WO2011157494A1 - Poudre composite à base de dioxyde de zirconium et d'oxyde d'aluminium et son procédé de préparation - Google Patents

Poudre composite à base de dioxyde de zirconium et d'oxyde d'aluminium et son procédé de préparation Download PDF

Info

Publication number
WO2011157494A1
WO2011157494A1 PCT/EP2011/057673 EP2011057673W WO2011157494A1 WO 2011157494 A1 WO2011157494 A1 WO 2011157494A1 EP 2011057673 W EP2011057673 W EP 2011057673W WO 2011157494 A1 WO2011157494 A1 WO 2011157494A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
aluminum
dispersion
zirconium dioxide
composite powder
Prior art date
Application number
PCT/EP2011/057673
Other languages
German (de)
English (en)
Inventor
Monika Oswald
Corinna Kissner
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of WO2011157494A1 publication Critical patent/WO2011157494A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size

Definitions

  • the invention relates to a method for producing a zirconia-alumina composite powder and the zirconia-alumina composite powder itself obtainable by means of this method.
  • a further subject matter relates to the use of the zirconia-alumina composite powder.
  • Ceramic materials based on mixtures of zirconia and alumina are referred to as "zirconia toughened alumina” (ZTA) and “alumina toughened zirconia” (ATZ), respectively, depending on whether alumina is dispersed in zirconia or vice versa.
  • ZTA zirconia toughened alumina
  • ATZ alumina toughened zirconia
  • these can be obtained by mechanical mixing, such as by means of a ball mill, or by co-precipitation of zirconium and aluminum salt solutions. In both cases, it is difficult to obtain reproducible results, since the mixture is often not finely divided and has inhomogeneities, so that no usable ceramics result.
  • DE-A-371491 1 discloses a hydrothermal process in which a common aqueous solution of zirconium and aluminum salts reacts at high pressures and temperatures in an autoclave. Such a method is not economical to carry out.
  • the description relates to the preparation of a composite from a zirconium dioxide stabilized with 3 mol% yttrium and aluminum oxide with a particle size of about 10 nm.
  • a disadvantage of the processes mentioned in the prior art is that they either are not economical to carry out and / or the resulting process products are not finely divided enough, have inhomogeneities and the sintered products have insufficient strength. Therefore, the technical object of the present application was to provide a method for producing a zirconia-alumina composite powder, which reduces or eliminates the disadvantages of the methods mentioned in the prior art.
  • the zirconia-alumina composite powder itself is said to be at high temperatures
  • the technical problem is solved by a method for producing a zirconia-alumina composite powder, which
  • aprotic-polar solvent which is the same as or different from that of the dispersion, or
  • each comprises one or more aluminum salts in an aqueous solvent
  • a powder is referred to in the
  • Zirconium dioxide and alumina form a solid compound. It is assumed that a shell of alumina to zirconia particles, whether isolated or aggregated, forms and so prevents the growth of zirconia particles.
  • Zirkondioxidpumble are individual, mutually isolated particles, aggregates and / or agglomerates. The particles may preferably be present in the form of aggregated primary particles.
  • the d 50 value is the median value of the volume-weighted particle size distribution. The median value of the particle size distribution may be based on a tri-, bi- or monomodal distribution of the particles, wherein a monomodal distribution of the zirconia particles is preferred.
  • the zirconia particles carry hydroxyl groups on their surface.
  • the zirconia particles of the dispersion are aggregated pyrogenic zirconia particles having a BET surface area of 20 to 100 m 2 / g, more preferably 30 to 50 m 2 / g.
  • pyrogen is to be understood that the particles were obtained by means of a flame hydrolysis or flame oxidation.
  • flame hydrolysis is meant, for example, the formation of zirconium dioxide by combustion of zirconium tetrachloride in a hydrogen / oxygen flame.
  • Flame oxidation is, for example, the formation of zirconia by the combustion of an organic zirconia precursor in a hydrogen / oxygen flame.
  • the zirconia particles may also be stabilized zirconia particles.
  • Yttrium, cerium, calcium, magnesium or titanium are suitable as stabilizing elements, for example.
  • Yttrium is the most frequently used stabilizing component, with a proportion of 1 to 8 mol%, calculated as yttrium oxide.
  • the stabilizing elements mentioned are not present or are present only in such small amounts that they do not have a stabilizing effect.
  • the powder has a zirconia content of at least 97% by weight, usually at least 99% by weight. In addition, it can be up to 2.5 wt .-%
  • Hafniumdioxid as a companion whose content should be included in the proportion of zirconium dioxide.
  • the content of zirconium dioxide in the dispersion is preferably 5 to 50 wt .-%, particularly preferably 10 to 40 wt .-% and most preferably 20 to 30 wt .-%.
  • the proportion of water in the dispersion is preferably 10 to 50 wt .-% and particularly preferably 20 to 40 wt .-%.
  • the proportion of aprotic-polar solvent is preferably 20 to 60 wt .-% and particularly preferably 30 to 50 wt .-%.
  • the sum of the constituents zirconium dioxide, water and aprotic-polar solvent is preferably 90% by weight. or more, more preferably 95% by weight or more and most preferably 98% by weight or more, each based on the dispersion.
  • An aprotic-polar solvent in the context of the invention means a solvent whose structural formula does not contain a functional group from which
  • Hydrogen atoms can be split off as protons, but strongly polar
  • the aprotic-polar solvent is preferably selected from the group consisting of acetone, diethyl ether, dimethylformamide, dioxane, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone,
  • the dispersion may further contain one or more surface-modifying additives. These additives may be present in a proportion of 0.1 to 10 wt .-%, preferably 0.5 to 5 wt .-%, each based on the dispersion.
  • surface-modified means that at least part of the hydroxyl groups present on the surface of the zirconium dioxide particles have reacted with a means for modifying the surfaces to form a chemical bond.
  • the chemical bond can be a covalent, ionic or coordinate bond between the surface modifier and the particle.
  • Preference is given to using ammonium polyacrylates, polymethacrylates and polyethyleneimines.
  • Particular preference may be given to using an ethanolamine salt of citric acid, for example Dolapix CE 64.
  • the dispersion according to the invention comprises a liquid phase containing water and an aprotic-polar solvent. It is made by taking one of
  • Predispersion starts, which contains no aprotic polar solvent.
  • This predispersion may contain pH-regulating compounds, preferably basic-reacting compounds such as NaOH, KOH, NH 3 or ammonium hydroxides.
  • the predispersion has a pH of preferably 7.5 to 12 and more preferably 8 to 1 1.
  • the dispersion is reacted with a solution comprising a) one or more aluminum alkoxides and complexing agents in an aprotic polar
  • Solvent or b) each comprises one or more aluminum salts in an aqueous solvent, reacted.
  • Examples are aluminum ethoxide, aluminum i-propoxide, aluminum n-butoxide,
  • the complexing agent mentioned under a) is preferably a chelating agent.
  • Chelating agents are to be understood as meaning compounds with multidentate ligands which are linked by coordinative bonds to a zirconium atom. Examples are 1,3-diketones, beta-ketoesters, glycol ethers, diols, aminoalcohols, glycerol, aminothiols, dithiols, diamines, or mixtures thereof. Acetylacetone may preferably be used.
  • the complexing agents are usually used in an amount of 0.5 to 20 mol, preferably 0.5 to 3 mol / mol of aluminum alkoxide. It is also possible precomplexed
  • Aluminum alkoxides selected from the group consisting of aluminum s-butoxide-bis (ethylacetoacetate), aluminum di-s-butoxide-ethylacetoacetate, aluminum diisopropoxide-ethylacetoacetate, di-s-butoxyaluminoxytriethoxysilane, aluminum 9-octadecenyl-acetoacetate diisopropoxide, aluminum 2,4-bis pentanedione aluminum acetylacetonate, aluminum 2,2,6,6-tetramethyl-3,5-heptanedionate, aluminum hexafluoropentanedionate and mixtures thereof.
  • the aluminum salts mentioned under b) are preferably selected from the group consisting of aluminum acrylate, aluminum chloride, aluminum methacrylate, aluminum nitrate,
  • Aluminum stearate and mixtures thereof are provided.
  • the method is carried out so that it is in the
  • the method is carried out so that it is in the
  • the ratio of zirconia / aluminum nitrate, calculated as Zr0 2 / Al 2 0 3 , is 70:30 to 80:20.
  • a further step follows, in which the solid reaction product is separated from the liquid phase of the reaction mixture. This can be achieved, for example, by evaporation, filtration, spray-drying,
  • the removal of the liquid phase may also be part of an optional tempering step, which is usually carried out in a temperature range of 400 to 1000 ° C.
  • an optional tempering step which is usually carried out in a temperature range of 400 to 1000 ° C.
  • By-products can also be part of a sintering step, in which the
  • a further subject of the invention is a zirconia-alumina composite powder obtainable by the process according to the invention,
  • the alumina content of the zirconia-alumina composite powder usually contains or consists of alpha alumina.
  • Preferred is zirconia-alumina composite powder in which the zirconia is in unstabilized form.
  • Suitable binders may include polysaccharides, methylcellulose, polyvinyl alcohol, polyacrylic acid, polethylenic acid and / or waxes.
  • Suitable dispersants may be polymers and copolymers of methacrylic and acrylic acids having low to medium molecular weights and their salts.
  • Further dispersants may be citric and phosphonobutane tricarboxylic acid and salts thereof or salts of polybasic acids, in particular hydroxy acids, with polyvalent cations which optionally contain intact acid groups.
  • Suitable lubricants are paraffin wax, polyethylene glycols (PEG), butyl stearate,
  • Stearic acid and stearates of ammonium, aluminum, lithium, magnesium, sodium and zinc, oleic acid, graphite and / or boron nitride can be used with particular preference.
  • these granules are subjected to an annealing step at 400 to 1000 ° C.
  • a zirconia-alumina composite powder is understood to mean a powder which may optionally be a thermal one
  • the sintered zirconia-alumina composite powder is a further object of the invention. It is obtainable by thermal treatment of the zirconia-alumina composite powder at 1500 ° C and
  • a) contains 60 to 95 wt .-%, preferably 65 to 85 wt .-%, particularly preferably 70 to 80 wt .-%, zirconium dioxide and 5 to 40 wt .-%, preferably 15 to 35 wt .-%, especially preferably 20 to 30 wt .-% alumina and
  • the crystallite size, determined by X-ray structure analysis, is 50 to ⁇ 100 nm.
  • Another object of the invention is the use of the zirconia-alumina composite powder or the sintered zirconia-alumina composite powder as a component of ceramic components and ceramic coatings, for example, for composites and turbines.
  • the present invention provides a process for producing a zirconia-alumina composite powder and the powder itself.
  • the structure of the powder does not significantly coarsen at high temperatures due to grain growth. It is therefore possible to produce components made therefrom or coated therewith under extreme conditions
  • the total amount of the composite powder produced in the examples is heated in an open Al 2 O 3 crucible (AlSint) at a heating rate of 5 K / min to 1000 ° C., 1200 ° C. or 1500 ° C. and over a period of 1 Held at this temperature for an hour and then allowed to cool to room temperature unregulated.
  • AlSint Al 2 O 3 crucible
  • the integral width of the reflex is determined by a single-line Fourier analysis method using the "Line Profile" ® program from Philips, to calculate the integral width of the (1 1 1) reflection due to the influence of crystallite size device-related broadening of the reflection and the influence of the lattice distortion, determined by the Cauchy-part of the reflex, subtracted, using NBS silicon as reference.
  • Dispersion D1 42.14 kg demineralized water and 1.75 kg
  • Dolapix CE64 (from Zschimmer and Schwartz) are placed in a mixing tank and then, using the suction pipe of the Ystral Conti-TDS 3 (stator slots 4 mm wreath and 1 mm wreath, rotor / stator distance about 1 mm) under shear conditions, the 43.9 kg of zirconia powder prepared according to EP-A-1 142830, Example 1 was added. After completion of the retraction of the intake manifold is closed and still sheared at 3000 U / min for 10 min.
  • the predispersion thus obtained is passed in five passes through a high-energy mill Sugino Ultimaizer HJP-25050 at a pressure of 2500 bar and diamond nozzles of 0.3 mm diameter.
  • the resulting dispersion has an average particle size d 50 of 80 nm and a zirconium dioxide content of 50% by weight.
  • Example 1 50 g of aluminum sec-butoxide (ASB) are added rapidly with stirring to 90 g of acetone and 40.6 g of acetylacetone and then stirred for 5 minutes.
  • a dispersion D2 consisting of 85 g of dispersion D1 and 85 g of acetone is added rapidly and then stirred for 5 minutes.
  • the batch is dried at room temperature.
  • the resulting solid has an 80:20 ratio of ZrO 2 / Al 2 O 3 .
  • the crystallite size determined as described above is 37 nm for the sample treated at 1200 ° C. and 80 nm for the sample treated at 1500 ° C.
  • Example 2 72.5 g of aluminum sec-butoxide (ASB) are added rapidly with stirring to 130.5 g of acetone and 58.9 g of acetylacetone and then stirred for 5 minutes. To this mixture is rapidly a dispersion D2 consisting of 70 g of dispersion D1 and 70 g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

L'invention concerne un procédé de préparation d'une poudre composite à base de dioxyde de zirconium et d'oxyde d'aluminium qui contient a) de 60 à 95 % en poids de dioxyde de zirconium et de 5 à 40 % en poids d'oxyde d'aluminium ; et b) dont la taille des cristallites, déterminée par analyse de structure aux rayons X, est comprise entre 50 et <100 nm après un traitement thermique à 1500 °C. Au cours de ce procédé, on fait réagir c) une dispersion contenant c1) des particules de dioxyde de zirconium dont le diamètre de particules moyen d50 est compris entre 50 et <100 nm sous forme de phase solide ; et c2) une solution constituée d'eau et d'un ou de plusieurs solvants polaires aprotiques sous forme de phase liquide ; d) avec une solution pouvant être mélangée avec la phase liquide de la dispersion ; et d1) comprenant respectivement un ou plusieurs alcoxydes d'aluminium et agents complexants dans un solvant polaire aprotique qui est identique ou différent de celui de la dispersion, ou d2) respectivement un ou plusieurs sels d'aluminium dans un solvant aqueux. Il est possible d'obtenir une poudre composite à base de dioxyde de zirconium et d'oxyde d'aluminium à l'aide de ce procédé.
PCT/EP2011/057673 2010-06-17 2011-05-12 Poudre composite à base de dioxyde de zirconium et d'oxyde d'aluminium et son procédé de préparation WO2011157494A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010030216.3 2010-06-17
DE201010030216 DE102010030216A1 (de) 2010-06-17 2010-06-17 Zirkondioxid-Aluminiumoxid-Kompositpulver und Verfahren zu dessen Herstellung

Publications (1)

Publication Number Publication Date
WO2011157494A1 true WO2011157494A1 (fr) 2011-12-22

Family

ID=44227553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/057673 WO2011157494A1 (fr) 2010-06-17 2011-05-12 Poudre composite à base de dioxyde de zirconium et d'oxyde d'aluminium et son procédé de préparation

Country Status (3)

Country Link
DE (1) DE102010030216A1 (fr)
TW (1) TW201217302A (fr)
WO (1) WO2011157494A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3714911A1 (de) 1986-05-06 1987-11-19 Soumiya Shigeyuki Verfahren zum herstellen einer aufschlaemmung eines ultrafeinen pulvers auf zirkoniumoxid-aluminiumoxid-basis
EP0401999A2 (fr) * 1989-06-03 1990-12-12 Tioxide Group Limited Compositions stabilisées de poudres d'oxydes de métaux
EP0435677A2 (fr) 1989-12-28 1991-07-03 Tosoh Corporation Produit fritté composité à base d'alumine-zircone et procédé pour la production de celui-ci
EP0548948A1 (fr) * 1991-12-25 1993-06-30 Sumitomo Chemical Company, Limited Méthode pour la production d'un corps fritté à base d'oxyde de zirconium
US6007926A (en) * 1997-01-30 1999-12-28 The United States Of America As Represented By The Secretary Of The Navy Phase stablization of zirconia
EP1142830A1 (fr) 2000-04-03 2001-10-10 Degussa AG Oxides pyrogeniques de l'ordre du nanometre, procédé de leur preparation et leur utilisation
EP1382586A2 (fr) * 2002-07-19 2004-01-21 Matsushita Electric Works, Ltd. Matériau céramique composite de ZrO2-Al2O3 et procédé de sa fabrication
WO2006080730A1 (fr) * 2004-10-08 2006-08-03 Lg Chem, Ltd. Poudre nanocomposite a base de zircone/alumine et son procede de preparation
EP2168936A1 (fr) * 2008-08-29 2010-03-31 IBU-tec advanced materials AG Procédé de fabrication d'une matière active en poudre à fines particules et une telle matière active en poudre

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3714911A1 (de) 1986-05-06 1987-11-19 Soumiya Shigeyuki Verfahren zum herstellen einer aufschlaemmung eines ultrafeinen pulvers auf zirkoniumoxid-aluminiumoxid-basis
EP0401999A2 (fr) * 1989-06-03 1990-12-12 Tioxide Group Limited Compositions stabilisées de poudres d'oxydes de métaux
EP0435677A2 (fr) 1989-12-28 1991-07-03 Tosoh Corporation Produit fritté composité à base d'alumine-zircone et procédé pour la production de celui-ci
EP0548948A1 (fr) * 1991-12-25 1993-06-30 Sumitomo Chemical Company, Limited Méthode pour la production d'un corps fritté à base d'oxyde de zirconium
US6007926A (en) * 1997-01-30 1999-12-28 The United States Of America As Represented By The Secretary Of The Navy Phase stablization of zirconia
EP1142830A1 (fr) 2000-04-03 2001-10-10 Degussa AG Oxides pyrogeniques de l'ordre du nanometre, procédé de leur preparation et leur utilisation
EP1382586A2 (fr) * 2002-07-19 2004-01-21 Matsushita Electric Works, Ltd. Matériau céramique composite de ZrO2-Al2O3 et procédé de sa fabrication
WO2006080730A1 (fr) * 2004-10-08 2006-08-03 Lg Chem, Ltd. Poudre nanocomposite a base de zircone/alumine et son procede de preparation
EP2168936A1 (fr) * 2008-08-29 2010-03-31 IBU-tec advanced materials AG Procédé de fabrication d'une matière active en poudre à fines particules et une telle matière active en poudre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILLI PABST ET AL: "X-Ray Studies of ATZ Nanocomposites", CHEM. LISTY 94, 2000, 1 January 2000 (2000-01-01), pages 953 - 954, XP009150184 *

Also Published As

Publication number Publication date
TW201217302A (en) 2012-05-01
DE102010030216A1 (de) 2011-12-22

Similar Documents

Publication Publication Date Title
DE102005033393B4 (de) Verfahren zur Herstellung von nanokristallinem α-Al2O3
EP1840085B1 (fr) Procédé de préparation d&#39;un boehmite à cristaux fins
EP1907323B1 (fr) Procédé de fabrication de nanoparticules composees d&#39;oxyde d&#39;aluminium et d&#39;oxydes d&#39;elements du premier et du deuxieme groupe principal du tableau periodique
WO2000050503A1 (fr) Gels redispersibles a base de nanoparticules d&#39;oxyde de zinc redispersibles
DE102005046263A1 (de) Verfahren zur Herstellung oberflächenmodifizierter nanopartikulärer Metalloxide, Metallhydroxide, und/oder Metalloxidhydroxide
EP2202205A1 (fr) Particules nanométriques d&#39;oxide de titanium comportant un noyau cristallin, une couche d&#39;un oxyde metallique et une couche d&#39;enrobage comprenant des groupes organiques et methode de préparation associée
WO2000069790A2 (fr) Procede de production d&#39;oxydes d&#39;aluminium et produits obtenus a partir de ces derniers
EP0314166A1 (fr) Procédé de préparation de poudres céramiques monodispensées
WO2008006566A2 (fr) Suspensions stables de particules de tio2 cristallines obtenues à partir de progéniteurs pulvérulents sol-gel traités par hydrothermie
EP0427938A1 (fr) Procédé de préparation de poudre de dioxyde de zirconium
DE102004029303B4 (de) Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
WO2011157494A1 (fr) Poudre composite à base de dioxyde de zirconium et d&#39;oxyde d&#39;aluminium et son procédé de préparation
DE4116523A1 (de) Verfahren zur herstellung von (alpha)-al(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts)
DE102006032759B4 (de) Stabile Suspensionen von kristallinen ZrO2-Partikeln aus hydrothermal behandelten Sol-Gel-Vorstufenpulvern
DE112014003886T5 (de) Verfahren zur Herstellung von Bariumtitanatpulver
EP2709751A1 (fr) Dispersion d&#39;oxyde métallique à base d&#39;un solvant organique
EP0454138A2 (fr) Poudre composite et procédé pour le revêtement de poudres céramiques
DE102005025720A1 (de) Nanopartikelhaltige makrocyclische Oligoester
DE102007036998A1 (de) Verfahren zur Herstellung von amorphen metallorganischen Makromolekülen, mit diesem Verfahren erhaltenes Material und seine Verwendung
WO2009013187A1 (fr) Procédé de production d&#39;oxydes métalliques nanoparticulaires induit par micro-ondes
WO2005021426A1 (fr) Production de particules de perovskite
DE112020007825T5 (de) Nioboxid-partikel und verfahren zum herstellen von nioboxid-partikeln
DE102006020515B4 (de) Nanopartikel aus Aluminiumoxid und Oxiden von Elementen der I. und II. Hauptgruppe des Periodensystems sowie deren Herstellung
DE3706172C1 (en) Process for preparing a stabilised zirconium oxide powder suitable for plasma-spraying, and use thereof
DD297627A5 (de) Zirkondioxidpulver, verfahren zu seiner herstellung, seine verwendung und aus ihm hergestellte sinterkoerper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11723341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11723341

Country of ref document: EP

Kind code of ref document: A1