WO2011158546A1 - Stacked filter - Google Patents

Stacked filter Download PDF

Info

Publication number
WO2011158546A1
WO2011158546A1 PCT/JP2011/059157 JP2011059157W WO2011158546A1 WO 2011158546 A1 WO2011158546 A1 WO 2011158546A1 JP 2011059157 W JP2011059157 W JP 2011059157W WO 2011158546 A1 WO2011158546 A1 WO 2011158546A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode
electrodes
multilayer filter
dielectric layer
Prior art date
Application number
PCT/JP2011/059157
Other languages
French (fr)
Japanese (ja)
Inventor
邦俊 花岡
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011158546A1 publication Critical patent/WO2011158546A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the present invention relates to a multilayer filter used for each communication device, and more particularly to a multilayer filter composed of an inductor and a capacitor.
  • Patent Document 1 discloses a multilayer filter used in a conventional communication device.
  • 4 and 5 show the multilayer filter 10 disclosed in Patent Document 1.
  • FIG. 1 discloses a multilayer filter used in a conventional communication device.
  • FIG. 4 is a circuit diagram of the multilayer filter 10.
  • the multilayer filter 10 includes input / output terminals P11 and P12, capacitors C11, C12, and C13, and an inductor L11.
  • the capacitor C11 and the capacitor C12 are connected in series between the input / output terminals P11 and P12.
  • One end of the inductor L11 is connected to the connection portion between the capacitor C11 and the capacitor C12, and the other end is connected to the capacitor C13.
  • the other end of the capacitor C13 is grounded.
  • FIG. 5 is an exploded perspective view of the multilayer filter 10.
  • the multilayer filter 10 is configured by sequentially laminating a dielectric layer 11 and dielectric layers 12 to 15 having electrodes formed on the surface thereof.
  • Capacitor electrodes 16 and 17 are formed on the surface of the dielectric layer 12.
  • the capacitor electrodes 16 and 17 are led out to one short side and the other short side of the dielectric layer 12 by lead electrodes 16a and 17a, respectively.
  • the extraction electrodes 16a and 17a are exposed on the side surfaces of the dielectric layer 12, and input / output ends P11 and P12 are formed.
  • a capacitor electrode 18 is formed on the entire surface of the dielectric layer 13.
  • the capacitor electrodes 16 and 17 are respectively opposed to the capacitor electrode 18 through the dielectric layer 12 to form capacitors C11 and C12.
  • An inductor electrode 21 and a capacitor electrode 22 are formed on the surface of the dielectric layer 14.
  • An inductor L11 is constituted by 21 on the inductor electrode.
  • a via electrode 19 penetrating the dielectric layer 13 is formed at one end of the inductor electrode 21, and the inductor electrode 21 is electrically connected to the capacitor electrode 18 through the via electrode. The other end of the inductor electrode 21 is connected to the capacitor electrode 22.
  • a ground electrode 23 is formed on the surface of the dielectric layer 15. The ground electrode 23 is opposed to the capacitor electrode 22 with the dielectric layer 14 interposed therebetween, thereby forming a capacitor C13. The capacitor C13 is grounded by the ground electrode 23.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a multilayer filter in which electromagnetic interference due to a capacitor is reduced.
  • a multilayer filter is a multilayer filter including a series capacitor circuit in which first and second capacitors are connected in series, and includes a plurality of dielectric layers and a capacitor.
  • the first capacitor has first, second, and third capacitor electrodes, and the first capacitor is overlapped when viewed from the stacking direction.
  • the first, second, and third capacitor electrodes are formed in order, and the first and third capacitor electrodes are formed so as to be electrically connected, and the first, third, and second capacitor electrodes are electrically connected.
  • a first capacitor is formed between the capacitor electrode, and the second capacitor has fourth, fifth, and sixth capacitor electrodes.
  • the fourth, fifth, and fifth capacitors are overlapped when viewed from the stacking direction.
  • 6 capacitor power Are formed in order, and the fourth and sixth capacitor electrodes are formed so as to be electrically connected, and the second capacitor is interposed between the fourth and sixth capacitor electrodes and the fifth capacitor electrode.
  • the second and fifth capacitor electrodes are floating electrodes and are electrically connected to each other.
  • the electromagnetic field generated by the first and second capacitors is weakened. Therefore, electromagnetic interference between the first and second capacitors and between the first and second capacitors and other circuit elements such as an inductor can be reduced, and electrical characteristics such as insertion loss of the multilayer filter can be reduced. improves.
  • the second and fifth capacitor electrodes are formed on the same dielectric layer.
  • the second and fifth capacitor electrodes can be easily formed, and the capacitor can be configured with a smaller number of layers, so that the multilayer filter can be reduced in size.
  • first capacitor electrode and the third capacitor electrode are electrically connected by a via electrode penetrating the dielectric layer in the stacking direction
  • fourth capacitor electrode and the sixth capacitor electrode are It is preferable that they are electrically connected by via electrodes penetrating the dielectric layer in the stacking direction.
  • the input / output impedance of the multilayer filter can be adjusted to a desired value by changing the number of via electrodes or the via diameter.
  • first and third capacitor electrodes are formed at the same distance from the second capacitor electrode, and the fourth and sixth capacitor electrodes are formed at the same distance from the fifth capacitor electrode. Is preferred.
  • the electric field generated in the first and second capacitors can be weakened more reliably. Therefore, electromagnetic interference between the first and second capacitors and between the first and second capacitors and other circuit elements such as an inductor can be reduced, and electrical characteristics such as insertion loss of the multilayer filter can be reduced. improves.
  • a pair of capacitor electrodes are further formed so as to overlap the second or fifth capacitor electrode and sandwich the second or fifth capacitor electrode, and the pair of capacitor electrodes are electrically
  • a third capacitor is preferably formed between the second and fifth capacitor electrodes that are connected.
  • the present invention is also directed to a circuit module incorporating the multilayer filter.
  • the present invention it is possible to provide a multilayer filter that can weaken the electromagnetic field generated in the capacitor and reduce electromagnetic interference caused by the electromagnetic field.
  • FIG. 1 is a circuit diagram of a multilayer filter according to a first embodiment of the present invention. It is a disassembled perspective view of the multilayer filter of FIG. It is a comparison figure of the electrical property of the multilayer filter of FIG. 1, and the conventional multilayer filter. It is a circuit diagram of the conventional multilayer filter. It is a disassembled perspective view of the conventional multilayer filter.
  • FIG. 1 is a circuit diagram showing a circuit configuration of the multilayer filter according to the first embodiment of the present invention.
  • the multilayer filter 20 includes input / output terminals P1 and P2, a capacitor C1 (for example, corresponding to a first capacitor according to the present invention), and a capacitor C2 (for example, a second capacitor according to the present invention).
  • Capacitor C3 Capacitor C3
  • a capacitor C3 e.g., corresponding to a third capacitor according to the present invention
  • an inductor L1 for example, corresponding to a third capacitor according to the present invention
  • the capacitor C1 has one end connected to the input end P1 and the other end connected to one end of the capacitor C2.
  • the other end of the capacitor C2 is connected to the output end P2, and one end of the capacitor C3 is connected to a connection portion between the capacitors C1 and C2.
  • the other end of the capacitor C3 is connected to one end of the inductor L1.
  • the other end of the inductor L1 is grounded.
  • the multilayer filter 20 is configured as a T-type high-pass filter by the capacitor C1, the capacitor C2, the capacitor C3, and the inductor L1.
  • the capacitors C1 and C2, the capacitors C1 and C3, and the capacitors C2 and C3 all have a series capacitor circuit configuration in which two capacitors are connected in series.
  • FIG. 2 is an exploded perspective view showing a laminated structure of the laminated filter 20.
  • the multilayer filter 20 is formed by sequentially laminating a dielectric layer 21 having no electrode pattern on the surface and dielectric layers 22 to 26 having an electrode pattern on the surface.
  • the dielectric layers 22 and 23 have the same thickness.
  • the electrode pattern is formed, for example, by applying a photosensitive conductive paste on the insulator layer by a spin coat method or the like and using a photolithography method. Further, the conductive paste may be directly formed on the insulator layer by screen printing through a metal mask.
  • the dielectric layer is produced by applying a slurry made of a ceramic dielectric material such as barium titanate as a raw material on a film by a doctor blade method.
  • a capacitor electrode 27a On the surface of the dielectric layer 22, a capacitor electrode 27a, a capacitor electrode 28a, and a capacitor electrode 29a are formed.
  • the capacitor electrode 27a is formed on one short side of the dielectric layer 22, and is drawn out to one short side of the dielectric layer 22 by the lead electrode 27c.
  • the capacitor electrode 29a is formed on the other short side of the dielectric layer 22, and is drawn out to the other short side of the dielectric layer 22 by the lead electrode 29c.
  • the lead electrode 27c and the lead electrode 29c are exposed on the side surface of the dielectric layer 22, and the input end P1 and the output end P2 in FIG. 1 are configured.
  • a capacitor electrode 28a is formed between the capacitor electrodes 27a and 29a.
  • a capacitor electrode 30a and a capacitor electrode 30b are formed on the surface of the dielectric layer 23 .
  • the capacitor electrode 30a and the capacitor electrode 30b are formed in a continuous manner by printing or the like, and are formed as a single capacitor electrode 30 extending over substantially the entire surface of the dielectric layer 23.
  • the capacitor electrode 30 overlaps the capacitor electrodes 27a, 28a, and 29a formed on the dielectric layer 22.
  • the capacitor electrode 30 is a floating electrode that is not electrically connected to other electrode patterns.
  • Capacitor electrodes 27b, 28b, and 29b are formed on the surface of the dielectric layer 24.
  • the capacitor electrode 27b is formed on one short side of the dielectric layer 24 and overlaps the capacitor electrodes 27a and 30 formed on the dielectric layer 22 when viewed from the stacking direction.
  • an extraction electrode 27d is formed on the dielectric layer 24 continuously with the capacitor electrode 27a. The capacitor electrode 27b is drawn toward one short side of the dielectric layer 24 by the lead electrode 27d.
  • the capacitor 29b is formed on the other short side of the dielectric layer 24 and overlaps the capacitor electrodes 29a and 30 when viewed from the stacking direction.
  • an extraction electrode 29 d is formed on the dielectric layer 24 continuously with the capacitor electrode 29 a.
  • the capacitor electrode 29b is drawn toward the other short side of the dielectric layer 24 by the lead electrode 29d.
  • a capacitor electrode 28b is formed between the capacitor electrode 27b and the capacitor electrode 29b.
  • the capacitor electrode 28b overlaps the capacitor electrodes 28a and 30 when viewed from the stacking direction.
  • via electrodes v2 and v3 and via electrodes v1 and v4 penetrating the dielectric layers 22 and 23 are formed on the capacitor electrode 28b and the lead electrodes 27d and 29d formed on the dielectric layer 24, respectively.
  • the via electrodes v1 to v4 are arranged so as to be electrically insulated from the capacitor electrode 30.
  • the via electrode v1 is formed so as to connect between the extraction electrode 27c and the extraction electrode 27d. Therefore, the capacitor electrode 27a and the capacitor electrode 27b are electrically connected via the via electrode v1 and the extraction electrodes 27c and 27d. Therefore, the capacitor electrode 27a and the capacitor electrode 27b are opposed to each other with the capacitor electrode 30 interposed therebetween, and a capacitance corresponding to the capacitor C1 in FIG. 1 is configured between the capacitor electrode 27a and the capacitor electrode 30 and between the capacitor electrode 27b and the capacitor electrode 30. Has been.
  • the via electrodes v2 and v3 are formed so as to connect between the capacitor electrode 28a and the capacitor electrode 28b. Therefore, the capacitor electrode 28a and the capacitor electrode 28b are electrically connected via the via electrodes v2 and v3. Therefore, the capacitor electrode 28a and the capacitor electrode 28b face each other with the capacitor electrode 30 in between, and a capacitance corresponding to the capacitor C3 in FIG. 1 is configured between the capacitor electrode 28a and the capacitor electrode 30 and between the capacitor electrode 28b and the capacitor electrode 30.
  • a capacitance corresponding to the capacitor C3 in FIG. 1 is configured between the capacitor electrode 28a and the capacitor electrode 30 and between the capacitor electrode 28b and the capacitor electrode 30.
  • the via electrode v4 is formed so as to connect between the extraction electrode 29c and the extraction electrode 29d. Accordingly, the capacitor electrode 29a and the capacitor 29b are electrically connected via the via electrode v4 and the extraction electrodes 29c and 29d. Therefore, the capacitor electrode 29a and the capacitor electrode 29b are opposed to each other with the capacitor electrode 30 interposed therebetween, and a capacitance corresponding to the capacitor C2 in FIG. 1 is present between the capacitor electrode 29a and the capacitor electrode 30 and between the capacitor electrode 29b and the capacitor electrode 30. It is configured.
  • An inductor electrode 31 is formed on the surface of the dielectric layer 25.
  • a via electrode v ⁇ b> 5 that penetrates the dielectric layer 24 is formed on the inductor electrode 31.
  • the inductor electrode 31 constitutes an inductor corresponding to the inductor L1 in FIG.
  • One end of the inductor electrode 31 is formed so as to be electrically connected to the capacitor electrode 28b by a via electrode v5.
  • the other end of the inductor electrode 31 is drawn out so as to be exposed at the other short side of the dielectric layer 25, and is connected to a side electrode 31a formed on the side surface of the dielectric layer.
  • a ground electrode 32 is formed on the surface of the dielectric layer 26.
  • the ground electrode 32 is formed on substantially the entire surface of the dielectric layer 26.
  • the lead electrode 32a is led out so as to be exposed at the other short side of the dielectric layer 26 and is connected to the side electrode 31a. Therefore, the inductor electrode 31 is connected to the ground electrode 32 via the extraction electrode 32a and the side electrode 31a.
  • the inductor electrode 31 is grounded by the ground electrode 32.
  • the distance between the capacitor electrodes 27a and 30 can be reduced.
  • the magnitudes of the reverse electromagnetic fields generated between the capacitor electrodes 27b and 30 can be matched. For this reason, the electromagnetic field generated by the capacitors C1 and C2 can be further weakened. This configuration can also be applied to the capacitors C3 and C4.
  • the high-pass filter having the circuit configuration shown in FIG. 1 is realized by the laminated structure described above.
  • the electrically connected capacitor electrodes 27a, 28a, 29a and the capacitor electrodes 27b, 28b, 29b are opposed to each other with the capacitor electrode 30 that is a floating electrode interposed therebetween. Therefore, when an AC signal is input from the input terminal P1, the electromagnetic field generated between the capacitor electrodes 27a, 28a, 29a and the capacitor electrode 30 is opposite to the electromagnetic field generated between the capacitor electrodes 27b, 28b, 29b. It becomes the direction. Therefore, the electromagnetic field leaking between the capacitor electrodes 27a, 28a, 29a and the capacitor electrode 30 and the electromagnetic field leaking between the capacitor electrodes 27b, 28b, 29b are also opposite to each other and weaken each other. For this reason, electromagnetic interference between the capacitors and between the capacitors and the inductors constituting the multilayer filter can be reduced, and filter characteristics such as insertion loss are improved.
  • the dielectric layers 22 and 23 have the same thickness.
  • the capacitor electrodes 27a, 28a, 29a and the capacitor electrode 30 and the capacitor electrodes 27b, 28b, 29b and the capacitor electrode 30 are arranged apart by the same distance. Therefore, the electromagnetic field generated between the capacitor electrodes 27a, 28a, 29a and the capacitor electrode 30 and the electromagnetic field generated between the capacitor electrodes 27b, 28b, 29b and the capacitor 30 are opposite to each other. The size is almost the same. For this reason, the electromagnetic field generated by the capacitors C1, C2, and C3 is more reliably weakened.
  • the capacitor electrodes 30a and 30b are formed on the surface of the same dielectric layer 23 as one continuous capacitor electrode 30.
  • the capacitor electrodes 30a and 30b can be formed at the same time, and the electrode pattern can be easily formed.
  • the capacitor electrodes 30a and 30b can be formed on the same dielectric layer, the capacitors C1, C2, and C3 can be configured with fewer layers, and the multilayer filter 20 can be downsized.
  • the capacitor electrodes 27a and 27b connected to the input terminal P1 and the capacitor electrodes 29a and 29b connected to the output terminal P2 are connected by the via electrode v1 and the via electrode v4, respectively.
  • the input / output impedance can be freely adjusted. For this reason, adjustment of matching when the multilayer filter 20 is connected to other electronic components to configure a functional circuit is simplified.
  • a circuit module can be manufactured using the multilayer filter 10.
  • electromagnetic interference between the multilayer filter 10 and other circuit elements constituting the circuit module is reduced, so that the characteristics of the circuit module are improved.
  • FIG. 3 is a comparison diagram of electrical characteristics of the multilayer filter 20 according to the present embodiment and the multilayer filter having the conventional configuration.
  • the multilayer filter having the conventional configuration is a multilayer filter in which the capacitor electrode 30 that is a floating electrode and the via electrodes v1, v2, v3, and v4 are not formed in FIG.
  • This conventional multilayer filter has the same circuit configuration as that of the multilayer filter 20 according to the present embodiment, and the value of each circuit element is also the same.
  • FIG. 3A shows pass characteristics in a wide frequency band of the multilayer filter 20 and the conventional multilayer filter.
  • FIG. 3B is an enlarged view in which the electrical characteristics of FIG. 3A are enlarged in the range of 2 GHz to 3 GHz.
  • the solid line indicates the electrical characteristics of the multilayer filter of the present embodiment, and the broken line indicates the electrical characteristics of the conventional multilayer filter.
  • the insertion loss of the multilayer filter of the present embodiment is reduced in the pass band on the higher frequency side than 2.2 GHz, which is the cutoff frequency of the multilayer filter 20, as compared with the conventional multilayer filter. It can be seen that the insertion loss is improved by about 0.2 dB over the conventional multilayer filter in the vicinity of 2.4 GHz, which is the frequency used by the wireless LAN and Bluetooth (registered trademark).
  • a T-type high-pass filter has been described.
  • the configuration of the present embodiment is also applied to the band-pass filter and the low-pass filter. Needless to say.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Filters And Equalizers (AREA)

Abstract

Provided is a stacked filter wherein electromagnetic interference by a capacitor is reduced. In a stacked filter (20), electrically connected capacitor electrodes (27a, 28a, and 29a) and capacitor electrodes (27b, 28b, and 29b) are opposed across a capacitor electrode (30) which is a floating electrode. Accordingly, when an AC signal is input from an input terminal (P1), the electromagnetic field generated between the capacitor electrodes (27a, 28a, and 29a) and the capacitor electrode (30), and the electromagnetic field generated between the capacitor electrodes (27b, 28b, and 29b), become opposite in orientation so as to weaken each other.

Description

積層フィルタMultilayer filter
 本発明は各通信機器に用いられる積層フィルタに関し、特にインダクタとキャパシタで構成される積層フィルタに関する。 The present invention relates to a multilayer filter used for each communication device, and more particularly to a multilayer filter composed of an inductor and a capacitor.
 従来の通信機器に用いられる積層フィルタとして、例えば、特許文献1に開示されている。図4、図5に特許文献1に開示されている積層フィルタ10について示す。 For example, Patent Document 1 discloses a multilayer filter used in a conventional communication device. 4 and 5 show the multilayer filter 10 disclosed in Patent Document 1. FIG.
 図4は積層フィルタ10の回路図である。積層フィルタ10は、入出力端P11、P12と、キャパシタC11、C12、C13と、インダクタL11とで構成されている。キャパシタC11とキャパシタC12は入出力端P11とP12間で直列に接続されている。キャパシタC11とキャパシタC12の接続部にはインダクタL11の一方端が接続され、その他方端はキャパシタC13と接続されている。キャパシタC13の他方端は接地されている。このような回路構成により、積層フィルタ10はハイパスフィルタとして機能する。 FIG. 4 is a circuit diagram of the multilayer filter 10. The multilayer filter 10 includes input / output terminals P11 and P12, capacitors C11, C12, and C13, and an inductor L11. The capacitor C11 and the capacitor C12 are connected in series between the input / output terminals P11 and P12. One end of the inductor L11 is connected to the connection portion between the capacitor C11 and the capacitor C12, and the other end is connected to the capacitor C13. The other end of the capacitor C13 is grounded. With such a circuit configuration, the multilayer filter 10 functions as a high-pass filter.
 図5は積層フィルタ10の分解斜視図である。積層フィルタ10は、誘電体層11と、表面に電極が形成された誘電体層12~15を順に積層して構成されている。 FIG. 5 is an exploded perspective view of the multilayer filter 10. The multilayer filter 10 is configured by sequentially laminating a dielectric layer 11 and dielectric layers 12 to 15 having electrodes formed on the surface thereof.
 誘電体層12の表面にはキャパシタ電極16、17が形成されている。キャパシタ電極16、17は、引出し電極16a、17aによって、各々誘電体層12の一方の短辺側と他方の短辺側に引き出されている。引出し電極16a、17aは各々誘電体層12の側面に露出して、入出力端P11、P12が構成されている。誘電体層13の表面にはキャパシタ電極18が略全面に形成されている。キャパシタ電極16、17は誘電体層12を介して、キャパシタ電極18と各々対向して、キャパシタC11、C12が構成されている。誘電体層14の表面にはインダクタ電極21とキャパシタ電極22が形成されている。インダクタ電極に21よりインダクタL11が構成されている。インダクタ電極21の一方端には誘電体層13を貫通するビア電極19が形成され、該ビア電極を介してインダクタ電極21はキャパシタ電極18と導通している。インダクタ電極21の他方端はキャパシタ電極22と接続されている。誘電体層15の表面にはグランド電極23が形成されている。グランド電極23は誘電体層14を介してキャパシタ電極22と対向して、キャパシタC13が構成されている。このキャパシタC13はグランド電極23により接地されている。 Capacitor electrodes 16 and 17 are formed on the surface of the dielectric layer 12. The capacitor electrodes 16 and 17 are led out to one short side and the other short side of the dielectric layer 12 by lead electrodes 16a and 17a, respectively. The extraction electrodes 16a and 17a are exposed on the side surfaces of the dielectric layer 12, and input / output ends P11 and P12 are formed. A capacitor electrode 18 is formed on the entire surface of the dielectric layer 13. The capacitor electrodes 16 and 17 are respectively opposed to the capacitor electrode 18 through the dielectric layer 12 to form capacitors C11 and C12. An inductor electrode 21 and a capacitor electrode 22 are formed on the surface of the dielectric layer 14. An inductor L11 is constituted by 21 on the inductor electrode. A via electrode 19 penetrating the dielectric layer 13 is formed at one end of the inductor electrode 21, and the inductor electrode 21 is electrically connected to the capacitor electrode 18 through the via electrode. The other end of the inductor electrode 21 is connected to the capacitor electrode 22. A ground electrode 23 is formed on the surface of the dielectric layer 15. The ground electrode 23 is opposed to the capacitor electrode 22 with the dielectric layer 14 interposed therebetween, thereby forming a capacitor C13. The capacitor C13 is grounded by the ground electrode 23.
特開2005-160008号公報Japanese Patent Laid-Open No. 2005-160008
 しかしながら、従来の積層フィルタにあっては、キャパシタC1,C2で発生する電磁界が周囲に広がって、キャパシタC1とキャパシタC2の間、またはキャパシタC1,C2とインダクタL11間で、電磁干渉を起こす。このため、挿入損失などのフィルタ特性が劣化するという問題点があった。 However, in the conventional multilayer filter, the electromagnetic field generated in the capacitors C1 and C2 spreads around, and electromagnetic interference occurs between the capacitors C1 and C2 or between the capacitors C1 and C2 and the inductor L11. For this reason, there has been a problem that filter characteristics such as insertion loss deteriorate.
 本発明は、上述した問題点を鑑みてなされたものであり、キャパシタによる電磁干渉を低減した積層フィルタを提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a multilayer filter in which electromagnetic interference due to a capacitor is reduced.
 上記問題点を解決するために、本発明に係る積層フィルタは第1、第2のキャパシタが直列に接続された直列キャパシタ回路を含む積層フィルタであって、複数の誘電体層と、キャパシタを構成するキャパシタ電極を含む複数の電極層とで構成された積層フィルタにおいて、第1のキャパシタは第1、第2、第3のキャパシタ電極を有しており、積層方向から見て重なるように、第1、第2、第3のキャパシタ電極は順に形成されるとともに、第1、第3のキャパシタ電極は電気的に接続されるように形成されて、第1、第3のキャパシタ電極と第2のキャパシタ電極との間で第1のキャパシタが構成され、第2のキャパシタは第4、第5、第6のキャパシタ電極を有し、積層方向から見て重なるように、第4、第5、第6のキャパシタ電極は順に形成されるとともに、第4、第6のキャパシタ電極は電気的に接続されるように形成され、第4、第6のキャパシタ電極と第5のキャパシタ電極との間で第2のキャパシタが構成され、 第2、第5のキャパシタ電極は浮き電極であるとともに、電気的に接続されていることを特徴とする。 In order to solve the above problems, a multilayer filter according to the present invention is a multilayer filter including a series capacitor circuit in which first and second capacitors are connected in series, and includes a plurality of dielectric layers and a capacitor. In the multilayer filter composed of a plurality of electrode layers including the capacitor electrode to be operated, the first capacitor has first, second, and third capacitor electrodes, and the first capacitor is overlapped when viewed from the stacking direction. The first, second, and third capacitor electrodes are formed in order, and the first and third capacitor electrodes are formed so as to be electrically connected, and the first, third, and second capacitor electrodes are electrically connected. A first capacitor is formed between the capacitor electrode, and the second capacitor has fourth, fifth, and sixth capacitor electrodes. The fourth, fifth, and fifth capacitors are overlapped when viewed from the stacking direction. 6 capacitor power Are formed in order, and the fourth and sixth capacitor electrodes are formed so as to be electrically connected, and the second capacitor is interposed between the fourth and sixth capacitor electrodes and the fifth capacitor electrode. The second and fifth capacitor electrodes are floating electrodes and are electrically connected to each other.
 この場合、第1、第2のキャパシタで発生する電磁界が弱められる。このため、第1、第2のキャパシタ間、および、第1、第2のキャパシタとインダクタなどの他の回路素子間の電磁干渉を低減することができ、積層フィルタの挿入損失などの電気特性が向上する。 In this case, the electromagnetic field generated by the first and second capacitors is weakened. Therefore, electromagnetic interference between the first and second capacitors and between the first and second capacitors and other circuit elements such as an inductor can be reduced, and electrical characteristics such as insertion loss of the multilayer filter can be reduced. improves.
 さらに、本発明に係る積層フィルタは、第2、第5のキャパシタ電極が同一の誘電体層に形成されていることが好ましい。 Furthermore, in the multilayer filter according to the present invention, it is preferable that the second and fifth capacitor electrodes are formed on the same dielectric layer.
 この場合、第2、第5のキャパシタ電極の形成が容易になるとともに、より少ない層数でキャパシタを構成できるため、積層フィルタを小型化できる。 In this case, the second and fifth capacitor electrodes can be easily formed, and the capacitor can be configured with a smaller number of layers, so that the multilayer filter can be reduced in size.
 さらに、第1のキャパシタ電極と前記第3のキャパシタ電極とが、積層方向に前記誘電体層を貫通するビア電極によって電気的に接続され、第4のキャパシタ電極と第6のキャパシタ電極とが、積層方向に誘電体層を貫通するビア電極によって電気的に接続されていることが好ましい。 Further, the first capacitor electrode and the third capacitor electrode are electrically connected by a via electrode penetrating the dielectric layer in the stacking direction, and the fourth capacitor electrode and the sixth capacitor electrode are It is preferable that they are electrically connected by via electrodes penetrating the dielectric layer in the stacking direction.
 この場合、ビア電極の本数またはビア径を変えることで、積層フィルタの入出力インピーダンスを所望の値に調整できる。 In this case, the input / output impedance of the multilayer filter can be adjusted to a desired value by changing the number of via electrodes or the via diameter.
 さらに、第1、第3のキャパシタ電極は第2のキャパシタ電極から同じ距離だけ離れて形成され、第4、第6のキャパシタ電極は第5のキャパシタ電極から同じ距離だけ離れて形成されていることが好ましい。 Further, the first and third capacitor electrodes are formed at the same distance from the second capacitor electrode, and the fourth and sixth capacitor electrodes are formed at the same distance from the fifth capacitor electrode. Is preferred.
 この場合、第1、第2のキャパシタで発生する電界をより確実に弱めることができる。このため、第1、第2のキャパシタ間、および、第1、第2のキャパシタとインダクタなどの他の回路素子間の電磁干渉を低減することができ、積層フィルタの挿入損失などの電気特性が向上する。 In this case, the electric field generated in the first and second capacitors can be weakened more reliably. Therefore, electromagnetic interference between the first and second capacitors and between the first and second capacitors and other circuit elements such as an inductor can be reduced, and electrical characteristics such as insertion loss of the multilayer filter can be reduced. improves.
 さらに、積層方向から見て、第2または第5のキャパシタ電極と重なるとともに、第2または第5のキャパシタ電極を挟むように、一対のキャパシタ電極がさらに形成され、一対のキャパシタ電極は電気的に接続され、第2または第5のキャパシタ電極との間で第3のキャパシタを構成することが好ましい。 Further, when viewed from the stacking direction, a pair of capacitor electrodes are further formed so as to overlap the second or fifth capacitor electrode and sandwich the second or fifth capacitor electrode, and the pair of capacitor electrodes are electrically A third capacitor is preferably formed between the second and fifth capacitor electrodes that are connected.
 さらに、本発明は上記積層フィルタを内蔵した回路モジュールにも向けられる。 Furthermore, the present invention is also directed to a circuit module incorporating the multilayer filter.
 この場合、積層フィルタと回路モジュールを構成する他の回路素子との間の電磁界干渉を低減でき、回路モジュールの特性が向上する。 In this case, electromagnetic interference between the multilayer filter and other circuit elements constituting the circuit module can be reduced, and the characteristics of the circuit module are improved.
 本発明によれば、キャパシタで発生する電磁界を弱めることができ、この電磁界による電磁干渉を低減した積層フィルタを提供することができる。 According to the present invention, it is possible to provide a multilayer filter that can weaken the electromagnetic field generated in the capacitor and reduce electromagnetic interference caused by the electromagnetic field.
本発明の第1の実施形態に係る積層フィルタの回路図である。1 is a circuit diagram of a multilayer filter according to a first embodiment of the present invention. 図1の積層フィルタの分解斜視図である。It is a disassembled perspective view of the multilayer filter of FIG. 図1の積層フィルタと従来の積層フィルタの電気特性の比較図である。It is a comparison figure of the electrical property of the multilayer filter of FIG. 1, and the conventional multilayer filter. 従来の積層フィルタの回路図である。It is a circuit diagram of the conventional multilayer filter. 従来の積層フィルタの分解斜視図である。It is a disassembled perspective view of the conventional multilayer filter.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (第1の実施形態)
 図1は本発明の第1の実施形態に係る積層フィルタの回路構成を示す回路図である。図1に示すように、積層フィルタ20は、入出力端P1、P2と、キャパシタC1(例えば、本発明に係る第1のキャパシタに相当)と、キャパシタC2(例えば、本発明に係る第2のキャパシタに相当)と、キャパシタC3(例えば、本発明に係る第3のキャパシタに相当)と、インダクタL1とで構成されている。
(First embodiment)
FIG. 1 is a circuit diagram showing a circuit configuration of the multilayer filter according to the first embodiment of the present invention. As shown in FIG. 1, the multilayer filter 20 includes input / output terminals P1 and P2, a capacitor C1 (for example, corresponding to a first capacitor according to the present invention), and a capacitor C2 (for example, a second capacitor according to the present invention). Capacitor C3), a capacitor C3 (e.g., corresponding to a third capacitor according to the present invention), and an inductor L1.
 キャパシタC1の一方端は入力端P1と接続され、その他方端はキャパシタC2の一方端に接続されている。キャパシタC2の他方端は出力端P2に接続され、キャパシタC1とキャパシタC2の接続部にはキャパシタC3の一方端が接続されている。キャパシタC3の他方端はインダクタL1の一方端に接続されている。インダクタL1の他方端は接地されている。 The capacitor C1 has one end connected to the input end P1 and the other end connected to one end of the capacitor C2. The other end of the capacitor C2 is connected to the output end P2, and one end of the capacitor C3 is connected to a connection portion between the capacitors C1 and C2. The other end of the capacitor C3 is connected to one end of the inductor L1. The other end of the inductor L1 is grounded.
 このように、キャパシタC1,キャパシタC2,キャパシタC3と、インダクタL1とにより、積層フィルタ20はT型のハイパスフィルタとして構成されている。また、キャパシタC1とキャパシタC2,キャパシタC1とキャパシタC3、キャパシタC2とキャパシタC3はいずれもキャパシタを二つ直列に接続した直列キャパシタ回路の構成となっている。 Thus, the multilayer filter 20 is configured as a T-type high-pass filter by the capacitor C1, the capacitor C2, the capacitor C3, and the inductor L1. The capacitors C1 and C2, the capacitors C1 and C3, and the capacitors C2 and C3 all have a series capacitor circuit configuration in which two capacitors are connected in series.
 つづいて、図2は積層フィルタ20の積層構造を示す分解斜視図である。積層フィルタ20は、表面に電極パターンが形成されていない誘電体層21と、表面に電極パターンが形成された誘電体層22~26を順に積層して形成される。なお、ここでは誘電体層22、23は同じ厚みを有している。 Subsequently, FIG. 2 is an exploded perspective view showing a laminated structure of the laminated filter 20. The multilayer filter 20 is formed by sequentially laminating a dielectric layer 21 having no electrode pattern on the surface and dielectric layers 22 to 26 having an electrode pattern on the surface. Here, the dielectric layers 22 and 23 have the same thickness.
 上記電極パターンは、例えば、感光性導電ペーストをスピンコート法などにより絶縁体層上に塗布し、フォトリソグラフィー法を用いて形成される。また、メタルマスクを介して、導電ペーストを直接絶縁体層上にスクリーン印刷により形成してもよい。 The electrode pattern is formed, for example, by applying a photosensitive conductive paste on the insulator layer by a spin coat method or the like and using a photolithography method. Further, the conductive paste may be directly formed on the insulator layer by screen printing through a metal mask.
 また、上記誘電体層は、例えば、チタン酸バリウムなどのセラミック誘電体材料を原料としたスラリーをフィルム上でドクタブレード法によって塗布して作製される。 Also, the dielectric layer is produced by applying a slurry made of a ceramic dielectric material such as barium titanate as a raw material on a film by a doctor blade method.
 誘電体層22の表面にはキャパシタ電極27a、キャパシタ電極28a、キャパシタ電極29aが形成されている。キャパシタ電極27aは誘電体層22の一方の短辺側に形成され、引き出し電極27cによって、誘電体層22の一方の短辺に引き出されている。 On the surface of the dielectric layer 22, a capacitor electrode 27a, a capacitor electrode 28a, and a capacitor electrode 29a are formed. The capacitor electrode 27a is formed on one short side of the dielectric layer 22, and is drawn out to one short side of the dielectric layer 22 by the lead electrode 27c.
 キャパシタ電極29aは誘電体層22の他方の短辺側に形成され、引き出し電極29cによって、誘電体層22の他方の短辺に引き出されている。引き出し電極27cと引出し電極29cは誘電体層22の側面に露出して、図1中の入力端P1と出力端P2が構成されている。また、キャパシタ電極27a、29a間には、キャパシタ電極28aが形成されている。 The capacitor electrode 29a is formed on the other short side of the dielectric layer 22, and is drawn out to the other short side of the dielectric layer 22 by the lead electrode 29c. The lead electrode 27c and the lead electrode 29c are exposed on the side surface of the dielectric layer 22, and the input end P1 and the output end P2 in FIG. 1 are configured. A capacitor electrode 28a is formed between the capacitor electrodes 27a and 29a.
 誘電体層23の表面には、キャパシタ電極30a、キャパシタ電極30bが形成されている。キャパシタ電極30aとキャパシタ電極30bは、印刷などにより連なって形成され、誘電体層23の略全面に広がる一枚のキャパシタ電極30として形成されている。積層方向から見て、キャパシタ電極30は誘電体層22に形成されたキャパシタ電極27a、28a、29aと重なる。また、このキャパシタ電極30は他の電極パターンとは電気的に接続されていない浮き電極である。 On the surface of the dielectric layer 23, a capacitor electrode 30a and a capacitor electrode 30b are formed. The capacitor electrode 30a and the capacitor electrode 30b are formed in a continuous manner by printing or the like, and are formed as a single capacitor electrode 30 extending over substantially the entire surface of the dielectric layer 23. When viewed from the stacking direction, the capacitor electrode 30 overlaps the capacitor electrodes 27a, 28a, and 29a formed on the dielectric layer 22. The capacitor electrode 30 is a floating electrode that is not electrically connected to other electrode patterns.
 誘電体層24の表面にはキャパシタ電極27b、28b、29bが形成されている。 Capacitor electrodes 27b, 28b, and 29b are formed on the surface of the dielectric layer 24.
 キャパシタ電極27bは誘電体層24の一方の短辺側に形成され、積層方向から見て、誘電体層22に形成されたキャパシタ電極27a、30と重なる。また、キャパシタ電極27aと連続して、誘電体層24に引き出し電極27dが形成されている。引き出し電極27dにより、キャパシタ電極27bは誘電体層24の一方の短辺に向かって引き出されている。 The capacitor electrode 27b is formed on one short side of the dielectric layer 24 and overlaps the capacitor electrodes 27a and 30 formed on the dielectric layer 22 when viewed from the stacking direction. In addition, an extraction electrode 27d is formed on the dielectric layer 24 continuously with the capacitor electrode 27a. The capacitor electrode 27b is drawn toward one short side of the dielectric layer 24 by the lead electrode 27d.
 キャパシタ29bは誘電体層24の他方の短辺側に形成され、積層方向から見てキャパシタ電極29a、30と重なる。また、キャパシタ電極29aと連続して、誘電体層24に引き出し電極29dが形成されている。引き出し電極29dにより、キャパシタ電極29bは誘電体層24の他方の短辺に向かってに引き出されている。 The capacitor 29b is formed on the other short side of the dielectric layer 24 and overlaps the capacitor electrodes 29a and 30 when viewed from the stacking direction. In addition, an extraction electrode 29 d is formed on the dielectric layer 24 continuously with the capacitor electrode 29 a. The capacitor electrode 29b is drawn toward the other short side of the dielectric layer 24 by the lead electrode 29d.
 キャパシタ電極27bとキャパシタ電極29bの間には、キャパシタ電極28bが形成されている。キャパシタ電極28bは、積層方向から見て、キャパシタ電極28a、30と重なる。 Between the capacitor electrode 27b and the capacitor electrode 29b, a capacitor electrode 28b is formed. The capacitor electrode 28b overlaps the capacitor electrodes 28a and 30 when viewed from the stacking direction.
 また、誘電体層24に形成されたキャパシタ電極28bと引き出し電極27d、29dには、誘電体層22と23を貫通するビア電極v2、v3とビア電極v1、v4がそれぞれ形成されている。 Further, via electrodes v2 and v3 and via electrodes v1 and v4 penetrating the dielectric layers 22 and 23 are formed on the capacitor electrode 28b and the lead electrodes 27d and 29d formed on the dielectric layer 24, respectively.
 なお、ここでビア電極v1~v4は、キャパシタ電極30とは、電気的に絶縁するように配置されている。 Here, the via electrodes v1 to v4 are arranged so as to be electrically insulated from the capacitor electrode 30.
 ビア電極v1は、引き出し電極27cと引き出し電極27d間を接続するように形成されている。よって、キャパシタ電極27aとキャパシタ電極27bは、ビア電極v1と、引き出し電極27c、27dとを介して電気的に接続されている。従って、キャパシタ電極27aとキャパシタ電極27bは、キャパシタ電極30を挟んで対向し、キャパシタ電極27aとキャパシタ電極30間およびキャパシタ電極27bとキャパシタ電極30間で図1中のキャパシタC1に相当する容量が構成されている。 The via electrode v1 is formed so as to connect between the extraction electrode 27c and the extraction electrode 27d. Therefore, the capacitor electrode 27a and the capacitor electrode 27b are electrically connected via the via electrode v1 and the extraction electrodes 27c and 27d. Therefore, the capacitor electrode 27a and the capacitor electrode 27b are opposed to each other with the capacitor electrode 30 interposed therebetween, and a capacitance corresponding to the capacitor C1 in FIG. 1 is configured between the capacitor electrode 27a and the capacitor electrode 30 and between the capacitor electrode 27b and the capacitor electrode 30. Has been.
 ビア電極v2、v3は、キャパシタ電極28aとキャパシタ電極28bの間を接続するように形成されている。よって、キャパシタ電極28aとキャパシタ電極28bはビア電極v2、v3とを介して電気的に接続されている。従って、キャパシタ電極28aとキャパシタ電極28bは、キャパシタ電極30を挟んで対向し、キャパシタ電極28aとキャパシタ電極30間およびキャパシタ電極28bとキャパシタ電極30間で図1中のキャパシタC3に相当する容量が構成されている。 The via electrodes v2 and v3 are formed so as to connect between the capacitor electrode 28a and the capacitor electrode 28b. Therefore, the capacitor electrode 28a and the capacitor electrode 28b are electrically connected via the via electrodes v2 and v3. Therefore, the capacitor electrode 28a and the capacitor electrode 28b face each other with the capacitor electrode 30 in between, and a capacitance corresponding to the capacitor C3 in FIG. 1 is configured between the capacitor electrode 28a and the capacitor electrode 30 and between the capacitor electrode 28b and the capacitor electrode 30. Has been.
 ビア電極v4は、引き出し電極29cと引き出し電極29d間を接続するように形成されている。従って、キャパシタ電極29aとキャパシタ29bとは、ビア電極v4と、引き出し電極29c、29dとを介して電気的に接続されている。従って、キャパシタ電極29aとキャパシタ電極29bは、キャパシタ電極30を挟んで対向し、キャパシタ電極29aとキャパシタ電極30間およびキャパシタ電極29bとキャパシタ電極30間で、図1中のキャパシタC2に相当する容量が構成されている。 The via electrode v4 is formed so as to connect between the extraction electrode 29c and the extraction electrode 29d. Accordingly, the capacitor electrode 29a and the capacitor 29b are electrically connected via the via electrode v4 and the extraction electrodes 29c and 29d. Therefore, the capacitor electrode 29a and the capacitor electrode 29b are opposed to each other with the capacitor electrode 30 interposed therebetween, and a capacitance corresponding to the capacitor C2 in FIG. 1 is present between the capacitor electrode 29a and the capacitor electrode 30 and between the capacitor electrode 29b and the capacitor electrode 30. It is configured.
 誘電体層25の表面にはインダクタ電極31が形成されている。インダクタ電極31には誘電体層24を貫通するビア電極v5が形成されている。インダクタ電極31により図1中のインダクタL1に相当するインダクタが構成されている。インダクタ電極31の一方端は、ビア電極v5により、キャパシタ電極28bとを電気的に接続するように形成されている。インダクタ電極31の他方端は誘電体層25の他方の短辺に露出するように引き出され、誘電体層の側面に形成された側面電極31aと接続されている。 An inductor electrode 31 is formed on the surface of the dielectric layer 25. A via electrode v <b> 5 that penetrates the dielectric layer 24 is formed on the inductor electrode 31. The inductor electrode 31 constitutes an inductor corresponding to the inductor L1 in FIG. One end of the inductor electrode 31 is formed so as to be electrically connected to the capacitor electrode 28b by a via electrode v5. The other end of the inductor electrode 31 is drawn out so as to be exposed at the other short side of the dielectric layer 25, and is connected to a side electrode 31a formed on the side surface of the dielectric layer.
 誘電体層26の表面にはグランド電極32が形成されている。グランド電極32は誘電体層26の略全面に形成されている。引き出し電極32aによって、誘電体層26の他方の短辺に露出するように引き出され、側面電極31aと接続される。よって、インダクタ電極31は、引き出し電極32aと側面電極31aを介してグランド電極32と接続されている。グランド電極32によりインダクタ電極31が接地されている。 A ground electrode 32 is formed on the surface of the dielectric layer 26. The ground electrode 32 is formed on substantially the entire surface of the dielectric layer 26. The lead electrode 32a is led out so as to be exposed at the other short side of the dielectric layer 26 and is connected to the side electrode 31a. Therefore, the inductor electrode 31 is connected to the ground electrode 32 via the extraction electrode 32a and the side electrode 31a. The inductor electrode 31 is grounded by the ground electrode 32.
 また、キャパシタ電極27aとキャパシタ電極30とが重なる面積と積層方向の距離と、キャパシタ電極27bとキャパシタ電極30とが重なる面積と積層方向の距離とを一致させることにより、キャパシタ電極27a、30間とキャパシタ電極27b、30間で発生する逆向きの電磁界の大きさを一致させることができる。これのため、キャパシタC1、C2で発生する電磁界をさらに弱めることができる。なお、この構成はキャパシタC3、C4についても適用できる。 Further, by matching the area where the capacitor electrode 27a and the capacitor electrode 30 overlap with each other in the stacking direction, and the area where the capacitor electrode 27b and the capacitor electrode 30 overlap with each other in the stacking direction, the distance between the capacitor electrodes 27a and 30 can be reduced. The magnitudes of the reverse electromagnetic fields generated between the capacitor electrodes 27b and 30 can be matched. For this reason, the electromagnetic field generated by the capacitors C1 and C2 can be further weakened. This configuration can also be applied to the capacitors C3 and C4.
 以上に述べた積層の構造により、図1に示した回路構成のハイパスフィルタが実現される。 The high-pass filter having the circuit configuration shown in FIG. 1 is realized by the laminated structure described above.
 つづいて、本発明の第1の実施形態の効果に関して、以下に詳細に述べる。 Subsequently, the effects of the first embodiment of the present invention will be described in detail below.
 積層フィルタ20にあっては、電気的に接続されたキャパシタ電極27a、28a、29aとキャパシタ電極27b、28b、29bが浮き電極であるキャパシタ電極30を挟んで対向している。従って、入力端P1から交流信号が入力されたとき、キャパシタ電極27a、28a、29aとキャパシタ電極30間で発生する電磁界と、キャパシタ電極27b、28b、29bの間で発生する電磁界は逆の向きとなる。従って、キャパシタ電極27a、28a、29aとキャパシタ電極30間から洩れる電磁界と、キャパシタ電極27b、28b、29bの間から洩れる電磁界も逆向きとなり、互いに弱め合う。このため、各キャパシタ間と、各キャパシタと積層フィルタを構成するインダクタ間の電磁干渉を低減でき、挿入損失などのフィルタ特性が向上する。 In the multilayer filter 20, the electrically connected capacitor electrodes 27a, 28a, 29a and the capacitor electrodes 27b, 28b, 29b are opposed to each other with the capacitor electrode 30 that is a floating electrode interposed therebetween. Therefore, when an AC signal is input from the input terminal P1, the electromagnetic field generated between the capacitor electrodes 27a, 28a, 29a and the capacitor electrode 30 is opposite to the electromagnetic field generated between the capacitor electrodes 27b, 28b, 29b. It becomes the direction. Therefore, the electromagnetic field leaking between the capacitor electrodes 27a, 28a, 29a and the capacitor electrode 30 and the electromagnetic field leaking between the capacitor electrodes 27b, 28b, 29b are also opposite to each other and weaken each other. For this reason, electromagnetic interference between the capacitors and between the capacitors and the inductors constituting the multilayer filter can be reduced, and filter characteristics such as insertion loss are improved.
 さらに、積層フィルタ20にあっては、誘電体層22、23は同じ厚みを有している。すなわち、キャパシタ電極27a、28a、29aとキャパシタ電極30、および、キャパシタ電極27b、28b、29bとキャパシタ電極30は同じ距離だけ離れて配置されている。従って、キャパシタ電極27a、28a、29aとキャパシタ電極30間で発生する電磁界と、キャパシタ電極27b、28b、29bとキャパシタ30間で発生する電磁界はそれぞれの向きが互いに逆であるのに加えて、その大きさもほぼ同等となる。このため、キャパシタC1,C2,C3で発生する電磁界はより確実に弱められる。 Furthermore, in the multilayer filter 20, the dielectric layers 22 and 23 have the same thickness. In other words, the capacitor electrodes 27a, 28a, 29a and the capacitor electrode 30 and the capacitor electrodes 27b, 28b, 29b and the capacitor electrode 30 are arranged apart by the same distance. Therefore, the electromagnetic field generated between the capacitor electrodes 27a, 28a, 29a and the capacitor electrode 30 and the electromagnetic field generated between the capacitor electrodes 27b, 28b, 29b and the capacitor 30 are opposite to each other. The size is almost the same. For this reason, the electromagnetic field generated by the capacitors C1, C2, and C3 is more reliably weakened.
 また、キャパシタ電極30a、30bは一枚の連続したキャパシタ電極30として、同一の誘電体層23の表面に形成されている。このように、キャパシタ電極30a、30bを同時に作成することができ、電極パターンの形成が容易になる。さらに、同一の誘電体層にキャパシタ電極30aと30bが形成されることで、より少ない層でキャパシタC1,C2,C3を構成でき、積層フィルタ20が小型化できる。 The capacitor electrodes 30a and 30b are formed on the surface of the same dielectric layer 23 as one continuous capacitor electrode 30. Thus, the capacitor electrodes 30a and 30b can be formed at the same time, and the electrode pattern can be easily formed. Furthermore, by forming the capacitor electrodes 30a and 30b on the same dielectric layer, the capacitors C1, C2, and C3 can be configured with fewer layers, and the multilayer filter 20 can be downsized.
 また、入力端P1に接続されるキャパシタ電極27a、27b間、および、出力端P2に接続されるキャパシタ電極29a、29b間は、ビア電極v1およびビア電極v4でそれぞれお接続されている。これらのビア電極の本数およびビア径を変えることで、入出力インピーダンスを自由に調整することができる。このため、積層フィルタ20を他の電子部品と接続して機能回路を構成する際の整合の調整が簡易になる。 Further, the capacitor electrodes 27a and 27b connected to the input terminal P1 and the capacitor electrodes 29a and 29b connected to the output terminal P2 are connected by the via electrode v1 and the via electrode v4, respectively. By changing the number of these via electrodes and the via diameter, the input / output impedance can be freely adjusted. For this reason, adjustment of matching when the multilayer filter 20 is connected to other electronic components to configure a functional circuit is simplified.
 また、積層フィルタ10を用いて回路モジュールを作製することができる。この場合、積層フィルタ10と回路モジュールを構成する他の回路素子間の電磁干渉が低減されるため、回路モジュールの特性が向上する。 Further, a circuit module can be manufactured using the multilayer filter 10. In this case, electromagnetic interference between the multilayer filter 10 and other circuit elements constituting the circuit module is reduced, so that the characteristics of the circuit module are improved.
 つづいて、図3に本実施形態に係る積層フィルタ20と従来の構成の積層フィルタの電気特性の比較図である。ここで、従来の構成の積層フィルタとは、図2において、浮き電極であるキャパシタ電極30とビア電極v1、v2、v3、v4が形成されていない積層フィルタである。この従来構成の積層フィルタは本実施形態に係る積層フィルタ20と同じ回路構成を有し、各回路素子の値も同じである。 Next, FIG. 3 is a comparison diagram of electrical characteristics of the multilayer filter 20 according to the present embodiment and the multilayer filter having the conventional configuration. Here, the multilayer filter having the conventional configuration is a multilayer filter in which the capacitor electrode 30 that is a floating electrode and the via electrodes v1, v2, v3, and v4 are not formed in FIG. This conventional multilayer filter has the same circuit configuration as that of the multilayer filter 20 according to the present embodiment, and the value of each circuit element is also the same.
 図3(A)は積層フィルタ20と従来構成の積層フィルタの広い周波数帯域での通過特性である。図3(B)は2GHzから3GHzの範囲で図3(A)の電気特性を拡大した拡大図である。なお、図3では実線で本実施形態の積層フィルタ、破線で従来の積層フィルタの電気特性を示している。 FIG. 3A shows pass characteristics in a wide frequency band of the multilayer filter 20 and the conventional multilayer filter. FIG. 3B is an enlarged view in which the electrical characteristics of FIG. 3A are enlarged in the range of 2 GHz to 3 GHz. In FIG. 3, the solid line indicates the electrical characteristics of the multilayer filter of the present embodiment, and the broken line indicates the electrical characteristics of the conventional multilayer filter.
 図3に示すよう、積層フィルタ20の遮断周波数である2.2GHzより高周波側の通過帯域では、従来の積層フィルタに比べて、本実施形態の積層フィルタの挿入損失が低減しており、特に、無線LAN、Bluetooth〈登録商標〉の使用周波数にあたる2.4GHz付近では、従来の積層フィルタよりも挿入損失が約0.2dBほど改善していることがわかる。 As shown in FIG. 3, the insertion loss of the multilayer filter of the present embodiment is reduced in the pass band on the higher frequency side than 2.2 GHz, which is the cutoff frequency of the multilayer filter 20, as compared with the conventional multilayer filter. It can be seen that the insertion loss is improved by about 0.2 dB over the conventional multilayer filter in the vicinity of 2.4 GHz, which is the frequency used by the wireless LAN and Bluetooth (registered trademark).
 なお、本実施形態ではT型のハイパスフィルタを用いて説明したが、直列に接続された2つのキャパシタを有する回路構成であれば、バンドパスフィルタ、ローパスフィルタについても本実施例の構成を適用することはいうまでもない。 In the present embodiment, a T-type high-pass filter has been described. However, if the circuit configuration includes two capacitors connected in series, the configuration of the present embodiment is also applied to the band-pass filter and the low-pass filter. Needless to say.
  C1、C2、C3、C11、C12、C13 キャパシタ
  L1、L11 インダクタ
  P1、P2、P11、P22 入出力端子
  10、20 積層フィルタ
  11~15、21~26 誘電体層
  17a、17b、18,27a、27b、28a、28b、29a,29b、22 キャパシタ電極
  19、v1~v5 ビア電極
  21,31 インダクタ電極
  27c、27d、29c、29d、32a 引き出し電極
  30 浮き電極
  31a 側面電極
  23,32 グランド電極

 
C1, C2, C3, C11, C12, C13 Capacitors L1, L11 Inductors P1, P2, P11, P22 Input / output terminals 10, 20 Multilayer filters 11-15, 21-26 Dielectric layers 17a, 17b, 18, 27a, 27b 28a, 28b, 29a, 29b, 22 Capacitor electrode 19, v1 to v5 Via electrode 21, 31 Inductor electrode 27c, 27d, 29c, 29d, 32a Lead electrode 30 Floating electrode 31a Side electrode 23, 32 Ground electrode

Claims (6)

  1.  第1、第2のキャパシタが直列に接続された直列キャパシタ回路を含む積層フィルタであって、
     複数の誘電体層と、キャパシタを構成するキャパシタ電極を含む複数の電極層とで構成された積層フィルタにおいて、
     前記第1のキャパシタは第1、第2、第3のキャパシタ電極を有しており、積層方向から見て重なるように、前記第1、第2、第3のキャパシタ電極は順に形成されるとともに、前記第1、第3のキャパシタ電極は電気的に接続されるように形成されて、前記第1、第3のキャパシタ電極と前記第2のキャパシタ電極との間で前記第1のキャパシタが構成され、
     前記第2のキャパシタは第4、第5、第6のキャパシタ電極を有し、積層方向から見て重なるように、前記第4、第5、第6のキャパシタ電極は順に形成されるとともに、前記第4、第6のキャパシタ電極は電気的に接続されるように形成され、前記第4、第6のキャパシタ電極と前記第5のキャパシタ電極との間で前記第2のキャパシタが構成され、
     前記第2、第5のキャパシタ電極は浮き電極であるとともに、電気的に接続されていることを特徴とする積層フィルタ。
    A multilayer filter including a series capacitor circuit in which first and second capacitors are connected in series,
    In a multilayer filter composed of a plurality of dielectric layers and a plurality of electrode layers including a capacitor electrode constituting the capacitor,
    The first capacitor has first, second, and third capacitor electrodes, and the first, second, and third capacitor electrodes are sequentially formed so as to overlap each other when viewed from the stacking direction. The first and third capacitor electrodes are formed to be electrically connected, and the first capacitor is configured between the first and third capacitor electrodes and the second capacitor electrode. And
    The second capacitor has fourth, fifth, and sixth capacitor electrodes, and the fourth, fifth, and sixth capacitor electrodes are formed in order so as to overlap each other when viewed from the stacking direction. The fourth and sixth capacitor electrodes are formed so as to be electrically connected, and the second capacitor is configured between the fourth and sixth capacitor electrodes and the fifth capacitor electrode,
    The multilayer filter, wherein the second and fifth capacitor electrodes are floating electrodes and are electrically connected.
  2.  前記第2、第5のキャパシタ電極が同一の前記誘電体層に形成されていることを特徴とする請求項1に記載の積層フィルタ。 The multilayer filter according to claim 1, wherein the second and fifth capacitor electrodes are formed on the same dielectric layer.
  3.  前記第1のキャパシタ電極と前記第3のキャパシタ電極とが、積層方向に前記誘電体層を貫通するビア電極によって電気的に接続され、
     前記第4のキャパシタ電極と前記第6のキャパシタ電極とが、積層方向に前記誘電体層を貫通するビア電極によって電気的に接続されている請求項1または請求項2に記載の積層フィルタ。
    The first capacitor electrode and the third capacitor electrode are electrically connected by a via electrode penetrating the dielectric layer in the stacking direction,
    3. The multilayer filter according to claim 1, wherein the fourth capacitor electrode and the sixth capacitor electrode are electrically connected by a via electrode penetrating the dielectric layer in the stacking direction.
  4.  前記第1、第3のキャパシタ電極は前記第2のキャパシタ電極から積層方向に同じ距離だけ離れて形成され、前記第4、第6のキャパシタ電極は前記第5のキャパシタ電極から同じ距離だけ離れて形成されていることを特徴とする請求項1から請求項3のいずれか一項に記載の積層フィルタ。 The first and third capacitor electrodes are formed away from the second capacitor electrode by the same distance in the stacking direction, and the fourth and sixth capacitor electrodes are separated from the fifth capacitor electrode by the same distance. It forms, The multilayer filter as described in any one of Claims 1-3 characterized by the above-mentioned.
  5.  積層方向から見て、前記第2または第5のキャパシタ電極と重なるとともに、前記第2または第5のキャパシタ電極を挟むように、一対のキャパシタ電極がさらに形成され、
     前記一対のキャパシタ電極は電気的に接続され、前記第2または第5のキャパシタ電極との間で第3のキャパシタを構成することを特徴とする請求項1から請求項4のいずれか一項に記載の積層フィルタ。
    A pair of capacitor electrodes is further formed so as to overlap the second or fifth capacitor electrode as viewed from the stacking direction and sandwich the second or fifth capacitor electrode,
    The pair of capacitor electrodes are electrically connected, and constitute a third capacitor between the second or fifth capacitor electrodes. The multilayer filter as described.
  6.  請求項1から請求項5のいずれか一項に記載の積層フィルタを内蔵したことを特徴とする積層モジュール。

     
    A multilayer module comprising the multilayer filter according to any one of claims 1 to 5.

PCT/JP2011/059157 2010-06-16 2011-04-13 Stacked filter WO2011158546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-137439 2010-06-16
JP2010137439 2010-06-16

Publications (1)

Publication Number Publication Date
WO2011158546A1 true WO2011158546A1 (en) 2011-12-22

Family

ID=45347958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059157 WO2011158546A1 (en) 2010-06-16 2011-04-13 Stacked filter

Country Status (1)

Country Link
WO (1) WO2011158546A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204397A (en) * 1992-12-26 1994-07-22 Murata Mfg Co Ltd Compound electronic parts
JP2001024463A (en) * 1999-07-05 2001-01-26 Murata Mfg Co Ltd Band preventing filter and receiving module and portable radio equipment
JP2002217668A (en) * 2001-01-19 2002-08-02 Murata Mfg Co Ltd Laminated lc filter
WO2006022098A1 (en) * 2004-08-27 2006-03-02 Murata Manufacturing Co., Ltd. Lc composite component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204397A (en) * 1992-12-26 1994-07-22 Murata Mfg Co Ltd Compound electronic parts
JP2001024463A (en) * 1999-07-05 2001-01-26 Murata Mfg Co Ltd Band preventing filter and receiving module and portable radio equipment
JP2002217668A (en) * 2001-01-19 2002-08-02 Murata Mfg Co Ltd Laminated lc filter
WO2006022098A1 (en) * 2004-08-27 2006-03-02 Murata Manufacturing Co., Ltd. Lc composite component

Similar Documents

Publication Publication Date Title
EP2312687B1 (en) Multilayer bandpass filter
EP0836277A2 (en) LC composite part
JP4569571B2 (en) LC composite parts
JP6801826B2 (en) Filter element
US7542264B2 (en) Capacitor block and laminated board
CN205680518U (en) Wave filter removed by inducer and frequency band
WO2017179590A1 (en) Passive element array and printed wiring board
US7099645B2 (en) Multilayer LC filter
JPH04246901A (en) High frequency filter
JP4784017B2 (en) Multilayer low-pass filter
US8400236B2 (en) Electronic component
WO2011158546A1 (en) Stacked filter
JP2002204136A (en) Laminated low-pass filter
JP3219670B2 (en) Multilayer LC bandpass filter
JP4525223B2 (en) LC composite filter parts
JP2006041820A (en) Multilayer filter array
JP2006222691A (en) Electronic component
WO2022050094A1 (en) Filter module, filter element and electronic device
JP6664257B2 (en) Low pass filter
JP2005244000A (en) Balun transformer
JPH10126193A (en) Lc filter part
JP2001119258A (en) Branching filter
JPH06152300A (en) Laminated emi filter
JPH1051257A (en) Lc low-pass filter
JP2010268130A (en) Multilayer filter array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP