WO2011157140A2 - 一种卫星带宽的分配、释放方法,设备及系统 - Google Patents

一种卫星带宽的分配、释放方法,设备及系统 Download PDF

Info

Publication number
WO2011157140A2
WO2011157140A2 PCT/CN2011/075036 CN2011075036W WO2011157140A2 WO 2011157140 A2 WO2011157140 A2 WO 2011157140A2 CN 2011075036 W CN2011075036 W CN 2011075036W WO 2011157140 A2 WO2011157140 A2 WO 2011157140A2
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
satellite
service
base station
station subsystem
Prior art date
Application number
PCT/CN2011/075036
Other languages
English (en)
French (fr)
Other versions
WO2011157140A3 (zh
Inventor
朱星
邹成钢
司巍峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11795106.1A priority Critical patent/EP2717638A4/en
Priority to CN2011800006939A priority patent/CN102204121A/zh
Priority to PCT/CN2011/075036 priority patent/WO2011157140A2/zh
Publication of WO2011157140A2 publication Critical patent/WO2011157140A2/zh
Publication of WO2011157140A3 publication Critical patent/WO2011157140A3/zh
Priority to IL229735A priority patent/IL229735A0/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a satellite bandwidth allocation, release method, device and system. Background technique
  • BTS Base Transceiver Station
  • BSC Base Station Controller
  • the connection between them is generally carried out by satellite transmission, that is, the Abis interface uses satellite relay.
  • the satellite transmission system currently used consists of a VSAT (very Small Aperture Terminal) station and a HUB (hub) master station.
  • VSAT very Small Aperture Terminal
  • HUB hub
  • the BTS is typically connected to a satellite VSAT station, which is connected to the satellite HUB master.
  • satellite transmission bandwidth is expensive and must be managed efficiently for efficient use. For example, when a service needs to use bandwidth, it should allocate bandwidth for the service in time; when the service ends, the bandwidth should be recovered in time.
  • the current satellite bandwidth application/translation is completely done by satellite equipment (VSAT station/HUB master) through its own detection mechanism.
  • the VSAT counts the currently used bandwidth within a certain statistical period. If the bandwidth is found to be insufficient, the bandwidth request is submitted to the HUB. Generally, it takes about 600ms to send an application from the VSAT to the completion of bandwidth allocation.
  • satellite transmission In order to reduce the impact on the VSAT application bandwidth process, satellite transmission generally adopts a reserved bandwidth mechanism, that is, VSAT will apply more than the actual bandwidth used. The release is similar.
  • the HUB detects that the actual bandwidth used in a certain period of time is smaller than the allocated bandwidth. Steps to free up excess bandwidth.
  • the VSAT periodically checks the current actual required transmission bandwidth. After the bandwidth is found to be insufficient, the bandwidth request is applied to the HUB primary station. It takes about 600 ms to obtain the requested bandwidth. During this period, due to insufficient bandwidth, loss of business data may occur, which may affect the quality of the service.
  • the current bandwidth reservation mechanism that is, when VSAT applies for bandwidth to the HUB, in order to reduce the loss of service data caused by the excessive application time, more bandwidth is applied than the actual measurement value. These bandwidths are not used in many cases and are a resource waste.
  • Various aspects of the present invention provide a satellite bandwidth allocation and release method, device and system, which can timely allocate and release satellite bandwidth, ensure efficient use of bandwidth, and save bandwidth resources.
  • An aspect of the present invention provides a method for allocating a satellite bandwidth, including: in a service initiated signaling interaction process, before a user plane is established, the satellite device receives a bandwidth allocation request for the service sent by the base station subsystem device. ;
  • the satellite device allocates a satellite bandwidth for the service based on the bandwidth allocation request.
  • a method for releasing a satellite bandwidth including: in a signaling interaction process at the end of a service, after the user plane is released, the satellite device receives a bandwidth release for the service sent by the base station subsystem device Request
  • the satellite device releases the satellite bandwidth allocated for the service based on the bandwidth release request.
  • a base station subsystem device including: an interface unit and at least one of: a bandwidth allocation request unit and a bandwidth release request unit; among them,
  • An interface unit for connecting satellite devices An interface unit for connecting satellite devices
  • a bandwidth allocation requesting unit configured to send, in a signaling interaction process initiated by the service, a bandwidth allocation request for the service to a satellite device connected through the interface unit before the user plane is established;
  • the bandwidth release requesting unit sends a bandwidth release request for the service to the satellite device connected through the interface unit after the user plane is released during the signaling interaction of the service end.
  • a satellite device comprising:
  • An interface unit configured to connect to a base station subsystem device
  • a receiving unit configured to receive, by the interface unit, a bandwidth allocation request sent by the base station subsystem device, and receive, by the interface unit, a bandwidth release request sent by the base station subsystem device.
  • a satellite transmission system comprising:
  • the satellite device is configured to: before the user plane is established, receive a bandwidth allocation request for the service sent by the base station subsystem device, according to the bandwidth allocation request, The service allocates the satellite bandwidth; or, in the signaling interaction process of the end of the service, after the user plane is released, receiving the bandwidth release request for the service sent by the base station subsystem device; releasing the request according to the bandwidth release request The satellite bandwidth allocated by the service;
  • the base station subsystem device is configured to send a bandwidth allocation request for the service to the satellite device before the user plane is established in a signaling interaction initiated by the service; or, a signaling interaction process at the end of the service Transmitting a bandwidth release request for the service to the satellite device after the user plane is released.
  • the satellite bandwidth allocation and release method, device and system provided by the embodiments of the present invention can timely allocate and release satellite bandwidth, ensure efficient use of bandwidth, and save bandwidth resources.
  • FIG. 1 is a schematic flow chart of a method for allocating satellite bandwidth according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for releasing a satellite bandwidth according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a method for allocating and releasing satellite bandwidth according to another embodiment of the present invention.
  • FIG. 4 is another schematic diagram of a method for allocating and releasing satellite bandwidth according to still another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method for allocating and releasing satellite bandwidth according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a method for allocating and releasing satellite bandwidth according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a method for allocating and releasing satellite bandwidth according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a method for allocating and releasing satellite bandwidth according to still another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station subsystem device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a satellite device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a satellite transmission system according to an embodiment of the present invention. detailed description
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA General Packet Radio Service
  • LTE Long Term Evolution
  • the terminal which may be a wireless terminal or a wired terminal, may refer to a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular, telephone") and with mobile
  • RAN Radio Access Network
  • the computer of the terminal for example, may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • Wireless terminal can also be called a system Subscriber Unit, Subscriber Station, Subscriber Station, Mobile Station, Mobile Station, Remote Station, Access Point, Remote Terminal , Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • the base station controller may be a base station controller (BSC) in GSM or CDMA, or may be a radio network controller (RNC) in WCDMA, which is not limited by the present invention.
  • BSC base station controller
  • RNC radio network controller
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this context is merely an association that describes the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist, exist alone B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the method for allocating satellite bandwidth provided by the embodiment of the present invention is as shown in FIG. 1 .
  • the satellite device receives a bandwidth allocation request for the service sent by the base station subsystem device.
  • the satellite device can establish a TCP (Transmission Control Protocol) connection with the base station subsystem device to transmit TCP packets, so as to ensure timely and reliable communication between the base station subsystem device and the satellite device.
  • TCP Transmission Control Protocol
  • the bandwidth allocation request may carry: an identifier of the communication party, such as an IP endpoint, etc.
  • the two sides of the communication may also adopt other identifiers, which are not limited in this embodiment.
  • the actual environment referred to in the "before the user plane is established" in the step S101 may be: after the base station subsystem device receives the Assignment Request message sent by the MSC (Mobile Switching Center); It may be after the base station subsystem device receives the channel activation response (Channel Activation Ack) message sent by the BTS.
  • the embodiment of the present invention does not limit "before the user plane is established" to after receiving a specific message.
  • the satellite device allocates a satellite bandwidth for the service according to the bandwidth allocation request.
  • the satellite bandwidth allocation method provided by the embodiment of the present invention, in the signaling interaction process initiated by the service, before the user plane is established, the satellite device receives a bandwidth allocation request for the service sent by the base station subsystem device; the satellite device according to the The bandwidth allocation request allocates satellite bandwidth for the service.
  • the allocation of satellite bandwidth required by the service is no longer applied by the VSAT as in the prior art, but the satellite bandwidth is allocated in time before the establishment of the service user plane. This prevents data loss caused by satellite transmission time during the bandwidth application process, ensures the quality of the service, and ensures the effective use of bandwidth.
  • bandwidth resources are saved because bandwidth is no longer reserved.
  • the satellite device when the base station subsystem device is a BTS, the satellite device is a VSTA. In another embodiment of the present invention, when the base station subsystem device is a BSC, the satellite device is a HUB.
  • the format of the bandwidth allocation request message may be as shown in Table 1.
  • IPv4 Address 1 (MSByte first - LSByte last) octet 3-6 IPv4 address 1 (MS first byte - LS last byte) Octet 3 -6
  • IPv4 Address 2 (MSByte first - LSByte last) octet 9- 12 IPv4 address 2 (MS first byte - LS last byte) Octet 9- 12
  • IPv6 Address 1 (MSByte first - LSByte last) octet 3-18 IPv6 address 1 (MS first byte - LS last byte) Octet 3-18
  • IPv6 Address 2 (MSByte first - LSByte last) octet 21-36 IPv6 address 2 (MS first byte - LS last byte) Octet 21-36
  • IPv4 or IPv6 is distinguished by the length of the message.
  • the bandwidth allocation request response message returned by the HUB to the BSC may have a message format similar to the above. The difference is in the message code 0000 0010. At the same time, the bandwidth field is the satellite transmission bandwidth actually allocated by the HUB.
  • FIG. 2 A method for releasing satellite bandwidth provided by another embodiment of the present invention is shown in FIG. 2.
  • a satellite device can establish a TCP connection with a base station subsystem device to transmit a TCP message, thereby ensuring communication between the base station subsystem device and the satellite device. Timely and reliable.
  • the bandwidth release request may carry: an identifier of the communication parties, such as an IP endpoint.
  • an identifier of the communication parties such as an IP endpoint.
  • the two sides of the communication may also adopt other identifiers, which are not limited in this embodiment.
  • the actual environment referred to after the "user plane is released" in step S201 may be, for example, after the base station subsystem device receives the Clear Command message sent by the MSC; or the base station subsystem device may receive the BTS transmission. After the handover is completed (Handover Complete) message. In this regard, the embodiment of the present invention does not limit "after the user plane is released" to after receiving a specific message.
  • the satellite device releases the satellite bandwidth allocated for the service according to the bandwidth release request.
  • the satellite bandwidth release method provided by the embodiment of the present invention in the signaling interaction process of the service end, after the user plane is released, the satellite device receives the bandwidth release request for the service sent by the base station subsystem device; the satellite device releases according to the bandwidth Request to release the satellite bandwidth allocated for this service.
  • the release of the service satellite bandwidth is no longer gradually released by the HUB detection as in the prior art, but the satellite bandwidth is released in time after the release of the service user plane, thereby saving bandwidth resources.
  • the satellite device when the base station subsystem device is a BTS, the satellite device is a VSTA. In another embodiment of the present invention, when the base station subsystem device is a BSC, the satellite device is a HUB.
  • the format of the bandwidth translation request message can be as shown in Table 3.
  • Unit identifier 0000 001 1 octet 1
  • IPv4 Address 1 (MSByte first - LSByte last) octet 3-6
  • IPv4 address 1 (MS first byte - LS last byte) octet 3 -6
  • IPv4 Address 2 (MSByte first - LSByte last) octet 9-12 IPv4 address 2 (MS first byte - LS last byte) Octet 9- 12
  • IPv6 Address 1 (MSByte first - LSByte last) octet 3-18 IPv6 address 1 (MS first byte - LS last byte) Octet 3-18
  • IPv6 Address 2 (MSByte first - LSByte last) octet 21-36 IPv6 address 2 (MS first byte - LS last byte) Octet 21-36
  • the HUB After receiving the release request, the HUB releases the bandwidth occupied by the original service. And return the release request response message.
  • the message code for the release request response message can be 0000 0100.
  • the base station subsystem device is a BSC and the satellite device is a HUB
  • the satellite bandwidth allocation and release are as shown in FIG. 5301.
  • the BSC sends a bandwidth allocation request carrying the communication party identifier, the bandwidth to be applied, and the service type to the HUB connected through the interface.
  • the HUB returns a bandwidth allocation request response to the BSC.
  • the BSC After the service user is released, the BSC sends a bandwidth release request for the service to the HUB, where the bandwidth release request carries the identifier of the communication party.
  • the BSC returns a bandwidth release request response to the HUB.
  • the base station subsystem equipment is BTS and the satellite equipment is VSAT, the satellite bandwidth allocation and translation are shown in Figure 4.
  • the BTS Before the service user plane is established, the BTS sends a bandwidth allocation request carrying the communication party identifier, the bandwidth to be applied, and the service type to the VSAT connected through the interface.
  • the VSAT returns a bandwidth allocation request response to the BTS.
  • the BTS After the service user is released, the BTS sends a bandwidth release request for the service to the VSAT, where the bandwidth release request carries the identifier of the communication party.
  • the VSAT returns a bandwidth translation request response to the BTS.
  • the satellite bandwidth allocation and release method, device and system provided by the embodiments of the present invention can timely allocate and release satellite bandwidth, ensure efficient use of bandwidth, and save bandwidth resources.
  • a method for allocating and releasing satellite bandwidth according to still another embodiment of the present invention is described by taking an example in which a BSC selects a machine to apply for and decode a satellite bandwidth to a HUB primary station during a call, as shown in FIG. 5.
  • the calling terminal sends a channel request (Channel Request) to the BTS.
  • Channel Request a channel request
  • BSC is distributed through BTS (Real Distribution).
  • the calling terminal initiates a service request (CM Service Request) to the BTS.
  • CM Service Request a service request
  • the BTS sends the service request to the BSC.
  • BSC to MSC Mobile Switching Center, Mobile Switching Center
  • the MSC returns an Assignment Request to the BSC.
  • the BSC After receiving the Assignment Request message, the BSC sends a bandwidth allocation request to the HUB connected through the interface, so as to allocate satellite bandwidth to the call service in time.
  • the allocation of the satellite bandwidth required for the call service is no longer applied by the VSAT detection as in the prior art, but in the signaling interaction process initiated by the service, the BSC applies in time before the establishment of the service user plane.
  • the allocation prevents the data loss caused by the satellite transmission time in the bandwidth application process, ensures the quality of the service, and ensures the effective use of the bandwidth.
  • the BSC sends an assignment command (Assignment Command) of the call service to the BTS.
  • the BTS establishes a call connection with the MSC.
  • the MSC sends a Clear Command to the BSC.
  • the BSC After receiving the Clear Command, the BSC sends a bandwidth release request to the HUB connected through the interface to release the allocated satellite bandwidth in time.
  • the release of the bandwidth of the service satellite is no longer released by the HUB as in the prior art, but in the signaling interaction process at the end of the service, the BSC promptly requests the release after the service user plane is released, saving Satellite bandwidth resources.
  • the BSC performs channel release through the BTS.
  • the BSC after receiving the allocation request message sent by the MSC in step S507, the BSC requests the HUB primary station to allocate bandwidth.
  • the MSC is received. After issuing the clear command, apply to the HUB master to release the bandwidth.
  • the foregoing embodiment of the present invention is not limited to the application for allocating and translating the satellite bandwidth to the HUB primary station.
  • the other embodiments are not limited to this.
  • the time before the user plane is established may be used.
  • Bandwidth application is performed;
  • the bandwidth release can be performed at the timing after the user plane is released.
  • the method for allocating and releasing satellite bandwidth provided by the embodiment of the present invention, in the signaling interaction process initiated by the service, before the user plane is established, the satellite device (HUB) receives the information sent by the base station subsystem device (BSC) for the service.
  • BSC base station subsystem device
  • a bandwidth allocation request; a satellite device (HUB) allocates satellite bandwidth for the service based on the bandwidth allocation request.
  • the satellite device (HUB) receives the bandwidth release request sent by the base station subsystem device (BSC) for the service; the satellite device (HUB) is released according to the bandwidth release request.
  • BSC base station subsystem device
  • the satellite bandwidth allocated by this service In this way, the allocation and release of satellite bandwidth required by the service is no longer implemented by the satellite device's own detection mechanism as in the prior art. Instead, the satellite bandwidth is allocated before the service user plane is established, and the satellite bandwidth is released after the user plane is released. Thereby, the allocation and release of satellite bandwidth can be performed in time to ensure efficient use of bandwidth and save bandwidth resources.
  • the method for allocating and releasing satellite bandwidth provided by the embodiment of the present invention is described by taking an example of the BSC selecting an appropriate time to apply for and decode the satellite bandwidth to the HUB primary station during the handover in the BSC. Assume that the call is established between oMS and tMS. The terminal oMS switches from oBTS l to oBTS2. The tMS keeps talking under the tBTS, and the process is as shown in FIG. 6.
  • the terminal oMS sends a Measurement Report to the oBTS l.
  • oBTS l sends the measurement result to BSC (Pre-Measure Result).
  • the BSC sends a channel activation message to the oBTS2.
  • oBTS2 returns a channel activation response (Channel Activation Ack) to the BSC.
  • the BSC After receiving the channel activation response (Channel Activation Ack), the BSC sends a bandwidth allocation request to the HUB connected through the interface, so as to allocate satellite bandwidth for the call service in time.
  • Channel Activation Ack After receiving the channel activation response (Channel Activation Ack), the BSC sends a bandwidth allocation request to the HUB connected through the interface, so as to allocate satellite bandwidth for the call service in time.
  • the allocation of the satellite bandwidth required by the service is no longer applied by the VSAT detection as in the prior art, but in the signaling interaction process initiated by the service, the BSC applies in time before the establishment of the service user plane. Allocation, thus preventing data loss caused by satellite transmission time in the bandwidth application process, ensuring service quality and ensuring efficient use of bandwidth.
  • the BSC sends a handover command (Handover Command) to the oBTS1.
  • oBTS l sends a handover command (Handover Command) to the terminal oMS.
  • oBTS2 sends handover detection information (Handover Detect) to the BSC.
  • Handover Detect handover detection information
  • oBTS2 sends an establishment indication ( Establish Indication) to the BSC
  • oBTS2 sends a handover complete message (Handover Complete) to the BSC.
  • the BSC After receiving the handover complete message (Handover Complete), the BSC sends a bandwidth release request to the HUB connected through the interface, so as to timely release the allocated satellite bandwidth.
  • the release of the service satellite bandwidth is no longer released by the HUB as in the prior art, but in the signaling interaction process in which the service ends, the BSC is released in time after the service user plane is released, saving Bandwidth resources.
  • the BSC sends a Release Request to the oBTS l.
  • the BSC sends a Handover Performed message to the MSC.
  • the BSC after receiving the channel activation response sent by the oBTS2 in step S605, the BSC requests the HUB primary station for the bandwidth to be used by the OBTS2; after receiving the handover completion message sent by the OBTS2 in step S611, to the HUB primary station. Apply for translation bandwidth.
  • the foregoing embodiment of the present invention is not limited to the application for allocating and translating the satellite bandwidth to the HUB primary station.
  • the other embodiments are not limited to this.
  • the time before the user plane is established may be used.
  • Bandwidth application is performed;
  • the bandwidth release can be performed at the timing after the user plane is released.
  • the satellite device (HUB) receives the information sent by the base station subsystem device (BSC) for the service.
  • the satellite device (HUB) receives the bandwidth release request sent by the base station subsystem device (BSC) for the service; the satellite device (HUB) is released according to the bandwidth release request.
  • the satellite bandwidth allocated by this service In this way, the allocation and release of satellite bandwidth required by the service is no longer as in the prior art.
  • the satellite bandwidth is allocated before the service user plane is established, and the satellite bandwidth is released after the user plane is released. Thereby, the allocation and release of satellite bandwidth can be performed in time to ensure efficient use of bandwidth and save bandwidth resources.
  • a method for allocating and releasing satellite bandwidth according to another embodiment of the present invention is described by taking an example of a BTS requesting and applying a satellite bandwidth to a VAST station during a call, as shown in FIG. 7.
  • the calling terminal sends a channel request (Channel Request) to the BTS.
  • Channel Request a channel request
  • the BSC is allocated through the BTS (Real Distribution).
  • the calling terminal initiates a service request (CM Service Request) to the BTS.
  • CM Service Request a service request
  • the BTS After receiving the service request (CM Service Request), the BTS sends a bandwidth allocation request to the VSAT connected through the interface, so as to allocate the satellite bandwidth to the call service in time.
  • CM Service Request the service request
  • the BTS After receiving the service request (CM Service Request), the BTS sends a bandwidth allocation request to the VSAT connected through the interface, so as to allocate the satellite bandwidth to the call service in time.
  • the allocation of the satellite bandwidth required for the call service is no longer applied by the VSAT as in the prior art, but in the signaling interaction process initiated by the service, the BTS is timely before the establishment of the service user plane. Applying for distribution, thus preventing data loss caused by satellite transmission time in the bandwidth application process, ensuring service quality and ensuring efficient use of bandwidth.
  • the BTS sends the service request to the BSC.
  • the BSC sends a Service Request (Complete Layer 3 Message) to the MSC.
  • the MSC returns an Assignment Request to the BSC.
  • the BSC sends an assignment command ( Assignment Command) of the call service to the BTS.
  • the BTS establishes a call connection with the MSC.
  • the MSC sends a Clear Command to the BSC.
  • the BSC sends a channel release message (Channel Release) to the BTS.
  • the BTS After receiving the channel release message (Channel Release), the BTS sends a bandwidth release request to the VSAT station connected through the interface, so as to release the allocated satellite bandwidth in time. In this embodiment, the release of the bandwidth of the service satellite is no longer
  • the HUB After the HUB is detected, it is gradually translated, but the satellite bandwidth is released in time after the business user is released, saving bandwidth resources.
  • the BTS after receiving the service request message sent by the calling terminal in step S704, the BTS applies for allocation of bandwidth to the VSAT station; after receiving the channel release message sent by the BSC in step S712, the BTS applies for release to the VSAT station. bandwidth.
  • the bandwidth can be performed before the user plane is established.
  • the bandwidth release can be performed at the timing after the user plane is released.
  • the satellite device (VSAT) receives the bandwidth sent by the base station subsystem device (BTS) for the service. Assignment request; the satellite device (VSAT) allocates satellite bandwidth for the service based on the bandwidth allocation request.
  • the satellite device (VSAT) receives the bandwidth release request sent by the base station subsystem device (BTS) for the service; the satellite device (VSAT) is released according to the bandwidth release request. The satellite bandwidth allocated by this service.
  • the allocation and release of satellite bandwidth required by the service is no longer achieved by the satellite device's own detection mechanism as in the prior art. Instead, the satellite bandwidth is allocated before the service user plane is established, and the satellite bandwidth is released after the user plane is released. Therefore, the allocation and release of satellite bandwidth can be performed in time to ensure efficient use of bandwidth and save bandwidth resources.
  • Another embodiment of the present invention provides a method for allocating and releasing satellite bandwidth.
  • the BTS selects an appropriate timing to apply for and release the satellite bandwidth to the VSAT station as an example. 4
  • the call is established between oMS and tMS.
  • the terminal oMS switches from oBTS l to oBTS2.
  • the tMS keeps talking under the tBTS, and the process is as shown in FIG.
  • the terminal oMS sends a Measurement Report to the oBTS l.
  • oBTS l sends the measurement result to BSC (Pre-Measure Result).
  • the BSC sends a channel activation message to the oBTS2. 5804, oBTS2 returns a Channel Activation Ack to the BSC.
  • the oBTS2 sends a bandwidth allocation request to the VSAT station connected through the interface, so as to allocate satellite bandwidth for the call service in time.
  • the allocation of the satellite bandwidth required by the service is no longer applied by the VSAT detection as in the prior art, but in the signaling interaction process initiated by the service, the OBTS2 applies in time before the establishment of the service user plane. Allocation, thus preventing data loss caused by satellite transmission time in the bandwidth application process, ensuring service quality and ensuring efficient use of bandwidth.
  • the BSC sends a handover command (Handover Command) to the oBTS l.
  • oBTS l sends a handover command (Handover Command) to the terminal oMS.
  • oBTS2 sends handover detection information (Handover Detect) to the BSC.
  • Handover Detect handover detection information
  • oBTS2 sends an establishment indication ( Establish Indication) to the BSC.
  • oBTS2 sends a handover complete message (Handover Complete) to the BSC.
  • the BSC sends a Release Request to the oBTS l.
  • the eBTS l After receiving the Release Request, the eBTS l sends a bandwidth release request to the VSAT station connected through the interface to release the allocated satellite bandwidth in time.
  • the release of the bandwidth of the service satellite is no longer released by the HUB as detected by the prior art, but is released in time by the oBTS l after the service user plane is released during the signaling interaction process at the end of the service. Save bandwidth resources.
  • the BSC sends a Handover Performed message to the MSC.
  • the OBTS2 requests the VSAT station to use the required bandwidth; after receiving the translation request from the BSC in step S811, the OBTS1 sends the VSAT to the VSAT.
  • the small station applies for translation bandwidth.
  • the foregoing BTS is required to apply for the allocation and release of the satellite bandwidth to the VSAT station.
  • the embodiment of the present invention is not limited thereto.
  • the bandwidth can be performed before the user plane is established.
  • other signaling interactions at the end of the service can be performed at the time after the user plane is released. Bandwidth is released.
  • the satellite device (VSAT) receives the bandwidth sent by the base station subsystem device (BTS) for the service. Assignment request; the satellite device (VSAT) allocates satellite bandwidth for the service based on the bandwidth allocation request.
  • the satellite device (VSAT) receives the bandwidth release request sent by the base station subsystem device (BTS) for the service; the satellite device (VSAT) is released according to the bandwidth release request. The satellite bandwidth allocated by this service.
  • the allocation and release of satellite bandwidth required by the service is no longer achieved by the satellite device's own detection mechanism as in the prior art. Instead, the satellite bandwidth is allocated before the service user plane is established, and the satellite bandwidth is released after the user plane is released. Therefore, the allocation and release of satellite bandwidth can be performed in time to ensure efficient use of bandwidth and save bandwidth resources.
  • the base station subsystem device 90 provided by the embodiment of the present invention, as shown in FIG. 9, includes: an interface unit 901 and a bandwidth allocation request unit 902. In another embodiment of the present invention, the base station subsystem device 90 may include an interface unit 901 and a bandwidth release request unit 903. In another embodiment of the present invention, the base station subsystem device 90 may include an interface unit 901, a bandwidth allocation request unit 902, and a bandwidth release request unit 903.
  • the interface unit 901 is configured to connect to a satellite device.
  • the bandwidth allocation requesting unit 902 is configured to send a bandwidth allocation request for the service to the satellite device connected through the interface unit 901 to allocate a satellite bandwidth for the service before the user plane is established.
  • the bandwidth release requesting unit 903 sends a bandwidth release request for the service to the satellite device connected through the interface unit 901 after the user plane is released, in order to release the satellite bandwidth allocated for the service. .
  • the base station subsystem device 90 is a base station controller B SC; or, when the satellite device is VSAT, the base station subsystem device 90 is a base station BTS.
  • the base station subsystem device provided by the embodiment of the present invention sends a bandwidth allocation request for the service to the satellite device connected through the interface, in order to allocate the satellite bandwidth for the service, in the signaling interaction process initiated by the service. .
  • a bandwidth release request for the service is sent to the satellite device connected through the interface to release the satellite bandwidth allocated for the service.
  • the allocation and release of satellite bandwidth required by the service is no longer implemented by the satellite device's own detection mechanism as in the prior art. Instead, the satellite bandwidth is allocated before the service user plane is established, and the satellite bandwidth is released after the user plane is released. Thereby, the allocation and release of satellite bandwidth can be performed in time to ensure efficient use of bandwidth and save bandwidth resources.
  • the satellite device 100 provided by the embodiment of the present invention, as shown in FIG. 10, includes: an interface unit 1001 and a receiving unit 1002.
  • the interface unit 1001 is configured to connect to the base station subsystem device.
  • the receiving unit 1002 is configured to receive, by using the interface unit 1001, a bandwidth allocation request sent by the base station subsystem device, and receive, by the interface unit 1001, a bandwidth release request sent by the base station subsystem device.
  • the satellite device 100 when the base station subsystem device is B SC, the satellite device 100 is a HUB; when the base station subsystem device is a BTS, the satellite device 100 is a VSAT.
  • the satellite device provided by the embodiment of the present invention receives the bandwidth allocation request sent by the base station subsystem device through the interface before the user plane is established, and receives the bandwidth allocation request sent by the base station subsystem device by using the interface unit.
  • Bandwidth release request In this way, the allocation and release of satellite bandwidth required by the service is no longer achieved by the satellite device's own detection mechanism as in the prior art. Instead, the satellite bandwidth is allocated before the business user plane is established, and the satellite bandwidth is released after the user plane is released. Therefore, the allocation and release of satellite bandwidth can be performed in time to ensure efficient use of bandwidth and save bandwidth resources.
  • the satellite transmission system provided by the embodiment of the present invention, as shown in FIG. 1 , includes: a base station subsystem device 90 and a satellite device 100 connected through an interface.
  • the satellite device 100 is configured to receive, after the user plane is established, a bandwidth allocation request for the service sent by the base station subsystem device 90 before the user plane is established; and allocate a satellite bandwidth for the service according to the bandwidth allocation request. Or, in the signaling interaction process of the end of the service, after the user plane is released, receiving the bandwidth release request sent by the base station subsystem device 90 for the service; releasing the service according to the bandwidth release request The allocated satellite bandwidth.
  • the base station subsystem device 90 is configured to send a bandwidth allocation request for the service to the satellite device 100 before the user plane is established in the signaling interaction initiated by the service; or, during the signaling interaction of the service end, After the user plane is released, a bandwidth release request for the service is sent to the satellite device 100.
  • the satellite device in the signaling interaction process initiated by the service, before the user plane is established, the satellite device receives a bandwidth allocation request for the service sent by the base station subsystem device; the satellite device allocates the request according to the bandwidth. Allocate satellite bandwidth for this service.
  • the satellite device receives a bandwidth release request for the service sent by the base station subsystem device; and the satellite device releases the satellite bandwidth allocated for the service according to the bandwidth release request.
  • the allocation and release of satellite bandwidth required by the service is no longer implemented by the satellite device's own detection mechanism as in the prior art. Instead, the satellite bandwidth is allocated before the service user plane is established, and the satellite bandwidth is released after the user plane is released. Therefore, the allocation and release of satellite bandwidth can be performed in time to ensure efficient use of bandwidth and save bandwidth resources.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Can be based on reality It is necessary to select some or all of the units to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及通信领域,提供一种卫星带宽的分配和释放方法、设备和系统,能够对卫星带宽执行及时的分配和释放,从而确保带宽的有效使用并节约带宽资源。分配带宽的方法包括:在业务发起的信令交互过程中,在用户面建立之前,向通过接口连接的卫星设备发送针对该业务的带宽分配请求,以便为该业务分配卫星带宽。释放带宽的方法包括:在业务结束的信令交互过程中,在用户面释放之后,向通过接口连接的卫星设备发送针对该业务的带宽释放请求,以便释放为该业务分配的卫星带宽。本发明用于分配和释放卫星带宽。

Description

一种卫星带宽的分配、 释放方法, 设备及系统 技术领域
本发明涉及通信领域, 尤其涉及一种卫星带宽的分配、 释放方 法, 设备及系统。 背景技术
在 GSM ( Global System of Mobile communication , 全球移动通 信系统) 网络建设中, 对于一些偏远地区 (例如山区、 荒漠、 岛屿), BTS( Base Transceiver Station ,基站 )与 BSC( Base Station Controller , 基站控制器 ) 之间的连接一般都采用卫星传输, 即 Abis接口采用卫 星中继。 目前采用的卫星传输系统由 VSAT ( Very Small Aperture Terminal , 极小口径终端) 小站和 HUB (集线器) 主站构成。 在部 署中, 一般是 BTS与卫星 VSAT 小站相连, BSC与卫星 HUB主站 相连。
一方面, 卫星传输带宽租用费用很高, 必须进行有效管理以实 现高效利用。 例如, 当业务需要使用带宽时, 要及时为该业务分配 带宽; 当业务结束后, 应及时将带宽回收。
另一方面, 目前卫星传输一般都利用地球同步轨道卫星, 因此 传输时延较长。 一般数据从 VSAT 通过卫星发送到 HUB , 需要约 300ms的时间, 往返时延约为 600ms。
目前的卫星带宽申请 /译放, 完全由卫星设备 ( VSAT小站 /HUB 主站)通过自身的检测机制完成。 VSAT在一定的统计周期内, 统计 当前使用的带宽, 如果发现带宽不够则向 HUB提出带宽申请。 一般 从 VSAT发出申请到带宽分配完成, 需要 600ms左右的时间。 为了 减少 VSAT 申请带宽过程中对业务的影响, 卫星传输一般都采用了 预留带宽机制, 即 VSAT会比实际使用带宽多申请一些。 释放类似, HUB检测到一定时间内实际使用的带宽比已分配的带宽要小, 则逐 步释放多余的带宽。
VSAT 定期检测当前实际需要的传输带宽, 当发现带宽不足向 HUB主站提出带宽申请后, 需要约 600ms的时间, 才能获得申请的 带宽。 在此期间, 由于带宽不足, 可能会出现业务数据的丟失, 从 而影响业务质量。
另外, 目前采用的带宽预留机制,即 VSAT向 HUB 申请带宽时, 为了减少上述申请时间过长带来的业务数据丟失, 都会比实际测量 值多申请一些带宽。 这些带宽在很多情况下用不上, 是一种资源浪 费。
同样, 当 HUB检测到一定时间段内, 实际使用的卫星带宽比已 分配的带宽低时, 则会逐步的释放未占用的带宽。 但这种方式不能 及时释放带宽资源, 也造成了带宽浪费。 发明内容
本发明的各个方面提供一种卫星带宽的分配、 释放方法, 设备 及系统, 能够及时地进行卫星带宽的分配和释放, 确保带宽的有效 利用, 节约了带宽资源。
本发明的一方面, 提供一种卫星带宽的分配方法, 包括: 在业务发起的信令交互过程中, 在用户面建立之前, 卫星设备 接收基站子系统设备发送的针对所述业务的带宽分配请求;
所述卫星设备根据所述带宽分配请求为所述业务分配卫星带 宽。
本发明的另一方面, 提供一种卫星带宽的释放方法, 包括: 在业务结束的信令交互过程中, 在用户面释放之后, 卫星设备 接收基站子系统设备发送的针对所述业务的带宽释放请求;
所述卫星设备根据所述带宽释放请求释放为所述业务分配的卫 星带宽。
本发明的另一方面, 提供一种基站子系统设备, 包括: 接口单 元和如下两个至少之一: 带宽分配请求单元和带宽译放请求单元; 其中,
接口单元, 用于连接卫星设备;
带宽分配请求单元, 用于在业务发起的信令交互过程中, 在用 户面建立之前, 向通过所述接口单元连接的卫星设备发送针对所述 业务的带宽分配请求;
带宽释放请求单元, 在业务结束的信令交互过程中, 在用户面 释放之后, 向通过所述接口单元连接的卫星设备发送针对所述业务 的带宽释放请求。
本发明的另一方面, 提供一种卫星设备, 包括:
接口单元, 用于连接基站子系统设备;
接收单元, 用于通过所述接口单元接收所述基站子系统设备发 送的带宽分配请求; 通过所述接口单元接收所述基站子系统设备发 送的带宽释放请求。
本发明的另一方面, 提供一种卫星传输系统, 包括:
通过接口连接的基站子系统设备和卫星设备, 其中,
所述卫星设备, 用于在业务发起的信令交互过程中, 在用户面 建立之前, 接收所述基站子系统设备发送的针对所述业务的带宽分 配请求; 根据所述带宽分配请求为所述业务分配卫星带宽; 或, 在 业务结束的信令交互过程中, 在用户面释放之后, 接收所述基站子 系统设备发送的针对所述业务的带宽释放请求; 根据所述带宽释放 请求释放为所述业务分配的卫星带宽;
所述基站子系统设备, 用于在业务发起的信令交互过程中, 在 用户面建立之前, 向所述卫星设备发送针对所述业务的带宽分配请 求; 或, 在业务结束的信令交互过程中, 在用户面释放之后, 向所 述卫星设备发送针对所述业务的带宽释放请求。
本发明实施例提供的卫星带宽的分配、 释放方法, 设备及系统, 能够及时地进行卫星带宽的分配和释放, 确保带宽的有效利用, 节 约了带宽资源。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例提供的卫星带宽的分配方法的流程示意 图;
图 2为本发明另一实施例提供的卫星带宽的释放方法的流程示 意图;
图 3 为本发明又一实施例提供的卫星带宽的分配、 释放方法的 示意图;
图 4为本发明再一实施例提供的卫星带宽的分配、 释放方法的 另一示意图;
图 5 为本发明实施例提供的卫星带宽的分配、 释放方法的示意 图;
图 6为本发明另一实施例提供的卫星带宽的分配、 释放方法的 示意图;
图 7为本发明又一实施例提供的卫星带宽的分配、 释放方法的 示意图;
图 8为本发明再一实施例提供的卫星带宽的分配、 释放方法的 示意图;
图 9为本发明实施例提供的基站子系统设备的构造示意图; 图 10为本发明实施例提供的卫星设备的构造示意图;
图 1 1 为本发明实施例提供的卫星传输系统的构造示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
以下描述中, 为了说明而不是为了限定, 提出了诸如特定系统 结构、 接口、 技术之类的具体细节, 以便透切理解本发明。 然而, 本领域的技术人员应当清楚, 在没有这些具体细节的其它实施例中 也可以实现本发明。 在其它情况中, 省略对众所周知的装置、 电路 以及方法的详细说明, 以免不必要的细节妨碍本发明的描述。
本文中描述的各种技术可用于各种无线通信系统, 例如当前
2G , 3 G通信系统和下一代通信系统, 例如全球移动通信系统( GSM , Global System for Mobile communications ) , 码分多址 ( CDMA , Code Division Multiple Access ) 系统, 时分多址 ( TDMA , Time Division Multiple Access ) 系统, 宽带码分多址 ( WCDMA , Wideband Code Division Multiple Access Wireless ) , 频分多址 ( FDMA , Frequency Division Multiple Addressing ) 系统, 正交频分多址 ( OFDMA , Orthogonal Frequency-Division Multiple Access )系统,单载波 FDMA
( SC-FDMA )系统,通用分组无线业务( GPRS , General Packet Radio Service ) 系统, 长期演进 ( LTE , Long Term Evolution ) 系统, 以及 其他此类通信系统。
本文中结合终端和 /或基站和 /或基站控制器来描述各种方面。 终端, 可以是无线终端也可以是有线终端, 无线终端可以是指 向用户提供语音和 /或数据连通性的设备, 具有无线连接功能的手持 式设备、 或连接到无线调制解调器的其他处理设备。 无线终端可以 经无线接入网 (例如, RAN , Radio Access Network ) 与一个或多个 核心网进行通信,无线终端可以是移动终端,如移动电话(或称为 "蜂 窝,,电话)和具有移动终端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入网交 换语 言 和 /或数据 。 例 如 , 个人通信业 务 ( PCS , Personal Communication Service ) 电话、 无绳电话、 会话发起协议 ( SIP ) 话 机、 无线本地环路 ( WLL , Wireless Local Loop ) 站、 个人数字助理
( PDA , Personal Digital Assistant )等设备。 无线终端也可以称为系 统、 订户单元 ( Subscriber Unit )、 订户站 ( Subscriber Station ), 移 动站 ( Mobile Station )、 移动台 ( Mobile )、 远程站 ( Remote Station )、 接入点 ( Access Point ), 远程终端 ( Remote Terminal ), 接入终端 ( Access Terminal )、 用户终端 ( User Terminal )、 用户代理 ( User Agent )、 用户设备 ( User Device )、 或用户装备 ( User Equipment )。
基站 (例如, 接入点) 可以是指接入网中在空中接口上通过一 个或多个扇区与无线终端通信的设备。 基站可用于将收到的空中帧 与 IP分组进行相互转换, 作为无线终端与接入网的其余部分之间的 路由器, 其中接入网的其余部分可包括网际协议 ( IP ) 网络。 基站 还可协调对空中接口的属性管理。 例如, 基站可以是 GSM或 CDMA 中的基站 ( BTS, Base Transceiver Station ), 也可以是 WCDMA 中 的基站 ( NodeB ), 还可以是 LTE 中的演进型基站 ( NodeB 或 eNB 或 e-NodeB, evolutional Node B ), 本发明并不限定。
基站控制器, 可以是 GSM或 CDMA 中的基站控制器 ( BSC, base station controller ), 也可以是 WCDMA 中的无线网络控制器 ( RNC, Radio Network Controller), 本发明并不限定。
另外, 本文中术语 "系统" 和 "网络" 在本文中常被可互换使 用。 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三种情况。 另外, 本文中字符 "/", 一般表示前后关联对象是一种 "或" 的关系。
本发明实施例提供的卫星带宽的分配方法, 如图 1 所示。
S101、 在业务发起的信令交互过程中, 在用户面建立之前, 卫 星设备接收基站子系统设备发送的针对所述业务的带宽分配请求。
例如, 卫星设备可以与基站子系统设备之间可以建立 TCP ( Transmission Control Protocol, 传输控制协议) 连接, 传递 TCP 报文, 这样能够保证基站子系统设备与卫星设备之间通信的及时、 可靠。
带宽分配请求中可以携带: 通信双方的标识, 例如 IP端点等, 需要申请的带宽, 以及业务的业务类型等。 当然, 通信的双方还可 以采用其他的标识, 本实施例不做限定。
本步骤 S 101 的 "用户面建立之前" 所指的实际环境, 例如可以 是: 基站子系统设备收到 MSC ( Mobile Switching Center , 移动交换 中心) 发送的分配请求 ( Assignment Request ) 消息后; 或者也可以 是基站子系统设备收到 BTS 发送的信道激活响应 (Channel Activation Ack ) 消息后。 对此, 本发明实施例并不将 "用户面建立之前" 限定 为接收到某个具体消息后。
S 102、 卫星设备根据该带宽分配请求为该业务分配卫星带宽。 本发明实施例提供的卫星带宽的分配方法, 在业务发起的信令 交互过程中, 在用户面建立之前, 卫星设备接收基站子系统设备发 送的针对所述业务的带宽分配请求; 卫星设备根据该带宽分配请求 为该业务分配卫星带宽。 这样一来, 业务所需的卫星带宽的分配, 不再如现有技术那样由 VSAT 检测后提出申请, 而是在业务用户面 建立之前及时分配卫星带宽。 从而防止了带宽申请过程中因卫星传 输耗时所造成的数据丟失, 保证了业务质量, 确保了带宽的有效利 用。 另外, 由于不再预留带宽, 还节约了带宽资源。
在本实施例中, 基站子系统设备为 BTS时, 卫星设备为 VSTA; 在本发明的另一实施例中, 基站子系统设备为 BSC时, 卫星设备为 HUB。
以 BSC和 HUB为例, 若其接口基于 IPv4协议, 则其带宽分配 请求消息的格式可以如表 1所示。
表 1
7 6 5 4 3 2
Element identifier = 0000 0001 octet 1
单元标识符 = 0000 0001 八位组 1
Length = 14 octet 2
长度 = 14 八位组 2
IPv4 Address 1 (MSByte first - LSByte last) octet 3-6 IPv4 地址 1 ( MS第一字节- LS最后字节) 八位组 3 -6
UDP Port Value 1 (MSByte first - LSByte last) octet 7-8
UDP端口值 1 ( MS第一字节 - LS最后字节) 八位组 7- 8
IPv4 Address 2 (MSByte first - LSByte last) octet 9- 12 IPv4 地址 2 ( MS第一字节- LS最后字节) 八位组 9- 12
UDP Port Value 2 (MSByte first - LSByte last) octet 13- 14 UDP端口值 2 ( MS第一字节 - LS最后字节) 八位组 13- 14
Bandwidth Requested Octet 15
带宽要求 八位组 15
Spare SType Octet 16
备用 类型 八位组 16 若 B SC与 HUB的接口基于 IPv6协议, 则其带宽分配请求消息 的格式可以如表 2所示。
表 2
7 6 5 4 3 2
Element identifier = 0000 0001 octet 1
单元标识符 = 0000 0001 八位组 1
Length = 38 octet 2
长度 = 38 八位组 2
IPv6 Address 1 (MSByte first - LSByte last) octet 3-18 IPv6 地址 1 ( MS第一字节- LS最后字节) 八位组 3-18
UDP Port Value 1 (MSByte first - LSByte last) octet 19-20
UDP端口值 1 ( MS第一字节- LS最后字节) 八位组 19-20
IPv6 Address 2 (MSByte first - LSByte last) octet 21-36 IPv6 地址 2 ( MS第一字节- LS最后字节) 八位组 21-36
UDP Port Value 2 (MSByte first - LSByte last) octet 37-38
UDP端口值 2 ( MS第一字节 - LS最后字节) 八位组 37-38
Bandwidth Requested Octet 39
带宽要求 八位组 39
Spare SType Octet 40
备用 类型 八位组 40 其中, IPv4还是 IPv6由消息的长度区分。
申请带宽 =Bandwidth Requested字段对应的二进制数的值 x l k( SType的取值为:
00 : 表示为 CS语音业务
01 : 表示为 CS数据业务
10 : 表示为 PS业务
1 1 : 表示为保留
对于 HUB 向 BSC返回的带宽分配请求响应消息 其消息格式 可以与上述类似。 差别在消息代码为 0000 0010。 同时 带宽字段为 HUB实际分配的卫星传输带宽。
本发明另一实施例提供的卫星带宽的释放方法, 如图 2所示。
S20 在业务结束的信令交互过程中, 在用户面释放之后, 卫 星设备接收基站子系统设备发送的针对该业务的带宽释放请求。
例如,卫星设备可以与基站子系统设备之间可以建立 TCP连接 , 传递 TCP报文, 这样能够保证基站子系统设备与卫星设备之间通信 的及时、 可靠。
带宽释放请求中可以携带: 通信双方的标识, 例如 IP端点等。 当然, 通信的双方还可以采用其他的标识, 本实施例不做限定。
本步骤 S201 的 "用户面释放之后" 所指的实际环境, 例如可以 是: 基站子系统设备收到 MSC发送的清除指令 ( Clear Command ) 消 息后; 或者也可以是基站子系统设备收到 BTS 发送的切换完成 ( Handover Complete ) 消息后。 对此, 本发明实施例并不将 "用户 面释放之后" 限定为接收到某个具体消息后。
S202、 卫星设备根据带宽释放请求释放为该业务分配的卫星带 宽。
本发明实施例提供的卫星带宽的释放方法, 在业务结束的信令 交互过程中, 在用户面释放之后, 卫星设备接收基站子系统设备发 送的针对该业务的带宽释放请求; 卫星设备根据带宽释放请求释放 为该业务分配的卫星带宽。 这样一来, 业务卫星带宽的释放, 不再 如现有技术那样由 HUB检测后逐步释放, 而是在业务用户面释放之 后及时释放卫星带宽, 节约了带宽资源。
在本实施例中, 基站子系统设备为 BTS时, 卫星设备为 VSTA; 在本发明的另一实施例中, 基站子系统设备为 BSC时, 卫星设备为 HUB。
以 BSC和 HUB为例, 若其接口基于 IPv4协议, 则其带宽译放 请求消息的格式可以如表 3所示。
表 3
7 6 5 4 3 2
Element identifier = 0000 001 1 octet 1
单元标识符 = 0000 001 1 八位组 1
Length = 12 octet 2
长度 =12 八位组 2
IPv4 Address 1 (MSByte first - LSByte last) octet 3-6
IPv4 地址 1 ( MS第一字节- LS最后字节) 八位组 3 -6
UDP Port Value 1 (MSByte first - LSByte last) octet 7-8
UDP端口值 1 ( MS第一字节- LS最后字节) 八位组 7- 8
IPv4 Address 2 (MSByte first - LSByte last) octet 9-12 IPv4 地址 2 ( MS第一字节- LS最后字节) 八位组 9- 12
UDP Port Value 2 (MSByte first - LSByte last) octet 13-14
UDP端口值 2 ( MS第一字节 - LS最后字节) 八位组 13-14 若 BSC与 HUB的借口基于 IPv6协议, 则其带宽释放请求消息 的格式可以如表 4所示。
表 4
8 7 6 5 4 3 2 1
Element identifier = 0000 001 1 octet 1
单元标识符 =0000 0011 八位组 1
Length = 36 octet 2
长度 =36 八位组 2
IPv6 Address 1 (MSByte first - LSByte last) octet 3-18 IPv6 地址 1 ( MS第一字节- LS最后字节) 八位组 3-18
UDP Port Value 1 (MSByte first - LSByte last) octet 19-20
UDP端口值 1 ( MS第一字节 - LS最后字节) 八位组 19-20
IPv6 Address 2 (MSByte first - LSByte last) octet 21-36 IPv6 地址 2 ( MS第一字节- LS最后字节) 八位组 21-36
UDP Port Value 2 (MSByte first - LSByte last) octet 37-38
UDP端口值 2 ( MS第一字节 - LS最后字节) 八位组 37-38
HUB收到该释放请求后, 释放原先业务占用的带宽。 并返回释 放请求响应消息。 释放请求响应消息的消息代码可以为 0000 0100。
综合上述, 在本发明的又一实施例中, 若基站子系统设备为 BSC , 卫星设备为 HUB , 其卫星带宽的分配和释放如图 3所示。 5301、 在业务用户面建立之前, BSC 向通过接口连接的 HUB 发送携带通信双方标识、 需要申请的带宽、 业务类型的带宽分配请 求。
5302、 HUB向 BSC返回带宽分配请求响应。
5303、 业务进行。
5304、 在业务用户面译放之后, BSC 向 HUB 发送针对该业务 的带宽释放请求, 该带宽释放请求中携带有通信双方标识。
5305、 BSC向 HUB返回带宽释放请求响应。
若基站子系统设备为 BTS , 卫星设备为 VSAT时, 其卫星带宽 的分配和译放如图 4所示。
5401、 在业务用户面建立之前, BTS 向通过接口连接的 VSAT 发送携带通信双方标识、 需要申请的带宽、 业务类型的带宽分配请 求。
5402、 VSAT向 BTS返回带宽分配请求响应。
5403、 业务进行。
5404、 在业务用户面译放之后, BTS向 VSAT发送针对该业务 的带宽释放请求, 该带宽释放请求中携带有通信双方标识。
5405、 VSAT向 BTS返回带宽译放请求响应。
本发明实施例提供的卫星带宽的分配、 释放方法, 设备及系统, 能够及时地进行卫星带宽的分配和释放, 确保带宽的有效利用, 节 约了带宽资源。
本发明再一实施例提供的卫星带宽的分配、 释放方法, 以呼叫 过程中 BSC择机向 HUB 主站申请和译放卫星带宽为例进行说明, 如图 5所示。
5501、 主叫终端向 BTS发送信道请求 ( Channel Request )。
5502、 BSC通过 BTS进行分配 ( Immediate Assignment )。
5503、 主叫终端向 BTS发起服务请求 ( CM Service Request )。
5504、 BTS将该服务请求发送至 BSC。
5505、 BSC向 MSC ( Mobile Switching Center , 移动交换中心) 发送月良务请求 ( Complete Layer 3 Message )。
5506、 MSC向 BSC返回分酉己请求 ( Assignment Request )。
5507、 BSC收到分配请求 ( Assignment Request ) 消息后, 向通 过接口连接的 HUB发送带宽分配请求, 以便及时为该呼叫业务分配 卫星带宽。
在本实施例中, 呼叫业务所需的卫星带宽的分配, 不再如现有 技术那样由 VSAT 检测后提出申请, 而是在业务发起的信令交互过 程中, 业务用户面建立之前 BSC及时申请分配, 从而防止了带宽申 请过程中因卫星传输耗时所造成的数据丟失, 保证了业务质量, 确 保了带宽的有效利用。
5508、 卫星带宽分配后, BSC向 BTS发送呼叫业务的分配命令 ( Assignment Command )。
5509、 BTS与 MSC建立通话连接。
5510、 通话结束后 , MSC 向 BSC 发送清除指令 ( Clear Command )。
551 1、 BSC 收到清除指令 ( Clear Command ) 后, 向通过接口 连接的 HUB发送带宽释放请求, 以便及时释放分配的卫星带宽。
在本实施例中, 业务卫星带宽的释放, 不再如现有技术那样由 HUB检测后逐步释放, 而是在业务结束的信令交互过程中, 业务用 户面释放之后由 BSC及时请求释放, 节约了卫星带宽资源。
5512、 BSC通过 BTS进行信道译放 ( Channel Release )„ 在本实施例中, BSC是在步骤 S507接收到 MSC发出的分配请 求消息后, 向 HUB主站申请分配带宽; 在步骤 S51 1接收到 MSC发 出的清除指令后, 向 HUB主站申请释放带宽。
上述 B SC择机向 HUB主站申请分配和译放卫星带宽只是一种 举例, 本发明实施例并不限于此, 其他的在业务发起的信令交互过 程中, 在用户面建立之前的时机均可进行带宽申请; 同样, 其他的 在业务结束的信令交互过程中, 在用户面释放之后的时机均可进行 带宽释放。 本发明实施例提供的卫星带宽的分配、 释放方法, 在业务发起 的信令交互过程中, 在用户面建立之前, 卫星设备 ( HUB ) 接收基 站子系统设备 ( B SC ) 发送的针对该业务的带宽分配请求; 卫星设 备 ( HUB ) 根据该带宽分配请求为该业务分配卫星带宽。 在业务结 束的信令交互过程中, 在用户面释放之后, 卫星设备 ( HUB ) 接收 基站子系统设备 ( BSC ) 发送的针对该业务的带宽释放请求; 卫星 设备 ( HUB ) 根据带宽释放请求释放为该业务分配的卫星带宽。 这 样一来, 业务所需的卫星带宽的分配与释放, 不再如现有技术那样 由卫星设备自身的检测机制实现。 而是在业务用户面建立之前分配 卫星带宽, 在用户面释放之后释放卫星带宽。 从而能够及时地进行 卫星带宽的分配和释放, 确保带宽的有效利用, 节约了带宽资源。
本发明实施例提供的卫星带宽的分配、 释放方法, 以在 BSC 内 切换过程中, BSC选择合适时机向 HUB主站申请和译放卫星带宽为 例进行说明。假定通话在 oMS和 tMS之间建立。终端 oMS从 oBTS l 切换到 oBTS2。 tMS在 tBTS下保持通话, 其过程如图 6所示。
5601、终端 oMS向 oBTS l发送测量报告( Measurement Report )。
5602、 oBTS l将测量结果发送到 BSC( Pre— measurement Result )。
5603、 BSC向 oBTS2发送信道激活消息 ( Channel Activation )。
5604、 oBTS2 向 BSC 返回信道激活响应 ( Channel Activation Ack )。
5605、 BSC接收到信道激活响应 ( Channel Activation Ack )后, 向通过接口连接的 HUB发送带宽分配请求, 以便及时为该呼叫业务 分配卫星带宽。
在本实施例中, 业务所需的卫星带宽的分配, 不再如现有技术 那样由 VSAT检测后提出申请, 而是在业务发起的信令交互过程中, 业务用户面建立之前由 BSC 及时申请分配,从而防止了带宽申请过 程中因卫星传输耗时所造成的数据丟失, 保证了业务质量, 确保了 带宽的有效利用。
5606、 BSC向 oBTS l发送切换命令 ( Handover Command )。 5607、 oBTS l 向终端 oMS发送切换命令( Handover Command )。
5608、 oBTS2向 BSC发送切换检测信息 ( Handover Detect )。
5609、 oBTS2向 BSC发送建立指示 ( Establish Indication )„
5610、 oBTS2向 BSC发送切换完成消息( Handover Complete )„
561 1、 BSC接收到切换完成消息 ( Handover Complete ) 后, 向 通过接口连接的 HUB发送带宽译放请求, 以便及时译放分配的卫星 带宽。
在本实施例中, 业务卫星带宽的释放, 不再如现有技术那样由 HUB检测后逐步释放, 而是在业务结束的信令交互过程中, 业务用 户面释放之后由 BSC及时申请释放, 节约了带宽资源。
5612、 BSC向 oBTS l发送释放请求 ( Release Request )。
5613、 BSC向 MSC发送切换执行消息 ( Handover Performed )。 在本实施例中, BSC是在步骤 S605接收到 oBTS2发出的信道 激活响应之后, 向 HUB 主站申请 OBTS2 需要使用的带宽; 在步骤 S61 1接收到 OBTS2发出的切换完成消息之后, 向 HUB主站申请译 放带宽。
上述 B SC择机向 HUB主站申请分配和译放卫星带宽只是一种 举例, 本发明实施例并不限于此, 其他的在业务发起的信令交互过 程中, 在用户面建立之前的时机均可进行带宽申请; 同样, 其他的 在业务结束的信令交互过程中, 在用户面释放之后的时机均可进行 带宽释放。
本发明实施例提供的卫星带宽的分配、 释放方法, 在业务发起 的信令交互过程中, 在用户面建立之前, 卫星设备 ( HUB ) 接收基 站子系统设备 ( B SC ) 发送的针对该业务的带宽分配请求; 卫星设 备 ( HUB ) 根据该带宽分配请求为该业务分配卫星带宽。 在业务结 束的信令交互过程中, 在用户面释放之后, 卫星设备 ( HUB ) 接收 基站子系统设备 ( BSC ) 发送的针对该业务的带宽释放请求; 卫星 设备 ( HUB ) 根据带宽释放请求释放为该业务分配的卫星带宽。 这 样一来, 业务所需的卫星带宽的分配与释放, 不再如现有技术那样 由卫星设备自身的检测机制实现。 而是在业务用户面建立之前分配 卫星带宽, 在用户面释放之后释放卫星带宽。 从而能够及时地进行 卫星带宽的分配和释放, 确保带宽的有效利用, 节约了带宽资源。
本发明另一实施例提供的卫星带宽的分配、 释放方法, 以呼叫 过程中 BTS择机向 VAST小站申请和译放卫星带宽为例进行说明, 如图 7所示。
5701、 主叫终端向 BTS发送信道请求 ( Channel Request )。
5702、 BSC通过 BTS进行分配 ( Immediate Assignment )。
5703、 主叫终端向 BTS发起服务请求 ( CM Service Request )。
5704、 BTS收到服务请求 ( CM Service Request ) 后, 向通过接 口连接的 VSAT 发送带宽分配请求, 以便及时为该呼叫业务分配卫 星带宽。
在本实施例中, 呼叫业务所需的卫星带宽的分配, 不再如现有 技术那样由 VSAT 检测后提出申请, 而是在业务发起的信令交互过 程中, 业务用户面建立之前由 BTS及时申请分配, 从而防止了带宽 申请过程中因卫星传输耗时所造成的数据丟失, 保证了业务质量, 确保了带宽的有效利用。
5705、 BTS将该服务请求发送至 BSC。
5706、 BSC向 MSC发送服务请求( Complete Layer 3 Message )。
5707、 MSC向 BSC返回分酉己请求 ( Assignment Request )。
5708、 BSC 向 BTS 发送呼叫业务的分配命令 ( Assignment Command )。
5709、 BTS与 MSC建立通话连接。
5710、 通话结束后 , MSC 向 BSC 发送清除指令 ( Clear Command )。
571 1、 BSC向 BTS发送信道释放消息 ( Channel Release )。
5712、 BTS收到信道译放消息 ( Channel Release ) 后, 向通过 接口连接的 VSAT 小站发送带宽译放请求, 以便及时释放分配的卫 星带宽。 在本实施例中, 业务卫星带宽的释放, 不再如现有技术那样由
HUB检测后逐步译放, 而是在业务用户面译放之后及时译放卫星带 宽, 节约了带宽资源。
在本实施例中,BTS是在步骤 S704接收到主叫终端发出的服务 请求消息后, 向 VSAT小站申请分配带宽; 在步骤 S712接收到 BSC 发出的道释放消息后, 向 VSAT小站申请释放带宽。
上述 BTS择机向 VSAT小站申请分配和释放卫星带宽只是一种 举例, 本发明实施例并不限于此, 其他的在业务发起的信令交互过 程中, 在用户面建立之前的时机均可进行带宽申请; 同样, 其他的 在业务结束的信令交互过程中, 在用户面释放之后的时机均可进行 带宽释放。
本发明实施例提供的卫星带宽的分配、 释放方法, 在业务发起 的信令交互过程中, 在用户面建立之前, 卫星设备 ( VSAT ) 接收基 站子系统设备 ( BTS ) 发送的针对该业务的带宽分配请求; 卫星设 备 ( VSAT ) 根据该带宽分配请求为该业务分配卫星带宽。 在业务结 束的信令交互过程中, 在用户面释放之后, 卫星设备 ( VSAT ) 接收 基站子系统设备 ( BTS ) 发送的针对该业务的带宽释放请求; 卫星 设备 ( VSAT ) 根据带宽释放请求释放为该业务分配的卫星带宽。 这 样一来, 业务所需的卫星带宽的分配与释放, 不再如现有技术那样 由卫星设备自身的检测机制实现。 而是在业务用户面建立之前分配 卫星带宽, 在用户面释放之后释放卫星带宽。 从而能够及时地进行 卫星带宽的分配和释放, 确保带宽的有效利用, 节约了带宽资源。
本发明又一实施例提供的卫星带宽的分配、释放方法,以在 BSC 内切换过程中, BTS 选择合适时机向 VSAT 小站申请和释放卫星带 宽为例进行说明。 4叚定通话在 oMS和 tMS之间建立。 终端 oMS从 oBTS l切换到 oBTS2。 tMS在 tBTS下保持通话,其过程如图 8所示。
5801、终端 oMS向 oBTS l发送测量才艮告( Measurement Report )。
5802、 oBTS l将测量结果发送到 BSC( Pre— measurement Result )。
5803、 BSC向 oBTS2发送信道激活消息 ( Channel Activation )。 5804、 oBTS2 向 BSC 返回信道激活响应 ( Channel Activation Ack )。
5805、 oBTS2向通过接口连接的 VSAT小站发送带宽分配请求, 以便及时为该呼叫业务分配卫星带宽。
在本实施例中, 业务所需的卫星带宽的分配, 不再如现有技术 那样由 VSAT检测后提出申请, 而是在业务发起的信令交互过程中, 业务用户面建立之前由 OBTS2 及时申请分配,从而防止了带宽申请 过程中因卫星传输耗时所造成的数据丟失, 保证了业务质量, 确保 了带宽的有效利用。
5806、 BSC向 oBTS l发送切换命令 ( Handover Command )。
5807、 oBTS l 向终端 oMS发送切换命令( Handover Command )。
5808、 oBTS2向 BSC发送切换检测信息 ( Handover Detect )。
5809、 oBTS2向 BSC发送建立指示 ( Establish Indication )„
5810、 oBTS2向 BSC发送切换完成消息( Handover Complete )„
581 1、 BSC向 oBTS l发送译放请求 ( Release Request )。
5812、 oBTS l 接收到译放请求 ( Release Request ) 后, 向通过 接口连接的 VSAT 小站发送带宽译放请求, 以便及时释放分配的卫 星带宽。
在本实施例中, 业务卫星带宽的释放, 不再如现有技术那样由 HUB检测后逐步释放, 而是在业务结束的信令交互过程中, 业务用 户面释放之后由 oBTS l及时申请释放, 节约了带宽资源。
5813、 BSC向 MSC发送切换执行消息 ( Handover Performed )。 在本实施例中, OBTS2是在步骤 S 804向 BSC返回信道激活响 应后, 向 VSAT小站申请需要使用的带宽; oBTS l在步骤 S 81 1接收 到 BSC发出的送译放请求之后, 向 VSAT小站申请译放带宽。
上述 BTS择机向 VSAT小站申请分配和释放卫星带宽只是一种 举例, 本发明实施例并不限于此, 其他的在业务发起的信令交互过 程中, 在用户面建立之前的时机均可进行带宽申请; 同样, 其他的 在业务结束的信令交互过程中, 在用户面释放之后的时机均可进行 带宽释放。
本发明实施例提供的卫星带宽的分配、 释放方法, 在业务发起 的信令交互过程中, 在用户面建立之前, 卫星设备 ( VSAT ) 接收基 站子系统设备 ( BTS ) 发送的针对该业务的带宽分配请求; 卫星设 备 ( VSAT ) 根据该带宽分配请求为该业务分配卫星带宽。 在业务结 束的信令交互过程中, 在用户面释放之后, 卫星设备 ( VSAT ) 接收 基站子系统设备 ( BTS ) 发送的针对该业务的带宽释放请求; 卫星 设备 ( VSAT ) 根据带宽释放请求释放为该业务分配的卫星带宽。 这 样一来, 业务所需的卫星带宽的分配与释放, 不再如现有技术那样 由卫星设备自身的检测机制实现。 而是在业务用户面建立之前分配 卫星带宽, 在用户面释放之后释放卫星带宽。 从而能够及时地进行 卫星带宽的分配和释放, 确保带宽的有效利用, 节约了带宽资源。
本发明实施例提供的基站子系统设备 90 , 如图 9所示, 包括: 接口单元 901和带宽分配请求单元 902。 在本发明的另一实施例中, 该基站子系统设备 90 可以包括接口单元 901 和带宽译放请求单元 903。 在本发明的另一实施例中, 该基站子系统设备 90 可以包括接 口单元 901 , 带宽分配请求单元 902和带宽译放请求单元 903。
接口单元 901 , 用于连接卫星设备。
带宽分配请求单元 902 , 用于在业务发起的信令交互过程中, 在用户面建立之前, 向通过接口单元 901 连接的卫星设备发送针对 该业务的带宽分配请求, 以便为该业务分配卫星带宽。
带宽释放请求单元 903 , 在业务结束的信令交互过程中, 在用 户面译放之后, 向通过接口单元 901 连接的卫星设备发送针对该业 务的带宽释放请求, 以便释放为该业务分配的卫星带宽。
例如, 该卫星设备为 HUB时, 基站子系统设备 90为基站控制 器 B SC ; 或, 卫星设备为 VSAT时, 基站子系统设备 90为基站 BTS。
本发明实施例提供的基站子系统设备, 在业务发起的信令交互 过程中, 在用户面建立之前, 向通过接口连接的卫星设备发送针对 该业务的带宽分配请求, 以便为该业务分配卫星带宽。 在业务结束 的信令交互过程中, 在用户面释放之后, 向通过接口连接的卫星设 备发送针对该业务的带宽释放请求, 以便释放为该业务分配的卫星 带宽。 这样一来, 业务所需的卫星带宽的分配与释放, 不再如现有 技术那样由卫星设备自身的检测机制实现。 而是在业务用户面建立 之前分配卫星带宽, 在用户面释放之后释放卫星带宽。 从而能够及 时地进行卫星带宽的分配和释放, 确保带宽的有效利用, 节约了带 宽资源。
本发明实施例提供的卫星设备 100 , 如图 10所示, 包括: 接口 单元 1001和接收单元 1002。
接口单元 1001 , 用于连接基站子系统设备。
接收单元 1002 , 用于通过接口单元 1001 接收基站子系统设备 发送的带宽分配请求; 通过所述接口单元 1001接收基站子系统设备 发送的带宽释放请求。
例如, 基站子系统设备为 B SC 时, 卫星设备 100 为 HUB ; 基 站子系统设备为 BTS时, 卫星设备 100为 VSAT。
本发明实施例提供的卫星设备,在业务发起的信令交互过程中, 在用户面建立之前, 通过接口接收基站子系统设备发送的带宽分配 请求; 通过所述接口单元接收基站子系统设备发送的带宽释放请求。 这样一来, 业务所需的卫星带宽的分配与释放, 不再如现有技术那 样由卫星设备自身的检测机制实现。 而是在业务用户面建立之前分 配卫星带宽, 在用户面释放之后释放卫星带宽。 从而能够及时地进 行卫星带宽的分配和释放, 确保带宽的有效利用, 节约了带宽资源。
本发明实施例提供的卫星传输系统, 如图 1 1 所示, 包括: 通过 接口连接的基站子系统设备 90和卫星设备 100。
该卫星设备 100 , 用于在业务发起的信令交互过程中, 在用户 面建立之前, 接收基站子系统设备 90发送的针对所述业务的带宽分 配请求; 根据带宽分配请求为该业务分配卫星带宽; 或, 在业务结 束的信令交互过程中, 在用户面释放之后, 接收基站子系统设备 90 发送的针对该业务的带宽释放请求; 根据带宽释放请求释放为该业 务分配的卫星带宽。
该基站子系统设备 90 , 用于在业务发起的信令交互过程中, 在 用户面建立之前, 向卫星设备 100发送针对该业务的带宽分配请求; 或, 在业务结束的信令交互过程中, 在用户面释放之后, 向该卫星 设备 100发送针对该业务的带宽释放请求。
本发明实施例提供的卫星传输系统, 在业务发起的信令交互过 程中, 在用户面建立之前, 卫星设备接收基站子系统设备发送的针 对该业务的带宽分配请求; 卫星设备根据该带宽分配请求为该业务 分配卫星带宽。 在业务结束的信令交互过程中, 在用户面释放之后, 卫星设备接收基站子系统设备发送的针对该业务的带宽释放请求; 卫星设备根据带宽释放请求释放为该业务分配的卫星带宽。 这样一 来, 业务所需的卫星带宽的分配与释放, 不再如现有技术那样由卫 星设备自身的检测机制实现。 而是在业务用户面建立之前分配卫星 带宽, 在用户面释放之后释放卫星带宽。 从而能够及时地进行卫星 带宽的分配和释放, 确保带宽的有效利用, 节约了带宽资源。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁, 上述描述的系统, 装置和单元的具体工作过程, 可以参考前述方法 实施例中的对应过程, 在此不再贅述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置 实施例仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑 功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组 件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或 不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或通 信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分 开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可 以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实 际的需要选择其中的部分或者全部单元来实现本实施例方案的 目 的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以 上单元集成在一个单元中。 上述集成的单元既可以采用硬件的形式 实现, 也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的 产品销售或使用时, 可以存储在一个计算机可读取存储介质中。 基 于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡 献的部分或者该技术方案的全部或部分可以以软件产品的形式体现 出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用 以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设 备等) 执行本发明各个实施例所述方法的全部或部分步骤。 而前述 的存储介质包括: U盘、 移动硬盘、 只读存储器 ( ROM , Read-Only Memory ) , 随机存取存储器 ( RAM , Random Access Memory )、 磁碟 或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域 的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技 术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些 修改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技 术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种卫星带宽的分配方法, 其特征在于, 包括:
在业务发起的信令交互过程中, 在用户面建立之前, 卫星设备接 收基站子系统设备发送的针对所述业务的带宽分配请求;
所述卫星设备根据所述带宽分配请求为所述业务分配卫星带宽。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述卫星设备与 所述基站子系统设备之间建立传输控制协议连接。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述带宽分 配请求包括: 通信双方的标识、 需要申请的带宽, 以及所述业务的业 务类型。
4、 根据权利要求 1 所述的方法, 其特征在于, 所述卫星设备包 括: 集线器 HUB或极小口径终端 VSAT。
5、 一种卫星带宽的释放方法, 其特征在于, 包括:
在业务结束的信令交互过程中, 在用户面释放之后, 卫星设备接 收基站子系统设备发送的针对所述业务的带宽释放请求;
所述卫星设备根据所述带宽释放请求释放为所述业务分配的卫 星带宽。
6、 根据权利要求 5所述的方法, 其特征在于, 所述卫星设备与 所述基站子系统设备之间建立传输控制协议连接。
7、 根据权利要求 5或 6所述的方法, 其特征在于, 所述带宽释 放请求包括: 通信双方的标识。
8、 根据权利要求 5所述的方法, 其特征在于, 所述卫星设备包 括: 集线器 HUB或极小口径终端 VSAT。
9、 一种基站子系统设备, 其特征在于, 包括: 接口单元和如下 两个至少之一: 带宽分配请求单元和带宽译放请求单元; 其中,
接口单元, 用于连接卫星设备;
带宽分配请求单元, 用于在业务发起的信令交互过程中, 在用户 面建立之前, 向通过所述接口单元连接的卫星设备发送针对所述业务 的带宽分配请求; 带宽释放请求单元, 在业务结束的信令交互过程中, 在用户面释 放之后, 向通过所述接口单元连接的卫星设备发送针对所述业务的带 宽释放请求。
10、 根据权利要求 9所述的基站子系统设备, 其特征在于, 所述卫星设备为 HUB 时, 所述基站子系统设备为基站控制器 BSC; 或
所述卫星设备为 VSAT时, 所述基站子系统设备为基站 BTS。
11、 一种卫星设备, 其特征在于, 包括:
接口单元, 用于连接基站子系统设备;
接收单元,用于通过所述接口单元接收所述基站子系统设备发送 的带宽分配请求; 通过所述接口单元接收所述基站子系统设备发送的 带宽释放请求。
12、 根据权利要求 11所述的卫星设备, 其特征在于,
所述基站子系统设备为 BSC时, 所述卫星设备为 HUB ; 或 所述基站子系统设备为 BTS时, 所述卫星设备为 VSAT。
13、 一种卫星传输系统, 其特征在于, 包括:
通过接口连接的基站子系统设备和卫星设备, 其中,
所述卫星设备, 用于在业务发起的信令交互过程中, 在用户面建 立之前,接收所述基站子系统设备发送的针对所述业务的带宽分配请 求; 根据所述带宽分配请求为所述业务分配卫星带宽; 或, 在业务结 束的信令交互过程中, 在用户面释放之后, 接收所述基站子系统设备 发送的针对所述业务的带宽释放请求; 根据所述带宽释放请求释放为 所述业务分配的卫星带宽;
所述基站子系统设备, 用于在业务发起的信令交互过程中, 在用 户面建立之前, 向所述卫星设备发送针对所述业务的带宽分配请求; 或, 在业务结束的信令交互过程中, 在用户面释放之后, 向所述卫星 设备发送针对所述业务的带宽释放请求。
PCT/CN2011/075036 2011-05-31 2011-05-31 一种卫星带宽的分配、释放方法,设备及系统 WO2011157140A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11795106.1A EP2717638A4 (en) 2011-05-31 2011-05-31 METHOD, DEVICE AND SYSTEM FOR DISTRIBUTING AND RELEASING SATELLITE BANDS
CN2011800006939A CN102204121A (zh) 2011-05-31 2011-05-31 一种卫星带宽的分配、释放方法,设备及系统
PCT/CN2011/075036 WO2011157140A2 (zh) 2011-05-31 2011-05-31 一种卫星带宽的分配、释放方法,设备及系统
IL229735A IL229735A0 (en) 2011-05-31 2013-11-28 Method, device and system for allocating and releasing satellite bandwidths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075036 WO2011157140A2 (zh) 2011-05-31 2011-05-31 一种卫星带宽的分配、释放方法,设备及系统

Publications (2)

Publication Number Publication Date
WO2011157140A2 true WO2011157140A2 (zh) 2011-12-22
WO2011157140A3 WO2011157140A3 (zh) 2012-04-19

Family

ID=44662796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075036 WO2011157140A2 (zh) 2011-05-31 2011-05-31 一种卫星带宽的分配、释放方法,设备及系统

Country Status (4)

Country Link
EP (1) EP2717638A4 (zh)
CN (1) CN102204121A (zh)
IL (1) IL229735A0 (zh)
WO (1) WO2011157140A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747386A1 (en) 2012-12-20 2014-06-25 Telefonica S.A. Method and System for the creation, modification and removal of a distributed virtual customer premises equipment
CN106101016A (zh) * 2016-05-30 2016-11-09 乐视控股(北京)有限公司 调度方法及系统
CN109218193A (zh) * 2018-11-29 2019-01-15 上海微小卫星工程中心 一种抑制卫星网络中的路由拥塞的方法
CN109379129A (zh) * 2018-11-30 2019-02-22 四川安迪科技实业有限公司 卫星通信频带资源动态分配算法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6131027A (en) * 1997-12-29 2000-10-10 Motorola, Inc. System for controlling network bandwidth
GB2347824B (en) * 1999-03-05 2004-03-03 Internat Mobile Satellite Orga Communication methods and apparatus
CN100440989C (zh) * 2004-03-10 2008-12-03 华为技术有限公司 一种实现卫星传输的系统和方法
FR2898759B1 (fr) * 2006-03-14 2008-05-16 Cell & Sat Soc Par Actions Sim Procede d'optimisation de l'allocation des ressources dans un reseau cellulaire mettant en oeuvre une liaison de transmission radio partagee, reseau et adaptateurs de reseau correspondants.
US7835693B2 (en) * 2007-11-01 2010-11-16 General Dynamics C4 Systems, Inc. Providing service in a satellite communications system to disadvantaged terminals
US8265646B2 (en) * 2008-11-10 2012-09-11 Viasat, Inc. Dynamic frequency assignment in a multi-beam system
CN101986619A (zh) * 2010-10-29 2011-03-16 南京丹奥科技有限公司 基于带宽预留的vsat卫星通信系统带宽分配方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2717638A4

Also Published As

Publication number Publication date
EP2717638A2 (en) 2014-04-09
IL229735A0 (en) 2014-01-30
EP2717638A4 (en) 2014-05-07
WO2011157140A3 (zh) 2012-04-19
CN102204121A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
CN101925042B (zh) 控制隧道标识分配的方法、装置和系统
US8532046B2 (en) Method, system, and device for network handoff
KR101457823B1 (ko) 모바일 무선 장치에서 네트워크 혼잡 동안의 무선 자원 재설정 시그널링
CN105338655B (zh) 一种用户平面承载建立的方法及装置
CN101438544A (zh) 用于借助有效分组数据协议上下文激活过程来激活多个服务承载的无线通信方法和系统
US20080132268A1 (en) Dynamic quality of service adaptation in packet data communications
CN111629450B (zh) 一种数据传输方法、相关设备以及存储介质
US8626884B2 (en) Method for establishing data connection on mobile network, mobile network, and policy control entity
TW201218712A (en) MTC device bandwidth reduction
US20070153769A1 (en) Method of locating and transferring session information between access nodes in a radio access network
WO2009049529A1 (fr) Procédé d'établissement de support de charge et dispositif associé
US9668176B2 (en) Method for selecting shunt gateway and controller
WO2019085728A1 (zh) 通信方法及装置
KR20140134943A (ko) 통신 망에서 소프트웨어 정의 네트워크를 이용한 데이터 전달 장치 및 방법
KR100604531B1 (ko) 이동 통신 시스템의 무선 패킷 데이터 서비스 방법
WO2011157140A2 (zh) 一种卫星带宽的分配、释放方法,设备及系统
WO2012152130A1 (zh) 承载处理方法及装置
WO2015103780A1 (zh) 一种承载电路语音业务的方法及装置
CN109819487B (zh) 一种连接管理方法及设备
WO2013079019A1 (zh) 通信方法、基站、基站控制器和移动交换中心
EP1333695B1 (en) System, first and second entity and method for assigning and releasing resources
KR101099433B1 (ko) 낮은 대기 시간 서비스들을 위한 베어러 네트워크에 의한시그널링 전송
WO2014086003A1 (zh) 承载处理方法及装置、系统
RU2496260C2 (ru) Способ, контроллер базовой станции и подсистема базовой станции для контроля качества обслуживания
WO2010028600A1 (zh) 用户面数据传输的方法和网络系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000693.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795106

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011795106

Country of ref document: EP