WO2011158449A1 - Connection material, semiconductor device, and method for manufacturing same - Google Patents

Connection material, semiconductor device, and method for manufacturing same Download PDF

Info

Publication number
WO2011158449A1
WO2011158449A1 PCT/JP2011/003071 JP2011003071W WO2011158449A1 WO 2011158449 A1 WO2011158449 A1 WO 2011158449A1 JP 2011003071 W JP2011003071 W JP 2011003071W WO 2011158449 A1 WO2011158449 A1 WO 2011158449A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
connection material
layer
phase
semiconductor device
Prior art date
Application number
PCT/JP2011/003071
Other languages
French (fr)
Japanese (ja)
Inventor
靖 池田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011158449A1 publication Critical patent/WO2011158449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/282Zn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

In a lead-free connection material used in a semiconductor device including a power module and the like, when being exposed to a temperature higher than a normally used temperature range, there has been a case in which the stress relaxation function thereof is degraded. To solve this problem, the connection material has a Zn-based layer formed in a region including the most surficial layer and a plurality of floating island-like Al-based phases (3) formed in the Zn-based layer. Two members (1, 2) are connected by the connection material, thereby preventing the wettability and the heat resistance from being degraded by Al oxide and relaxing stress during connection by the Al-based phases (3). In addition, even if the Al-based phases (3) are hardened during use, the flexibility is ensured by a Zn-Al alloy layer (4), so that it is possible to prevent the stress relaxation function of the connection material from being degraded.

Description

接続材料、半導体装置、およびその製造方法Connection material, semiconductor device, and manufacturing method thereof
 本発明は、良好な濡れ性が得られ、耐熱性に優れ、高信頼が得られる鉛フリー接続材料による接続技術に関するものである。 The present invention relates to a connection technique using a lead-free connection material that provides good wettability, excellent heat resistance, and high reliability.
 パワーモジュールは、インバータ駆動による省エネルギー化が可能であるため、近年、需要が増大している。また、家電に限らず、ハイブリッドおよび電気自動車や風力発電等発電機器の大電力制御にも適用先が広がりつつある。それに伴い、従来のSi半導体に比べて、大電流を通電して素子が高温になっても動作が可能なSiC、GaN半導体の実用化も検討されている。そのため、SiCやGaN半導体のダイボンディングに適した接続材料が必要となっている。SiCおよびGaN半導体は200℃以上の高温下で使用される可能性があるが、今のところ、これらの素子を接続する汎用的な接続材料は高鉛はんだ以外ないが、高鉛はんだは鉛を85mass%以上含むため非常に環境負荷が大きいという問題がある。また、高鉛はんだは融点が約300℃であるため、250℃以上の温度では界面反応を抑制できず、空隙等が顕著に生成して接続を維持できない。そのため、高鉛はんだ以上の耐熱性を有する高耐熱の鉛フリー接続技術の開発が必要となっている。高耐熱の鉛フリー接続材料の候補としては、焼成型Agペーストや融点300℃以上のAu系はんだ、Zn系はんだが挙げられる。しかしながら、焼成型Agペーストの場合、高コスト、従来のハンダに比べて供給方法等の作業性が悪いといった問題がある。また、Au系はんだの場合、焼成型Agペーストより更に高コストであり、汎用的に使用することが難しい。Zn系はんだの場合、Alを含まないZn系はんだは部材との反応性が高く、150℃以上の温度下で顕著に界面反応が進み接続を維持することができない。また、Zn-Al系はんだの場合、はんだ周辺部にAl酸化物の膜が生成することで被接続材に濡れないという問題があった。接続材料のAl酸化膜による濡れ阻害を回避する手段として特許文献1がある。特許文献1ではZn-Al合金の濡れ性を改善するために、Al箔表面にZnをクラッドしている。クラッドの際に、圧延等の加工でAlが大変形して表面のAl酸化膜が破られることで、露出した新生面同士が接続される。クラッド後の材料表面には濡れを阻害するAl酸化物の膜が無いこと、材料内部のAl酸化膜は、破れた状態を維持するため、接続時に良好な濡れを確保することができる。 Demand for power modules is increasing in recent years because energy saving is possible by driving an inverter. In addition, not only home appliances but also application destinations are spreading to high power control of hybrid and electric vehicles and power generation equipment such as wind power generation. Along with this, the practical application of SiC and GaN semiconductors, which can operate even when the device is heated to a high current by passing a large current compared to conventional Si semiconductors, is being studied. Therefore, connection materials suitable for die bonding of SiC and GaN semiconductors are required. SiC and GaN semiconductors may be used at high temperatures of 200 ° C or higher, but at present there is no other general-purpose connection material to connect these devices, but high lead solder uses lead. There is a problem that the environmental load is very large because it contains 85 mass% or more. In addition, since the melting point of high lead solder is about 300 ° C., the interface reaction cannot be suppressed at a temperature of 250 ° C. or higher, and voids or the like are remarkably generated and the connection cannot be maintained. Therefore, it is necessary to develop a high heat resistance lead-free connection technology having heat resistance higher than that of high lead solder. Candidates for high heat-resistant lead-free connection materials include fired Ag paste, Au solder having a melting point of 300 ° C. or higher, and Zn solder. However, calcined Ag paste has problems such as high cost and poor workability such as a supply method compared to conventional solder. In addition, in the case of Au-based solder, it is more expensive than a fired Ag paste and is difficult to use for general purposes. In the case of Zn-based solder, Zn-based solder not containing Al has high reactivity with the member, and the interface reaction is remarkably advanced at a temperature of 150 ° C. or higher, and the connection cannot be maintained. In addition, in the case of Zn—Al solder, there is a problem that an Al oxide film is formed around the solder so that the material to be connected does not get wet. As a means for avoiding the inhibition of wetting by the Al oxide film of the connection material, there is Patent Document 1. In patent document 1, in order to improve the wettability of a Zn-Al alloy, Zn is clad on the Al foil surface. When clad, Al is deformed greatly by a process such as rolling, and the Al oxide film on the surface is broken, so that the exposed new surfaces are connected to each other. Since the surface of the clad material does not have an Al oxide film that impedes wetting, and the Al oxide film inside the material maintains a torn state, it is possible to ensure good wetting during connection.
特開2008-126272号公報JP 2008-126272 A
 しかしながら、使用環境の最高温度を250℃より下に想定していても、装置の稼動状況により一時的に250℃を超えてしまうことがあり、上記特許文献1の方法の場合、高い接続信頼性を確保するために、以下のことが考慮されていなかった。特許文献1の場合、図1のように、半導体素子1と支持部材2をZn-Al層4を介して接続した後、軟らかいAl層3を残存させることで接続部に応力緩衝能を付与する。図2は、250℃で保持時間とAl層のビッカース硬さの関係を示したものである。0hは接続後の硬さを示すが、このときAl層は、点線で示した接続を担うZn-Al合金層に比べて軟らかく、応力緩衝機能を有している。しかしながら、250℃250h保持後には、接続を担うZn-Al合金層より硬くなり応力緩衝能が失われてしてしまう。これは、高温下でAl層中にZnが拡散して、Al層が固溶強化することが原因である。すなわち、一時的にでも250℃以上の温度に晒されることで、常用する250℃より下の使用環境における応力緩衝機能も低下してしまう。 However, even if the maximum temperature of the usage environment is assumed to be lower than 250 ° C., it may temporarily exceed 250 ° C. depending on the operation status of the apparatus. In order to ensure the following, the following were not considered. In the case of Patent Document 1, as shown in FIG. 1, after connecting the semiconductor element 1 and the support member 2 via the Zn—Al layer 4, the soft Al layer 3 is left to give stress to the connection portion. . FIG. 2 shows the relationship between the holding time at 250 ° C. and the Vickers hardness of the Al layer. 0h indicates the hardness after connection. At this time, the Al layer is softer than the Zn—Al alloy layer responsible for connection indicated by the dotted line, and has a stress buffering function. However, after holding at 250 ° C. for 250 hours, it becomes harder than the Zn—Al alloy layer responsible for connection and the stress buffering ability is lost. This is because Zn diffuses into the Al layer at a high temperature and the Al layer is solid-solution strengthened. That is, even if temporarily exposed to a temperature of 250 ° C. or higher, the stress buffering function in a usage environment below 250 ° C. is also reduced.
 本発明は、上記のような問題を解決するためになされたものであり、濡れ性が確保でき、耐熱性が高く、応力緩衝機能を有する高信頼な接続材料を提供することを目的としている。 The present invention has been made to solve the above-described problems, and aims to provide a highly reliable connection material that can ensure wettability, has high heat resistance, and has a stress buffering function.
 上記課題を解決するために、接続に用いる最表面をZn系層にするとともに、特許文献1では大きな塊であったAl層を、複数の小さなAl相に分割した。これによって、接続時のAlの応力緩衝機能は若干落ちるものの、Znが浸入してAlが硬化した後の接続材料の応力緩衝機能の低下を抑え、実使用時の信頼性を確保することができようにした。 In order to solve the above problems, the outermost surface used for connection was made a Zn-based layer, and the Al layer, which was a large lump in Patent Document 1, was divided into a plurality of small Al phases. As a result, the stress buffer function of Al during connection is slightly reduced, but the deterioration of the stress buffer function of the connection material after Zn enters and Al hardens can be suppressed, and reliability during actual use can be ensured. I did it.
 本発明によれば、濡れ性が確保でき、耐熱性が高く、接続時の熱応力に対しても、使用時の熱応力に対しても緩衝可能な高信頼な接続材料を得ることができる。 According to the present invention, it is possible to obtain a highly reliable connection material that can ensure wettability, has high heat resistance, and can buffer both thermal stress during connection and thermal stress during use.
従来技術にかかる半導体素子接続部の断面図である。It is sectional drawing of the semiconductor element connection part concerning a prior art. 250℃保持時間とZn-Al層及びZn-Al層に隣接したAl層の硬さの関係を示す図である。It is a figure which shows the relationship between 250 degreeC holding time, and the hardness of the Al layer adjacent to a Zn-Al layer and a Zn-Al layer. 半導体素子接続部の断面図である。It is sectional drawing of a semiconductor element connection part. 本発明の一実施例にかかる接続材料の断面図である。It is sectional drawing of the connection material concerning one Example of this invention. 本発明の一実施例にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning one Example of this invention. 接続材料のAlの代わりにNi、Cu、Ag等を用いた接続材料で接続した場合の断面図である。It is sectional drawing at the time of connecting with the connection material using Ni, Cu, Ag etc. instead of Al of connection material. Al-Zn2元系状態図である。It is an Al-Zn binary system phase diagram. 本発明一実施例にかかる接続材料の作製方法を説明するための断面図である。It is sectional drawing for demonstrating the preparation method of the connection material concerning one Example of this invention. 加工度が低い接続材料を加熱して生じた膨れの断面図である。It is sectional drawing of the swelling produced by heating the connection material with a low workability. 本発明の一実施例にかかる接続材料で接続したパワー半導体モジュールの断面図である。It is sectional drawing of the power semiconductor module connected with the connection material concerning one Example of this invention. 本発明の一実施例にかかる接続材料でNiめっき部材を接続したときの接続界面の断面を示した図である。It is the figure which showed the cross section of the connection interface when connecting a Ni plating member with the connection material concerning one Example of this invention. 比較例にかかるPb-5SnでNiめっき部材を接続し、250℃で1000h保持したときの接続界面の断面図である。It is sectional drawing of a connection interface when connecting a Ni plating member with Pb-5Sn concerning a comparative example, and hold | maintaining at 250 degreeC for 1000 hours. 実施例1~17及び比較例1~5における接続材料および検証結果を示す表である。7 is a table showing connection materials and verification results in Examples 1 to 17 and Comparative Examples 1 to 5. 接続材料の一例の写真である。It is a photograph of an example of a connection material.
 本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図4は本発明の実施例にかかる接続材料の断面図である。接続材料は、部材を接続するための、図面上側の第一の面と、図面下側の第二の面とを有している。大部分をしめるZn系層5は、第一の面および第二の面とを形成しており、その間に複数のAl系相3の粒が浮き島状に点在している。地点10では、第一の面から第二の面までZn系層5が延在し、地点11では、表面はZn系層5であるが、間にAl系相3を有している。 FIG. 4 is a cross-sectional view of a connection material according to an embodiment of the present invention. The connecting material has a first surface on the upper side of the drawing and a second surface on the lower side of the drawing for connecting the members. The Zn-based layer 5 occupying most forms a first surface and a second surface, and a plurality of Al-based phase 3 grains are scattered in the form of floating islands therebetween. At the point 10, the Zn-based layer 5 extends from the first surface to the second surface. At the point 11, the surface is the Zn-based layer 5, but has the Al-based phase 3 therebetween.
 図8は、接続材料の製造方法を示す図である。複数のAl系相3の金属片(または粉末)を第一及び第二のZn系層5の二枚に挟み込み圧延(クラッド圧延)をすることによって、Al系相3およびZn系層4が変形して、各々の表面に形成された酸化膜が破れ、新生面同士を金属接合させることができる。Al系相3は金属片であるため、複数に分かれてZn層4中に浮島上に分布するとともに、二枚のZn系層4は直接接合される。圧延としては、冷間圧延、熱間圧延を用いることができ、それ以外では加圧成形によっても製造できる。 FIG. 8 is a diagram showing a method for manufacturing a connection material. The Al phase 3 and the Zn layer 4 are deformed by sandwiching and rolling (cladding) a plurality of metal pieces (or powders) of the Al phase 3 between the first and second Zn layers 5. Then, the oxide film formed on each surface is broken, and the new surfaces can be metal-bonded. Since the Al-based phase 3 is a metal piece, it is divided into a plurality and distributed on the floating island in the Zn layer 4, and the two Zn-based layers 4 are directly joined. As rolling, cold rolling or hot rolling can be used, and otherwise, it can also be produced by pressure forming.
 図5の半導体装置では、この接合材を溶融・凝固させて、半導体素子1と基板2とを接続した状態である。Al系相とZn-Al系層5内に浮島上に分布している。接続は、半導体素子1と基板2との間に接続材を載置し、リフロー処理より行う。リフロー処理にて、加熱を行うとZn系層4が溶融し、冷却すると凝固して半導体素子1と基板とが接続される。このとき、Al系相3は固まったままであるが、その一部がZn系層5内に溶け出してZn-Al系合金層4となっている。 In the semiconductor device of FIG. 5, the bonding material is melted and solidified to connect the semiconductor element 1 and the substrate 2. The Al phase and the Zn-Al layer 5 are distributed on the floating island. The connection is performed by a reflow process by placing a connecting material between the semiconductor element 1 and the substrate 2. When heating is performed in the reflow process, the Zn-based layer 4 is melted, and when cooled, it is solidified to connect the semiconductor element 1 and the substrate. At this time, although the Al-based phase 3 remains hardened, a part of the Al-based phase 3 is dissolved into the Zn-based layer 5 to form the Zn-Al-based alloy layer 4.
 作用効果を説明する。本実施例では、接続前に置いて接続材料の最表層がZn系層5であり、Alではないため、Al酸化物の膜で覆われない。そのため、酸化膜による濡れの阻害が発生せず、接続の際に良好な濡れが得られる。Zn系層5は、Znの含有率が90~100mass%であり、Alの含有率が0.01mass%未満が望ましい。 Explain the effects. In this embodiment, the outermost layer of the connection material is the Zn-based layer 5 before connection, and is not Al, so it is not covered with the Al oxide film. Therefore, inhibition of wetting by the oxide film does not occur, and good wetting can be obtained at the time of connection. The Zn-based layer 5 desirably has a Zn content of 90 to 100 mass% and an Al content of less than 0.01 mass%.
 接続後には、図5のようにAl系相3が部分的に残存する。接続時には、Zn-Al系合金層4は、加熱溶融状態から温度を下げていくと、その凝固点で凝固し、その時点で半導体素子1と基板2が接続される。凝固点から上の温度では、接続材料が溶融状態であるため、熱応力の問題は発生しない。しかしながら、凝固点から常温までさらに温度を下げていくと、凝固して固体となっている接続材料には、半導体素子1と基板2との熱膨張率の差によって大きな熱応力がかかる。本実施例では、接続材料中に比較的軟らかいAl系相3が存在するため、このときの熱応力をAl系相3が吸収し、Al系相3がない場合に比べて熱応力による影響が小さくなる。 After connection, the Al phase 3 partially remains as shown in FIG. At the time of connection, the Zn—Al-based alloy layer 4 is solidified at its freezing point when the temperature is lowered from the heated and melted state, and the semiconductor element 1 and the substrate 2 are connected at that time. At temperatures above the freezing point, the connection material is in a molten state, so no thermal stress problem occurs. However, when the temperature is further lowered from the freezing point to room temperature, a large thermal stress is applied to the connection material that is solidified by solidity due to the difference in thermal expansion coefficient between the semiconductor element 1 and the substrate 2. In this embodiment, since the Al-based phase 3 that is relatively soft is present in the connecting material, the Al-based phase 3 absorbs the thermal stress at this time, and the influence of the thermal stress is greater than when there is no Al-based phase 3. Get smaller.
 前述の通り、Al系相3は、接続後の使用時に250℃以上の高温下に晒されてZnが浸入し、硬化してZn-Al系層5よりも硬くなると問題を有している。本実施例では、硬化するAl系相3は浮島状の部分となり、個々の体積は小さくなっているため、Al系相3が硬化しても、接続材料全体としても硬化は大きくない。対して特許文献1のように層全体が大きな一塊のAlである場合は、Al層が硬化すると接続材料全体の柔軟性が著しく低下する。したがって本実施例では、接続材料の硬化を抑制することができる。それでも250℃以上の温度ではAl系相3が硬化することにより、接続材料全体としても応力緩衝機能が低下してしまうが、使用時の温度は、400℃前後といった接続材料が溶融する接続時ほど高温では無いので、十分に耐えることができる。そのため、常用する約250℃までの使用温度下では、高い信頼性が得られる。 As described above, the Al-based phase 3 has a problem when it is exposed to a high temperature of 250 ° C. or higher when used after connection, Zn enters, hardens, and becomes harder than the Zn-Al-based layer 5. In the present embodiment, the Al-based phase 3 to be cured becomes a floating island-like portion, and each volume is small. Therefore, even if the Al-based phase 3 is cured, the entire connecting material is not cured. On the other hand, when the whole layer is large lump Al like patent document 1, if the Al layer hardens, the flexibility of the whole connection material will fall remarkably. Therefore, in the present embodiment, curing of the connection material can be suppressed. Still, when the Al phase 3 is cured at a temperature of 250 ° C or higher, the stress buffer function of the connecting material as a whole is lowered. However, the temperature during use is about the same as when the connecting material is melted at around 400 ° C. Because it is not hot, it can withstand it sufficiently. Therefore, high reliability can be obtained under a service temperature up to about 250 ° C., which is commonly used.
 また、図4のように、接続材料の内部に複数の浮島状Al系相3を有しており、これが接続時でも固体として存在する。そのため、Al系相3が接続部の傾きを抑制するスペーサとして機能し、図3のように半導体素子1が傾いて接続されるのを防ぐことができる。傾きが生じると、薄く潰れた接続部に応力が集中するため、傾きの無い場合に比べて破壊が速く進行してしまう。高温下でパワー半導体を使用する場合、使用時の温度変化が大きく熱衝撃が大きくなるため、接続部の傾きを小さくして応力集中部を無くすことが重要になる。図1のように、Alが残存する場合、Al層3が傾き防止のスペーサとして機能するため、接続部の傾きがないまたは小さく維持することができる。 Also, as shown in FIG. 4, the connection material has a plurality of floating island-like Al-based phases 3, which exist as a solid even when connected. Therefore, the Al-based phase 3 functions as a spacer that suppresses the inclination of the connecting portion, and the semiconductor element 1 can be prevented from being inclined and connected as shown in FIG. When the inclination occurs, stress concentrates on the thinly crushed connection portion, so that the destruction proceeds faster than in the case where there is no inclination. When a power semiconductor is used at a high temperature, the temperature change during use is large and the thermal shock becomes large. Therefore, it is important to reduce the inclination of the connecting portion to eliminate the stress concentration portion. As shown in FIG. 1, when Al remains, since the Al layer 3 functions as a tilt-preventing spacer, the connecting portion can be kept at a small or small inclination.
 Alの硬化を防止するために、接続の際にAl層を完全に反応させて接続部を全てZn-Al合金にする方法も可能である。この場合、保持前はAl層が残存する接続に比べて硬いが、250℃以上の温度で保持しても、保持前から大きく硬化が進行しない。 In order to prevent Al from hardening, it is also possible to completely react the Al layer at the time of connection to make all the connection parts a Zn-Al alloy. In this case, it is harder than the connection in which the Al layer remains before holding, but even if it is held at a temperature of 250 ° C. or higher, the hardening does not proceed greatly from before holding.
 もしAl系相3の代わりに、浮島状のCuやAg、Ni等6をZn系層4と複合化した場合、図6のように、Znと著しく反応して接続部内部に硬くて脆い金属間化合物7を形成するため、応力緩衝能が低減し信頼性を損なう恐れがある。Zn系層4とAl系相3の組合せで接続材料を形成した場合、Al中にZnが拡散して固溶強化するのみにとどまり、脆い金属間化合物を形成しないため、脆性破壊しない。 If instead of Al-based phase 3, floating island-like Cu, Ag, Ni, etc. 6 are combined with Zn-based layer 4, as shown in FIG. 6, it reacts remarkably with Zn and is hard and brittle in the connection part. Since the intermetallic compound 7 is formed, there is a risk that the stress buffering ability is reduced and the reliability is impaired. When the connection material is formed by the combination of the Zn-based layer 4 and the Al-based phase 3, Zn diffuses in Al and only strengthens by solid solution, and does not form a brittle intermetallic compound, so that brittle fracture does not occur.
 また、Al系相3が存在することで、接続の際に溶融した液相を介してAl系相3からAlが拡散し、接続対象物またはその表面に形成されたメタライズ層との接続界面にAlを主成分(最も含有量の多い元素)とする金属間化合物(Cu部材であれば、Cu-Al化合物、Ni部材であれば、Ni-Al化合物)を生成することができる。これらの金属間化合物はZnを主成分とする金属間化合物に比べて、高温下で成長が遅いため、良好な接続を維持することができる。 In addition, the presence of the Al-based phase 3 causes Al to diffuse from the Al-based phase 3 via the liquid phase melted at the time of connection, and at the connection interface with the object to be connected or the metallized layer formed on the surface thereof. It is possible to generate an intermetallic compound (a Cu-Al compound for a Cu member and a Ni-Al compound for a Ni member) containing Al as a main component (element having the largest content). Since these intermetallic compounds grow slowly at high temperatures compared to intermetallic compounds containing Zn as a main component, good connection can be maintained.
 接続前のZn系層5に含まれるAlは0.01mass%未満が望ましい。これ含有量ならば、接続材料表面のAl酸化物膜の量が多すぎず、良好な濡れが得られる。 ¡Al contained in the Zn-based layer 5 before connection is preferably less than 0.01 mass%. With this content, the amount of the Al oxide film on the surface of the connecting material is not too much, and good wetting can be obtained.
 接続前におけるAl系相3のAl含有率が99~100mass%であることが望ましい。 It is desirable that the Al content of the Al phase 3 before connection is 99 to 100 mass%.
 一般的に、Alの純度が100mass%に近づくほど軟らかくなり、応力緩衝機能を得ることが容易になる。一方、Al純度が99mass%以上の場合、硬さが小さくなり0.2%耐力が低くなるため、接続工程における冷却時に十分な応力緩衝機能を得ることができる。このときの0.2%耐力は、30N/mm2以下になることが望ましい。 Generally, the closer the purity of Al is to 100 mass%, the softer it becomes and it becomes easier to obtain a stress buffering function. On the other hand, when the Al purity is 99 mass% or more, the hardness decreases and the 0.2% yield strength decreases, so that a sufficient stress buffering function can be obtained during cooling in the connection process. The 0.2% proof stress at this time is desirably 30 N / mm 2 or less.
 また、接続前におけるAl系相3の平均径は、50μm以上にすることが好ましい。接続材料の融点が約380℃であるため、400℃近傍で接続される。平均径が50μm以上の場合、接続時の加熱によってAl系相3中全域にZnが拡散して固溶強化しづらく、接続工程における冷却による熱応力を十分に緩衝でき、チップクラック発生を防止することができる。 Moreover, the average diameter of the Al phase 3 before connection is preferably 50 μm or more. Since the melting point of the connecting material is about 380 ° C., the connection is made at around 400 ° C. When the average diameter is 50μm or more, Zn diffuses throughout the Al phase 3 due to heating at the time of connection, making it difficult to strengthen the solid solution, it is possible to sufficiently buffer the thermal stress due to cooling in the connection process, and prevent chip cracks from occurring be able to.
 接続前における接続材料に対するAl系相3部分が6mass%より高く、25mass%未満であることが望ましい。 It is desirable that the Al phase 3 part with respect to the connection material before connection is higher than 6 mass% and lower than 25 mass%.
 図7にAl-Zn2元系状態図を示す。Zn-Al共晶組成が6mass%Alであるので、Al系相3部分が6mass%以上の場合、接続時にAl系相3が全て溶解するわけではないため、Al系相3部分をスペーサとして利用することができる。また、Al系相3部分が1mass%以上の場合、接続時に耐熱性を発現するために十分なAlを主成分とする金属間化合物が一旦接続部界面に形成し、金属間化合物の不足により接続界面化合物から遊離してしまうことを防ぐことができる。また、Al系合金部分が25mass%未満では、接続部の50%以上が250℃以下で硬化するため、応力は十分に緩衝できる大きさとなる。 Fig. 7 shows the Al-Zn binary phase diagram. Since the Zn-Al eutectic composition is 6 mass% Al, if the Al phase 3 part is 6 mass% or more, the Al phase 3 is not completely dissolved at the time of connection, so use the Al phase 3 part as a spacer. can do. In addition, when the Al phase 3 part is 1 mass% or more, an intermetallic compound containing Al as a main component is formed at the interface of the connection part enough to develop heat resistance during connection, and it is connected due to a shortage of intermetallic compound. It can be prevented from being liberated from the interface compound. In addition, when the Al-based alloy portion is less than 25 mass%, 50% or more of the connection portion is cured at 250 ° C. or less, so that the stress can be sufficiently buffered.
 接続前の接続材料は、Zn系層5に覆われたAl系相3の周囲80%以上がAl酸化物の膜を介さずに、Zn系層5とAl系相3とが接続していることが望ましい。 As for the connection material before connection, the Zn-based layer 5 and the Al-based phase 3 are connected to each other at 80% or more around the Al-based phase 3 covered with the Zn-based layer 5 without the Al oxide film interposed therebetween. It is desirable.
 Zn系層5とAl系相3がAl酸化物を介して接続している場合、Al酸化物の膜が脆いため、熱衝撃等が生じた際に剥離の起点となる。Al系合金の周囲20%未満がAl酸化物の膜で覆われている場合、剥離の発生部が増加しても、接続部の接続信頼性は保つことができる。 When the Zn-based layer 5 and the Al-based phase 3 are connected via an Al oxide, the Al oxide film is fragile, and becomes a starting point of peeling when a thermal shock or the like occurs. When less than 20% of the circumference of the Al-based alloy is covered with an Al oxide film, the connection reliability of the connection portion can be maintained even if the occurrence of delamination increases.
 接続材料の製造方法としては、Zn系層5間に複数のAl系相3の金属片を挟み込み圧延することにより、Zn系層4間、Zn系層4とAl系相3間を接続する。このとき圧延の加工度を90%以上にすることが望ましい。圧延の加工度が90%以上の場合、変形が小さく接続界面の酸化物膜残存面積が多い等の理由により、未接続界面が多くなる可能性が小さく、接続時の加熱によって、図9のように未接続部界面に膨れ101が発生して、半導体素子を接続した後にボイド等の接続欠陥の不良となることを防ぐことができる。 As a manufacturing method of the connecting material, a plurality of Al-based phase 3 metal pieces are sandwiched between the Zn-based layers 5 and rolled to connect the Zn-based layers 4 and between the Zn-based layers 4 and the Al-based phases 3. At this time, it is desirable that the degree of rolling is 90% or more. When the working degree of rolling is 90% or more, there is little possibility that the unconnected interface increases due to small deformation and a large remaining area of the oxide film at the connection interface. In addition, it is possible to prevent the occurrence of a swell 101 at the interface of the unconnected portion and a defective connection defect such as a void after the semiconductor element is connected.
 圧延としては、2つのZn系層4間にAl系相3の粉末を挟み込み熱間圧延することが望ましい。 As the rolling, it is desirable to sandwich the Al-based phase 3 powder between the two Zn-based layers 4 and perform hot rolling.
 Al系粉末をZn系層に挟み込み冷間圧延をすることによって、Al系粉末およびZn系層が変形して各々の部材表面に形成された酸化膜が破れ、新生面同士を金属接合させることができる。熱間圧延では冷間圧延に比べて、高温下で拡散が速いため、新生面同士の接続が容易となる。そのため、圧延の加工度を容易に90%以上にすることができ、良好な部材間の接続ができる。 By sandwiching the Al-based powder in the Zn-based layer and performing cold rolling, the Al-based powder and the Zn-based layer are deformed and the oxide film formed on the surface of each member is broken, and the new surfaces can be metal-bonded. . In hot rolling, compared to cold rolling, diffusion is fast at high temperatures, so that the new surfaces can be easily connected. Therefore, the workability of rolling can be easily increased to 90% or more, and a good connection between members can be achieved.
 なお、本実施例では、接続材料は、半導体素子1と基板2とを接続しているが、これに限らず、二つ以上の部材を接続するものであればよく、たとえば、半導体素子とリードや電極を接続したり、電極同士を接続してもよい。 In the present embodiment, the connection material connects the semiconductor element 1 and the substrate 2, but is not limited to this, and any connection material may be used as long as it connects two or more members. Or electrodes may be connected, or electrodes may be connected together.
 なお、本発明や特許文献1にかかる接続材料は、一例としては、図14の写真のようにリボン状の接続材料201に形成され、リール202に巻かれて供給される。 Note that the connection material according to the present invention and Patent Document 1 is formed on a ribbon-like connection material 201 as shown in the photograph of FIG.
(実施例1-17)
 以下、本発明をパワー半導体モジュールに適用した実施例について、図10を用いて説明する。
(Example 1-17)
Hereinafter, an embodiment in which the present invention is applied to a power semiconductor module will be described with reference to FIG.
 窒化珪素の上面にCu配線、下面にCu板をロウ付けし、Cu板表面にNiめっきを施した40mm×20mmセラミックス基板9上に、図13の仕様であるZn系層とAl系金相からなる接続材料箔を置き、その上にTi/Ni/Auのメタライズを有する10mm×10mmの半導体素子1を積層し、素子上におもしを置き、N2雰囲気中、400℃5min.で接続を行った。接続材料は、いずれもZn系層中にAl系相が多数浮遊状態で含有されており、Al系相の割合と接続材料の厚さが異なっている。ワイヤボンディング8を行った素子付基板を表1の仕様であるZn系合金とAl系合金からなる接続材料箔で支持部材2に接続し、接続部周辺を樹脂封止することにより、パワー半導体モジュールを作製した。 From the Zn-based layer and the Al-based gold phase shown in FIG. 13 on a 40 mm × 20 mm ceramic substrate 9 in which a Cu wiring is brazed on the upper surface of silicon nitride, a Cu plate is brazed on the lower surface, and Ni plating is applied to the Cu plate surface. A 10 mm x 10 mm semiconductor element 1 with Ti / Ni / Au metallization is laminated on it, and a weight is placed on the element, and the connection is made in an N 2 atmosphere at 400 ° C for 5 min. went. Each of the connection materials contains a large number of Al-based phases in a floating state in the Zn-based layer, and the proportion of the Al-based phase and the thickness of the connection material are different. The power semiconductor module is obtained by connecting the element-attached substrate on which wire bonding 8 has been performed to the support member 2 with a connection material foil made of a Zn-based alloy and an Al-based alloy as specified in Table 1, and sealing the periphery of the connection portion with resin. Was made.
 これらのパワー半導体モジュールについて、組立時の接続状況を調査し、250℃1000hの高温保持試験を実施後、-40℃⇔250℃の温度サイクル試験を実施し、それぞれの試験後に接続状況を調査した。組立時の接続状況については、未接続と組立時の部材のNiメタライズ食われを調査した。その結果、未接続が接続面積の20%未満であるときを○、20%以上のときを×、Niメタライズが残存するときを○、消失したときを×とした。実施例1-17について、これらを評価した結果、何れにおいても未接続面積が20%未満であり、図11のように、セラミックス基板9上のCu板104の上に形成されたNiメタライズ103が残存しており、その上にAl系相3のAlに由来するNi-Al系化合物102が生成していた。250℃1000hの高温保持試験については、部材のNiメタライズの残存状況および接続部の硬化について調査した。1000h後に部材のNiメタライズが残存し、接続が維持できていた場合を○、消失した場合を×、接続部の硬さが、接続直後から20%未満の硬化の場合を○、20%以上の場合を×とした。実施例1-17について評価した結果、何れの場合も250℃1000h後において、接続界面のNi-Al系化合物の成長は少なく、部材のNiメタライズは消失せずに残存していた。また、接続部についてもAl系合金相のある箇所では硬化が進んでいたが、全体的な接続部の硬化は接続後の20%未満であった。温度サイクル試験については、温度サイクル試験による素子割れの発生状況、素子接続部の接続維持面積を調査した。素子割れが発生しない場合を○、発生した場合を×、素子接続面積が初期の80%以上を維持した場合を○、80%未満となった場合を×とした。実施例1-17において何れにおいても、素子割れは発生せず、接続面積も初期の80%以上を維持することができた。また、接続部断面を観察した結果、素子両端部の接続部厚さの差が30μm未満であり、傾きを小さく制御できていることが確認できた。なお、上記では半導体素子の接続とセラミックス基板の接続を別プロセスで組立てる方法について述べたが、半導体素子1、接続材料、セラミックス基板9、接続材料、支持部材2を積層した後、一度のプロセスで接続し、そのワイヤボンディングを実施しても良い。 For these power semiconductor modules, we investigated the connection status during assembly, conducted a high temperature holding test at 250 ° C for 1000h, then conducted a temperature cycle test from -40 ° C to 250 ° C, and investigated the connection status after each test. . As for the connection status at the time of assembly, Ni metallized bite of unconnected and components at the time of assembly was investigated. As a result, the case where unconnected was less than 20% of the connection area was marked with ◯, the case where it was 20% or more was marked with X, the time when Ni metallization remained was marked with ◯, and the time when disappeared. As a result of evaluating these for Example 1-17, the unconnected area is less than 20% in any case, and the Ni metallized 103 formed on the Cu plate 104 on the ceramic substrate 9 is as shown in FIG. The Ni—Al-based compound 102 derived from Al in the Al-based phase 3 was formed thereon. In the high temperature holding test at 250 ° C. for 1000 hours, the remaining state of Ni metallization of the member and the hardening of the connection were investigated. The case where the Ni metallization of the member remained after 1000 hours and the connection could be maintained is ○, the case of disappearance is ×, the hardness of the connection part is less than 20% immediately after the connection, ○, 20% or more The case was marked with x. As a result of evaluating Example 1-17, in all cases, the growth of the Ni—Al-based compound at the connection interface was small after 250 ° C. for 1000 hours, and the Ni metallization of the member remained without disappearing. Further, although the connection portion was hardened at the place where the Al-based alloy phase was present, the overall hardening of the connection portion was less than 20% after the connection. As for the temperature cycle test, the occurrence of device cracking and the connection maintaining area of the device connection portion were investigated by the temperature cycle test. The case where element cracking did not occur was marked with ◯, the case where it cracked was marked with x, the case where the element connection area maintained 80% or more of the initial value was marked with ◯, and the case where it became less than 80%. In any of Examples 1-17, no element cracking occurred, and the connection area was maintained at 80% or more of the initial value. Further, as a result of observing the cross section of the connection part, it was confirmed that the difference in the connection part thickness at both ends of the element was less than 30 μm, and the inclination could be controlled small. In the above description, the method of assembling the connection of the semiconductor element and the connection of the ceramic substrate is described in a separate process. However, after the semiconductor element 1, the connection material, the ceramic substrate 9, the connection material, and the support member 2 are stacked, They may be connected and wire bonding may be performed.
(比較例1、2)
 上記の実施例1-17と同様のプロセスでパワー半導体モジュールの組立を実施した。接続材料は、接続前から固溶したZn-Al系合金であり、Al相は存在しない。また、同様に接続後の接続状態を調査した。その結果、表1のようにZn-4AlおよびZn-6Al何れの場合も接続部の80%以上が未接続となった。これは、接続前から接続材料の表面がZn-Al系合金となっていたため、Alが酸化してしまい、濡れ性が確保できなかったためと考えられる。接続ができなかったため、接続信頼性評価は実施できなかった。
(Comparative Examples 1 and 2)
The power semiconductor module was assembled in the same process as in Example 1-17 above. The connecting material is a Zn—Al based alloy that has been dissolved before connection, and there is no Al phase. Similarly, the connection state after connection was investigated. As a result, as shown in Table 1, in both cases of Zn-4Al and Zn-6Al, 80% or more of the connected portions were not connected. This is presumably because the surface of the connecting material was a Zn-Al alloy before connection, and Al was oxidized, so that wettability could not be ensured. Since connection was not possible, connection reliability evaluation could not be performed.
(比較例3)
 上記の実施例1-17と同様のプロセスでパワー半導体モジュールの組立を実施した。また、同様に接続後の接続状態を調査した。接続材料は、ほぼ純粋なZnのみとなっている。その結果、表1のように、純Znでは接続部の80%以上の面積で接続できたが、接続界面において、Znと部材間の反応が進み、Niメタライズが消失して、Znと下地部材(Cu板)が反応していた。これを250℃1000h高温保持した結果、更にZnと下地部材との反応が進んだことによって、接続部に反応による体積変化に伴う空隙が導入されたため、軽度の力で半導体素子が外れてしまった。そのため、温度サイクル試験は実施できなかった。
(Comparative Example 3)
The power semiconductor module was assembled in the same process as in Example 1-17 above. Similarly, the connection state after connection was investigated. The connection material is almost pure Zn only. As a result, as shown in Table 1, pure Zn was able to connect with an area of 80% or more of the connection part, but the reaction between Zn and the member progressed at the connection interface, Ni metallization disappeared, and Zn and the base member (Cu plate) was reacting. As a result of maintaining this at a high temperature of 250 ° C. for 1000 hours, the reaction between Zn and the base member further progressed, and voids due to the volume change due to the reaction were introduced into the connection part, so the semiconductor element was detached with a slight force. . Therefore, the temperature cycle test could not be performed.
(比較例4)
 上記の実施例1-17と同様のプロセスでパワー半導体モジュールの組立を実施した。また、同様に組立後の接続状態を調査した。その結果、表1のように、Pb-5Snでは接続部の80%以上の面積で接続でき、更に部材のNiメタライズも残存させることができた。そこで、250℃1000hの高温保持を実施したところ、図12のように、部材のNiメタライズ103が残存しているが、接続界面に形成されたNi-Sn化合物106が保持前に比べて厚く成長しており、Ni-Sn化合物とNiめっき界面に空隙107が生成していた。これについても比較例3と同様に、軽度の力で半導体素子が外れてしまったため、温度サイクル試験は実施できなかった。
(Comparative Example 4)
The power semiconductor module was assembled in the same process as in Example 1-17 above. Similarly, the connection state after assembly was investigated. As a result, as shown in Table 1, Pb-5Sn was able to be connected with an area of 80% or more of the connecting portion, and Ni metallization of the member could be left. Therefore, when high temperature holding at 250 ° C. for 1000 h was performed, the Ni metallized 103 of the member remained as shown in FIG. 12, but the Ni—Sn compound 106 formed at the connection interface grew thicker than before holding. As a result, voids 107 were generated at the Ni-Sn compound / Ni plating interface. Also in this case, as in Comparative Example 3, the semiconductor element was detached with a slight force, and therefore the temperature cycle test could not be performed.
(比較例5)
 上記の実施例1-17と同様のプロセスでパワー半導体モジュールの組立を実施した。また、同様に組立後の接続状態を調査した。Zn/Al/Zn積層型接続材料は、特許文献1で開示された接続材料である。その結果、表1のように、Zn/Al/Zn積層型接続材料では接続部の80%以上の面積で接続でき、更に部材のNiメタライズも残存させることができた。そこで、250℃1000hの高温保持試験を実施したところ、保持後も部材のNiメタライズが消失することなく維持され、比較例4のような空隙も発生しなかった。接続部の硬さについて評価した結果、図2のように、保持前の硬さに対して20%以上の硬化が生じた。これについて、-40℃⇔250℃の温度サイクル試験を500サイクル実施して断面観察を実施した結果、Si割れが発生していた。接続部材料内のクラック進展領域は接続面積の80%未満であったが、Si割れによって接続材料への熱衝撃が緩和した可能性があるためデータとして採用しなかった。
(Comparative Example 5)
The power semiconductor module was assembled in the same process as in Example 1-17 above. Similarly, the connection state after assembly was investigated. The Zn / Al / Zn multilayer connection material is a connection material disclosed in Patent Document 1. As a result, as shown in Table 1, the Zn / Al / Zn stacked connection material could be connected in an area of 80% or more of the connection portion, and Ni metallization of the member could be left. Therefore, when a high temperature holding test at 250 ° C. for 1000 h was carried out, the Ni metallization of the member was maintained without being lost even after holding, and no gap as in Comparative Example 4 was generated. As a result of evaluating the hardness of the connecting portion, as shown in FIG. 2, curing of 20% or more with respect to the hardness before holding occurred. About this, as a result of carrying out a temperature cycle test of -40 ° C. to 250 ° C. for 500 cycles and observing a cross section, Si cracking occurred. Although the crack growth area in the connection material was less than 80% of the connection area, it was not adopted as data because the thermal shock to the connection material may have been mitigated by the Si crack.
1 半導体素子、2 支持部材、3 Al系相、4 Zn-Al合金層、5 Zn系層、6 CuもしくはNiもしくはAg等、7 金属間化合物、8 Alワイヤ、9 セラミックス基板、100 ロール、101 膨れ、102 Ni-Al系化合物、103 Niめっき、104 部材(Cu)、105 Pb-5Sn、106 Ni-Sn化合物、107 空隙。 1 semiconductor element, 2 support member, 3 Al-based phase, 4 Zn-Al alloy layer, 5 Zn-based layer, 6 Cu or Ni or Ag, 7 intermetallic compound, 8 Al wire, 9 ceramic substrate, 100 roll, 101 Swelling, 102 Ni-Al compound, 103 Ni plating, 104 members (Cu), 105 Pb-5Sn, 106 Ni-Sn compound, 107 voids.

Claims (18)

  1.  第一の主面と、
     前記第一の主面の反対側の第二の主面とを備えた接続材料において、
     Zn系層と、
     Al系相とを備え、
     面方向のある領域では、前記第一の主面から前記第二の主面まで延在する前記Zn系層で形成されていることを特徴とする接続材料。
    The first main plane,
    In a connecting material comprising a second main surface opposite to the first main surface,
    A Zn-based layer;
    With Al phase,
    In a certain region in a plane direction, the connection material is formed of the Zn-based layer extending from the first main surface to the second main surface.
  2.  請求項1において、
     前記ある領域と異なる他の領域では、前記第一の主面及び前記第二の表面は前記Zn層で形成され、前記第一の主面と前記第二の主面との間に前記Al系相を有していることを特徴とする接続材料。
    In claim 1,
    In another region different from the certain region, the first main surface and the second surface are formed of the Zn layer, and the Al system is interposed between the first main surface and the second main surface. A connection material characterized by having a phase.
  3.  請求項1または請求項2において、
     浮島状の複数の前記Al系相を有していることを特徴とする接続材料。
    In claim 1 or claim 2,
    A connection material having a plurality of floating island-like Al phases.
  4.  請求項1乃至3のいずれかにおいて、
     Zn系層のAl含有率が0~0.01mass%で、250℃より高い固相線温度を有することを特徴とする接続材料。
    In any one of Claims 1 thru | or 3,
    A connection material characterized in that the Al content of the Zn-based layer is 0 to 0.01 mass% and has a solidus temperature higher than 250 ° C.
  5.  請求項1乃至4のいずれかにおいて、
     前記Al系相のAl含有率が99~100%であることを特徴とする接続材料。
    In any one of Claims 1 thru | or 4,
    A connection material, wherein the Al content of the Al phase is 99 to 100%.
  6.  請求項5において、
     前記Al系相の0.2%耐力が30N/mm2以下であることを特徴とする接続材料。
    In claim 5,
    A connection material, wherein the Al-based phase has a 0.2% proof stress of 30 N / mm 2 or less.
  7.  請求項1乃至6のいずれかにおいて、
     前記Al系相の平均径は、50μm以上であることを特徴とする接続材料。
    In any one of Claims 1 thru | or 6.
    The connection material according to claim 1, wherein an average diameter of the Al phase is 50 μm or more.
  8.  請求項1乃至7のいずれかにおいて、
     前記接続材料に対するAl系相の割合が6mass%より高く25mass%未満であることを特徴とする接続材料。
    In any one of Claims 1 thru | or 7,
    The connection material, wherein a ratio of the Al phase to the connection material is higher than 6 mass% and lower than 25 mass%.
  9.  請求項1乃至8のいずれかにおいて、
     前記Zn系層に覆われたAl系相の周囲80%以上がAl酸化物の膜を介さずに、前記Zn系層に接続していることを特徴とする接続材料。
    In any one of Claims 1 thru | or 8.
    A connection material, wherein 80% or more of the periphery of the Al phase covered by the Zn layer is connected to the Zn layer without an Al oxide film interposed therebetween.
  10.  第一のZn系層と第二のZn系層との間に複数のAl系相を挟んで圧延または加圧成形する工程を含み、
     前記工程では、前記第一のZn系層と第二のZn系層とが接続されることを特徴とする接続材料の製造方法。
    Including a step of rolling or pressure forming by sandwiching a plurality of Al-based phases between the first Zn-based layer and the second Zn-based layer,
    In the step, the first Zn-based layer and the second Zn-based layer are connected to each other.
  11.  請求項10において、
     前記圧延は、冷間圧延または熱間圧延であることを特徴とする接続材料の製造方法。
    In claim 10,
    The method for producing a connecting material, wherein the rolling is cold rolling or hot rolling.
  12.  請求項10または請求項11において、
     前記圧延の加工度が90%以上であることを特徴とする接続材料の製造方法。
    In claim 10 or claim 11,
    A method for producing a connection material, wherein the rolling degree of processing is 90% or more.
  13.  第一の部材と、
     第二の部材と、
     当該第一の部材と第二の部材とを接続する接続材料を備えた半導体装置であって、
     前記接続材料は、
     Zn-Al系合金層と、
     当該Zn-Al系合金層の内部に形成された複数のAl系相とを備え、
     前記Zn-Al系合金層が前記第一の部材と前記第二の部材とを接合していることを特徴とする半導体装置。
    A first member;
    A second member;
    A semiconductor device comprising a connection material for connecting the first member and the second member,
    The connecting material is
    Zn-Al alloy layer,
    A plurality of Al-based phases formed inside the Zn-Al-based alloy layer,
    The semiconductor device, wherein the Zn—Al-based alloy layer joins the first member and the second member.
  14.  請求項13において、
     前記第一の部材は、半導体素子であり、
     前記第二の部材は、基板、リードまたは電極のいずれかであることを特徴とする半導体装置。
    In claim 13,
    The first member is a semiconductor element;
    The semiconductor device, wherein the second member is any one of a substrate, a lead, and an electrode.
  15.  請求項13または請求項14において、
     前記接続材料の、前記第一または前記第二の部材との界面に、Alを主成分とする金属間化合物を備えることを特徴とする半導体装置。
    In claim 13 or claim 14,
    A semiconductor device comprising an intermetallic compound containing Al as a main component at an interface between the connection material and the first or second member.
  16.  第一の部材と、第二の部材との間に、請求項1乃至9のいずれかに記載の接続材料を設置する設置工程と、
     前記設置工程後に、前記第一及び第二の部材と前記接続材料とに加熱処理を行って接続する接続工程と、
     を含む半導体装置の製造方法。
    An installation step of installing the connection material according to any one of claims 1 to 9 between the first member and the second member;
    After the installation step, a connection step of connecting the first and second members and the connection material by performing a heat treatment;
    A method of manufacturing a semiconductor device including:
  17.  請求項16において、
     前記接続工程では、前記加熱処理により前記接続材料のZn系層が溶融しZn-Al系合金層となるとともに、前記Al系相の一部は前記加熱処理でも溶融せず固体の状態であることを特徴とする半導体装置の製造方法。
    In claim 16,
    In the connecting step, the Zn layer of the connecting material is melted by the heat treatment to become a Zn-Al alloy layer, and a part of the Al phase is not melted by the heat treatment and is in a solid state. A method of manufacturing a semiconductor device.
  18.  請求項16において、
     前記接続工程では、前記Al系相は全部溶融することを特徴とする半導体装置の製造方法。
    In claim 16,
    In the connecting step, the Al-based phase is entirely melted.
PCT/JP2011/003071 2010-06-16 2011-06-01 Connection material, semiconductor device, and method for manufacturing same WO2011158449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-136743 2010-06-16
JP2010136743A JP2012000629A (en) 2010-06-16 2010-06-16 Connection material, semiconductor device, and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2011158449A1 true WO2011158449A1 (en) 2011-12-22

Family

ID=45347865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003071 WO2011158449A1 (en) 2010-06-16 2011-06-01 Connection material, semiconductor device, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2012000629A (en)
WO (1) WO2011158449A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763192B2 (en) 2017-12-07 2020-09-01 Stmicroelectronics S.R.L. Method of manufacturing semiconductor devices and corresponding semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601275B2 (en) 2010-08-31 2014-10-08 日立金属株式会社 Bonding material, manufacturing method thereof, and manufacturing method of bonding structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850194A (en) * 1981-09-22 1983-03-24 Toshiba Corp Brazing filler metal for diffusion bonding and its manufacture
JPH03114691A (en) * 1989-09-28 1991-05-15 Showa Alum Corp Composite brazing filler metal
JPH06218580A (en) * 1993-01-27 1994-08-09 Tanaka Denshi Kogyo Kk Production of composite
JP2002307188A (en) * 2001-04-11 2002-10-22 Hitachi Ltd PRODUCT USING Zn-Al BASED SOLDER
JP2009285732A (en) * 2009-08-12 2009-12-10 Hitachi Ltd Bonding material, manufacturing method of bonding material and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850194A (en) * 1981-09-22 1983-03-24 Toshiba Corp Brazing filler metal for diffusion bonding and its manufacture
JPH03114691A (en) * 1989-09-28 1991-05-15 Showa Alum Corp Composite brazing filler metal
JPH06218580A (en) * 1993-01-27 1994-08-09 Tanaka Denshi Kogyo Kk Production of composite
JP2002307188A (en) * 2001-04-11 2002-10-22 Hitachi Ltd PRODUCT USING Zn-Al BASED SOLDER
JP2009285732A (en) * 2009-08-12 2009-12-10 Hitachi Ltd Bonding material, manufacturing method of bonding material and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763192B2 (en) 2017-12-07 2020-09-01 Stmicroelectronics S.R.L. Method of manufacturing semiconductor devices and corresponding semiconductor device

Also Published As

Publication number Publication date
JP2012000629A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP6111764B2 (en) Power module substrate manufacturing method
Mustain et al. Transient liquid phase die attach for high-temperature silicon carbide power devices
KR102130868B1 (en) Bonded body, substrate for power modules, and substrate with heat sink for power modules
TWI284375B (en) Semiconductor device and manufacturing method for semiconductor device
TWI623065B (en) Method of producing a jointed body and method of producing power module substrate
JP5523680B2 (en) Bonded body, semiconductor device, and manufacturing method of bonded body
WO2009148168A1 (en) Substrate for power module, power module, and method for producing substrate for power module
Suganuma et al. Ultra heat-shock resistant die attachment for silicon carbide with pure zinc
JP5725060B2 (en) Bonded body, power module substrate, and power module substrate with heat sink
US20070089811A1 (en) Semiconductor device and method for manufacturing thereof
US20110042815A1 (en) Semiconductor device and on-vehicle ac generator
TW200829361A (en) Connecting material, method for manufacturing connecting material, and semiconductor device
JP2009070863A (en) Semiconductor power module
KR20160047474A (en) Assembly and power-module substrate
WO2003046981A1 (en) Module structure and module comprising it
JP2014183118A (en) Method for manufacturing assembly and method for manufacturing substrate for power modules
JP2009147111A (en) Bonding material, method of manufacturing the same, and semiconductor apparatus
JP2017107925A (en) Thermoelectric conversion module and manufacturing method therefor
JP5050440B2 (en) Semiconductor device and manufacturing method thereof
JP2018170504A (en) Method for manufacturing heat sink-attached insulative circuit board
JP4104429B2 (en) Module structure and module using it
JP5828352B2 (en) Copper / ceramic bonding body and power module substrate
JP6819299B2 (en) Joined body, substrate for power module, manufacturing method of joined body and manufacturing method of substrate for power module
WO2011158449A1 (en) Connection material, semiconductor device, and method for manufacturing same
JP2005032834A (en) Joining method of semiconductor chip and substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795357

Country of ref document: EP

Kind code of ref document: A1