WO2011157406A1 - Traitement de depollution d'une eau contaminee par des micro-polluants et/ou des polluants emergents, notamment par des composes organochlores - Google Patents

Traitement de depollution d'une eau contaminee par des micro-polluants et/ou des polluants emergents, notamment par des composes organochlores Download PDF

Info

Publication number
WO2011157406A1
WO2011157406A1 PCT/EP2011/002932 EP2011002932W WO2011157406A1 WO 2011157406 A1 WO2011157406 A1 WO 2011157406A1 EP 2011002932 W EP2011002932 W EP 2011002932W WO 2011157406 A1 WO2011157406 A1 WO 2011157406A1
Authority
WO
WIPO (PCT)
Prior art keywords
planted
contaminated
water
tetrachlorobenzene
trichlorobenzene
Prior art date
Application number
PCT/EP2011/002932
Other languages
English (en)
Inventor
Yves Antoinette
Agnes Pilas-Begue
Frederik Baudrier
Alexandra Fresneau
Thierry Jacquet
Original Assignee
Phytorestore
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phytorestore, Rhodia Operations filed Critical Phytorestore
Priority to CN2011800299268A priority Critical patent/CN102947230A/zh
Priority to US13/703,752 priority patent/US20130105387A1/en
Priority to EP11731253.8A priority patent/EP2582634A1/fr
Priority to BR112012032274A priority patent/BR112012032274A2/pt
Publication of WO2011157406A1 publication Critical patent/WO2011157406A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for treating water contaminated with micro-pollutants or emerging pollutants, preferably of the organochlorine type, with a solution of planted organic filters.
  • micro-pollutants The treatment of pollutants called micro-pollutants or emerging is a recent concern, less than ten years, if only because the techniques of analysis and measurement of this type of pollution are still under development while the identification of the 200 substances at risk and their effects are just beginning to be known for human health.
  • activated carbon is used in granular form in a gravity bed or under pressure with a minimum contact time of 5 to 60 minutes. This results in the use of large volumes of activated carbon to treat several hundred m 3 per day.
  • the adsorption capacity of the filter is limited to 20% or even 30% compared to the mass of coal.
  • the materials of these filters must be completely renewed at a frequency to be determined (several weeks to several months) according to volumes and concentrations treated; used media must be processed. It is therefore an industrially acceptable solution preferentially for small flows.
  • a second solution in full development is based on in situ biodegradation techniques (bioremediation).
  • bioremediation uses the natural ability of the endogenous microflora to degrade toxic substances.
  • biodegradation potential is not sufficient and when the conditions of the endogenous biodegradation are not met, stimulation of this activity is performed by bio-increase.
  • a supply of nutrients increasing the development of aerobic bacteria and / or introduction of adapted bacterial strains is implemented.
  • soybean oil, ethanol, methanol, cellulose or glucose it is possible to mention soybean oil, ethanol, methanol, cellulose or glucose.
  • organochlorine compounds tetrachlorethylene, trichlorethylene, trichloroethane and carbon tetrachloride
  • concentration of organochlorine compounds could be reduced from 190 to 88 mg / l for a polluted layer after 5 years of treatment, ie a reduction of around 50%.
  • organochlorine compounds it is possible to cite the following bacterial species: Hydrogenophaga flava, Clostridiu bifermantans, Cehalospirillum mutivorans, Oesulfomonile tiedjei, and Lesulfito bacterium.
  • the bacteria of the genus Rhodococcus or the species Nitrosomonas europaea and Pseudomonas putida are most often used.
  • the third family of solutions is traditional phytoremediation through the use of higher plants of poplar and eucalyptus type. Generally, these plants are used either as hydraulic barriers around contaminated sites to block the diffusion of pollutants, or as an area for spreading water to be cleaned on site.
  • the sizing of these phytoremediation solutions is based on the evapotranspiration capacities of these plants of about 4 to 6 liters per m 2 per day during a period of full plant growth (between 5 and 15 years after planting).
  • the most used plants because of their natural resistance to the toxicity of different salt forms are the white poplar (P pu / us alba), the Eucalyptus (Eucalyptus camaldulensii) and the Tamarisk (Tamarix parviflovà).
  • Another treatment solution is the creation of artificial "subflow" type wetlands using traditional aquatic plants: reeds ⁇ Phragmites austral / s, Typha latifolià and Rushes (especially of the genus Scirpus).
  • the Applicant has highlighted a new solution by organic planted filter whose efficiency exceeds that of the three families of traditional treatment solutions.
  • the permanent planting support present does not saturate with respect to the carbon filter, has a rhizosphere with naturally multiple bacterial strains unlike the targeted solutions of bioremediation, and does not present the limits.
  • the method according to the invention thus makes it possible to provide a much more efficient solution in terms of volumes processed per hour and in terms of the durability of the structure used.
  • the process according to the invention thus makes it possible to treat from 50 to 100 liters per m 2 / h, or even more, with a very high pollutant abatement rate (greater than 80% for all the compounds tested) and to have available an installation that does not require a substrate change for several years.
  • the treatment principle is based on at least one planted filter comprising various support materials comprising all or part of organic material.
  • the planted organic substrate is composed of non-soluble compost and aggregates, which compost can be made to measure.
  • the method according to the invention comprises the use of the combination of several planted filters.
  • the present invention thus relates to a method for the depollution of water contaminated with micropollutants or emerging pollutants characterized in that it comprises a step of introducing said contaminated water into a device comprising a planted organic filter.
  • vertical filtration which planted organic filter comprises: - an inlet for the contaminated water to be treated,
  • said means Filtration filtration e ⁇ take the form of a planted organic substrate composed of compost and insoluble aggregates to maintain a permeability of said organic substrate of at least 40 liters per hour and per m 2 , preferably from minus 70 liters per hour and m 2 , and particularly preferably at least 100 liters per hour and per m 2 or more.
  • the process according to the invention which is both simple and economical, is based on a plant-grown organic filter and may furthermore exhibit the characteristics of the depollution process as described in PCT International Application WO 2006/030164.
  • organic filter planted vertical filtration means an organic filter for the depollution of contaminated water that runs vertically.
  • Micropollutants or emerging pollutants are preferably the pollutants described in Directive 2008/105 / EC of the European Parliament and of the Council of 16 December 2008 establishing environmental quality standards in the field of water, namely Alachlor. , anthracene, atrazine, benzene, brominated diphenyl ethers, cadmium and its compounds (depending on the hardness classes of water), carbon tetrachloride, C10-13 chloroalkanes, chlorfenvinphos, chlorpyrifos ( ethylchlorpyrifos), cyclodiene pesticides, aldrin, dieidrin, endrin, isodrine, total ùT, para-para-DDT, 1,2-dichloroethane, dichloromethane, di (2-ethylhexyl) phthalate (DEHP), diuron, lendosulfan, fluoranthene, hexachlorobenzene, hexachlorobutadiene, he
  • micropollutants or emerging pollutants means a compound selected from the group comprising the dichloromethane, chlorobenzene, 1,2 dichlorobenzene (1,2 bCB), 1,3 dichlorobenzene (1,3 bCB), 1,4 dichlorobenzene (1,4 DCB), 1,2 dichloroethane (1,2 DCE), 1,2 cis dichloroethylene (1,2 cis DCE), 1,2 trans dichloroethylene (1,2 ⁇ rans bCE), alpha hexachlorohexane (HCH Alpha), beta hexachlorohexane (HCH Beta), delta hexachlorohexane (HCH Delta), hexachlorohexane gamma or lindane (HCH Gamma), hexachlorobenzene, hexachlorobutadiene, hexachloroethane, mono chlorobenzene, pentachlorobenzene,
  • said micropollutants or emerging pollutants are organochlorine compounds.
  • organochlorine compounds an organic synthetic compound comprising at least one chlorine atom and optionally used as a solvent, pesticide, insecticide, fungicide, refrigerant or as an intermediate synthesis molecule in chemistry and pharmacy.
  • organochlorine compounds By way of particularly preferred example of such organochlorine compounds, mention may be made of 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,3 trichlorobenzene, 1,2,3,5 tetrachlorobenzene, 1,2,4,5 tetrachlorobenzene, 1,2,3,4 tetrachlorobenzene, hexachlorocyclohexane alpha, hexachlorocyclohexane gamma, hexachlorocyclohexane beta and hexachlorocyclohexane delta.
  • the process according to the invention makes it possible to eliminate more than 85% of the organochlorine compounds described above, and even more than 95% for the majority of them.
  • said insoluble aggregates mentioned above are chosen from pozzolan, flint and siliceous sands.
  • said insoluble aggregates correspond to pozzolan.
  • compost is meant preferably a compost as defined by the NF U44-051 standard.
  • the characteristics defined by this standard can be obtained simply with a minimum composting time of 3 years of plant debris or with brown peat.
  • said planted organic filter is an organic filter planted with bank plants selected from the group comprising Phrag ites australis, Typha angustifolia, Typha latifolia and Iris pseudacorus.
  • said bank plant is a common reed or Phragmites australis.
  • the density of bank plants is between 5 and 15 plants / m 2 , preferably this density is 10 plants / m 2 on average.
  • the thickness of the organic substrate is between 300 and 1500 mm depending on the pollution to be performed, preferably between 300 and 700mm.
  • said device further comprises at least one organic filter, whether or not planted, which organic filter is vertical or horizontal, and is arranged upstream of the vertical-filtering organic filter described above.
  • the device may comprise a combination of the type: a non-planted organic filter with vertical filtration and then a vertical filter planted vertical filtration; an organic filter planted with horizontal filtration followed by a plant-grown filter with vertical filtration; or an organic filter planted vertically followed by an organic filter planted vertical filtration.
  • the device will comprise a vertical filter planted vertically followed by a vertical filter planted vertically.
  • the device comprises several filter stages in parallel to organize rest periods and feeding times, in particular in order to have a thorough biodegradation of all the organochlorine compounds treated.
  • the alternation of aerobic and anaerobic periods not only promotes the biodegradation of pollutants but also reduces stress for plants and also promotes their development.
  • the device may therefore comprise, in particular upstream, two unplanted organic filters and then a stage of two organic filters planted with vertical filtration.
  • the combination of the planted organic substrate and the rhizosphere allows a particularly important development of many colonies of all very active bacteria, in particular in the degradation of organochlorine compounds, which combination can make it possible to explain the particularly high performance of the device.
  • this combination allows the establishment of stationary factors very stable over time including pH and redox potential.
  • the microorganisms are stimulated in an anaerobic environment at the origin of the formation of an acid medium, hence the interest of starting the treatment queue with a horizontal filter.
  • the combination of a horizontal filtration organic filter and a vertical filtration organic filter makes sense.
  • the outlet for treated contaminated water advantageously takes the form of one or more recovery drains, which are well known to those skilled in the art.
  • the outlet is positioned in a draining layer consisting of pebbles, gravel or other equivalent draining material.
  • its thickness is chosen between 100 and 1500 mm, preferably between 150 and 1000 mm and, particularly preferably, between 200 and 500 mm.
  • the planted organic filter is advantageously isolated from the soil by means of sealing means, which prevent the infiltration of pollutants into the natural environment and are well known to those skilled in the art.
  • sealing means may in particular take the form of a geomembrane.
  • the planted organic filter further advantageously comprises an aeration system, which preferably connects the draining layer to the surface.
  • This aeration system makes it possible to improve the efficiency of the periods of dewatering in the framework of the organization of the successions of irrigation / drying cycles described in PCT international application WO 2006/030164.
  • This aeration system can take the form of vents connected to the base of the organic filter planted by means of ducts or ducts. Said aeration system may in particular be connected to the recovery drains arranged in the draining layer.
  • this aeration system takes the form of vents connected on the one hand to the organic substrate and, on the other hand, to the recovery drains arranged in the draining layer at the base of the planted organic filter and this by means of ducts. or pipes.
  • the planted organic filter may comprise one or more wa es associated with the outlet and / or the inlet for the water contaminated to clean up. These different valves improve the supply and drainage of the planted organic filter.
  • these different valves make it possible to organize the succession of irrigation / drying cycles (anaerobic / aerobic period) of the process as described in PCT International Application WO 2006/030164 in order to optimize the degradation of pollutants. by the microorganisms of the rhizosphere.
  • these valves make it possible to organize a distribution of the irrigation / drying periods corresponding to a ratio of 2/1 to 1/50, preferably of 1/1 to 1/20, for example of 1/2 to 1/20, and particularly preferably from 1/3 to 1/20.
  • these different valves can modulate the flow so as to organize the continuous supply of the device according to the invention.
  • a second object of the invention is the use of a device as described above for the depollution of water contaminated with micropollutants or emerging pollutants as defined above.
  • the present invention aims at the use of such a device for the depollution of water contaminated with micropollutants or with emerging pollutants, preferably water contaminated with organochlorine compounds as described above.
  • Figure 1 illustrates the structure of the three types of devices tested for the treatment of water contaminated by micropollutants or emerging pollutants.
  • the devices with a first vertical organic filter incorporate a polluted water inlet (1) opening on the filter (3) causing the effluents to be treated at the first vertical organic filter.
  • the wastewater effluent then passes through the organic substrate (4 and 15) which, in the case of the planted filter, is planted with semi-aquatic plants (16), in this case Phragmifes australis.
  • This organic substrate consists of a compost layer of at least 40 cm through which the effluents pass before arriving in a draining layer (5 and 14), which in this case is nearly 30 cm thick.
  • This draining layer (5 and 14) comprises non-soluble aggregates and also comprises within it an outlet drain (6 and 17) associated with an aeration vent to allow good oxygenation of the entire volume of the filter.
  • This outlet drain makes it possible to evacuate the treated water towards the second vertical organic planted filter whose operation is the same as that previously described, except that its outlet drain (17) potentially constitutes an exit route for the device.
  • the device with a first horizontal organic filter slightly differs from the previous devices in that it incorporates an arrival of the effluent opening into a bedding for diffusion to the filter head (8).
  • the effluents then pass through an organic substrate (9) as described above but with a thickness of 70 cm.
  • This organic substrate is also planted with semi-aquatic plants (11), again preferably Phragmifes australis.
  • the effluents then arrive in a draining layer (10) comprising within it an outlet drain (12) for discharging the treated water to the second vertical organic planted filter whose operation is the same as that previously described, except that its output drain (17) is potentially an output channel of the device.
  • Tables I and II present the results obtained for devices having two vertical organic filters as described above, with respectively a first planted filter (Table I) or not (Table II) and for the reduction in highly contaminated water (more ten times the authorized thresholds) of different organochlorines over a period from April 29, 2009 to February 5, 2010.
  • the results obtained with the device incorporating a first horizontal filtration filter are about 10% lower in terms of abatement. compared to those obtained with the other two devices.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Removal Of Specific Substances (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

La présente invention concerne un procédé destiné à la dépollution d'une eau contaminée par des micropolluants ou par des polluants émergents caractérisé en ce qu'il comprend une étape d'introduction de ladite eau contaminée dans un dispositif comprenant un filtre organique planté, à filtration verticale, lequel filtre organique planté comprend : une entrée pour l'eau contaminée à traiter, une sortie pour ladite eau contaminée traitée, des moyens de filtration et de dépollution interposés entre l'entrée et la sortie de ladite eau contaminée, caractérisé en ce que lesdits moyens de filtration et de dépollution prennent la forme d'un substrat organique planté composé de compost et d'agrégats non solubles permettant de maintenir une perméabilité dudit substrat organique d'au moins 40 litres par heure et par m2, de préférence d'au moins 70 litres par heure et par m2, et de manière particulièrement préférée d'au moins 100 litres par heure et par m2; et l'utilisation d'un tel dispositif pour la dépollution d'une eau contaminée par des micropolluants ou polluants émergents.

Description

Traitement de dépollution d'une eau contaminée par des micro-polluants et/ou des polluants émergents, notamment par des composés
organochlorés
ùomaine de l'invention
La présente invention concerne un procédé de traitement de l'eau contaminée par des micro-polluants ou des polluants émergents de préférence de type organochlorés par une solution de filtres organiques plantés.
Art Antérieur
Le traitement des pollutions appelées micro-polluantes ou émergentes est une préoccupation récente, moins de dix ans, ne serait-ce que parce que les techniques d'analyse et de mesure de ce type de pollutions sont encore en cours de mise au point alors que l'identification des 200 substances à risques et leurs effets commencent juste à être connus, pour la santé humaine.
Ces pollutions (à base de pesticides, d'herbicides, de résidus pharmaceutiques, etc.) commencent donc juste à être mieux appréhendées alors que les solutions pour les traiter sont elles encore peu développées.
La liste des 33 substances prioritaires à prendre en compte vient juste d'ailleurs d'être fixée dans la directive cadre sur l'eau.
Actuellement, l'état de l'art sur les solutions disponibles pour traiter ces solutions fait ressortir trois grandes familles de solutions : les traitements classiques par filtre à charbon, les traitements biologiques à l'aide de bactéries spécifiques (la biorémédiation) et enfin les solutions par phytoremédiation surtout développées dans les pays anglo-saxons et, notamment, aux Etats Unis.
Cependant, ces solutions très ciblées pour deux ou trois substances et initialement appliquées à des petits volumes d'effluents ont de très nombreuses contraintes et limites qui rendent nécessaires une nouvelle solution économique applicable à grande échelle. Ces solutions sont toutes axées sur des processus de dégradation biologique ou chimique qui visent à décomposer à plus de 90% les substances à traiter.
Néanmoins ces mécanismes de réduction des polluants sont dépendants de multiples facteurs environnementaux (température, caractéristiques des matrices physico-chimiques polluées, instabilité des souches bactériennes agissant, tenue dans le temps des supports de traitement) qui limitent les applications actuellement mises en œuvre.
Ainsi, si dans l'art antérieur, le filtre à charbon semble être une solution évidente, il a toutefois montré de nombreuses limites. Cette solution se révèle en fait être très coûteuse pour des traitements de grands volumes et pour une solution durable dans le temps.
Généralement, le charbon actif est utilisé sous forme granulaire dans un lit gravitaire ou sous pression avec un temps de contact minimum de 5 à 60 minutes. II en résulte l'utilisation d'importants volumes de charbon actif pour traiter plusieurs centaines de m3 par jour. De surcroît, pour les petites concentrations de substances toxiques (inférieures à 1 mg/litre), les capacités d'adsorption du filtre se limitent à 20% voire 30% par rapport à la masse de charbon. Enfin, les matériaux de ces filtres doivent être renouvelés totalement à une fréquence à déterminer (plusieurs semaines à plusieurs mois) selon les volumes et les concentrations traitées ; les supports usagés doivent d'autre part être traités. C'est donc une solution industriellement acceptable préférentiel lement pour des petits flux.
Une seconde solution en plein développement est basée sur les techniques de biodégradation in situ (bioremédiation). Cette technologie utilise la capacité naturelle de la microflore endogène à dégrader les substances toxiques. Lorsque le potentiel de biodégradation ne suffit pas et lorsque les conditions de la biodégradation endogène ne sont pas réunies, une stimulation de cette activité est opérée par bio-augmentation. Ainsi un apport de nutriments accroissant le développement des bactéries aérobies et/ou une introduction de souches bactériennes adaptées est-elle mise en œuvre. Parmi les nutriments utilisés, il est possible de citer l'huile de soja, l'éthanol, le méthanol, la cellulose ou encore le glucose. Sur la base de cette technologie, il a été possible de faire passer, pour une nappe polluée, la concentration en composés organochlorés (tétrachloroéthylène, trichloroéthylène, trichloroéthane et tétrachlorure de carbone) de 190 à 88 mg/l après 5 ans de traitement, soit un abattement de l'ordre de 50%. Parmi les bactéries utilisées pour réduire les composées organochlorés, il est possible de citer les espèces bactériennes suivantes : Hydrogenophaga flava, Clostridiu bifermantans, ùehalospirillum mutivorans, Oesulfomonile tiedjei, et ùesulfito bacterium. En situation aérobie, les bactéries du genre Rhodococcus ou les espèces Nitrosomonas europaea et Pseudomonas putida sont le plus souvent utilisées.
Cependant, ce type de solutions présente des résultats très contrastés du fait de la multiplicité de facteurs limitants. C'est ainsi une solution adoptée pour des pollutions monospécifiques, dans des milieux totalement contrôlés (panache de pollution restreint avec forte concentration et facteurs stationnels stables). Cependant, La biorémédiation des solvants chlorés (comme le trichloroéthylène, tétrachloroéthylène, trichloroéthane et chlorure de vinyle) a ainsi déjà permis le traitement de plus d'un million de tonnes de sols contaminés, notamment aux Etats-Unis (Source : US-EPA) où ils sont devenus des polluants communs du sol et de l'eau souterraine, bans certains cas, ces méthodes peuvent toutefois augmenter la toxicité du milieu traité en cas de réactions incontrôlées.
La troisième famille de solution est la phytoremédiation traditionnelle grâce à l'utilisation de végétaux supérieurs de type peupliers et eucalyptus. Généralement, ces végétaux sont utilisés soit comme des barrières hydrauliques aux abords de sites contaminés pour bloquer la diffusion des polluants, soit comme aire d'épandage des eaux à dépolluer sur site.
Généralement, le dimensionnement de ces solutions de phytoremédiation s'appuie sur les capacités d'évapotranspiration de ces végétaux d'environ 4 à 6 litres par m2 par jour en période de pleine croissance végétale (entre 5 et 15 ans après plantation). Les végétaux les plus utilisés du fait de leur résistance naturelle à la toxicité de différentes formes de sels sont le Peuplier blanc (P pu/us alba), l'Eucalyptus {Eucalyptus camaldulensii) et le Tamaris ( Tamarix parviflovà).
Une autre solution de traitement est la création de zones humides artificielles de type « subflow » utilisant les traditionnelles plantes aquatiques : roseaux {Phrag ites austral/s, Typha latifolià et Joncs (notamment du genre Scirpus).
De nombreux travaux ont porté sur la phytoremédiation du trichloroéthylène (le polluant le plus courant dans les sols contaminés) et montrent que le trichloroéthylène est facilement réduit en cis- dichloroéthylène, qui lui-même va être progressivement réduit en chlorure de vinyle qui est malheureusement plus cancérigène que le trichloroéthylène. Toutefois, il est possible de terminer la chaîne de réduction du chlorure de vinyle ou du dichloroéthylène en éthylène et éthane en ajoutant des acides humides qui vont améliorer les échanges d'électrons et rendre possible la dégradation du cis-dichloroéthylène et du chlorure de vinyle. Cette dernière étape est plus efficace en milieu aérobie.
Il s'agit de simples bassins plantés avec des temps de séjours supérieurs à une dizaine de jours ce qui limite les volumes traités et crée de grands besoins d'espace. Dans le cas d'aire d'épandage ou de barrière végétale avec des arbres, les capacités hydrauliques de traitement sont très limitées (en moyenne 5 litres par jour et par m 2 ) et du fait des risques de toxicité et des contraintes très fortes puisque ces arbres ne supportent pas de périodes d'inondations répétées. De même, les bassins plantés posent de nombreux problèmes de stabilité dans le temps (temps de séjour élevé, phénomène de dépots par sédimentation et apparition de milieux toxiques limitants).
Au bout de quelques semaines, ces bassins peuvent évoluer en milieu anaérobie très toxique.
Ces différentes solutions montrent qu'il existe aujourd'hui un véritable besoin pour de nouvelles solutions performantes en termes de coût et de capacité de traitement. Description de l'invention
Partant de ces constats, la demanderesse a mis en évidence une nouvelle solution par filtre organique planté dont l'efficacité dépasse celle des trois familles de solutions traditionnelles de traitement. Par rapport à l'art antérieur, le support de plantation permanent présent ne se sature pas par rapport au filtre à charbon, présente une rhizosphère avec naturellement de multiples souches bactériennes à la différence des solutions ciblées de la bioremédiation, et ne présente pas les limites des solutions traditionnelles de phytoremédiation en termes de volumes traités et d'espace utilisé.
Le procédé selon l'invention permet ainsi d'apporter une solution bien plus performante en termes de volumes traités par heure et en termes de pérennité de l'ouvrage utilisé.
Le procédé selon l'invention permet ainsi de traiter de 50 à 100 litres par m2/h, voire plus, avec un taux d'abattement en polluants très élevé (supérieur à 80% pour tous les composés testés) et de disposer d'une installation qui ne nécessite pas de changement de substrat pendant plusieurs années. Le principe de traitement repose sur au moins un filtre planté comprenant différents matériaux supports comprenant tout ou partie de matière organique. Avantageusement, le substrat organique planté est composé de compost et d'agrégats non solubles, lequel compost peut être fabriqué sur mesure. Avantageusement, le procédé selon l'invention comprend l'utilisation de la combinaison de plusieurs filtres plantés.
La présente invention a ainsi pour objet un procédé destiné à la dépollution d'une eau contaminée par des micropolluants ou par des polluants émergents caractérisé en ce qu'il comprend une étape d'introduction de ladite eau contaminée dans un dispositif comprenant un filtre organique planté, à f iltration verticale, lequel filtre organique planté comprend : - une entrée pour l'eau contaminée à traiter,
- une sortie pour ladite eau contaminée traitée,
- des moyens de f iltration et de dépollution interposés entre l'entrée et la sortie de ladite eau contaminée, caractérisé en ce que lesdits moyens de filtration e† de dépollution prennent la forme d'un substrat organique planté composé de compost et d'agrégats non solubles permettant de maintenir une perméabilité dudit substrat organique d'au moins 40 litres par heure et par m2, de préférence d'au moins 70 litres par heure et par m2, et de manière particulièrement préférée d'au moins 100 litres par heure et par m2, voire plus.
Le procédé selon l'invention, qui est à la fois simple et économique, s'appuie sur un filtre organique planté et peut présenter en outre les caractéristiques du procédé de dépollution tel que décrit dans la demande internationale PCT WO 2006/030164.
Par filtre organique planté à filtration verticale on entend un filtre organique visant à la dépollution d'une eau contaminée qui le parcourt verticalement.
Par micropolluants ou polluants émergents, on entend de préférence les polluants décrits dans la directive 2008/105/CE du Parlement européen et du Conseil du 16 décembre 2008 établissant des normes de qualité environnementale dans le domaine de l 'eau, à savoir l'alachlore, l'anthracène, l'atrazine, le benzène, les diphényléthers bromés, le cadmium et ses composés (suivant les classes de dureté de l'eau), le tétrachlorure de carbone, les chloroalcanes C10-13, le chlorfenvinphos, le chlorpyrifos (éthylchlorpyrifos), les pesticides cyclodiènes, l'aldrine, le dieidrine, l'endrine, l'isodrine, le ùT total, le para-para-DDT, le 1,2-dichloroéthane, le dichlorométhane, le di(2-éthylhexyl)phtalate (DEHP), le diuron, lendosulfan, le f luoranthène, l'hexachlorobenzène, l'hexachlorobutadiène, l'hexachlorocyclohexane, l'isoproturon, le plomb et ses composés, le mercure et ses composés, le naphthalène, le nickel et ses composés, le nonylphénol (4-nonylphénol), l'octylphénol (4-(1, , 3,3' - tétraméthylbutyl)- phénol)), le pentachlorobenzène, le pentachlorophénol, les hydrocarbures aromatiques polycycliques (Η ΛΡ), le benzo(a)pyrène benzo(b)f luoranthène, le benzo(k)f luoranthène, le benzo(g,h,i)perylène, l'indeno(l,2,3-cd)pyrène, la simazine, le tétrachloroéthylène, le trichloroéthylène, les composés du tributylétain (tributylétain-cation), les trichlorobenzènes, le trichlorométhane et la trif luraline.
Avantageusement, on entend par micropolluants ou polluants émergents un composé choisi dans le groupe comprenant le dichloroméïhane, le chlorobenzène, le 1,2 dichlorobenzène (1,2 bCB), le 1,3 dichlorobenzène (1,3 bCB), le 1,4 dichlorobenzène (1,4 DCB), le 1,2 dichloroéthane (1,2 DCE), 1,2 cis dichloroéthylène (1,2 cis DCE), le 1,2 trans dichloroéthylène (1,2 ^rans bCE), l'alpha hexachlorohexane (HCH Alpha), le béta hexachlorohexane (HCH Béta), le delta hexachlorohexane (HCH Delta), l'hexachlorohexane gamma ou lindane (HCH Gamma), l'hexachlorobenzène, l'hexachlorobutadiène, l'hexachloroéthane, le mono chlorobenzène, le pentachlorobenzène, le 1,2,3,4 tétrachlorobenzène, le 1,2,3,5 tétrachlorobenzène, le 1,2,4,5 tétrachlorobenzène, le tétrachloroéthylène, le tétrachlorure de carbone, le trichloréthyiène, le 1,2,3 trichlorobenzène, le 1,2,4 trichlorobenzène, le 1,3,5 trichlorobenzène, 1,1,1 trichloroéthane, le 1,1,2,2 tétrachloroéthane, le trichlorométhane, le dichlorométhane, le Benzène, isopropylbenzène (cumène), le phénol, le styrène, ter-butyl benzène, le toluène, le xylène, l'éthylbenzène, le nitrobenzène, le 2-nitrochlorobenzène, le 3- nitrochlorobenzène, le 4-nitrochlorobenzène, le l,2-dichloro-3- nitrobenzène, le l,2-dichloro-4-nitrobenzène, le l,3-dichloro-2- nitrobenzène, l,3-dichloro-4-nitrobenzène, le l,3-dichloro-5-nitrobenzène, le l,4-dichloro-2-nitrobenzène, le 2-nitrotoluène, le 3-nitrotoluène, le 4- nitrotoluène et le l,2-dinitro-3-toluène.
Avantageusement, lesdits micropolluants ou polluants émergents sont des composés organochlorés.
Par composés organochlorés, on entend un composé organique de synthèse comportant au moins un atome de chlore et utilisé éventuellement comme solvant, pesticide, insecticide, fongicide, réfrigérant ou comme molécule intermédiaire de synthèse en chimie et pharmacie.
A titre d'exemple particulièrement préféré de tels composés organochlorés, on peut citer le 1,3 dichlorobenzène, le 1,4 dichlorobenzène, le 1,2 dichlorobenzène, le 1,3,5 trichlorobenzène, le 1,2,4 trichlorobenzène, le 1,2,3 trichlorobenzène, le 1,2,3,5 tétrachlorobenzène, le 1,2,4,5 tétrachlorobenzène, le 1,2,3,4 tétrachlorobenzène, l'hexachlorocyclohexane alpha, l'hexachlorocyclohexane gamma, l'hexachlorocyclohexane beta et l'hexachlorocyclohexane delta. Le procédé selon l'invention permet l'élimination de plus de 85% des composés organochlorés décrits précédemment, et même de plus de 95% pour la majorité d'entre eux.
Avantageusement, lesdits agrégats non solubles mentionnés précédemment sont choisis parmi la pouzzolane, les silex et les sables siliceux. De préférence, lesdits agrégats non solubles correspondent à de la pouzzolane.
Par compost, on entend de préférence un compost tel que défini par la norme NF U44-051. Les caractéristiques définies par cette norme peuvent être obtenues simplement avec un temps de compostage minimum de 3 ans de débris végétaux ou avec de la tourbe brune.
Selon un mode de réalisation préféré, ledit filtre organique planté est un filtre organique planté avec des plantes de berge choisies dans le groupe comprenant Phrag ites australis, Typha angustifolia, Typha latifolia et Iris pseudacorus.
Avantageusement, ladite plante de berge est un roseau commun ou Phragmites australis.
Avantageusement encore., la densité de plantes de berge est comprise entre 5 et 15 plants/m 2 , de préférence cette densité est de 10 plants/m 2 en moyenne.
Pour assurer une bonne efficacité du filtre organique planté, l'épaisseur du substrat organique est comprise entre 300 et 1500 mm en fonction de la dépollution à effectuer, de préférence entre 300 et 700mm.
Selon un second mode de réalisation préféré, le dit dispositif comprend en outre au moins un filtre organique planté ou non, lequel filtre organique est à f iltration verticale ou horizontale et est disposé en amont du filtre organique planté à f iltration verticale décrit précédemment.
En fonction des micropolluants ou polluants émergents à traiter et, notamment, des composés organochlorés à traiter, le dispositif pourra comprendre une combinaison du type : un filtre organique non planté à filtration verticale puis un filtre organique planté à filtration verticale ; un filtre organique planté à filtration horizontale suivi d'un filtre organique planté à filtration verticale ; ou un filtre organique planté à filtration verticale suivi d'un filtre organique planté à filtration verticale. De préférence, le dispositif comprendra un filtre organique planté à filtration verticale suivi d'un filtre organique planté à filtration verticale.
Avantageusement, le dispositif comprend plusieurs étages de filtres en parallèle pour organiser des temps de repos et des temps d'alimentation, notamment afin d'avoir une biodégradation poussée de tous les composés organochlorés traités. L'alternance de périodes aérobies et anaérobies permet non seulement de favoriser la biodégradation des polluants mais aussi de réduire les stress pour les plantes et aussi favoriser leur développement.
Le dispositif peut donc comprendre notamment en amont deux filtres organiques non plantés puis un étage de deux filtres organiques plantés à filtration verticale.
La combinaison du substrat organique planté et de la rhizosphère permet un développement particulièrement important de nombreuses colonies de bactéries toutes très actives, notamment dans la dégradation des composés organochlorés, laquelle combinaison peut permettre d'expliquer les performances particulièrement élevé du dispositif.
En outre, cette combinaison permet la mise en place de facteurs stationnels très stables dans la durée parmi lesquels le pH et le potentiel redox. Dans le cas particulier de la réduction des organochlorés, les micro- organismes sont stimulés dans un environnement anaérobie à l'origine de la formation d'un milieu acide, d'où l'intérêt de commencer la file de traitement avec un filtre horizontal. Comme la biodégradation complète de ces composés est potentiellement possible par l'utilisation d'une combinaison des conditions anaérobies et aérobies, la combinaison d'un filtre organique à filtration horizontale et d'un filtre organique à filtration verticale a donc tout son sens. Mais dans le cas de la présence de plus d'une dizaine de composés organochlorés dans une eau à dépolluer et dans le cas d'effets toxiques avérés pour le milieu, il est préférable de commencer le traitement par un filtre organique non planté, suivi d'un filtre organique planté à filtration verticale qui est la solution la plus efficace.
La sortie pour l'eau contaminée traitée prend avantageusement la forme d'un ou plusieurs drains de récupération, lesquels sont bien connus de l'homme du métier.
Pour faciliter l'évacuation de l'eau contaminée traitée du substrat organique, la sortie est positionnée dans une couche drainante constituée de galets, graviers ou de tout autre matériau drainant équivalent.
Pour une bonne efficacité de la couche drainante, son épaisseur est choisie entre 100 et 1500 mm, de préférence entre 150 et 1000 mm et, de manière particulièrement préférée, entre 200 et 500 mm.
Le filtre organique planté est avantageusement isolé du sol à l'aide de moyens d'etanchéité, lesquels permettent d'éviter les infiltrations de polluants dans le milieu naturel et sont bien connus de l'homme du métier. De tels moyens d'étanchéité peuvent notamment prendre la forme d'une géomembrane.
Le filtre organique planté comprend en outre avantageusement un système d'aération, lequel relie de préférence la couche drainante à la surface. Ce système d'aération permet d'améliorer l'efficacité des périodes d'assèchement dans le cadre de l'organisation des successions de cycles irrigation/assèchements décrites dans la demande internationales PCT WO 2006/030164.
Ce système d'aération peut prendre la forme d'évents reliés à la base du filtre organique planté au moyen de gaines ou de canalisations. Ledit système d'aération peut notamment être relié aux drains de récupération disposés dans la couche drainante.
Avantageusement, ce système d'aération prend la forme d'évents reliés d'une part au substrat organique et, d'autre part, aux drains de récupération disposés dans la couche drainante à la base du filtre organique planté et ceci au moyens de gaines ou de canalisations.
De préférence, le filtre organique planté pourra comprendre une ou plusieurs wa es associées à la sortie et/ou à l'entrée pour l'eau contaminée à dépolluer. Ces différentes vannes permettent d'améliorer l'alimentation et le drainage du filtre organique planté.
Selon un mode de réalisation particulier, ces différentes vannes permettent d'organiser la succession de cycles irrigation/assèchement (période anaérobie/aérobie) du procédé tel que décrit dans la demande internationale PCT WO 2006/030164 en vue d'optimiser la dégradation de polluants par les microorganismes de la rhizosphère. Avantageusement, ces vannes permettent d'organiser une répartition des périodes irrigation/assèchement correspondant à un rapport 2/1 à 1 /50, de préférence de 1/1 à 1/20, par exemple de 1/2 à 1/20, et de manière particulièrement préférée de 1/3 à 1/20.
Selon un second mode de réalisation particulier, ces différentes vannes permettent de moduler le débit de sorte d'organiser l'alimentation en continu du dispositif selon l'invention.
Un second objet de l'invention vise l'utilisation d'un dispositif tel que décrit précédemment pour la dépollution d'une eau contaminée par des micropolluants ou polluants émergents tels que définis précédemment.
Avantageusement, la présente invention vise l'utilisation d'un tel dispositif pour la dépollution d'une eau contaminée par des composés micropolluants ou par des polluants émergents, de préférence d'une eau contaminée par des composés organochlorés tels que décrits précédemment.
D'autres caractéristiques de l'invention apparaîtront dans les exemples qui suivent, sans pour autant que ceux-ci ne constituent une quelconque limitation de l' invention.
Exemples
Détail des filières mises en oeuyre
La figure 1 illustre la structure des trois types de dispositifs testés pour le traitement d'eaux contaminées par des micropolluants ou par des polluants émergents.
Ces trois types de dispositifs se décomposent comme suit (de haut en bas) : a) un filtre organique à filtration verticale (2) suivi d'un filtre organique planté à filtration verticale (13) ;
b) un filtre organique planté à filtration horizontale (7) suivi d'un filtre organique planté à filtration verticale (13) ; et c) un filtre organique planté à filtration verticale (13) suivi d'un filtre organique planté à filtration verticale (13).
Les dispositifs avec un premier filtre organique vertical (planté ou non) intègrent une arrivée d'eau polluée (1) débouchant sur le filtre (3) amenant les effluents à traiter au niveau du premier filtre organique vertical. Les effluents d'eaux usées traversent alors le substrat organique (4 et 15) qui, dans le cas du filtre planté, est planté de végétaux semi- aquatiques (16), dans ce cas Phragmifes australis. Ce substrat organique consiste en une couche de compost d'au moins 40 cm que traversent les effluents avant d'arriver dans une couche drainante (5 et 14), présentant dans ce cas près de 30 cm d'épaisseur. Cette couche drainante (5 et 14) comprend des agrégats non solubles et comprend également en son sein un drain de sortie (6 et 17) associé à un évent d'aération pour permettre une bonne oxygénation de la totalité du volume du filtre. Ce drain de sortie permet d'évacuer les eaux traitées vers le second filtre organique vertical planté dont le fonctionnement est le même que celui préalablement décrit à ceci près que son drain de sortie (17) constitue potentiellement une voie de sortie du dispositif.
Le dispositif avec un premier filtre organique horizontal diffère lui légèrement des précédents dispositifs en ce qu'il intègre une arrivée des effluents débouchant dans un empierrement permettant une diffusion en tête de filtre (8). Les effluents traversent alors un substrat organique (9) tel que décrit précédemment mais avec une épaisseur de 70 cm. Ce substrat organique est également planté de végétaux semi-aquatiques (11), là encore de préférence Phragmifes australis. Les effluents arrivent ensuite dans une couche drainante (10) comprenant en son sein un drain de sortie (12) permettant d'évacuer les eaux traitées vers le second filtre organique vertical planté dont le fonctionnement est le même que celui préalablement décrit à ceci près que son drain de sortie (17) constitue potentiellement une voie de sortie du dispositif. Les tableaux I et II présentent les résultats obtenus pour des dispositifs présentant deux filtres organiques verticaux tels que décrits précédemment, avec respectivement un premier filtre planté (tableau I) ou non (tableau II) et pour l'abattement dans une eau fortement contaminée (plus de dix fois les seuils autorisés) de différents organo- chlorés sur une période allant du 29 avril 2009 au 5 février 2010. Les résultats obtenus avec le dispositif intégrant un premier filtre à f iltration horizontal sont inférieurs de 10% environ en termes d'abattement par rapport à ceux obtenus avec les deux autres dispositifs.
Tableau I
Figure imgf000016_0001
Différentes analyses effectuées sur la période ont permis de déterminer en outre que ce taux d'abattement n'était pas la résultante d'une évaporation ou d'une fixation mais bien d'une dégradation des composés testé.

Claims

REVENDICATIONS
1. Un procédé destiné à la dépollution d'une eau contaminée par des micropolluants ou par des polluants émergents caractérisé en ce qu'il comprend une étape d'introduction de ladite eau contaminée dans un dispositif comprenant un filtre organique planté, à filtration verticale, lequel filtre organique planté comprend :
- une entrée pour l'eau contaminée à traiter,
- une sortie pour ladite eau contaminée traitée,
- des moyens de filtration et de dépollution interposés entre l'entrée et la sortie de ladite eau contaminée, caractérisé en ce que lesdits moyens de filtration et de dépollution prennent la forme d'un substrat organique planté composé de compost et d'agrégats non solubles permettant de maintenir une perméabilité dudit substrat organique d'au moins 40 litres par heure et par m2.
2. Le procédé selon la revendication 1, caractérisé en ce que lesdits micropolluants ou polluants émergents sont les polluants décrits dans la directive 2008/105/CE du Parlement européen et du Conseil du 16 décembre 2008 établissant des normes de qualité environnementale dans le domaine de l 'eau.
3. Le procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce lesdits micropolluants ou polluants émergents sont choisis dans le groupe comprenant le dichlorométhane, le chlorobenzène, le 1,2 dichlorobenzène (1,2 DCB), le 1,3 dichlorobenzène (1,3 DCB), le 1,4 dichlorobenzène (1,4 DCB), le 1,2 dichloroéthane (1,2 DCE), 1,2 cis dichloroéthylène (1,2 cis DCE), le 1,2 trans dichloroéthylène (1,2 trans DCE), l'alpha-hexachlorohexane (HCH Alpha), le béta-hexachlorohexane (HCH Béta), le delta-hexachlorohexane (HCH Delta), l'hexachlorohexane gamma ou lindane (HCH Gamma), l'hexachlorobenzène, l'hexachlorobutadiène, l'hexachloroéthane, le mono chlorobenzène, le pentachlorobenzène, le 1,2,3,4 tétrachlorobenzène, le 1,2,3,5 tétrachlorobenzène, le 1,2,4,5 tétrachlorobenzène, le tétrachloroéthylène, le tétrachlorure de carbone, le trichloréthylène, le 1,2,3 trichlorobenzène, le 1,2,4 trichlorobenzène, le 1,3,5 trichlorobenzène, 1,1,1 Trichloroéthane, le 1,1,2,2 tétrachloroéthane, le trichlorométhane, le benzène, Γ isopropylbenzène (cumène), le phénol, le styrène, le ter-butyl benzène, le toluène, le xylène, l'éthylbenzène, le nitrobenzène, le 2-nitrochlorobenzène, le 3-nitrochlorobenzène, le 4- nitrochlorobenzène, le l,2-dichloro-3-nitrobenzène, le l,2-dichloro-4- nitrobenzène, le l,3-dichloro-2-nitrobenzène, l,3-dichloro-4-nitrobenzène, le l,3-dichloro-5-nitrobenzène, le l,4-dichloro-2-nitrobenzène, le 2- nitrotoluène, le 3-nitrotoluène, le 4-nitrotoluène et le l,2-dinitro-3- toluène.
4. Le procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdits micropolluants ou polluants émergents sont des composés organochlorés.
5. Le procédé selon la revendication 4, caractérisé en ce que lesdits composés organochlorés sont choisis dans le groupe comprenant le 1,3 dichlorobenzène, le 1,4 dichlorobenzène, le 1,2 dichlorobenzène, le 1,3,5 trichlorobenzène, le 1,2,4 trichlorobenzène, le 1,2,3 trichlorobenzène, le 1,2,3,5 tétrachlorobenzène, le 1,2,4,5 tétrachlorobenzène, le 1,2,3,4 tétrachlorobenzène, l'hexachlorocyclohexane alpha, l'hexachlorocyclohexane gamma, l'hexachlorocyclohexane beta et l'hexachlorocyclohexane delta et en ce que ledit procédé permet l'élimination de plus de 85% desdits composés organochlorés.
6. Le procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit filtre organique planté est un filtre organique planté avec des plantes de berge choisies dans le groupe comprenant Phragmites australis, Typha angustifolia, Typha latifolia et Iris pseudacorus.
7. Le procédé selon la revendication 6, caractérisé en ce que ladite plante de berge est un roseau commun ou Phragmites australis.
8. Le procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le dit dispositif comprend en outre au moins un filtre organique planté ou non, lequel filtre organique est à filtration verticale ou horizontale et est disposé en amont dudit filtre organique planté à filtration verticale.
9. Le procédé selon la revendication 8, caractérisé en ce que ledit dispositif comprend un premier filtre organique planté à filtration verticale suivi d'un second filtre organique planté à filtration verticale.
10. Une utilisation d'un dispositif tel que décrit dans l'une quelconque des revendications 1 à 9, pour la dépollution d'une eau contaminée par des micropolluants ou polluants émergents.
11. L'utilisation selon la revendication 10, caractérisée en ce que ladite eau est contaminée par des composés organochlorés.
12. L'utilisation selon la revendication 11, caractérisée en ce que ladite eau contaminée par des composés organochlorés choisis dans le groupe comprenant le 1,3 dichlorobenzène, le 1,4 dichlorobenzène, le 1,2 dichlorobenzène, le 1,3,5 trichlorobenzène, le 1,2,4 trichlorobenzène, le 1,2,3 trichlorobenzène, le 1,2,3,5 tétrachlorobenzène, le 1,2,4,5 tétrachlorobenzène, le 1,2,3,4 tétrachlorobenzène, l'hexachlorocyclohexane alpha, l'hexachlorocyclohexane gamma, l'hexachlorocyclohexane beta et l'hexachlorocyclohexane delta et en ce que ledit procédé permet l'élimination de plus de 857o desdits composés organochlorés.
PCT/EP2011/002932 2010-06-17 2011-06-15 Traitement de depollution d'une eau contaminee par des micro-polluants et/ou des polluants emergents, notamment par des composes organochlores WO2011157406A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800299268A CN102947230A (zh) 2010-06-17 2011-06-15 对被微污染物和/或突现污染物特别是有机氯化合物污染的水的净化处理
US13/703,752 US20130105387A1 (en) 2010-06-17 2011-06-15 Treatment for depolluting water contaminated by micro pollutants and/or emergent pollutants, notably by organochlorinated compounds
EP11731253.8A EP2582634A1 (fr) 2010-06-17 2011-06-15 Traitement de depollution d'une eau contaminee par des micro-polluants et/ou des polluants emergents, notamment par des composes organochlores
BR112012032274A BR112012032274A2 (pt) 2010-06-17 2011-06-15 tratamento para despoluir água contaminada com micropoluentes e/ou poluentes emergentes particularmente compostos organoclorados

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1002564A FR2961504A1 (fr) 2010-06-17 2010-06-17 Traitement de depollution d'une eau contaminee par des micro-polluants et/ou des polluants emergents, notamment pär des composes organochlores
FR1002564 2010-06-17

Publications (1)

Publication Number Publication Date
WO2011157406A1 true WO2011157406A1 (fr) 2011-12-22

Family

ID=43607959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/002932 WO2011157406A1 (fr) 2010-06-17 2011-06-15 Traitement de depollution d'une eau contaminee par des micro-polluants et/ou des polluants emergents, notamment par des composes organochlores

Country Status (6)

Country Link
US (1) US20130105387A1 (fr)
EP (1) EP2582634A1 (fr)
CN (1) CN102947230A (fr)
BR (1) BR112012032274A2 (fr)
FR (1) FR2961504A1 (fr)
WO (1) WO2011157406A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018197329A1 (fr) 2017-04-28 2018-11-01 Suez Groupe Zone humide artificielle dimensionnee pour l'elimination de polluants
CN109292982A (zh) * 2018-09-11 2019-02-01 山东建筑大学 低浓度重金属废水的模块化复合深度处理系统及运行方法
FR3109094A1 (fr) * 2020-04-14 2021-10-15 Maxime Duhamel Processus de traitement et dégradation des micropolluants organiques par fermentation des plantes
WO2021251811A1 (fr) 2020-06-08 2021-12-16 Université Sidi Mohamed Ben Abdellah Dispositif de traitement des eaux usees par filtres vetiver zizania et biochar

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469981B2 (en) 2009-12-22 2016-10-18 Oldcastle Precast, Inc. Fixture cells for bioretention systems
US8911626B2 (en) 2009-12-22 2014-12-16 Oldcastle Precast, Inc. Bioretention system with internal high flow bypass
WO2012161392A1 (fr) * 2011-05-24 2012-11-29 주식회사 성일엔텍 Système d'épuration d'eau pour marais artificiel hybride, dispositif de traitement des eaux usées l'utilisant et dispositif de purification non ponctuelle naturelle permettant de purifier simultanément de l'eau de rivière et de l'eau de lac
US9512606B2 (en) 2011-08-21 2016-12-06 Oldcastle Precast, Inc. Bioretention swale overflow filter
US9506233B2 (en) 2013-06-14 2016-11-29 Oldcastle Precast, Inc. Stormwater treatment system with gutter pan flow diverter
AU2015256247B2 (en) 2014-05-05 2018-11-08 Agri-Tech Producers, Llc Combined remediation biomass and bio-product production process
AT14441U1 (de) * 2014-10-07 2015-11-15 Heinz Gattringer Vertikale Pflanzenkläranlage zur Reinigung von Grauwasser und Industrieabwässer
US10118846B2 (en) 2014-12-19 2018-11-06 Oldcastle Precast, Inc. Tree box filter with hydromodification panels
MX2018001689A (es) * 2015-08-11 2018-05-07 Anthony Iorio Paul Sistema y método para biofiltración de aguas pluviales.
CA3084464A1 (fr) 2017-10-17 2019-04-25 Oldcastle Infrastructure, Inc. Systeme de gestion d'eau de pluie a derivation interne

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030164A1 (fr) 2004-09-16 2006-03-23 Phytorestore Traitement de polluants par phytolixiviation
FR2893607A1 (fr) * 2005-11-24 2007-05-25 Agro Environnement Sa Systeme et procede d'epuration des eaux usees

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510649B1 (en) * 2004-01-09 2009-03-31 Ronald Lavigne Top loading vertical flow submerged bed wastewater treatment system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030164A1 (fr) 2004-09-16 2006-03-23 Phytorestore Traitement de polluants par phytolixiviation
FR2893607A1 (fr) * 2005-11-24 2007-05-25 Agro Environnement Sa Systeme et procede d'epuration des eaux usees

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Darcy's law", 1 June 2010 (2010-06-01), pages 1 - 8, XP002625386, Retrieved from the Internet <URL:http://en.wikipedia.org/w/index.php?title=Darcy%27s_law&oldid=365372553> [retrieved on 20110228] *
BANKSTON J L ET AL: "Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood", WATER RESEARCH, vol. 36, no. 6, 1 March 2002 (2002-03-01), ELSEVIER, AMSTERDAM, NL, pages 1539 - 1546, XP004343020, ISSN: 0043-1354, DOI: 10.1016/S0043-1354(01)00368-2 *
BRAECKEVELT M ET AL: "Treatment of chlorobenzene-contaminated groundwater in a pilot-scale constructed wetland", ECOLOGICAL ENGINEERING, vol. 33, no. 1, 1 May 2008 (2008-05-01), ELSEVIER, pages 45 - 53, XP022655068, ISSN: 0925-8574, [retrieved on 20080415], DOI: 10.1016/J.ECOLENG.2008.02.002 *
LAVROVA S ET AL: "Influence of recirculation in a lab-scale vertical flow constructed wetland on the treatment efficiency of landfill leachate", BIORESOURCE TECHNOLOGY, vol. 101, no. 6, 1 March 2010 (2010-03-01), ELSEVIER BV, GB, pages 1756 - 1761, XP026813621, ISSN: 0960-8524, [retrieved on 20091124] *
See also references of EP2582634A1

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018197329A1 (fr) 2017-04-28 2018-11-01 Suez Groupe Zone humide artificielle dimensionnee pour l'elimination de polluants
CN109292982A (zh) * 2018-09-11 2019-02-01 山东建筑大学 低浓度重金属废水的模块化复合深度处理系统及运行方法
FR3109094A1 (fr) * 2020-04-14 2021-10-15 Maxime Duhamel Processus de traitement et dégradation des micropolluants organiques par fermentation des plantes
WO2021209692A1 (fr) * 2020-04-14 2021-10-21 Communaute De Communes Des Portes De Meuse Processus de traitement et degradation des micropolluants organiques par formation des plantes
WO2021251811A1 (fr) 2020-06-08 2021-12-16 Université Sidi Mohamed Ben Abdellah Dispositif de traitement des eaux usees par filtres vetiver zizania et biochar

Also Published As

Publication number Publication date
BR112012032274A2 (pt) 2016-11-29
US20130105387A1 (en) 2013-05-02
CN102947230A (zh) 2013-02-27
EP2582634A1 (fr) 2013-04-24
FR2961504A1 (fr) 2011-12-23

Similar Documents

Publication Publication Date Title
WO2011157406A1 (fr) Traitement de depollution d&#39;une eau contaminee par des micro-polluants et/ou des polluants emergents, notamment par des composes organochlores
EP1791793B1 (fr) Methode de traitement de polluants par phytolixiviation
WO2011080578A1 (fr) Filtre organique planté avec cannes européennes et/ou tropicales/désertiques pour le traitement d&#39;eaux, de sols ou d&#39;air pollués
Zhao et al. Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): In the case of triclosan
Abdelrady et al. Investigating the impact of temperature and organic matter on the removal of selected organic micropollutants during bank filtration: A batch study
Choudhary et al. Removal of chlorophenolics from pulp and paper mill wastewater through constructed wetland
EP1857419A1 (fr) Procede et installation de traitement d&#39;effluents
Singh et al. Occurrence and fate of antidepressants in the aquatic environment: Insights into toxicological effects on the aquatic life, analytical methods, and removal techniques
DE68914645T2 (de) Verfahren zur mikrobiologischen reinigung von wasser.
de Souza et al. Backwash as a simple operational alternative for small-scale slow sand filters: from conception to the current state of the art
WO2021251811A1 (fr) Dispositif de traitement des eaux usees par filtres vetiver zizania et biochar
EP1492733B1 (fr) Plantations equipees pour le traitement d&#39;effluents organiques par bio-assainissement
DeBusk et al. Secondary treatment of domestic wastewater using floating and emergent macrophytes
Hoang et al. Floating treatment wetlands to improve the water quality of the Hang Bang canal, Ho Chi Minh City, Vietnam: Effect of plant species
EP2360123A1 (fr) Système biologique vertical pour l&#39;épuration d&#39;effluents
WO2015107174A1 (fr) Dispositif de traitement d&#39;eaux usées
EP3286147A1 (fr) Dispositif d&#39;épuration d&#39;eaux usées et procédé de traitement d&#39;eau
Merlin et al. Lab-scale performance evaluation of vertical flow reed beds for the treatment of chlorobenzene contaminated groundwater
Tsang Effectiveness of wastewater treatment for selected contaminants using constructed wetlands in Mediterranean climates
EP2802539B1 (fr) Dispositif d&#39;assainissement d&#39;une eau usée liquide et procédé d&#39;assainissement d&#39;une eau usée liquide mettant en oeuvre un tel dispositif
Medina et al. Evaluation of continuous flow‐through phytoreactors for the treatment of TNT‐contaminated water
WO2008037872A2 (fr) Bassin de traitement des eaux usees par lits a macrophytes
WO2001027039A1 (fr) Procede d&#39;epuration des effluents urbains, agricoles ou industriels
Cardinal Assessing nutrient and pharmaceutical removal efficiency from wastewater using shallow wetland treatment mesocosms
Mamine et al. Removal of Organic Pollutants and Enteric Pathogens by Typha Latifolia and Sand Filter from Domestic Irrigation Wastewater Reuse

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029926.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731253

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011731253

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13703752

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012032274

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012032274

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121217