WO2011158563A1 - Power-conserving drive device and method for device having uniform load pattern - Google Patents

Power-conserving drive device and method for device having uniform load pattern Download PDF

Info

Publication number
WO2011158563A1
WO2011158563A1 PCT/JP2011/060060 JP2011060060W WO2011158563A1 WO 2011158563 A1 WO2011158563 A1 WO 2011158563A1 JP 2011060060 W JP2011060060 W JP 2011060060W WO 2011158563 A1 WO2011158563 A1 WO 2011158563A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
inverter
parameter
command value
converter
Prior art date
Application number
PCT/JP2011/060060
Other languages
French (fr)
Japanese (ja)
Inventor
素直 新妻
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN201180017599.4A priority Critical patent/CN102812632B/en
Publication of WO2011158563A1 publication Critical patent/WO2011158563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0025Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor

Definitions

  • the present invention relates to a power saving driving apparatus and method for apparatuses having the same load pattern.
  • the present invention is directed to a device that is driven by a motor that is powered by an inverter driven by the output of a DC-DC converter that is driven by a battery, and that is repeatedly operated in the same load pattern.
  • a device is referred to as a “same load pattern device”.
  • the same load pattern apparatus mainly assumes industrial apparatuses, such as a servo press, the die cushion for a press, a conveying apparatus, and a physical distribution apparatus, it is not limited to them.
  • the amount of loss in the same load pattern device described above varies depending on the parameters of the power conversion circuit, for example, the output voltage of the DC-DC converter, the carrier frequency of the inverter, the voltage change rate dv / dt of the switching waveform, and the like.
  • the “loss amount” means the difference between the electric power supplied from the battery and the motor output, that is, the electric circuit (including the DC-DC converter, inverter and motor) from the battery to the motor, and the magnetic circuit inside the motor. Means the amount of work lost in the form of heat generation and electromagnetic radiation.
  • Patent Document 1 has already been proposed.
  • the technique relevant to this invention is disclosed by patent document 2 and nonpatent literature 1,2.
  • Japanese Patent Laid-Open No. 2004-228561 is to reduce a loss amount by changing a power conversion parameter (a carrier frequency of a DC / DC converter) when an operation condition of the apparatus is changed.
  • Non-Patent Document 2 discloses that loss is reduced by switching the switching frequency during operation in accordance with a low speed region, a medium speed region, and a high speed region.
  • Patent Document 1 the frequency of a carrier wave (referred to as a carrier) that reduces the amount of loss is obtained by (A) using the loss characteristics of the energy storage means, the switching element, and each phase coil of the motor, or (B) by experimentation in advance. Means have been proposed. However, if the means of Patent Document 1 is applied to various apparatuses, particularly industrial apparatuses such as a servo press driven by a battery, a die cushion for pressing, a conveying apparatus, and a physical distribution apparatus, there are the following problems.
  • industrial apparatuses such as a servo press driven by a battery, a die cushion for pressing, a conveying apparatus, and a physical distribution apparatus
  • (A) there is a problem that “loss characteristics of other components are not considered”. For example, wiring between the inverter and the motor, electromagnetic noise removing elements (ferrite cores and filters), and loss in the rotor of the motor (loss due to current induced in the rotor, etc.) are not considered. Further, in industrial devices, the wiring between the inverter and the motor is long, or the electromagnetic noise removing element and the motor are large, so the amount of loss from these components is often not negligible.
  • the present invention has been developed to solve the above-described problems. That is, the object of the present invention is to obtain data on loss characteristics by conducting experiments in advance on the output voltage of a DC-DC converter, electrical characteristics of wiring, presence / absence of an electromagnetic noise removing element, loss characteristics and temperature changes for each motor, and the like. It is an object of the present invention to provide a power-saving drive device and method for a device having the same load pattern that can minimize the amount of loss in consideration of the loss characteristics of all the components without obtaining them.
  • a DC-DC converter driven by a battery and an inverter driven by the output of the DC-DC converter driven by a motor supplied with power from the inverter, and having the same load pattern
  • a power saving drive device for the device An energy calculator that calculates the amount of power received from the battery in the same load pattern;
  • a power-saving drive device for a device having the same load pattern is provided.
  • a command value generator for outputting a cycle start signal and a cycle end signal of the load pattern.
  • the parameters of the inverter are the carrier frequency and the output voltage of the DC-DC converter.
  • the present invention also includes a DC-DC converter driven by a battery and an inverter driven by the output of the DC-DC converter, driven by a motor supplied with power from the inverter, and having the same load pattern.
  • a power saving driving method for an apparatus having: Change the inverter parameters to multiple values, Calculate the amount of power received from the battery by the same load pattern in each parameter, There is provided a power saving driving method for a device having the same load pattern, wherein the received power amount in each parameter is compared, a parameter that minimizes the received power amount is selected, and an inverter is commanded .
  • an electric energy calculator and a parameter selector / commander changing the parameter of the inverter to a plurality of values, and determining the amount of electric power received from the battery by the same load pattern in each parameter. Calculate and compare, select the parameter that minimizes the amount of received power, and command the inverter, so the electrical characteristics of the wiring, the presence or absence of electromagnetic noise removal elements, loss characteristics and temperature changes for each motor, etc.
  • the amount of loss can be minimized in consideration of the loss characteristics of all the components without obtaining the loss characteristic data by conducting an experiment in advance.
  • FIG. 1 is a diagram showing a first embodiment of a power-saving drive device according to the present invention.
  • the power-saving drive device of the present invention includes a DC-DC converter 93 driven by a battery 91 and an inverter 19 driven by the output of the DC-DC converter 93.
  • the battery 91 is a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery.
  • the battery 91 includes cells connected in series and a battery controller in order to increase the output voltage of the battery. Further, the battery 91 is charged with DC power by a solar cell, a fuel cell, a wind power generator or the like (not shown).
  • the DC-DC converter 93 is a variable output voltage DC-DC converter that boosts and / or steps down a DC voltage. In FIG. 1, the voltage across the capacitor 17 on the right side of the DC-DC converter 93 is the output voltage.
  • the DC-DC converter 93 is configured to be capable of not only powering (power moves from left to right in FIG. 1) but also regeneration (power moves from right to left in FIG. 1).
  • a DC-DC converter 93 is realized by combining a power control element such as an IGBT or a power MOSFET with an inductor or a transformer.
  • reference numeral 95 denotes a DC-DC converter control circuit.
  • the DC-DC converter control circuit 95 generates a gate signal for the power control element of the DC-DC converter 93 and controls the output voltage of the DC-DC converter 93.
  • the DC-DC converter control circuit 95 is realized by an electronic circuit or an embedded CPU and a dedicated control program or a combination of both.
  • the DC bus 15 electrically connects the DC-DC converter 93 and the inverter 19.
  • the upper side shows the positive side (+) of the DC bus 15, and the lower side shows the negative side ( ⁇ ) of the DC bus 15.
  • a capacitor 17 smoothes the voltage of the DC bus 15.
  • an aluminum electrolytic capacitor is often used, but other types of capacitors and electric double layer capacitors may be used.
  • Reference numeral 19 denotes an inverter which controls the current / voltage flowing from the DC bus 15 to the motor 21 so that the motor 21 generates a desired torque.
  • the inverter 19 is assumed to be a voltage type inverter in this embodiment, but may be a current type inverter. In the case of a current type inverter, a reactor is used instead of the capacitor 17. Further, in this embodiment, the inverter 19 is assumed to be a four-quadrant drive inverter capable of forward / reverse rotation, power running / regeneration of the motor 21, but depending on the characteristics and operation of the mechanical load 23 (same load pattern device), The inverter may be capable of rotating only in one direction or powering only. When an inverter capable of only power running is used, the DC-DC converter 93 may be capable of only power running.
  • Reference numeral 21 denotes a motor.
  • the combination of the inverter 19 and the motor 21 causes the motor 21 to generate torque following the torque command value input from the controller 27.
  • the motor 21 is assumed to be a three-phase induction motor or a three-phase permanent magnet synchronous motor. However, other types of motors may be used as long as the torque and rotational speed are variable in combination with an inverter.
  • Reference numeral 23 denotes a mechanical load, that is, the same load pattern device, which is driven by the motor 21.
  • Reference numeral 25 denotes a motor encoder, which measures the rotational position (angle) of the motor 21.
  • the motor encoder 25 an optical or magnetic rotary encoder or resolver is used.
  • the controller 27 performs speed control, the rotational speed (angular speed) of the motor 21 may be measured.
  • the rotational position measured with a rotary encoder or resolver may be time-differentiated, or the rotational speed may be directly measured like a tachometer.
  • Reference numeral 27 denotes a controller, and the inverter 19, the motor 21, the motor encoder 25, and the controller 27 constitute a feedback loop, and the motor 21 is controlled to follow the command value from the command value generator 29.
  • the controller 27 assumes position control in this embodiment, but may be speed control.
  • PID Proportional Integral Derivative
  • I-PD Intelligent Proportional Derivative
  • a feedforward calculation for improving controllability may be combined.
  • the controller 27 can be realized by a programmable device using DSP (Digital Signal Processor), a microcomputer, an analog circuit, or a combination thereof.
  • DSP Digital Signal Processor
  • a command value generator which outputs a motor rotation angle command value Ac to be followed by the motor 21 to the controller 27 at each time.
  • transmission of the motor rotation angle command value Ac transmission by a two-phase pulse train whose phase is shifted by 90 degrees or transmission by various communication networks is used. Since the rotation angle of the motor 21 and the mechanical load 23 are mechanically linked, instructing the rotation angle of the motor 21 has the same meaning as instructing the position of the mechanical load 23.
  • FIG. 2 is an operation explanatory view of the same load pattern device targeted by the present invention. Since the present invention is intended for a device that is repeatedly operated with the same load pattern (same load pattern device), in this embodiment, as shown in the figure, the motor rotation angle command value Ac is a cycle (same repeated pattern).
  • the command value generator 29 outputs a cycle start signal Cs and a cycle end signal Ce at the start time and end time of the cycle, respectively.
  • C1, C2, and C3 indicate cycles.
  • An arbitrary command value such as a command value for stopping the mechanical load 23 or a command value for operating the mechanical load 23 according to a manual operation may be output between cycles.
  • the cycle start signal Cs and the cycle end signal Ce are pulse signals, but other signal waveforms such as a cycle start being indicated by a rising edge of the signal and a cycle end being indicated by a falling edge of the signal. Good.
  • the command value generator 29 may output the motor rotation speed command value.
  • the command value generator 29 can be realized by a programmable device using a DSP or a microcomputer having a storage device such as a semiconductor memory.
  • the inverter 19 includes the following elements, and performs PWM modulation (Pulse Width Modulation) using a carrier wave Cw having a frequency according to the carrier frequency command value F output from the parameter selector / commander 83. Details of the configuration / operation example of the inverter 19 are shown in Non-Patent Document 1, for example. An example of a method for performing PWM modulation with a variable carrier frequency is disclosed in Patent Document 2. In Patent Document 2, the carrier wave is called a carrier.
  • the power control unit 41 is a power control unit, which controls the voltage / current from the DC bus 15 to the motor 21 by a power control element whose conduction state is changed by a gate signal.
  • the power control unit 41 uses a power control element that can be extinguished by turning off a gate signal such as a power MOSFET (Metal-Oxide-Semiconductor, Field-Effect Transistor) or IGBT (Insulated Gate Bipolar Transistor).
  • a power MOSFET Metal-Oxide-Semiconductor, Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • GTO Gate Turn Off
  • the motor current measuring device 43 is a motor current measuring device which measures the current of each UVW phase from the power control unit 41 to the motor 21.
  • the motor current measuring device 43 is a non-contact type device that measures a magnetic field generated around an electric wire with current, a device that inserts a resistor into a circuit and measures a potential difference generated at both ends of the resistor with current. It is.
  • the method for realizing the current measuring device 63 is the same.
  • the command calculator 45 is a command calculator that outputs a modulated wave Mw for each phase of UVW to the PWM modulator 47 so that the motor 21 generates torque following the torque command value Tc from the controller 27.
  • the command calculator 45 can be a device that compares the current command to each phase calculated by vector calculation with the measured value of the motor current measuring device 43 to obtain the modulated wave of each phase, but other devices may be used.
  • the command calculator 45 can be realized by a programmable device using a DSP or a microcomputer, an electronic circuit, or a combination thereof.
  • the structure which reduces the number of required motor current measuring devices 43 using methods, such as state estimation, is also possible.
  • the PWM modulator 47 is a PWM modulator, which modulates the modulated wave Mw with the carrier wave Cw and outputs a notch wave Nw that determines conduction / non-conduction of the power control element.
  • the PWM modulator 47 uses a triangular carrier wave in this embodiment, and assumes a means for determining on / off of the notch wave Nw by comparing the magnitude of the modulated wave Mw and the carrier wave Cw.
  • the PWM modulator 47 can be realized by an analog electronic circuit (comparator) or a program of a DSP or a microcomputer.
  • the carrier wave oscillator 49 is a carrier wave oscillator, which oscillates a carrier wave Cw for PWM modulation.
  • the carrier wave oscillator 49 is configured such that the oscillation frequency is variable according to the carrier wave frequency command value F.
  • the carrier oscillator 49 oscillates a triangular carrier wave by configuring an up / down counter that repeats counting up and down between two values M1 and M2 by an electronic circuit, a DSP, or a program of a microcomputer, and according to the carrier frequency command value F
  • it is possible to change the oscillation frequency by appropriately changing the values of M1 and M2 it may be configured by other methods such as an oscillation circuit using an analog electronic circuit.
  • the gate drive circuit 51 is a gate drive circuit, which insulates, level-converts or amplifies the notch wave Nw, and outputs a gate signal for driving the gate of the power control element.
  • the gate drive circuit 51 can be realized by an electronic circuit using an insulating power source, a photocoupler, or the like.
  • the 61 is a voltage measuring device, and 63 is a current measuring device.
  • the voltage measuring device 61 and the current measuring device 63 measure the voltage and current, respectively, in order to calculate the amount of electric power W flowing from the battery 91 to the DC-DC converter 93, and measure the voltage measurement value V (t) and the current measurement value I. (T) is output to the electric energy calculator 81.
  • the voltage measurement value V (t) and the current measurement value I (t) can be transmitted digitally by means of analog transmission as voltage amplitude or current amplitude, or by using various communication networks.
  • V (t) The voltage on the plus side with respect to the minus side of the battery 91 at time t measured by the voltage measuring device 61
  • I (t) the current flowing from the left to the right in the figure on the positive side of the battery 91 at time t measured by the current measuring device 63 is denoted as I (t).
  • a negative current measurement value indicates that current flows from right to left in the figure.
  • the 81 is an electric energy calculator, and calculates electric energy W of 1 cycle. That is, a value obtained by multiplying the voltage measurement value V (t) and the current measurement value I (t) is time-integrated from the time when the cycle start signal Cs is input to the time when the cycle end signal Ce is input, and then output. For the transmission of the electric energy W in one cycle, it is possible to perform digital transmission using means for analog transmission as voltage amplitude and current amplitude, and various communication networks.
  • the electric energy calculator 81 can be realized by a programmable device using a DSP or a microcomputer, an analog electronic circuit, or a combination thereof. The electric energy calculator 81 performs the following calculation.
  • the power P (t) at time t is the product of voltage and current, and is expressed by equation (1).
  • P (t) V (t) ⁇ I (t) (1)
  • Equation (2) of Formula 1 Since the power amount W of one cycle is a time integral of the power, if the time of the cycle start signal for the cycle is written as T1, and the time of the cycle end signal is written as T2, it is expressed by Equation (2) of Formula 1.
  • the electric energy calculator 81 If the calculation by the electric energy calculator 81 is performed in the period of time ⁇ T, the equation (2) is differentiated, and V (t) ⁇ I (t) ⁇ ⁇ T is integrated from time T1 to time T2. It becomes the electric energy W of the cycle. In other words, at the end of the cycle, it is possible to output one cycle of electric power for that cycle. As described above, the present invention is applicable even when power running and regeneration are mixed in one cycle by allowing negative values for the current measurement value and power. That is, positive and negative power corresponds to power running and regeneration, respectively.
  • the parameter selection / commander 83 is a parameter selection / commander that commands parameter values that affect the amount of loss, and selects appropriate parameter values based on the power consumption of one cycle in each cycle.
  • the parameters are the frequency of the carrier wave Cw and the output voltage of the DC-DC converter 93, and the parameter selector / commander 83 outputs the carrier frequency command value F to the carrier wave transmitter 49, and the output voltage command value G Is output to the DC-DC converter control circuit 95.
  • the parameter selector / commander 83 can be realized by a programmable device using a DSP or a microcomputer.
  • FIG. 3 is an operation explanatory diagram of the parameter selection / commander 83.
  • the output voltage command value G to the DC-DC converter control circuit 95 is constant will be described.
  • the procedure for searching and determining a parameter for reducing the loss by the parameter selector / commander 83 is as follows.
  • the parameter selector / commander 83 outputs a different carrier frequency command value F for each cycle.
  • a power amount W for one cycle for each cycle is output from the power amount calculator 81 and is stored in the parameter selector / commander 83.
  • the parameter selector / commander 83 compares the stored one-cycle power amount W and outputs the carrier frequency command value F with the smallest power amount as the subsequent carrier frequency command value F.
  • the carrier frequency command value F is changed to F1, F2, F3, F4, and F5 for each of five cycles (C1, C2, C3, C4, and C5 in the figure).
  • the power amount of one cycle in each cycle is W1, W2, W3, W4, and W5.
  • W1, W2, W3, W4, W5 are stored and compared at the end of cycle 5 (C5 in the figure). If W4 is the smallest, the carrier frequency command value F4 corresponding to W4 is the most lossy. It can be seen that this is a carrier frequency command value for reducing the frequency. Therefore, the parameter selector / commander 83 continues to output F4 as the carrier frequency command value thereafter.
  • the carrier frequency command value F is changed in five ways, F1 to F5, and five cycles C1 to C5 are required for searching and determining the parameter (carrier frequency command value).
  • the number for changing the carrier wave frequency command value F is not limited to 5, and may be a number Q of 2 or more. In this case, Q cycles are required for searching and determining the parameter (carrier frequency command value).
  • (1) to (3) are conceivable as timings for searching and determining parameters.
  • (1) Parameter search immediately after a hardware change that affects loss, such as addition of a noise filter to the wiring from the inverter 19 to the motor 21, replacement of the motor 21, modification of the mechanical load 23, etc. ⁇ Make a decision.
  • a push button (not shown) is connected to the parameter selection / commander 83, and when a hardware change is made, a human pushes the push button.
  • the parameter selector / commander 83 searches and determines a parameter (carrier frequency command value in this example) in the first cycle (first five cycles in this example) after the push button is pressed. Continue to output the specified carrier frequency command value.
  • a parameter selector / commander 83 has a function of outputting an output voltage command value G to the DC-DC converter control circuit 95 in addition to the carrier frequency command value F described above.
  • the carrier frequency command value F and the output voltage command value G output by the parameter selector / commander 83 are changed to store and compare the power amount W of one cycle, and the carrier frequency command value with the smallest power amount W is stored.
  • F and the output voltage command value G are output as the subsequent carrier wave frequency command value F and output voltage command value G.
  • FIG. 4 is an explanatory diagram of a method for searching and determining a plurality of parameters.
  • a method for searching and determining a plurality of parameters carrier frequency command value F and output voltage command value G
  • FIG. 4 shows an example in which W3 is the smallest among W1 to W15, and the combination of the carrier frequency command value F1 and the output voltage command value G3 corresponding to W3 is the carrier frequency at which the loss is minimized.
  • the parameter selector / commander 83 uses F1 as the carrier frequency command value after the end of the cycle 15 (that is, after the cycle C16 in the figure) as the output voltage. Continue to output G3 as the command value.
  • the carrier frequency command value F is changed in five ways F1 to F5 and the output voltage command value G is changed in three ways G1 to G3, and parameters (carrier frequency command value and voltage change rate command are changed).
  • the number Q or R is not limited to 3, but may be 2 or more. In this case, Q ⁇ R cycles are required for searching and determining parameters (carrier frequency command value F and output voltage command value G).
  • FIG. 5 is a diagram showing a second embodiment of the power-saving drive device according to the present invention.
  • this embodiment there are a plurality of inverters and motors, all of which move in the same manner.
  • the integrated mechanical load is driven by a plurality of motors.
  • FIG. 5 shows the case where there are three inverters and motors, but the same applies to the case where there are two or four or more motors.
  • the configurations of the DC-DC converter and the inverter are the same as those in the first embodiment, the configurations of the DC-DC converter and the inverter are not shown.
  • the electric energy calculator 81 and the parameter selector / commander 83 are provided, the inverter parameters are changed to a plurality of values, and the received electric energy of the inverter by the same load pattern in each parameter. Since W is calculated and compared, the parameter that minimizes the amount of received power is selected and the inverter is commanded, the electrical characteristics of the wiring, the presence or absence of electromagnetic noise removal elements, the loss characteristics for each motor, and temperature changes The loss amount can be minimized in consideration of the loss characteristics of all the components without obtaining the loss characteristic data by performing experiments in advance.
  • the parameter of the inverter may be a voltage change rate of the switching waveform.

Abstract

A power-conserving drive device for a device (23) having a uniform load pattern, driven by a motor (21) supplied with power from an inverter (19), and operated by the repetition of the uniform load pattern, is provided with a DC-DC converter (93) driven by a battery (91), and the inverter (19) driven by the output of the DC-DC converter. The power-conserving drive device is provided with: a power volume computing unit (81) which measures the volume (W) of power received from the battery during a uniform cycle pattern; and a parameter selection/command unit (83) which converts the inverter parameters (carrier frequency command value (F) and output voltage command value (G)) into a plurality of values, compares the volume of power received for each parameter, selects the parameters which minimize the volume of power received, and commands the inverter to implement the parameters.

Description

同一負荷パターンを有する装置の省電力駆動装置及び方法Power saving drive apparatus and method for apparatus having the same load pattern
 本発明は、同一負荷パターンを有する装置の省電力駆動装置及び方法に関する。 The present invention relates to a power saving driving apparatus and method for apparatuses having the same load pattern.
 本発明は、バッテリで駆動されるDC-DCコンバータの出力で駆動されるインバータから電力供給されるモータで駆動され、同一負荷パターンで繰り返し運転される装置を対象とする。以下、かかる装置を「同一負荷パターン装置」と呼ぶ。
 なお、同一負荷パターン装置は、サーボプレス、プレス用ダイクッション、搬送装置、物流装置などの産業用装置を主に想定するが、それらには限定されない。
The present invention is directed to a device that is driven by a motor that is powered by an inverter driven by the output of a DC-DC converter that is driven by a battery, and that is repeatedly operated in the same load pattern. Hereinafter, such a device is referred to as a “same load pattern device”.
In addition, although the same load pattern apparatus mainly assumes industrial apparatuses, such as a servo press, the die cushion for a press, a conveying apparatus, and a physical distribution apparatus, it is not limited to them.
 上述した同一負荷パターン装置における損失量は、電力変換回路のパラメタ、例えばDC-DCコンバータの出力電圧や、インバータの搬送波周波数やスイッチング波形の電圧変化率dv/dtなどにより変化する。
 ここで「損失量」とは、バッテリから供給される電力とモータ出力との差、すなわち、バッテリからモータに到る電気回路(DC-DCコンバータ、インバータとモータを含む)およびモータ内部の磁気回路において発熱や電磁放射の形で失われる仕事量を意味する。
 この損失量を低減する手段として、例えば特許文献1が既に提案されている。また、本発明に関連する技術が、特許文献2と非特許文献1,2に開示されている。
The amount of loss in the same load pattern device described above varies depending on the parameters of the power conversion circuit, for example, the output voltage of the DC-DC converter, the carrier frequency of the inverter, the voltage change rate dv / dt of the switching waveform, and the like.
Here, the “loss amount” means the difference between the electric power supplied from the battery and the motor output, that is, the electric circuit (including the DC-DC converter, inverter and motor) from the battery to the motor, and the magnetic circuit inside the motor. Means the amount of work lost in the form of heat generation and electromagnetic radiation.
As means for reducing this loss amount, for example, Patent Document 1 has already been proposed. Moreover, the technique relevant to this invention is disclosed by patent document 2 and nonpatent literature 1,2.
 特許文献1は、装置の運転条件が変化したとき、電力変換のパラメタ(DC/DCコンバータの搬送波周波数)を変化させて損失量を小さくするものである。 Japanese Patent Laid-Open No. 2004-228561 is to reduce a loss amount by changing a power conversion parameter (a carrier frequency of a DC / DC converter) when an operation condition of the apparatus is changed.
 非特許文献2には、低速域・中速域・高速域に応じて運転中にスイッチング周波数を切り替えることにより損失を低減することが開示されている。 Non-Patent Document 2 discloses that loss is reduced by switching the switching frequency during operation in accordance with a low speed region, a medium speed region, and a high speed region.
特開2003-116280号公報、「駆動装置および動力出力装置」JP 2003-116280 A, “DRIVE DEVICE AND POWER OUTPUT DEVICE” 特開平5-184182号公報、「インバータ制御装置」Japanese Patent Application Laid-Open No. 5-184182, “Inverter Control Device”
 特許文献1では、損失量を小さくする搬送波(キャリアと称する)周波数を、(A)エネルギ蓄積手段、スイッチング素子、電動機各相コイルの損失特性を用いることにより、或いは(B)予め実験などにより求める手段が提案されている。
 しかし、特許文献1の手段を各種装置、特にバッテリで駆動されるサーボプレス、プレス用ダイクッション、搬送装置、物流装置などの産業用装置に適用しようとすると以下の問題がある。
In Patent Document 1, the frequency of a carrier wave (referred to as a carrier) that reduces the amount of loss is obtained by (A) using the loss characteristics of the energy storage means, the switching element, and each phase coil of the motor, or (B) by experimentation in advance. Means have been proposed.
However, if the means of Patent Document 1 is applied to various apparatuses, particularly industrial apparatuses such as a servo press driven by a battery, a die cushion for pressing, a conveying apparatus, and a physical distribution apparatus, there are the following problems.
(A)に対しては、「他の構成要素の損失特性が考慮されていない」という問題がある。
 例えば、インバータとモータ間の配線、電磁ノイズ除去用素子(フェライトコアやフィルタ)、モータのロータにおける損失(ロータ内に誘導される電流による損失など)が考慮されていない。
 また、産業用装置ではインバータとモータ間の配線が長かったり、電磁ノイズ除去用素子やモータが大型であったりするため、これらの構成要素からの損失量も無視できないことが多い。
As for (A), there is a problem that “loss characteristics of other components are not considered”.
For example, wiring between the inverter and the motor, electromagnetic noise removing elements (ferrite cores and filters), and loss in the rotor of the motor (loss due to current induced in the rotor, etc.) are not considered.
Further, in industrial devices, the wiring between the inverter and the motor is long, or the electromagnetic noise removing element and the motor are large, so the amount of loss from these components is often not negligible.
(B)に対しては、「搬送波周波数を決めるためのデータ(総合的な損失特性)を予め求めておくことが困難である」という問題がある。
 これは、例えば、次の理由による。
(a)バッテリで駆動されるDC-DCコンバータと、DC-DCコンバータの出力で駆動されるインバータとを備える場合、DC-DCコンバータの出力電圧の最適化ができない。
(b)配線作業が現物合わせのため、配線の電気的特性が事前に予測できない。
(c)電磁ノイズ除去用素子が装置設置後に追加されることがある。
(d)モータが故障して交換されることがあるが、モータは一台ごとに特性が異なる。
(e)モータの温度は、装置の起動直後は低く、装置を連続運転していると上昇するが、モータの損失特性は温度によって変化する。
As for (B), there is a problem that “it is difficult to obtain in advance data (total loss characteristics) for determining a carrier frequency”.
This is due to the following reason, for example.
(A) When a DC-DC converter driven by a battery and an inverter driven by the output of the DC-DC converter are provided, the output voltage of the DC-DC converter cannot be optimized.
(B) Since the wiring work is in line with the actual product, the electrical characteristics of the wiring cannot be predicted in advance.
(C) An electromagnetic noise removing element may be added after installation of the apparatus.
(D) Although a motor may fail and be replaced, each motor has different characteristics.
(E) The temperature of the motor is low immediately after the start of the apparatus and rises when the apparatus is continuously operated, but the loss characteristic of the motor changes depending on the temperature.
 本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、DC-DCコンバータの出力電圧、配線の電気的特性、電磁ノイズ除去用素子の有無、モータごとの損失特性及び温度変化、等を予め実験して損失特性のデータを取得することなく、すべての構成要素の損失特性を考慮して損失量を最小化することができる同一負荷パターンを有する装置の省電力駆動装置及び方法を提供することにある。 The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to obtain data on loss characteristics by conducting experiments in advance on the output voltage of a DC-DC converter, electrical characteristics of wiring, presence / absence of an electromagnetic noise removing element, loss characteristics and temperature changes for each motor, and the like. It is an object of the present invention to provide a power-saving drive device and method for a device having the same load pattern that can minimize the amount of loss in consideration of the loss characteristics of all the components without obtaining them.
 本発明によれば、バッテリで駆動されるDC-DCコンバータと、該DC-DCコンバータの出力で駆動されるインバータとを備え、該インバータから電力供給されるモータで駆動され、同一負荷パターンを有する装置の省電力駆動装置であって、
 前記同一負荷パターンにおけるバッテリからの受電電力量を計算する電力量演算器と、
 インバータのパラメタを複数の値に変化させ、各パラメタにおける前記受電電力量を比較し、該受電電力量を最小にするパラメタを選択して、インバータに指令するパラメタ選択・指令器と、を備える、ことを特徴とする同一負荷パターンを有する装置の省電力駆動装置が提供される。
According to the present invention, a DC-DC converter driven by a battery and an inverter driven by the output of the DC-DC converter are provided, driven by a motor supplied with power from the inverter, and having the same load pattern A power saving drive device for the device,
An energy calculator that calculates the amount of power received from the battery in the same load pattern;
A parameter selection / commander for changing the parameter of the inverter to a plurality of values, comparing the received power amount in each parameter, selecting a parameter that minimizes the received power amount, and instructing the inverter; A power-saving drive device for a device having the same load pattern is provided.
 本発明の実施形態によれば、前記負荷パターンのサイクル開始信号とサイクル終了信号を出力する指令値生成器を備える。 According to an embodiment of the present invention, a command value generator for outputting a cycle start signal and a cycle end signal of the load pattern is provided.
 前記インバータのパラメタは、搬送波周波数、および、DC-DCコンバータの出力電圧である。 The parameters of the inverter are the carrier frequency and the output voltage of the DC-DC converter.
 また本発明によれば、バッテリで駆動されるDC-DCコンバータと、該DC-DCコンバータの出力で駆動されるインバータとを備え、該インバータから電力供給されるモータで駆動され、同一負荷パターンを有する装置の省電力駆動方法であって、
 インバータのパラメタを複数の値に変化させ、
 前記各パラメタにおける前記同一負荷パターンによるバッテリからの受電電力量を計算し、
 各パラメタにおける前記受電電力量を比較し、該受電電力量を最小にするパラメタを選択して、インバータに指令する、ことを特徴とする同一負荷パターンを有する装置の省電力駆動方法が提供される。
The present invention also includes a DC-DC converter driven by a battery and an inverter driven by the output of the DC-DC converter, driven by a motor supplied with power from the inverter, and having the same load pattern. A power saving driving method for an apparatus having:
Change the inverter parameters to multiple values,
Calculate the amount of power received from the battery by the same load pattern in each parameter,
There is provided a power saving driving method for a device having the same load pattern, wherein the received power amount in each parameter is compared, a parameter that minimizes the received power amount is selected, and an inverter is commanded .
 上記本発明の装置及び方法によれば、電力量演算器とパラメタ選択・指令器とを備え、インバータのパラメタを複数の値に変化させ、各パラメタにおける同一負荷パターンによるバッテリからの受電電力量を計算して比較し、該受電電力量を最小にするパラメタを選択して、インバータに指令するので、配線の電気的特性、電磁ノイズ除去用素子の有無、モータごとの損失特性及び温度変化、等を予め実験して損失特性のデータを取得することなく、すべての構成要素の損失特性を考慮して損失量を最小化することができる。
 
According to the apparatus and method of the present invention, it is provided with an electric energy calculator and a parameter selector / commander, changing the parameter of the inverter to a plurality of values, and determining the amount of electric power received from the battery by the same load pattern in each parameter. Calculate and compare, select the parameter that minimizes the amount of received power, and command the inverter, so the electrical characteristics of the wiring, the presence or absence of electromagnetic noise removal elements, loss characteristics and temperature changes for each motor, etc. The amount of loss can be minimized in consideration of the loss characteristics of all the components without obtaining the loss characteristic data by conducting an experiment in advance.
本発明による省電力駆動装置の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the power saving drive device by this invention. 本発明が対象としている同一負荷パターン装置の作動説明図である。It is operation | movement explanatory drawing of the same load pattern apparatus which this invention makes object. パラメタ選択・指令器の作動説明図である。It is operation | movement explanatory drawing of a parameter selection / command device. 複数のパラメタを探索・決定する方法の説明図である。It is explanatory drawing of the method of searching and determining a some parameter. 本発明による省電力駆動装置の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the power saving drive device by this invention.
 以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明による省電力駆動装置の第1実施形態を示す図である。この図において、本発明の省電力駆動装置は、バッテリ91で駆動されるDC-DCコンバータ93と、DC-DCコンバータ93の出力で駆動されるインバータ19とを備える。 FIG. 1 is a diagram showing a first embodiment of a power-saving drive device according to the present invention. In this figure, the power-saving drive device of the present invention includes a DC-DC converter 93 driven by a battery 91 and an inverter 19 driven by the output of the DC-DC converter 93.
 バッテリ91は、例えば、リチウムイオン電池、ニッケル水素電池、鉛蓄電池などの二次電池である。バッテリ91は、電池の出力電圧を高くするため、セルを直列接続し、かつ電池のコントローラを備えている。
 また、このバッテリ91には、図示しない太陽電池、燃料電池、風力発電機等により直流電力を充電するようになっている。
The battery 91 is a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery. The battery 91 includes cells connected in series and a battery controller in order to increase the output voltage of the battery.
Further, the battery 91 is charged with DC power by a solar cell, a fuel cell, a wind power generator or the like (not shown).
 DC-DCコンバータ93の入力端(図で左端)は、バッテリ91に接続され、出力端(図で右端)はインバータ19に接続されている。
 DC-DCコンバータ93は、直流電圧の昇圧もしくは降圧もしくはその双方を行う可変出力電圧のDC-DCコンバータである。図1で、DC-DCコンバータ93の右側の、キャパシタ17の両端間の電圧が出力電圧である。
An input end (left end in the figure) of the DC-DC converter 93 is connected to the battery 91, and an output end (right end in the figure) is connected to the inverter 19.
The DC-DC converter 93 is a variable output voltage DC-DC converter that boosts and / or steps down a DC voltage. In FIG. 1, the voltage across the capacitor 17 on the right side of the DC-DC converter 93 is the output voltage.
 このDC-DCコンバータ93は、力行(図1で左から右へ電力が移動する)のみでなく、回生(図1で右から左へ電力が移動する)も可能に構成されている。
 このようなDC-DCコンバータ93は、IGBTやパワーMOSFETなどの電力制御素子とインダクタやトランスを組み合わせて実現される。
The DC-DC converter 93 is configured to be capable of not only powering (power moves from left to right in FIG. 1) but also regeneration (power moves from right to left in FIG. 1).
Such a DC-DC converter 93 is realized by combining a power control element such as an IGBT or a power MOSFET with an inductor or a transformer.
 図1において、95はDC-DCコンバータ制御回路である。DC-DCコンバータ制御回路95は、DC-DCコンバータ93の電力制御素子のゲート信号を生成し、DC-DCコンバータ93の出力電圧を制御する。
 DC-DCコンバータ制御回路95は、電子回路もしくは組み込みCPUと専用制御プログラムないしは両者の組み合わせで実現される。
In FIG. 1, reference numeral 95 denotes a DC-DC converter control circuit. The DC-DC converter control circuit 95 generates a gate signal for the power control element of the DC-DC converter 93 and controls the output voltage of the DC-DC converter 93.
The DC-DC converter control circuit 95 is realized by an electronic circuit or an embedded CPU and a dedicated control program or a combination of both.
 直流バス15は、DC-DCコンバータ93とインバータ19を電気的に接続する。図中で、上方に示されているのが直流バス15のプラス側(+)、下方に示されているのが直流バス15のマイナス側(-)である。
 17はキャパシタであり、直流バス15の電圧を平滑化する。キャパシタ17は、アルミ電解コンデンサが使用されることが多いが、他の種類のコンデンサや電気二重層キャパシタを用いてもよい。
The DC bus 15 electrically connects the DC-DC converter 93 and the inverter 19. In the drawing, the upper side shows the positive side (+) of the DC bus 15, and the lower side shows the negative side (−) of the DC bus 15.
A capacitor 17 smoothes the voltage of the DC bus 15. As the capacitor 17, an aluminum electrolytic capacitor is often used, but other types of capacitors and electric double layer capacitors may be used.
 19はインバータであり、直流バス15からモータ21へ流れる電流・電圧を制御し、モータ21が所望のトルクを発生するようにする。インバータ19は、この実施形態では電圧型インバータを仮定するが、電流型インバータでもよい。電流型インバータの場合、キャパシタ17の代わりにリアクトルを用いる。
 また、インバータ19は、この実施形態では、モータ21の正逆回転、力行・回生が可能な4象限駆動のインバータを仮定するが、機械負荷23(同一負荷パターン装置)の特性および動作によっては、回転方向が一方向のみ、もしくは力行のみが可能なインバータでもよい。力行のみが可能なインバータを用いる場合、DC-DCコンバータ93も力行のみ可能なものであってよい。
Reference numeral 19 denotes an inverter which controls the current / voltage flowing from the DC bus 15 to the motor 21 so that the motor 21 generates a desired torque. The inverter 19 is assumed to be a voltage type inverter in this embodiment, but may be a current type inverter. In the case of a current type inverter, a reactor is used instead of the capacitor 17.
Further, in this embodiment, the inverter 19 is assumed to be a four-quadrant drive inverter capable of forward / reverse rotation, power running / regeneration of the motor 21, but depending on the characteristics and operation of the mechanical load 23 (same load pattern device), The inverter may be capable of rotating only in one direction or powering only. When an inverter capable of only power running is used, the DC-DC converter 93 may be capable of only power running.
 21はモータであり、インバータ19とモータ21の組み合わせにより、制御器27から入力されるトルク指令値に追従してモータ21がトルクを発生する。
 モータ21は、この実施形態では、3相誘導モータないし3相永久磁石同期モータを仮定するが、インバータとの組み合わせでトルク・回転速度が可変であれば、他の形式のモータでもよい。
Reference numeral 21 denotes a motor. The combination of the inverter 19 and the motor 21 causes the motor 21 to generate torque following the torque command value input from the controller 27.
In this embodiment, the motor 21 is assumed to be a three-phase induction motor or a three-phase permanent magnet synchronous motor. However, other types of motors may be used as long as the torque and rotational speed are variable in combination with an inverter.
 23は機械負荷、すなわち同一負荷パターン装置であり、モータ21により駆動される。
 25はモータエンコーダであり、モータ21の回転位置(角度)を測定する。モータエンコーダ25として、光学式や磁気式のロータリーエンコーダやレゾルバが用いられる。なお、制御器27が速度制御を行う場合には、モータ21の回転速度(角速度)を測定すればよい。この場合、ロータリーエンコーダやレゾルバで測定した回転位置を時間微分してもよいし、タコメータのように回転速度を直接測定してもよい。
Reference numeral 23 denotes a mechanical load, that is, the same load pattern device, which is driven by the motor 21.
Reference numeral 25 denotes a motor encoder, which measures the rotational position (angle) of the motor 21. As the motor encoder 25, an optical or magnetic rotary encoder or resolver is used. When the controller 27 performs speed control, the rotational speed (angular speed) of the motor 21 may be measured. In this case, the rotational position measured with a rotary encoder or resolver may be time-differentiated, or the rotational speed may be directly measured like a tachometer.
 27は制御器であり、インバータ19、モータ21、モータエンコーダ25、制御器27でフィードバックループを構成し、モータ21が指令値生成器29からの指令値に追随するよう制御する。
 制御器27は、この実施形態では、位置制御を仮定するが、速度制御でもよい。制御器27内部の演算手法としては、PID(Proportional Integral Derivative)制御やI-PD(Integral Proportional Derivative)制御などが多く用いられるが、その他の制御手法を用いてもよい。制御性を改善するためのフィードフォワード演算を組み合わせてもよい。制御器27は、DSP(Digital Signal Processor)やマイコンを用いたプログラマブル装置もしくはアナログ回路もしくはそれらの組み合わせにより実現可能である。
Reference numeral 27 denotes a controller, and the inverter 19, the motor 21, the motor encoder 25, and the controller 27 constitute a feedback loop, and the motor 21 is controlled to follow the command value from the command value generator 29.
The controller 27 assumes position control in this embodiment, but may be speed control. As a calculation method inside the controller 27, PID (Proportional Integral Derivative) control, I-PD (Integral Proportional Derivative) control, and the like are often used, but other control methods may be used. A feedforward calculation for improving controllability may be combined. The controller 27 can be realized by a programmable device using DSP (Digital Signal Processor), a microcomputer, an analog circuit, or a combination thereof.
 29は指令値生成器であり、それぞれの時刻において、モータ21が追随すべきモータ回転角度指令値Acを制御器27へ出力する。モータ回転角度指令値Acの伝送には、90度位相がずれた2相パルス列による伝送や、各種通信ネットワークによる伝送が用いられる。モータ21の回転角と機械負荷23は機械的に連動しているので、モータ21の回転角度を指令することは、機械負荷23の位置を指令することと同じ意味である。 29 is a command value generator, which outputs a motor rotation angle command value Ac to be followed by the motor 21 to the controller 27 at each time. For transmission of the motor rotation angle command value Ac, transmission by a two-phase pulse train whose phase is shifted by 90 degrees or transmission by various communication networks is used. Since the rotation angle of the motor 21 and the mechanical load 23 are mechanically linked, instructing the rotation angle of the motor 21 has the same meaning as instructing the position of the mechanical load 23.
 図2は、本発明が対象としている同一負荷パターン装置の作動説明図である。
 本発明は同一負荷パターンで繰り返し運転される装置(同一負荷パターン装置)を対象としているので、この実施形態において、図に示すように、モータ回転角度指令値Acはサイクル(繰り返される同一パターン)を有し、サイクルの開始時点と終了時点において、指令値生成器29はサイクル開始信号Csとサイクル終了信号Ceをそれぞれ出力するものとする。
 この図において、C1、C2、C3がそれぞれサイクルを示している。サイクルとサイクルの間では、任意の指令値、たとえば機械負荷23を停止させておくような指令値や機械負荷23を手動操作にしたがって動作させるための指令値を出力してかまわない。
FIG. 2 is an operation explanatory view of the same load pattern device targeted by the present invention.
Since the present invention is intended for a device that is repeatedly operated with the same load pattern (same load pattern device), in this embodiment, as shown in the figure, the motor rotation angle command value Ac is a cycle (same repeated pattern). The command value generator 29 outputs a cycle start signal Cs and a cycle end signal Ce at the start time and end time of the cycle, respectively.
In this figure, C1, C2, and C3 indicate cycles. An arbitrary command value such as a command value for stopping the mechanical load 23 or a command value for operating the mechanical load 23 according to a manual operation may be output between cycles.
 なお、以下の説明においては単純化のため、サイクルとサイクルの間では機械負荷23を停止させておくような指令値を出力するものとする。また、図2ではサイクル開始信号Cs、サイクル終了信号Ceはパルス信号としたが、サイクル開始を信号の立上りエッジで、サイクル終了を信号の立下りエッジで示すようにするなど、他の信号波形でもよい。
 なお、制御器27が速度制御を行う場合には、指令値生成器29はモータ回転速度指令値を出力するようにすればよい。
In the following description, for simplification, it is assumed that a command value for stopping the mechanical load 23 is output between cycles. In FIG. 2, the cycle start signal Cs and the cycle end signal Ce are pulse signals, but other signal waveforms such as a cycle start being indicated by a rising edge of the signal and a cycle end being indicated by a falling edge of the signal. Good.
When the controller 27 performs speed control, the command value generator 29 may output the motor rotation speed command value.
 指令値生成器29は、半導体メモリのような記憶装置を有するDSPやマイコンを用いたプログラマブル装置により実現可能である。 The command value generator 29 can be realized by a programmable device using a DSP or a microcomputer having a storage device such as a semiconductor memory.
 インバータ19は、以下の要素から構成され、パラメタ選択・指令器83が出力する搬送波周波数指令値Fにしたがった周波数の搬送波Cwを用いてPWM変調(Pulse Width Modulation)が行われる。
 インバータ19の構成・動作例の詳細は例えば、非特許文献1に示されている。また、可変な搬送波周波数によりPWM変調を行う方法の例は、特許文献2に示されている。なお特許文献2では、搬送波はキャリアと呼ばれている。
The inverter 19 includes the following elements, and performs PWM modulation (Pulse Width Modulation) using a carrier wave Cw having a frequency according to the carrier frequency command value F output from the parameter selector / commander 83.
Details of the configuration / operation example of the inverter 19 are shown in Non-Patent Document 1, for example. An example of a method for performing PWM modulation with a variable carrier frequency is disclosed in Patent Document 2. In Patent Document 2, the carrier wave is called a carrier.
 41は電力制御部であり、ゲート信号により導通状態が変化する電力制御素子により、直流バス15からモータ21への電圧・電流を制御する。電力制御部41は、この実施形態ではパワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などのゲート信号をオフすることにより消弧可能な電力制御素子を用いることを仮定するが、GTO(Gate Turn Off)など他の種類の電力制御素子を電力制御素子に応じた適当なゲート駆動回路と組み合わせて用いてもよい。 41 is a power control unit, which controls the voltage / current from the DC bus 15 to the motor 21 by a power control element whose conduction state is changed by a gate signal. In this embodiment, the power control unit 41 uses a power control element that can be extinguished by turning off a gate signal such as a power MOSFET (Metal-Oxide-Semiconductor, Field-Effect Transistor) or IGBT (Insulated Gate Bipolar Transistor). However, other types of power control elements such as GTO (Gate Turn Off) may be used in combination with an appropriate gate drive circuit corresponding to the power control element.
 43はモータ電流測定器であり、電力制御部41からモータ21へのUVW各相の電流を測定する。モータ電流測定器43は、電流にともなって電線の周囲に発生する磁場を測定する非接触方式の装置や、回路に抵抗を挿入し電流にともなって抵抗の両端に発生する電位差を測定する装置などである。電流測定器63の実現方法も同様である。 43 is a motor current measuring device which measures the current of each UVW phase from the power control unit 41 to the motor 21. The motor current measuring device 43 is a non-contact type device that measures a magnetic field generated around an electric wire with current, a device that inserts a resistor into a circuit and measures a potential difference generated at both ends of the resistor with current. It is. The method for realizing the current measuring device 63 is the same.
 45は指令演算器であり、制御器27からのトルク指令値Tcに追随してモータ21がトルクを発生するよう、PWM変調器47へUVWの各相に対する変調波Mwを出力する。指令演算器45として、ベクトル演算により計算した各相への電流指令をモータ電流測定器43の測定値と比較して各相の変調波を求める装置が可能であるが、他の装置でもよい。指令演算器45は、DSPやマイコンを用いたプログラマブル装置もしくは電子回路もしくはそれらの組み合わせにより実現可能である。なお、状態推定等の手法を用いて、必要なモータ電流測定器43の個数を減らす構成も可能である。 45 is a command calculator that outputs a modulated wave Mw for each phase of UVW to the PWM modulator 47 so that the motor 21 generates torque following the torque command value Tc from the controller 27. The command calculator 45 can be a device that compares the current command to each phase calculated by vector calculation with the measured value of the motor current measuring device 43 to obtain the modulated wave of each phase, but other devices may be used. The command calculator 45 can be realized by a programmable device using a DSP or a microcomputer, an electronic circuit, or a combination thereof. In addition, the structure which reduces the number of required motor current measuring devices 43 using methods, such as state estimation, is also possible.
 47はPWM変調器であり、変調波Mwを搬送波Cwで変調し、電力制御素子の導通・非導通を決めるノッチ波Nwを出力する。PWM変調器47は、この実施形態では三角搬送波を用い、変調波Mwと搬送波Cwの大小比較でノッチ波Nwのオンオフを決める手段を想定する。PWM変調器47は、アナログ電子回路(コンパレータ)もしくはDSPやマイコンのプログラムで実現可能である。 47 is a PWM modulator, which modulates the modulated wave Mw with the carrier wave Cw and outputs a notch wave Nw that determines conduction / non-conduction of the power control element. The PWM modulator 47 uses a triangular carrier wave in this embodiment, and assumes a means for determining on / off of the notch wave Nw by comparing the magnitude of the modulated wave Mw and the carrier wave Cw. The PWM modulator 47 can be realized by an analog electronic circuit (comparator) or a program of a DSP or a microcomputer.
 49は搬送波発振器であり、PWM変調のための搬送波Cwを発振する。搬送波発振器49は、搬送波周波数指令値Fにしたがって発振周波数が可変となるよう構成する。
 搬送波発振器49は、2つの値M1,M2の間でカウントアップ・ダウンを繰り返すアップダウンカウンタを電子回路やDSPやマイコンのプログラムで構成して三角搬送波を発振し、搬送波周波数指令値Fに応じてM1,M2の値を適切に変えることにより発振周波数を変える構成が可能であるが、アナログ電子回路による発振回路など他の方法で構成してもよい。
49 is a carrier wave oscillator, which oscillates a carrier wave Cw for PWM modulation. The carrier wave oscillator 49 is configured such that the oscillation frequency is variable according to the carrier wave frequency command value F.
The carrier oscillator 49 oscillates a triangular carrier wave by configuring an up / down counter that repeats counting up and down between two values M1 and M2 by an electronic circuit, a DSP, or a program of a microcomputer, and according to the carrier frequency command value F Although it is possible to change the oscillation frequency by appropriately changing the values of M1 and M2, it may be configured by other methods such as an oscillation circuit using an analog electronic circuit.
 51はゲート駆動回路であり、ノッチ波Nwを絶縁、レベル変換又は増幅して、電力制御素子のゲートを駆動するゲート信号を出力する。ゲート駆動回路51は、絶縁型電源・フォトカプラ等を用いた電子回路により実現できる。 51 is a gate drive circuit, which insulates, level-converts or amplifies the notch wave Nw, and outputs a gate signal for driving the gate of the power control element. The gate drive circuit 51 can be realized by an electronic circuit using an insulating power source, a photocoupler, or the like.
 61は電圧測定器であり、63は電流測定器である。電圧測定器61と電流測定器63は、バッテリ91からDC-DCコンバータ93へ流入する電力量Wを計算するため、それぞれ電圧と電流を測定し、電圧測定値V(t)と電流測定値I(t)を電力量演算器81へ出力する。電圧測定値V(t)、電流測定値I(t)の伝送には、電圧振幅や電流振幅としてアナログ伝送する手段や、各種通信ネットワークを用いてデジタル伝送することが可能である。
 電圧測定器61で測定される時刻tにおけるバッテリ91のマイナス側に対するプラス側の電圧をV(t)と記す。また電流測定器63で測定される時刻tにおけるバッテリ91のプラス側を図中で左から右へ流れる電流をI(t)と記す。電流測定値が負の値の場合、電流が図中で右から左へ流れることを示す。
61 is a voltage measuring device, and 63 is a current measuring device. The voltage measuring device 61 and the current measuring device 63 measure the voltage and current, respectively, in order to calculate the amount of electric power W flowing from the battery 91 to the DC-DC converter 93, and measure the voltage measurement value V (t) and the current measurement value I. (T) is output to the electric energy calculator 81. The voltage measurement value V (t) and the current measurement value I (t) can be transmitted digitally by means of analog transmission as voltage amplitude or current amplitude, or by using various communication networks.
The voltage on the plus side with respect to the minus side of the battery 91 at time t measured by the voltage measuring device 61 is denoted as V (t). Further, the current flowing from the left to the right in the figure on the positive side of the battery 91 at time t measured by the current measuring device 63 is denoted as I (t). A negative current measurement value indicates that current flows from right to left in the figure.
 81は電力量演算器であり、1サイクルの電力量Wを演算する。すなわち、電圧測定値V(t)と電流測定値I(t)を乗算した値を、サイクル開始信号Csが入力された時点からサイクル終了信号Ceが入力される時間まで時間積分して出力する。1サイクルの電力量Wの伝送には、電圧振幅や電流振幅としてアナログ伝送する手段や、各種通信ネットワークを用いてデジタル伝送することが可能である。
 電力量演算器81は、DSPやマイコンを用いたプログラマブル装置もしくはアナログ電子回路もしくはそれらの組み合わせにより実現可能である。
 電力量演算器81は、以下のような演算を行う。
 時刻tにおける電力P(t)は電圧と電流の積であり、式(1)であらわされる。ここで、P(t)が正の値であれば電力が図中の左から右へ、P(t)が負の値であれば電力が図中の右から左へ流れることを示す。
 P(t)=V(t)×I(t)・・・(1)
 1サイクルの電力量Wは、電力の時間積分なので、そのサイクルに対するサイクル開始信号の時刻をT1、サイクル終了信号の時刻をT2と書けば、数1の式(2)であらわされる。
81 is an electric energy calculator, and calculates electric energy W of 1 cycle. That is, a value obtained by multiplying the voltage measurement value V (t) and the current measurement value I (t) is time-integrated from the time when the cycle start signal Cs is input to the time when the cycle end signal Ce is input, and then output. For the transmission of the electric energy W in one cycle, it is possible to perform digital transmission using means for analog transmission as voltage amplitude and current amplitude, and various communication networks.
The electric energy calculator 81 can be realized by a programmable device using a DSP or a microcomputer, an analog electronic circuit, or a combination thereof.
The electric energy calculator 81 performs the following calculation.
The power P (t) at time t is the product of voltage and current, and is expressed by equation (1). Here, when P (t) is a positive value, power flows from left to right in the figure, and when P (t) is a negative value, power flows from right to left in the figure.
P (t) = V (t) × I (t) (1)
Since the power amount W of one cycle is a time integral of the power, if the time of the cycle start signal for the cycle is written as T1, and the time of the cycle end signal is written as T2, it is expressed by Equation (2) of Formula 1.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 電力量演算器81での演算が時間ΔT周期で行われるとすれば、式(2)を差分化し、時刻T1から時刻T2までV(t)×I(t)×ΔTを積算すれば、1サイクルの電力量Wとなる。すなわち、サイクル終了時点において、そのサイクルに対する1サイクルの電力量を出力可能である。
 以上の説明のように、電流測定値と電力に負の値も許容することにより、1サイクル中で力行と回生が混在している場合にも本発明は適用可能となる。すなわち、電力の正、負が、それぞれ力行、回生に相当する。
If the calculation by the electric energy calculator 81 is performed in the period of time ΔT, the equation (2) is differentiated, and V (t) × I (t) × ΔT is integrated from time T1 to time T2. It becomes the electric energy W of the cycle. In other words, at the end of the cycle, it is possible to output one cycle of electric power for that cycle.
As described above, the present invention is applicable even when power running and regeneration are mixed in one cycle by allowing negative values for the current measurement value and power. That is, positive and negative power corresponds to power running and regeneration, respectively.
 83はパラメタ選択・指令器であり、損失量に影響するパラメタの値を指令するとともに、各サイクルにおける1サイクルの電力量にもとづいて、適切なパラメタの値を選択する。この実施形態では、パラメタは搬送波Cwの周波数とDC-DCコンバータ93の出力電圧であり、パラメタ選択・指令器83は、搬送波周波数指令値Fを搬送波発信器49へ出力し、出力電圧指令値GをDC-DCコンバータ制御回路95へ出力する。パラメタ選択・指令器83は、DSPやマイコンをもちいたプログラマブル装置により実現可能である。 83 is a parameter selection / commander that commands parameter values that affect the amount of loss, and selects appropriate parameter values based on the power consumption of one cycle in each cycle. In this embodiment, the parameters are the frequency of the carrier wave Cw and the output voltage of the DC-DC converter 93, and the parameter selector / commander 83 outputs the carrier frequency command value F to the carrier wave transmitter 49, and the output voltage command value G Is output to the DC-DC converter control circuit 95. The parameter selector / commander 83 can be realized by a programmable device using a DSP or a microcomputer.
 図3は、パラメタ選択・指令器83の作動説明図である。
 以下、DC-DCコンバータ制御回路95への出力電圧指令値Gが一定である場合を説明する。
FIG. 3 is an operation explanatory diagram of the parameter selection / commander 83.
Hereinafter, a case where the output voltage command value G to the DC-DC converter control circuit 95 is constant will be described.
 パラメタ選択・指令器83により、損失を小さくするパラメタを探索・決定するための手順は以下のようになる。
 パラメタ選択・指令器83は、1サイクルごとに異なる搬送波周波数指令値Fを出力する。サイクル終了時点において、電力量演算器81から各サイクルに対する1サイクルの電力量Wが出力されるので、パラメタ選択・指令器83の内部に記憶しておく。パラメタ選択・指令器83は、記憶した1サイクルの電力量Wを比較し、もっとも電力量が小さくなる搬送波周波数指令値Fを、以降の搬送波周波数指令値Fとして出力する。
The procedure for searching and determining a parameter for reducing the loss by the parameter selector / commander 83 is as follows.
The parameter selector / commander 83 outputs a different carrier frequency command value F for each cycle. At the end of the cycle, a power amount W for one cycle for each cycle is output from the power amount calculator 81 and is stored in the parameter selector / commander 83. The parameter selector / commander 83 compares the stored one-cycle power amount W and outputs the carrier frequency command value F with the smallest power amount as the subsequent carrier frequency command value F.
 例として、図3に示すように、5サイクル(図中、C1、C2、C3、C4、C5)のそれぞれに対して搬送波周波数指令値FをF1、F2、F3、F4、F5に変化させたとし、それぞれのサイクルにおける1サイクルの電力量がW1、W2、W3、W4、W5であったとする。W1、W2、W3、W4、W5を記憶しておき、サイクル5(図中、C5)が終了した時点で比較し、W4がもっとも小さかったとすると、W4に対応する搬送波周波数指令値F4がもっとも損失を小さくする搬送波周波数指令値ということがわかる。そこで、パラメタ選択・指令器83は、以降、搬送波周波数指令値としてF4を出力し続ける。 As an example, as shown in FIG. 3, the carrier frequency command value F is changed to F1, F2, F3, F4, and F5 for each of five cycles (C1, C2, C3, C4, and C5 in the figure). Assume that the power amount of one cycle in each cycle is W1, W2, W3, W4, and W5. W1, W2, W3, W4, W5 are stored and compared at the end of cycle 5 (C5 in the figure). If W4 is the smallest, the carrier frequency command value F4 corresponding to W4 is the most lossy. It can be seen that this is a carrier frequency command value for reducing the frequency. Therefore, the parameter selector / commander 83 continues to output F4 as the carrier frequency command value thereafter.
 なお、図3に示す例では、搬送波周波数指令値FをF1~F5の5通りに変化させ、パラメタ(搬送波周波数指令値)の探索・決定にC1~C5の5サイクルを要するものとしたが、搬送波周波数指令値Fを変化させる数は5に限らず、2以上の数Qでよい。この場合、パラメタ(搬送波周波数指令値)の探索・決定にQサイクル要することになる。 In the example shown in FIG. 3, the carrier frequency command value F is changed in five ways, F1 to F5, and five cycles C1 to C5 are required for searching and determining the parameter (carrier frequency command value). The number for changing the carrier wave frequency command value F is not limited to 5, and may be a number Q of 2 or more. In this case, Q cycles are required for searching and determining the parameter (carrier frequency command value).
 パラメタの探索・決定を行うタイミングとしては、たとえば以下の(1)~(3)が考えられる。
 (1)インバータ19からモータ21へ到る配線へのノイズフィルタの追加、モータ21の交換、機械負荷23の改造など、損失に影響を与えるハードウェア的な変更が行われた直後にパラメタの探索・決定を行う。たとえば、パラメタ選択・指令器83に押しボタン(図示せず)を接続し、ハードウェア的な変更が行われたら人間が押しボタンを押す。パラメタ選択・指令器83は押しボタンが押された後、最初に行われるサイクル(本例では最初の5サイクル)においてパラメタ(本例では搬送波周波数指令値)の探索・決定を行い、以降、決定された搬送波周波数指令値を出力し続ける。
For example, the following (1) to (3) are conceivable as timings for searching and determining parameters.
(1) Parameter search immediately after a hardware change that affects loss, such as addition of a noise filter to the wiring from the inverter 19 to the motor 21, replacement of the motor 21, modification of the mechanical load 23, etc.・ Make a decision. For example, a push button (not shown) is connected to the parameter selection / commander 83, and when a hardware change is made, a human pushes the push button. The parameter selector / commander 83 searches and determines a parameter (carrier frequency command value in this example) in the first cycle (first five cycles in this example) after the push button is pressed. Continue to output the specified carrier frequency command value.
 (2)装置を運転して一定のサイクル数もしくは一定時間が経過したら、パラメタの探索・決定をやり直す。たとえば、サイクル開始信号もしくはサイクル終了信号の発生回数をカウントするカウンタもしくは経過時間を計測するタイマをパラメタ選択・指令器83内に設け、カウンタの値もしくはタイマの値が一定値に達したらパラメタの探索・決定をやり直す。同時にカウンタもしくはタイマをリセットしてサイクル数のカウントもしくは経過時間の計測を再スタートする。 (2) When a certain number of cycles or a certain amount of time has elapsed after operating the device, search and determine parameters again. For example, a counter for counting the number of occurrences of the cycle start signal or cycle end signal or a timer for measuring the elapsed time is provided in the parameter selector / commander 83, and when the counter value or the timer value reaches a certain value, the parameter search is performed.・ Redo the decision. At the same time, reset the counter or timer to restart the cycle count or elapsed time measurement.
 図1において、パラメタ選択・指令器83は、上述した搬送波周波数指令値Fに加え出力電圧指令値GをDC-DCコンバータ制御回路95へ出力する機能を有する。
 以下、搬送波周波数指令値Fと出力電圧指令値Gが変化できる場合を説明する。
 この場合、パラメタ選択・指令器83が出力する搬送波周波数指令値Fと出力電圧指令値Gを変化させて1サイクルの電力量Wを記憶・比較し、もっとも電力量Wが小さくなる搬送波周波数指令値Fと出力電圧指令値Gを、以降の搬送波周波数指令値Fと出力電圧指令値Gとして出力する。
In FIG. 1, a parameter selector / commander 83 has a function of outputting an output voltage command value G to the DC-DC converter control circuit 95 in addition to the carrier frequency command value F described above.
Hereinafter, a case where the carrier frequency command value F and the output voltage command value G can be changed will be described.
In this case, the carrier frequency command value F and the output voltage command value G output by the parameter selector / commander 83 are changed to store and compare the power amount W of one cycle, and the carrier frequency command value with the smallest power amount W is stored. F and the output voltage command value G are output as the subsequent carrier wave frequency command value F and output voltage command value G.
 図4は、複数のパラメタを探索・決定する方法の説明図である。
損失を小さくする複数のパラメタ(搬送波周波数指令値Fと出力電圧指令値G)を探索・決定する方法としてはたとえば以下の方法がある。
FIG. 4 is an explanatory diagram of a method for searching and determining a plurality of parameters.
As a method for searching and determining a plurality of parameters (carrier frequency command value F and output voltage command value G) for reducing loss, for example, there are the following methods.
 搬送波周波数指令値Fと出力電圧指令値Gのすべての組み合わせに対して1サイクルの電力量を記憶・比較する。たとえば、搬送波周波数指令値FがF1,F2,F3,F4,F5の5通り、出力電圧指令値GがG1,G2,G3の3通りの場合、図4に示すように5×3=15サイクル(図中、C1~C15)に対し、1サイクルの電力量(図中、W1~W15)を記憶・比較して、搬送波周波数指令値Fと出力電圧指令値Gを選択する。図4では、W1~W15の中で、W3が一番小さい場合の例を示しており、W3に対応する搬送波周波数指令値F1と出力電圧指令値G3の組み合わせが、もっとも損失を小さくする搬送波周波数指令値と出力電圧指令値の組み合わせであるということがわかるので、パラメタ選択・指令器83は、サイクル15終了以降(すなわち、図中のサイクルC16以降)、搬送波周波数指令値としてF1を、出力電圧指令値としてG3を出力し続ける。 Memorize and compare 1 cycle of energy for all combinations of carrier frequency command value F and output voltage command value G. For example, when there are five carrier frequency command values F1, F2, F3, F4, F5 and three output voltage command values G1, G2, G3, 5 × 3 = 15 cycles as shown in FIG. A carrier frequency command value F and an output voltage command value G are selected by storing and comparing the amount of power for one cycle (W1 to W15 in the diagram) with respect to (C1 to C15 in the diagram). FIG. 4 shows an example in which W3 is the smallest among W1 to W15, and the combination of the carrier frequency command value F1 and the output voltage command value G3 corresponding to W3 is the carrier frequency at which the loss is minimized. Since it is understood that this is a combination of the command value and the output voltage command value, the parameter selector / commander 83 uses F1 as the carrier frequency command value after the end of the cycle 15 (that is, after the cycle C16 in the figure) as the output voltage. Continue to output G3 as the command value.
 なお、図4に示す例では、搬送波周波数指令値FをF1~F5の5通り、出力電圧指令値GをG1~G3の3通りに変化させ、パラメタ(搬送波周波数指令値と電圧変化率の指令値)の探索・決定に5×3=15サイクル(図中、C1~C15)を要するものとしたが、搬送波周波数指令値Fを変化させる数、出力電圧指令値Gを変化させる数はそれぞれ5、3に限らず、2以上の数Q、Rでよい。この場合、パラメタ(搬送波周波数指令値Fと出力電圧指令値G)の探索・決定にQ×Rサイクル要することになる。 In the example shown in FIG. 4, the carrier frequency command value F is changed in five ways F1 to F5 and the output voltage command value G is changed in three ways G1 to G3, and parameters (carrier frequency command value and voltage change rate command are changed). (Value) requires 5 × 3 = 15 cycles (C1 to C15 in the figure), but the number for changing the carrier frequency command value F and the number for changing the output voltage command value G are 5 respectively. The number Q or R is not limited to 3, but may be 2 or more. In this case, Q × R cycles are required for searching and determining parameters (carrier frequency command value F and output voltage command value G).
 以上の方法ではパラメタの値の組み合わせ数(以上の例では15通り)が多くなりすぎ、パラメタの探索・決定に要するサイクル数が多数となりすぎる場合には、パラメタの組み合わせの中から乱数や遺伝的アルゴリズムにより選択した組み合わせのみ用いてもよい。実験計画法にもとづく他の方法を用いてもよい。 In the above method, if the number of parameter value combinations (15 in the above example) becomes too large and the number of cycles required for parameter search / determination becomes too large, random numbers or genetics are selected from the parameter combinations. Only combinations selected by an algorithm may be used. Other methods based on the experimental design may be used.
 図5は、本発明による省電力駆動装置の第2実施形態を示す図である。
 この実施形態は、インバータとモータが複数台で、すべてが同じ動きをする場合である。たとえば、モータのサイズが制限されるため、一体の機械負荷を複数台のモータで分担して駆動するような場合である。
 図5はインバータとモータが3台の場合を示すが、2台もしくは4台以上の場合も同様である。また図5において、DC-DCコンバータの内部およびインバータ内部の構成は第1実施形態と同じなので、DC-DCコンバータの内部およびインバータ内部の構成は図示を省略する。
FIG. 5 is a diagram showing a second embodiment of the power-saving drive device according to the present invention.
In this embodiment, there are a plurality of inverters and motors, all of which move in the same manner. For example, since the size of the motor is limited, the integrated mechanical load is driven by a plurality of motors.
FIG. 5 shows the case where there are three inverters and motors, but the same applies to the case where there are two or four or more motors. Further, in FIG. 5, since the configurations of the DC-DC converter and the inverter are the same as those in the first embodiment, the configurations of the DC-DC converter and the inverter are not shown.
 以下の構成要素が各インバータとモータごとにあるので、末尾にA、B、Cをつけて識別する。
各要素の構成は第1実施形態と同じである。
19A、19B、19C インバータ
21A、21B、21C モータ
23A、23B、23C 機械負荷
25A、25B、25C モータエンコーダ
27A、27B、27C 制御器
Since the following components are provided for each inverter and motor, they are identified by adding A, B, and C at the end.
The configuration of each element is the same as in the first embodiment.
19A, 19B, 19C Inverters 21A, 21B, 21C Motors 23A, 23B, 23C Mechanical loads 25A, 25B, 25C Motor encoders 27A, 27B, 27C Controllers
 末尾にA、B、Cを付した3組が完全に同一の動作をするので、パラメタ選択・指令器83は1台のみであり、それぞれの組に対するパラメタ(搬送波周波数指令値Fと出力電圧指令値G)は常に同一になるようにする。
 3組の総計の電力量Wを計測するように電圧測定器61と電流測定器63が接続されているので、第1実施形態と同じ電力量演算、パラメタ探索・決定動作をすることにより、3組の総計の損失を小さくするようにパラメタ(搬送波周波数指令値F、出力電圧指令値G)が探索・決定される。
Since the three sets with A, B, and C at the end perform completely the same operation, there is only one parameter selector / commander 83, and parameters for each set (carrier frequency command value F and output voltage command). The value G) is always the same.
Since the voltage measuring device 61 and the current measuring device 63 are connected so as to measure the total power amount W of the three sets, the same power amount calculation and parameter search / determination operations as in the first embodiment are performed. Parameters (carrier frequency command value F, output voltage command value G) are searched and determined so as to reduce the total loss of the set.
 上述本発明の装置及び方法によれば、電力量演算器81とパラメタ選択・指令器83とを備え、インバータのパラメタを複数の値に変化させ、各パラメタにおける同一負荷パターンによるインバータの受電電力量Wを計算して比較し、該受電電力量を最小にするパラメタを選択して、インバータに指令するので、配線の電気的特性、電磁ノイズ除去用素子の有無、モータごとの損失特性及び温度変化、等を予め実験して損失特性のデータを取得することなく、すべての構成要素の損失特性を考慮して損失量を最小化することができる。 According to the apparatus and method of the present invention, the electric energy calculator 81 and the parameter selector / commander 83 are provided, the inverter parameters are changed to a plurality of values, and the received electric energy of the inverter by the same load pattern in each parameter. Since W is calculated and compared, the parameter that minimizes the amount of received power is selected and the inverter is commanded, the electrical characteristics of the wiring, the presence or absence of electromagnetic noise removal elements, the loss characteristics for each motor, and temperature changes The loss amount can be minimized in consideration of the loss characteristics of all the components without obtaining the loss characteristic data by performing experiments in advance.
 なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。
 例えば、同一の負荷パターン内の複数の区間毎に、上記パラメタを選択してもよい。また、インバータのパラメタは、スイッチング波形の電圧変化率であってもよい。
In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim.
For example, you may select the said parameter for every some area in the same load pattern. The parameter of the inverter may be a voltage change rate of the switching waveform.
15 直流バス、
17 キャパシタ、
19、19A、19B、19C インバータ、
21、21A、21B、21C モータ、
23、23A、23B、23C 機械負荷(同一負荷パターン装置)、
25、25A、25B、25C モータエンコーダ、
27、27A、27B、27C 制御器、
29 指令値生成器、
41 電力制御部、43 モータ電流測定器、
45 指令演算器、47 PWM変調器、49 搬送波発振器、
51 ゲート駆動回路、
61 電圧測定器、
63 電流測定器、
81 電力量演算器、
83 パラメタ選択・指令器、
91 バッテリ、
93 DC-DCコンバータ、
95 DC-DCコンバータ制御回路
15 DC bus,
17 capacitors,
19, 19A, 19B, 19C inverter,
21, 21A, 21B, 21C motor,
23, 23A, 23B, 23C Mechanical load (same load pattern device),
25, 25A, 25B, 25C motor encoder,
27, 27A, 27B, 27C controller,
29 command value generator,
41 power control unit, 43 motor current measuring device,
45 command calculator, 47 PWM modulator, 49 carrier oscillator,
51 gate drive circuit,
61 Voltage measuring instrument,
63 Current measuring instrument,
81 electric energy calculator,
83 Parameter selection / commander,
91 battery,
93 DC-DC converter,
95 DC-DC converter control circuit

Claims (4)

  1.  バッテリで駆動されるDC-DCコンバータと、該DC-DCコンバータの出力で駆動されるインバータとを備え、該インバータから電力供給されるモータで駆動され、同一負荷パターンを有する装置の省電力駆動装置であって、
     前記同一負荷パターンにおけるバッテリからの受電電力量を計算する電力量演算器と、
     インバータのパラメタを複数の値に変化させ、各パラメタにおける前記受電電力量を比較し、該受電電力量を最小にするパラメタを選択して、インバータに指令するパラメタ選択・指令器と、を備える、ことを特徴とする同一負荷パターンを有する装置の省電力駆動装置。
    A power-saving drive device for a device having a DC-DC converter driven by a battery and an inverter driven by an output of the DC-DC converter, driven by a motor supplied with power from the inverter, and having the same load pattern Because
    An energy calculator that calculates the amount of power received from the battery in the same load pattern;
    A parameter selection / commander for changing the parameter of the inverter to a plurality of values, comparing the received power amount in each parameter, selecting a parameter that minimizes the received power amount, and instructing the inverter; A power-saving drive device for a device having the same load pattern.
  2.  前記負荷パターンのサイクル開始信号とサイクル終了信号を出力する指令値生成器を備える、ことを特徴とする請求項1に記載の省電力駆動装置。 The power-saving drive device according to claim 1, further comprising a command value generator that outputs a cycle start signal and a cycle end signal of the load pattern.
  3.  前記インバータのパラメタは、搬送波周波数、および、DC-DCコンバータの出力電圧である、ことを特徴とする請求項1又は2に記載の省電力駆動装置。 3. The power-saving drive device according to claim 1, wherein the parameters of the inverter are a carrier frequency and an output voltage of the DC-DC converter.
  4.  バッテリで駆動されるDC-DCコンバータと、該DC-DCコンバータの出力で駆動されるインバータとを備え、該インバータから電力供給されるモータで駆動され、同一負荷パターンを有する装置の省電力駆動方法であって、
     インバータのパラメタを複数の値に変化させ、
     前記各パラメタにおける前記同一負荷パターンによるバッテリからの受電電力量を計算し、
     各パラメタにおける前記受電電力量を比較し、該受電電力量を最小にするパラメタを選択して、インバータに指令する、ことを特徴とする同一負荷パターンを有する装置の省電力駆動方法。
    A power-saving driving method for a device having a DC-DC converter driven by a battery and an inverter driven by an output of the DC-DC converter, driven by a motor supplied with power from the inverter, and having the same load pattern Because
    Change the inverter parameters to multiple values,
    Calculate the amount of power received from the battery by the same load pattern in each parameter,
    A power-saving drive method for a device having the same load pattern, wherein the received power amount in each parameter is compared, a parameter that minimizes the received power amount is selected, and an inverter is commanded.
PCT/JP2011/060060 2010-06-15 2011-04-25 Power-conserving drive device and method for device having uniform load pattern WO2011158563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180017599.4A CN102812632B (en) 2010-06-15 2011-04-25 Power-conserving drive device and method for device having uniform load pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010135657A JP5549864B2 (en) 2010-06-15 2010-06-15 Power saving drive apparatus and method for apparatus having the same load pattern
JP2010-135657 2010-06-15

Publications (1)

Publication Number Publication Date
WO2011158563A1 true WO2011158563A1 (en) 2011-12-22

Family

ID=45347974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060060 WO2011158563A1 (en) 2010-06-15 2011-04-25 Power-conserving drive device and method for device having uniform load pattern

Country Status (3)

Country Link
JP (1) JP5549864B2 (en)
CN (1) CN102812632B (en)
WO (1) WO2011158563A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132793B2 (en) * 2014-03-17 2017-05-24 三菱電機株式会社 Inverter device for motor drive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299290A (en) * 1998-04-17 1999-10-29 Hitachi Ltd Ac motor drive system
JP2003116280A (en) * 2001-10-04 2003-04-18 Toyota Motor Corp Drive device and motive power output equipment
JP2007325351A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Motor drive control system
JP2008167525A (en) * 2006-12-27 2008-07-17 Sharp Corp Motor driver and electrical equipment equipped therewith
JP2009136058A (en) * 2007-11-29 2009-06-18 Aida Eng Ltd Control method of motor drive device and device
JP2009194950A (en) * 2008-02-12 2009-08-27 Meidensha Corp Controller for voltage-type pwm inverter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257497A (en) * 1987-04-14 1988-10-25 Toyota Motor Corp Operation controlling method and device for ac motor
JP3296729B2 (en) * 1996-08-23 2002-07-02 本田技研工業株式会社 AC motor controller
CN1059057C (en) * 1998-12-21 2000-11-29 成都希望电子研究所 Quasi-superconductor speed stabilizing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299290A (en) * 1998-04-17 1999-10-29 Hitachi Ltd Ac motor drive system
JP2003116280A (en) * 2001-10-04 2003-04-18 Toyota Motor Corp Drive device and motive power output equipment
JP2007325351A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Motor drive control system
JP2008167525A (en) * 2006-12-27 2008-07-17 Sharp Corp Motor driver and electrical equipment equipped therewith
JP2009136058A (en) * 2007-11-29 2009-06-18 Aida Eng Ltd Control method of motor drive device and device
JP2009194950A (en) * 2008-02-12 2009-08-27 Meidensha Corp Controller for voltage-type pwm inverter

Also Published As

Publication number Publication date
JP5549864B2 (en) 2014-07-16
CN102812632A (en) 2012-12-05
CN102812632B (en) 2015-05-27
JP2012005188A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2011158775A1 (en) Power-saving driving apparatus and power-saving driving method for apparatus with uniform load pattern
Kojabadi et al. A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters
Krismer et al. Closed form solution for minimum conduction loss modulation of DAB converters
Yeh et al. Digital pulsewidth modulation technique for a synchronous buck DC/DC converter to reduce switching frequency
US9577541B2 (en) Single switch infinite-level power inverters
Singh et al. Single‐stage ZETA‐SEPIC‐based multifunctional integrated converter for plug‐in electric vehicles
WO2016125292A1 (en) Dc-dc converter, electric power converter, electric power generation system and method for dc-dc conversion
Parvez et al. Model predictive control of a bidirectional AC-DC converter for V2G and G2V applications in electric vehicle battery charger
WO2010110013A1 (en) Device and method for power-saving driving of device having same load pattern
JP6124262B2 (en) Power supply
Karatzaferis et al. Investigation of energy savings on industrial motor drives using bidirectional converters
EP2658109A1 (en) Power converting apparatus, operating method thereof, and solar power generation system
JP2011200103A5 (en)
Choi et al. Deadbeat predictive direct power control of interleaved buck converter-based fast battery chargers for electric vehicles
JP5549864B2 (en) Power saving drive apparatus and method for apparatus having the same load pattern
JP5531428B2 (en) Power saving drive apparatus and method for apparatus having the same load pattern
WO2018185962A1 (en) Power conversion device
JP5601460B2 (en) Power saving drive apparatus and method for apparatus having the same load pattern
Mei et al. A model predictive control strategy for dual induction motor drive system fed by five-leg inverter
Singh et al. Performance analysis of AC-DC power converter using PWM techniques
JP5397760B2 (en) Power saving drive apparatus and method for apparatus having the same load pattern
Xue et al. An adaptive predictive current-controlled pwm strategy for single-phase grid-connected inverters
US20130272042A1 (en) Control technique for a three-phase boost converter to achieve resistive input behavior
Ali et al. Microcontroller based variable frequency power inverter
Tian et al. Efficient Variable Switching Frequency Drive Control Method for Propulsion Motors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017599.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795471

Country of ref document: EP

Kind code of ref document: A1