WO2011157151A2 - 实现容灾备份的方法、设备及系统 - Google Patents

实现容灾备份的方法、设备及系统 Download PDF

Info

Publication number
WO2011157151A2
WO2011157151A2 PCT/CN2011/075066 CN2011075066W WO2011157151A2 WO 2011157151 A2 WO2011157151 A2 WO 2011157151A2 CN 2011075066 W CN2011075066 W CN 2011075066W WO 2011157151 A2 WO2011157151 A2 WO 2011157151A2
Authority
WO
WIPO (PCT)
Prior art keywords
routing
information
state
route
standby
Prior art date
Application number
PCT/CN2011/075066
Other languages
English (en)
French (fr)
Other versions
WO2011157151A3 (zh
Inventor
余庆华
张驰
叶思海
余德明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20192549.2A priority Critical patent/EP3806417A1/en
Priority to EP17211062.9A priority patent/EP3373547B1/en
Priority to PCT/CN2011/075066 priority patent/WO2011157151A2/zh
Priority to EP11795117.8A priority patent/EP2677713A4/en
Priority to CN2011800008775A priority patent/CN102439903B/zh
Priority to ES17211062T priority patent/ES2832725T3/es
Publication of WO2011157151A2 publication Critical patent/WO2011157151A2/zh
Publication of WO2011157151A3 publication Critical patent/WO2011157151A3/zh
Priority to US14/089,108 priority patent/US9258183B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/58Association of routers
    • H04L45/586Association of routers of virtual routers

Definitions

  • the present invention relates to network communication technologies, and in particular, to a method, device, and system for implementing disaster recovery backup. Background technique
  • the dual-system disaster recovery technology can use the Virtual Router Redundancy Protocol (VRRP) scheme.
  • VRRP Virtual Router Redundancy Protocol
  • a virtual router needs to be created on the network.
  • the virtual router consists of one primary router and several standby routers. composition.
  • the primary router and the backup router both need to receive the Address Resolution Protocol (ARP) request packet sent by the host, and then the primary router responds.
  • ARP Address Resolution Protocol
  • the solution requires the primary router and the standby router to be in the same Layer 2 switching network.
  • the devices deployed in different locations are usually interoperable on the Layer 3 switching network. It is difficult to provide a Layer 2 switching network. Therefore, the VRRP solution is not suitable for remote disaster recovery.
  • the embodiment of the invention provides a method, a device and a system for implementing disaster recovery, which can implement remote standby backup.
  • the embodiment of the invention provides a method for implementing disaster recovery backup, which includes:
  • the current state includes an active state or a standby state; after determining that the current state is the active state, releasing the reachable routing information to the connected routing device, where the local state and the current state are standby
  • the devices in the state have the same IP address, and the reachable routing information includes routing information related to the IP address, so that the IP address is reachable, and the local device and the device whose current state is the standby state are mutually For backup devices.
  • An embodiment of the present invention provides a device for implementing disaster recovery backup, including:
  • a determining module configured to determine a current state of the local device, where the current state includes a primary state or a standby state;
  • the issuing module is configured to issue the reachable routing information to the connected routing device after the current state is determined to be the active state, where the local device has the same IP address as the device whose current state is the standby state, and the reachable route
  • the information includes the routing information related to the IP address, so that the IP address is reachable, and the device and the device whose current state is the standby state are mutually backup devices.
  • An embodiment of the present invention provides a system for implementing disaster recovery backup, including:
  • a primary device having the same IP address as the backup device having the backup relationship, and a first routing device connected to the primary device;
  • the primary device is configured to advertise reachable routing information to the first routing device, where the reachable routing information includes routing information related to the IP address, so that the IP address is reachable;
  • the first routing device is configured to: after receiving the reachable routing information, send the received packet to the active device via a path between the primary device and the primary device.
  • the device in the active state advertises the reachable routing information to the routing device by using the device in the active state.
  • the reachable routing information is information indicating the packet transmission path, so that the bearer network including the routing device can be made according to the The reachable routing information is sent to the device in the active state, instead of being sent to the device in the standby state where the packet cannot be processed. Because the device in the active state actively publishes reachable routing information, instead of requiring the primary device and the standby device to receive an ARP request, the primary device performs an ARP response, because the reachable routing information is The Layer 3 protocol message is advertised.
  • the embodiment of the present invention does not limit the primary device and the backup device in the same Layer 2 switching network, which avoids the limitation caused by the VRRR solution and can implement remote disaster recovery.
  • the active device and the backup device in the embodiment of the present invention have the same IP address, which can avoid the problem of high device capability and service interruption caused by having different IP addresses.
  • FIG. 1 is a schematic flowchart of a method for implementing a method for backing up a fault in the present invention
  • FIG. 2 is a schematic structural diagram of a system corresponding to FIG.
  • FIG. 3 is a schematic flowchart of a method for implementing a method for backing up a fault in another embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a system corresponding to FIG. 3;
  • FIG. 5 is a schematic flowchart of a method for implementing a method for backing up a fault in another embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a system corresponding to FIG. 5;
  • FIG. 7 is a schematic flowchart of a method for implementing a method for backing up a fault in another embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a system corresponding to FIG. 7;
  • FIG. 9 is a schematic flowchart of determining an active/standby state according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of switching from a primary device to a standby device according to an embodiment of the present invention
  • FIG. 11 is a schematic flowchart of switching a backup device to a primary device according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a system for implementing a backup of a fault in the present invention. detailed description
  • FIG. 1 is a schematic flowchart of a method for implementing a method for backing up a fault in the present invention
  • FIG. 2 is a schematic structural diagram of a system corresponding to FIG. Referring to FIG. 1, this embodiment includes:
  • Step 11 The device having the active/standby function determines the current state of the local device, and the current state includes an active state or a standby state.
  • Device B includes a device that has a backup relationship. For any device in device B that has a backup relationship, it has a primary and backup function, that is, under certain circumstances. In the primary state, in another case it is in the standby state. When the conditions are determined, one of the devices with active/standby functions included in device B is in the active state, and the rest are in the standby state. For example, if device B includes two devices with active/standby functions, one device is in the active state and the other device is in the standby state under the same conditions. As shown in Figure 2, the device in the active state can be used. Called the primary device, the device in standby is called the standby device.
  • the device with the backup relationship is the device with the active/standby function.
  • the device B includes a first device and a second device.
  • the first device and the second device both have an active/standby state.
  • the first device is the primary device
  • the second device is the second device.
  • the backup device and under other conditions, if the first device fails as the primary device, the first device is converted to the standby device, and the second device is converted to the primary device.
  • the first device or the second device is a device having an active/standby function. If the current status is the primary status, it is used as the primary device. If the current status is the standby status, it is used as the standby device.
  • the current state may be determined according to a default configuration, or may be determined according to a heartbeat message transmitted between the primary device and the standby device.
  • the active/standby switchover can also be implemented according to the heartbeat message.
  • a heartbeat line may be included between the active device and the standby device, where the heartbeat line is used for transmitting a heartbeat, and the heartbeat line may be specifically a Transport Control Protocol (TCP) connection or a user data packet protocol. (User Datagram Protocol, UDP) connection.
  • TCP Transport Control Protocol
  • UDP User Datagram Protocol
  • the active device can transmit backup data, such as current service information and terminal information, to the backup device. Therefore, a backup line can exist between the primary device and the backup device, and the backup line is used to transmit backup data.
  • the line can be specifically a TCP connection or a UDP connection.
  • Step 12 The device with the active/standby function advertises the reachable routing information to the connected routing device after determining that the current state is the active state.
  • the local device has the same IP address as the device whose current state is the standby state.
  • the reachable routing information includes routing information related to the IP address, so that the IP address is reachable, and the device and the device whose current state is in the standby state are mutually backup devices.
  • the routing device may include a router and a Layer 3 switch, and the router may be specifically an access router (AR).
  • AR access router
  • the embodiment of the present invention takes the routing device as the AR as an example, and assumes that the AR connected to the primary device is the first AR (AR1), and the AR connected to the standby device is the second AR (AR2).
  • the reachable routing information indicates that the corresponding path is reachable, and the IP bearer network can forward the packet to the device that advertises the reachable routing information. Therefore, after receiving the reachable routing information, the routing device can The reachable routing information sends the packet to the active device.
  • the reachable routing information can be used to advertise route reachability information.
  • the external border gateway protocol eBGP
  • eBGP external border gateway protocol
  • the static route between the routing devices is such that a route to the connected routing device can be used, for example, a Bidirectional Forwarding Detection (BFD) session is activated, the BFD session and the local device and the route are The static route is bound to the device.
  • BFD Bidirectional Forwarding Detection
  • the static route is bound to the device.
  • the static route is valid after the BFD session is activated.
  • the first route priority information is sent to the connected routing device, where the priority of the first route priority information is higher than the priority corresponding to the second route priority information, and the second route priority information is It is advertised to the device in the standby state.
  • the routing device routes the packet according to the route priority and routes the packet to the device corresponding to the route with the highest priority.
  • the above-mentioned active device and the standby device may have the same IP address.
  • the same IP address is IP1
  • the reachable routing information is routing information for the IP1.
  • the local device may further include: advertising route unreachable information or not routing information to the connected routing device; or invalidating and static routing between the connected routing devices, so that The route between the connected routing devices is unavailable, for example, deactivating a BFD session with the connected routing device; or sending a second routing priority information to the connected routing device, where the second routing priority information corresponds to the priority The level is lower than the priority corresponding to the first route priority information, and the first route priority information is advertised by the device in the active state.
  • the standby device advertises route unreachable information.
  • the foregoing routing information related to the IP address may include: routing information including the IP address, or routing information including network segment information of the network segment to which the IP address belongs. That is, the reachable routing information may include the foregoing IP address, and may also include information related to the IP address, for example, network segment information, such that the foregoing IP address is reachable.
  • the above-mentioned mutual backup devices may be mutually service data backups and mutual configuration information backups.
  • the data to be backed up is saved in the backup device, and the data to be backed up includes at least one of the following items: service data, configuration information, registration information, and call information.
  • the device with the active/standby function advertises the reachable routing information to notify the bearer network to perform the corresponding route, and does not need to send an ARP response to the host to determine the corresponding route. Therefore, the embodiment does not limit the primary device and the backup.
  • the device is located in the same Layer 2 switching network and can be implemented in the remote disaster recovery solution. That is, the active device and the backup device in this embodiment can be deployed in different Layer 2 switching networks, and only three layers need to be interconnected.
  • the active device and the backup device of the embodiment have the same IP address, which can avoid the problems of device capability and service interruption caused by different IP addresses.
  • the Layer 2 switching network is a Layer 2 switching network in the data communication field, and the same Layer 2 switching network can be the same broadcast domain.
  • FIG. 3 is a schematic flowchart of a method for implementing a disaster recovery backup according to another embodiment of the present invention.
  • the external dynamic routing protocol is taken as an example in this embodiment.
  • the device with the active/standby function is used as an example of a session border controller (SBC), and the corresponding primary device and backup device are respectively
  • SBC session border controller
  • the primary SBC and the standby SBC have the same IP address on the same network side as the primary SBC and the standby SBC.
  • the primary SBC and the standby SBC use IP1 to communicate with the terminal accessed through the access side bearer network, and the primary SBC is used.
  • the standby SBC uses IP2 to communicate with the softswitch device accessed through the core side bearer network.
  • the SBC has different IP addresses on the access side and the core side as an example, or the SBC has the same IP address on the access side and the core side.
  • the access side bearer network includes a first AR (AR1) connected to the primary SBC and a second AR (AR2) connected to the standby SBC, and the core side bearer network includes a third AR (AR3) connected to the primary SBC. And a fourth AR (AR4) connected to the standby SBC.
  • the primary SBC advertises the reachability information to the AR connected to it
  • the standby SBC advertises the route unreachable information to the AR connected to it.
  • this embodiment includes:
  • Step 31 The primary SBC advertises reachable information to the first AR and the third AR.
  • the primary SBC may use the dynamic routing protocol to advertise the reachable information of the route. For example, when eBGP is used, the primary SBC may send the first eBGP message to the first AR and the third AR. The first eBGP The message contains the routing indication information that is reachable by IP1.
  • Step 32 The standby SBC advertises route unreachable information to the second AR and the fourth AR.
  • the standby SBC may use the dynamic routing protocol to advertise the route unreachable information. For example, when the eBGP is used, the standby SBC may send the second eBGP message to the second AR and the fourth AR, where the second eBGP message is sent. Contains routing instructions for IP2 unreachable.
  • the dynamic routing protocols used by the primary SBC and the standby SBC are not limited to eBGP, and may be other dynamic routing protocols, such as OSPF, RIP, and the like.
  • steps 31 and 32 have no timing constraint relationship.
  • Step 33 The AR routes the received packet to the active device according to the received routing information.
  • the first AR receives the route reachability information, and can determine that the route between the devices connected thereto is available, and then, the received message from the terminal is routed to the connected device, that is, the primary SBC.
  • the second AR receives the route unreachable information, and can determine that the route between the connected device is unavailable, that is, the route between the second AR and the standby SBC cannot be used.
  • the second AR receives the terminal.
  • dynamic routing can be performed inside the bearer network, and sent from the second AR to the active SBC via the first AR.
  • the core network side can also use a similar process.
  • the third AR receives the route reachability information, and can determine that the corresponding route path is available. Then, the packet sent by the softswitch device passes through the third AR and the master. The path between the SBCs is sent to the primary SBC; the fourth AR receives the route unreachable information, and can determine that the path between the fourth AR and the standby SBC is unusable, and then the fourth AR receives the report sent by the softswitch.
  • the text can be sent to the active SBC via the third AR using the dynamic routing inside the bearer network.
  • the foregoing primary device and the standby device may be switched.
  • the eBGP TCP connection between the primary device and the first AR is interrupted, and the first AR automatically deletes the route of the primary SBC IP1.
  • the standby SBC can use the heartbeat packet to detect that the primary SBC is faulty, upgrade itself to the primary device, and establish an eBGP TCP connection with the second AR.
  • the data is rerouted to the new primary SBC, which is upgraded from the original standby SBC.
  • the core side can also use a similar process.
  • the primary SBC can send the data to be backed up to the standby SBC in real time through the connection corresponding to the backup line.
  • the data that is to be backed up after the primary SBC obtains the data to be backed up through UDP or TCP.
  • the connection is sent to the alternate SBC.
  • the T time is the set time, and different values can be set according to the scene.
  • the data to be backed up may be service data, configuration information, registration information, Call information, etc.
  • the active/standby switchover can be performed synchronously. For example, if the fault occurs between the first AR and the primary SBC, IP2 unreachable between the primary SBC and the third AR can be advertised, so that the IP1 and IP2 services are switched to the standby SBC.
  • the device can advertise the reachable routing information to the primary router according to the reachable routing information, because the active device actively advertises reachable routing information instead of requiring the primary device.
  • the standby device responds with the primary ARP.
  • the reachable route information can be advertised by using the Layer 3 protocol message.
  • the primary device and the backup device are not in the same Layer 2 switched network. The limitations caused can achieve disaster recovery in different places.
  • the master and the backup have the same IP address, and the terminal and the core network device at the time of handover cannot feel the handover, thereby avoiding service interruption.
  • the reachable routing information is sent by using a dynamic protocol, which can be applied to a scenario of a dynamic routing protocol.
  • FIG. 5 is a schematic flowchart of a method for implementing a disaster recovery backup according to another embodiment of the present invention.
  • the external static routing protocol is taken as an example in this embodiment.
  • FIG. 6 is a schematic structural diagram of the system corresponding to FIG. 5, which is different from the embodiment shown in FIG. 4, in this embodiment, a static route is between the SBC and the AR.
  • the SBC device and the IP bearer network router are connected to each other by a static route, that is, the first AR is configured to the static route of the IP1 on the primary SBC, and the second AR is configured to the static route of the IP1 on the standby SBC, and the third AR is configured.
  • Configure a static route to IP2 on the primary SBC and configure a static route to IP2 on the standby SBC on the fourth AR.
  • a BFD fault detection mechanism can be enabled between the SBC and the AR router.
  • the BFD session is bound to the static route to the SBC.
  • the active SBC is in the Up state of the BFD session on the access side and the core side.
  • the standby SBC is DOWN to the BFD session on the access side and the core side.
  • the static route to the primary SBC is only the access side AR and the core side AR. Activated, the route to the standby SBC is deactivated.
  • the initial active and standby states of the SBC are determined by configuration data and heartbeat arbitration mechanisms. Under normal circumstances, the traffic of the terminal and softswitch accessing the SBC will be routed to the active SBC.
  • the fault detection mechanism between the AR and the SBC is not limited to the BFD mechanism, and can also be used. PING, ARP, Operation Administration and Maintenance (OAM) and other fault detection mechanisms. If other fault detection mechanisms are used, the static route is bound to the fault detection mechanism on the AR and SBC. constant.
  • this embodiment includes:
  • Step 51 The SBC establishes a BFD session with the connected AR and binds the session to the static route.
  • the primary SBC establishes a BFD session with the first AR and the third AR. Each BFD session is bound to the corresponding static route.
  • the standby SBC establishes a BFD session with the second AR and the fourth AR. Each BFD session is bound to the corresponding static route.
  • Step 52 The primary SBC activates a BFD session with the first AR and the third AR.
  • the static route bound to the BFD session is reachable.
  • the active SBC is used to activate the BFD session between the ARs connected to the primary SBC
  • the static route to the primary SBC configured on the primary SBC takes effect.
  • the primary SBC route is reachable.
  • Step 53 The standby SBC deactivates the BFD session with the second AR and the fourth AR.
  • the static route bound to the BFD session is unreachable. After the BFD session is deactivated (BFD session), the static route bound to the BFD session is unreachable.
  • the standby SBC is used to activate the BFD session between the ARs connected to the SBC. The route of the standby SBC is unreachable.
  • steps 52 and 53 have no timing constraint relationship.
  • Step 54 The AR routes the received packets to the active device based on the activation of the BFD session.
  • the BFD session on the first AR is activated, and it can be determined that the static route between the devices connected to the device is valid. Then, the received packet from the terminal is routed to the device corresponding to the effective route, that is, the active SBC.
  • the BFD session on the second AR is deactivated, and it can be determined that the static route between the devices connected to the device is invalid. After that, the received packet from the terminal is forwarded by the dynamic routing protocol in the bearer network.
  • the AR is routed to the primary SBC. Among them, during the initial configuration of the system, Each AR can learn the information of each backup device to route the message to the required backup device.
  • the core network side can also use a similar process.
  • the BFD session on the third AR is activated, and the corresponding path is valid. Then, the received packet from the softswitch is routed through the effective path. On the primary SBC; the BFD session on the fourth AR is deactivated, and the corresponding path is determined to be invalid. After that, the received packet from the softswitch device is used in the bearer network dynamic routing protocol via the third AR. Routed to the primary SBC.
  • the foregoing active device and the standby device may be switched.
  • the primary device deactivates the BFD session with the first AR, and the first AR automatically routes the static route of the primary SBC IP1. go activate.
  • the standby SBC can use the heartbeat packet to detect that the primary SBC is faulty, upgrade itself to the primary device, and activate the BFD session with the second AR, so that the access side and the sent data are rerouted to the upgrade.
  • the core side can also be processed using a similar process.
  • the active/standby switchover can be performed synchronously.
  • the fault between the first AR and the primary SBC can be linked to activate the BFD session between the primary SBC and the third AR, so that the services of both the IP1 and the IP2 are switched to the standby SBC.
  • the host sends an ARP request to the primary device and the standby device, and then the primary device responds to the ARP request.
  • the VRRP solution requires that the active device and the standby device both receive the ARP request. Therefore, the VRRP solution needs to be located in the same Layer 2 switching network.
  • the bearer network can advertise the reachable routing information to the active router according to the reachable routing information, because the active device actively advertises reachable routing information instead of requiring the primary device.
  • the device and the standby device After receiving the ARP request, the device and the standby device perform the ARP response by the active device.
  • the reachable routing information can be advertised by using the Layer 3 protocol message.
  • the primary device and the backup device are not in the same Layer 2 switching network.
  • the master and the backup have the same IP address, so that the terminal and the core network device can not feel the handover when switching, and the service interruption is avoided.
  • this embodiment Deploying reachable routing information with a static protocol can be applied to scenarios of static routing protocols.
  • FIG. 7 is a schematic flowchart of a method for implementing a disaster recovery backup according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of the system corresponding to FIG. 7. Different from the embodiment shown in FIG. 4 and FIG. 6, in this embodiment, both the primary SBC and the standby SBC are reachable, but the primary SBC is routed. The priority of the packet is higher than that of the standby SBC, and the packet is forwarded to the SBC device with the highest priority. Specifically, the SBC device uses a static route or a dynamic route to connect to the IP bearer network router. The primary SBC has a higher priority on the access side and the core side, and the standby SBC has a lower priority on the access side and the core side.
  • the primary SBC has a higher priority on the access side IP1 and the core side IP2, and the standby SBC has lower priority on the access side IP1 and the core side IP2.
  • the initial active and standby states of the SBC are determined by the configuration data and the heartbeat arbitration mechanism. Normally, because the route to the primary SBC has a high priority, the traffic of the terminal and the softswitch accessing the SBC is routed to the active SBC.
  • this embodiment includes:
  • Step 71 The SBC establishes a routing connection with the AR.
  • a dynamic routing protocol or a static routing protocol to establish a routing connection.
  • Step 72 The primary SBC sends the first route priority information to the first AR and the third AR.
  • Step 73 The standby SBC sends the second route priority information to the second AR and the fourth AR.
  • the first route priority is higher than the second route priority.
  • the routing priority information can include the corresponding IP address.
  • steps 72 and 73 do not have a timing constraint relationship.
  • Step 74 The AR routes the received packet to the active device according to the received route priority information.
  • the AR forwards the packet to the device corresponding to the route with a high priority. Therefore, the packet can be forwarded to the active device.
  • the first AR can delete dynamic routing or deactivate after the primary SBC fails.
  • a static route is used to route data to the backup SBC to implement active/standby switchover.
  • the bearer network can route the packet to the active router according to the reachable routing information, because the solution is the active device and the active release of the reachable routing information, instead of requiring the primary use.
  • the device and the standby device respond to the primary ARP.
  • the reachable route information can be advertised by using the Layer 3 protocol message.
  • the active device and the standby device are not in the same Layer 2 switched network. VRRR is avoided.
  • the limitations caused by the program can achieve disaster recovery in different places.
  • the master and the backup have the same IP address, so that the terminal and the core network device can not feel the handover when switching, and the service interruption is avoided.
  • this embodiment may be applicable to determining a scenario of the active and standby devices by using route priority.
  • FIG. 9 is a schematic flowchart of determining an active/standby state according to an embodiment of the present invention, including:
  • Step 901 Determine whether the dual-machine function is configured on the local device. If yes, go to step 902, otherwise go to step 921.
  • the dual-machine function means that there is an active/standby function, and the configuration can make the machine have or do not have the dual-machine function. Therefore, based on the configuration data, it can be judged whether the unit is equipped with the dual-machine function.
  • Step 902 Determine the active/standby configuration of the local device. If the configuration is the primary device, go to step 903. If the configuration is the standby device, go to step 912.
  • Step 903 Determine whether a heartbeat message is received. If yes, go to step 906. Otherwise, go to step 904.
  • a heartbeat packet is a packet that is exchanged between the active device and the standby device. For example, a TCP or UDP connection can be established, and a TCP packet or a UDP packet can be used as a heartbeat packet.
  • Step 904 Wait for the set time.
  • the set time is 5 minutes.
  • Step 905 Determine whether to wait for the heartbeat message, if yes, go to step 906, otherwise, go to step 909.
  • Step 906 Determine the status of the peer according to the heartbeat message. If the peer is in the active state, go to step 907. If the peer is in the standby state or in other states, go to step 908.
  • the heartbeat packet may include the status information of the sender.
  • the primary device sends the heartbeat packet with the information indicating the active state.
  • the backup device sends the heartbeat packet to carry the information indicating the standby state.
  • the information carried in the packet can determine the active/standby status of the peer.
  • the heartbeat message carries other state information that is not the active state or the standby state, to determine that the peer is in another state.
  • Step 907 Determine the current state of the machine as the standby state.
  • Step 908 Determine the current state of the machine as the active state.
  • Step 909 Perform an automatic service dial test, and determine whether the automatic service dial test is successful. If yes, go to step 910. Otherwise, go to step 911.
  • the peer device If the peer device is available, if the peer device is available, but if there is no heartbeat packet, the heartbeat packet is abnormal. When the peer device is available, the peer will act as the master device, and it needs to be determined to be in the standby state.
  • Step 910 Determine the current state of the local device as the standby state, and perform an abnormal heartbeat alarm.
  • Step 911 Determine the current state of the unit as the active state.
  • Step 912 Determine whether a heartbeat message is received. If yes, go to step 915. Otherwise, go to step 913.
  • Step 913 Wait for the set time.
  • the set time is 5 minutes.
  • Step 914 Determine whether to wait for the heartbeat message. If yes, go to step 915. Otherwise, go to step 918.
  • Step 915 Determine the status of the peer according to the heartbeat message. If the peer is the standby device, go to step 916. If the peer is in the active state or in other states, go to step 917. Step 916: Determine the current state of the local machine as the active state.
  • Step 917 Determine the current state of the machine as the standby state.
  • Step 918 Perform an automatic service dial test, and determine whether the automatic service dial test is successful. If yes, go to step 919. Otherwise, go to step 920.
  • Step 919 Determine the current state of the machine as the standby state.
  • Step 920 Determine the current state of the machine as the active state.
  • Step 921 Press the unit to start normally.
  • the heartbeat packet is determined according to the heartbeat packet, and the heartbeat packet is a unicast packet, which is more efficient than the multicast packet and is not limited by the hop count. Realize disaster recovery in different places.
  • the switching between the active and standby devices can be implemented in the following manner.
  • FIG. 10 is a schematic flowchart of a process of switching from a primary device to a backup device according to an embodiment of the present invention. The process is performed by a primary device.
  • This embodiment includes:
  • Step 1001 Determine whether a heartbeat message is received. If yes, go to step 1002. Otherwise, go to step 1006.
  • Step 1002 Determine the state of the peer according to the heartbeat message. If the peer is in the active state, go to step 1003. Otherwise, go to step 1006.
  • Step 1003 Determine the configuration of the local device. If the configuration is the active state, go to step 1004. Otherwise, go to step 1005.
  • Step 1004 The running state is unchanged, the main state is maintained, and an alarm is generated.
  • Step 1005 Perform a backup process to change the current state to the standby state.
  • Step 1006 Keep the running state unchanged and keep the current state as the active state.
  • the transition from the active state to the standby state can be implemented according to the heartbeat message.
  • FIG. 11 is a schematic flowchart of switching a backup device as a master device according to an embodiment of the present invention. The embodiment is executed by the standby device, and the embodiment includes:
  • Step 1101 Determine whether a heartbeat message is received. If yes, go to step 1104, otherwise go to step 1102.
  • Step 1102 Wait for the preset time.
  • the preset time is 5 minutes.
  • Step 1103 Determine whether the heartbeat message is waiting, if yes, go to step 1104, otherwise go to step 1110.
  • Step 1104 Determine the state of the peer according to the heartbeat message. If the peer is in the active state, go to step 1105. If the peer is in the standby state or other state, go to step 1106.
  • Step 1105 Keep the running state unchanged and keep the standby state.
  • Step 1106 Determine the local configuration. If the configuration is in the active state, go to step 1109. Otherwise, go to step 1107.
  • Step 1107 Determine whether the heartbeat message carries the cause value indicating the winner, and if yes, go to step 1109, otherwise go to step 1108.
  • Step 1108 Wait for the preset time. After the timeout, go to step 1109.
  • the preset time is 5 minutes.
  • Step 1109 The main processing is performed, and the current state is changed to the main state.
  • Step 1110 Automatic service dialing, and determine whether the automatic service dialing test is successful. If successful, execute step 1111; otherwise, perform step 1112.
  • Step 1111 The running status is unchanged and the standby status is maintained.
  • Step 1112 The main processing is performed, and the current state is converted into the main state.
  • the standby state can be switched to the active state.
  • FIG. 12 is a schematic structural diagram of an apparatus for implementing a backup of a fault in the present invention, including a determining module 121 and sending Cloth module 122.
  • the determining module 121 is configured to determine a current state of the local device, where the current state includes an active state or a standby state.
  • the publishing module 122 is configured to issue reachable routing information to the connected routing device after determining that the current state is the active state.
  • the local device has the same IP address as the device whose current state is the standby state, and the reachable routing information includes routing information related to the IP address, so that the IP address is reachable, the local device and the device
  • the devices whose current state is the standby state are mutually backup devices.
  • the issuing module 122 may be specifically configured to: advertise route reachability information to the connected routing device; or: perform a static route between the connected routing device, so that a route between the connected routing device is available, for example, Activating a BFD session with the connected routing device; or sending the first route priority information to the connected routing device, where the priority of the first route priority information is higher than the priority of the second route priority information
  • the second route priority information is advertised by the device in the standby state.
  • the issuing module 122 may be further configured to: after determining that the current state is the standby state, advertise the route unreachable information or not the routing information to the connected routing device; or: invalidate the static route between the connected routing device, The route to the connected routing device is unavailable, for example, deactivating a BFD session with the connected routing device; or sending a second routing priority information to the connected routing device, the second routing priority information The corresponding priority is lower than the priority corresponding to the first route priority information, and the first route priority information is advertised by the device in the active state.
  • the embodiment may further include: a backup module, configured to back up the data to be backed up to the device whose current state is the standby state when the current state is the active state.
  • a backup module configured to back up the data to be backed up to the device whose current state is the standby state when the current state is the active state.
  • the current state is an initial state, and the determining module 121 may be specifically configured to: determine a current state of the local device according to at least one of the following items: whether the heartbeat packet is received, the peer state determined by the received heartbeat packet, or Automatic business dialing results. For example, if the device is configured as the primary device, it is determined whether the heartbeat packet is received. If the heartbeat packet is received, the peer state is determined according to the heartbeat packet. If the peer is in the active state, the current state is adjusted as the standby state.
  • the heartbeat packet is not received, it is determined whether the heartbeat packet is received after the preset timeout period, so that the heartbeat packet is received, and the peer state is determined according to the heartbeat packet; if the heartbeat is not waited If the packet is configured as the backup device, it determines whether the heartbeat packet is received. If the heartbeat packet is received, the peer state is determined according to the heartbeat packet. In the standby state, the current state is determined to be the primary state, otherwise the current state is determined to be the standby state. If the heartbeat packet is not received, it is determined whether the heartbeat packet is received after the preset timeout period, so as to wait for the heartbeat message.
  • the peer state is determined according to the heartbeat packet; if the heartbeat packet is not received, the current state is determined to be the primary state. If the heartbeat packet is not received, it can be determined whether the automatic service dialing test is successful. If successful, the current state is determined to be the standby state. Otherwise, the current state is determined to be the active state.
  • the current state is a state after the transition
  • the determining module 121 may be specifically configured to: determine a current state of the local device according to at least one of the following items: a state before the transition, whether a heartbeat message is received, and a received heartbeat report
  • the peer status determined by the text, the indication information carried in the received heartbeat message, the local configuration or the automatic service dial test result. For example, if the state before the transition is the active state, it is determined whether the heartbeat packet is received. If the heartbeat packet is received, the peer state is determined according to the heartbeat packet. If the peer end is not in the active state, or If the heartbeat packet is received, the active state is maintained. If the peer is in the active state, the local device is configured.
  • the active state is maintained and the alarm is generated. Then adjust the current state to the standby state. If the state before the transition is the standby state, it is determined whether the heartbeat packet is received. If the heartbeat packet is received, the peer state is determined according to the heartbeat packet. If the peer end is in the active state, the standby state is not maintained. If it is determined that the peer is not in the active state according to the heartbeat packet, the local configuration is determined. If the device is configured as the primary device, the current state is adjusted to be the primary state; if configured as the standby device, the heartbeat packet is determined. Whether the value of the reason for indicating the lord is carried. If yes, adjust the current state to the active state.
  • the delay is determined. Whether the heartbeat packet is received after the preset time, so that after the heartbeat packet is received, the peer state is determined according to the heartbeat packet; if the heartbeat packet is not received, the adjustment is made.
  • the current state is the active state. If the heartbeat packet is not received, you can also determine whether the automatic service dial test is successful. If successful, keep the current state as standby. Otherwise, adjust the current state to the active state.
  • the device with the active/standby function advertises the reachable routing information to the routing device connected to the device, so that the bearer network routes the received packet to the active device according to the reachable routing information.
  • the reachable routing information is exchanged with the router.
  • the router belongs to the Layer 3 switching device, and the reachable routing information exchanged also belongs to the Layer 3 protocol information. Therefore, the primary device and the standby device do not need to belong to the same Layer 2. Switching networks can achieve remote disaster recovery.
  • the active device and the standby device in the embodiment of the present invention have the same IP address, which can avoid the problem of high device capability and service interruption caused by different IP addresses.
  • FIG. 13 is a schematic structural diagram of a system for implementing a fault-tolerant backup according to the present invention, including a primary device 131 and a first routing device 132 connected to the primary device 131; wherein the primary device has the same standby device as the backup device having a backup relationship An IP address, the primary device 131 is configured to issue reachable routing information to the first routing device, where the reachable routing information includes routing information related to the IP address, so that the IP address is reachable; The first routing device 132 is configured to: after receiving the reachable routing information, send the received packet to the active device via a path between the primary device and the primary device.
  • the system may further include a backup device 133 having a backup relationship with the primary device and a second routing device 134 connected to the backup device 133.
  • the backup device 133 is configured to advertise a route to the second routing device. Or not publishing the routing information; or invalidating the static route between the second routing device, so that the route between the connected routing device is unavailable; or sending the second route to the second routing device Priority information, the priority of the second route priority information is lower than the priority of the first route priority information, and the first route priority information is that the primary device is to the first routing device Sent.
  • the primary device 131 and the backup device 132 can communicate with each other through a Layer 3 network and are located in different Layer 2 switching networks.
  • the foregoing routing device may be a router or a Layer 3 switch, and the foregoing first routing device and the second routing device may be different routers or the same router, corresponding to different ports.
  • the foregoing primary device may include a publishing module, configured to advertise route reachability information to the connected routing device, or a static route between the connected routing device; or send the first route priority to the connected routing device.
  • the priority information of the first route priority information is higher than the priority corresponding to the second route priority information, and the second route priority information is advertised by the standby device.
  • the above-mentioned active device may include a backup module for backing up data to be backed up to the standby device in real time.
  • the routing device advertises the reachable routing information to the routing device connected to the primary device, so that the routing device routes the received packet to the active device according to the reachable routing information.
  • the reachable routing information is exchanged with the router.
  • the router belongs to the Layer 3 switching device, and the reachable routing information exchanged also belongs to the Layer 3 protocol information. Therefore, the primary device and the standby device do not need to belong to the same Layer 2. Switching networks can achieve remote disaster recovery.
  • the primary device and the backup device in the embodiment of the present invention have the same IP address, which can avoid the problem of high device capability and service interruption caused by different IP addresses.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Hardware Redundancy (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明实施例提供一种实现容灾备份的方法、设备及系统。该方法包括如下步骤:具有主备功能的设备确定本机的当前状态,所述当前状态可以是主用状态或备用状态;具有主备功能的设备在确定出当前状态为主用状态后,向连接的路由设备发布可达路由信息,所述本机与当前状态为备用状态的设备具有相同的IP地址,所述可达路由信息包括与所述IP地址相关的路由信息,使得所述IP地址路由可达,所述本机与所述当前状态为备用状态的设备互为备份设备。本发明可以实现异地容灾备份并避免业务中断。

Description

实现容灾备份的方法、 设备及系统 技术领域
本发明涉及网络通信技术, 尤其涉及一种实现容灾备份的方法、 设备及 系统。 背景技术
为了避免业务中断, 网络中的某些关键业务处理设备存在备份设备。 另 外, 为了满足网络可靠性的要求, 通常备份设备需要部署在异地。 为此, 网 络中有设备异地容灾方案的需求。
目前双机容灾技术可以釆用虚拟路由冗余协议 ( Virtual Router Redundancy Protocol, VRRP )方案, 该方案中, 需要在网络上创建一个虚拟 路由器, 该虚拟路由器由一个主用路由器和若干个备用路由器组成。 其中, 主用路由器和备用路由器都需要接收到主机发送的地址解析协议 ( Address Resolution Protocol, ARP )请求报文, 之后, 由主用路由器进行响应。 该方 案要求主用路由器和备用路由器在同一个二层交换网络中。 但是, 异地部署 的设备通常是三层交换网络互通的, 很难提供异地二层交换网, 因此, VRRP 方案不适合异地容灾。 另外, 在异地容灾中可以釆用对主用设备和备用设备 配置不同 IP地址的方式, 该方式需要主机上分别配置与主用设备和备用设备 对应的 IP地址, 在主用设备异常后, 自动切换使用备用设备的 IP地址。 因 此, 该方案对设备能力有要求, 且 IP地址变化后需要重新建立连接, 可能造 成业务中断。 发明内容
本发明实施例是提供一种实现容灾备份方法、 设备及系统, 可以实现异 地容突备份。 本发明实施例提供了一种实现容灾备份的方法, 包括:
确定本机的当前状态, 所述当前状态包括主用状态或备用状态; 在确定出当前状态为主用状态后,向连接的路由设备发布可达路由信息, 所述本机与当前状态为备用状态的设备具有相同的 IP地址, 所述可达路由信 息包括与所述 IP地址相关的路由信息, 使得所述 IP地址路由可达, 所述本机 与所述当前状态为备用状态的设备互为备份设备。
本发明实施例提供了一种实现容灾备份的设备, 包括:
确定模块, 用于确定本机的当前状态, 所述当前状态包括为主用状态或 备用状态;
发布模块, 用于在确定出当前状态为主用状态后, 向连接的路由设备发 布可达路由信息, 所述本机与当前状态为备用状态的设备具有相同的 IP地址, 所述可达路由信息包括与所述 IP地址相关的路由信息, 使得所述 IP地址路由 可达, 所述本机与所述当前状态为备用状态的设备互为备份设备。
本发明实施例提供了一种实现容灾备份的系统, 包括:
与存在备份关系的备用设备具有相同的 IP地址的主用设备, 与所述主用 设备连接的第一路由设备;
所述主用设备用于向所述第一路由设备发布可达路由信息, 所述可达路 由信息包括与所述 IP地址相关的路由信息, 使得所述 IP地址路由可达;
所述第一路由设备用于在接收到所述可达路由信息后, 将接收到的报文 经由与所述主用设备间的路径发送给所述主用设备。
由上述技术方案可知, 本发明实施例通过主用状态的设备向路由设备发 布可达路由信息, 由于可达路由信息是指示报文传输路径的信息, 因此可以 使得包括该路由设备的承载网根据该可达路由信息将报文发送给主用状态的 设备, 而不是发送给不能处理报文的备用状态的设备, 实现备份容灾。 由于 该方案是主用状态的设备主动发布可达路由信息, 而不是要求主用设备和备 用设备接收到 ARP请求后由主用设备进行 ARP响应, 由于可达路由信息是 釆用三层协议消息发布, 因此本发明实施例并不限定主用设备和备用设备在 同一个二层交换网络中, 避免了 VRRR方案引起的局限性, 能够实现异地容 灾。 另外, 本发明实施例中的主用设备和备用设备具有相同的 IP地址, 可以 避免具有不同 IP地址引起的对设备能力要求高及业务中断问题。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实现容突备份的方法一实施例的方法流程示意图; 图 2为图 1对应的系统结构示意图;
图 3为本发明实现容突备份的方法另一实施例的方法流程示意图; 图 4为图 3对应的系统结构示意图;
图 5为本发明实现容突备份的方法另一实施例的方法流程示意图; 图 6为图 5对应的系统结构示意图;
图 7为本发明实现容突备份的方法另一实施例的方法流程示意图; 图 8为图 7对应的系统结构示意图;
图 9为本发明实施例中确定主备状态的流程示意图;
图 10为本发明实施例中由主用设备切换为备用设备的流程示意图; 图 11为本发明实施例中由备用设备切换为主用设备的流程示意图; 图 12为本发明实现容灾备份的设备结构示意图;
图 13为本发明实现容突备份的系统的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明实现容突备份的方法一实施例的方法流程示意图, 图 2为 图 1对应的系统结构示意图。 参见图 1 , 本实施例包括:
步骤 11 : 具有主备功能的设备确定本机的当前状态, 所述当前状态包括 主用状态或备用状态;
参见图 2, 假设设备 A通过 IP承载网与设备 B通信, 设备 B包括存在备份关 系的设备, 对于设备 B中的任一存在备份关系的设备, 其具有主备功能, 即在 一定情况下其处于主用状态, 在另一情况下其处于备用状态。 当条件确定后, 设备 B中包括的具有主备功能的设备之中有一台处于主用状态,其余处于备用 状态。 以设备 B包括两台具有主备功能的设备为例, 当同一条件下, 一台处于 主用状态, 另一台处于备用状态, 其中, 如图 2所示, 可以将处于主用状态的 设备称为主用设备, 将处于备用状态的设备称为备用设备。 该某一存在备份 关系的设备即为具有主备功能的设备。例如,设备 B中包括第一设备和第二设 备, 第一设备和第二设备均具有主备状态, 在一定条件下, 如缺省配置时, 第一设备为主用设备, 第二设备为备用设备, 而在另外条件下, 如第一设备 作为主用设备发生故障时, 第一设备转换为备用设备, 第二设备转换为主用 设备。 该第一设备或第二设备即为具有主备功能的设备。 如果当前状态为主 用状态, 则作为主用设备, 如果当前状态为备用状态, 则作为备用设备。
其中, 当前状态可以根据缺省配置进行确定, 也可以根据主用设备和备 用设备之间传输的心跳报文进行确定。 另外, 也可以根据心跳报文实现主备 切换。 参见图 2, 主用设备和备用设备之间可以包括心跳线, 该心跳线用于传 输心跳才艮文, 该心跳线可以具体为传输控制协议( Transport Control Protocol, TCP )连接或者用户数据包协议( User Datagram Protocol, UDP )连接。 另外, 主用设备可以将备份数据, 如, 当前业务信息, 终端信息等, 传输给备用设 备, 因此, 主用设备和备用设备之间还可以存在备份线, 该备份线用于传输 备份数据, 该备份线可以具体为 TCP连接或 UDP连接。 步骤 12: 具有主备功能的设备在确定出当前状态为主用状态后, 向连接 的路由设备发布可达路由信息, 所述本机与当前状态为备用状态的设备具有 相同的 IP地址, 所述可达路由信息包括与所述 IP地址相关的路由信息, 使 得所述 IP地址路由可达, 所述本机与所述当前状态为备用状态的设备互为备 份设备。
其中, 路由设备可以包括路由器和三层交换机, 路由器又可以具体为接 入路由器(Access Router, AR )。 参见图 2, 本发明实施例将以路由设备为 AR 为例, 假设与主用设备连接的 AR为第一 AR ( AR1 ), 与备用设备连接的 AR 为第二 AR ( AR2 )。
上述的可达路由信息表明对应的路径是可达的, 可以使得 IP承载网将报 文路由给发布该可达路由信息的设备, 因此, 路由设备在接收到该可达路由 信息后, 可以根据该可达路由信息将报文发送给主用设备。
上述发布的可达路由信息, 参见图 2, 可以是发布路由可达信息, 例如, 釆用外部边界网关协议( External Border Gateway Protocol, eBGP )发布路由 可达信息; 也可以是, 生效与连接的路由设备间的静态路由, 使得与连接的 路由设备间的路由是可以使用的,例如,激活双向转发检测协议( Bidirectional Forwarding Detection, BFD )会话, 所述 BFD会话与所述本机和所述路由设 备间的静态路由绑定, 由于两者绑定, 当激活 BFD会话后, 该绑定的静态路 由生效。 还可以是, 向连接的路由设备发送第一路由优先级信息, 所述第一 路由优先级信息对应的优先级高于第二路由优先级信息对应的优先级, 所述 第二路由优先级信息为处于备用状态的设备发布的, 其中, 此时, 路由设备 是根据路由优先级进行路由的, 将报文路由给优先级高的路由对应的设备。 上述的处于主用设备和备用设备可以具有相同的 IP地址, 例如, 参见图 2,具有相同的 IP地址为 IP1 ,该可达路由信息是对该 IP1的路由信息。此时, 只需要在设备 A上配置一个 IP地址, 即配置业务地址 IP1。
进一步地, 本机在确定出当前状态为备用状态时, 还可以包括: 向连接 的路由设备发布路由不可达信息或者不发布路由信息; 或者, 失效与连接的 路由设备间的静态路由, 使得与连接的路由设备间的路由不可用, 例如, 去 激活与连接的路由设备间的 BFD会话; 或者, 向连接的路由设备发送第二路 由优先级信息, 所述第二路由优先级信息对应的优先级低于第一路由优先级 信息对应的优先级,所述第一路由优先级信息为处于主用状态的设备发布的。 例如, 参见图 2, 备用设备发布路由不可达信息。
另外, 上述的与所述 IP地址相关的路由信息可以包括: 包括所述 IP地 址的路由信息,或者, 包括所述 IP地址所属网段的网段信息的路由信息。 即, 上述的可达路由信息中可以包括上述的 IP地址, 也可以包括与 IP地址相关 的信息, 例如, 网段信息等, 使得上述的 IP地址路由可达。
上述的互为备份设备可以是互为业务数据备份, 互为配置信息备份等。 例如, 所述互为备份设备中保存待备份的数据, 所述待备份的数据包括如下 项中的至少一项: 业务数据、 配置信息、 注册信息、 呼叫信息。
本实施例是具有主备功能的设备发布可达路由信息来通知承载网进行相 应路由, 并不需要向主机发送 ARP响应来确定对应的路由, 因此, 本实施例 并不限定主用设备和备用设备位于同一个二层交换网络中, 可以在异地容灾 方案中得以实施例。 即, 本实施例中的主用设备和备用设备可以部署在不同 的二层交换网中, 只需要三层互通即可。 另外, 本实施例的主用设备和备用 设备具有相同的 IP地址, 可以避免釆用不同 IP地址引起的对设备能力有要 求及业务中断等问题。 其中, 上述的二层交换网为数据通信领域的二层交换 网, 同一个二层交换网可以为同一个广播域。
下面将分别描述釆用动态路由协议、 静态路由协议或者路由优先级, 实 现路由信息的发布。
图 3为本发明实现容灾备份的方法另一实施例的方法流程示意图, 本实 施例以对外动态路由协议为例。
图 4为图 3对应的系统结构示意图, 参见图 4, 本实施例以具有主备功 能的设备为会话边界控制器( Session Border Controller, SBC )为例, 对应的 主用设备和备用设备分别为主用 SBC和备用 SBC, 主用 SBC和备用 SBC在 同一网络侧具有相同的 IP地址, 例如, 主用 SBC和备用 SBC釆用 IP1与通 过接入侧承载网接入的终端通信,主用 SBC和备用 SBC釆用 IP2与通过核心 侧承载网接入的软交换设备通信。本实施例以 SBC在接入侧和核心侧具有不 同的 IP地址为例 , 也可以是 SBC在接入侧和核心侧具有相同的 IP地址。 接 入侧承载网中包含与主用 SBC连接的第一 AR ( AR1 ) 以及与备用 SBC连接 的第二 AR ( AR2 ) ,核心侧承载网中包含与主用 SBC连接的第三 AR ( AR3 ) 以及与备用 SBC连接的第四 AR ( AR4 ) 。 本实施例中, 主用 SBC向与其连 接的 AR发布路由可达信息, 备用 SBC向与其连接的 AR发布路由不可达信 息。
参见图 3 , 本实施例包括:
步骤 31 : 主用 SBC向第一 AR和第三 AR发布路由可达信息。
其中, 可以是主用 SBC釆用动态路由协议发布该路由可达信息, 例如, 当釆用 eBGP时, 可以是主用 SBC向第一 AR和第三 AR发送第 ― eBGP消 息, 该第一 eBGP消息中包含 IP1可达的路由指示信息。
步骤 32: 备用 SBC向第二 AR和第四 AR发布路由不可达信息。
其中,可以是备用 SBC釆用动态路由协议发布该路由不可达信息,例如, 当釆用 eBGP时, 可以是备用 SBC向第二 AR和第四 AR发送第二 eBGP消 息, 该第二 eBGP消息中包含 IP2不可达的路由指示信息。
当然, 上述主用 SBC和备用 SBC釆用的动态路由协议并不限于 eBGP, 也可以为其它动态路由协议, 例如, OSPF、 RIP等。 另外, 步骤 31、 32并无时序限制关系。
步骤 33: AR根据接收的路由信息, 将接收的报文路由到主用设备上。 例如, 第一 AR接收到路由可达信息, 可以确定出与其连接的设备间的 路由是可以使用的, 之后, 将接收的来自终端的报文路由到与之连接的设备, 即主用 SBC上; 第二 AR接收到路由不可达信息, 可以确定出与其连接的设 备间的路由是不可以使用的, 即不能釆用第二 AR与备用 SBC间的路由, 此 时, 第二 AR接收到终端发送的报文后, 可以在承载网内部进行动态路由, 从第二 AR经由第一 AR发送给主用 SBC。 核心网侧也可以釆用类似流程处 理, 例如, 第三 AR接收到路由可达信息, 可以确定出对应的路由路径是可 以使用的, 之后将软交换设备发送的报文经过第三 AR与主用 SBC间的路径 发送给主用 SBC; 第四 AR接收到路由不可达信息, 可以确定出第四 AR与 备用 SBC间的路径是不可使用的, 之后第四 AR接收到软交换设备发送的报 文可以釆用承载网内部的动态路由经由第三 AR发送给主用 SBC。
另外, 上述的主用设备和备用设备可以发生切换, 例如, 主用 SBC发生 故障后,主用设备与第一 AR间的 eBGP TCP连接中断,第一 AR自动将主用 SBC 的 IP1的路由删除。 同时, 备用 SBC可以通过心跳报文感知到主用 SBC发生故 障,将自身升级为主用设备,并建立与第二 AR的 eBGP TCP连接,对外发布 IP1 路由可达, 使得接入侧和发送的数据重新路由到新的主用 SBC上, 该新的主 用 SBC由原来的备用 SBC升级得到。 核心侧也可以釆用类似流程处理。 由于 主用 SBC和备用 SBC具有相同的 IP地址, 因此在主备切换时, IP地址不变的, 无需与新的 IP地址建立连接, 可以实现终端对切换的无感知, 避免业务中断。 对于待备份的数据, 可以是主用 SBC通过备份线对应的连接, 将待备份的数 据实时发送给备用 SBC, 例如, 主用 SBC得到待备份的数据后即将待备份的 数据, 通过 UDP或 TCP连接发送给备用 SBC。 例如, 主用 SBC得到待备份的数 据后经过 T时间后发送给备用 SBC, 该 T时间为设定时间, 可以根据场景不同 设定不同的值。 其中, 待备份的数据可以为业务数据、 配置信息、 注册信息、 呼叫信息等。
进一步地, 基于业务接入侧和核心侧一致性的要求, 可以釆用同步进行 联动主备倒换。 例如, 第一 AR和主用 SBC之间故障, 可以联动在主用 SBC和 第三 AR之间发布 IP2不可达, 使得 IP1和 IP2的业务都倒换到备用 SBC上。
本实施例通过对外发布可达路由信息, 可以使得承载网根据该可达路由 信息将报文路由到主用路由器, 由于该方案是主用设备主动发布可达路由信 息, 而不是要求主用设备和备用设备接收到 ARP请求后由主用 ARP响应, 该可达路由信息可以釆用三层协议消息发布, 并不限定主用设备和备用设备 在同一个二层交换网络中, 避免了 VRRR方案引起的局限性, 能够实现异地 容灾。 另外, 本实施例通过主备具有相同的 IP地址, 可以在切换时的终端和 核心网设备感觉不到切换, 避免业务中断。 另外, 本实施例釆用动态协议发 布可达路由信息, 可以适用于动态路由协议的场景。
图 5为本发明实现容灾备份的方法另一实施例的方法流程示意图, 本实 施例以对外静态路由协议为例。
图 6为图 5对应的系统结构示意图, 与图 4所示的实施例不同的是, 本 实施例中, SBC与 AR间为静态路由。 具体为, SBC设备与 IP承载网路由器 之间用静态路由对接, 即第一 AR上配置到主用 SBC上 IP1的静态路由, 第 二 AR上配置到备用 SBC上 IP1的静态路由,第三 AR上配置到主用 SBC上 IP2的静态路由, 第四 AR上配置到备用 SBC上 IP2的静态路由。
SBC与 AR路由器之间可以启用 BFD故障检测机制, 路由器上把 BFD 会话与到 SBC的静态路由绑定。 主用 SBC对接入侧和核心侧的 BFD会话都 UP, 备用 SBC对接入侧和核心侧的 BFD会话都 DOWN, 这样接入侧 AR、 核心侧 AR都只有到主用 SBC的静态路由是激活的,到备用 SBC的路由都是 去激活的。 SBC初始主、 备状态通过配置数据和心跳仲裁机制决定。 正常情 况下, 终端和软交换访问 SBC的流量都会路由到主用 SBC。
另夕卜, AR与 SBC之间的故障检测机制不仅限于 BFD机制, 还可以用 PING, ARP、操作管理维护 ( Operation Administration and Maintenance, OAM ) 等各种故障检测机制, 如果釆用其他故障检测机制, 则 AR, SBC上相应的 把静态路由与这个故障检测机制绑定, 其他流程不变。
参见图 5, 本实施例包括:
步骤 51 : SBC建立与连接的 AR间的 BFD会话, 并将会话与静态路由 绑定。
例如, 主用 SBC分别与第一 AR、 第三 AR建立 BFD会话, 其中, 每个 BFD会话分别与对应的静态路由绑定。 备用 SBC分别与第二 AR、 第四 AR 建立 BFD会话, 其中, 每个 BFD会话分别与对应的静态路由绑定。
步骤 52: 主用 SBC激活与第一 AR和第三 AR间的 BFD会话。
其中, 由于静态路由与 BFD会话绑定, 当激活 (UP ) BFD会话后, 则 表明与该 BFD会话绑定的静态路由是可达的。 通过主用 SBC激活与其连接 的 AR间的 BFD会话,实现第一 AR上配置的到主用 SBC上 IP1的静态路由 的生效, 主用 SBC的路由可达。
步骤 53: 备用 SBC去激活与第二 AR和第四 AR间的 BFD会话。
其中, 由于静态路由与 BFD会话绑定, 当去激活 (DOWN ) BFD会话 后, 则表明与该 BFD会话绑定的静态路由是不可达的。 通过备用 SBC去激 活与其连接的 AR间的 BFD会话, 实现备用 SBC的路由不可达。
另外, 步骤 52、 53并无时序限制关系。
步骤 54: AR根据 BFD会话的激活情况, 将接收的报文路由到主用设备 上。
例如, 第一 AR上的 BFD会话激活, 可以确定出与其连接的设备间的静态 路由是生效的, 之后, 将接收的来自终端的报文路由到生效的路由对应的设 备, 即主用 SBC上; 第二 AR上的 BFD会话去激活, 可以确定出与其连接的设 备间的静态路由是无效的, 之后, 将接收的来自终端的报文釆用承载网内动 态路由协议将报文经由第一 AR路由到主用 SBC上。其中,在系统初始配置时, 各 AR可以获知每个备份设备的信息, 以便将报文路由到所需的备份设备上。 核心网侧也可以釆用类似流程处理, 例如, 第三 AR上的 BFD会话激活, 可以 确定出对应的路径是生效的, 之后, 将接收的来自软交换设备的报文通过该 生效的路径路由到主用 SBC上; 第四 AR上的 BFD会话去激活, 可以确定出对 应的路径是无效的, 之后, 将接收的来自软交换设备的报文釆用承载网内动 态路由协议经由第三 AR路由到主用 SBC上。
另外, 上述的主用设备和备用设备可以发生切换, 例如, 主用 SBC发生 故障后, 主用设备去激活与第一 AR间的 BFD会话, 第一 AR自动将主用 SBC 的 IP1的静态路由去激活。 同时, 备用 SBC可以通过心跳报文感知到主用 SBC 发生故障, 将自身升级为主用设备, 并激活与第二 AR的 BFD会话, 使得接入 侧和发送的数据重新路由到升级为主用 SBC的备用 SBC上。 核心侧也可以釆 用类似流程处理。
进一步地, 基于业务接入侧和核心侧一致性的要求, 可以釆用同步进行 联动主备倒换。 例如, 第一 AR和主用 SBC之间故障, 可以联动去激活主用 SBC和第三 AR之间的 BFD会话,使得 IP1和 IP2的业务都倒换到备用 SBC 上。
VRRP方案中, 主机向主用设备和备用设备发送 ARP请求, 之后由主用 设备响应该 ARP请求。 由于 VRRP方案需要主用设备和备用设备均接收到 ARP请求, 因此 VRRP方案需要主用设备和备用设备位于同一个二层交换网 络中。 但是, 本实施例通过对外发布可达路由信息, 可以使得承载网根据该 可达路由信息将报文路由到主用路由器, 由于该方案是主用设备主动发布可 达路由信息, 而不是要求主用设备和备用设备接收到 ARP请求后由主用设备 进行 ARP响应, 该可达路由信息可以釆用三层协议消息发布, 并不限定主用 设备和备用设备在同一个二层交换网络中,避免了 VRRR方案引起的局限性, 能够实现异地容灾。 另外, 本实施例通过主备具有相同的 IP地址, 可以在切 换时使得终端和核心网设备感觉不到切换, 避免业务中断。 另外, 本实施例 釆用静态协议发布可达路由信息, 可以适用于静态路由协议的场景。
图 7为本发明实现容灾备份的方法另一实施例的方法流程示意图, 本实 施例以对外发布路由优先级为例。
图 8为图 7对应的系统结构示意图, 与图 4、 6所示的实施例不同的是, 本实施例中, 主用 SBC和备用 SBC均是路由可达的, 但是, 主用 SBC的路 由优先级高于备用 SBC的路由优先级, 并且在转发报文时是将报文转发给路 由优先级高的 SBC设备, 以实现报文转发给主用 SBC。 具体地, SBC设备对 外用静态路由或者动态路由与 IP承载网路由器对接, 主用 SBC对接入侧和 核心侧的路由优先级高, 备用 SBC对接入侧和核心侧的路由优先级低, 即主 用 SBC对接入侧 IP1和核心侧 IP2的路由优先级高, 备用 SBC对接入侧 IP1 和核心侧 IP2的路由优先级低。 SBC初始主、 备状态通过配置数据和心跳仲 裁机制决定。 正常情况下, 由于到主用 SBC的路由优先级高, 终端和软交换 访问 SBC的流量都会路由到主用 SBC。
参见图 7, 本实施例包括:
步骤 71 : SBC与 AR建立路由连接。
例如, 釆用动态路由协议或者静态路由协议建立路由连接。
步骤 72: 主用 SBC向第一 AR和第三 AR发送第一路由优先级信息。 步骤 73: 备用 SBC向第二 AR和第四 AR发送第二路由优先级信息。 其中, 第一路由优先级高于第二路由优先级。 路由优先级信息中可以包 含对应的 IP地址。
另外, 步骤 72、 73并无时序限制关系。
步骤 74: AR根据接收的路由优先级信息, 将接收的报文路由到主用设 备上。
例如, AR是将报文转发给路由优先级高的路由路径对应的设备, 因此, 可以将报文转发给主用设备。
另外, 当主用 SBC发生故障后, 第一 AR可以删除动态路由或者去激活 静态路由, 使得数据路由到备份 SBC上, 实现主备倒换。
本实施例通过对外发布可达路由信息, 可以使得承载网根据该可达路由 信息将报文路由到主用路由器, 由于该方案是主用设备和主动发布可达路由 信息, 而不是要求主用设备和备用设备接收到 ARP请求后由主用 ARP响应, 该可达路由信息可以釆用三层协议消息发布, 并不限定主用设备和备用设备 在同一个二层交换网络中, 避免了 VRRR方案引起的局限性, 能够实现异地 容灾。 另外, 本实施例通过主备具有相同的 IP地址, 可以在切换时使得终端 和核心网设备感觉不到切换, 避免业务中断。 另外, 本实施例可以适用于釆 用路由优先级确定主备设备的场景。
在上述实施例中,具有主备功能的设备可以釆用如下方式确定当前状态。 图 9为本发明实施例中确定主备状态的流程示意图, 包括:
步骤 901 : 判断本机是否配置了双机功能, 若是, 执行步骤 902, 否则执 行步骤 921。
其中, 双机功能是指具有主备功能, 通过配置可以使得本机具有或不具 有该双机功能。 因此, 根据配置数据可以判断本机是否配置了双机功能。
步骤 902: 判断本机的主备配置, 若配置为主用设备, 则执行步骤 903 , 若配置为备用设备, 则执行步骤 912。
其中, 可以在配置数据中获取主备配置。
步骤 903: 判断是否接收到心跳报文, 若是, 执行步骤 906, 否则, 执行 步骤 904。
心跳报文是主用设备和备用设备之间交互的报文, 例如, 可以通过建立 TCP或者 UDP连接, 釆用 TCP报文或者 UDP报文作为心跳报文。
步骤 904: 等待设定的时间。
例如, 该设定的时间为 5分钟。
步骤 905: 判断是否等到心跳报文, 若是, 执行步骤 906, 否则, 执行步 骤 909。 步骤 906: 根据心跳报文判断对端状态, 若对端为主用状态, 则执行步 骤 907, 若对端为备用状态或者为其它状态, 则执行步骤 908。
其中, 心跳报文中可以包含发送方的状态信息, 例如, 主用设备发送心 跳报文时会携带表明主用状态的信息, 备用设备发送心跳报文是会携带表明 备用状态的信息, 通过心跳报文中携带的信息可以判断对端主备状态。 另夕卜, 当对端处于初始态或其它状态时, 心跳报文中会携带不是主用状态也不是备 用状态的其它状态信息, 以确定出对端处于其它状态。
步骤 907: 将本机的当前状态确定为备用状态。
步骤 908: 将本机的当前状态确定为主用状态。
步骤 909: 进行自动业务拨测, 并判断自动业务拨测是否成功, 若成功, 执行步骤 910, 否则, 执行步骤 911。
通过自动业务拨测可以确定对端设备是否可用, 如果成功表明对端设备 可用, 但如果此时没有心跳报文, 则表明心跳报文不正常。 当对端设备可用 时对端将作为主用设备, 自身便需要确定为备用状态。
另外, 也可以不进行自动业务拨测, 此时在未等到心跳报文后, 将本机 的当前状态确定为主用状态。
步骤 910: 将本机的当前状态确定为备用状态, 并进行心跳不正常告警。 步骤 911 : 将本机的当前状态确定为主用状态。
步骤 912: 判断是否接收到心跳报文, 若是, 执行步骤 915 , 否则, 执行 步骤 913。
步骤 913: 等待设定的时间。
例如, 该设定的时间为 5分钟。
步骤 914: 判断是否等到心跳报文, 若是, 执行步骤 915 , 否则, 执行步 骤 918。
步骤 915: 根据心跳报文判断对端状态, 若对端为备用设备, 则执行步 骤 916, 若对端为主用状态或者为其它状态, 则执行步骤 917。 步骤 916: 将本机的当前状态确定为主用状态。
步骤 917: 将本机的当前状态确定为备用状态。
步骤 918: 进行自动业务拨测, 并判断自动业务拨测是否成功, 若成功, 执行步骤 919, 否则, 执行步骤 920。
另外, 也可以不进行自动业务拨测, 此时在未等到心跳报文后, 将本机 的当前状态确定为主用状态。
步骤 919: 将本机的当前状态确定为备用状态。
步骤 920: 将本机的当前状态确定为主用状态。
步骤 921 : 按单机正常启动。
本实施例根据心跳报文实现主备状态确定, 心跳报文为单播报文, 可以 比组播报文更高效, 并且不受跳数限制, 可以适用于主备设备经过多跳连接 的场景, 实现异地容灾。
在上述实施例中, 可以釆用如下方式实现主备设备的切换。
图 10为本发明实施例中由主用设备切换为备用设备的流程示意图,该流 程由主用设备执行, 本实施例包括:
步骤 1001 : 判断是否接收到心跳报文, 若是, 执行步骤 1002, 否则, 执 行步骤 1006。
步骤 1002: 根据心跳报文判断对端的状态, 若对端为主用状态, 则执行 步骤 1003 , 否则执行步骤 1006。
步骤 1003: 判断本机的配置, 若配置为主用状态, 则执行步骤 1004, 否 则执行步骤 1005。
步骤 1004: 运行状态不变, 保持主用状态, 并告警。
步骤 1005: 进行降备处理, 将当前状态转为备用状态。
步骤 1006: 保持运行状态不变, 保持当前状态为主用状态。
本实施例根据心跳报文可以实现由主用状态切换为备用状态。
图 11为本发明实施例中由备用设备切换为主用设备的流程示意图,本实 施例由备用设备执行, 本实施例包括:
步骤 1101 : 判断是否接收到心跳报文, 若是, 执行步骤 1104, 否则执行 步骤 1102。
步骤 1102: 等待预设时间。
例如, 该预设时间为 5分钟。
步骤 1103: 判断是否等到心跳报文, 若是, 执行步骤 1104, 否则执行步 骤 1110。
步骤 1104: 根据心跳报文判断对端的状态, 若对端为主用状态, 则执行 步骤 1105 , 若对端为备用状态或其它状态, 则执行步骤 1106。
步骤 1105: 保持运行状态不变, 保持备用状态。
步骤 1106: 判断本机配置, 若配置为主用状态, 则执行步骤 1109, 否则 执行步骤 1107。
步骤 1107: 判断心跳报文中是否携带指示升主的原因值, 若是, 执行步 骤 1109, 否则执行步骤 1108。
步骤 1108: 等待预设时间。 超时后执行步骤 1109。
例如, 该预设时间为 5分钟。
步骤 1109: 升主处理, 将当前状态转为主用状态。
判断心跳报文是否带有原因值, 若是, 执行步骤, 否则执行步骤。
步骤 1110: 自动业务拨测, 并判断自动业务拨测是否成功, 若成功, 执 行步骤 1111 , 否则执行步骤 1112。
另外, 也可以不进行自动业务拨测, 此时在未等到心跳报文后, 将本机 的当前状态确定为主用状态。
步骤 1111 : 运行状态不变, 保持备用状态。
步骤 1112: 升主处理, 将当前状态转换为主用状态。
本实施例根据心跳报文可以实现由备用状态切换为主用状态。
图 12为本发明实现容突备份的设备结构示意图, 包括确定模块 121和发 布模块 122。 确定模块 121 用于确定本机的当前状态, 所述当前状态包括主 用状态或备用状态; 发布模块 122用于在确定出当前状态为主用状态后, 向 连接的路由设备发布可达路由信息, 所述本机与当前状态为备用状态的设备 具有相同的 IP地址, 所述可达路由信息包括与所述 IP地址相关的路由信息, 使得所述 IP地址路由可达, 所述本机与所述当前状态为备用状态的设备互为 备份设备。
所述发布模块 122可以具体用于: 向连接的路由设备发布路由可达信息; 或者, 生效与连接的路由设备间的静态路由, 使得与连接的路由设备间的路 由是可以使用的, 例如, 激活与连接的路由设备间的 BFD会话; 或者, 向连 接的路由设备发送第一路由优先级信息, 所述第一路由优先级信息对应的优 先级高于第二路由优先级信息对应的优先级, 所述第二路由优先级信息为处 于备用状态的设备发布的。
所述发布模块 122还可以用于: 在确定出当前状态为备用状态后, 向连 接的路由设备发布路由不可达信息或者不发布路由信息; 或者, 失效与连接 的路由设备间的静态路由, 使得与连接的路由设备间的路由是不可用的, 例 如, 去激活与连接的路由设备间的 BFD会话; 或者, 向连接的路由设备发送 第二路由优先级信息, 所述第二路由优先级信息对应的优先级低于第一路由 优先级信息对应的优先级, 所述第一路由优先级信息为处于主用状态的设备 发布的。
本实施例还可以包括: 备份模块, 用于在当前状态为主用状态时, 将待 备份的数据实时备份到所述当前状态为备用状态的设备。
所述当前状态为初始状态, 确定模块 121可以具体用于: 根据如下项中 的至少一项确定本机的当前状态: 是否接收到心跳报文、 接收到的心跳报文 确定的对端状态或自动业务拨测结果。 例如, 如果配置为主用设备, 判断是 否接收到心跳报文; 如果接收到心跳报文, 则根据所述心跳报文判断对端状 态, 如果对端为主用状态, 则调整当前状态为备用状态, 否则确定当前状态 为主用状态; 如果未接收到心跳报文, 则判断在延时预设时间后是否收到心 跳报文, 以便收到心跳报文后, 根据心跳报文判断对端状态; 如果未等到心 跳报文, 则确定当前状态为主用状态; 如果配置为备用设备, 则判断是否接 收到心跳报文; 如果接收到心跳报文, 则根据所述心跳报文判断对端状态, 如果对端为备用状态, 则确定当前状态为主用状态, 否则确定当前状态为备 用状态; 如果未接收到心跳报文, 则判断在延时预设时间后是否收到心跳报 文, 以便等到心跳报文后, 根据心跳报文判断对端状态; 如果未收到心跳报 文, 则确定当前状态为主用状态。 如果未收到心跳报文, 还可以判断自动业 务拨测是否成功, 若成功, 则确定当前状态为备用状态, 否则, 确定当前状 态为主用状态。
所述当前状态为变迁后的状态, 确定模块 121可以具体用于: 根据如下 项中的至少一项确定本机的当前状态: 变迁前的状态、是否接收到心跳报文、 接收到的心跳报文确定的对端状态、 接收到的心跳报文中携带的指示信息、 本机配置或自动业务拨测结果。 例如, 如果变迁前的状态为主用状态, 则判 断是否接收到心跳报文, 如果接收到心跳报文, 则根据所述心跳报文判断对 端状态, 如果对端不是主用状态, 或者未接收到心跳报文, 则保持主用状态 不变; 如果对端为主用状态, 则判断本机配置, 如果配置为主用设备, 则保 持主用状态, 并告警, 如果配置为备用设备, 则调整当前状态为备用状态。 如果变迁前的状态为备用状态, 则判断是否接收到心跳报文, 如果接收到心 跳报文, 则根据所述心跳报文判断对端状态, 如果对端为主用状态, 则保持 备用状态不变; 如果根据所述心跳报文确定对端不是主用状态, 则判断本机 配置, 如果配置为主用设备, 则调整当前状态为主用状态; 如果配置为备用 设备, 则判断心跳报文中是否携带指示升主的原因值, 如果是, 调整当前状 态为主用状态, 否则, 等待预设时间超时后, 调整当前状态为主用状态; 如 果未接收到心跳报文, 则判断在延时预设时间后是否收到心跳报文, 以便等 到心跳报文后, 根据心跳报文判断对端状态; 如果未等到心跳报文, 则调整 当前状态为主用状态。 如果未收到心跳报文, 还可以判断自动业务拨测是否 成功, 若成功, 则保持当前状态为备用状态, 否则, 调整当前状态为主用状 态。
本实施例通过具有主备功能的设备向与其连接的路由设备发布可达路由 信息, 使得承载网根据该可达路由信息将接收的报文路由给主用设备。 本实 施例是釆用与路由器交换可达路由信息, 该路由器属于三层交换设备, 交换 的可达路由信息也属于三层协议信息, 因此并不需要主用设备和备用设备属 于同一个二层交换网络, 可以实现异地容灾。 另外, 本发明实施例中的主用 设备和备用设备具有相同的 IP地址, 可以避免具有不同 IP地址引起的对设 备能力要求高及业务中断问题。
图 13为本发明实现容突备份的系统的结构示意图, 包括主用设备 131和 与主用设备 131 连接的第一路由设备 132; 其中, 该主用设备与存在备份关 系的备用设备具有相同的 IP地址, 所述主用设备 131用于向所述第一路由设 备发布可达路由信息,所述可达路由信息包括与所述 IP地址相关的路由信息, 使得所述 IP地址路由可达; 所述第一路由设备 132用于在接收到所述可达路 由信息后, 将接收到的报文经由与所述主用设备间的路径发送给所述主用设 备。
另外, 该系统还可以包括与所述主用设备存在备份关系的备用设备 133 和与备用设备 133连接的第二路由设备 134; 所述备用设备 133用于向所述 第二路由设备发布路由不可达信息或者不发布路由信息; 或者, 失效与所述 第二路由设备间的静态路由, 使得与连接的路由设备间的路由是不可用的; 或者, 向所述第二路由设备发送第二路由优先级信息, 所述第二路由优先级 信息对应的优先级低于第一路由优先级信息对应的优先级, 所述第一路由优 先级信息为所述主用设备向所述第一路由设备发送的。
所述主用设备 131和备用设备 132可以通过三层网络互通, 位于不同的 二层交换网络中。 另外, 上述的路由设备可以为路由器或者三层交换机, 上述的第一路由 设备和第二路由设备可以为不同的路由器, 也可以为同一个路由器, 对应不 同的端口。
其中, 上述的主用设备可以包括发布模块, 用于向连接的路由设备发布 路由可达信息; 或者, 生效与连接的路由设备间的静态路由; 或者, 向连接 的路由设备发送第一路由优先级信息, 所述第一路由优先级信息对应的优先 级高于第二路由优先级信息对应的优先级, 所述第二路由优先级信息为备用 设备发布的。
上述的主用设备可以包括备份模块, 用于将待备份的数据实时备份到所 述备用设备。
本实施例通过具有主用设备向与其连接的路由设备发布可达路由信息, 使得该路由设备根据该可达路由信息将接收的报文路由给主用设备。 本实施 例是釆用与路由器交换可达路由信息, 该路由器属于三层交换设备, 交换的 可达路由信息也属于三层协议信息, 因此并不需要主用设备和备用设备属于 同一个二层交换网络, 可以实现异地容灾。 另外, 本发明实施例中的主用设 备和备用设备具有相同的 IP地址, 可以避免具有不同 IP地址引起的对设备 能力要求高及业务中断问题。
可以理解的是, 上述方法及设备中的相关特征可以相互参考。 另外, 上 述实施例中的 "第一" 、 "第二" 等是用于区分各实施例, 而并不代表各实 施例的 ύ劣。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于计算机可读取 存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的 存储介质包括: ROM, RAM,磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种实现容灾备份的方法, 其特征在于, 包括:
确定本机的当前状态, 所述当前状态包括主用状态或备用状态; 在确定出当前状态为主用状态后,向连接的路由设备发布可达路由信息, 所述本机与当前状态为备用状态的设备具有相同的 IP地址, 所述可达路由信 息包括与所述 IP地址相关的路由信息, 使得所述 IP地址路由可达, 所述本 机与所述当前状态为备用状态的设备互为备份设备。
2、 根据权利要求 1所述的方法, 其特征在于, 所述向连接的路由设备 发布可达路由信息, 包括:
向连接的路由设备发布路由可达信息;
或者,
生效与连接的路由设备间的静态路由;
或者,
向连接的路由设备发送第一路由优先级信息, 所述第一路由优先级信息 对应的优先级高于第二路由优先级信息对应的优先级, 所述第二路由优先级 信息为处于备用状态的设备发布的。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 还包括:
在确定出当前状态为备用状态后, 向连接的路由设备发布路由不可达信 息或者不发布路由信息; 或者, 失效与连接的路由设备间的静态路由; 或者, 向连接的路由设备发送第二路由优先级信息, 所述第二路由优先级信息对应 的优先级低于第一路由优先级信息对应的优先级, 所述第一路由优先级信息 为处于主用状态的设备发布的。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 还包括: 所述本机在当前状态为主用状态时, 将待备份的数据实时备份到所述当 前状态为备用状态的设备。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述与所述 IP 地址相关的路由信息, 包括: 包括所述 IP地址的路由信息, 或者包括所述 IP 地址所属网段的网段信息的路由信息。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述互为备份设 备中保存待备份的数据, 所述待备份的数据包括如下项中的至少一项: 业务 数据、 配置信息、 注册信息或呼叫信息。
7、 根据权利要求 1-6任一项所述的方法, 其特征在于, 所述当前状态为 初始状态, 所述确定本机的当前状态包括:
根据如下项中的至少一项确定本机的当前状态: 是否接收到心跳报文、 接收到的心跳报文确定的对端状态或自动业务拨测结果。
8、 根据权利要求 1-6任一项所述的方法, 其特征在于, 所述当前状态为 变迁后的状态, 所述确定本机的当前状态包括:
根据如下项中的至少一项确定本机的当前状态: 变迁前的状态、 是否接 收到心跳报文、 接收到的心跳报文确定的对端状态、 接收到的心跳报文中携 带的指示信息、 本机配置或自动业务拨测结果。
9、 根据权利要求 1-8任一项所述的方法, 其特征在于, 所述路由设备包 括: 路由器或三层交换机。
10、 一种实现容突备份的设备, 其特征在于, 包括:
确定模块, 用于确定本机的当前状态, 所述当前状态包括主用状态或备 用状态;
发布模块, 用于在确定出当前状态为主用状态后, 向连接的路由设备发 布可达路由信息,所述本机与当前状态为备用状态的设备具有相同的 IP地址, 所述可达路由信息包括与所述 IP地址相关的路由信息, 使得所述 IP地址路 由可达, 所述本机与所述当前状态为备用状态的设备互为备份设备。
11、根据权利要求 10所述的设备,其特征在于,所述发布模块具体用于: 向连接的路由设备发布路由可达信息;
或者, 生效与连接的路由设备间的静态路由;
或者,
向连接的路由设备发送第一路由优先级信息, 所述第一路由优先级信息 对应的优先级高于第二路由优先级信息对应的优先级, 所述第二路由优先级 信息为处于备用状态的设备发布的。
12、 根据权利要求 10或 11所述的设备, 其特征在于, 所述发布模块还 用于: 在确定出当前状态为备用状态后, 向连接的路由设备发布路由不可达 信息或者不发布路由信息; 或者, 失效与连接的路由设备间的静态路由; 或 者, 向连接的路由设备发送第二路由优先级信息, 所述第二路由优先级信息 对应的优先级低于第一路由优先级信息对应的优先级, 所述第一路由优先级 信息为处于主用状态的设备发布的。
13、 根据权利要求 10-12任一项所述的设备, 其特征在于, 还包括: 备份模块, 用于在当前状态为主用状态时, 将待备份的数据实时备份到 所述当前状态为备用状态的设备。
14、 根据权利要求 10-13任一项所述的设备, 其特征在于, 所述当前状 态为初始状态, 所述确定模块具体用于: 根据如下项中的至少一项确定本机 的当前状态: 是否接收到心跳报文、 接收到的心跳报文确定的对端状态或自 动业务拨测结果。
15、 根据权利要求 10-13任一项所述的设备, 其特征在于, 所述当前状 态为变迁后的状态, 所述确定模块具体用于: 根据如下项中的至少一项确定 本机的当前状态: 变迁前的状态、 是否接收到心跳报文、 接收到的心跳报文 确定的对端状态、 接收到的心跳报文中携带的指示信息、 本机配置, 或自动 业务拨测结果。
16、 一种实现容突备份的系统, 其特征在于, 包括:
与存在备份关系的备用设备具有相同的 IP地址的主用设备, 与所述主用 设备连接的第一路由设备; 所述主用设备用于向所述第一路由设备发布可达路由信息, 所述可达路 由信息包括与所述 IP地址相关的路由信息, 使得所述 IP地址路由可达; 所述第一路由设备用于在接收到所述可达路由信息后, 将接收到的报文 经由与所述主用设备间的路径发送给所述主用设备。
17、 根据权利要求 16所述的系统, 其特征在于, 还包括:
与所述主用设备存在备份关系的备用设备, 与所述备用设备连接的第二 路由设备;
所述备用设备用于向所述第二路由设备发布路由不可达信息或者不发布 路由信息; 或者, 失效所述第二路由设备间的静态路由; 或者, 向所述第二 路由设备发送第二路由优先级信息, 所述第二路由优先级信息对应的优先级 低于第一路由优先级信息对应的优先级, 所述第一路由优先级信息为所述主 用设备向所述第一路由设备发送的。
18、 根据权利要求 16或 17所述的系统, 其特征在于, 所述主用设备和 备用设备通过三层网络互通, 位于不同的二层交换网络中。
19、 根据权利要求 16-18任一项所述的系统, 其特征在于, 所述主用设 备包括发布模块, 所述发布模块用于向连接的路由设备发布路由可达信息; 或者, 生效与连接的路由设备间的静态路由; 或者, 向连接的路由设备发送 第一路由优先级信息, 所述第一路由优先级信息对应的优先级高于第二路由 优先级信息对应的优先级, 所述第二路由优先级信息为备用设备发布的。
20、 根据权利要求 16-19任一项所述的系统, 其特征在于, 所述主用设 备包括备份模块, 所述备份模块用于将待备份的数据实时备份到所述备用设 备。
PCT/CN2011/075066 2011-05-31 2011-05-31 实现容灾备份的方法、设备及系统 WO2011157151A2 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20192549.2A EP3806417A1 (en) 2011-05-31 2011-05-31 Method, device, and system for realizing disaster tolerance backup
EP17211062.9A EP3373547B1 (en) 2011-05-31 2011-05-31 Method for realizing disaster tolerance backup
PCT/CN2011/075066 WO2011157151A2 (zh) 2011-05-31 2011-05-31 实现容灾备份的方法、设备及系统
EP11795117.8A EP2677713A4 (en) 2011-05-31 2011-05-31 METHOD, DEVICE AND SYSTEM FOR REALIZING LOSS-RESISTANT BACKUP
CN2011800008775A CN102439903B (zh) 2011-05-31 2011-05-31 实现容灾备份的方法、设备及系统
ES17211062T ES2832725T3 (es) 2011-05-31 2011-05-31 Método para realizar el respaldo de tolerancia ante desastres
US14/089,108 US9258183B2 (en) 2011-05-31 2013-11-25 Method, device, and system for realizing disaster tolerance backup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075066 WO2011157151A2 (zh) 2011-05-31 2011-05-31 实现容灾备份的方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/089,108 Continuation US9258183B2 (en) 2011-05-31 2013-11-25 Method, device, and system for realizing disaster tolerance backup

Publications (2)

Publication Number Publication Date
WO2011157151A2 true WO2011157151A2 (zh) 2011-12-22
WO2011157151A3 WO2011157151A3 (zh) 2012-04-19

Family

ID=45348625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075066 WO2011157151A2 (zh) 2011-05-31 2011-05-31 实现容灾备份的方法、设备及系统

Country Status (5)

Country Link
US (1) US9258183B2 (zh)
EP (3) EP3806417A1 (zh)
CN (1) CN102439903B (zh)
ES (1) ES2832725T3 (zh)
WO (1) WO2011157151A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036702A (zh) * 2012-04-01 2013-04-10 浙江宇视科技有限公司 一种跨网段的n+1备份方法及装置
CN113328933A (zh) * 2021-05-27 2021-08-31 杭州迪普科技股份有限公司 数据流量转发方法及系统

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10599697B2 (en) 2013-03-15 2020-03-24 Uda, Llc Automatic topic discovery in streams of unstructured data
US10204026B2 (en) 2013-03-15 2019-02-12 Uda, Llc Realtime data stream cluster summarization and labeling system
US9471656B2 (en) 2013-03-15 2016-10-18 Uda, Llc Massively-parallel system architecture and method for real-time extraction of high-value information from data streams
US10430111B2 (en) 2013-03-15 2019-10-01 Uda, Llc Optimization for real-time, parallel execution of models for extracting high-value information from data streams
US10698935B2 (en) 2013-03-15 2020-06-30 Uda, Llc Optimization for real-time, parallel execution of models for extracting high-value information from data streams
TWI509428B (zh) * 2013-05-01 2015-11-21 Ibase Technology Inc 防制系統失效之備援方法
ES2964562T3 (es) 2013-07-18 2024-04-08 Intex Marketing Ltd Baño de hidroterapia inflable
CN103607293B (zh) * 2013-10-30 2017-08-22 新华三技术有限公司 一种流量保护方法及设备
CN104717083B (zh) * 2013-12-13 2018-06-26 中国移动通信集团上海有限公司 一种a-sbc设备的容灾切换系统、方法及装置
US9641417B2 (en) * 2014-12-15 2017-05-02 Cisco Technology, Inc. Proactive detection of host status in a communications network
EP3253010A4 (en) * 2015-01-28 2018-09-05 Nec Corporation Network relay device, gateway redundancy system, program, and redundancy method
US9781026B2 (en) * 2015-05-20 2017-10-03 Avaya Inc. System and method to prevent polling overload for detection of presence information
CN106656532A (zh) * 2015-10-28 2017-05-10 华为软件技术有限公司 网元切换方法及装置
CN107645402B (zh) * 2016-07-22 2021-02-26 新华三技术有限公司 一种路由管理方法和装置
CN107018010A (zh) * 2017-03-07 2017-08-04 杭州承联通信技术有限公司 一种pdt集群核心网系统及其容灾切换方法
CN106941529A (zh) * 2017-03-21 2017-07-11 许继电气股份有限公司 一种直流输电监控系统及容灾实现方法
US10616046B2 (en) * 2017-03-28 2020-04-07 Arista Networks, Inc. System and method of handling a fault detection mechanism during a control plane failover
EP3788512A4 (en) 2017-12-30 2022-03-09 Target Brands, Inc. HIERARCHICAL, PARALLEL MODELS FOR REAL-TIME EXTRACTING HIGH VALUE INFORMATION FROM DATA STREAMS AND THE ASSOCIATED CREATION SYSTEM AND METHOD
US11418382B2 (en) 2018-07-17 2022-08-16 Vmware, Inc. Method of cooperative active-standby failover between logical routers based on health of attached services
US10594544B2 (en) 2018-07-17 2020-03-17 Vmware, Inc. Method for moving logical resources without explicit negotiations in a high availability, active-active service router cluster
US10530634B1 (en) * 2018-07-27 2020-01-07 Vmware, Inc. Two-channel-based high-availability
US10841344B1 (en) * 2019-07-15 2020-11-17 Ribbon Communications Operating Company, Inc. Methods, systems and apparatus for efficient handling of registrations of end devices
CN112527552A (zh) * 2019-09-18 2021-03-19 中兴通讯股份有限公司 容灾方法、装置、局点和存储介质
CN115348688A (zh) * 2021-05-14 2022-11-15 成都鼎桥通信技术有限公司 基站和核心网设备的连接方法和设备
CN115037674B (zh) * 2022-05-16 2023-08-22 郑州小鸟信息科技有限公司 一种中央控制系统单机及多设备冗余备份方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60309451T2 (de) * 2003-06-11 2007-03-15 Siemens Ag Verfahren und Vorrichtung zur Behebung katastrophaler Fehler eines IP Netzes durch Bereitstellung geographischer Redundanz
CN100502384C (zh) * 2003-07-02 2009-06-17 西安大唐电信有限公司 一种主备用双机进行tcp连接倒换的方法
US7136931B2 (en) * 2003-10-20 2006-11-14 Hewlett-Packard Development Company, L.P. Method and system for identifying the health of virtual routers
US7859992B2 (en) * 2005-07-07 2010-12-28 Solace Systems, Inc. Router redundancy in data communication networks
US20070104198A1 (en) * 2005-11-10 2007-05-10 Kumar Kalluri Apparatus and method for providing a high availability network mechanish
CN100488201C (zh) * 2005-11-16 2009-05-13 华为技术有限公司 一种基于路由的链路备份方法
CN1980230B (zh) * 2005-11-30 2011-06-01 华为技术有限公司 对vrrp组进行管理的方法
JP4625473B2 (ja) 2007-01-15 2011-02-02 株式会社日立製作所 冗長切り替え方法
CN101110832A (zh) 2007-08-20 2008-01-23 华为技术有限公司 一种发送路由的方法和路由设备
CN101394260B (zh) * 2007-09-17 2011-06-08 华为技术有限公司 一种实现主备倒换及负荷分担的方法和装置
CN101150439A (zh) * 2007-09-25 2008-03-26 华为技术有限公司 一种实现主备切换的方法、系统及设备
CN101404621B (zh) * 2008-11-24 2010-12-01 杭州华三通信技术有限公司 实现vrrp负载均衡的方法和路由设备
WO2010132719A1 (en) * 2009-05-13 2010-11-18 Aviat Networks, Inc. Systems and methods for fractional routing redundancy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036702A (zh) * 2012-04-01 2013-04-10 浙江宇视科技有限公司 一种跨网段的n+1备份方法及装置
CN113328933A (zh) * 2021-05-27 2021-08-31 杭州迪普科技股份有限公司 数据流量转发方法及系统
CN113328933B (zh) * 2021-05-27 2022-11-01 杭州迪普科技股份有限公司 数据流量转发方法及系统

Also Published As

Publication number Publication date
US9258183B2 (en) 2016-02-09
EP2677713A4 (en) 2014-04-09
EP3373547A1 (en) 2018-09-12
ES2832725T3 (es) 2021-06-11
WO2011157151A3 (zh) 2012-04-19
EP2677713A2 (en) 2013-12-25
US20140078887A1 (en) 2014-03-20
CN102439903B (zh) 2013-09-11
EP3373547B1 (en) 2020-09-16
EP3806417A1 (en) 2021-04-14
CN102439903A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2011157151A2 (zh) 实现容灾备份的方法、设备及系统
WO2012000234A1 (zh) 链路间快速切换的方法、装置和系统
CA2427285C (en) Method and system for implementing ospf redundancy
US8437248B2 (en) Method, system, and apparatus for network device to access packet switched network
WO2016023436A1 (zh) 一种虚拟路由器冗余协议故障检测的方法及路由设备
US20080225699A1 (en) Router and method of supporting nonstop packet forwarding on system redundant network
WO2007062559A1 (fr) Procede et passerelle de restitution de service au moment de la permutation entre passerelles pilote et asservie
WO2006136088A1 (fr) Procédé pour implémenter un dispositif de passerelle en activité/en veille dans le réseau et système pour cela
WO2012075731A1 (zh) 基于arp交互的链路故障检测与恢复的方法和设备
WO2006030623A1 (ja) 冗長化プロトコルと擬似冗長構成手段を用いたネットワーク接続機器の切換方法とネットワークシステム
US20110164494A1 (en) Method for operating a virtual router redundancy protocol router and communication system therefor
JPWO2008120267A1 (ja) エッジノード冗長システム
WO2012122945A1 (zh) 用于虚拟网络单元的工作方法及装置
JP2007535852A (ja) 近隣キャッシュテーブル同期のための装置及び方法
WO2012028029A1 (zh) 一种切换方法及系统
US9288140B2 (en) Multichassis failover and recovery for MLPPP wireless backhaul
EP3217608B1 (en) Switchback delay methods and devices
WO2011143876A1 (zh) 业务节点主备切换方法和装置
WO2011147312A1 (zh) 一种业务接入路由器的端口备份方法、装置和系统
WO2013113228A1 (zh) 网络设备冗余备份的方法、路由设备及系统
WO2008014696A1 (fr) Méthode et dispositif pour effectuer un transfert de communications
WO2012171378A1 (zh) 解决vpls接入l3故障切换导致断流的方法及路由器
CN101562576B (zh) 一种路由发布方法和设备
WO2014075216A1 (zh) 一种虚拟集群建立的方法及网络设备
WO2014146541A1 (zh) Cdn与网络融合系统、调度模块选定方法及计算机存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000877.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795117

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011795117

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011795117

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE