 50 mm or more, because the productivity becomes worse if it is too shallow. On the other hand, if it is too deep, it takes time for the bubbles to rise, and therefore it is 1 m or less, preferably 0.5 m or less.
 次に、溶融ガラスをノズルの先端から滴下して一旦液滴状ガラスを作製し、プリフォームガラスを得る。または溶融ガラスを急冷鋳造して一旦ガラスブロックを作製し、研削、研磨、洗浄してプリフォームガラスを得る。 Next, molten glass is dropped from the tip of the nozzle to once produce droplet glass to obtain preform glass. Alternatively, a molten glass is rapidly cast to produce a glass block, which is then ground, polished and washed to obtain a preform glass.
 続いて、精密加工を施した金型中にプリフォームガラスに入れて軟化状態となるまで加熱しながら加圧成形し、金型の表面形状をガラスに転写させる。この成形方法はモールドプレス成形法と呼ばれ、広く用いられている。このようにして光ピックアップレンズや撮影用レンズを得ることができる。 Subsequently, it is put into a preform glass in a precision-processed mold and pressure-molded while being heated until it becomes softened, and the surface shape of the mold is transferred to the glass. This molding method is called a mold press molding method and is widely used. In this way, an optical pickup lens and a photographing lens can be obtained.
 以下、本発明の光学ガラスを実施例に基づいて詳細に説明する。 Hereinafter, the optical glass of the present invention will be described in detail based on examples.
 表1~3は本発明の実施例(試料No.1~11)及び表4は比較例(試料No.12~16)を示している。 Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 11), and Table 4 shows comparative examples (samples No. 12 to 16).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 各試料は、次のようにして作製した。 Each sample was prepared as follows.
 まず、表1~4に記載の組成となるように調合したガラス原料(炭酸塩、酸化物)を白金ルツボに入れ、1300℃でそれぞれ2時間溶融した。なお本実施例ではNaO原料としてソーダ灰を使用した。次に、溶融ガラスをカーボン板上に流し出し、冷却固化した後、アニールを行って試料を作製した。このようにして得られた試料について、各種特性を評価した。結果を各表に示す。 First, glass raw materials (carbonates and oxides) prepared to have the compositions shown in Tables 1 to 4 were put in a platinum crucible and melted at 1300 ° C. for 2 hours, respectively. In this example, soda ash was used as the Na 2 O raw material. Next, the molten glass was poured out on the carbon plate, cooled and solidified, and then annealed to prepare a sample. Various characteristics of the sample thus obtained were evaluated. The results are shown in each table.
 なおガラス中のFe量を確認するために、ガラスを酸溶液により溶かし、ICPにて測定したところ、No.6は30ppm、No.7は20ppmであった。これに対し、No.10はMgOを多量に含有しているためFe量が50ppmと多かった。 In order to confirm the amount of Fe 2 O 3 in the glass, when the glass was dissolved with an acid solution and measured by ICP, No. 6 was 30 ppm and No. 7 was 20 ppm. On the other hand, since No. 10 contained a large amount of MgO, the amount of Fe 2 O 3 was as high as 50 ppm.
 屈折率ndは、屈折率計(カルニュー製  KPR-200)を用いて、ヘリウムランプのd線(波長:587.6nm)における測定値で示した。 The refractive index nd is indicated by a measured value at the d-line (wavelength: 587.6 nm) of a helium lamp using a refractometer (Karnew Kashiwa KPR-200).
 アッベ数νdは、屈折率計(カルニュー製  KPR-200)を用いて、上記したd線、水素ランプのF線(波長:486.1nm)、および水素ランプのC線(波長:656.3nm)における屈折率をそれぞれ測定し、それらの値をそれぞれnd、nF、nCとした際の{(nd-1)/(nF-nC)}の値とした。 Abbe's number νd was measured using the refractometer (Karnew KPR-200), d line, hydrogen lamp F line (wavelength: 486.1 nm), and hydrogen lamp C line (wavelength: 656.3 nm). Refractive indexes were respectively measured, and the values thereof were defined as {(nd-1) / (nF-nC)} when nd, nF, and nC were used.
 ガラス転移点(Tg)は、熱膨張曲線における低温度域の直線と高温度域の直線の交点より求めた。 The glass transition point (Tg) was determined from the intersection of the low temperature line and the high temperature line in the thermal expansion curve.
 耐水性は、JOGIS化学耐久性の測定方法(粉末法)に準じて評価した。 Water resistance was evaluated according to the measuring method (powder method) of JOGIS chemical durability.
 耐酸性は、JOGIS化学耐久性の測定方法(粉末法)に準じて評価した。 Acid resistance was evaluated according to the measuring method (powder method) of JOGIS chemical durability.
 耐候性は、60℃-90%RHに24時間保持した後の表面を観察したものであり、表面に白濁が認められなかったものを「○」、白濁が認められたものを「×」とした。 The weather resistance is obtained by observing the surface after being kept at 60 ° C.-90% RH for 24 hours. “O” indicates that the surface is not cloudy, and “X” indicates that the cloudiness is observed. did.
 清澄性の評価は次のようにして行った。まず一旦成形したガラスを粉砕し、分級して2mm以下の粉砕ガラスとした。続いて300cc白金坩堝の中に粉砕ガラスを投入し、ガラス高さが30mmになるようにガラス量を調整した。次いで、電気炉にて1300℃で1時間保持した後、10mm厚の板形状に成形した試料を鏡面研磨し、試料の横から平行光を入射して泡を数えた。 The clarity was evaluated as follows. First, the once formed glass was pulverized and classified into a pulverized glass of 2 mm or less. Subsequently, crushed glass was put into a 300 cc platinum crucible, and the glass amount was adjusted so that the glass height was 30 mm. Next, after holding at 1300 ° C. for 1 hour in an electric furnace, a sample molded into a plate shape having a thickness of 10 mm was mirror-polished, and parallel light was incident from the side of the sample to count bubbles.
 1300℃に相当するガラスの粘度は、白金球引き上げ法にて測定した。 The viscosity of the glass corresponding to 1300 ° C. was measured by a platinum ball pulling method.
 表から明らかなように、本発明の実施例であるNo.1~11の各試料は、屈折率ndが1.485~1.530、アッベ数νdが57.8~64.1であった。またガラス転移点は490~530℃であった。また1300℃における粘度は101.2~102.0dPa・sであり、ガラス中の泡数は1cm当たり0~4個であった。JOGIS耐水性(粉末法)は1~3級であり、また耐候性評価も良好であった。 As is apparent from the table, No. 1 as an example of the present invention. Each of the samples 1 to 11 had a refractive index nd of 1.485 to 1.530 and an Abbe number νd of 57.8 to 64.1. The glass transition point was 490 to 530 ° C. The viscosity at 1300 ° C. was 10 1.2 to 10 2.0 dPa · s, and the number of bubbles in the glass was 0 to 4 per 1 cm 3 . The JOGIS water resistance (powder method) was 1 to 3 and the weather resistance evaluation was good.
 これに対して比較例であるNo.12、13、15は1300℃での粘度が102.2~103.2dPa・sであり、また泡が5~20個/cm残っていることから清澄性が低かった。またNo.15はガラス転移点が560℃と高く、モールドプレス成形が困難であることが予想される。No.14はJOGIS耐水性(粉末法)が5級であり、また耐候性が悪かった。No.16はAlが少なく、JOGIS耐酸性(粉末法)が4級であり、量産性に乏しかった。 On the other hand, No. which is a comparative example. Nos. 12, 13, and 15 had a viscosity at 1300 ° C. of 10 2.2 to 10 3.2 dPa · s, and 5 to 20 bubbles / cm 3 remained, so the clarity was low. No. No. 15 has a glass transition point as high as 560 ° C., and mold press molding is expected to be difficult. No. No. 14 had a JOGIS water resistance (powder method) of grade 5, and the weather resistance was poor. No. No. 16 had little Al 2 O 3 , JOGIS acid resistance (powder method) was grade 4, and mass productivity was poor.
 また硫酸塩の清澄効果を確認するために、NaO原料の一部を硫酸塩に置換した試料を用意し、上記と同様の方法を用いて泡数を評価した。具体的にはNo.3、6、8、及びNo.11のNaO原料として、硫酸ナトリウム(NaSO)を0.1~0.02%、残部をソーダ灰として試料を作製し、評価に供した。 In order to confirm the clarification effect of sulfate, a sample in which a part of the Na 2 O raw material was replaced with sulfate was prepared, and the number of bubbles was evaluated using the same method as described above. Specifically, no. As Na 2 O raw materials of Nos. 3, 6, 8, and No. 11, sodium sulfate (Na 2 SO 4 ) was 0.1 to 0.02% and the remainder was soda ash, and samples were prepared for evaluation.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 その結果、表5、表6に示すように、硫酸塩を用いた試料の泡数は何れも0個/gであった。 As a result, as shown in Tables 5 and 6, the number of bubbles in the sample using sulfate was 0 / g.
 なおガラス中のSO量は、ガラスをアルカリ融解し、その液をイオン交換後、イオンクロマトグラフィにて測定を行った。 The amount of SO 3 in the glass was measured by ion chromatography after alkali melting of the glass and ion exchange of the liquid.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2010年6月15日付で出願された日本特許出願(特願2010-135760)および2010年12月14日付で出願された日本特許出願(特願2010-277730)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application is based on a Japanese patent application filed on June 15, 2010 (Japanese Patent Application No. 2010-135760) and a Japanese patent application filed on December 14, 2010 (Japanese Patent Application No. 2010-277730). Which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (8)

  1.  質量%で、SiO 45.5~70%、B  10~44%、Al  7.2~20%、TiO 0~7%、NaO  1~20%、LiO  0~9%、RO  3~30%(ROはNaO、LiO及びKOの合量)、ZrO 0~2%、Sb0~0.1%未満、(B+RO)/(Al+SiO)が0.16~0.80であり、実質的にPbOを含有しないことを特徴とする光学ガラス。 By mass%, SiO 2 45.5 to 70%, B 2 O 3 10 to 44%, Al 2 O 3 7.2 to 20%, TiO 2 0 to 7%, Na 2 O 1 to 20%, Li 2 O 0-9%, R 2 O 3-30% (R 2 O is the total amount of Na 2 O, Li 2 O and K 2 O), ZrO 2 0-2%, Sb 2 O 3 0-0.1 %, (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is 0.16 to 0.80, and contains substantially no PbO.
  2.  質量%で、SiO 47~60%、B  10~35%、Al  7.2~20%、TiO 0~2%、NaO  1~20%、LiO  0~9%、RO  3~30%(ROはNaO、LiO及びKOの合量)、ZrO 0~2%、Sb0~0.1%未満、(B+RO)/(Al+SiO)が0.16~0.80であり、実質的にPbOを含有しないことを特徴とする請求項1に記載の光学ガラス。 By mass%, SiO 2 47-60%, B 2 O 3 10-35%, Al 2 O 3 7.2-20%, TiO 2 0-2%, Na 2 O 1-20%, Li 2 O 0 9%, R 2 O 3-30% (R 2 O is the total amount of Na 2 O, Li 2 O and K 2 O), ZrO 2 0-2%, Sb 2 O 3 0-0.1% 2. The optical glass according to claim 1, wherein (B 2 O 3 + R 2 O) / (Al 2 O 3 + SiO 2 ) is 0.16 to 0.80 and substantially does not contain PbO. .
  3.  さらにSOを0.005~0.5質量%含有することを特徴とする請求項1又は2に記載の光学ガラス。 The optical glass according to claim 1 or 2, further comprising 0.005 to 0.5% by mass of SO 3 .
  4.  屈折率nd 1.48~1.54、アッベ数νd 59~67であることを特徴とする請求項1又は2に記載の光学ガラス。 3. The optical glass according to claim 1, wherein the refractive index nd is 1.48 to 1.54 and the Abbe number νd is 59 to 67.
  5.  ガラス転移点が530℃以下であることを特徴とする請求項1又は2に記載の光学ガラス。 The optical glass according to claim 1 or 2, wherein the glass transition point is 530 ° C or lower.
  6.  モールドプレス成形用であることを特徴とする請求項1又は2に記載の光学ガラス。 The optical glass according to claim 1 or 2, wherein the optical glass is used for mold press molding.
  7.  請求項1又は2に記載の光学ガラスを製造する方法であって、清澄剤として硫酸塩を使用することを特徴とする光学ガラスの製造方法。 A method for producing an optical glass according to claim 1 or 2, wherein sulfate is used as a fining agent.
  8.  硫酸塩の添加量が、ガラス原料100質量%に対して5質量%以下であることを特徴とする請求項7に記載の光学ガラスの製造方法。
     
    The method for producing an optical glass according to claim 7, wherein the addition amount of the sulfate is 5% by mass or less with respect to 100% by mass of the glass raw material.
PCT/JP2011/063466 2010-06-15 2011-06-13 Optical glass WO2011158774A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800296185A CN102947234A (en) 2010-06-15 2011-06-13 Optical glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010135760 2010-06-15
JP2010-135760 2010-06-15
JP2010277730 2010-12-14
JP2010-277730 2010-12-14

Publications (1)

Publication Number Publication Date
WO2011158774A1 true WO2011158774A1 (en) 2011-12-22

Family

ID=45348173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063466 WO2011158774A1 (en) 2010-06-15 2011-06-13 Optical glass

Country Status (3)

Country Link
JP (1) JP5835642B2 (en)
CN (1) CN102947234A (en)
WO (1) WO2011158774A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021084831A (en) * 2019-11-27 2021-06-03 株式会社住田光学ガラス Multicomponent oxide glass, optical element, optical fiber, and multicomponent oxide glass manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585245B (en) * 2014-10-22 2019-08-23 成都光明光电股份有限公司 Borosilicate optical glass and optical element
JP7089887B2 (en) * 2018-02-05 2022-06-23 株式会社オハラ Optical glass
TWI774910B (en) * 2018-02-05 2022-08-21 日商小原股份有限公司 The use of optical glass
JP7132589B2 (en) * 2018-03-02 2022-09-07 株式会社住田光学ガラス Optical glass, preforms for precision press molding, and optical elements
CN111018342B (en) * 2019-12-24 2022-04-15 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument
CN112028474B (en) * 2020-09-11 2022-04-15 成都光明光电股份有限公司 Optical glass
CN112028475B (en) * 2020-09-11 2022-04-15 成都光明光电股份有限公司 Optical glass and optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103637A (en) * 1998-09-10 2000-04-11 Osram Sylvania Inc General-purpose nonlead glass and electric bulb
JP2000247678A (en) * 1999-03-01 2000-09-12 Ohara Inc Optical glass

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558152B1 (en) * 1984-01-13 1992-03-27 Corning Glass Works LOW DENSITY OPHTHALMIC LENSES, ABSORBING ULTRAVIOLET RADIATION AND HAVING HIGH TRANSMISSION INTO THE VISIBLE AND CORRECTIVE LENSES MADE OF SUCH LENSES
EP0252723B1 (en) * 1986-07-11 1991-09-11 Corning Glass Works Lightly tinted glasses of variable transmission
US5252524A (en) * 1992-10-16 1993-10-12 Corning Incorporated Polarizing glasses
JP2002201037A (en) * 2000-12-28 2002-07-16 Sumita Optical Glass Inc Low refractive index low dispersion optical glass for precision press forming suitable for drip glassification and method for manufacturing the same
EP1266872B1 (en) * 2001-06-12 2005-12-28 Schott AG Method for producing borosilicate glasses
DE10256629B3 (en) * 2002-12-03 2004-02-19 Schott Glas Optical glass for an optical element in imaging, projection, telecommunications, optical communication engineering and/or in laser technology comprises oxides of silicon, boron, aluminum, sodium and potassium
JP2005162600A (en) * 2003-11-11 2005-06-23 Nippon Electric Glass Co Ltd Cover glass plate for semiconductor package
US20090088309A1 (en) * 2006-02-14 2009-04-02 Nippon Sheet Glass Company, Limited Glass Composition
JP2008255002A (en) * 2007-03-15 2008-10-23 Nippon Electric Glass Co Ltd Glass composition for glass fiber, glass fiber, method for producing glass fiber and composite material
CN101959819A (en) * 2008-02-27 2011-01-26 旭硝子株式会社 Glass composition for substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103637A (en) * 1998-09-10 2000-04-11 Osram Sylvania Inc General-purpose nonlead glass and electric bulb
JP2000247678A (en) * 1999-03-01 2000-09-12 Ohara Inc Optical glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021084831A (en) * 2019-11-27 2021-06-03 株式会社住田光学ガラス Multicomponent oxide glass, optical element, optical fiber, and multicomponent oxide glass manufacturing method
WO2021106457A1 (en) * 2019-11-27 2021-06-03 株式会社住田光学ガラス Multicomponent oxide glass, optical element, optical fiber, and multicomponent oxide glass manufacturing method
JP7409636B2 (en) 2019-11-27 2024-01-09 株式会社住田光学ガラス Multi-component oxide glass, optical element, optical fiber, and method for producing multi-component oxide glass
EP4067317A4 (en) * 2019-11-27 2024-02-07 Sumita Optical Glass, Inc. Multicomponent oxide glass, optical element, optical fiber, and multicomponent oxide glass manufacturing method

Also Published As

Publication number Publication date
CN102947234A (en) 2013-02-27
JP2012140314A (en) 2012-07-26
JP5835642B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6505793B2 (en) Optical glass, glass base material and optical element
JP5094846B2 (en) Optical glass for high refractive index low color dispersion precision press molding
JP5835642B2 (en) Optical glass
TWI791074B (en) Optical Glass, Preforms, and Optical Components
JP5850384B2 (en) Glass
WO2010038597A1 (en) Optical glass and method for suppressing the deterioration of spectral transmittance
JP5704503B2 (en) Optical glass
JP5843125B2 (en) Optical glass for mold press molding
JP5290528B2 (en) Optical glass for precision press molding
CN106167354B (en) Optical glass and optical element
KR20110136750A (en) Optical glass
JP2011225418A (en) Optical glass
CN115259656A (en) Optical glass, preform, and optical element
JP2010215444A (en) Optical glass
JP2013227187A (en) Optical glass
JP5660270B2 (en) Optical glass
JP6635667B2 (en) Optical glass, lens preform and optical element
JP5824922B2 (en) Optical glass
JP5729532B2 (en) Optical glass
JP2013256438A (en) Optical glass
JP2012232883A (en) Optical glass
JP5831844B2 (en) Optical glass
JP5700350B2 (en) Optical glass
WO2010074211A1 (en) Optical glass
TW202317490A (en) Optical glass, preform and optical element having high refractive index (nd), small specific gravity with respect to the refractive index, high resistance to devitrification and low cost

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029618.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795680

Country of ref document: EP

Kind code of ref document: A1