WO2011157172A2 - 全向天线 - Google Patents

全向天线 Download PDF

Info

Publication number
WO2011157172A2
WO2011157172A2 PCT/CN2011/075290 CN2011075290W WO2011157172A2 WO 2011157172 A2 WO2011157172 A2 WO 2011157172A2 CN 2011075290 W CN2011075290 W CN 2011075290W WO 2011157172 A2 WO2011157172 A2 WO 2011157172A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
plates
metal plates
reflector
omnidirectional antenna
Prior art date
Application number
PCT/CN2011/075290
Other languages
English (en)
French (fr)
Other versions
WO2011157172A3 (zh
Inventor
艾鸣
李建平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/075290 priority Critical patent/WO2011157172A2/zh
Priority to CN2011800009299A priority patent/CN102918711A/zh
Publication of WO2011157172A2 publication Critical patent/WO2011157172A2/zh
Publication of WO2011157172A3 publication Critical patent/WO2011157172A3/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an omnidirectional antenna. Background technique
  • omnidirectional antennas are widely used in the field of mobile communication technologies, for example: as a base station antenna in a personal handy-phone system (PHS).
  • PHS personal handy-phone system
  • FIG. 1 is a cross-sectional view of a conventional omnidirectional antenna in a plan view when placed vertically.
  • the omnidirectional antenna is composed of three electric dipoles A for radiating electromagnetic waves.
  • the omnidirectional antenna feed is complicated, and when placed in an operating state, the electromagnetic waves radiated in all directions of the horizontal plane are not uniform, that is, the out-of-roundness index in the antenna radiation performance index is low.
  • the omnidirectional antenna is a rectangular closed waveguide cavity.
  • the cavity surface has a slit B, and electromagnetic waves are radiated through the slot B.
  • the electromagnetic wave radiated by the omnidirectional antenna in all directions of the horizontal plane is uneven, that is, the antenna has a low roundness index.
  • the embodiment of the invention provides an omnidirectional antenna to solve the problem that the existing omnidirectional antenna has low roundness index.
  • An embodiment of the present invention provides an omnidirectional antenna, including: at least two metal plates, at least one metal reflector, a feed line, and a plurality of first blocking devices, each of the metal plates being provided with at least one slit;
  • the at least one metal reflector is located in a surrounding or semi-enclosed cavity formed by the at least two metal plates, at least one of the metal plates is parallel to one of the metal reflectors, and the first sealing device is used to Parallel metal plates and metal reflectors are closed at the edges in the width direction, and the phases are
  • the mutually parallel metal plates are electrically connected to the metal reflector, and the feed lines are disposed between the mutually parallel metal plates and the metal reflectors;
  • a metal reflector is used to reflect electromagnetic waves generated by the feeder line to a metal plate, and a gap on the metal plate is used to radiate the feeder line to the metal plate. Electromagnetic waves and electromagnetic waves reflected from the metal reflector onto the metal plate are radiated to cause the slits on the at least two metal plates to form omnidirectional electromagnetic wave radiation in the horizontal direction.
  • the omnidirectional antenna provided by the embodiment of the present invention radiates electromagnetic waves generated by the feeding lines between the mutually parallel metal plates and the metal reflecting plates from the gaps in the metal plate through the metal reflecting plate between the at least two metal plates.
  • the gaps on at least two metal plates form omnidirectional electromagnetic wave radiation in a horizontal direction.
  • the electromagnetic wave excitation mode of the omnidirectional antenna is relatively uniform in electromagnetic waves radiated from all directions in the horizontal plane, thereby improving the out-of-roundness index of the antenna, thereby improving the antenna. Radiation performance.
  • FIG. 1 is a cross-sectional view of a conventional omnidirectional antenna in a plan view when placed vertically;
  • FIG. 2 is a perspective view of another conventional omnidirectional antenna
  • FIG. 3 is a schematic structural diagram of still another embodiment of an omnidirectional antenna according to the present invention.
  • Figure 4 is a cross-sectional view of the omnidirectional antenna shown in Figure 3 as viewed in a vertical direction;
  • FIG. 5 is a cross-sectional view of the omnidirectional antenna according to the present invention in a plan view when placed vertically in an embodiment
  • FIG. 6 is a cross-sectional view of the omnidirectional antenna according to another embodiment of the present invention when placed vertically in a vertical direction;
  • FIG. 7 is a cross-sectional view of the omnidirectional antenna according to another embodiment of the present invention placed in a vertical direction when placed vertically Surface map
  • Figure 8 is a cross-sectional view of the omnidirectional antenna of the present invention in a plan view as it is placed vertically. detailed description
  • the omnidirectional antenna comprises: at least two metal plates, at least one metal reflector, a feed line and a plurality of first blocking devices, each of the metal plates being provided with at least a gap;
  • the at least one metal reflector is located in a surrounding or semi-enclosed cavity formed by the at least two metal plates, at least one of the metal plates is parallel to one of the metal reflectors, and the first sealing device is used to
  • the parallel metal plates and the metal reflectors are closed at the edges in the width direction, and the mutually parallel metal plates are electrically connected to the metal reflectors, and the feed lines are disposed between the mutually parallel metal plates and the metal reflectors;
  • a metal reflector is used to reflect electromagnetic waves generated by the feeder line to a metal plate, and a gap on the metal plate is used to radiate the feeder line to the metal plate. Electromagnetic waves and electromagnetic waves reflected from the metal reflector onto the metal plate are radiated to cause the slits on the at least two metal plates to form omnidirectional electromagnetic wave radiation in the horizontal direction.
  • the omnidirectional antenna provided by the embodiment of the present invention may be disposed on a transmitting device such as a base station.
  • the metal plate and the metal reflector of the present invention are both flat plate structures, and the shape of the metal plate is not particularly limited, and is preferably set to a rectangular shape.
  • the metal plate or the metal reflector can be made of a metal material, and can be made of a non-metal material carrying metal layer, for example: a printed circuit board (PCB) surface made of copper, or made of plastic, etc.
  • PCB printed circuit board
  • Non-metallic material surface plating metal Made of, each metal plate is provided with at least one slit by a slitting (grooving) process.
  • the metal plate is a PCB board
  • copper foil may be coated on the surface of the PCB facing away from the metal reflector, and feeding may be provided on the surface of the PCB facing the metal reflector. line.
  • a non-conductive support frame may be disposed between the mutually parallel metal plates and the metal reflector, that is, the support frame is made of a non-conductive material, such as plastic, etc., through which the feeder circuit is fixed to the metal plate and / or metal reflector.
  • the first sealing device is made of a conductive material, specifically a metal, a PCB board or other conductive material.
  • the shape of the first sealing device is not specifically limited, and a flat plate structure is preferably used.
  • the first sealing device may be integrally formed with the metal plates and the metal reflecting plates which are parallel to each other; or, after the first sealing device, the metal plate and the metal reflecting plate are separately formed, they may be joined by a welding process or the like.
  • the first closing means and the mutually parallel metal plates and metal reflecting plates form a closed conductor in the width direction of the metal plate.
  • the feeding line is disposed between the mutually parallel metal plates and the metal reflecting plate, and the feeding line is connected to the power grid, and the feeding line generates electromagnetic waves when energized, because the first closing device and the mutually parallel metal plate and the metal reflecting plate are in the width
  • a closed conductor is formed in the direction, and the closed conductor encloses electromagnetic waves generated by the feeder line.
  • the metal reflector acts as a specular reflection, and the metal reflector can reflect the electromagnetic waves generated by the feeder line onto the metal plate and reflect on the metal plate due to the metal.
  • the plate is provided with a slit which is capable of radiating electromagnetic waves generated by the feeding line to the portion of the metal plate and electromagnetic waves reflected by the metal reflecting plate to the metal plate.
  • the electromagnetic wave excitation method in which the electromagnetic wave is radiated from the slit provided on the metal plate parallel thereto by the action of the metal reflecting plate, the electromagnetic wave radiated in each direction is relatively uniform, and the roundness index of the antenna is high.
  • the omnidirectional antenna provided by the embodiment of the present invention, if two metal plates are provided, two metal plates are required to be arranged in parallel (the parallelism involved in the present invention may be absolute parallel or approximately parallel). That is, a small angle is allowed between two parallel metal plates involved in the present invention, and a small angle is allowed between the mutually parallel metal plates and the metal reflector.
  • the metal reflector is disposed in a semi-enclosed cavity formed by two parallel metal plates, the metal reflectors being respectively parallel to the two metal plates.
  • the electromagnetic wave radiated by the slit on one of the metal plates can be radiated within a range of 180 degrees toward one side of the metal plate, and the electromagnetic wave radiated by the slit on the other metal plate can be directed to the opposite side. Radiation within a range of 180 degrees on one side, therefore, enables omnidirectional electromagnetic wave radiation in the horizontal direction, that is, radiation in the range of 360 degrees in the horizontal direction.
  • the omnidirectional antenna provided by the embodiment of the present invention can be realized in the electromagnetic wave excitation mode in which the electromagnetic wave is radiated from the gap provided on the metal plate parallel to the metal reflector.
  • the electromagnetic wave is uniformly radiated within a range of 360 degrees in the horizontal direction, and the out-of-roundness index of the omnidirectional antenna is improved.
  • any pair of mutually parallel metal plates and metal reflectors since the metal reflector mainly reflects electromagnetic waves generated by the feeder line to the metal plate, electromagnetic waves generated by the feeder line are from the length of the metal plate.
  • the portion from which the upper edge is radiated is negligible, and therefore, the edge of the metal plate in the longitudinal direction and the edge of the metal reflector in the longitudinal direction do not have to be closed.
  • a plurality of second sealing means can also be provided, and the edges of the mutually parallel metal plates and the metal reflectors in the longitudinal direction are closed by the second closing means, and the mutually parallel metal plates and metals are reflected.
  • the plates are electrically connected, so that for any pair of mutually parallel metal plates and metal reflectors, a closed conductor can be formed in both the length direction and the width direction, so that the electromagnetic waves generated by the feeder line can be more effectively enclosed in mutually parallel metals.
  • the enclosed space formed by the plate and the metal reflector is not limited to the plate and the metal reflector.
  • the omnidirectional antenna provided by the embodiment of the present invention may be provided with two metal plates, which may be arranged in parallel and have a certain distance between the two metal plates.
  • the two metal plates may be disposed between each other.
  • a metal reflector which is parallel to the two metal plates.
  • the two metal plates may also be arranged in parallel, in which case two metal reflectors may be provided, each of which is parallel to one metal plate.
  • the number of metal plates is greater than 2, for example, when the number of metal plates is 3, for any pair of mutually parallel metal plates and metal reflectors, the metal reflector can reflect electromagnetic waves generated by the feeder lines to the metal.
  • the slit provided in the metal plate can radiate electromagnetic waves radiated from the feeding line to the metal plate and electromagnetic waves reflected from the metal reflecting plate to the metal plate.
  • the electromagnetic waves radiated by the slits of the three metal plates can form the omnidirectional electromagnetic wave radiation in the horizontal direction, that is, the uniform radiation within 360 degrees in the horizontal direction. Electromagnetic waves. The case where the number of metal plates is greater than 3 is not listed.
  • the number, width and length of the slits provided on the metal plate can be specifically set according to the length of the metal plate and the power of electromagnetic waves generated by the feeder line.
  • the direction in which the slits are disposed is not specifically limited, but may be generally arranged along the length of the metal plate. Preferably, it may be disposed on the central axis of the width direction of the metal plate, which is more conducive to improving the out-of-roundness index of the antenna.
  • a slit on a metal plate is the smallest unit that radiates electromagnetic waves
  • a pair of mutually parallel metal plates and metal reflectors, and a slit provided on the metal plate constitute a basic horizontally polarized radiating element. If a plurality of slits are provided on the metal plate, a pair of mutually parallel metal plates and metal reflectors, and a plurality of slits provided on the metal plate are arranged in a direction of extension of the length of the metal plate to form a horizontally polarized radiation array.
  • a plurality of horizontally polarized radiation arrays form a horizontally polarized omnidirectional antenna in a plane orthogonal to the array direction (so-called horizontal polarization means that the direction of the electric field vector is parallel to the ground when the slit extends in a direction perpendicular to the ground).
  • the metal plate is usually placed vertically (ie, placed perpendicular to the ground), and the size of the metal reflector can be substantially the same as the size of the metal plate to ensure that the feeding line can be generated.
  • the electromagnetic waves radiate from all the gaps provided on the metal plate.
  • the omnidirectional antenna provided in this embodiment radiates electromagnetic waves generated by the feeding lines between the mutually parallel metal plates and the metal reflecting plates from the gaps in the metal plates through the metal reflecting plates between the at least two metal plates.
  • the gaps on at least two metal plates form omnidirectional electromagnetic wave radiation in the horizontal direction.
  • the electromagnetic wave excitation mode of the omnidirectional antenna is relatively uniform in the electromagnetic wave radiated from all directions in the horizontal plane, thereby improving the out-of-roundness index of the antenna, thereby improving the radiation of the antenna. performance.
  • 3 is a schematic structural view of still another embodiment of an omnidirectional antenna according to the present invention
  • FIG. 4 is a cross-sectional view of the omnidirectional antenna shown in FIG. 3 when viewed vertically, as shown in FIG. 3 and FIG.
  • the polarized omnidirectional antenna comprises: two metal plates 1 and a metal reflector 2, two metal plates 1 are arranged in parallel, and the metal reflector 2 is located between the two metal plates 1 and is respectively parallel with the two metal plates 1
  • a feed line (not shown) is disposed between the mutually parallel metal plate 1 and the metal reflector 2, and the first closing device 3 closes the edges of the metal plate 1 and the metal reflector 2 which are parallel to each other in the width direction.
  • the first closing device 3 adopts a flat plate structure).
  • the metal plate 1 is a PCB board, for the mutually parallel PCB board and the metal reflector 2, copper foil may be coated on the surface of the PCB board facing away from the metal reflector 2, and the surface of the PCB board facing the metal reflector 2 may be provided with a feed. Electric line.
  • a non-conductive support frame (not shown) may be disposed between the mutually parallel metal plate 1 and the metal reflector 2, and the support frame is made of a non-conductive material and may be made of plastic or the like.
  • a feeder circuit between the mutually parallel metal plate 1 and the metal reflection plate 2 is fixed to the metal plate 1 and/or the metal reflection plate 2.
  • FIG. 3 and 4 show that the width of the metal plate 1 and the metal reflector 2 are equal, and the distance between the metal reflector 2 and the two metal plates 1 is equal. In this case, the metal plate 1 and the metal are reflected. If the width of the plate 2 is not equal, or the distance between the metal reflector 2 and the two metal plates 1 is not equal, the index of the out-of-roundness of the antenna is higher. However, FIG. 5 shows a case where the width of the metal plate 1 and the metal reflection plate 2 are not equal but the distance between the metal reflection plate 2 and the two metal plates 1 is equal.
  • This omnidirectional antenna structure is also a feasible embodiment. In the omnidirectional antenna structure shown in Fig. 5, the out-of-roundness index of the antenna can be improved by adjusting the position of the gap on the two metal plates 1.
  • the width of the metal plate 1 is less than or equal to 1/4 wavelength, and a better non-circularity index can be obtained when the distance between the mutually parallel metal plate 1 and the metal reflection plate 2 is less than or equal to 1/8 wavelength. It can be seen that the omnidirectional antenna provided by the embodiment of the present invention has a compact structure and a small wind load.
  • At least one slit 1 1 may be disposed on each of the metal plates 1, and at least one of the slits 1 1 may be disposed along a direction in which the length of the metal plate 1 extends, preferably on a central axis in the width direction of the metal plate 1.
  • a pair of mutually parallel metal plates 1 and metal reflectors 2, and a slit 1 1 provided on the metal plate 1 constitute a basic horizontally polarized radiating element, and FIGS. 3 to 5 are each a metal plate 1 Set a gap 1 1 on the case.
  • two or more slits 11 may be provided in one metal plate 1, and these slits 1 1 are disposed along the direction in which the length of the metal plate 1 extends, preferably on the central axis in the width direction of the metal plate 1. If the distance between two adjacent slits 11 is too close, mutual coupling between them will be large, which will interfere with the transmission of electromagnetic waves. However, if the distance between the adjacent two slits 11 is too far, it will affect the coverage of the radiated electromagnetic waves.
  • the distance between two adjacent slots 11 can be set to 0.5-1 wavelengths, so that the omnidirectional antenna has better coverage characteristics in the vertical direction (specifically, the main lobe, that is, the whole The maximum gain is achieved in the cell covered by the antenna; the side lobes, that is, the cells covered by other omnidirectional antennas, try to generate less interference).
  • the mutually parallel metal plate 1 and the metal reflector 2, and the plurality of slits 1 1 disposed on the metal plate 1 are arranged along the length of the metal plate 1 to form a horizontally polarized radiation array, and the plurality of horizontally polarized radiation arrays are A horizontally polarized omnidirectional antenna is formed in a plane orthogonal to the array direction.
  • the two metal plates 1 may be disposed in parallel and have a certain distance between the two metal plates 1.
  • the two metal plates 1 may be arranged in parallel, and a metal plate is used between the two metal plates 1.
  • a parallel metal reflector 2 reflects electromagnetic waves. Since the two metal plates 1 are arranged in parallel, for each pair of mutually parallel metal plates 1 and metal reflection plates 2, the metal reflection plate 2 can reflect the portion of the electromagnetic waves generated by the feed line radiating onto itself onto the metal plate 1, The slit 11 on the metal plate 1 is capable of radiating electromagnetic waves generated by the feed line to a portion of the metal plate 1, and electromagnetic waves reflected by the metal reflection plate 2 onto the metal plate 1 are radiated.
  • the electromagnetic wave radiated by the slit 11 provided on one of the two parallel metal plates 1 can be radiated toward the 180 degree side of the metal plate 1 side, and the other can be The electromagnetic wave radiated by the slit 11 on the metal plate 1 radiates toward 180 degrees of the opposite other side, and therefore, omnidirectional electromagnetic wave radiation in the range of 360 degrees in the horizontal direction can be realized.
  • the omnidirectional antenna provided by the present invention may include: n The metal plate 1 and the n metal reflection plates 2, the edges of the n metal plates 1 in the width direction are sequentially connected to form a prism having an n-sided cross section, and the edges of the n metal reflection plates 2 are sequentially connected in the width direction.
  • a prism body having an n-sided cross section is formed, and the prism body composed of the n metal plates 1 is disposed outside the prism body formed by the n metal reflection plates 2 (that is, the n metal reflection plates 2 are surrounded by the n metal plates 1 In the cavity, each metal plate 1 is parallel to any one of the metal reflectors 2, wherein n is greater than or equal to 3.
  • edges of the three or more metal sheets 1 in the width direction are sequentially connected to form the prisms
  • the edges of the three or more metal reflectors 2 in the width direction are sequentially connected to the prism body formed, and the metal plate 1 is surrounded by the prism body formed on the outer side of the prism body composed of the metal reflector 2.
  • the prism formed by the metal plate 1 and the prism formed by the metal reflector 2 may be integrally formed, or may be joined together by welding or the like after the respective metal plate 1 and the metal reflector 2 are separately formed.
  • first closing means 3 Due to any pair of mutually parallel metal plates 1 and metal reflectors 2, the edges in the width direction are joined by a first closing means 3 (as can be seen from Figures 6-8, the first closing means 3 is used for metal plates)
  • the prisms formed by the 1 and the corresponding edges of the prism formed by the metal reflector 2 are connected, and the adjacent metal plates 1 can share a first sealing device 3, and the first sealing device 3 can also be combined with the metal plate.
  • the prisms formed by the prisms and the prisms formed by the metal reflectors 2 are integrally formed, or they may be formed by welding and the like after being formed, respectively.
  • the horizontally polarized radiation array forms a horizontally polarized omnidirectional radiation antenna in a plane orthogonal to the direction of the array.
  • FIG. 6 shows the case where n is equal to 3, and the omnidirectional antenna shown in FIG. 6 has the same width of the three metal plates 1, and the three metal plates 1 are surrounded by a triangular prism, and the triangular prism has an equilateral triangle. Under this antenna structure, a better out-of-roundness index can be achieved.
  • Figure 7 shows the case where the widths of the three metal plates 1 are not equal.
  • This omnidirectional antenna structure is also a feasible implementation, but it is not round. The degree index is relatively lower than the structure shown in Figure 6.
  • electromagnetic waves generated by the feed line are radiated from the slit 1 1 of the metal plate 1 by the action of the three metal reflectors 2, 3
  • the electromagnetic waves radiated by the slits 1 1 on the metal plate 1 form omnidirectional electromagnetic wave radiation in the horizontal direction.
  • n is equal to 4.
  • the omnidirectional antenna structure shown in FIG. 8 and the specific arrangement of the metal plate 1 and the metal reflector 2 can be referred to the omnidirectional antenna structure with n equal to 3, and will not be described again. antenna.
  • each metal plate 1 may also be provided with at least one slit 11, and at least one slit 11 may be disposed along a direction in which the length of the metal plate 1 extends. If there are more than two slits 11 on the metal plate 1, the distance between the adjacent slits 11 can be set to 0.5-1 wavelengths, so that the omnidirectional antenna has better coverage characteristics in the vertical direction (specifically It is the main lobe, that is, the maximum gain is achieved in the cell covered by the omnidirectional antenna; the side lobes, that is, the cells covered by other omnidirectional antennas try to generate less interference).
  • the width of the metal plate 1 can be set to be less than or equal to 1/4 wavelength
  • the distance between the parallel metal plate 1 and the metal reflection plate 2 can be set to be equal to or less than 1/8 wavelength.
  • the omnidirectional antenna provided by the embodiment of the present invention radiates electromagnetic waves generated by the feeding lines between the mutually parallel metal plates and the metal reflecting plates from the gaps in the metal plate through the metal reflecting plate between the at least two metal plates.
  • at least two slits on the metal plate form a horizontal omnidirectional electromagnetic wave radiation
  • the electromagnetic wave excitation mode of the omnidirectional antenna is relatively uniform in the electromagnetic wave radiated from all directions in the horizontal plane, and can realize the omnidirectional and uniform radiation of the electromagnetic wave on the horizontal plane, and improve the radiation index performance of the antenna.
  • the omnidirectional antenna provided by the embodiment of the invention has a compact structure and a small wind load.

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

全向天线
技术领域
本发明涉及通信技术领域, 特别涉及一种全向天线。 背景技术
目前, 全向天线广泛运用于移动通信技术领域, 例如: 在个人手持式电 话系统( Personal Handy-phone System; PHS ) 中作为基地台天线使用。
图 1所示为一种现有的全向天线竖直放置时沿俯视方向的截面图, 如图 1所示, 该全向天线由 3个用于辐射电磁波的电偶极子 A构成, 然而这种全 向天线馈电复杂, 并且处于工作状态竖直放置时, 向水平面各方向辐射的电 磁波不均匀, 即天线辐射性能指标中的不圆度指标较低。
图 2所示为另一种现有的全向天线的立体图, 如图 2所示, 这种全向天 线是矩形封闭的波导腔体, 腔体表面开设缝隙 B, 通过缝隙 B辐射电磁波, 然而这种全向天线向水平面各方向辐射的电磁波不均匀, 即天线的不圆度指 标较低。 发明内容
本发明实施例提供了一种全向天线, 以解决现有的全向天线不圆度指标 较低的问题。
本发明实施例提供一种全向天线, 包括: 至少两个金属板、 至少一个金 属反射板、 馈电线路和多个第一封闭器件, 每个所述金属板上设有至少一道 缝隙;
所述至少一个金属反射板位于所述至少两个金属板形成的包围或半包围 腔体中, 至少一个所述金属板与一个所述金属反射板平行, 所述第一封闭器 件用于将相互平行的金属板和金属反射板在宽度方向上的边缘封闭、 且使相 互平行的金属板与金属反射板电连接, 所述馈电线路设置于相互平行的金属 板和金属反射板之间;
相互平行的金属板和金属反射板中, 金属反射板用于将所述馈电线路产 生的电磁波反射到金属板上, 金属板上的缝隙用于将所述馈电线路辐射到金 属板上的电磁波以及金属反射板反射到金属板上的电磁波辐射出去, 以使所 述至少两个金属板上的缝隙形成水平方向的全向电磁波辐射。
本发明实施例提供的全向天线,通过至少两个金属板之间的金属反射板, 将相互平行的金属板和金属反射板之间馈电线路产生的电磁波从金属板上的 缝隙中辐射出去,至少两个金属板上的缝隙形成水平方向的全向电磁波辐射, 这种全向天线的电磁波激励方式在水平面各方向上辐射的电磁波比较均匀, 提高天线的不圆度指标, 从而提高天线的辐射性能。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为一种现有的全向天线竖直放置时沿俯视方向的截面图;
图 2为另一种现有的全向天线的立体图;
图 3为本发明提供的全向天线又一个实施例的结构示意图;
图 4为图 3所示的全向天线竖直放置时沿俯视方向的截面图;
图 5为本发明提供的全向天线再一个实施例竖直放置时沿俯视方向的截 面图;
图 6为本发明提供的全向天线又一个实施例竖直放置时沿俯视方向的截 面图;
图 7为本发明提供的全向天线另一个实施例竖直放置时沿俯视方向的截 面图;
图 8为本发明提供的全向天线再一个实施例竖直放置时沿俯视方向的截 面图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明提供的全向天线一个实施例中, 全向天线包括: 至少两个金属板、 至少一个金属反射板、 馈电线路和多个第一封闭器件, 每个所述金属板上设 有至少一道缝隙;
所述至少一个金属反射板位于所述至少两个金属板形成的包围或半包围 腔体中, 至少一个所述金属板与一个所述金属反射板平行, 所述第一封闭器 件用于将相互平行的金属板和金属反射板在宽度方向上的边缘封闭、 且使相 互平行的金属板与金属反射板电连接, 所述馈电线路设置于相互平行的金属 板和金属反射板之间;
相互平行的金属板和金属反射板中, 金属反射板用于将所述馈电线路产 生的电磁波反射到金属板上, 金属板上的缝隙用于将所述馈电线路辐射到金 属板上的电磁波以及金属反射板反射到金属板上的电磁波辐射出去, 以使所 述至少两个金属板上的缝隙形成水平方向的全向电磁波辐射。
本发明实施例提供的全向天线, 可以设置在基站等发射设备上。
本发明涉及到的金属板和金属反射板均为平板结构, 金属板的形状不做 具体限制, 优选设置成长方形。 其中, 金属板或金属反射板, 可以由金属材 料制成, 可以由非金属材料承载金属层制成, 例如: 由印刷电路板(Printed Circuit Board; PCB )表面覆铜制成, 或者由塑料等非金属材料表面电镀金属 制成, 每个金属板上通过开缝(开槽)工艺设置至少一道缝隙。
如果金属板采用 PCB板, 则相互平行的 PCB板(金属板)和金属反射 板中,可在背对金属反射板的 PCB表面上覆铜箔,在面向金属反射板的 PCB 表面上设置馈电线路。 或者, 还可以在相互平行的金属板和金属反射板之间 设置非导电的支撑架, 即该支撑架采用非导电材料, 例如塑料等制成, 通过 该支撑架将馈线电路固定在金属板和 /或金属反射板上。
任意一对相互平行的金属板和金属反射板, 金属板和金属反射板在宽度 方向上的边缘(即宽度方向的侧边)都可以通过第一封闭器件封闭起来, 并 且通过第一封闭器件电连接。 其中, 第一封闭器件采用导电材料, 具体可以 是金属、 PCB板或其他导电材料, 第一封闭器件的形状不做具体限制, 优选 采用平板结构。 第一封闭器件可以与相互平行的金属板和金属反射板一体成 型制成; 或者, 也可以在第一封闭器件、 金属板和金属反射板分别成型后, 采用焊接等工艺连接起来。第一封闭器件与相互平行的金属板和金属反射板, 在金属板的宽度方向上形成了封闭的导体。 馈电线路设置在相互平行的金属 板和金属反射板之间,馈电线路连接电网, 馈电线路在通电时将产生电磁波, 由于第一封闭器件与相互平行的金属板和金属反射板在宽度方向上形成了封 闭的导体, 该封闭的导体将馈电线路产生的电磁波封闭起来。
对于任意一对相互平行的金属板和金属反射板, 金属反射板的作用如同 镜面反射,金属反射板能够将馈电线路产生的电磁波中辐射到自身上的部分, 反射到金属板上, 由于金属板上设有缝隙, 缝隙能够将馈电线路产生的电磁 波中辐射到金属板的部分, 以及金属反射板反射到金属板上的电磁波辐射出 去。 这种在金属反射板的作用下将电磁波从与之平行的金属板上设置的缝隙 中辐射出去的电磁波激励方式, 向各个方向上辐射的电磁波较为均匀, 使天 线的不圆度指标较高。
本发明实施例提供的全向天线, 如果设置两个金属板, 则需要两个金属 板平行设置 (本发明涉及到的平行, 可以是绝对平行, 也可以是近似平行, 即本发明中涉及到的两个平行的金属板之间允许存在一个较小的角度, 相互 平行的金属板和金属反射板之间也允许存在一个较小的角度) 。 在这种情况 下, 金属反射板设置于两个平行的金属板形成的半包围腔体中, 金属反射板 分别与两个金属板平行。 在金属反射板的作用下, 能够将其中一个金属板上 的缝隙辐射的电磁波, 朝向金属板一侧的 180度范围内辐射, 并且能够将另 一个金属板上的缝隙辐射的电磁波朝向相反的另一侧的 180度范围内辐射, 因此, 能够实现水平方向的全向电磁波辐射, 即实现电磁波在水平方向 360 度范围内的辐射。 由于金属反射板将电磁波从与之平行的金属板上设置的缝 隙中辐射出去的电磁波激励方式, 向各个方向上辐射的电磁波较为均匀, 因 此, 本发明实施例提供的全向天线, 能够实现在水平方向上 360度范围内电 磁波均匀辐射, 提高全向天线的不圆度指标。
需要说明的是, 对于任意一对相互平行的金属板和金属反射板, 由于金 属反射板主要将馈电线路产生的电磁波反射到金属板上, 因此, 馈电线路产 生的电磁波从金属板长度方向上的边缘辐射出去的部分可以忽略不计, 因此, 金属板在长度方向上的边缘与金属反射板在长度方向上的边缘不必封闭。 但 可以理解的是, 还可以设置多个第二封闭器件, 通过第二封闭器件将相互平 行的金属板和金属反射板在长度方向上的边缘封闭起来, 并使相互平行的金 属板和金属反射板电连接, 从而对于任意一对相互平行的金属板和金属反射 板, 在长度方向和宽度方向都能够形成封闭的导体, 从而能够更有效地将馈 电线路产生的电磁波封闭在相互平行的金属板和金属反射板构成的封闭空间 内。
本发明实施例提供的全向天线可以设置两个金属板, 这两个金属板可以 平行正对设置, 两个金属板之间具有一定距离, 这种情况下, 两个金属板之 间可设置一个金属反射板, 这个金属反射板分别与两个金属板平行。 作为另 一种可行的实施方式, 两个金属板也可以平行错开设置, 这种情况下, 也可 以设置两个金属反射板, 每个金属反射板与一个金属板平行。 当金属板的个数大于 2时, 例如: 金属板的个数为 3时, 对于任意一对 相互平行的金属板和金属反射板, 均可以金属反射板将馈电线路产生的电磁 波反射到金属板上 , 使金属板设置的缝隙能够将馈电线路辐射到金属板上的 电磁波以及金属反射板反射到金属板上的电磁波辐射出去。 通过设置三个金 属板的摆放位置以及 3个金属板宽度的设置, 可以实现 3个金属板的缝隙辐 射的电磁波在水平方向上形成全向电磁波辐射, 即水平方向上 360度范围内 均匀辐射电磁波。 金属板的个数大于 3的情况不——列举。
金属板上设置的缝隙个数、 宽度和长度具体可以根据金属板的长度以及 馈电线路产生的电磁波的功率等进行设置。 缝隙的设置方向不做具体限定, 但通常可以沿金属板的长度方向上设置, 优选的, 可以设置在金属板宽度方 向的中心轴上, 这样更有助于提高天线的不圆度指标。
由于一个金属板上的一道缝隙为辐射电磁波的最小单元, 因此, 一对相 互平行的金属板和金属反射板, 以及金属板上设置的一道缝隙组成了一个最 基本的水平极化辐射单元。 如果金属板上设有多道缝隙, 则一对相互平行的 金属板和金属反射板, 以及金属板上设置的多道缝隙, 沿金属板长度的延伸 的方向排列组成为水平极化辐射阵列, 多个水平极化辐射阵列在与阵列方向 正交的平面内组成了水平极化全向天线 (所谓水平极化是指当缝隙延伸方向 垂直地面时, 电场矢量方向平行于地面) 。
本发明实施例提供的全向天线, 在使用时金属板通常竖直放置(即与地 面垂直放置) , 金属反射板的大小可以与金属板的大小形状大致相同, 以保 证能够将馈电线路产生的电磁波从金属板上设置的所有缝隙中辐射出去。
本实施例提供的全向天线, 通过至少两个金属板之间的金属反射板, 将 相互平行的金属板和金属反射板之间馈电线路产生的电磁波从金属板上的缝 隙中辐射出去, 至少两个金属板上的缝隙形成水平方向的全向电磁波辐射, 这种全向天线的电磁波激励方式在水平面各方向上辐射的电磁波比较均匀, 提高天线的不圆度指标, 从而提高天线的辐射性能。 图 3为本发明提供的全向天线又一个实施例的结构示意图, 图 4为图 3 所示全向天线竖直放置时沿俯视方向的截面图, 如图 3和图 4所示, 该水平 极化全向天线包括: 两个金属板 1和一个金属反射板 2, 两个金属板 1平行 设置, 金属反射板 2位于两个金属板 1之间, 且分别与两个金属板 1平行, 相互平行的金属板 1和金属反射板 2之间设有馈电线路(图中未视出) , 第 一封闭器件 3将相互平行的金属板 1和金属反射板 2在宽度方向上的边缘封 闭, 且使相互平行的金属板 1和金属反射板 2电连接 (图 3所示的全向天线 中, 第一封闭器件 3采用平板结构 ) 。
如果金属板 1采用 PCB板,则对于相互平行的 PCB板和金属反射板 2, 可在背对金属反射板 2的 PCB板表面上覆铜箔,在面向金属反射板 2的 PCB 板表面设置馈电线路。 或者, 还可以在相互平行的金属板 1 和金属反射板 2 之间设置非导电的支撑架(图中未视出) , 该支撑架采用非导电材料, 可以 采用塑料等制成, 通过支撑架将相互平行的金属板 1和金属反射板 2之间的 馈线电路固定在金属板 1和 /或金属反射板 2上。
其中, 图 3和图 4所示为金属板 1与金属反射板 2的宽度相等, 金属反 射板 2与两个金属板 1的距离相等的情况, 这种情况下相比金属板 1和金属 反射板 2宽度不相等,或者金属反射板 2与两个金属板 1距离不相等的情况, 天线的不圆度指标更高。 但图 5所示为金属板 1和金属反射板 2宽度不相等 但金属反射板 2与两个金属板 1的距离相等的情况, 这种全向天线结构也是 一种可行的实施方式。 在图 5所示的全向天线结构下, 可以通过调整两个金 属板 1上的缝隙位置来提高天线的不圆度指标。
优选的, 金属板 1的宽度小于等于 1/4波长, 相互平行的金属板 1和金 属反射板 2之间的距离小于等于 1/8波长时能够获得较佳的不圆度指标。 可 以看出, 本发明实施例提供的全向天线结构紧凑, 风载荷小。
每个金属板 1上可以设置至少一道缝隙 1 1 , 至少一道缝隙 1 1可以沿金 属板 1长度延伸的方向设置, 优选设置在金属板 1宽度方向上的中心轴上。 一对相互平行的金属板 1和金属反射板 2, 以及金属板 1上设置的一道缝隙 1 1组成了一个最基本的水平极化辐射单元, 图 3-图 5所示均为一个金属板 1 上设置一道缝隙 1 1的情况。
一个金属板 1上还可以设置两道以上缝隙 11 , 这些缝隙 1 1沿金属板 1 长度延伸的方向设置, 优选设置在金属板 1 宽度方向上的中心轴上。 如果相 邻两道缝隙 11之间的距离太近, 则会导致相互之间的互耦较大, 进而对电磁 波的传输产生干扰。但如果相邻两道缝隙 11之间的距离太远, 则会影响辐射 电磁波的覆盖范围。 综合以上因素考虑,相邻两道缝隙 11之间的距离可以设 置为 0.5-1 个波长, 以使该全向天线在竖直方向上具有较好的覆盖特性(具 体是主瓣, 即该全向天线覆盖的小区内达到最大增益; 副瓣, 即其他全向天 线覆盖的小区内尽量产生较小干扰)。 相互平行的金属板 1和金属反射板 2, 以及金属板 1上设置的多道缝隙 1 1 ,沿金属板 1长度延伸的方向排列组成水 平极化辐射阵列, 多个水平极化辐射阵列在与阵列方向正交的平面内组成了 水平极化全向天线。
具体的, 两个金属板 1可以平行正对设置, 两个金属板 1之间具有一定 距离, 或者, 两个金属板 1还可以平行错开设置, 两个金属板 1之间采用一 个与金属板 1平行的金属反射板 2来反射电磁波。 由于两个金属板 1平行设 置, 对于每对相互平行的金属板 1和金属反射板 2, 金属反射板 2能够将馈 电线路产生的电磁波中辐射到自身上的部分反射到金属板 1上, 金属板 1上 的缝隙 1 1能够将馈电线路产生的电磁波中辐射到金属板 1的部分,以及金属 反射板 2反射到金属板 1上的电磁波辐射出去。 在金属反射板 2的作用下, 能够将两个平行的金属板 1中的一个上面设置的缝隙 1 1辐射的电磁波,朝向 该金属板 1一侧的 180度范围内辐射, 并且能够将另一个金属板 1上的缝隙 1 1辐射的电磁波朝向相反的另一侧的 180度范围内辐射, 因此, 能够实现水 平方向 360度范围内的全向电磁波辐射。
作为另一种可行的实施方式, 本发明提供的全向天线, 可以包括: n 个 金属板 1和 n个金属反射板 2, n个金属板 1在宽度方向上的边缘依次连接, 形成截面为 n边形的棱柱体, n个金属反射板 2在宽度方向上的边缘依次连 接, 形成截面为 n边形的棱柱体, n个金属板 1构成的棱柱体围设在 n个金 属反射板 2构成的棱柱体外部(即 n个金属反射板 2位于 n个金属板 1形成 的包围腔体中 ), 每个金属板 1与任意一个所述金属反射板 2平行, 其中, n 大于等于 3。
3个或 3个以上的金属板 1在宽度方向上的边缘(即在宽度方向上的侧 边)依次连接形成的棱柱体, 3个或 3个以上的金属反射板 2在宽度方向上 的边缘(即在宽度方向上的侧边)依次连接形成的棱柱体, 金属板 1在构成 的棱柱体围设在金属反射板 2构成的棱柱体外侧。 其中, 金属板 1形成的棱 柱体和金属反射板 2形成的棱柱体均可以一体成型制成, 或者, 还是在各个 金属板 1和金属反射板 2分别成型后, 采用焊接等工艺连接在一起。 由于任 意一对相互平行的金属板 1 和金属反射板 2, 在宽度方向上的边缘采用第一 封闭器件 3连接(从图 6-图 8可以看出, 第一封闭器件 3用于将金属板 1形 成的棱柱体和金属反射板 2形成的棱柱体中的各个相对应的棱边连接起来, 相邻的金属板 1可以共用一个第一封闭器件 3, 第一封闭器件 3也可以和金 属板 1组成的棱柱体、 金属反射板 2形成的棱柱体一体成型制成, 或者, 也 可以各自成型后通过焊接等工艺连接在一起), 因此, 在金属反射板 2的作用 下, 将各对相互平行的金属板 1和金属反射板 2形成的封闭空间内馈电线路 产生的电磁波, 向金属板 1形成的棱柱体各个侧面的外侧辐射出去, 金属板 1 形成的棱柱体的每个侧面各自组成的水平极化辐射阵列, 在与阵列方向正 交的平面内组阵形成水平极化全向辐射天线。
图 6所示为 n等于 3的情况, 且图 6所示的全向天线, 3个金属板 1的 宽度相等, 3个金属板 1围设形成三棱柱体, 该三棱柱体的截面呈正三角形, 这种天线结构下, 能够达到较佳的不圆度指标。 图 7所示为 3个金属板 1的 宽度不相等的情况, 这种全向天线结构也是一种可行的实施方式, 但其不圆 度指标相对而言要低于图 6所示的结构。
另外, 可以理解的是, 金属板 1构成的棱柱体与金属反射板 2构成的棱 柱体中心轴重合时, 各对相互平行的金属板 1和金属反射板 2之间的距离相 等, 能够达到较佳的不圆度指标。
图 6和图 7提供的全向天线结构中, 在 3块金属反射板 2的作用下, 分 别将馈电线路(图中未视)产生的电磁波从金属板 1上缝隙 1 1辐射出去, 3 个金属板 1上的缝隙 1 1辐射的电磁波在水平方向上形成全向电磁波辐射。三 线。
图 8所示为 n等于 4的情况, 图 8所示的全向天线结构, 其金属板 1和 金属反射板 2的具体设置方式可参照 n等于 3的全向天线结构, 不再赘述。 天线。
对于 n大于等于 3情况,每个金属板 1上同样可以设有至少一道缝隙 11, 至少一道缝隙 11可以沿金属板 1长度延伸的方向设置。 如果金属板 1上设 有两道以上缝隙 11 , 则相邻缝隙 11之间的距离可以设置成 0.5-1 个波长, 以使该全向天线在竖直方向上具有较好的覆盖特性(具体是主瓣, 即该全向 天线覆盖的小区内达到最大增益; 副瓣, 即其他全向天线覆盖的小区内尽量 产生较小干扰) 。
另外, 考虑到金属板 1的宽度以及金属板 1和金属反射板 2之间的距离 对天线不圆度指标的影响, 优选的, 当采用 n个以上金属板 1和 n个以上金 属反射板 2时, 金属板 1的宽度可以设置为小于等于 1/4波长, 平行的金属 板 1和金属反射板 2之间的距离可以设置为小于等于 1/8波长。
本发明实施例提供的全向天线,通过至少两个金属板之间的金属反射板, 将相互平行的金属板和金属反射板之间馈电线路产生的电磁波从金属板上的 缝隙中辐射出去,至少两个金属板上的缝隙形成水平方向的全向电磁波辐射, 这种全向天线的电磁波激励方式在水平面各方向上辐射的电磁波比较均匀, 能够实现电磁波在水平面上全向、 均匀辐射, 提高天线的辐射指标性能。 本 发明实施例提供的全向天线, 其结构紧凑, 风载荷小。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种全向天线, 其特征在于, 包括: 至少两个金属板、 至少一个金属 反射板、 馈电线路和多个第一封闭器件, 每个所述金属板上设有至少一道缝 隙;
所述至少一个金属反射板位于所述至少两个金属板形成的包围或半包围 腔体中, 至少一个所述金属板与一个所述金属反射板平行, 所述第一封闭器 件用于将相互平行的金属板和金属反射板在宽度方向上的边缘封闭、 且使相 互平行的金属板与金属反射板电连接, 所述馈电线路设置于相互平行的金属 板和金属反射板之间;
相互平行的金属板和金属反射板中, 金属反射板用于将所述馈电线路产 生的电磁波反射到金属板上, 金属板上的缝隙用于将所述馈电线路辐射到金 属板上的电磁波以及金属反射板反射到金属板上的电磁波辐射出去, 以使所 述至少两个金属板上的缝隙形成水平方向的全向电磁波辐射。
2、 根据权利要求 1所述的全向天线, 其特征在于, 包括两个金属板和一 个金属反射板, 所述两个金属板平行设置, 所述金属反射板位于所述两个金 属板之间, 且分别与所述两个金属板平行。
3、 根据权利要求 2所述的全向天线, 其特征在于, 所述金属板与所述金 属反射板的宽度相等。
4、根据权利要求 2或 3所述的全向天线, 其特征在于, 所述金属反射板 与所述两个金属板之间的距离相等。
5、 根据权利要求 1所述的全向天线, 其特征在于, 包括 n个金属板和 n 个金属反射板, 所述 n个金属板在宽度方向上的边缘依次连接, 形成截面为 n边形的棱柱体, 所述 n个金属反射板在宽度方向上的边缘依次连接, 形成 截面为 n边形的棱柱体, 所述 n个金属板构成的棱柱体围设在所述 n个金属 反射板构成的棱柱体外部,每个所述金属板与任意一个所述金属反射板平行, 所述 n大于等于 3。
6、根据权利要求 5所述的全向天线, 其特征在于, 所述 n个金属板构成 的棱柱体与所述 n个金属反射板构成的棱柱体中心轴重合。
7、 根据权利要求 5或 6所述的全向天线, 其特征在于, 所述 n个金属 板构成的棱柱体的截面为正 n边形, 所述 n个金属板反射构成的棱柱体的截 面为正 n边形。
8、 根据权利要求 1-3、 5或 6任一项所述的全向天线, 其特征在于, 所 述金属板的宽度小于等于 1/4波长, 相互平行的金属板和金属反射板之间的 距离小于等于 1/8波长。
9、 根据权利要求 1-3、 5或 6任一项所述的全向天线, 其特征在于, 所 述缝隙设置在所述金属板的长度方向上。
10、 根据权利要求 9所述的全向天线, 其特征在于, 每个所述金属板上 设有两道以上缝隙, 相邻缝隙之间的距离为 0.5-1个波长。
11、 根据权利要求 9所述的全向天线, 其特征在于, 所述缝隙设置在所 述金属板宽度方向上的中心轴上。
12、 根据权利要求 1-3、 5或 6任一项所述的全向天线, 其特征在于, 还 包括: 多个第二封闭器件, 所述第二封闭器件用于将相互平行的金属板和金 属反射板在长度方向上的边缘封闭, 且使相互平行的金属板和金属反射板电 连接。
13、 根据权利要求 1-3、 5或 6任一项所述的全向天线, 其特征在于, 所 述金属板为印刷电路板 PCB, 相互平行的 PCB和金属反射板中, 背对金属 反射板的 PCB表面上覆有铜箔, 面向金属反射板的 PCB表面上设有所述馈 电线路。
14、 根据权利要求 1-3、 5或 6任一项所述的全向天线, 其特征在于, 相 互平行的金属板和金属反射板之间还设有: 非导电的支撑架, 所述支撑架用 于将所述馈线电路固定在金属板和 /或金属反射板上。
PCT/CN2011/075290 2011-06-03 2011-06-03 全向天线 WO2011157172A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/075290 WO2011157172A2 (zh) 2011-06-03 2011-06-03 全向天线
CN2011800009299A CN102918711A (zh) 2011-06-03 2011-06-03 全向天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075290 WO2011157172A2 (zh) 2011-06-03 2011-06-03 全向天线

Publications (2)

Publication Number Publication Date
WO2011157172A2 true WO2011157172A2 (zh) 2011-12-22
WO2011157172A3 WO2011157172A3 (zh) 2012-05-03

Family

ID=45348634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075290 WO2011157172A2 (zh) 2011-06-03 2011-06-03 全向天线

Country Status (2)

Country Link
CN (1) CN102918711A (zh)
WO (1) WO2011157172A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053735A (ja) * 2012-09-06 2014-03-20 Sumitomo Electric Ind Ltd 水平偏波無指向性アンテナ
WO2015010761A1 (de) 2013-07-24 2015-01-29 Kathrein-Werke Kg Breitbandige omnidirektionale antenne
CN110323551A (zh) * 2018-03-30 2019-10-11 罗森伯格技术(昆山)有限公司 一种贴片辐射单元
EP3644440A4 (en) * 2017-08-24 2020-07-29 Samsung Electronics Co., Ltd. ELECTRONIC DEVICE WITH ANTENNA
CN113346225A (zh) * 2021-06-04 2021-09-03 清华大学 一种宽带水平极化水平全向覆盖mimo天线对

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532237B (zh) * 2016-11-30 2023-08-25 佛山市粤海信通讯有限公司 一种薄片型极化天线
CN106848521B (zh) * 2017-02-24 2022-05-10 通号电缆集团有限公司 一种双极化漏泄波导

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247858A (en) * 1979-05-21 1981-01-27 Kurt Eichweber Antennas for use with optical and high-frequency radiation
US5717410A (en) * 1994-05-20 1998-02-10 Mitsubishi Denki Kabushiki Kaisha Omnidirectional slot antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2727987Y (zh) * 2004-07-28 2005-09-21 西安海天天线科技股份有限公司 一种四极化阵列全向天线
CN2870202Y (zh) * 2005-12-10 2007-02-14 摩比天线技术(深圳)有限公司 一种多扇区天线
CN201616508U (zh) * 2010-02-09 2010-10-27 陕西特恩电子科技有限公司 一种全向微带天线阵

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247858A (en) * 1979-05-21 1981-01-27 Kurt Eichweber Antennas for use with optical and high-frequency radiation
US5717410A (en) * 1994-05-20 1998-02-10 Mitsubishi Denki Kabushiki Kaisha Omnidirectional slot antenna

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053735A (ja) * 2012-09-06 2014-03-20 Sumitomo Electric Ind Ltd 水平偏波無指向性アンテナ
WO2015010761A1 (de) 2013-07-24 2015-01-29 Kathrein-Werke Kg Breitbandige omnidirektionale antenne
DE102013012308A1 (de) 2013-07-24 2015-01-29 Kathrein-Werke Kg Breitbandige omnidirektionale Antenne
US9748666B2 (en) 2013-07-24 2017-08-29 Kathrein-Werke Ag Broadband omnidirectional antenna
EP3644440A4 (en) * 2017-08-24 2020-07-29 Samsung Electronics Co., Ltd. ELECTRONIC DEVICE WITH ANTENNA
US11196151B2 (en) 2017-08-24 2021-12-07 Samsung Electronics Co., Ltd. Electronic device comprising antenna
CN110323551A (zh) * 2018-03-30 2019-10-11 罗森伯格技术(昆山)有限公司 一种贴片辐射单元
CN110323551B (zh) * 2018-03-30 2023-05-26 普罗斯通信技术(苏州)有限公司 一种贴片辐射单元
CN113346225A (zh) * 2021-06-04 2021-09-03 清华大学 一种宽带水平极化水平全向覆盖mimo天线对

Also Published As

Publication number Publication date
WO2011157172A3 (zh) 2012-05-03
CN102918711A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
US11735807B2 (en) Antenna module and electronic device
CN1262046C (zh) 带中心偏振控制的双偏振阵列天线
JP4890618B2 (ja) 移動通信基地局用二重帯域二重偏波アンテナ
JP5956582B2 (ja) アンテナ
WO2011157172A2 (zh) 全向天线
JP6400839B2 (ja) 移動通信サービス用オムニアンテナ
JP5745582B2 (ja) アンテナ及びセクタアンテナ
WO2018103504A1 (zh) 馈电结构及基站天线
US11336031B2 (en) Antenna, array antenna, sector antenna, and dipole antenna
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
KR20120086841A (ko) 격리특성이 개선된 다중밴드 다이폴 소자 배열을 갖는 기지국 안테나
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
CN110707420B (zh) 一种双极化天线振子及包含该天线振子的天线
JP5565319B2 (ja) セクタアンテナ
JP5735591B2 (ja) アンテナ及びセクタアンテナ
JP5247779B2 (ja) アンテナ装置およびアレイアンテナ
JP4611401B2 (ja) アンテナ装置
EP2889961B1 (en) Reflecting board of base station antenna, and base station antenna
JP2007059959A (ja) 組合せアンテナ
JP3701578B2 (ja) 水平および垂直偏波共用アンテナ装置
KR101628815B1 (ko) 다이폴 안테나 장치
JP5787280B2 (ja) セクタアンテナ
JP2003078339A (ja) 水平および垂直偏波共用アンテナ装置
CN210167499U (zh) 一种双极化辐射单元及其天线
JP6593645B2 (ja) アンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000929.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795138

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795138

Country of ref document: EP

Kind code of ref document: A2