WO2011157129A2 - 数据传输方法、分流点设备、用户设备和系统 - Google Patents

数据传输方法、分流点设备、用户设备和系统 Download PDF

Info

Publication number
WO2011157129A2
WO2011157129A2 PCT/CN2011/074982 CN2011074982W WO2011157129A2 WO 2011157129 A2 WO2011157129 A2 WO 2011157129A2 CN 2011074982 W CN2011074982 W CN 2011074982W WO 2011157129 A2 WO2011157129 A2 WO 2011157129A2
Authority
WO
WIPO (PCT)
Prior art keywords
wlan
user equipment
user
user data
point device
Prior art date
Application number
PCT/CN2011/074982
Other languages
English (en)
French (fr)
Other versions
WO2011157129A3 (zh
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000963.6A priority Critical patent/CN102918922B/zh
Priority to EP11795095.6A priority patent/EP2709418B1/en
Priority to PCT/CN2011/074982 priority patent/WO2011157129A2/zh
Publication of WO2011157129A2 publication Critical patent/WO2011157129A2/zh
Publication of WO2011157129A3 publication Critical patent/WO2011157129A3/zh
Priority to US14/092,397 priority patent/US9414281B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/38Flow based routing

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to data transmission methods, distribution point devices, user equipment, and systems. Background technique
  • WLAN wireless local area network
  • WiFi Wireless Fidelity
  • the AP is the access point of the WLAN. After the WLAN terminal passes the association and authentication process, it can communicate with the AP.
  • the AC functions as a route switching and management AP.
  • the external interface of the AP is an IP interface. Therefore, the user IP data from the AP is used. Packets can enter the external IP packet network via the AC, typically the Internet.
  • the AC is connected to the AAA server (Authentication, Authorization, and Accounting). Usually, the user accesses the WLAN network by inputting the account name and password provided by the operator.
  • the bearer authentication, authentication, and charging is a 3GPP AAA server in a mobile communication network such as GPRS, UMTS, or LTE of the mobile operator, where the 3GPP AAA server is connected to the HLR (Home Location Register).
  • Manual operation such as account name and password is not required, and the user's authentication is automatically completed by the mobile phone using the user subscription information stored on the SIM (Subscriber Identity Module) card or the USIM (Universal Subscriber Identity Module) card.
  • SIM Subscriber Identity Module
  • USIM Universal Subscriber Identity Module
  • the networking scheme of the independent WLAN network is relatively simple, it cannot interoperate with the mobile communication network, including the handover of the WLAN and the mobile communication network, and the PS (Packet-Switched Domain) service of the mobile communication network through the WLAN.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • the WLAN AP is usually set up in a hotspot area rather than a network that continuously covers, the WLAN network becomes unusable due to interference, or because the user moves.
  • 3GPP's I-WLAN (Interworking WLAN) interworking mode can be utilized.
  • the AC is connected to the GGSN (Gateway GPRS Support Node) through a TTG (Tunnel Terminating Gateway), where the GGSN is between the GPRS and UMTS systems and the external IP network.
  • TTG Transmission Traffic Terminating Gateway
  • the gateway, TTG plays the role of connecting to the GGSN through the Gn interface of the 3GPP standard.
  • the TG function and the GGSN function can be combined into a PDG (Packet Data Gateway).
  • IFOM IP Flow Mobility and Seamless WLAN Offloading, IP flow mobility and seamless WLAN offloading
  • the existing WLAN networking method has a common feature, that is, the WLAN is a completely independent network. In this way, for a mobile operator without fixed network resources, it is necessary to re-establish a transmission network for the WLAN network, which greatly increases the cycle and cost of the network construction.
  • Embodiments of the present invention provide a data transmission method, a distribution point device, a user equipment, and a system, which can improve a system transmission rate.
  • a data transmission method including: receiving, by a user equipment, offload control signaling, where the offload control signaling carries a cellular network identifier of the user equipment and a wireless local area network a WLAN identifier; establishing, according to the cellular network identifier and the WLAN identifier of the user equipment, a correspondence between the WLAN identifier of the user equipment and all bearer channels of the user equipment; and determining according to the negotiation with the user equipment a data offloading manner and the corresponding relationship, where the data offloading manner is used to specify all or part of user data flows in the downlink and/or uplink direction of the user equipment transmitted through the WLAN air interface, and determine all or part of the user data.
  • the corresponding bearer channel of the stream including: receiving, by a user equipment, offload control signaling, where the offload control signaling carries a cellular network identifier of the user equipment and a wireless local area network a WLAN identifier; establishing, according to the cellular network identifier and the WLAN identifie
  • a data transmission method including: sending a shunt control signaling to a distribution point device, where the shunt control signaling carries a cellular network identifier of a user equipment and a wireless local area network WLAN identifier, to facilitate the distribution point device And establishing, according to the cellular network identifier and the WLAN identifier of the user equipment, a correspondence between the WLAN identifier of the user equipment and all seven-pass channels of the user equipment; and determining, by using the traffic distribution device, a data offloading manner.
  • the data offloading mode is used to specify all or part of user data flows in the downlink and/or uplink direction of the user equipment that are transmitted through the WLAN air interface, so that the traffic distribution device and the corresponding relationship are performed according to the data distribution mode.
  • a carrier channel corresponding to all or part of the user data stream is determined.
  • a power distribution point device including: a receiving unit, configured to receive a traffic distribution control signaling sent by a user equipment, where the traffic distribution control signaling carries a cellular network identifier of the user equipment and a wireless local area network WLAN identifier; a establishing unit, configured to establish, according to the cellular network identifier and the WLAN identifier of the user equipment, a correspondence between a WLAN identifier of the user equipment and all bearer channels of the user equipment, and a determining unit, configured to Determining, by the user equipment, the data offloading manner and the corresponding relationship, where the data offloading manner is used to specify all or part of user data flows in the downlink and/or uplink direction of the user equipment that is transmitted through the WLAN air interface, and determine The bearer channel corresponding to all or part of the user data stream.
  • a home device including: a sending unit, configured to send a shunt control signaling to a power distribution point device, where the shunt control signaling carries a cellular network identifier of a user equipment and a wireless local area network WLAN identifier, so as to facilitate Establishing a correspondence between the WLAN identifier of the user equipment and all bearer channels of the user equipment according to the cellular network identifier and the WLAN identifier of the user equipment, where the negotiation unit is configured to use the distribution point Determining, by the device, the data offloading mode, where the data offloading mode is used to specify all or part of the user data flow in the downlink and/or uplink direction of the user equipment that is transmitted through the WLAN air interface, so that the traffic point device follows the data.
  • the offload mode and the corresponding relationship determine a bearer channel corresponding to all or part of the user data stream.
  • a communication system comprising: the above-mentioned distribution point device, or the above user equipment
  • the embodiment of the present invention determines the seven-carrier channel corresponding to all or part of the user data transmitted through the WLAN air interface, so that all or part of the user data can be transmitted in the uplink or downlink direction via the WLAN air interface, thereby improving the transmission rate.
  • FIG. 1 is a schematic diagram of a tightly coupled network architecture of LTE and WLAN to which an embodiment of the present invention may be applied.
  • 2 is a schematic diagram of another tightly coupled network architecture of LTE and WLAN to which embodiments of the present invention may be applied.
  • 3A and 3B are schematic diagrams of a user data transmission flow.
  • FIG. 4 is a flow chart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of EPS bearers in an LTE system.
  • FIGS. 7A and 7B are schematic diagrams of an end-to-end tunnel in accordance with an embodiment of the present invention.
  • Figure 8 is a schematic illustration of a protocol stack associated with one embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a protocol stack associated with another embodiment of the present invention.
  • FIG 10 is a schematic illustration of an LTE HeNB and WLAN tightly coupled network architecture in accordance with an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another tightly coupled network architecture of an LTE HeNB and a WLAN, in accordance with an embodiment of the present invention.
  • FIG. 12 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 14 is a diagram of an example architecture of a WLAN-Only scenario in accordance with one embodiment of the present invention.
  • 15 is a schematic diagram of an example architecture of a scenario of WLAN-Only, in accordance with another embodiment of the present invention.
  • 16 is a schematic block diagram of a shunt point device in accordance with one embodiment of the present invention.
  • FIG. 17 is a schematic block diagram of a power distribution point device in accordance with another embodiment of the present invention.
  • FIG. 18 is a schematic block diagram of a power distribution point device in accordance with another embodiment of the present invention.
  • Figure 19 is a schematic block diagram of a user equipment in accordance with one embodiment of the present invention.
  • FIG. 20 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
  • 21 is a schematic block diagram of a user equipment according to another embodiment of the present invention. detailed description
  • the WLAN is used as a natural extension and supplement of the LTE mobile communication network, so that the WLAN becomes a part of a mobile communication network such as LTE, thereby avoiding the formation of two networks and reducing the cycle and cost of network construction.
  • the transmission rate of mobile communication network users is greatly improved, and the user experience is effectively improved.
  • the effect of the data transmission of the cellular network is moderated, which is often called shunting. If the user data can be transmitted by using the WLAN and the cellular system air interface at the same time, the effect is not only to reduce the data transmission load of the cellular network, that is, to reduce the load, but also to provide the peak rate of the user to improve the user experience. Therefore, in the embodiment of the present invention, Also known as aggregation transmission of WLAN and cellular systems.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN-GW Packet Data Network Gateway
  • PCRF Policy charging and The rules function, policy and charging rule function, HSS (Home Subscriber Server), 3GPPAAA Server, etc.
  • EPC Evolved Packet Core
  • the PDN-GW is connected to an external packet data network (such as an IP network) through the SGi interface, and is connected to the PCRF through the Gx interface.
  • MME also passed The S6a interface is connected to the HSS, and the 3GPP AAA Server is connected to the HSS through the S Wx interface.
  • the LTE radio access network element has only one eNB (evolved Node B), and the eNB is connected to the MME and the S-GW through the control plane interface Sl-mme and the user plane interface Slu, respectively.
  • the transport layer protocol of the control plane Sl-mme interface adopts SCTP (Stream Control Transmission Protocol), and the transport layer protocol of the user plane Slu interface adopts GTP-U (GPRS Tunneling Protocol - User) carried on UDP.
  • Plane user plane GPRS tunneling protocol
  • the user data is carried in the GTP-U tunnel, where the GTP-U tunnel is composed of the TEID (Tunnel Endpoint Identifier) of the GTP-U header, and UDP.
  • the combined unique identifier of the UDP port number and IP address of the /IP layer For convenience of description, the TEID of the GTP-U tunnel and the UDP port number and IP address combination of the UDP/IP layer are referred to as GTP-U tunnel identifiers.
  • the user data offload function of the embodiment of the present invention may be located in the S-GW or in the eNB.
  • the offloading point device of the embodiment of the present invention may be an S-GW or an eNB.
  • the S-GW is used as an example.
  • the S-GW also has the function of offloading user data streams between LTE and WLAN.
  • the user plane data is transmitted using the WLAN channel and/or the LTE channel, and the control plane message is still transmitted using the LTE channel.
  • the term "split point device" is used to refer to a network element having a user data offload function, such as a base station eNB or a serving gateway S-GW, without distinction.
  • the WLAN AP is logically connected to the S-GW.
  • the specific manner may be that the eNB is co-sited with the eNB and connected to the S-GW, or the WLAN AP and the eNB do not share the same site but are connected to the S-GW via the eNB. , or the WLAN AP and the eNB do not share the site directly to the S-GW.
  • the WLAN AP and the eNB may be the same physical device, that is, the eNB integrates the functions of the WLAN AP at the same time, or may be two independent physical devices.
  • the logical interface between the S-GW and the WLAN AP is divided into a control plane and a user plane, where the control plane is used to transmit user plane management and control related information, so as to transmit a user plane transmission channel between the S-GW and the WLAN AP.
  • the control plane is used to transmit user plane management and control related information, so as to transmit a user plane transmission channel between the S-GW and the WLAN AP.
  • TCP over IP or SCTP over IP can be used for transmission;
  • the user plane is used for transmitting user data streams that are transmitted to the WLAN AP and transmitted via the WLAN network, and can be transmitted by UDP over IP.
  • an AC WLAN AP Controller
  • S-GW S-GW
  • WLAN AP Controller WLAN AP Controller
  • the AC and the AAA server are connected to complete access authentication for the WLAN user, and the AAA server preferably employs a 3GPP AAA Server.
  • the connection mode is the same as that of the AC or TTG and the AAA server in the foregoing existing WLAN network.
  • FIG. 2 is a schematic diagram of another tightly coupled network architecture of LTE and WLAN to which embodiments of the present invention may be applied.
  • the AC is not a stand-alone device, and its WLAN-related management and control functions are integrated in the S-GW. Therefore, the S-GW and the AAA server are connected. Complete access authentication for WLAN users.
  • the S-GW when the S-GW is an S-GW, the S-GW can collect the user data traffic and duration of the LTE air interface and the WLAN air interface. Such information is provided to the offline or online billing system, enabling the system to perform the required billing functions.
  • the charging information collection function needs to be added to the eNB, so that the eNB can collect information such as user data traffic and duration of the LTE air interface and the WLAN air interface, and provide the information to the offline or An online billing system that enables the system to perform the required billing functions.
  • FIG. 1 and FIG. 2 The main difference between the tightly coupled network architectures of LTE and WLAN shown in Figures 1 and 2 is the location of the WLAN-related management and control functions. However, in terms of the functions related to LTE and WLAN aggregation transmission, there is no difference between the architectures shown in FIG. 1 and FIG. 2. Therefore, the following description about the user data splitting between LTE and WLAN is shown in FIG. 1 and FIG. The architecture is applicable.
  • 3A is a schematic diagram of a user data transmission procedure in a case where a WLAN AP and an eNB do not share a common site but are connected to an S-GW via an eNB, where a dotted arrow represents a transmission process of an IP flow.
  • the user data arrives at the PDN-GW via the SGi interface, and then reaches the S-GW through the GTP-U tunnel, and after passing through the S-GW functional unit, is separated into two parts by the user data offloading unit 310.
  • the part of the user data that is transmitted through the LTE air interface is sent to the eNB through the GTP-U channel, and is sent by the eNB to the UE through the LTE air interface.
  • the part transmitted through the WLAN air interface is directly transmitted to the WLAN AP or forwarded to the WLAN AP via the eNB (when the WLAN AP and the eNB do not share the site,
  • the WLAN AP is connected to the S-GW through the eNB;
  • the MAC layer and the physical layer of the WLAN are transmitted through the WLAN air interface.
  • a transport layer packet (including a TCP over IP packet carrying a control plane and a UDP over IP packet carrying a portion of the user data transmitted through the WLAN air interface) between the S-GW and the WLAN AP, between the S-GW and the eNB
  • One method is to directly transmit the transport layer packet of the interface between the S-GW and the WLAN AP.
  • the source and destination addresses of the IP header are the S-GW and the WLAN AP respectively.
  • the address will be correctly forwarded by the user data transmitted by the WLAN AP.
  • the IP layer routing function may also be implemented by using an external IP routing device.
  • Another way is to use a UDP over IP tunnel between the S-GW and the eNB.
  • the packets are respectively carried on different transmission channels, and then multiplexed on the physical line of the Slu interface, that is, the total transmission on the Slu interface.
  • the transport layer of the interface between the S-GW and the WLAN AP is carried on the UDP over IP tunnel of the Slu interface physical line, where the UDP port number is the UDP port of the GTP-U channel of the Slu interface.
  • the numbers are different, so the multiplexing/demultiplexing operation on the eNB side can separate the two channels of data multiplexed as described above.
  • the eNB uses the UDP port number to distinguish different WLAN APs, that is, the eNB carries the S on the corresponding UDP port according to the UDP port number.
  • the transport layer packet of the interface between the GW and the WLAN AP is forwarded to the corresponding WLAN AP.
  • the above multiplexing/demultiplexing operations can be performed by an external device, in addition to being completed by the S-GW and the eNB.
  • the process in the upstream direction is opposite to the downstream direction and will not be described again.
  • FIG. 3B illustrates a case where the user data offload function is implemented in the eNB, where the dotted arrow represents the transmission process of the IP stream.
  • the downlink user data arrives at the PDN-GW via the SGi interface, and then reaches the eNB via the S-GW through the GTP-U tunnel, and the user data reaching the eNB first enters the user data offloading unit 320.
  • the user data offloading unit 320 separates the downlink data stream of the UE into two parts, and transmits them through air interfaces of LTE and WLAN, respectively.
  • the part transmitted via the LTE air interface is exactly the same as the standard LTE protocol, and the part transmitted via the WLAN air interface is first transmitted to the WLAN AP via the line between the eNB and the WLAN AP (when the WLAN AP is not co-sited with the eNB), The MAC layer and the physical layer of the WLAN are transmitted through the WLAN air interface. Upward direction The process is the opposite of the downward direction and will not be described again.
  • FIG. 4 is a flow chart of a data transmission method according to an embodiment of the present invention.
  • the method of Figure 4 is performed by a tap point device (e.g., eNB, S-GW).
  • a tap point device e.g., eNB, S-GW.
  • the data offloading mode is used to specify all or part of user data flows in the downlink and/or uplink direction of the user equipment that is transmitted through the WLAN air interface according to the data offloading manner and the corresponding relationship determined by the negotiation with the user equipment.
  • the bearer channel corresponding to some user data streams.
  • the embodiment of the present invention determines the seven-carrier channel corresponding to all or part of the user data transmitted through the WLAN air interface, so that all or part of the user data can be transmitted in the uplink or downlink direction via the WLAN air interface, thereby improving the transmission rate.
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • the method of Figure 5 is performed by a user equipment (e.g., UE or other type of terminal) and corresponds to the method of Figure 4.
  • a user equipment e.g., UE or other type of terminal
  • the distribution point device sends, by the distribution point device, a traffic distribution control signaling, where the traffic distribution control signaling carries a cellular network identifier of the user equipment and a wireless local area network WLAN identifier, so that the distribution point device is configured according to the cellular network identifier and the WLAN identifier of the user equipment. Establishing a correspondence between the WLAN identifier of the user equipment and all the 7-7 channels of the user equipment.
  • the device 502. Determine a data offload mode, where the data offload mode is used to specify all or part of user data flows in the downlink and/or uplink direction of the user equipment that is transmitted through the WLAN air interface, so as to facilitate the split point.
  • the device determines, according to the data offloading manner and the corresponding relationship, a bearer channel corresponding to all or part of the user data streams.
  • the bearer channel corresponding to all or part of the user data transmitted through the WLAN air interface is determined, so that all or part of the user data can be transmitted in the uplink or downlink direction via the WLAN air interface, thereby improving the transmission rate.
  • an example of a cellular network identifier transmitted in 401 and 501 is an IMSI (International Mobile Subscriber Identity).
  • An example of a WLAN identifier is a WLAN MAC (Media Access Control). Control) address.
  • the offload control signaling in 401 and 501 may be application layer offload control signaling transmitted between the user equipment and the offload point device through the application layer of the LTE air interface.
  • the offload control signaling can be delivered through a NAS (Non-Access-Stratum) message.
  • the offload control signaling may be delivered through an RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the application layer between the S-GW and the S-GW performs various functions performed by the control signaling, so that the information related to the shunt control between the UE and the S-GW in the present invention can be transmitted by using NAS signaling.
  • the RRC protocol between the UE and the eNB in the existing standard may be directly extended, that is, transmitted by using RRC signaling.
  • the offload control signaling transmitted between the UE and the offloading point device can also be used for functions such as WLAN discovery, authentication, and mobility management, which will be described in detail below.
  • the application layer offload control signaling may be carried by an EPS (Evolved Packet System) bearer.
  • the EPS bearer may be one of one or more EPS bearers established by the control plane function of the LTE network in accordance with the standard LTE protocol.
  • one UE can establish a connection with multiple PDNs (Packet Data Networks), and one PDN connection includes at least one EPS bearer.
  • the EPS bearer is the basic unit of QoS (QoS) control of the LTE network. That is, the same packet forwarding process (such as scheduling policy, queuing management policy, rate adjustment policy, RLC) will be applied to the service data flows mapped to the same EPS bearer. Configuration, etc.).
  • each EPS bearer corresponds to a TFT (Traffic Flow Template), and the TFT is a group of packet filters, each packet
  • the filter typically includes features such as the IP address, protocol type, port range, etc. of the accessed remote server for matching and separating IP packets having the same characteristics. Therefore, the TFT can decompose the user data stream into multiple IP streams. And they are transmitted through different EPS bearers.
  • FIG. 6 is a schematic diagram of EPS bearers in an LTE system.
  • the uplink or downlink direction EPS bearer is composed of a radio bearer from the UE to the eNB, an S1 bearer of the eNB to the S-GW, and an S5 bearer segment of the S-GW to the PDN-GW, where the UE to the eNB and the eNB to the S
  • the S1 bearer of the GW is collectively referred to as E-RAB (E-UTRAN Radio Access Bearer; E-UTRAN Radio Access Bearer;), and the S5 bearer of the S-GW to the PDN-GW and the S1 bearer of the eNB to the S-GW are both GTP -U tunnel.
  • E-RAB E-UTRAN Radio Access Bearer
  • E-UTRAN Radio Access Bearer E-UTRAN Radio Access Bearer
  • the S5 bearer of the S-GW to the PDN-GW and the S1 bearer of the eNB to the S-GW are both
  • the UE uses an upstream traffic flow template (UL-TFT) pair for each of the application layers.
  • the packet is matched to be decomposed into different uplink IP flows, and is sent by the corresponding uplink EPS bearer.
  • the UE saves the identifier corresponding to each uplink EPS 7 of the UE, that is, the uplink E-RAB ID.
  • the S-GW also uses the uplink E-RAB ID to correspond to an uplink EPS bearer of the UE, and the S-GW also stores the S1 interface GTP-U tunnel identifier uniquely corresponding to the uplink E-RAB ID. Therefore, when the UE establishes a connection with multiple PDNs at the same time, one uplink E-RAB ID uniquely corresponds to one uplink IP flow of one PDN connection.
  • the downlink PDN uses the downlink TFT (DL-TFT) to match each downlink packet, thereby decomposing into different downlink IP flows. And send it via the corresponding downstream EPS 7 payload.
  • DL-TFT downlink TFT
  • both the S-GW and the UE use the downlink E-RAB ID to uniquely correspond to the downlink EPS bearer of the UE, and the S-GW also stores the S1 interface GTP-U tunnel identifier uniquely corresponding to the downlink E-RAB ID. Therefore, when the UE establishes a connection with multiple PDNs at the same time, one downlink E-RAB ID corresponds to only one downlink IP stream of one PDN connection.
  • a dedicated bearer is formed, where the default bearer is established when the network attaches, and the dedicated bearer is a bearer added on the default bearer. If the UE does not have a pre-assigned static IP address, the UE may The network is required to assign an IP address when the network is attached, and different EPS bearers of the same PDN connection have the same IP address.
  • the EMM-REGISTERED state is entered, the EPS bearer is active, and the GTP-U tunnel of the S1 interface and the S5 interface is opened.
  • the user data packet can be transmitted between the eNB and the PDN-GW.
  • the embodiment of the present invention may establish one or more EPS bearers of the user plane according to the standard LTE protocol by the control plane function of the LTE network.
  • the eNB maps the radio bearers of each EPS bearer to the radio link of LTE, or the radio link of the WLAN, or the radio link of LTE and WLAN simultaneously; in the uplink direction, the UE will each EPS
  • the bearer radio bearer is mapped to a radio link of LTE, or a radio link of a WLAN, or simultaneously provided by a radio link of LTE and WLAN.
  • Control plane messages (including NAS and AS messages) are still transmitted over the LTE air interface, while data planes can be transmitted partially or completely through the WLAN air interface.
  • the embodiment of the present invention extends the EPS bearer, and the radio bearer part of the EPS bearer may be a wireless link of the LTE, or a wireless link of the WLAN, or provided by the wireless link of the LTE and the WLAN, below.
  • the EPS bearer refers to the EPS bearer extended by the present invention, and is not limited to the LTE bearer. The definition of a wireless link.
  • the user data offload function can be located either in the S-GW or in the eNB.
  • the following is an example in which the user data offload function is located in the S-GW.
  • the user data offload function is located at the S-GW and there is no difference between the eNB and the eNB. Therefore, the following description about the user data split between the LTE and the WLAN is located on the user data offload function. Both the S-GW and the eNB are applicable.
  • the negotiation of the data offloading mode may be initiated by the user equipment or by the traffic distribution device.
  • the present invention does not limit this.
  • the UE in order to control the data offloading mode, the UE may negotiate with the offloading point device (e.g., eNB or S-GW) through the above application layer offload control signaling.
  • the offloading point device e.g., eNB or S-GW
  • Embodiment 1 (Using the original TFT function of LTE)
  • determining a bearer channel corresponding to all or part of the user data stream includes: establishing an end-to-end relationship with the user equipment via the WLAN air interface according to the determined data splitting manner a tunnel, where the end-to-end tunnel is used to transmit all or part of the user data stream, and establish a tunnel number of the end-to-end tunnel and an E- corresponding to the bearer channel (for example, the GTP-U tunnel shown in FIG. 6). Correspondence of RAB ID.
  • the distribution point device can send the portion of the user data stream to the user equipment through an end-to-end tunnel.
  • the traffic point device can also know which bearer channel to forward the uplink user data stream.
  • the existing IP flow bearer mechanism of the LTE is applied, that is, in the downlink direction, the PDN-GW uses the existing DL-TFT function to decompose the downlink user data of the UE into different downlink IP flows (IP Flow).
  • IP Flow downlink IP flows
  • the downlink IP flow arrives at the S-GW through the corresponding downlink GTP-U tunnel (an example of the bearer channel) on the core network, and the S-GW associates part or all of the downlink GTP-U tunnel carrying the downlink IP flow with the corresponding
  • the downlink WLAN radio is connected in a 7-bit manner, and the remaining portion of the downlink GTP-U tunnel carrying the downlink IP stream is connected to the corresponding downlink LTE radio 7 carrier.
  • the downlink user data is split and aggregated in the LTE and WLAN air interfaces.
  • the UE decomposes the uplink user data of the UE by using the existing UL-TFT function, and distinguishes it into different uplink IP flows.
  • the S-GW connects part or all of the uplink GTP-U tunnel carrying the uplink IP flow to the corresponding uplink WLAN radio 7, the remaining part of the uplink GTP-U tunnel carrying the uplink IP flow is The corresponding uplink LTE radio is connected to each other.
  • the UE only needs to transmit part or all of the uplink IP stream through the corresponding uplink WLAN radio bearer, and the remaining part of the uplink IP stream passes the corresponding uplink LTE radio.
  • the bearer performs transmission, and the S-GW can forward part or all of the corresponding uplink IP stream that is corresponding to the uplink WLAN radio bearer to the corresponding uplink GTP-U tunnel, and the corresponding uplink LTE radio carrier
  • the remaining part of the uplink IP stream is forwarded to the corresponding uplink GTP-U tunnel, so that the uplink user data is split and aggregated in the LTE and WLAN air interfaces.
  • the S-GW needs to complete, for the UE, the operation of connecting some or all of the GTP-U tunnels of the UE with the WLAN radio bearer of the UE, including the part of the GTP-U tunnel that will carry the uplink IP flow in the uplink direction or All are connected to the corresponding uplink WLAN radio 7 and the remaining part of the GTP-U tunnel of the 7-carrier upstream IP stream is connected to the corresponding uplink WLAN radio bearer, and the GTP-U tunnel carrying the downlink IP stream in the downlink direction Some or all of them are connected to the corresponding downlink WLAN radio 7 and the remaining part of the GTP-U tunnel of the 7-carrier downlink IP stream is connected to the corresponding downlink WLAN radio 7 carrier.
  • the WLAN AP uniquely identifies a UE by using the MAC address of the UE, and the user plane interface between the S-GW and the WLAN AP can distinguish different UEs by using the UDP port number. Therefore, the WLAN AP and the S-GW can establish a correspondence between the MAC address of the UE and the corresponding UDP port number of the user plane interface between the S-GW and the WLAN AP. In this way, as long as the uplink data packet of the UE from the MAC address is received by the WLAN AP and sent to the S-GW through the corresponding UDP port; the S-GW uses the UDP port number according to the S-GW and the WLAN AP. Corresponding relationship between the UDP port number of the user plane interface and the MAC address of the UE, and the uplink data packet is corresponding to a 7-carrier channel (for example, a GTP-U tunnel) of the corresponding UE.
  • a 7-carrier channel for example, a GTP-U tunnel
  • the S-GW sends the downlink data packet to be transmitted by the UE via the WLAN air interface through the UDP port according to the correspondence between the UDP port number of the user plane interface and the MAC address of the UE between the S-GW and the WLAN AP. Go to the WLAN AP.
  • the WLAN AP receives the downlink data packet from the S-GW transmitted through a UDP port, and searches for the MAC address of the corresponding UE according to the UDP port number, so that the downlink data packet is sent to the UE of the corresponding MAC address through the WLAN air interface. .
  • the S-GW can only obtain the UDP port number or the WLAN MAC address information of the UE from the interface between the S-GW and the WLAN AP. To correspond to the bearer channel of the corresponding UE, the S-GW needs to establish the UE. Correspondence between the WLAN MAC address and all bearer channels of the UE.
  • the UE informs the S-GW of the correspondence between its own IMSI and its own WLAN MAC address through the application layer offload control signaling between the UE and the S-GW, where the IMSI is unique to one UE in the mobile cellular network.
  • logo The S-GW maintains the correspondence between the IMSI of each UE and all the bearer channels of the UE, so that the S-GW can establish the WLAN MAC address of the UE and all bearers of the UE by using the IMSI and the WLAN MAC address of the UE.
  • the correspondence of the channels are described by using the IMSI and the WLAN MAC address of the UE.
  • the WLAN air interface does not distinguish some or all IP flows transmitted by the UE through the WLAN air interface. Therefore, in order to distinguish the different IP flows of the UE transmitted through the WLAN air interface in the downlink direction, the S-GW can be in the uplink direction.
  • the different IP flows of the UE are distinguished and the IP flows are sent to the corresponding GTP-U tunnels.
  • the S-GW and the UE also need to establish a consistent correspondence between some or all of the IP flows transmitted via the WLAN air interface and the corresponding 7-carriers.
  • the UE and the S-GW establish a plurality of end-to-end tunnels.
  • An end-to-end tunnel transmits an IP stream transmitted by the UE via the WLAN air interface. Therefore, according to the tunnel number of the end-to-end tunnel between the UE and the S-GW, the S-GW and the UE can determine the correspondence between some or all of the IP flows transmitted via the WLAN air interface and the corresponding carriers.
  • the identifier of the EPS bearer of each UE is reserved in both the UE and the S-GW, and corresponds to the corresponding EPS bearer. That is, as long as the UE and the S-GW pass the application layer offload control signaling between the UE and the S-GW, negotiate an end-to-end tunnel between the UE and the S-GW of some or all IP flows transmitted via the WLAN air interface. Correspondence between the tunnel number and the E-RAB ID of the corresponding 7
  • the S-GW can distinguish different PDN connections of the same UE and uplink IP flows of different EPS bearers connected by the same PDN according to the tunnel number, so as to be sent to the PDN-GW through the GTP-U tunnel of the corresponding S5 interface.
  • the S-GW sends the downlink IP flows of the UEs from different GTP-U tunnels to the UE through the WLAN air interface through the end-to-end tunnel between the corresponding UE and the S-GW, so that the UE can The tunnel number of the end-to-end tunnel between the UE and the S-GW distinguishes different PDN connections of the UE.
  • FIG. 7A shows an end-to-end tunnel mode between a UE and an S-GW, as can be seen, the user
  • the IP packet (inner layer IP packet) is encapsulated in an outer UDP/IP packet.
  • the source address of the IP packet header of the user IP packet is the IP address of the UE, and the destination address is the far end.
  • the IP address of the server, the source address of the IP packet header of the outer IP packet is the IP address of the UE, the destination address is the IP address of the eNB or S-GW corresponding to the UE, and the UDP header of the outer IP packet is UDP.
  • the port number which is the tunnel number of the end-to-end tunnel.
  • Figure 7B shows an end-to-end tunneling mode between the UE and the S-GW. It can be seen that a tunnel layer field is added in front of the user IP packet to indicate the E of the corresponding end-to-end tunnel. - RAB ID, as the tunnel number of the end-to-end tunnel.
  • the end-to-end tunnel between the UE and the S-GW can be implemented in other manners, such as IPSec (Internet Protocol Security), IEEE 802.2 LLC (Logical Link Control). , logical link control) and other protocols to achieve.
  • IPSec Internet Protocol Security
  • IEEE 802.2 LLC Logical Link Control
  • logical link control logical link control
  • FIG. 8 is a schematic diagram of a protocol stack related to the present embodiment of a UE, a WLAN AP, and an S-GW.
  • a part of the user data stream (“User Data A” shown in the figure) is transmitted through the LTE air interface
  • another part of the user data stream (“User Data B” shown in the figure) is transmitted through the WLAN air interface, as above.
  • the part of the user data stream is transmitted through an end-to-end tunnel between the UE and the S-GW.
  • the data plane interface between the S-GW and the WLAN AP is transmitted by UDP over IP.
  • the control plane interface is transmitted by TCP over IP or SCTP over IP. All data flows of the user (user data A+B is shown in the figure).
  • the GTP-U tunnel of the user plane of the S1 interface is transmitted between the S-GW and the PDN-GW.
  • the LTE air interface is also used to transmit application layer offload control signaling between the UE and the S-GW, and the signaling can be transmitted through the TCP protocol.
  • the first manner in which the UE and the S-GW identify the application layer offload control signaling is: when there are multiple EPS bearers between the UE and the S-GW, the system allocates one for the application layer offload control signaling.
  • a specific bearer channel (for example, one of the above multiple EPS bearers), such that the UE and the S-GW are processed as application layer offload control signaling as long as the information transmitted on the specific bearer.
  • the second way for the UE and the S-GW to identify the application layer offload control signaling is: transmitting the UE side address of the application layer offload control signaling, that is, the IP address obtained by the UE when the network is attached, S-GW
  • the IP address of the side using the specific IP address configured by the system (the UE can obtain the IP address of the service S-GW through the DNS in the domain name mode), when the S-GW receives the IP packet whose destination address is the specific IP address, it is considered
  • the IP packet carries an application layer offload control message from the UE.
  • the UE receives an IP packet whose source address is the specific IP address it considers that the IP packet carries the application layer offload control signaling from the S-GW.
  • the specific IP address is located in the IP address space of the external PDN. To avoid confusion between the application layer offload control signaling and the data packet of the UE, the specific IP address may adopt a reserved IP address, and IPv4 is taken as an example. Addresses from 192.168.0.0 to 192.168.255.255 can be used.
  • the third mode for the UE and the S-GW to identify the application layer offload control signaling is: transmitting the UE side address of the application layer offload control signaling, that is, the IP address obtained by the UE when the network is attached, S-GW
  • the IP address of the side adopts a specific IP address configured by the system (the UE can obtain the IP address of the serving S-GW through the DNS in the domain name manner), and the TCP protocol that transmits the application layer offload control signaling adopts a specific TCP port.
  • the S-GW receives the destination IP address as the specific IP address and the TCP port number is the specific TCP port, the TCP over IP packet is considered to be an application layer offload control signaling from the UE.
  • the TCP over IP packet is considered to be the application layer offload control signaling from the S-GW.
  • the specific IP address is located in the IP address space of the external PDN.
  • the specific IP address may adopt a reserved IP address, and IPv4 is taken as an example.
  • the address in 192.168.0.0 to 192.168.255.255 can be used, and the specific TCP port uses an unusable TCP port (for example, 0 ⁇ 1024 is a common TCP port number).
  • the network attach process is initiated to enter the EMM-REGISTERED state, and the EPS bearer is in an active state, and the UE obtains an IP address and establishes at least one EPS bearer, if the user turns on With the WLAN offload function, the UE and the S-GW may initiate an application layer offload control signaling procedure between the UE and the S-GW by using one of the at least one EPS bearers, thereby establishing an aggregate transmission of the LTE and the WLAN.
  • the WLAN AP Since the WLAN AP is usually distributed in the hotspot area and is not continuously covered, the UE is directly turned on.
  • the WLAN transceiver module generates unnecessary power consumption.
  • the S-GW can obtain the location information of the UE. For example, the S-GW can learn the cell or the tracking area (TA) where the UE is located, in particular, the user. In the case where the data offload function is located in the eNB, the eNB can also obtain more accurate location information such as whether the UE is in the cell center or the edge of some neighboring cells through radio measurement on the LTE air interface. Therefore, the S-GW can notify the UE that there is an accessible WLAN AP at the current location through the application layer offload control signaling, thereby enabling the WLAN function module to The WLAN offloading is started.
  • TA tracking area
  • the S-GW can also notify the UE that there is no WLAN AP that can be accessed at the current location through the application layer offload control signaling (for example, the UE leaves the WLAN hotspot area, or the WLAN is seriously interfered, the load is too large, etc.) Restrict user access, etc.), thereby turning off the WLAN function module to reduce the UE's power consumption.
  • the application layer offload control signaling for example, the UE leaves the WLAN hotspot area, or the WLAN is seriously interfered, the load is too large, etc.
  • the UE may obtain the unique identifier of the WLAN AP.
  • BSSID Basic Service Set Identity
  • the S-GW keeps a list of BSSIDs of all WLAN APs to which it is connected, so that the UE can pass the UE and
  • the application layer offload control signaling between the S-GWs sends the WLAN MAC address and the BSSID of the WLAN AP that is attempted to be associated to the S-GW, and the S-GW lists the BSSID of the WLAN AP to which the SBSID is connected.
  • the matching is performed. If the matching is unsuccessful, the UE is notified not to initiate an association with the WLAN AP. If the matching is successful, the UE is notified to initiate the association and WLAN authentication process for the WLAN AP.
  • the WLAN authentication process may be based on a SIM (Subscriber Identity Module) or a USIM (Universal Subscriber Identity Module) authentication method.
  • SIM Subscriber Identity Module
  • USIM Universal Subscriber Identity Module
  • the WLAN authentication process may also adopt an automatic authentication mode based on the UE's WLAN MAC address or WLAN MAC address and IP address. Specifically, the UE sends the WLAN MAC address of the UE to the S-GW through the application layer offload control signaling between the UE and the S-GW, or the WLAN MAC address of the UE. Or, the WLAN AP that is successfully matched and associated with the BSSID is successfully sent to the BSSID; and the UE also negotiates the WLAN air interface with the S-GW through the application layer offload control signaling between the UE and the S-GW.
  • the S-GW sends the negotiated WLAN air interface encryption algorithm and the key of the encryption algorithm to the WLAN AP whose BSSID matches successfully and is associated, so that the WLAN AP
  • the binding relationship between the WLAN MAC address of the UE and the key of the encryption algorithm, or the binding relationship between the WLAN MAC address and the IP address of the UE and the key of the encryption algorithm is established. Thus, only the UE that satisfies the binding relationship is considered to be legitimate and permitted to access.
  • the UE uses the application layer to divert control signaling between the UE and the S-GW, or the WLAN AP interfaces with the control plane between the S-GW and the S-GW.
  • the S-GW is notified that the UE (identifying the UE by using the WLAN MAC address) has access to the WLAN AP, and the S-GW saves the correspondence between the UE and the BSSID of the WLAN AP to which the UE is connected.
  • the S-GW will update the correspondence between the UE and the BSSID of the new WLAN AP to which it accesses. In this way, the S-GW can always send the downlink user data that is offloaded to the WLAN to the WLAN AP currently accessed by the UE, and send the UE to the UE through the WLAN AP.
  • the UE and the S-GW perform the following preparations for LTE and WLAN aggregation transmission establishment through application layer offload control signaling between the UE and the S-GW:
  • the UE informs the S-GW of its own IMSI and WLAN MAC address through the application layer offload control signaling between the UE and the S-GW, and the S-GW establishes the WLAN of the UE by using the IMSI and the WLAN MAC address of the UE. Correspondence between the MAC address and all bearer channels (ie, GTP-U tunnels) of the UE.
  • the UE may also negotiate and determine the data offload mode of the UE by using application layer offload control signaling between the UE and the S-GW. For example, determine which IP flows are respectively for the uplink and downlink (E-RAB respectively)
  • the ID/GTP-U tunnel identifier (corresponding) is transmitted through the WLAN air interface (the remaining one is transmitted through the LTE air interface). For example, suppose a PDN connection of a UE establishes four EPS bearers, corresponding to four IP flows, and negotiates that the first and fourth IP flows are transmitted through the WLAN air interface, and the second and third IP flows are transmitted through the LTE. Air interface for transmission.
  • the user is allowed to configure a proportion or a preference level of data traffic transmitted via the LTE air interface and the WLAN air interface, for example, if the operator's tariff policy stipulates that the WLAN access is free, or the traffic rate via the WLAN is lower than the LTE.
  • the user prefers to use WLAN for data transmission.
  • the system further selects according to certain principles based on the user's choice. For example, the system can make a selection according to the congestion of the two air interfaces. When the WLAN interference is relatively large and the transmission rate drops greatly, the system will The traffic is offloaded to the LTE air interface based on the user selection;
  • the UE may also use the application layer offload control signaling between the UE and the S-GW to negotiate the tunnel number of the end-to-end tunnel between the UE and the S-GW of some or all IP flows transmitted through the WLAN air interface.
  • the S-GW and the UE can determine the correspondence between some or all of the IP flows transmitted via the WLAN air interface and the corresponding carriers.
  • the S-GW and the WLAN AP accessed by the UE negotiate the user plane interface between the S-GW and the WLAN AP through the control plane interface between the S-GW and the WLAN AP to transmit the UE.
  • the UDP port number of the uplink data and/or the downlink data, the WLAN AP and the S-GW may establish a correspondence between the MAC address of the UE and the corresponding UDP port number of the user plane interface between the S-GW and the WLAN AP.
  • the aggregation transmission between LTE and WLAN can be started.
  • the UE decomposes the uplink data stream of the UE by using the UL-TFT function, and divides it into different uplink IP flows, and maps some or all of the uplink IP flows that need to be transmitted through the WLAN air interface to the corresponding ones.
  • the end-to-end tunnel between the UE and the S-GW is sent to the WLAN AP via the WLAN air interface, and the WLAN AP sends all uplink data packets of the UE from the MAC address to the S-GW through the corresponding UDP port, S-GW.
  • the UE sends the remaining part of the uplink IP stream to the S-GW via the corresponding uplink LTE radio bearer according to the existing LTE standard, and the S-GW forwards the corresponding to the corresponding uplink GTP-U tunnel.
  • the aggregate transmission of uplink user data in the LTE and WLAN air interfaces is realized.
  • the PDN-GW uses the DL-TFT function to decompose the downlink data stream of the UE into different downlink IP flows, and the downlink IP flows reach the S-GW through the corresponding downlink GTP-U tunnel, and the S-GW will Part or all of the downlink IP flows are respectively mapped to the end-to-end tunnel between the corresponding UE and the S-GW, and are sent to the WLAN AP through the corresponding UDP port, and the WLAN AP uses the UDP port number according to the S- Corresponding relationship between the UDP port number of the user plane interface and the MAC address of the UE between the GW and the WLAN AP, and transmitting all downlink data packets of the UE from the UDP port to the UE of the MAC address through the WLAN air interface, the UE
  • the IP flow of different PDN connections of the UE is distinguished by using the correspondence between the end-to-end tunnel number between the UE and the S-GW and the part or all IP flows.
  • the S-GW sends the remaining part of the downlink IP stream to the UE via the corresponding downlink LTE radio bearer according to the existing LTE standard. In this way, the aggregate transmission of downlink user data in the LTE and WLAN air interfaces is realized.
  • the S-GW when the UE is going to leave the current serving S-GW due to UE mobility, the S-GW will receive the S-GW handover request of the UE, and before the S-GW decides to initiate the S-GW handover, the S-GW first Reconfiguring the offloading, reconfiguring the user data stream originally offloaded by the WLAN to be transmitted by the LTE, and notifying the UE and the currently accessed WLAN AP through the application layer offload control signaling between the UE and the S-GW. Correlate, or through the S-GW and the control plane interface of the WLAN AP, notify the WLAN AP currently accessed by the UE to de-associate the UE, and after the association is successful, the S-GW restarts the S-GW handover process.
  • Embodiment 2 S-GW built-in packet filter/UE built-in packet filter outside the LTE communication module
  • the DL-TFT function of the PDN-GW is not used to decompose the downlink data stream of the UE.
  • a packet filter is built in the S-GW, and the downlink user data of each PDN connection of the UE is decomposed into different downlink IP flows (IP Flows), and the S-GW further performs the data according to the data offload mode negotiated with the UE.
  • a part or all of the downlink IP stream is sent to the WLAN AP, and is transmitted to the UE through the WLAN air interface, and the remaining part of the downlink IP stream is transmitted to the UE through the LTE air interface, thereby implementing the offloading of the downlink user data in the LTE and WLAN air interfaces. Convergence transmission.
  • the UE decomposes the upstream data stream of each PDN connection from the application layer into different uplink IP flows by using a packet filter built in outside the LTE communication module (usually a separate ASIC chip).
  • the UE then sends some or all of the uplink IP flows to the WLAN AP through the WLAN air interface according to the data offload mode negotiated with the S-GW, and the WLAN AP further transmits the information to the S-GW, and the remaining of the uplink IP flows.
  • the S-GW is transmitted to the S-GW through the LTE air interface.
  • all the uplink IP flows of the PDN connection from the WLAN air interface and the LTE air interface are forwarded by the S-GW to the uplink GTP-U tunnel corresponding to the PDN connection.
  • Upstream user data is offloaded and aggregated in LTE and WLAN air interfaces.
  • the WLAN AP uniquely identifies a UE by using the MAC address of the UE, and the user plane interface between the S-GW and the WLAN AP can distinguish different UEs by using the UDP port number, so the WLAN AP and the S-GW can establish the MAC address and the S of the UE.
  • the WLAN AP and the S-GW can establish the MAC address and the S of the UE.
  • the S-GW uses the UDP port number to transmit the uplink data packet to the corresponding UE according to the correspondence between the UDP port number of the user plane interface between the S-GW and the WLAN AP and the MAC address of the UE.
  • the channel ie GTP-U tunnel
  • the S-GW sends the downlink data packet to be transmitted by the UE via the WLAN air interface through the UDP port according to the correspondence between the UDP port number of the user plane interface and the MAC address of the UE between the S-GW and the WLAN AP.
  • the WLAN AP receives the downlink data packet from the S-GW transmitted through a UDP port, and searches for the MAC address of the corresponding UE according to the UDP port number, so that the downlink data packet is sent to the corresponding channel through the WLAN air interface.
  • UE with MAC address is
  • the S-GW can only obtain the UDP port number or the WLAN MAC address information of the UE from the interface between the S-GW and the WLAN AP. To correspond to the bearer channel of the corresponding UE, the S-GW needs to establish the UE. Correspondence between the WLAN MAC address and all bearer channels of the UE. Although one PDN connection of the UE corresponds to only one EPS bearer, that is, there is only one GTP-U tunnel between the PDN-GW and the S-GW, since the UE may establish a connection with multiple PDNs at the same time, one UE in the S-GW It is still possible to correspond to multiple GTP-U tunnels.
  • the UE informs the S-GW of the correspondence between its own IMSI and its own WLAN MAC address through the application layer offload control signaling between the UE and the S-GW, where the IMSI is unique to one UE in the mobile cellular network.
  • the S-GW maintains the correspondence between the IMSI of each UE and all the bearer channels of the UE, so that the S-GW can establish the WLAN MAC address of the UE and the UE by using the IMSI and the WLAN MAC address of the UE. Correspondence of all bearer channels.
  • the UE may establish a connection with multiple PDNs at the same time.
  • One UE in the GW may still correspond to multiple GTP-U tunnels, and the UE side also needs to distinguish different PDN connections of the same UE, so as to provide uplink data of the corresponding PDN connection to the corresponding application layer.
  • the WLAN AP cannot distinguish the IP flows of different PDN connections of the same UE transmitted by the UE via the WLAN air interface, both the S-GW and the UE need to provide IP flows of different PDN connections of the same UE transmitted by the UE via the WLAN air interface. The method of distinguishing.
  • an embodiment is to use an IP address to distinguish IP flows corresponding to different PDN connections of the same UE.
  • IP addresses in different PDNs are completely unrelated, when a certain UE establishes a connection with multiple PDNs at the same time, the same UE may be connected in different PDNs.
  • the IP addresses assigned in it are exactly the same. Therefore, in order to be able to distinguish different PDN connections of the same UE by using IP addresses, it is required that the IP addresses allocated by different PDN connections cannot be the same. In an actual system, because the IP address space is huge, the probability that two or more PDNs are assigned the same IP address to the same UE is very small. If the IP address assigned to the second PDN connection is exactly the same as the first PDN. In the case where the assigned IP address is the same, the UE may require the network to reallocate the IP address of the second PDN connection, thereby avoiding such a special case.
  • data transmission may be first performed through the LTE air interface, and the UE establishes all the UEs by parsing the destination address of the user IP packet on each downlink EPS bearer of the UE, that is, the IP address of the corresponding PDN connection of the UE; Corresponding relationship between the IP address of the PDN connection and the corresponding application layer; the S-GW is configured to parse the source address of the user IP packet on each uplink EPS bearer of the UE (that is, the IP address of the corresponding PDN connection of the UE;) Establish a correspondence between the IP addresses of all PDN connections of the UE and the corresponding GTP-U tunnels.
  • the application layer offload control signaling between the UE and the S-GW may be used to transmit some or all of the uplink and/or downlink IP flows through the WLAN air interface. Establish convergence transmission of LTE and WLAN.
  • FIG. 9 is a schematic diagram of a protocol stack related to the present embodiment of a UE, a WLAN AP, and an S-GW.
  • some of the user data stream (“User Data A” shown in the figure) is transmitted through the LTE air interface, and another part of the user data stream (“User Data B” shown in the figure) is transmitted through the WLAN air interface.
  • the data plane interface between the S-GW and the WLAN AP is transmitted by UDP over IP.
  • the control plane interface is transmitted by TCP over IP or SCTP over IP. All the data of the user (user data A+B) is shown in the figure.
  • the GTP-U tunnel of the user plane of the S1 interface is transmitted between the S-GW and the PDN-GW.
  • the LTE air interface is also used to transmit application layer offload control signaling between the UE and the S-GW, and the signaling can be transmitted through the TCP protocol.
  • the first mode for the UE and the S-GW to identify the application layer offload control signaling is: transmitting the UE side address of the application layer offload control signaling, that is, the IP address obtained by the UE when the network is attached, S-GW The IP address of the side, using the specific IP address configured by the system (the UE can obtain the IP address of the serving S-GW through the DNS by using the domain name), when the S-GW receives the IP packet whose destination address is the specific IP address, it is considered
  • the IP packet 7 carries the application layer offload control signaling from the UE.
  • the UE when the UE receives the IP packet whose source address is the specific IP address, it is considered that the IP packet carries the application layer from the S-GW. Shunt control signaling.
  • the specific IP address is located in the IP address space of the external PDN, in order to avoid the application layer flow control The signaling is confused with the data packets of the UE.
  • the specific IP address can be a reserved IP address. Taking IPv4 as an example, the address in 192.168.0.0 to 192.168.255.255 can be used.
  • the second way for the UE and the S-GW to identify the application layer offload control signaling is: transmitting the UE side address of the application layer offload control signaling, that is, the IP address obtained by the UE when the network is attached, S-GW
  • the IP address of the side adopts a specific IP address configured by the system (the UE can obtain the IP address of the serving S-GW through the DNS in the domain name manner), and the TCP protocol that transmits the application layer offload control signaling adopts a specific TCP port.
  • the S-GW receives the destination IP address as the specific IP address and the TCP port number is the specific TCP port, the TCP over IP packet is considered to be an application layer offload control signaling from the UE.
  • the TCP over IP packet is considered to be the application layer offload control signaling from the S-GW.
  • the specific IP address is located in the IP address space of the external PDN.
  • the specific IP address may adopt a reserved IP address, and IPv4 is taken as an example.
  • the address in 192.168.0.0 to 192.168.255.255 can be used, and the specific TCP port uses an unusable TCP port (for example, 0 ⁇ 1024 is a common TCP port number).
  • the network attach process is initiated to enter the EMM-REGISTERED state, and the EPS is in an active state, and the UE obtains the IP address of the corresponding PDN connection and establishes an EPS bearer.
  • the WLAN offload function is enabled, the UE and the S-GW may initiate an application layer offload control signaling process between the UE and the S-GW by using the EPS bearer, thereby establishing an aggregation transmission between the LTE and the WLAN.
  • the UE Since the WLAN AP is usually distributed in the hotspot area and is not continuously covered, the UE directly opens the WLAN transceiver module to generate unnecessary power consumption.
  • the S-GW can obtain the location information of the UE, for example, the S-GW can learn the UE.
  • the eNB In the case of the cell or the tracking area (TA), in particular, when the user data offload function is located in the eNB, the eNB can also obtain whether the UE is in the cell center or some neighbors through radio measurement on the LTE air interface. More precise location information such as the edge of the cell.
  • the S-GW can notify the UE that there is an accessible WLAN AP at the current location through the application layer offload control signaling, thereby enabling the WLAN function module to start the WLAN offloading; the S-GW can also implement the shunt control signaling through the application layer. Notifying the UE that there is no WLAN AP that can be accessed at the current location (such as the UE leaving the WLAN hotspot area, or the WLAN restricting user access due to severe interference, excessive load, etc.), thereby turning off the WLAN function mode.
  • the block is powered by the descending UE.
  • the UE may obtain a BSSID that uniquely identifies the WLAN AP.
  • the BSSID of a WLAN AP is its WLAN MAC address
  • the S-GW stores a BSSID list of all WLAN APs to which it is connected.
  • the UE can send the WLAN MAC address and the BSSID of the WLAN AP that is attempted to be associated to the S-GW through the application layer offload control signaling between the UE and the S-GW, and the S-GW saves the BSSID with the BSSID.
  • the BSSID list of the connected WLAN APs is matched. If the matching is unsuccessful, the UE is notified not to initiate an association with the WLAN AP. If the matching is successful, the UE is notified to initiate the association and WLAN authentication process for the WLAN AP.
  • the WLAN authentication process may adopt a SIM or USIM-based authentication method.
  • specific procedures refer to the IETF specifications RFC4186 and RFC4187.
  • the WLAN authentication process may also adopt an automatic authentication mode based on the UE's WLAN MAC address or WLAN MAC address and IP address. Specifically, the UE sends the WLAN MAC address of the UE to the S-GW through the application layer offload control signaling between the UE and the S-GW, or the WLAN MAC address of the UE. Or, the WLAN AP that is successfully matched and associated with the BSSID is successfully sent to the BSSID; and the UE also negotiates the WLAN air interface with the S-GW through the application layer offload control signaling between the UE and the S-GW.
  • the S-GW Encrypting the key of the encryption algorithm, and the S-GW sends the negotiated WLAN air interface encryption algorithm and the key of the encryption algorithm to the WLAN AP whose BSSID matches successfully and is associated, so that the WLAN AP
  • the binding relationship between the WLAN MAC address of the UE and the key of the encryption algorithm, or the binding relationship between the WLAN MAC address and the IP address of the UE and the key of the encryption algorithm is established. Thus, only the UE that satisfies the binding relationship is considered to be legitimate and permitted to access.
  • the UE After the UE is associated with the WLAN AP and successfully authenticated, the UE notifies the S-GW through the application layer offload control signaling between the UE and the S-GW, or the WLAN AP interfaces with the control plane between the S-GW and the S-GW.
  • the UE (which identifies the UE with the WLAN MAC address) has access to the WLAN AP, and the S-GW stores the correspondence between the UE and the BSSID of the WLAN AP to which the UE is connected.
  • the S-GW will update the correspondence between the UE and the BSSID of the new WLAN AP to which it accesses.
  • the S-GW can always send the downlink user data that is offloaded to the WLAN to the WLAN AP currently accessed by the UE, and send the UE to the UE through the WLAN AP.
  • the UE and the S-GW perform the following preparations for LTE and WLAN aggregation transmission establishment through application layer offload control signaling between the UE and the S-GW:
  • the UE informs the S-GW of its own IMSI and WLAN MAC address through the application layer offload control signaling between the UE and the S-GW, and the S-GW establishes the WLAN of the UE by using the IMSI and the WLAN MAC address of the UE.
  • Correspondence between the MAC address and all bearer channels of the UE for example, GTP-U tunnel).
  • the UE also uses the application layer offload control signaling between the UE and the S-GW to negotiate and determine the data offload mode of the UE, for example, how to decompose the uplink and downlink data streams of the user, that is, the uplink UE.
  • the data offloading manner may further include a proportion or a preferred level of data traffic transmitted through the LTE air interface and the WLAN air interface; for example, when the user's battery power is insufficient, the user prefers to select an air interface with less power consumption to transmit data. , thereby extending the battery time of the terminal.
  • the operator's tariff policy stipulates that the WLAN access is free, or the traffic charge via WLAN is lower than the LTE tariff, the user prefers to use WLAN for data transmission.
  • the system is usually optimized according to the radio resource conditions of LTE and WLAN air interfaces (such as interference and congestion). For example, when the WLAN interference is relatively large and the transmission rate drops greatly, the system is more inclined to offload traffic to the LTE air interface.
  • the uplink and downlink data of the UE are transmitted by using the LTE air interface, and the UE may analyze the destination address of the user IP packet carried on each downlink EPS 7
  • the UDP port number of the uplink data and/or the downlink data, the WLAN AP and the S-GW may establish a correspondence between the MAC address of the UE and the corresponding UDP port number of the user plane interface between the S-GW and the WLAN AP.
  • the aggregation transmission of LTE and WLAN can be started.
  • the UE decomposes the uplink user data of each PDN connection from the application layer into a packet filter built in outside the LTE communication module (usually a separate ASIC chip). Different upstream IP flows.
  • the UE then sends some or all of the uplink IP flows to the WLAN AP through the WLAN air interface according to the data offload mode negotiated with the S-GW, and the WLAN AP passes all uplink data packets of the UE from the MAC address to the corresponding UDP.
  • the port is sent to the S-GW.
  • the S-GW uses the UDP port number to find a carrier channel (for example, a GTP-U tunnel) of the corresponding UE according to the correspondence between the UDP port number of the user plane interface between the S-GW and the WLAN AP and the MAC address of the UE. And all the uplink data packets transmitted by the UE via the WLAN are divided into at least one data stream according to different source IP addresses (corresponding to different PDN connections), and the IP addresses and corresponding addresses of all PDN connections of the UE established by using the foregoing Corresponding relationship of the GTP-U tunnels, respectively forwarding the at least one data stream to the corresponding GTP-U tunnel.
  • a carrier channel for example, a GTP-U tunnel
  • the UE sends the remaining part of the uplink IP stream to the S-GW via the corresponding uplink LTE radio carrier according to the existing LTE standard, and the S-GW forwards the corresponding uplink to the corresponding uplink GTP-U tunnel.
  • the aggregate transmission of uplink user data in the LTE and WLAN air interfaces is realized.
  • the S-GW decomposes the downlink data streams of each PDN connection of the UE into different downlink IP flows by using a built-in packet filter, and the S-GW further performs the data according to the data offload mode negotiated with the UE.
  • Part or all of the downlink IP stream is sent to the WLAN AP through the corresponding UDP port, and the WLAN AP uses the UDP port number according to the UDP port number of the user plane interface between the S-GW and the WLAN AP and the MAC address of the UE.
  • all downlink data packets of the UE from the UDP port are sent to the UE of the MAC address through the WLAN air interface, and the UE will all the uplink data packets from the WLAN air interface according to the destination IP address (corresponding to different).
  • the PDN connection is divided into at least one data stream, and the at least one data stream is forwarded to the corresponding application layer by using the established correspondence between the IP addresses of all the PDN connections of the UE and the corresponding application layer.
  • the S-GW transmits the remaining portion of the downlink IP stream to the UE via the corresponding downlink LTE radio 7 according to the existing LTE standard. In this way, the aggregate transmission of downlink user data in the LTE and WLAN air interfaces is realized.
  • the S-GW when the UE is going to leave the current serving S-GW due to UE mobility, the S-GW will receive the S-GW handover request of the UE, and before the S-GW decides to initiate the S-GW handover, the S-GW first performs the offloading. Reconfiguring, reconfiguring the user data stream originally offloaded by the WLAN to be transmitted by the LTE, and notifying the UE to associate with the currently accessed WLAN AP by using application layer offload control signaling between the UE and the S-GW, or The S-GW interfaces with the control plane of the WLAN AP to notify the WLAN AP that the UE currently accesses to de-associate the UE. After the association is successful, the S-GW restarts the S-GW handover process.
  • the UE When the S-GW handover is completed, the UE switches to the new S-GW, and if The WLAN AP can be accessed by the WLAN AP. The UE re-establishes the LTE and WLAN aggregation transmissions by re-establishing the WLAN AP connected to the current serving S-GW.
  • the second embodiment can dynamically schedule IP flows between LTE and WLAN, and the control is flexible.
  • the UE needs to obtain the bearer identifier of the access layer, such as the E-RAB ID, and the communication module that needs the LTE outputs the IP stream that is output by the UL-TFT through the WLAN (these need to modify the LTE Modem ASIC), which is easy. achieve.
  • FIG. 10 is a schematic diagram of an LTE HeNB and WLAN tightly coupled network architecture in accordance with an embodiment of the present invention.
  • the HeNB Home eNB, Home Evolved Node B
  • HeNB GW Home Evolved Node B Gateway
  • FIG. 10 are network elements of the LTE home base station access network defined by the 3GPP protocol system.
  • the HeNB In the user plane, the HeNB is connected to the S-GW through the Slu interface.
  • the HeNB In the control plane, the HeNB is connected to the HeNB GW through the S 1-mme interface.
  • the HeNB GW mainly functions as a control plane convergence.
  • the HeNB GW is also connected to the S-GW using the Sl-mme interface.
  • the transport layer protocol of the control plane's Sl-mme interface uses SCTP (Stream Control Transmission Protocol), and the user plane Slu interface uses GTP-U (GPRS Tunneling Protocol - User plane, User plane GPRS) carried on UDP. Tunneling Protocol)
  • SCTP Stream Control Transmission Protocol
  • GTP-U GPRS Tunneling Protocol - User plane, User plane GPRS
  • the WLAN AP and the HeNB when they are co-located, they are usually integrated in the same physical device, and the WLAN AP and the HeNB can also be separately connected to the HeNB GW.
  • the transport network shown in FIG. 12 provides the HeNB and the WLAN AP. Enter the IP transmission channel of the HeNB GW.
  • the HeNB GW includes the control and management functions of the AC in the foregoing existing WLAN network, including security authentication, network management, coordination, and WLAN APs connected to the HeNB GW. Manage WLAN-related management and control functions such as interference between WLAN APs.
  • the HeNB GW is also connected to the AAA server in order to complete the access authentication for the WLAN user, which preferably employs a 3GPP AAA Server.
  • FIG. 11 is a schematic diagram of another tightly coupled network architecture of an LTE HeNB and a WLAN according to an embodiment of the present invention.
  • the control and management functions of the AC in the foregoing existing WLAN network are not included in the architecture of FIG. 11, including the security authentication, network management, coordination, and management of the WLAN AP connected to the HeNB GW.
  • the WLAN-related management and control functions such as interference between WLAN APs, are integrated in the HeNB GW, but are connected as a separate device AC (WLAN AP Controller) to the HeNB GW and the AAA server.
  • AC An IP interface may be used between the HeNB and the eNB, and the HeNB GW functions to forward the WLAN-related management and control IP packets between the AC and the WLAN AP.
  • the interface is divided into a control plane and a user plane.
  • the control plane is used to transmit WLAN-related management and control information and mobility management related information.
  • the user plane is used to transmit the user data stream that is offloaded to the WLAN AP and transmitted via the WLAN.
  • the user plane is transmitted by UDP over IP
  • the control plane is transmitted by TCP over IP or SCTP over IP.
  • the control plane of the interface mainly transmits information related to mobility management.
  • the user data offload function for implementing LTE and WLAN aggregation transmission can be implemented in the HeNB (only when the HeNB and the WLAN AP are integrated) or in the S-GW.
  • Figure 12 is a schematic diagram of user data transmission in the case of a user data offload function in a HeNB (the sink device is a HeNB). The following line direction is taken as an example.
  • the user data arrives at the PDN-GW via the Gi interface, then reaches the S-GW through the GTP-U tunnel of the S5 interface, and then reaches the HeNB through the GTP-U tunnel of the Slu interface (the HeNB and the WLAN AP are integrated).
  • the user data arriving at the HeNB is first separated into two parts by the user data offloading unit 121, so as to be transmitted through the air interfaces of the UMTS and the WLAN, respectively.
  • FIG. 13 is a schematic diagram of user data transmission under the condition that the user data offload function is implemented in the S-GW (the sink device is S-GW).
  • the HeNB is integrated with the WLAN AP, the HeNB and the WLAN AP are independently covered, and the UE is simultaneously connected to the macro base station eNB and the WLAN AP.
  • the WLAN AP is connected according to the architecture of the home base station, and the eNB is connected to the WLAN AP.
  • the case of converged transmission to the same S-GW is applicable.
  • the following line direction is taken as an example.
  • the user data is separated into two parts by the user data offloading unit 131, and the user data transmitted via the LTE passes through the user plane transmission channel of the Slu, that is, GTP- U/UDP/IP is sent to the HeNB or eNB, and the user data transmitted via the WLAN is sent to the WLAN AP via UDP/IP, and transmitted through two air interfaces respectively.
  • the process in the upstream direction is opposite to the downstream direction and will not be described again.
  • FIG. 14 and 15 are schematic diagrams of example architectures of a scenario of WLAN-Only, in accordance with an embodiment of the present invention.
  • 14 corresponds to the architecture of FIG. 1
  • FIG. 15 corresponds to the architecture of FIG. 10, and the functions of the AC are combined in the S-GW or the HeNB GW, but the WLAN-Only application of the embodiment of the present invention can also be used for the AC as a separate network.
  • Meta-architecture (corresponding to the architecture of Figures 2 and 11).
  • the terminal with WLAN access function has no cellular network access capability. Therefore, unlike a dual-mode terminal that has both cellular system access function and WLAN access function, only the terminal with WLAN access function does not need to consider cellular. Switching problems with WLANs, at the same time, WLANs are usually used in hotspots, that is, WLANs are not continuously covered, and it is impossible to achieve mobility across hotspots in different regions. Therefore, the terminal that only has the WLAN access function can mainly implement the handover between the WLAN APs in a certain hotspot area.
  • a data aggregation point (such as eNB, HeNB, S-GW, etc.) can be connected to WLAN APs in multiple hotspot areas (hotspot areas can be continuously covered or not continuously)
  • the WLAN between different data aggregation points has no continuous WLAN coverage and is a relatively independent WLAN service area.
  • the data aggregation point (such as eNB, HeNB, S-GW, etc.) is connected to an LGW (Local Gateway), and the IP address between the LGW and the data convergence point is IP.
  • LGW Local Gateway
  • control planes can be transmitted over TCP over IP or SCTP over IP
  • user plane data can be transmitted over UDP over IP.
  • the LGW may also be integrated with the data aggregation point, and the data aggregation point is directly connected to the external IP network.
  • the LGW can also be implemented by a functioning smaller capacity PDN GW.
  • the interface between the LGW and the S-GW can adopt the GTP (GPRS Tunneling Protocol) transmission protocol of the cellular system packet domain, that is, the control plane adopts GTPv2- C.
  • the user plane adopts the GTP-U mode, in which both GTPv2-C and GTP-U are carried on UDP/IP.
  • an interface can be configured between the data aggregation point and the PDN GW so that the data aggregation point can directly transmit the data of the WLAN-Only terminal to the PDN GW through this interface.
  • the authentication and authentication with the dual-mode terminal is usually based on the SIM/USIM card. Only the terminal with the WLAN access function usually does not have the cellular terminal device. Therefore, the user's authentication and authentication are still adopted. Based on the user name and password, the user automatically or manually enters the user name and password assigned by the system to implement user authentication and authentication.
  • the WLAN-Only terminal can implement switching between APs based on the existing WLAN protocol.
  • the WLAN-Only terminal After the WLAN-Only terminal discovers the accessible WLAN AP, it associates with the AP and performs WLAN authentication and authentication with the user name and password assigned by the system.
  • the authentication request information passes through the WLAN AP and S.
  • the control plane interface between the GWs is sent to the S-GW.
  • the S-GW determines the validity of the user by querying the AAA server.
  • the system uses the DHCP function in the LGW to allocate IP to the terminal. Address, so that the terminal can transmit data through the WLAN AP.
  • the S-GW records the MAC address, IP address of the terminal, and the BSSID of the currently associated WLAN AP.
  • the BSSID is usually configured as the MAC address of the WLAN AP.
  • An S-GW also maintains a list of BSSIDs for all WLAN APs it is connected to. In this way, the S-GW retains the correspondence between the MAC/IP address of the terminal and the BSSID of the associated WLAN AP.
  • the S-GW updates the correspondence between the MAC/IP address of the terminal and the BSSID of the associated WLAN AP. Using this correspondence, the S-GW can send the downlink data of the terminal to its associated WLAN AP.
  • the basic function of the LGW is to transfer user data from the data aggregation point to the external IP network through UDP over IP, and also includes but is not limited to the usual packet data gateway function: DHCP ( Dynamic Host Configuration) that automatically assigns an IP address to the terminal. Protocol, Dynamic Host Setup Protocol) Server, firewall or network address translation, deep packet inspection (Deep).
  • DHCP Dynamic Host Configuration
  • DPI Packet Inspection
  • Policing function the Policing function
  • packet routing function sending user IP packets to the corresponding packet data network
  • the embodiment of the present invention implements a true single-network.
  • the WLAN is directly deployed on the network of the existing cellular system, and the network specification, construction, and operation and maintenance are more than that of constructing a new independent WLAN network.
  • the embodiment of the present invention can support the WLAN AP and the cell site eNB co-site address, and the independent WLAN hotspots that are not co-sites, and the networking mode is flexible.
  • the WLAN can be regarded as a wireless air interface enhancement technology similar to carrier aggregation or MIMO (Multiple Input Multiple Output), and the transmission rate is greatly improved, thereby effectively improving the user experience.
  • MIMO Multiple Input Multiple Output
  • the embodiments of the present invention are relatively simple to modify the air interface and the network protocol of the existing LTE and WLAN, and are convenient for application.
  • the offload point device 160 of FIG. 16 may be an S-GW or an eNB, and includes a receiving unit 161, an establishing unit 162, and a determining unit 163.
  • the receiving unit 161 receives the offload control signaling sent by the user equipment, and the offload control signaling carries the cellular network identifier of the user equipment and the wireless local area network WLAN identifier.
  • the establishing unit 162 establishes a correspondence between the WLAN identifier of the user equipment and all bearer channels of the user equipment according to the cellular network identifier and the WLAN identifier of the user equipment.
  • the determining unit 163 is configured to perform the data offloading manner and the corresponding relationship determined by the negotiation with the user equipment, where the data offloading manner is used to specify all the downlink and/or uplink directions of the user equipment that are transmitted through the WLAN air interface or Part of the user data stream, determining a bearer channel corresponding to the all or part of the user data stream.
  • the bearer channel corresponding to all or part of the user data transmitted through the WLAN air interface is determined, so that all or part of the user data can be transmitted in the uplink or downlink direction via the WLAN air interface, thereby improving the transmission rate.
  • FIG. 17 is a schematic block diagram of a power distribution point device in accordance with another embodiment of the present invention.
  • the same or similar portions as those of Fig. 16 use the same reference numerals.
  • the branching point device 170 of Fig. 17 further includes a branching unit 171 and a sinking unit 172.
  • the determining unit 163 is specifically configured to establish, according to the determined data offloading manner, an end-to-end tunnel between the user equipment and the WLAN air interface via the wireless local area network, where the end-to-end tunnel is used to transmit the all or part of the user data. Flowing, and establishing a correspondence between the tunnel number of the end-to-end tunnel and the E-RAB ID corresponding to the bearer channel.
  • the tunnel number of the end-to-end tunnel can be a UDP port number or an E-RAB ID.
  • the offloading unit 171 receives all the user data streams in the downlink direction from the PDN-GW, wherein all the user data streams in the downlink direction are the PDN-GW decomposing the downlink user data of the user equipment by using the downlink service flow template DL-TFT. owned.
  • the offloading unit 171 determines an E-RAB ID corresponding to the channel on which the all or part of the user data stream is transmitted, and sends the E-RAB ID to the user equipment through an end-to-end tunnel corresponding to the determined E-RAB ID. Describe all or part of the user data stream.
  • the offloading unit 171 sends the remaining user data streams to the user equipment by using at least one evolved packet system EPS, wherein the at least one EPS bearer is established for the user equipment by using a control plane of the Long Term Evolution (LTE) air interface.
  • LTE Long Term Evolution
  • all or part of the user data stream in the uplink direction is an uplink user data stream that is sent by the user equipment through the end-to-end tunnel, where the uplink user data stream is the user equipment through the uplink service flow template UL-TFT pair.
  • the uplink user data of the user equipment is decomposed.
  • the aggregation unit 172 receives the uplink user data stream, extracts the tunnel number of the end-to-end tunnel from the uplink user data stream, and sends the uplink user data stream by using the bearer channel corresponding to the extracted tunnel number.
  • the embodiment of the present invention may also combine the shunting unit 171 and the converging unit 172 into one functional unit.
  • the distribution point device 170 utilizes the existing TFT function of the LTE to improve the data transmission efficiency by transmitting all or part of the user data stream through the end-to-end tunnel with the UE.
  • FIG. 18 is a schematic block diagram of a power distribution point device in accordance with another embodiment of the present invention.
  • the same or similar portions as those of Fig. 16 use the same reference numerals.
  • the tapping point device 180 of Fig. 18 further includes a packet filter 181, a selecting unit 182, a transmitting unit 183, and a converging unit 184.
  • each packet data network PDN connection of the user equipment corresponds to a 7-channel.
  • the determining unit 163 is specifically configured to parse the user data transmitted through the LTE air interface, obtain the IP address corresponding to each PDN connection of the user equipment, and establish a correspondence between the IP address and the 7-channel.
  • the packet filter 181 decomposes the downlink user data into a user data stream.
  • the selecting unit 182 selects all or part of the user data stream from the decomposed user data stream according to the data offloading manner.
  • the sending unit 183 sends the all or part of the user data stream to the user equipment through the WLAN air interface.
  • the transmitting unit 183 transmits the remaining user data stream to the user equipment through the LTE air interface.
  • all or part of the user data stream in the uplink direction is an uplink user data stream sent by the user equipment through the WLAN air interface, where the uplink user data stream is a packet filter of the user equipment that is located outside the LTE communication module. Decomposing the uplink user data of the user equipment.
  • the aggregation unit 184 receives the uplink user data stream, extracts an IP address of the user equipment from the uplink user data stream, and sends the uplink user data stream by using a bearer channel corresponding to the extracted IP address.
  • the distribution point device 180 of the present embodiment uses the built-in packet filter to perform data decomposition, and performs data split/aggregation according to the data split mode determined by negotiation, thereby improving system transmission efficiency.
  • the offload control signaling is application layer offload control signaling transmitted between the user equipment and the distribution point device through an application layer of the LTE air interface.
  • the receiving unit 161 receives the application that the user equipment sends by using the specific one of the multiple EPS bearers. Layer shunt control signaling.
  • the receiving unit 161 receives the IP packet sent by the user equipment, and the IP packet carries the application layer offload control signaling, where the target address of the IP packet is a specific IP address of the distribution point device.
  • the receiving unit 161 receives the IP packet sent by the user equipment, where the IP packet carries the application layer offload control signaling, the target address of the IP packet is a specific IP address of the distribution point device, and the IP The TCP port number of the packet is a specific TCP port number.
  • the offload control signaling may also be delivered through the non-access stratum NAS message, or at the split point device 160.
  • the offload control signaling may also control the RRC message transmission through the radio resource.
  • the distribution point device notifies the user equipment that there is an accessible WLAN access point device at the current location, so that the user equipment determines whether to enable WLAN function and / or WLAN offload function.
  • the distribution point device notifies the user equipment that there is no accessible WLAN access point device at the current location, so that the user equipment determines whether to disable the WLAN function and/or the WLAN offload.
  • the offloading point device receives the basic service set identifier BSSID of the WLAN access point device identified by the user equipment, and determines the WLAN identified by the user equipment according to the BSSID. Whether the access point device is within the management scope, and only allows the user equipment to establish association with the WLAN access point device within the management scope.
  • the switch point device sets the WLAN identifier of the user equipment.
  • the WLAN access point device regards the user equipment having the WLAN identifier as a legitimate terminal that has been authenticated, and allows the user equipment having the WLAN identifier to perform the WLAN access point device. data transmission.
  • the distribution point device reconfigures the user data determined to be transmitted through the WLAN to be transmitted through the LTE air interface, and notifies the The user equipment is de-associated with the currently associated WLAN access point device, or is notified by the control plane interface with the WLAN access device to notify the user that the currently associated WLAN access device de-associates the user equipment.
  • the distribution point device counts the traffic and/or duration of all or part of the user data transmitted by the user data transmitted through the WLAN air interface, and provides the traffic and/or duration to the offline or online server. information.
  • the cellular network identifier of the user equipment may be IMSI, and the WLAN identifier of the user equipment may be a MAC address.
  • the above user data stream is an IP stream.
  • FIG. 19 is a schematic block diagram of a user equipment in accordance with one embodiment of the present invention.
  • An example of the user equipment 190 of FIG. 19 is a UE, including a transmitting unit 191 and a negotiating unit 192.
  • the sending unit 191 sends the offload control signaling to the distribution point device, where the offload control signaling carries the cellular network identifier of the user equipment and the wireless local area network WLAN identifier, so that the distribution point device is based on the cellular network identifier and the WLAN of the user equipment.
  • the identifier establishes a correspondence between the WLAN identifier of the user equipment and all the 7-7 channels of the user equipment.
  • the negotiation unit 192 negotiates with the distribution point device to determine a data offload mode, where the data offload mode is used to specify all or part of user data flows in the downlink and/or uplink direction of the user equipment transmitted through the WLAN air interface, so as to facilitate According to the data offloading mode and the corresponding relationship, the branching point device determines a bearer channel corresponding to all or part of the user data streams.
  • the bearer channel corresponding to all or part of the user data transmitted through the WLAN air interface is determined, so that all or part of the user data can be transmitted in the uplink or downlink direction via the WLAN air interface, thereby improving the transmission rate.
  • FIG. 20 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
  • the same or similar portions as those of Fig. 19 use the same reference numerals.
  • the user equipment 200 further includes a tunnel unit 201 and a shunt unit 202.
  • the tunneling unit 201 establishes an end-to-end tunnel between the user equipment and the distribution point device via the WLAN air interface of the wireless local area network according to the determined data offloading manner, where the end-to-end tunneling
  • the track is used to transmit all or part of the user data stream.
  • the offloading unit 202 decomposes the uplink user data into a user data stream by using the uplink service flow template UL-TFT, and sends all or part of the user data stream to the distribution point device through the end-to-end tunnel, where all or part of the user data stream
  • the tunnel number carrying the end-to-end tunnel can be a UDP port number or an E-RAB ID.
  • the offloading unit 202 transmits the remaining user data stream to the distribution point device through the LTE air interface.
  • the user equipment 200 utilizes the existing TFT function of the LTE to transmit all or part of the user data stream through an end-to-end tunnel with the UE, thereby improving data transmission efficiency.
  • the user equipment 200 further includes a connecting unit 211, an establishing unit 212, a packet filter 213, a data stream transmitting unit 214, and a converging unit 215.
  • the connecting unit 211 establishes a PDN connection between the user equipment and one or more packet data networks PDN through the control plane of the Long Term Evolution LTE air interface, wherein each PDN connection corresponds to one carrying channel, and each PDN connection is assigned an IP address.
  • the connecting unit 211 may further request the second PDN to re-assign the IP address to the user equipment.
  • the establishing unit 212 establishes a correspondence between the IP addresses of all PDN connections of the user equipment and the application layer.
  • the packet filter 213 of the user equipment 210 is located outside of the LTE communication module and is used to decompose the uplink user data for each PDN connection from the application layer into a user data stream.
  • the data stream sending unit 214 sends all or part of the user data stream through the WLAN air interface according to the data offloading manner, wherein all or part of the user data stream carries an IP address corresponding to the application layer.
  • the data stream transmitting unit 214 transmits the remaining user data stream through the LTE air interface.
  • the aggregation unit 215 receives the downlink user data stream that is sent through the WLAN air interface, extracts the destination IP address carried in the downlink user data stream, and forwards the downlink user data stream to the application layer corresponding to the destination IP address.
  • the user equipment 210 of the embodiment uses the built-in (but outside the LTE communication module) packet filter for data decomposition, and performs data offload/aggregation according to the data split mode determined by negotiation, thereby improving system transmission efficiency.
  • the offload control signaling is application layer offload control signaling transmitted between the user equipment and the offloading point device through an application layer of the LTE air interface.
  • the sending unit 191 sends the application layer offload control signaling to the branch point device by using a specific one of the plurality of EPS bearers.
  • the sending unit 191 sends an IP packet to the distribution point device, where the IP packet carries the application layer offload control signaling, and the target address of the IP packet is a specific IP address of the distribution point device.
  • the sending unit 191 sends an IP packet to the distribution point device, where the IP packet carries the application layer offload control signaling, where the target address of the IP packet is a specific IP address of the distribution point device and the IP
  • the TCP port number of the packet is a specific TCP port number.
  • the offload control signaling is delivered by a non-access stratum NAS message.
  • the offload control signaling is transmitted through a radio resource control RRC message.
  • the user equipment receives, by using the offload control signaling, the notification that the WLAN access point device that is accessible at the current location exists, and determines whether to enable the WLAN function according to the notification. And / or WLAN offload function.
  • the user equipment receives the notification that the distribution point device does not have an accessible WLAN access point device at the current location by using the offload control signaling, and determines whether to disable the WLAN function and/or the WLAN offload function according to the notification.
  • the user equipment identifies a basic service set identifier BSSID of the WLAN access point device, and sends the identified BSSID to the distribution point device by using the application layer offload control signaling, so as to facilitate
  • the distribution point device determines, according to the BSSID, whether the WLAN access point device identified by the user equipment is within a management scope, and only allows the user equipment to establish association with a WLAN access point device within a management scope.
  • a communication system may include the above-described distribution point devices 160-180 (e.g., implemented as an eNB or an S-GW), or include the above-described user equipment 190-210. .
  • the communication system may also include a WLAN access point device (WLAN AP), connected to the eNB (eg, via an IP interface), co-sited with the eNB, or integrated with the eNB as one device (see Figures 1-2).
  • WLAN AP may be connected to the HeNB, co-sited with the eNB, or integrated with the eNB as one device (refer to FIGS. 10-11).
  • the communication system may further include a local gateway LGW (refer to FIG. 14-15). The LGW is connected to the S-GW and connected to the core network.
  • the uplink user data is received from the S-GW and the uplink user data is forwarded to the core network, and/or received from the core network. Downstream user data and forwarded downlink user data to the S-GW.
  • the basic function of the LGW is to transfer user data from the data aggregation point to the external IP network through UDP over IP. It also includes but is not limited to the usual packet data gateway function: DHCP server, firewall or network address that automatically assigns an IP address to the terminal. Conversion function, deep packet inspection, data flow supervision, packet routing, and more.
  • the communication system can include an access point control device (AC) coupled to an offline or online server.
  • the AC is used for security authentication, network management, coordination, and/or interference processing on WLAN access devices.
  • the AC can be integrated with the S-GW as a device (see Figure 2, Figure 14-15) or as a separate device connected to the S-GW (see Figure 1).
  • the AC may be integrated with the HeNB GW as one device (refer to FIG. 10) or as a separate device to connect to the HeNB GW (refer to FIG. 11).
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling through some interfaces, devices or units.
  • a communication connection which can be electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据传输方法,包括:接收用户设备发送的分流控制信令,所述分流控制信令携带所述用户设备的蜂窝网标识和无线局域网WLAN标识;根据所述用户设备的蜂窝网标识和WLAN标识,建立所述用户设备的WLAN标识和所述用户设备的全部承载通道之间的对应关系;按照与所述用户设备之间协商确定的数据分流方式和所述对应关系,所述数据分流方式用于指定通过WLAN空口传输的所述用户设备的下行和/或上行方向的全部或部分用户数据流,确定与所述全部或部分用户数据流对应的承载通道。本发明实施例还提供了相应地设备和系统,通过本发明实施例的技术方案,能够提高系统传输速率。

Description

数据传输方法、 分流点设备、 用户设备和系统 技术领域
本发明实施例涉及通信领域, 并且更具体地, 涉及数据传输方法、 分流 点设备、 用户设备和系统。 背景技术
随着智能手机的迅猛发展,越来越多的移动通信终端都集成了无线局域 网(WLAN, Wireless Local Area Network )的通信模块, 例如 WiFi ( Wireless Fidelity, 无线保真)模块。 另一方面, 随着人们对移动宽带需求的不断增加, 现有的无线蜂窝通信系统的承受到越来越大的数据流量的压力。一个可行的 方法是把无线蜂窝技术和 WLAN技术相互融合, 利用 WLAN分流移动蜂窝 通信系统的数据流量, 从而大大提高蜂窝系统用户的体验。
无线蜂窝网络和 WLAN融合有多种方案,最筒单的方案是 AP(接入点, Access Point ) + AC ( AP控制器, AP Controller ) 的独立 WLAN网络组网方 案。 AP是 WLAN的接入点, WLAN终端通过关联和认证过程之后, 可以与 AP进行通信, AC起着路由交换与管理 AP的功能, 其中 AP对外的接口为 IP接口, 因此来自 AP的用户 IP数据分组可以经由 AC进入外部 IP分组网 络, 典型的就是 Internet (互联网), 为了对用户进行鉴权、 认证和计费, AC 与 AAA 服务器 (验证、 授权、 计费, Authentication, Authorization and Accounting )相连, 通常用户通过输入运营商提供的账户名和密码来接入 WLAN网络。或者,承载鉴权、认证和计费的是移动运营商的 GPRS、 UMTS 或 LTE等移动通信网络内的 3GPP AAA服务器, 其中 3GPP AAA服务器与 HLR ( Home Location Register, 归属位置寄存器)相连, 这样, 无需输入账 户名和密码等手工操作, 而由手机利用 SIM ( Subscriber Identity Module , 客 户识别模块)卡或 USIM ( Universal Subscriber Identity Module, 全球用户识 别模块)卡上存储的用户签约信息, 自动完成用户的鉴权和认证操作, 从而 大大筒化和方便了用户对 WLAN网络的使用。
尽管独立 WLAN网络的组网方案比较筒单, 但无法与移动通信网络进 行互操作, 包括 WLAN与移动通信网络的切换、 通过 WLAN访问移动通信 网络的 PS( Packet-Switched Domain,分组交换域)业务如 IMS( IP Multimedia Subsystem, IP多媒体子系统)业务, 也无法重用 GPRS、 UMTS或 LTE等 移动通信网络已有的网络设备。 由于 WLAN所使用的非许可频语很容易受 到各种干扰, 而且 WLAN AP通常架设在热点地区而不是进行连续覆盖的组 网, 因此, 当 WLAN网络受到干扰变得无法使用, 或者因为用户的移动离 开了 AP的覆盖范围时, 将该用户切换到 GPRS、 UMTS或 LTE等移动通信 网络就显得非常重要。 为此, 可以利用 3GPP 的 I-WLAN ( Interworking WLAN , 互操作的 WLAN )组网方式。
以 GPRS和 UMTS系统为例, AC通过 TTG( Tunnel Terminating Gateway, 隧道终结网关)与 GGSN ( Gateway GPRS Support Node, 网关 GPRS支持节 点)相连, 其中, GGSN是 GPRS和 UMTS系统与外部 IP网络之间的网关, TTG起到通过 3GPP标准的 Gn接口与 GGSN相连的作用。这样,将 WLAN 网络通过 TTG连接到 GGSN, 就可以实现与 GPRS、 UMTS或 LTE等移动 通信网络的互操作, 并重用移动通信网络已有的鉴权、 认证、 计费、 策略控 制 /流量监管等功能。或者,可以将 TG功能和 GGSN功能合并为 PDG( Packet Data Gateway, 分组数据网关)。
3GPP基于 I-WLAN的方式,在 Release 10中进一步提出了 IFOM( IP Flow Mobility and Seamless WLAN Offloading, IP流移动性和无缝 WLAN分流) 来进一步增强用户体验, 其主要特征是, 允许 UE ( User Equipment, 用户设 备)利用 GPRS、 UMTS或 LTE等移动通信网络和 I-WLAN网络, 分别传输 该 UE的不同 IP数据流,从而实现更加灵活的数据分流, 并提高用户的峰值 速率。
无论是独立的 WLAN还是 I-WLAN, 现有的 WLAN组网方式都一个共 同的特点, 就是 WLAN是完全独立的一个网络。 这样, 对于没有固网资源 的移动运营商, 需要为 WLAN网络重新建设一套传输网络, 大大增加了网 络建设的周期和成本。 发明内容
本发明实施例提供一种数据传输方法、 分流点设备、 用户设备和系统, 能够提高系统传输速率。
一方面, 提供了一种数据传输方法, 包括: 接收用户设备发送的分流控 制信令, 所述分流控制信令携带所述用户设备的蜂窝网标识和无线局域网 WLAN标识; 根据所述用户设备的蜂窝网标识和 WLAN标识, 建立所述用 户设备的 WLAN标识和所述用户设备的全部承载通道之间的对应关系; 按 照与所述用户设备之间协商确定的数据分流方式和所述对应关系, 所述数据 分流方式用于指定通过 WLAN空口传输的所述用户设备的下行和 /或上行方 向的全部或部分用户数据流,确定与所述全部或部分用户数据流对应的承载 通道。
另一方面, 提供了一种数据传输方法, 包括: 向分流点设备发送分流控 制信令,所述分流控制信令携带用户设备的蜂窝网标识和无线局域网 WLAN 标识, 以便于所述分流点设备根据所述用户设备的蜂窝网标识和 WLAN标 识, 建立所述用户设备的 WLAN标识和所述用户设备的全部 7 载通道之间 的对应关系; 与所述分流点设备协商确定数据分流方式, 所述数据分流方式 用于指定通过 WLAN空口传输的所述用户设备的下行和 /或上行方向的全部 或部分用户数据流, 以便于所述分流点设备按照所述数据分流方式和所述对 应关系, 确定与所述全部或部分用户数据流对应的 载通道。
另一方面, 提供了一种分流点设备, 包括: 接收单元, 用于接收用户设 备发送的分流控制信令, 所述分流控制信令携带所述用户设备的蜂窝网标识 和无线局域网 WLAN标识; 建立单元, 用于根据所述用户设备的蜂窝网标 识和 WLAN标识, 建立所述用户设备的 WLAN标识和所述用户设备的全部 承载通道之间的对应关系; 确定单元, 用于按照与所述用户设备之间协商确 定的数据分流方式和所述对应关系,所述数据分流方式用于指定通过 WLAN 空口传输的所述用户设备的下行和 /或上行方向的全部或部分用户数据流,确 定与所述全部或部分用户数据流对应的承载通道。
另一方面, 提供了一种户设备, 包括: 发送单元, 用于向分流点设备发 送分流控制信令, 所述分流控制信令携带用户设备的蜂窝网标识和无线局域 网 WLAN标识, 以便于所述分流点设备根据所述用户设备的蜂窝网标识和 WLAN标识, 建立所述用户设备的 WLAN标识和所述用户设备的全部承载 通道之间的对应关系; 协商单元, 用于与所述分流点设备协商确定数据分流 方式, 所述数据分流方式用于指定通过 WLAN空口传输的所述用户设备的 下行和 /或上行方向的全部或部分用户数据流,以便于所述分流点设备按照所 述数据分流方式和所述对应关系,确定与所述全部或部分用户数据流对应的 承载通道。 另一方面, 提供了一种通信系统, 包括: 上述分流点设备, 或者, 上述 用户设备。
本发明实施例的确定通过 WLAN空口传输的全部或部分用户数据所对 应的 7 载通道, 从而能够在上行或下行方向上经由 WLAN空口传输全部或 部分用户数据, 提高了传输速率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1可应用本发明实施例的 LTE和 WLAN的紧耦合网络架构的示意图。 图 2是可应用本发明实施例的另一种 LTE和 WLAN的紧耦合网络架构 的示意图。
图 3A和图 3B是用户数据传输流程的示意图。
图 4是根据本发明实施例的数据传输方法的流程图。
图 5是根据本发明实施例的数据传输方法的流程图。
图 6是 LTE系统中 EPS承载的示意图。
图 7A和图 7B是根据本发明实施例的端到端隧道的示意图。
图 8是与本发明一个实施例相关的协议栈的示意图。
图 9是与本发明另一实施例相关的协议栈的示意图。
图 10是根据本发明实施例的 LTE HeNB和 WLAN紧耦合网络架构的示 意图。
图 11是根据本发明实施例的另一种 LTE HeNB和 WLAN的紧耦合网络 架构的示意图。
图 12是根据本发明实施例的数据传输方法的流程图。
图 13是根据本发明实施例的数据传输方法的流程图。
图 14是根据本发明一个实施例的 WLAN-Only的场景的示例架构的示 意图。
图 15是根据本发明另一实施例的 WLAN-Only的场景的示例架构的示 意图。 图 16是根据本发明一个实施例的分流点设备的示意框图。
图 17是根据本发明另一实施例的分流点设备的示意框图。
图 18是根据本发明另一实施例的分流点设备的示意框图。
图 19是根据本发明一个实施例的用户设备的示意框图。
图 20是根据本发明另一实施例的用户设备的示意框图。
图 21是根据本发明另一实施例的用户设备的示意框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例通过紧耦合的方式, 将 WLAN作为 LTE移动通信网络的 一个自然延伸和补充, 使得 WLAN成为 LTE等移动通信网络的一部分, 从 而避免形成两张网, 降低网络建设的周期和成本, 使得移动通信网络用户的 传输速率大幅提高, 有效提升用户体验。
需要说明的是, 利用 WLAN传输部分或全部本来需要通过蜂窝网络传 输的用户数据, 在效果上緩减了蜂窝网络数据传输的压力, 常称为分流。 如 果可以利用 WLAN和蜂窝系统空口同时传输用户数据, 则效果上不但起到 了緩减蜂窝网络数据传输负荷即分流的作用,还起到了提供用户峰值速率提 升用户体验的作用, 因此在本发明实施例中也称为 WLAN和蜂窝系统的汇 聚传输。
图 1是可应用本发明实施例的 LTE和 WLAN的紧耦合网络架构的示意 图。图 1中所示 MME( Mobility Management Entity,移动性管理实体 )、 S-GW ( Serving Gateway, 月良务网关)、 PDN-GW (Packet Data Network Gateway, 分组数据网网关)、 PCRF ( Policy charging and rules function, 策略和计费规 则功能)、 HSS ( Home Subscriber Server,归属用户服务器)、 3GPPAAA Server 等可以是现有 3GPP协议体系所定义的 LTE核心网 EPC ( Evolved Packet Core, 演进的分组核心 ) 的网元。 MME和 S-GW之间通过 S11接口相连, S-GW通过 S5接口与 PDN-GW相连。 PDN-GW则通过 SGi接口与外部分组 数据网 (如 IP网络)相连, 同时通过 Gx接口与 PCRF相连。 MME还通过 S6a接口与 HSS相连, 3GPP AAA Server则通过 S Wx接口和 HSS相连。
LTE的无线接入网网元只有一个即 eNB ( evolved Node B, 演进的节点 B ), eNB通过控制面接口 Sl-mme和用户面接口 Slu分别和 MME和 S-GW 相连。 其中, 控制面 Sl-mme接口的传输层协议采用 SCTP ( Stream Control Transmission Protocol, 流控传输协议;), 用户面 Slu接口的传输层协议采用 承载在 UDP上的 GTP-U( GPRS Tunneling Protocol - User plane,用户面 GPRS 隧道协议)协议, 也就是说, 用户数据承载在 GTP-U隧道中, 其中, GTP-U 隧道由 GTP-U头部的 TEID ( Tunnel Endpoint Identifier, 隧道端点标识 ), 以 及 UDP/IP层的 UDP端口号和 IP地址的组合唯一标识。 为便于表述, 以下 将标识 GTP-U隧道的 TEID、 及其 UDP/IP层的 UDP端口号和 IP地址组合 称为 GTP-U隧道标识。
本发明实施例的用户数据分流功能可以位于 S-GW中或者位于 eNB中。 换句话说, 本发明实施例的分流点设备可以是 S-GW或 eNB。 下面以分流点 设备是 S-GW为例进行说明, 即 S-GW除具有现有 3GPP协议体系所定义的 相关功能外, 还具有对用户数据流在 LTE和 WLAN之间进行分流的功能, 即对用户面数据使用 WLAN通道和 /或 LTE通道进行传输,对控制面消息仍 使用 LTE通道进行传输。在本发明实施例的描述中,在无需进行区分的情况 下, 采用术语 "分流点设备" 指代具有用户数据分流功能的网元, 例如基站 eNB或服务网关 S-GW。
如图 1所示, WLAN AP逻辑上连接到 S-GW,具体的方式可以是与 eNB 共站址并连接到 S-GW, 或者 WLAN AP与 eNB不共站址但经由 eNB连接 到 S-GW, 或者 WLAN AP与 eNB不共站址直接连接到 S-GW。 WLAN AP 与 eNB共站址时, WLAN AP和 eNB可以是同一物理设备, 即 eNB中同时 集成了 WLAN AP的功能, 也可以是两个独立的物理设备。 S-GW与 WLAN AP之间的逻辑接口分为控制面和用户面, 其中, 控制面用于传输用户面管 理和控制相关的信息, 以对 S-GW与 WLAN AP之间的用户面传输通道进行 管理, 可采用 TCP over IP或 SCTP over IP方式传输; 用户面则用于传输分 流到 WLAN AP经由 WLAN网络传输的用户数据流,可采用 UDP over IP方 式传输。
如图 1所示, AC ( WLAN AP Controller, WLAN AP控制器 )与 S-GW 相连。 AC与各个 WLAN AP之间存在逻辑接口, 可以通过 TCP over IP或 SCTP over IP来传输,主要是用于传输与 WLAN相关的管理和控制信息,用 于对与之连接的 WLAN AP进行安全认证、 网管、 协调和管理 WLAN AP之 间的干扰等与 WLAN相关的管理和控制。 AC和 AAA服务器连接, 以便完 成对 WLAN 用户的接入认证, 所述 AAA服务器优选地采用 3GPP AAA Server。 其中, 连接方式与前述现有 WLAN网络中 AC或 TTG与 AAA服务 器的连接方式相同。
图 2是可应用本发明实施例的另一种 LTE和 WLAN的紧耦合网络架构 的示意图。 与图 1所示架构不同的是, 图 2的架构中, AC不作为独立的设 备, 其功能与 WLAN相关的管理和控制功能集成在 S-GW中, 因此, S-GW 和 AAA服务器连接以便完成对 WLAN用户的接入认证。
如图 1和图 2所示, 当分流点设备是 S-GW时, 由于 S-GW本身具有计 费信息收集功能, 因此 S-GW可以统计分别通过 LTE空口和 WLAN空口的 用户数据流量、 时长等信息, 并将这些信息提供给离线或在线计费系统, 从 而使系统能够完成所需的计费功能。 另外, 当分流点设备是 eNB 时, 需要 在 eNB中增加计费信息收集功能, 从而使 eNB可以统计分别通过 LTE空口 和 WLAN空口的用户数据流量、 时长等信息, 并将这些信息提供给离线或 在线计费系统, 从而使系统能够完成所需的计费功能。
图 1和图 2所示的 LTE和 WLAN的紧耦合网络架构主要的区别在于与 WLAN相关的管理和控制功能的位置不同。但在 LTE和 WLAN汇聚传输相 关的功能方面, 图 1和图 2所示的架构没有区别, 因此, 以下关于用户数据 在 LTE和 WLAN之间进行分流的相关描述对图 1和图 2所示的架构都是适 用的。
下面举例说明用户数据的分流过程。 下面的例子中, 以分流点设备进行 下行分流为例, 分流点设备进行上行汇聚的方式与此相反, 因此不再赘述。 图 3A是 WLAN AP与 eNB不共站址但经由 eNB连接到 S-GW情况下用户 数据传输流程的示意图, 其中虚线箭头代表 IP流的传输过程。 以下行方向 为例, 用户数据经由 SGi接口到达 PDN-GW, 然后通过 GTP-U 隧道到达 S-GW, 在经过 S-GW功能单元后, 再经用户数据分流单元 310分离为两个 部分。 用户数据中经 LTE空口传输的部分, 通过 GTP-U通道发送到 eNB , 并由 eNB通过 LTE空口发送给 UE。 经 WLAN空口传输的部分, 直接传输 到 WLAN AP或经 eNB转发到 WLAN AP (当 WLAN AP与 eNB不共站址, WLAN AP通过 eNB连接到 S-GW时;), 再经过 WLAN的 MAC层和物理层 通过 WLAN空口进行传输。
S-GW与 WLAN AP之间接口的传输层分组(包括承载控制面的 TCP over IP分组和 载上述用户数据中经 WLAN空口传输的部分的 UDP over IP 分组), 在 S-GW与 eNB之间分段的传输, 可以采用下面两种方式: 一种方 式是直接传输 S-GW与 WLAN AP之间接口的传输层分组。以下行方向为例, IP头的源地址和目的地址分别是 S-GW和 WLAN AP, 这要求 eNB ( WLAN AP与 eNB不共站址时)具有 IP层路由功能, 从而可以根据 WLAN AP的 IP地址将经该 WLAN AP传输的用户数据进行正确的转发。 其中, 所述 IP 层路由功能也可以通过外置的 IP路由设备来完成。
另一种方式是采用 S-GW和 eNB之间的 UDP over IP隧道。 如图 3 A所 示, 在一个实施例中, 在 S-GW侧和 eNB侧都有复用 /解复用操作, 用于将 Slu接口分组和 S-GW与 WLAN AP之间接口的传输层分组分别承载在不同 的传输通道上, 然后复用在 Slu接口的物理线路上, 即实现在 Slu接口上共 传输。 以下行方向为例, S-GW与 WLAN AP之间接口的传输层分组承载在 Slu接口物理线路的 UDP over IP隧道上, 其中, 所述 UDP端口号与 Slu接 口的 GTP-U通道的 UDP端口号不同, 因此 eNB侧的复用 /解复用操作能够 将上述复用在一起的两路数据分开。 当 WLAN AP与 eNB不共站址,即 eNB 连接多个 WLAN AP时,进而利用所述 UDP端口号来区分不同的 WLAN AP , 即 eNB根据所述 UDP端口号将承载在相应 UDP端口上的 S-GW与 WLAN AP之间接口的传输层分组转发到相应的 WLAN AP。 上述复用 /解复用操作 除了可以由 S-GW和 eNB完成外, 也可以由外置设备来完成。 上行方向的 过程与下行方向相反, 不再赘述。
图 3B示出了用户数据分流功能在 eNB中实现的情况, 其中虚线箭头代 表 IP流的传输过程。 下行用户数据经由 SGi接口到达 PDN-GW, 然后通过 GTP-U隧道经由 S-GW到达 eNB, 达到 eNB的用户数据首先进入用户数据 分流单元 320。 该用户数据分流单元 320将该 UE的下行数据流被分离为两 部分, 分别经由 LTE和 WLAN的空口进行传输。 其中, 经由 LTE空口传输 的部分与标准的 LTE协议完全相同,经由 WLAN空口传输的部分,先经 eNB 与 WLAN AP之间的线路传输到 WLAN AP (当 WLAN AP不与 eNB共站址 时),再经 WLAN的 MAC层和物理层通过 WLAN空口进行传输。上行方向 的过程与下行方向相反, 不再赘述。
图 4是根据本发明实施例的数据传输方法的流程图。 图 4的方法由分流 点设备 (例如 eNB、 S-GW )执行。
401 , 接收用户设备发送的分流控制信令, 分流控制信令携带用户设备 的蜂窝网标识和无线局域网 WLAN标识。
402 , 根据用户设备的蜂窝网标识和 WLAN 标识, 建立用户设备的 WLAN标识和用户设备的全部 7|载通道之间的对应关系。
403 , 按照与用户设备之间协商确定的数据分流方式和对应关系, 数据 分流方式用于指定通过 WLAN空口传输的用户设备的下行和 /或上行方向的 全部或部分用户数据流, 确定与全部或部分用户数据流对应的承载通道。
本发明实施例的确定通过 WLAN空口传输的全部或部分用户数据所对 应的 7 载通道, 从而能够在上行或下行方向上经由 WLAN空口传输全部或 部分用户数据, 提高了传输速率。
图 5是根据本发明实施例的数据传输方法的流程图。 图 5的方法由用户 设备 (例如 UE或其他类型的终端)执行, 并且与图 4的方法相对应。
501 , 向分流点设备发送分流控制信令, 所述分流控制信令携带用户设 备的蜂窝网标识和无线局域网 WLAN标识, 以便于所述分流点设备根据所 述用户设备的蜂窝网标识和 WLAN标识, 建立所述用户设备的 WLAN标识 和所述用户设备的全部 7|载通道之间的对应关系。
502, 与分流点设备协商确定数据分流方式, 所述数据分流方式用于指 定通过 WLAN空口传输的所述用户设备的下行和 /或上行方向的全部或部分 用户数据流, 以便于所述分流点设备按照所述数据分流方式和所述对应关 系, 确定与所述全部或部分用户数据流对应的承载通道。
本发明实施例的确定通过 WLAN空口传输的全部或部分用户数据所对 应的承载通道, 从而能够在上行或下行方向上经由 WLAN空口传输全部或 部分用户数据, 提高了传输速率。
本发明实施例中,在 401和 501中传输的蜂窝网标识的一个例子是 IMSI ( International Mobile Subscriber Identity , 国际移动用户识别码), WLAN标 识的一个例子是 WLAN MAC ( Media Access Control, 媒体接入控制 )地址。
401和 501中的分流控制信令可以是通过 LTE空口的应用层在用户设备 和分流点设备之间传输的应用层分流控制信令。 在另一实施例中, 在分流点 设备是 S-GW的情况下, 分流控制信令可以通过 NAS ( Non- Access-Stratum, 非接入层) 消息传递。 或者, 在分流点设备是基站 eNB 的情况下, 分流控 制信令可以通过 RRC ( Radio Resource Control, 无线资源控制) 消息传递。 下面的描述以应用层分流控制信令为例进行说明,但是本发明实施例不限于 此, 可以直接对现有标准中 UE和 S-GW之间的 NAS协议进行扩展, 增加 本发明中的 UE和 S-GW之间的应用层分流控制信令所完成的各种功能, 这 样利用 NAS信令就可以传输本发明中的 UE和 S-GW之间的分流控制相关 的信息。 类似地, 对于用户数据分流功能位于 eNB 中的情况, 可以直接对 现有标准中 UE和 eNB之间的 RRC协议进行扩展,即利用 RRC信令来传输。
另外, 除了传输 UE的蜂窝网标识和 WLAN标识之外, UE和分流点设 备之间传输的分流控制信令还可以用于 WLAN发现、 认证和移动性管理等 功能, 下文中会进行详细描述。
上述应用层分流控制信令可通过 EPS ( Evolved Packet System, 演进分 组系统)承载进行传输。 该 EPS承载可以是由 LTE网络的控制面功能按照 标准 LTE协议建立的一个或多个 EPS承载之一。 在 LTE系统中, 一个 UE 可以和多个 PDN ( Packet Data Network, 分组数据网 )建立连接, 一个 PDN 连接至少包括一条 EPS承载。 EPS承载是 LTE网络进行 QoS (服务质量 ) 控制的基本单位, 即对映射到同一个 EPS承载的业务数据流,将采用相同的 分组转发处理(如调度策略、 排队管理策略、 速率调整策略、 RLC配置等)。 为了从应用层数据中分离出在各 EPS承载上传输的业务流, 每条 EPS承载 对应一个 TFT ( Traffic Flow Template, 业务流模板), TFT是一组分组过滤 器( packet filter ) ,每个分组过滤器典型地包含访问的远程服务器的 IP地址、 协议类型、 端口范围等特征, 用于匹配和分离出具有相同特征的 IP分组, 因此, TFT可以将用户数据流被分解为多个 IP流, 并分别经过不同的 EPS 承载进行传输。
图 6是 LTE系统中 EPS承载的示意图。 上行或下行方向的 EPS承载由 UE到 eNB的无线承载、 eNB到 S-GW的 S1承载、 S-GW到 PDN-GW的 S5 承载分段构成, 其中, UE到 eNB的无线承载和 eNB到 S-GW的 S1承载统 称为 E-RAB ( E-UTRAN Radio Access Bearer, E-UTRAN无线接入 载;), S-GW到 PDN-GW的 S5承载和 eNB到 S-GW的 S1承载都是 GTP-U隧道。
在上行方向, UE采用上行业务流模板 ( UL-TFT )对来自应用层的每个 分组进行匹配, 从而分解成不同的上行 IP流, 并通过相应的上行 EPS承载 进行发送, 为此, UE保存了与该 UE的每一个上行 EPS 7 载唯一对应的标 识, 即上行 E-RAB ID, S-GW也利用上行 E-RAB ID与该 UE的一个上行 EPS承载相对应, 同时 S-GW也保存有与上行 E-RAB ID唯一对应的 S1接 口 GTP-U隧道标识。 因此, 当 UE同时与多个 PDN建立连接时, 一个上行 E-RAB ID唯一对应一个 PDN连接的一个上行 IP流。
在下行方向, 对端应用层的下行分组经过外部分组数据网络到达 PDN-GW后, 由 PDN-GW采用下行 TFT ( DL-TFT )对每个下行分组进行匹 配, 从而分解成不同的下行 IP流, 并通过相应的下行 EPS 7 载进行发送。 类似地, S-GW和 UE都利用下行 E-RAB ID与该 UE的下行 EPS承载唯一 对应, 同时 S-GW也保存有与下行 E-RAB ID唯一对应的 S1接口 GTP-U隧 道标识。 因此, 当 UE同时与多个 PDN建立连接时, 一个下行 E-RAB ID唯 一对应一个 PDN连接的一个下行 IP流。
EPS 7 载由缺省 7 载( default bearer )和专用?|载( dedicated bearer )组 成, 其中, 缺省承载是在网络附着 (Network Attachment ) 时建立的, 专用 承载是在缺省承载基础上增加的承载,如果 UE没有预先分配的静态 IP地址, UE可以在网络附着时要求网络分配 IP地址, 同一个 PDN连接的不同 EPS 承载具有相同的 IP地址。一旦 UE成功网络附着,即进入 EMM-REGISTERED 状态, EPS承载处于活跃状态, S1接口和 S5接口的 GTP-U隧道是打开的, 用户数据分组可以在 eNB与 PDN-GW之间传输。
本发明实施例可以由 LTE网络的控制面功能按照标准的 LTE协议建立 用户面的一个或多个 EPS承载。 在下行方向, eNB将每个 EPS承载的无线 承载映射为 LTE的无线链路、或者 WLAN的无线链路、或者由 LTE和 WLAN 的无线链路同时提供; 在上行方向, UE则将每个 EPS承载的无线承载映射 为 LTE的无线链路、 或者 WLAN的无线链路、 或者由 LTE和 WLAN的无 线链路同时提供。 控制面消息 (包括 NAS和 AS消息)仍然通过 LTE空口 来传输, 而数据面则可以部分或全部地通过 WLAN空口来传输。
也就是说, 本发明实施例对 EPS承载进行了扩展, 允许 EPS承载的无 线承载部分可以是 LTE的无线链路、 或者 WLAN的无线链路、 或者由 LTE 和 WLAN的无线链路同时提供, 下面所述 EPS承载都是指本发明所扩展的 EPS承载, 而不限于原有 LTE协议中 EPS承载的无线承载部分仅为 LTE的 无线链路的定义。
如前所述, 用户数据分流功能既可以位于 S-GW 中, 也可以位于 eNB 中。 为便于描述, 下面以用户数据分流功能位于 S-GW中为例进行说明。 但 在 LTE和 WLAN汇聚传输相关的功能方面, 用户数据分流功能位于 S-GW 和位于 eNB并没有区别, 因此, 以下关于用户数据在 LTE和 WLAN之间进 行分流的相关描述对用户数据分流功能位于 S-GW和位于 eNB的情况都是 适用的。
数据分流方式的协商可以由用户设备发起, 也可以由分流点设备发起, 本发明对此不作限制。 根据本发明, 为了对数据分流方式进行控制, UE可 以通过上述应用层分流控制信令与分流点设备 (例如 eNB或 S-GW )进行协 商。
下面结合具体实施例描述本发明的数据分流方法。 实施例一(利用 LTE原有的 TFT功能)
在本实施例中, 在图 4的 403中, 确定与全部或部分用户数据流对应的 承载通道包括: 按照所确定的数据分流方式, 与用户设备之间建立经由无线 局域网 WLAN空口的端到端隧道, 其中所述端到端隧道用于传输所述全部 或部分用户数据流, 并建立端到端隧道的隧道号和承载通道(例如, 图 6所 示的 GTP-U隧道)对应的 E-RAB ID的对应关系。这样,对于需要通过 WLAN 空口传输的用户数据流(例如, IP流), 分流点设备可以通过端到端隧道将 这部分用户数据流发送给用户设备。 另一方面, 在通过端到端隧道接收到来 自用户设备的上行用户数据流时, 分流点设备也能够知道通过哪个承载通道 转发该上行用户数据流。
本实施例应用了 LTE已有的 IP流承载机制, 即在下行方向, PDN-GW 利用已有 DL-TFT功能, 将 UE的下行用户数据分解为不同的下行 IP流(IP Flow ), 所述下行 IP流在核心网通过相应的下行 GTP-U隧道(上述承载通 道的一个例子)到达 S-GW,由于 S-GW将承载所述下行 IP流的下行 GTP-U 隧道的部分或全部与相应下行 WLAN无线 7 载相连, 而将 7 载所述下行 IP 流的下行 GTP-U隧道的剩余部分与相应的下行 LTE无线 7 载相连, 因此, 这些下行 IP流的部分或全部被分流到 WLAN空口, 从而实现下行用户数据 在 LTE和 WLAN空口的分流和汇聚传输。 在上行方向, UE利用已有的 UL-TFT功能, 对 UE的上行用户数据进 行分解, 区分为不同的上行 IP流。 由于 S-GW将承载所述上行 IP流的上行 GTP-U隧道的部分或全部与相应的上行 WLAN无线 7 载相连, 而将 7 载所 述上行 IP流的上行 GTP-U隧道的剩余部分与相应的上行 LTE无线 7 载相 连, 因此, UE只需将所述上行 IP流的部分或全部通过相应的上行 WLAN 无线承载进行发送, 而将所述上行 IP流的剩余部分通过相应的上行 LTE无 线承载进行发送, S-GW就能将相应的经由上行 WLAN无线承载的所述上 行 IP流的部分或全部转发到相应的上行 GTP-U隧道, 而将相应的经由上行 LTE无线^载的所述上行 IP流的剩余部分转发到相应的上行 GTP-U隧道, 从而实现上行用户数据在 LTE和 WLAN空口的分流和汇聚传输。
也就是说, S-GW需要针对 UE完成将该 UE的部分或全部 GTP-U隧道 与该 UE的 WLAN无线承载连接的操作, 包括在上行方向将承载上行 IP流 的 GTP-U隧道的部分或全部与相应的上行 WLAN无线 7 载相连, 而将 7 载 上行 IP流的 GTP-U隧道的剩余部分与相应的上行 WLAN无线 载相连, 以及在下行方向将承载下行 IP流的 GTP-U隧道的部分或全部与相应的下行 WLAN无线 7 载相连,而将 7 载下行 IP流的 GTP-U隧道的剩余部分与相应 的下行 WLAN无线 7 载相连。
WLAN AP利用 UE的 MAC地址唯一辨识一个 UE,而 S-GW和 WLAN AP之间的用户面接口可以利用 UDP端口号区分不同的 UE。因此, WLAN AP 和 S-GW可以建立 UE的 MAC地址与 S-GW和 WLAN AP之间的用户面接 口的相应 UDP端口号的对应关系。 这样, 只要是来自该 MAC地址的 UE的 上行数据分组, 均由 WLAN AP接收并通过相应的 UDP端口发送给 S-GW; S-GW则利用所述 UDP端口号, 根据 S-GW和 WLAN AP之间的用户面接 口的 UDP端口号与 UE的 MAC地址的对应关系,将所述上行数据分组与相 应 UE的 7 载通道 (例如 GTP-U隧道 )相对应。
同时, S-GW根据 S-GW和 WLAN AP之间的用户面接口的 UDP端口 号与 UE的 MAC地址的对应关系, 将该 UE的需经由 WLAN空口传输的下 行数据分组通过所述 UDP端口发送到 WLAN AP。 WLAN AP接收通过某个 UDP端口传输的来自 S-GW的下行数据分组, 并根据该 UDP端口号查找到 对应 UE的 MAC地址,从而通过 WLAN空口将所述下行数据分组发送到相 应 MAC地址的 UE。 如前所述, S-GW从 S-GW与 WLAN AP的接口只能获得 UDP端口号, 或者 UE的 WLAN MAC地址的信息, 为了与相应 UE的承载通道相对应, S-GW需要建立 UE的 WLAN MAC地址与该 UE的所有承载通道的对应关 系。
为此, UE通过 UE和 S-GW之间的应用层分流控制信令,将自己的 IMSI 和自己的 WLAN MAC地址的对应关系告诉 S-GW, 其中, IMSI是移动蜂窝 网络里一个 UE的唯一标识。 S-GW保留有每个 UE的 IMSI与该 UE的所有 载通道的对应关系, 这样, S-GW利用 UE的 IMSI与 WLAN MAC地址, 就能建立起 UE的 WLAN MAC地址与该 UE的所有承载通道的对应关系。
同时, WLAN空口并不对 UE的经由 WLAN空口传输的部分或全部 IP 流进行区分, 因此, 为了在下行方向 UE能够区分经 WLAN空口传输的该 UE的不同 IP流, 而在上行方向 S-GW能够分辨该 UE的不同 IP流并将各 IP流发送到相应的 GTP-U隧道, S-GW和 UE还需要建立一致的经由 WLAN 空口传输的部分或全部 IP流与相应 7?载的对应关系。 为此, 在本实施例中, UE和 S-GW建立多条端到端隧道。 一个端到端隧道传输该 UE的经 WLAN 空口传输的一个 IP流。因此,根据 UE与 S-GW之间的端到端隧道的隧道号, S-GW和 UE就能确定经由 WLAN空口传输的部分或全部 IP流与相应 载 的对应关系。
如前所述, 在 UE和 S-GW都保留有每个 UE的 EPS承载的标识, 即 E-RAB ID, 并与相应的 EPS承载相对应。 也就是说, 只要 UE和 S-GW通 过 UE和 S-GW之间的应用层分流控制信令, 协商好经由 WLAN空口传输 的部分或全部 IP流的 UE与 S-GW之间端到端隧道的隧道号与相应 7|载的 E-RAB ID的对应关系。根据该对应关系, S-GW和 UE就能确定经由 WLAN 空口传输的部分或全部 IP流与相应 7|载的对应关系。
这样, 在上行方向, S-GW可以根据隧道号区分同一 UE的不同 PDN连 接, 以及同一 PDN连接的不同 EPS承载的上行 IP流, 以便通过相应的 S5 接口的 GTP-U隧道发送到 PDN-GW; 在下行方向, S-GW将该 UE的来自 不同 GTP-U隧道的下行 IP流, 通过相应的 UE与 S-GW之间的端到端隧道 经 WLAN空口发送到 UE, 这样, UE可以根据 UE与 S-GW之间的端到端 隧道的隧道号, 区分该 UE的不同 PDN连接。
图 7A示出了一种 UE与 S-GW之间端到端隧道方式, 可以看到, 用户 IP分组(内层 IP分组)被封装在一个外层 UDP/IP分组中, 对于上行方向的 IP分组, 用户 IP分组的 IP分组头部的源地址为该 UE的 IP地址, 目的地址 为远端服务器的 IP地址,外层 IP分组的 IP分组头部的源地址为该 UE的 IP 地址, 目的地址为该 UE对应的 eNB或 S-GW的 IP地址, 外层 IP分组的 UDP头部的 UDP端口号, 即为所述端到端隧道的隧道号。 图 7B示出了一 种 UE与 S-GW之间端到端隧道方式, 可以看到, 在用户 IP分组的前面, 增 加了一个隧道层字段, 用于指示该端到端隧道对应承载的 E-RAB ID, 作为 所述端到端隧道的隧道号。
除了采用图 7A和图 7B所示隧道方式,还可以通过其它方式实现 UE与 S-GW之间端到端隧道, 如采用 IPSec ( Internet Protocol Security , 互联网协 议安全)、 IEEE 802.2 LLC ( Logical Link Control, 逻辑链路控制)等协议来 实现。
图 8是 UE、 WLAN AP和 S-GW的与本实施例相关的协议栈的示意图。 如图 8所示, 一部分用户数据流(图中所示 "用户数据 A" ) 经过 LTE空口 进行传输, 另外一部分用户数据流(图中所示 "用户数据 B" )则通过 WLAN 空口传输, 如上所述, 该部分的用户数据流通过 UE与 S-GW之间的端到端 隧道传输。 S-GW和 WLAN AP之间的数据面接口采用 UDP over IP方式传 输, 控制面接口采用 TCP over IP或 SCTP over IP方式传输, 用户的所有数 据流(图中所示 "用户数据 A+B" ) 最后通过 S1接口用户面的 GTP-U隧道 在 S-GW与 PDN-GW之间进行传输。
同时, LTE空口还用于传输 UE和 S-GW之间的应用层分流控制信令, 该信令可以通过 TCP协议传输。 UE和 S-GW辨识所述应用层分流控制信令 的第一种方式是: 在 UE和 S-GW之间有多条 EPS承载的情况下, 系统为所 述应用层分流控制信令分配一个特定的承载通道(例如,上述多条 EPS承载 之一), 这样, 只要在该特定承载上传输的信息, UE和 S-GW都作为应用层 分流控制信令进行处理。
UE和 S-GW辨识所述应用层分流控制信令的第二种方式是: 传输所述 应用层分流控制信令的 UE侧地址, 即为 UE在网络附着时获得的 IP地址, S-GW侧的 IP地址, 采用系统配置的特定 IP地址(UE可用域名方式通过 DNS获得其服务 S-GW的 IP地址 ), 当 S-GW接收到目的地址为该特定 IP 地址的 IP分组时, 即认为该 IP分组承载的是来自 UE的应用层分流控制信 令; 同样, 当 UE接收到源地址为该特定 IP地址的 IP分组时, 即认为该 IP 分组承载的是来自 S-GW的应用层分流控制信令。 所述特定的 IP地址位于 外部 PDN的 IP地址空间, 为避免所述应用层分流控制信令与 UE的数据分 组相互混淆, 所述特定的 IP地址可以采用保留的 IP地址, 以 IPv4为例, 可 以采用 192.168.0.0到 192.168.255.255中的地址。
UE和 S-GW辨识所述应用层分流控制信令的第三种方式是: 传输所述 应用层分流控制信令的 UE侧地址, 即为 UE在网络附着时获得的 IP地址, S-GW侧的 IP地址, 采用系统配置的特定 IP地址(UE可用域名方式通过 DNS获得其服务 S-GW的 IP地址), 并且传输所述应用层分流控制信令的 TCP协议采用特定的 TCP端口, 当 S-GW接收到目的地址为所述特定 IP地 址且 TCP端口号为所述特定的 TCP端口时,即认为该 TCP over IP分组承载 的是来自 UE的应用层分流控制信令; 同样, 当 UE接收到源地址为所述特 定 IP地址且 TCP端口号为所述特定的 TCP端口时, 即认为该 TCP over IP 分组承载的是来自 S-GW的应用层分流控制信令。 所述特定的 IP地址位于 外部 PDN的 IP地址空间, 为避免所述应用层分流控制信令与 UE的数据分 组相互混淆, 所述特定的 IP地址可以采用保留的 IP地址, 以 IPv4为例, 可 以采用 192.168.0.0到 192.168.255.255中的地址, 所述特定的 TCP端口则采 用不常用的 TCP端口 (例如, 0~1024为常用 TCP端口号)。
下面对本实施例中 LTE与 WLAN汇聚传输的建立过程进行描述。首先, 如果 UE有上行数据需要传输而尚未附着到网络, 则启动网络附着过程进入 EMM-REGISTERED状态, 此时 EPS承载处于活跃状态, UE由此获得 IP 地址并建立至少一条 EPS承载, 如果用户开启了 WLAN分流功能, UE和 S-GW可以利用所述至少一条 EPS承载中的一个发起 UE和 S-GW之间的应 用层分流控制信令过程, 从而建立起 LTE与 WLAN的汇聚传输。
由于 WLAN AP通常分布在热点区域且不连续覆盖, 因此 UE—直开启
WLAN收发模块会产生不必要的电量消耗, 另一方面, S-GW能够获得 UE 的位置信息, 如 S-GW可以获知 UE所在的小区或跟踪区 ( Tracking Area, TA ), 特别地, 对用户数据分流功能位于 eNB 中的情况, eNB还可以通过 LTE空口上的无线测量获得 UE是否处于小区中心, 或者某几个相邻小区的 边缘等更精确的位置信息。 因此, S-GW可以通过应用层分流控制信令, 通 知 UE当前位置上存在可接入的 WLAN AP,从而开启 WLAN功能模块以便 启动 WLAN分流; S-GW也可以通过应用层分流控制信令, 通知 UE当前位 置上不存在可接入的 WLAN AP(如 UE离开了 WLAN热点区域,或者 WLAN 因为干扰严重、 负载过大等原因限制用户接入等), 从而关闭 WLAN功能模 块以降氏 UE功耗。
当 UE检测到可接入的 WLAN AP后, 可获取唯一标识该 WLAN AP的
BSSID ( Basic Service Set Identity, 基本服务集标识), 通常一个 WLAN AP 的 BSSID为其 WLAN MAC地址, S-GW则保存有它所连接的全部 WLAN AP的 BSSID列表, 这样, UE就可以通过 UE和 S-GW之间的应用层分流 控制信令, 将自己 WLAN MAC地址和试图关联的 WLAN AP的 BSSID发 送给 S-GW, S-GW将该 BSSID与其所保存的相连接的 WLAN AP的 BSSID 列表进行匹配,如果匹配不成功,则通知 UE不要对该 WLAN AP发起关联; 如果匹配成功, 则通知 UE可以发起对该 WLAN AP的关联及 WLAN认证 过程。
所述 WLAN认证过程可以采用基于 SIM ( Subscriber Identity Module, 用户识别模块 )或 USIM ( Universal Subscriber Identity Module, 全球用户识 别模块)的认证方式,具体的过程可以参考 IETF的规范 RFC4186和 RFC4187 等标准。
所述 WLAN认证过程也可以采用基于 UE的 WLAN MAC地址或 WLAN MAC地址与 IP地址的自动认证方式。具体来说, UE将自己的 WLAN MAC 地址,或还包括自己的 IP地址通过 UE和 S-GW之间的应用层分流控制信令 告诉 S-GW, S-GW则将该 UE的 WLAN MAC地址, 或还包括自己的 IP地 址发送给上述 BSSID匹配成功且已关联的 WLAN AP; 另夕卜, UE还通过 UE 和 S-GW之间的应用层分流控制信令与 S-GW协商 WLAN空口的加密算法 与所述加密算法的密钥, S-GW则将所述协商的 WLAN空口加密算法与所 述加密算法的密钥发送给上述 BSSID匹配成功且已关联的 WLAN AP,这样, 该 WLAN AP就建立了该 UE的 WLAN MAC地址与所述加密算法的密钥的 绑定关系, 或者该 UE的 WLAN MAC地址、 IP地址与所述加密算法的密钥 的绑定关系。 这样, 只有满足所述绑定关系的 UE, 该 WLAN AP才视为合 法且准许接入。
当 UE关联到该 WLAN AP且成功认证后, UE通过 UE和 S-GW之间的 应用层分流控制信令,或者该 WLAN AP通过其与 S-GW之间的控制面接口, 通知 S-GW该 UE (用 WLAN MAC地址标识 UE ) 已经接入该 WLAN AP, S-GW则保存该 UE与其所接入的 WLAN AP的 BSSID的对应关系。 当 UE 因为移动而关联到该 S-GW所连接的其它 WLAN AP时, S-GW将更新该 UE与其所接入的新的 WLAN AP的 BSSID的对应关系。 这样, 利用这个对 应关系, S-GW总能将分流到 WLAN的下行用户数据发送到该 UE当前所接 入的 WLAN AP处 , 从而经该 WLAN AP发送给 UE„
与此同时, UE和 S-GW通过 UE和 S-GW之间的应用层分流控制信令, 进行如下 LTE与 WLAN汇聚传输建立的准备工作:
(1) UE通过 UE和 S-GW之间的应用层分流控制信令, 将自己的 IMSI 和 WLAN MAC地址告诉 S-GW, S-GW利用 UE的 IMSI与 WLAN MAC地 址, 建立起 UE的 WLAN MAC地址与该 UE的所有承载通道 (即 GTP-U隧 道) 的对应关系。
(2) UE还可以通过 UE和 S-GW之间的应用层分流控制信令, 协商并确 定该 UE的数据分流方式, 例如, 分别对上行和下行, 确定哪些 IP流(分别 与 E-RAB ID/GTP-U隧道标识——对应 )通过 WLAN空口传输(剩余的通 过 LTE空口传输)。例如,假定某 UE的一个 PDN连接建立了 4个 EPS承载, 分别对应 4条 IP流, 经协商将第 1、 4条 IP流通过 WLAN空口进行传输, 而将第 2、 3条 IP流通过 LTE空口进行传输。
在本实施例中, 允许用户配置经由 LTE空口和 WLAN空口传输的数据 流量的比例或者优选级, 例如, 如果运营商的资费政策中规定 WLAN接入 免费, 或者经由 WLAN的流量资费低于 LTE的资费, 用户更愿意优先选择 通过 WLAN来进行数据传输; 又如, 在用户电池电量不足时, 用户更倾向 于选择耗电比较少的空口来传输数据, 从而延长终端的电池时间。 系统则在 用户选择的基础上进一步依据一定的原则来做出选择, 例如, 系统可根据这 两个空口的拥塞情况做出选择, 当 WLAN干扰比较大而导致传输速率下降 较大时, 系统会在用户选择的基础上, 将流量分流到 LTE空口;
(3) UE还可以通过 UE和 S-GW之间的应用层分流控制信令, 协商好经 由 WLAN空口传输的部分或全部 IP流的 UE与 S-GW之间端到端隧道的隧 道号与相应 7|载的 E-RAB ID的对应关系,如前所述,利用该对应关系, S-GW 和 UE就能确定经由 WLAN空口传输的部分或全部 IP流与相应 载的对应 关系。 与此同时, S-GW和该 UE所接入的 WLAN AP,通过 S-GW和该 WLAN AP之间的控制面接口, 协商 S-GW和该 WLAN AP之间的用户面接口说传 输该 UE的上行数据和 /或下行数据的 UDP端口号, WLAN AP和 S-GW可 以建立 UE的 MAC地址与 S-GW和 WLAN AP之间的用户面接口的相应 UDP 端口号的对应关系。
在完成上述操作后, 即可开始 LTE与 WLAN的汇聚传输。 如前所述, 在上行方向, UE利用 UL-TFT功能对 UE的上行数据流进行分解, 区分为 不同的上行 IP流,将需要通过 WLAN空口传输的部分或全部上行 IP流, 映 射到相应的 UE与 S-GW之间的端到端隧道,经由 WLAN空口发送到 WLAN AP, WLAN AP将来自该 MAC地址的 UE的所有上行数据分组, 通过相应 的 UDP端口发送给 S-GW, S-GW则利用所述 UDP端口号, 根据 S-GW和 WLAN AP之间的用户面接口的 UDP端口号与 UE的 MAC地址的对应关系, 找到相应 UE的承载通道(例如 GTP-U隧道), 并利用 UE与 S-GW之间的 端到端隧道号与所述部分或全部 IP流的相应 GTP-U隧道的对应关系, 将所 述部分或全部 IP流分别转发到相应的上行 GTP-U隧道。 同时, UE按 LTE 现有标准将所述上行 IP流的剩余部分经由相应的上行 LTE无线承载发送到 S-GW, S-GW再分别转发到相应的上行 GTP-U隧道。 这样, 就实现了上行 用户数据在 LTE和 WLAN空口的汇聚传输。
在下行方向, PDN-GW利用 DL-TFT功能, 将 UE的下行数据流分解为 不同的下行 IP流, 所述下行 IP流通过相应的下行 GTP-U隧道到达 S-GW, S-GW将所述下行 IP流的部分或全部,分别映射到相应的 UE与 S-GW之间 的端到端隧道, 通过相应的 UDP端口发送给 WLAN AP, WLAN AP则利用 所述 UDP端口号,根据 S-GW和 WLAN AP之间的用户面接口的 UDP端口 号与 UE的 MAC地址的对应关系, 将来自该 UDP端口的该 UE的所有下行 数据分组, 通过 WLAN空口发送到所述 MAC地址的 UE, UE利用 UE与 S-GW之间的端到端隧道号与所述部分或全部 IP流的对应关系, 区分该 UE 的不同 PDN连接的 IP流。 同时, S-GW按 LTE现有标准将所述下行 IP流 的剩余部分经由相应的下行 LTE无线承载发送到 UE。 这样, 就实现了下行 用户数据在 LTE和 WLAN空口的汇聚传输。
另外, 当因 UE移动导致其将要离开当前服务 S-GW时, S-GW将接收 到 UE的 S-GW切换请求, 在 S-GW决定启动 S-GW切换之前, S-GW首先 对分流进行重配, 将原先由 WLAN分流的用户数据流重新配置为由 LTE进 行传输, 并通过 UE和 S-GW之间的应用层分流控制信令通知 UE与当前所 接入的 WLAN AP去关联, 或通过 S-GW与 WLAN AP的控制面接口, 通知 该 UE当前所接入的 WLAN AP对该 UE进行去关联, 去关联成功后 S-GW 再启动 S-GW切换过程。 当 S-GW切换完成 UE切换到新的 S-GW后, 若当 前有可接入的 WLAN AP, UE重新按照上述过程接入到当前服务 S-GW所 连接的 WLAN AP, 从而重新建立 LTE和 WLAN的汇聚传输。 实施例二( S-GW内置分组过滤器 /UE在 LTE通信模块之外内置分组过 滤器)
在本实施例中, UE的一个 PDN连接只对应一个 EPS承载,即 PDN-GW 与 S-GW之间只有一个 GTP-U隧道。本实施例中不使用 PDN-GW的 DL-TFT 功能来对 UE 的下行数据流进行分解。 但在 S-GW 中内置分组过滤器, 将 UE的每个 PDN连接的下行用户数据分解为不同的下行 IP流(IP Flow ), S-GW再根据与 UE协商的数据分流方式,将所述下行 IP流的部分或全部发 送到 WLAN AP,从而通过 WLAN空口传输到 UE, 同时将所述下行 IP流的 剩余部分通过 LTE空口传输到 UE,从而实现下行用户数据在 LTE和 WLAN 空口的分流和汇聚传输。
在上行方向, UE利用在 LTE通信模块(通常是一个独立的 ASIC芯片 ) 之外内置的分组过滤器, 将来自应用层的每个 PDN连接的上行数据流分解 为不同的上行 IP流。 UE再根据与 S-GW协商的数据分流方式, 将所述上行 IP流的部分或全部通过 WLAN空口发送到 WLAN AP, WLAN AP再进一步 传输到 S-GW,同时将所述上行 IP流的剩余部分通过 LTE空口传输到 S-GW, 最后,由 S-GW将来自 WLAN空口和 LTE空口的所述 PDN连接的全部上行 IP流, 转发到所述 PDN连接对应的上行 GTP-U隧道, 从而实现上行用户数 据在 LTE和 WLAN空口的分流和汇聚传输。
WLAN AP利用 UE的 MAC地址唯一辨识一个 UE,而 S-GW和 WLAN AP之间的用户面接口可以利用 UDP端口号区分不同的 UE,因此 WLAN AP 和 S-GW可以建立 UE的 MAC地址与 S-GW和 WLAN AP之间的用户面接 口的相应 UDP端口号的对应关系。 这样, 只要是来自该 MAC地址的 UE的 上行数据分组, 均由 WLAN AP接收并通过相应的 UDP端口发送给 S-GW; S-GW则利用所述 UDP端口号, 根据 S-GW和 WLAN AP之间的用户面接 口的 UDP端口号与 UE的 MAC地址的对应关系,将所述上行数据分组与相 应 UE的 7|载通道 (即 GTP-U隧道 )相对应。
同时, S-GW根据 S-GW和 WLAN AP之间的用户面接口的 UDP端口 号与 UE的 MAC地址的对应关系, 将该 UE的需经由 WLAN空口传输的下 行数据分组通过所述 UDP端口发送到 WLAN AP; WLAN AP接收通过某个 UDP端口传输的来自 S-GW的下行数据分组, 并根据该 UDP端口号查找到 对应 UE的 MAC地址,从而通过 WLAN空口将所述下行数据分组发送到相 应 MAC地址的 UE。
如前所述, S-GW从 S-GW与 WLAN AP的接口只能获得 UDP端口号, 或者 UE的 WLAN MAC地址的信息, 为了与相应 UE的承载通道相对应, S-GW需要建立 UE的 WLAN MAC地址与该 UE的所有承载通道的对应关 系。 尽管 UE的一个 PDN连接只对应一个 EPS承载, 即 PDN-GW与 S-GW 之间只有一个 GTP-U隧道, 但因为 UE可能同时和多个 PDN建立连接, 因 此, 在 S-GW中一个 UE仍可能对应多个 GTP-U隧道。
为此, UE通过 UE和 S-GW之间的应用层分流控制信令,将自己的 IMSI 和自己的 WLAN MAC地址的对应关系告诉 S-GW, 其中, IMSI是移动蜂窝 网络里一个 UE的唯一标识, S-GW保留有每个 UE的 IMSI与该 UE的所有 载通道的对应关系, 这样, S-GW利用 UE的 IMSI与 WLAN MAC地址, 就能建立起 UE的 WLAN MAC地址与该 UE的所有承载通道的对应关系。
如前所述,尽管 UE的一个 PDN连接只建立一个 EPS承载,即 PDN-GW 与 S-GW之间只有一个 GTP-U隧道, 但因为 UE可能同时和多个 PDN建立 连接, 因此, 在 S-GW中一个 UE仍可能对应多个 GTP-U隧道, 而在 UE侧 也需要区分同一 UE的不同 PDN连接, 以便将相应 PDN连接的上行数据提 供给相应的应用层。 由于 WLAN AP无法对 UE的经由 WLAN空口传输的 同一 UE的不同 PDN连接的 IP流进行区分, 因此 S-GW和 UE都需要提供 对 UE的经由 WLAN空口传输的同一 UE的不同 PDN连接的 IP流进行区分 的方法。
为此, 一个实施例是采用 IP地址区分同一 UE的不同 PDN连接所对应 的 IP流。 具体来说, 由于不同 PDN中的 IP地址是完全无关的, 因此, 当某 个 UE同时与多个 PDN建立连接时, 可能出现同一个 UE在不同 PDN连接 中所分配的 IP地址正好相同的情况。 因此, 为了能够利用 IP地址区分同一 UE的不同 PDN连接, 要求不同 PDN连接所分配的 IP地址不能相同。 在实 际系统中, 由于 IP地址空间巨大, 出现正好两个或以上 PDN为同一 UE分 配了相同的 IP地址的概率非常小, 如果出现第二个 PDN连接所分配的 IP 地址正好与第一个 PDN连接所分配的 IP地址相同的情况, UE可以要求网 络重新分配第二个 PDN连接的 IP地址, 从而避免出现这样特殊的情况。
这样, 可以先通过 LTE空口进行数据传输, UE通过解析该 UE的各下 行 EPS承载上的用户 IP分组的目的地址(即为该 UE的相应 PDN连接的 IP 地址;),建立起该 UE的所有 PDN连接的 IP地址与相应的应用层的对应关系; S-GW则通过解析该 UE的各上行 EPS承载上的用户 IP分组的源地址(即为 该 UE的相应 PDN连接的 IP地址;), 建立起该 UE的所有 PDN连接的 IP地 址与相应的 GTP-U隧道的对应关系。 一旦 S-GW和 UE建立好所述对应关 系, 就可以通过 UE和 S-GW之间的应用层分流控制信令, 将上行和 /或下行 的部分或全部 IP流通过 WLAN空口来传输, 从而建立起 LTE和 WLAN的 汇聚传输。
图 9是 UE、 WLAN AP和 S-GW的与本实施例相关的协议栈的示意图。 如图 9所示, 一部分用户数据流(图中所示 "用户数据 A" )经过 LTE空口 进行传输, 另外一部分用户数据流(图中所示 "用户数据 B" )则通过 WLAN 空口传输。 S-GW和 WLAN AP之间的数据面接口采用 UDP over IP方式传 输, 控制面接口采用 TCP over IP或 SCTP over IP方式传输, 用户的所有数 据(图中所示 "用户数据 A+B" )最后通过 S1接口用户面的 GTP-U隧道在 S-GW与 PDN-GW之间进行传输。
同时, LTE空口还用于传输 UE和 S-GW之间的应用层分流控制信令, 该信令可以通过 TCP协议传输。 UE和 S-GW辨识所述应用层分流控制信令 的第一种方式是: 传输所述应用层分流控制信令的 UE侧地址, 即为 UE在 网络附着时获得的 IP地址, S-GW侧的 IP地址, 采用系统配置的特定 IP地 址( UE可用域名方式通过 DNS获得其服务 S-GW的 IP地址 ), 当 S-GW接 收到目的地址为该特定 IP地址的 IP分组时,即认为该 IP分组 7 载的是来自 UE的应用层分流控制信令; 同样, 当 UE接收到源地址为该特定 IP地址的 IP分组时, 即认为该 IP分组承载的是来自 S-GW的应用层分流控制信令。 所述特定的 IP地址位于外部 PDN的 IP地址空间,为避免所述应用层分流控 制信令与 UE的数据分组相互混淆, 所述特定的 IP地址可以采用保留的 IP 地址, 以 IPv4为例, 可以采用 192.168.0.0到 192.168.255.255中的地址。
UE和 S-GW辨识所述应用层分流控制信令的第二种方式是: 传输所述 应用层分流控制信令的 UE侧地址, 即为 UE在网络附着时获得的 IP地址, S-GW侧的 IP地址, 采用系统配置的特定 IP地址(UE可用域名方式通过 DNS获得其服务 S-GW的 IP地址), 并且传输所述应用层分流控制信令的 TCP协议采用特定的 TCP端口, 当 S-GW接收到目的地址为所述特定 IP地 址且 TCP端口号为所述特定的 TCP端口时,即认为该 TCP over IP分组承载 的是来自 UE的应用层分流控制信令; 同样, 当 UE接收到源地址为所述特 定 IP地址且 TCP端口号为所述特定的 TCP端口时, 即认为该 TCP over IP 分组承载的是来自 S-GW的应用层分流控制信令。 所述特定的 IP地址位于 外部 PDN的 IP地址空间, 为避免所述应用层分流控制信令与 UE的数据分 组相互混淆, 所述特定的 IP地址可以采用保留的 IP地址, 以 IPv4为例, 可 以采用 192.168.0.0到 192.168.255.255中的地址, 所述特定的 TCP端口则采 用不常用的 TCP端口 (例如, 0~1024为常用 TCP端口号)。
下面对 LTE与 WLAN汇聚传输的建立过程进行描述。 首先, 如果 UE 有上行数据需要传输而尚未附着到网络, 则启动网络附着过程进入 EMM-REGISTERED状态, 此时 EPS 载处于活跃状态, UE由此获得相应 的 PDN连接的 IP地址并建立一条 EPS承载, 如果用户开启了 WLAN分流 功能, UE和 S-GW可以利用所述 EPS承载发起 UE和 S-GW之间的应用层 分流控制信令过程, 从而建立起 LTE与 WLAN的汇聚传输。
由于 WLAN AP通常分布在热点区域且不连续覆盖, 因此 UE—直开启 WLAN收发模块会产生不必要的电量消耗, 另一方面, S-GW能够获得 UE 的位置信息, 如 S-GW可以获知 UE所在的小区或跟踪区 ( Tracking Area, TA ), 特别地, 对用户数据分流功能位于 eNB 中的情况, eNB还可以通过 LTE空口上的无线测量获得 UE是否处于小区中心, 或者某几个相邻小区的 边缘等更精确的位置信息。 因此, S-GW可以通过应用层分流控制信令, 通 知 UE当前位置上存在可接入的 WLAN AP,从而开启 WLAN功能模块以便 启动 WLAN分流; S-GW也可以通过应用层分流控制信令, 通知 UE当前位 置上不存在可接入的 WLAN AP(如 UE离开了 WLAN热点区域,或者 WLAN 因为干扰严重、 负载过大等原因限制用户接入等), 从而关闭 WLAN功能模 块以降氏 UE功耗。
当 UE检测到可接入的 WLAN AP后, 可获取唯一标识该 WLAN AP的 BSSID, 通常一个 WLAN AP的 BSSID为其 WLAN MAC地址, S-GW则 保存有它所连接的全部 WLAN AP的 BSSID列表, 这样, UE就可以通过 UE和 S-GW之间的应用层分流控制信令, 将自己 WLAN MAC地址和试图 关联的 WLAN AP的 BSSID发送给 S-GW, S-GW将该 BSSID与其所保存的 相连接的 WLAN AP的 BSSID列表进行匹配, 如果匹配不成功, 则通知 UE 不要对该 WLAN AP发起关联; 如果匹配成功, 则通知 UE可以发起对该 WLAN AP的关联及 WLAN认证过程。
所述 WLAN认证过程可以采用基于 SIM或 USIM的认证方式, 具体的 过程可以参考 IETF的规范 RFC4186和 RFC4187等标准。
所述 WLAN认证过程也可以采用基于 UE的 WLAN MAC地址或 WLAN MAC地址与 IP地址的自动认证方式。具体来说, UE将自己的 WLAN MAC 地址,或还包括自己的 IP地址通过 UE和 S-GW之间的应用层分流控制信令 告诉 S-GW, S-GW则将该 UE的 WLAN MAC地址, 或还包括自己的 IP地 址发送给上述 BSSID匹配成功且已关联的 WLAN AP; 另夕卜, UE还通过 UE 和 S-GW之间的应用层分流控制信令与 S-GW协商 WLAN空口的加密算法 与所述加密算法的密钥, S-GW则将所述协商的 WLAN空口加密算法与所 述加密算法的密钥发送给上述 BSSID匹配成功且已关联的 WLAN AP ,这样, 该 WLAN AP就建立了该 UE的 WLAN MAC地址与所述加密算法的密钥的 绑定关系, 或者该 UE的 WLAN MAC地址、 IP地址与所述加密算法的密钥 的绑定关系。 这样, 只有满足所述绑定关系的 UE, 该 WLAN AP才视为合 法且准许接入。
当 UE关联到该 WLAN AP且成功认证后, UE通过 UE和 S-GW之间的 应用层分流控制信令,或者该 WLAN AP通过其与 S-GW之间的控制面接口, 通知 S-GW该 UE (用 WLAN MAC地址标识 UE ) 已经接入该 WLAN AP, S-GW则保存该 UE与其所接入的 WLAN AP的 BSSID的对应关系。 当 UE 因为移动而关联到该 S-GW所连接的其它 WLAN AP时, S-GW将更新该 UE与其所接入的新的 WLAN AP的 BSSID的对应关系。 这样, 利用这个对 应关系, S-GW总能将分流到 WLAN的下行用户数据发送到该 UE当前所接 入的 WLAN AP处 , 从而经该 WLAN AP发送给 UE„ 与此同时, UE和 S-GW通过 UE和 S-GW之间的应用层分流控制信令, 进行如下 LTE与 WLAN汇聚传输建立的准备工作:
(1) UE通过 UE和 S-GW之间的应用层分流控制信令, 将自己的 IMSI 和 WLAN MAC地址告诉 S-GW, S-GW利用 UE的 IMSI与 WLAN MAC地 址, 建立起 UE的 WLAN MAC地址与该 UE的所有承载通道 (例如 GTP-U 隧道) 的对应关系。
(2) UE还通过 UE和 S-GW之间的应用层分流控制信令, 协商并确定该 UE 的数据分流方式, 例如, 如何对用户的对上行和下行数据流进行分解, 也就是上行 UE侧的分组过滤器和下行 S-GW侧的分组过滤器的设置方式。 另外, 所述数据分流方式还可以包括经由 LTE空口和 WLAN空口传输的数 据流量的比例或者优选级; 又如, 在用户电池电量不足时, 用户更倾向于选 择耗电比较少的空口来传输数据, 从而延长终端的电池时间。 例如, 如果运 营商的资费政策中规定 WLAN接入免费, 或者经由 WLAN的流量资费低于 LTE的资费, 用户更愿意优先选择通过 WLAN来进行数据传输。 系统则通 常根据 LTE和 WLAN空口的无线资源情况(如干扰和拥塞情况)进行优化 选择, 例如, 当 WLAN干扰比较大而导致传输速率下降较大时, 系统更倾 向将流量分流到 LTE空口。
与此同时, 使用 LTE空口传输该 UE的上下行数据, UE可以通过解析 该 UE的各下行 EPS 7|载上的用户 IP分组的目的地址(即为该 UE的相应 PDN连接的 IP地址;), 建立起该 UE的所有 PDN连接的 IP地址与相应的应 用层的对应关系; S-GW则通过解析该 UE的各上行 EPS 载上的用户 IP 分组的源地址(即为该 UE的相应 PDN连接的 IP地址;), 建立起该 UE的所 有 PDN连接的 IP地址与相应的 GTP-U隧道的对应关系。
与此同时, S-GW和该 UE所接入的 WLAN AP,通过 S-GW和该 WLAN AP之间的控制面接口, 协商 S-GW和该 WLAN AP之间的用户面接口上传 输该 UE的上行数据和 /或下行数据的 UDP端口号, WLAN AP和 S-GW可 以建立 UE的 MAC地址与 S-GW和 WLAN AP之间的用户面接口的相应 UDP 端口号的对应关系。
在完成上述操作后, 即可开始 LTE与 WLAN的汇聚传输。 如前所述, 在上行方向, UE利用 LTE通信模块(通常是一个独立的 ASIC芯片 )之外 内置的分组过滤器, 将来自应用层的每个 PDN连接的上行用户数据分解为 不同的上行 IP流。 UE再根据与 S-GW协商的数据分流方式, 将所述上行 IP 流的部分或全部通过 WLAN空口发送到 WLAN AP, WLAN AP将来自该 MAC地址的 UE的所有上行数据分组,通过相应的 UDP端口发送给 S-GW。 S-GW则利用所述 UDP端口号, 根据 S-GW和 WLAN AP之间的用户面接 口的 UDP端口号与 UE的 MAC地址的对应关系, 找到相应 UE的 载通道 (例如 GTP-U隧道), 并对该 UE的经由 WLAN传输的所有上行数据分组, 按照源 IP地址(对应不同的 PDN连接) 的不同划分为至少一路数据流, 利 用上述建立的该 UE的所有 PDN连接的 IP地址与相应的 GTP-U隧道的对应 关系, 将所述至少一路数据流分别转发到相应的 GTP-U隧道。 同时, UE按 LTE现有标准将所述上行 IP流的剩余部分经由相应的上行 LTE无线^载发 送到 S-GW, S-GW再分别转发到相应的上行 GTP-U隧道。 这样, 就实现了 上行用户数据在 LTE和 WLAN空口的汇聚传输。
在下行方向, S-GW通过内置的分组过滤器, 将 UE的每个 PDN连接的 下行数据流分别分解为不同的下行 IP流, S-GW再根据与 UE协商的数据分 流方式,将所述下行 IP流的部分或全部,通过相应的 UDP端口发送给 WLAN AP, WLAN AP则利用所述 UDP端口号, 根据 S-GW和 WLAN AP之间的 用户面接口的 UDP端口号与 UE的 MAC地址的对应关系, 将来自该 UDP 端口的该 UE的所有下行数据分组,通过 WLAN空口发送到所述 MAC地址 的 UE, UE将对来自 WLAN空口的所有上行数据分组,按照目的 IP地址(对 应不同的 PDN连接) 的不同划分为至少一路数据流, 并利用上述建立的该 UE的所有 PDN连接的 IP地址与相应的应用层的对应关系, 将所述至少一 路数据流分别转发到相应的应用层。 同时, S-GW按 LTE现有标准将所述下 行 IP流的剩余部分经由相应的下行 LTE无线 7 载发送到 UE。这样,就实现 了下行用户数据在 LTE和 WLAN空口的汇聚传输。
另外, 当因 UE移动导致其将要离开当前服务 S-GW时, S-GW将接收 到 UE的 S-GW切换请求, 在 S-GW决定启动 S-GW切换之前, S-GW首先 对分流进行重配, 将原先由 WLAN分流的用户数据流重新配置为由 LTE进 行传输, 并通过 UE和 S-GW之间的应用层分流控制信令通知 UE与当前所 接入的 WLAN AP去关联, 或通过 S-GW与 WLAN AP的控制面接口, 通知 该 UE当前所接入的 WLAN AP对该 UE进行去关联, 去关联成功后 S-GW 再启动 S-GW切换过程。 当 S-GW切换完成 UE切换到新的 S-GW后, 若当 前有可接入的 WLAN AP, UE重新按照上述过程接入到当前服务 S-GW所 连接的 WLAN AP, 从而重新建立 LTE和 WLAN的汇聚传输。
实施例二与实施例一相比, 可以在 LTE/WLAN之间动态调度 IP流, 控 制灵活。 同时, 避免了 UE需要获取接入层的承载标识如 E-RAB ID, 以及 需要 LTE的通信模块输出 UL-TFT所输出的经由 WLAN分流的 IP流的问题 (这些需要修改 LTE Modem ASIC ), 易于实现。
下面结合具体例子描述应用本发明实施例的一些特殊场景。 图 10是根 据本发明实施例的 LTE HeNB和 WLAN紧耦合网络架构的示意图。 图 10中 所示 HeNB ( Home eNB, 家庭演进的节点 B )和 HeNB GW ( Home eNB Gateway, 家庭演进的节点 B网关)是 3GPP协议体系所定义的 LTE家庭基 站接入网络的网元。其中,在用户平面, HeNB通过 Slu接口和 S-GW相连, 在控制平面, HeNB通过 S 1-mme接口和 HeNB GW相连, 现有 3GPP协议 中 HeNB GW主要起到控制面汇聚的作用, 因此, HeNB GW也采用 Sl-mme 接口和 S-GW相连。控制面的 Sl-mme接口的传输层协议采用 SCTP ( Stream Control Transmission Protocol, 流控传输协议 ), 用户面 Slu接口则采用承载 在 UDP上的 GTP-U ( GPRS Tunneling Protocol - User plane, 用户面 GPRS 隧道协议)传输层协议, 即 GTP-U隧道中。
如图 10所示, WLAN AP与 HeNB共站址时,通常集成在同一物理设备 中, WLAN AP和 HeNB也可以单独连接到 HeNB GW, 图 12中所示传输网 为 HeNB和 WLAN AP提供了接入到 HeNB GW的 IP传输通道。 HeNB GW 除了具有现有 3GPP协议体系所定义的相关功能外,还包括前述现有 WLAN 网络中的 AC的控制与管理功能, 包括对连接到该 HeNB GW的 WLAN AP 的安全认证、 网管、 协调和管理 WLAN AP之间的干扰等与 WLAN相关的 管理和控制功能。为此, HeNB GW还连接到 AAA服务器,以便完成对 WLAN 用户的接入认证, 所述 AAA服务器优选地采用 3GPP AAA Server。
图 11是根据本发明实施例的另一种 LTE HeNB和 WLAN的紧耦合网络 架构的示意图。 与图 10所示架构不同的是, 图 11 的架构中不将前述现有 WLAN 网络中的 AC 的控制与管理功能, 包括对连接到该 HeNB GW 的 WLAN AP的安全认证、网管、协调和管理 WLAN AP之间的干扰等对 WLAN 相关的管理和控制功能集成在 HeNB GW中,而是作为独立设备 AC( WLAN AP Controller, WLAN AP控制器 )与 HeNB GW和 AAA服务器连接。 AC 与 HeNB GW之间可采用 IP接口, HeNB GW则起到转发 AC与 WLAN AP 之间承载 WLAN相关管理和控制 IP分组的功能。
在图 10所示架构中, HeNB GW与 WLAN AP之间存在一个逻辑接口, 该接口分为控制面和用户面, 控制面用于传输与 WLAN相关的管理和控制 信息及移动性管理相关的信息, 用户面则用于传输分流到 WLAN AP 经由 WLAN传输的用户数据流。 其中, 用户面采用 UDP over IP方式传输, 控制 面则采用 TCP over IP或 SCTP over IP方式传输。 在图 11所示架构中, AC 与 WLAN AP之间也存在一个逻辑接口,可采用 TCP over IP或 SCTP over IP 方式传输, 用于传输与 WLAN相关的管理和控制信息, 而 HeNB GW 与 WLAN AP之间接口的控制面则主要传输移动性管理相关的信息。
实现 LTE和 WLAN汇聚传输的用户数据分流功能, 可以在 HeNB中实 现(仅当 HeNB和 WLAN AP集成时), 也可以在 S-GW中实现。 图 12是用 户数据分流功能在 HeNB中的情况(分流点设备为 HeNB )下用户数据传输 示意图。 以下行方向为例, 用户数据经由 Gi接口到达 PDN-GW, 然后通过 S5接口的 GTP-U隧道到达 S-GW, 然后再经 Slu接口的 GTP-U隧道到达 HeNB ( HeNB和 WLAN AP集成), 到达 HeNB的用户数据首先经过用户数 据分流单元 121被分离为两个部分, 以便分别经过 UMTS和 WLAN的空口 进行传输。
图 13是用户数据分流功能在 S-GW中实现的情况(分流点设备为 S-GW ) 下用户数据传输的示意图。该方式对 HeNB与 WLAN AP集成在一起的情况、 HeNB与 WLAN AP各自独立覆盖的情况、 以及 UE同时与宏基站 eNB与 WLAN AP ( WLAN AP按照家庭基站的架构组网, 且 eNB与 WLAN AP连 接到同一 S-GW ) 汇聚传输的情况, 都是适用的。 以下行方向为例, 用户数 据在 S-GW中经过 S-GW功能处理后,经过用户数据分流单元 131被分离为 两个部分, 经由 LTE 传输的用户数据通过 Slu 的用户面传输通道即 GTP-U/UDP/IP发送到 HeNB或 eNB,而经由 WLAN传输的的用户数据则经 过 UDP/IP发送到 WLAN AP , 分别经由两个空口进行传输。 上行方向的过 程与下行方向相反, 不再赘述。
下面给出如何让只有 WLAN接入功能的终端(如只有 WLAN接入的平 板电脑、 笔记本电脑、 虽然具有蜂窝系统接入功能和 WLAN接入功能但因 为不是当前网络运营商的用户而无法使用蜂窝系统接入的终端等)接入到前 述 LTE与 WLAN汇聚网络的方案。 图 14和图 15是根据本发明实施例的 WLAN-Only的场景的示例架构的示意图。 图 14对应于图 1的架构, 图 15 对应于图 10的架构, 将 AC的功能合并在 S-GW或 HeNB GW中, 但是本 发明实施例的 WLAN-Only应用也可以用于 AC作为单独网元的架构 (对应 于图 2和图 11的架构)。
首先, 只有 WLAN接入功能的终端由于没有蜂窝网络接入能力, 因此, 与同时具有蜂窝系统接入功能和 WLAN接入功能的双模终端不同, 只有 WLAN接入功能的终端并不需要考虑蜂窝与 WLAN 的切换问题, 同时, WLAN通常用于在热点地区, 也就是说, WLAN不是连续覆盖的, 不可能 实现跨不同区域热点的移动性。 因此, 对只有 WLAN接入功能的终端主要 实现在某个热点区域内的 WLAN AP之间的切换就能够满足需要。在图 14-15 所示的网络架构中, 一个数据汇聚点 (如 eNB、 HeNB, S-GW等)可以连 接多个热点区域的 WLAN AP (热点区域之间可以连续覆盖也可以不连续覆 盖), 不同数据汇聚点之间的 WLAN没有连续的 WLAN覆盖, 是相对独立 的 WLAN服务区。
基于上面的分析,跨数据汇聚点(如 eNB、 HeNB, S-GW等 )的 WLAN 移动性是不需要的, 因此, 数对于 WLAN-Only的终端, 其数据不需要经过 EPC核心网,而可以直接从数据汇聚点分流到外部 IP网络。为此,如图 14-15 所示,数据汇聚点(如 eNB、 HeNB, S-GW等)与一个 LGW ( Local Gateway, 本地网关)相连, 所述 LGW与所述数据汇聚点之间为 IP接口, 控制面可以 通过 TCP over IP或 SCTP over IP来传输, 用户面数据可以经过 UDP over IP 进行传输。 所述 LGW也可以和所述数据汇聚点集成, 由数据汇聚点直接连 接外部 IP网络。
LGW也可以由一个功能筒化的较小容量的 PDN GW来实现,其中 LGW 与 S-GW之间的接口可以采用蜂窝系统分组域的 GTP ( GPRS隧道协议)传 输协议,即控制面采用 GTPv2-C、用户面采用 GTP-U的方式,其中, GTPv2-C 和 GTP-U均承载在 UDP/IP上。 或者, 也可以在数据汇聚点和 PDN GW之 间配置接口, 这样, 数据汇聚点可以把 WLAN-Only终端的数据通过这个接 口直接传输到 PDN GW。
与双模终端的鉴权和认证通常基于 SIM/USIM卡不同, 只有 WLAN接 入功能的终端通常没有蜂窝终端设备的, 因此, 用户的鉴权和认证仍然采用 基于用户名和密码的方式, 即用户自动或手动方式输入系统分配的用户名和 密码来实现用户的鉴权和认证。
这样, 当同一个数据汇聚点下的 WLAN AP 之间有连续的覆盖时, WLAN-Only的终端可以基于现有的 WLAN协议实现跨 AP之间的切换。 以 图 14为例, 当 WLAN-Only的终端在发现可接入的 WLAN AP后, 关联到 该 AP并用系统分配的用户名和密码进行 WLAN鉴权和认证,鉴权请求信息 会通过 WLAN AP和 S-GW之间的控制面接口发送到 S-GW, S-GW通过向 AAA服务器查询从而对用户的合法性进行确定, 当鉴权成功后, 系统利用 LGW中的 DHCP功能, 为该终端分配 IP地址, 这样该终端就可以通过该 WLAN AP进行数据传输。
与此同时, S-GW会记录该终端的 MAC地址、 IP地址, 以及当前关联 的 WLAN AP的 BSSID。其中, BSSID通常配置为 WLAN AP的 MAC地址。 而一个 S-GW也保存有它所连接的全部 WLAN AP的 BSSID列表。 这样, S-GW就保留了该终端的 MAC/IP地址与所关联的 WLAN AP的 BSSID的对 应关系。 当 UE因为移动而关联到该 S-GW所连接的其它的 WLAN AP时, S-GW将更新该终端的 MAC/IP地址与所关联的 WLAN AP的 BSSID的对应 关系。 利用该对应关系, S-GW 就能将该终端的下行数据发送到其关联的 WLAN AP。
所述 LGW的基本功能是通过 UDP over IP将来自数据汇聚点的用户数 据传输到外部 IP 网络, 同时还包括但不限于通常的分组数据网关功能: 为 终端自动分配 IP地址的 DHCP ( Dynamic Host Configuration Protocol, 动态 主机设置协议)服务器、防火墙或网络地址转化功能、深度包检测功能(Deep
Packet Inspection, DPI ), 数据流监管 ( Policing ) 功能、 分组路由功能(将 用户 IP分组发送到相应的分组数据网)等。
因此, 本发明实施例实现了真正意义的单网 (Single-Network ), WLAN 直接部署在现有蜂窝系统的网络上,相比建设一个新的独立的 WLAN网络, 网规、 建设和运维更筒单、 成本低。
另外, 本发明实施例可支持 WLAN AP和蜂窝基站 eNB共站址, 以及 不共站址的独立的 WLAN热点, 组网形式比较灵活。 WLAN可以看成类似 载波汇聚或 MIMO ( Multiple Input Multiple Output, 多入多出) 的无线空口 增强技术, 传输速率大幅提高, 有效提升用户体验。 而且, 本发明实施例对现有 LTE、 WLAN的空口和网络协议改造较 、, 便于应用。
图 16是根据本发明实施例的分流点设备的示意框图。 图 16的分流点设 备 160可以是 S-GW或 eNB , 包括接收单元 161、 建立单元 162和确定单元 163。
接收单元 161接收用户设备发送的分流控制信令, 所述分流控制信令携 带所述用户设备的蜂窝网标识和无线局域网 WLAN标识。 建立单元 162根 据所述用户设备的蜂窝网标识和 WLAN标识, 建立所述用户设备的 WLAN 标识和所述用户设备的全部承载通道之间的对应关系。确定单元 163按照与 所述用户设备之间协商确定的数据分流方式和所述对应关系, 所述数据分流 方式用于指定通过 WLAN空口传输的所述用户设备的下行和 /或上行方向的 全部或部分用户数据流, 确定与所述全部或部分用户数据流对应的承载通 道。
本发明实施例的确定通过 WLAN空口传输的全部或部分用户数据所对 应的承载通道, 从而能够在上行或下行方向上经由 WLAN空口传输全部或 部分用户数据, 提高了传输速率。
图 17是根据本发明另一实施例的分流点设备的示意框图。 图 17的分流 点设备 170中, 与图 16相同或相似的部分使用相同的附图标记。 除了接收 单元 161、建立单元 162和确定单元 163之外, 图 17的分流点设备 170还包 括分流单元 171和汇聚单元 172。
确定单元 163具体用于按照所确定的数据分流方式, 与所述用户设备之 间建立经由无线局域网 WLAN空口的端到端隧道, 其中所述端到端隧道用 于传输所述全部或部分用户数据流, 并建立所述端到端隧道的隧道号和所述 载通道对应的 E-RAB ID的对应关系。 端到端隧道的隧道号可以是 UDP 端口号或 E-RAB ID。
分流单元 171接收来自 PDN-GW的下行方向的全部用户数据流, 其中 所述下行方向的全部用户数据流是 PDN-GW通过下行业务流模板 DL-TFT 对所述用户设备的下行用户数据进行分解得到的。
此时, 分流单元 171确定传输所述全部或部分用户数据流的^载通道对 应的 E-RAB ID, 并通过与所确定的 E-RAB ID对应的端到端隧道向所述用 户设备发送所述全部或部分用户数据流。 另外,分流单元 171通过至少一条演进分组系统 EPS 载向所述用户设 备发送剩余的用户数据流,其中所述至少一条 EPS承载是通过长期演进 LTE 空口的控制面为用户设备建立的。
对于上行方向, 上行方向的全部或部分用户数据流为用户设备通过端到 端隧道发送的上行用户数据流, 其中, 所述上行用户数据流是所述用户设备 通过上行业务流模板 UL-TFT对所述用户设备的上行用户数据进行分解得到 的。
此时, 汇聚单元 172接收所述上行用户数据流, 从所述上行用户数据流 中提取端到端隧道的隧道号, 并通过与所提取的隧道号对应的承载通道发送 所述上行用户数据流。 本发明实施例也可以将分流单元 171和汇聚单元 172 合并为一个功能单元。
这样, 分流点设备 170利用 LTE已有的 TFT功能, 通过与 UE之间的 端到端隧道传输全部或部分用户数据流, 提高了数据传输效率。
图 18是根据本发明另一实施例的分流点设备的示意框图。 图 18的分流 点设备 180中, 与图 16相同或相似的部分使用相同的附图标记。 除了接收 单元 161、建立单元 162和确定单元 163之外, 图 18的分流点设备 180还包 括分组过滤器 181、 选择单元 182、 发送单元 183和汇聚单元 184。 在图 18 的实施例中, 用户设备的每个分组数据网 PDN连接对应一个 7?载通道。
确定单元 163具体用于解析通过 LTE空口传输的用户数据,获取所述用 户设备对应于每个 PDN连接的 IP地址,并建立所述 IP地址与所述 7 载通道 之间的对应关系。
分组过滤器 181将下行用户数据分解为用户数据流。选择单元 182按照 所述数据分流方式, 从所分解的用户数据流中选择全部或部分用户数据流。 发送单元 183通过 WLAN空口向所述用户设备发送所述全部或部分用户数 据流。
另外,发送单元 183通过 LTE空口向所述用户设备发送剩余的用户数据 流。
对于上行方向, 上行方向的全部或部分用户数据流为用户设备通过 WLAN空口发送的上行用户数据流,其中,所述上行用户数据流是所述用户 设备通过位于 LTE通信模块之外的分组过滤器对所述用户设备的上行用户 数据进行分解得到的。 此时, 汇聚单元 184接收所述上行用户数据流, 从所述上行用户数据流 中提取用户设备的 IP地址, 并通过与所提取的 IP地址对应的承载通道发送 所述上行用户数据流。
这样,本实施例的分流点设备 180使用内置的分组过滤器进行数据分解, 并按照协商确定的数据分流方式,进行数据流的分流 /汇聚,提高了系统传输 效率。
可选地,在一个实施例中,分流控制信令是通过 LTE空口的应用层在用 户设备和分流点设备之间传输的应用层分流控制信令。
可选地, 在一个实施例中, 在用户设备和分流点设备之间存在多个 EPS 承载的情况下,接收单元 161接收所述用户设备通过所述多个 EPS承载中的 特定承载发送的应用层分流控制信令。 或者, 接收单元 161接收所述用户设 备发送的 IP分组, 所述 IP分组携带所述应用层分流控制信令, 所述 IP分组 的目标地址为所述分流点设备的特定 IP地址。 或者, 接收单元 161接收所 述用户设备发送的 IP分组, 所述 IP分组携带所述应用层分流控制信令, 所 述 IP分组的目标地址为所述分流点设备的特定 IP地址且所述 IP分组的 TCP 端口号为特定 TCP端口号。
除了应用层传输的分流控制信令之, 在分流点设备 160-180是服务网关 S-GW的情况下, 分流控制信令还可以通过非接入层 NAS消息传递, 或者, 在分流点设备 160-180是基站 eNB的情况下,分流控制信令还可以通过无线 资源控制 RRC消息传递。
可选地, 在一个实施例中, 通过所述分流控制信令, 分流点设备向所述 用户设备通知当前位置上存在可接入的 WLAN接入点设备, 以便于所述用 户设备确定是否开启 WLAN功能和 /或 WLAN分流功能。或者,通过所述分 流控制信令, 分流点设备向所述用户设备通知当前位置上不存在可接入的 WLAN接入点设备, 以便于所述用户设备确定是否关闭 WLAN 功能和 /或 WLAN分流功能。
可选地, 在一个实施例中, 通过所述分流控制信令, 分流点设备接收所 述用户设备识别的 WLAN接入点设备的基本服务集标识 BSSID,根据 BSSID 确定所述用户设备识别的 WLAN接入点设备是否在管理范围内, 并且只允 许所述用户设备与管理范围内的 WLAN接入点设备建立关联。
可选地, 在一个实施例中, 分流点设备将所述用户设备的 WLAN标识 发送给 WLAN接入点设备, 所述 WLAN接入点设备将具有所述 WLAN标 识的用户设备视为已经认证的合法终端, 允许具有所述 WLAN标识的用户 设备通过所述 WLAN接入点设备进行数据传输。
可选地, 在一个实施例中, 分流点设备在发起服务网关重定位之前, 将 确定为通过 WLAN传输的用户数据重新配置为通过 LTE空口进行传输, 并 通过所述分流控制信令通知所述用户设备与当前关联的 WLAN接入点设备 进行去关联, 或通过与 WLAN接入设备之间的控制面接口, 通知用户设备 当前所关联的 WLAN接入设备对该用户设备进行去关联。
可选地, 在一个实施例中, 分流点设备统计通过 WLAN空口传输的用 户数据传输的全部或部分用户数据的流量和 /或时长,并向离线或在线服务器 提供所述流量和 /或时长的信息。
上述用户设备的蜂窝网标识可以是 IMSI, 上述用户设备的 WLAN标识 可以是 MAC地址。 上述用户数据流为 IP流。
图 19是根据本发明一个实施例的用户设备的示意框图。 图 19的用户设 备 190的一个例子是 UE, 包括发送单元 191和协商单元 192。
发送单元 191向分流点设备发送分流控制信令, 所述分流控制信令携带 用户设备的蜂窝网标识和无线局域网 WLAN标识, 以便于所述分流点设备 根据所述用户设备的蜂窝网标识和 WLAN 标识, 建立所述用户设备的 WLAN标识和所述用户设备的全部 7|载通道之间的对应关系。
协商单元 192与所述分流点设备协商确定数据分流方式, 所述数据分流 方式用于指定通过 WLAN空口传输的所述用户设备的下行和 /或上行方向的 全部或部分用户数据流, 以便于所述分流点设备按照所述数据分流方式和所 述对应关系, 确定与所述全部或部分用户数据流对应的承载通道。
本发明实施例的确定通过 WLAN空口传输的全部或部分用户数据所对 应的承载通道, 从而能够在上行或下行方向上经由 WLAN空口传输全部或 部分用户数据, 提高了传输速率。
图 20是根据本发明另一实施例的用户设备的示意框图。 图 20的用户设 备 200中, 与图 19相同或相似的部分使用相同的附图标记。 除了发送单元 191和协商单元 192之外,用户设备 200还包括隧道单元 201和分流单元 202。
隧道单元 201按照所确定的数据分流方式,在所述用户设备和分流点设 备之间建立经由无线局域网 WLAN空口的端到端隧道, 其中所述端到端隧 道用于传输所述全部或部分用户数据流。
分流单元 202通过上行业务流模板 UL-TFT将上行用户数据分解为用户 数据流, 并通过所述端到端隧道向分流点设备发送全部或部分用户数据流, 其中所述全部或部分用户数据流携带所述端到端隧道的隧道号。端到端隧道 的隧道号可以是 UDP端口号或 E-RAB ID。
此外,分流单元 202通过 LTE空口向所述分流点设备发送剩余的用户数 据流。
这样, 用户设备 200利用 LTE已有的 TFT功能, 通过与 UE之间的端 到端隧道传输全部或部分用户数据流, 提高了数据传输效率。
图 21是根据本发明另一实施例的用户设备的示意框图。 图 21的用户设 备 210中, 与图 19相同或相似的部分使用相同的附图标记。 除了发送单元 191和协商单元 192之外,用户设备 200还包括连接单元 211、建立单元 212、 分组过滤器 213、 数据流发送单元 214和汇聚单元 215。
连接单元 211通过长期演进 LTE空口的控制面,在用户设备与一个或多 个分组数据网 PDN之间建立 PDN连接, 其中每个 PDN连接对应一个 载 通道, 并且每个 PDN连接分配一个 IP地址。 可选地, 在第二 PDN所分配 的 IP地址与先前第一 PDN所分配的 IP地址重复的情况下, 连接单元 211 还可以请求所述第二 PDN重新为用户设备分配 IP地址。
另外, 建立单元 212建立用户设备的所有 PDN连接的 IP地址与应用层 的对应关系。
用户设备 210的分组过滤器 213位于 LTE通信模块之外,用于将来自应 用层的每个 PDN连接的上行用户数据分解为用户数据流。 数据流发送单元 214根据所述数据分流方式, 通过 WLAN空口发送全部或部分用户数据流, 其中所述全部或部分用户数据流携带与应用层对应的 IP地址。
此外, 数据流发送单元 214通过 LTE空口发送剩余的用户数据流。
汇聚单元 215接收通过 WLAN空口发送的下行用户数据流, 提取所述 下行用户数据流中携带的目的 IP地址, 并将所述下行用户数据流转发到与 所述目的 IP地址对应的应用层。
这样,本实施例的用户设备 210使用内置的(但位于 LTE通信模块之外 ) 分组过滤器进行数据分解, 并按照协商确定的数据分流方式, 进行数据流的 分流 /汇聚, 提高了系统传输效率。 可选地,在一个实施例中,分流控制信令是通过 LTE空口的应用层在用 户设备和分流点设备之间传输的应用层分流控制信令。 此时, 发送单元 191 在用户设备和分流点设备之间存在多个 EPS 承载的情况下, 通过所述多个 EPS承载中的特定承载向所述分流点设备发送应用层分流控制信令。 或者, 发送单元 191向所述分流点设备发送 IP分组, 所述 IP分组携带所述应用层 分流控制信令, 所述 IP分组的目标地址为所述分流点设备的特定 IP地址。 或者, 发送单元 191向所述分流点设备发送 IP分组, 所述 IP分组携带所述 应用层分流控制信令, 所述 IP分组的目标地址为所述分流点设备的特定 IP 地址且所述 IP分组的 TCP端口号为特定 TCP端口号。
可选地, 在一个实施例中, 在所述分流点设备为服务网关 S-GW的情况 下, 所述分流控制信令是通过非接入层 NAS消息传递的。 或者, 在所述分 流点设备为基站 eNB的情况下,所述分流控制信令是通过无线资源控制 RRC 消息传递的。
可选地, 在一个实施例中, 用户设备接收所述分流点设备通过所述分流 控制信令对当前位置上存在可接入的 WLAN接入点设备的通知, 根据该通 知确定是否开启 WLAN功能和 /或 WLAN分流功能。或者,用户设备接收所 述分流点设备通过所述分流控制信令对当前位置上不存在可接入的 WLAN 接入点设备的通知,根据该通知确定是否关闭 WLAN功能和 /或 WLAN分流 功能。
可选地, 在一个实施例中, 用户设备识别 WLAN接入点设备的基本服 务集标识 BSSID, 并通过所述应用层分流控制信令, 向所述分流点设备发送 所识别的 BSSID,以便于所述分流点设备根据 BSSID确定所述用户设备识别 的 WLAN接入点设备是否在管理范围内, 并且只允许所述用户设备与管理 范围内的 WLAN接入点设备建立关联。
参照图 1-2、 10-11和 14-15, 根据本发明实施例的通信系统可包括上述 分流点设备 160-180 (如实现为 eNB 或 S-GW ), 或者包括上述用户设备 190-210。
通信系统还可以包括 WLAN接入点设备( WLAN AP ),与 eNB相连(例 如通过 IP接口)、与 eNB共站址、或者与 eNB集成为一个设备(参照图 1-2 )。 在家庭网络的情况下, WLAN AP可以与 HeNB相连、 与 eNB共站址、 或者 与 eNB集成为一个设备 (参照图 10-11 )。 在 WLAN-Only的应用场景下,通信系统还可以包括本地网关 LGW (参 照图 14-15 )。 LGW 与 S-GW相连并与核心网相连, 在用户设备仅仅通过 WLAN空口传输数据的情况下, 从 S-GW接收上行用户数据并将上行用户 数据转发至核心网,和 /或从核心网接收下行用户数据并将下行用户数据转发 至 S-GW。 LGW的基本功能是通过 UDP over IP将来自数据汇聚点的用户数 据传输到外部 IP 网络, 同时还包括但不限于通常的分组数据网关功能: 为 终端自动分配 IP地址的 DHCP服务器、 防火墙或网络地址转化功能、 深度 包检测功能、 数据流监管功能、 分组路由功能等。
可选地, 在一个实施例中, 通信系统可包括接入点控制设备(AC ), 与 离线或在线服务器相连。 AC用于对 WLAN接入设备进行安全认证、 网管、 协调和 /或干扰处理。
AC可以与 S-GW集成为一个设备(参照图 2、 图 14-15 )或者作为一个 单独的设备连接到 S-GW (参照图 1 )。 或者, AC可以与 HeNB GW集成为 一个设备(参照图 10 )或者作为一个单独的设备连接到 HeNB GW (参照图 11 )。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功 能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种数据传输方法, 其特征在于, 包括:
接收用户设备发送的分流控制信令, 所述分流控制信令携带所述用户设 备的蜂窝网标识和无线局域网 WLAN标识;
根据所述用户设备的蜂窝网标识和 WLAN标识, 建立所述用户设备的 WLAN标识和所述用户设备的全部 7|载通道之间的对应关系;
按照与所述用户设备之间协商确定的数据分流方式和所述对应关系, 所 述数据分流方式用于指定通过 WLAN空口传输的所述用户设备的下行和 /或 上行方向的全部或部分用户数据流,确定与所述全部或部分用户数据流对应 的承载通道。
2、 如权利要求 1所述的数据传输方法, 其特征在于, 所述确定与所述 全部或部分用户数据流对应的 7|载通道, 包括:
按照所确定的数据分流方式, 与所述用户设备之间建立经由无线局域网 WLAN空口的端到端隧道,其中所述端到端隧道用于传输所述全部或部分用 户数据流;
建立所述端到端隧道的隧道号和所述 7 载通道对应的 E-RAB ID的对应 关系。
3、 如权利要求 2所述的数据传输方法, 其特征在于, 所述端到端隧道 的隧道号为用户数据报协议 UDP端口号或演进的通用陆地无线接入网络无 线接入 7 载标识 E-RAB ID。
4、 如权利要求 2所述的数据传输方法, 其特征在于, 还包括: 接收来自 PDN-GW的下行方向的全部用户数据流,
其中, 所述下行方向的全部用户数据流是 PDN-GW通过下行业务流模 板 DL-TFT对所述用户设备的下行用户数据进行分解得到的。
5、 如权利要求 4所述的数据传输方法, 其特征在于, 还包括: 确定传输所述全部或部分用户数据流的 7?载通道对应的 E-RAB ID; 通过与所确定的 E-RAB ID对应的端到端隧道向所述用户设备发送所述 全部或部分用户数据流。
6、 如权利要求 5所述的数据传输方法, 其特征在于, 在通过与所确定 的 E-RAB ID对应的端到端隧道向所述用户设备发送部分用户数据流的情况 下, 还包括:
通过至少一条演进分组系统 EPS 承载向所述用户设备发送剩余的用户 数据流, 其中所述至少一条 EPS承载是通过长期演进 LTE空口的控制面为 用户设备建立的。
7、 如权利要求 2所述的数据传输方法, 其特征在于, 所述上行方向的 全部或部分用户数据流为用户设备通过端到端隧道发送的上行用户数据流, 其中, 所述上行用户数据流是所述用户设备通过上行业务流模板 UL-TFT对所述用户设备的上行用户数据进行分解得到的。
8、 如权利要求 7所述的数据传输方法, 其特征在于, 还包括: 接收所述上行用户数据流,从所述上行用户数据流中提取端到端隧道的 隧道号;
通过与所提取的隧道号对应的承载通道发送所述上行用户数据流。
9、 如权利要求 1所述的数据传输方法, 其特征在于, 所述用户设备的 每个分组数据网 PDN连接对应一个 7|载通道。
10、 如权利要求 9所述的数据传输方法, 其特征在于, 确定与所述全部 或部分用户数据流对应的承载通道, 包括:
解析通过 LTE空口传输的用户数据,获取所述用户设备对应于每个 PDN 连接的 IP地址;
建立所述 IP地址与所述^载通道之间的对应关系。
11、 如权利要求 10所述的数据传输方法, 其特征在于, 还包括: 利用内置的分组过滤器, 将下行用户数据分解为用户数据流; 按照所述数据分流方式,从所分解的用户数据流中选择全部或部分用户 数据流;
通过 WLAN空口向所述用户设备发送所述全部或部分用户数据流。
12、 如权利要求 11所述的数据传输方法, 其特征在于, 在通过 WLAN 空口向所述用户设备发送部分用户数据流的情况下, 还包括:
通过 LTE空口向所述用户设备发送剩余的用户数据流。
13、 如权利要求 10所述的数据传输方法, 其特征在于, 所述上行方向 的全部或部分用户数据流为用户设备通过 WLAN空口发送的上行用户数据 流,
其中,所述上行用户数据流是所述用户设备通过位于 LTE通信模块之外 的分组过滤器对所述用户设备的上行用户数据进行分解得到的。
14、 如权利要求 13所述的数据传输方法, 其特征在于, 所述方法还包 括:
接收所述上行用户数据流,从所述上行用户数据流中提取用户设备的 IP 地址;
通过与所提取的 IP地址对应的承载通道发送所述上行用户数据流。
15、 如权利要求 1-14 所述的数据传输方法, 其特征在于, 所述分流控 制信令是通过 LTE 空口的应用层在用户设备和分流点设备之间传输的应用 层分流控制信令。
16、 如权利要求 15所述的数据传输方法, 其特征在于, 所述接收用户 设备发送的分流控制信令, 包括:
在用户设备和分流点设备之间存在多个 EPS承载的情况下,接收所述用 户设备通过所述多个 EPS承载中的特定承载发送的应用层分流控制信令;或 者,
接收所述用户设备发送的 IP分组, 所述 IP分组携带所述应用层分流控 制信令, 所述 IP分组的目标地址为所述分流点设备的特定 IP地址; 或者, 接收所述用户设备发送的 IP分组, 所述 IP分组携带所述应用层分流控 制信令, 所述 IP分组的目标地址为所述分流点设备的特定 IP地址且所述 IP 分组的 TCP端口号为特定 TCP端口号。
17、 如权利要求 1-14所述的数据传输方法, 其特征在于,
在所述方法由服务网关 S-GW执行的情况下,所述分流控制信令是通过 非接入层 NAS消息传递的; 或者,
在所述方法由基站 eNB执行的情况下, 所述分流控制信令是通过无线 资源控制 RRC消息传递的。
18、 如权利要求 15或 17所述的方法, 其特征在于, 还包括:
通过所述分流控制信令, 向所述用户设备通知当前位置上存在可接入的 WLAN接入点设备, 以便于所述用户设备确定是否开启 WLAN 功能和 /或 WLAN分流功能; 或者,
通过所述分流控制信令, 向所述用户设备通知当前位置上不存在可接入 的 WLAN接入点设备, 以便于所述用户设备确定是否关闭 WLAN功能和 / 或 WLAN分流功能。
19、 如权利要求 15或 17所述的方法, 其特征在于, 还包括: 通过所述分流控制信令, 接收所述用户设备识别的 WLAN接入点设备 的基本服务集标识 BSSID , 根据 BSSID确定所述用户设备识别的 WLAN接 入点设备是否在管理范围内, 并且只允许所述用户设备与管理范围内的 WLAN接入点设备建立关联。
20、 如权利要求 19所述的方法, 其特征在于, 还包括:
将所述用户设备的 WLAN标识发送给 WLAN接入点设备, 或者通过分 流控制信令从所述用户设备接收 IP地址并将所述 WLAN标识和 IP地址发送 给 WLAN接入点设备;
通过分流控制信令, 与用户设备协商 WLAN空口的加密算法和所述加 密算法的密钥,并将所述加密算法和所述加密算法的密钥发送给所述 WLAN 接入点设备, 以便所述 WLAN接入点设备建立所述 WLAN标识和所述加密 算法的密钥之间的绑定关系或者建立所述 WLAN标识、 所述 IP地址和所述 加密算法的密钥之间的绑定关系,将满足绑定关系的用户设备视为已经认证 的合法终端。
21、 如权利要求 15或 17所述的方法, 其特征在于, 还包括: 在发起服务网关重定位之前, 将确定为通过 WLAN传输的用户数据重 新配置为通过 LTE空口进行传输,并通过所述分流控制信令通知所述用户设 备与当前关联的 WLAN接入点设备进行去关联, 或通过与 WLAN接入设备 之间的控制面接口, 通知用户设备当前所关联的 WLAN接入设备对该用户 设备进行去关联。
22、 如权利要求 1-21 任一项所述的方法, 其特征在于, 还包括: 统计 通过 WLAN空口传输的用户数据传输的全部或部分用户数据的流量和 /或时 长, 并向离线或在线服务器提供所述流量和 /或时长的信息。
23、 如权利要求 1-22任一项所述的方法, 其特征在于, 所述数据分流 方式包括:
通过 WLAN空口传输的用户数据的比例和 /或优先级。
24、 如权利要求 1-23任一项所述的方法, 其特征在于,
所述用户设备的蜂窝网标识为国际移动用户识别码 IMSI; 或者, 所述用户设备的 WLAN标识为媒体接入控制 MAC地址。
25、 如权利要求 1-24任一项所述的方法, 其特征在于, 所述用户数据 流为 IP流。
26、 一种数据传输方法, 其特征在于, 包括:
向分流点设备发送分流控制信令, 所述分流控制信令携带用户设备的蜂 窝网标识和无线局域网 WLAN标识, 以便于所述分流点设备根据所述用户 设备的蜂窝网标识和 WLAN标识, 建立所述用户设备的 WLAN标识和所述 用户设备的全部 7 载通道之间的对应关系;
与所述分流点设备协商确定数据分流方式, 所述数据分流方式用于指定 通过 WLAN空口传输的所述用户设备的下行和 /或上行方向的全部或部分用 户数据流, 以便于所述分流点设备按照所述数据分流方式和所述对应关系, 确定与所述全部或部分用户数据流对应的承载通道。
27、 如权利要求 26所述的数据传输方法, 其特征在于, 还包括: 按照所确定的数据分流方式,在所述用户设备和分流点设备之间建立经 由无线局域网 WLAN空口的端到端隧道, 其中所述端到端隧道用于传输所 述全部或部分用户数据流。
28、 如权利要求 27所述的数据传输方法, 其特征在于, 还包括: 通过上行业务流模板 UL-TFT将上行用户数据分解为用户数据流; 通过所述端到端隧道向分流点设备发送全部或部分用户数据流, 其中所 述全部或部分用户数据流携带所述端到端隧道的隧道号。
29、 如权利要求 28所述的数据传输方法, 其特征在于, 所述端到端隧 道的隧道号为用户数据报协议 UDP端口号或演进的通用陆地无线接入网络 无线接入 7 载标识 E-RAB ID。
30、 如权利要求 28所述的数据传输方法, 其特征在于, 在通过所述端 到端隧道向分流点设备发送部分用户数据流的情况下, 还包括:
通过 LTE空口向所述分流点设备发送剩余的用户数据流。
31、 如权利要求 26所述的数据传输方法, 其特征在于, 在向分流点设 备发送分流控制信令之前, 还包括:
通过长期演进 LTE空口的控制面,在用户设备与一个或多个分组数据网 PDN之间建立 PDN连接,其中每个 PDN连接对应一个承载通道, 并且每个 PDN连接分配一个 IP地址。
32、 如权利要求 31所述的数据传输方法, 其特征在于, 还包括: 在第二 PDN所分配的 IP地址与先前第一 PDN所分配的 IP地址重复的 情况下, 请求所述第二 PDN重新为用户设备分配 IP地址。
33、 如权利要求 31所述的数据传输方法, 其特征在于, 还包括: 建立用户设备的所有 PDN连接的 IP地址与应用层的对应关系。
34、 如权利要求 33所述的数据传输方法, 其特征在于, 还包括: 通过位于 LTE通信模块之外的分组过滤器, 将来自应用层的每个 PDN 连接的上行用户数据分解为用户数据流;
根据所述数据分流方式,通过 WLAN空口发送全部或部分用户数据流, 其中所述全部或部分用户数据流携带与应用层对应的 IP地址。
35、 如权利要求 34所述的数据传输方法, 其特征在于, 在通过 WLAN 空口发送部分用户数据流的情况下, 还包括:
通过 LTE空口发送剩余的用户数据流。
36、 如权利要求 33所述的数据传输方法, 其特征在于, 还包括: 接收通过 WLAN空口发送的下行用户数据流;
提取所述下行用户数据流中携带的目的 IP地址;
将所述下行用户数据流转发到与所述目的 IP地址对应的应用层。
37、 如权利要求 26-36所述的数据传输方法, 其特征在于, 所述分流控 制信令是通过 LTE 空口的应用层在用户设备和分流点设备之间传输的应用 层分流控制信令。
38、 如权利要求 37所述的数据传输方法, 其特征在于, 所述向分流点 设备发送分流控制信令, 包括:
在用户设备和分流点设备之间存在多个 EPS承载的情况下,通过所述多 个 EPS承载中的特定承载向所述分流点设备发送应用层分流控制信令; 或 者,
向所述分流点设备发送 IP分组, 所述 IP分组携带所述应用层分流控制 信令, 所述 IP分组的目标地址为所述分流点设备的特定 IP地址; 或者, 向所述分流点设备发送 IP分组, 所述 IP分组携带所述应用层分流控制 信令,所述 IP分组的目标地址为所述分流点设备的特定 IP地址且所述 IP分 组的 TCP端口号为特定 TCP端口号。
39、 如权利要求 26-38任一项所述的数据传输方法, 其特征在于, 在所述分流点设备为服务网关 S-GW的情况下,所述分流控制信令是通 过非接入层 NAS消息传递的; 或者, 在所述分流点设备为基站 eNB 的情况下, 所述分流控制信令是通过无 线资源控制 RRC消息传递的。
40、 如权利要求 26-39任一项所述的方法, 其特征在于, 还包括: 接收所述分流点设备通过所述分流控制信令对当前位置上存在可接入 的 WLAN接入点设备的通知, 根据该通知确定是否开启 WLAN功能和 /或 WLAN分流功能; 或者,
接收所述分流点设备通过所述分流控制信令对当前位置上不存在可接 入的 WLAN接入点设备的通知, 根据该通知确定是否关闭 WLAN功能和 / 或 WLAN分流功能。
41、 如权利要求 26-40任一项所述的方法, 其特征在于, 还包括: 识别 WLAN接入点设备的基本服务集标识 BSSID;
通过所述应用层分流控制信令,向所述分流点设备发送所识别的 BSSID, 以便于所述分流点设备根据 BSSID确定所述用户设备识别的 WLAN接入点 设备是否在管理范围内, 并且只允许所述用户设备与管理范围内的 WLAN 接入点设备建立关联。
42、 一种分流点设备, 其特征在于, 包括:
接收单元, 用于接收用户设备发送的分流控制信令, 所述分流控制信令 携带所述用户设备的蜂窝网标识和无线局域网 WLAN标识;
建立单元, 用于根据所述用户设备的蜂窝网标识和 WLAN标识, 建立 所述用户设备的 WLAN标识和所述用户设备的全部 7 载通道之间的对应关 系;
确定单元, 用于按照与所述用户设备之间协商确定的数据分流方式和所 述对应关系, 所述数据分流方式用于指定通过 WLAN空口传输的所述用户 设备的下行和 /或上行方向的全部或部分用户数据流,确定与所述全部或部分 用户数据流对应的承载通道。
43、 如权利要求 42所述的分流点设备, 其特征在于, 所述分流点设备 为基站设备或服务网关设备。
44、 如权利要求 42或 43所述的分流点设备, 其特征在于, 所述确定单 元具体用于按照所确定的数据分流方式, 与所述用户设备之间建立经由无线 局域网 WLAN空口的端到端隧道, 其中所述端到端隧道用于传输所述全部 或部分用户数据流, 并建立所述端到端隧道的隧道号和所述^载通道对应的 E-RAB ID的对应关系。
45、 如权利要求 42或 43所述的分流点设备, 其特征在于, 所述用户设 备的每个分组数据网 PDN连接对应一个 7?载通道,
所述确定单元具体用于解析通过 LTE空口传输的用户数据,获取所述用 户设备对应于每个 PDN连接的 IP地址,并建立所述 IP地址与所述承载通道 之间的对应关系。
46、 如权利要求 45所述的分流点设备, 其特征在于, 还包括: 分组过滤器, 用于将下行用户数据分解为用户数据流;
选择单元, 用于按照所述数据分流方式, 从所分解的用户数据流中选择 全部或部分用户数据流;
发送单元, 用于通过 WLAN空口向所述用户设备发送所述全部或部分 用户数据流。
47、 一种用户设备, 其特征在于, 包括:
发送单元, 用于向分流点设备发送分流控制信令, 所述分流控制信令携 带用户设备的蜂窝网标识和无线局域网 WLAN标识, 以便于所述分流点设 备根据所述用户设备的蜂窝网标识和 WLAN 标识, 建立所述用户设备的 WLAN标识和所述用户设备的全部 7|载通道之间的对应关系;
协商单元, 用于与所述分流点设备协商确定数据分流方式, 所述数据分 流方式用于指定通过 WLAN空口传输的所述用户设备的下行和 /或上行方向 的全部或部分用户数据流, 以便于所述分流点设备按照所述数据分流方式和 所述对应关系, 确定与所述全部或部分用户数据流对应的^载通道。
48、 如权利要求 47所述的用户设备, 其特征在于, 还包括: 隧道单元, 用于按照所确定的数据分流方式,在所述用户设备和分流点设备之间建立经 由无线局域网 WLAN空口的端到端隧道, 其中所述端到端隧道用于传输所 述全部或部分用户数据流。
49、 如权利要求 47所述的用户设备, 其特征在于, 还包括:
连接单元,用于通过长期演进 LTE空口的控制面,在用户设备与一个或 多个分组数据网 PDN之间建立 PDN连接, 其中每个 PDN连接对应一个承 载通道, 并且每个 PDN连接分配一个 IP地址。
50、 如权利要求 47所述的用户设备, 其特征在于, 还包括:
建立单元, 用于建立用户设备的所有 PDN连接的 IP地址与应用层的对 应关系。
51、 如权利要求 50所述的用户设备, 其特征在于, 还包括:
位于 LTE通信模块之外的分组过滤器, 用于将来自应用层的每个 PDN 连接的上行用户数据分解为用户数据流;
WLAN发送单元, 用于根据所述数据分流方式, 通过 WLAN空口发送 全部或部分用户数据流, 其中所述全部或部分用户数据流携带与应用层对应 的 IP地址。
52、 一种通信系统, 其特征在于, 包括:
如权利要求 42-46任一项所述的分流点设备, 或者,
如权利要求 47-51任一项所述的用户设备。
53、 如权利要求 52所述的通信系统, 其特征在于, 还包括:
无线局域网 WLAN接入点设备,通过 WLAN空口与用户设备之间传输 全部或部分用户数据,
所述 WLAN接入点设备连接到基站设备, 或者连接到分流点设备, 或 者与所述基站设备共址, 或者与所述基站设备集成为一个设备。
54、 如权利要求 52所述的通信系统, 其特征在于, 在所述分流点设备 为服务网关 S-GW并且 WLAN接入点设备连接到所述基站设备的情况下,
S-GW与 WLAN接入点设备之间接口的传输层分组直接在 S-GW和基 站设备之间传输, 由基站设备或外置的 IP路由设备转发该传输层分组; 或 者,
S-GW与 WLAN接入点设备之间接口的传输层分组承载在 S-GW和基 站设备之间的 UDP over IP隧道上, 与 S-GW和基站设备之间接口的传输层 分组复用在 Slu接口上共传输。
55、 如权利要求 52所述的通信系统, 其特征在于, 所述基站设备为家 庭基站设备。
56、 如权利要求 52所述的通信系统, 其特征在于, 还包括:
接入点控制设备, 与离线或在线服务器相连, 用于对所述 WLAN接入 设备进行安全认证、 网管、 协调和 /或干扰处理。
57、 如权利要求 56所述的通信系统, 其特征在于, 所述接入点控制设 备与服务网关设备集成为一个设备或者连接到所述服务网关设备。
58、 如权利要求 56所述的通信系统, 其特征在于, 所述接入点控制设 备与家庭基站网关设备集成为一个设备或者连接到家庭基站网关设备。
59、 如权利要求 52所述的通信系统, 其特征在于, 还包括:
本地网关设备, 与服务网关设备相连并与核心网相连, 在所述用户设备 仅仅通过 WLAN空口传输数据的情况下, 从所述服务网关设备接收上行用 户数据并将所述上行用户数据转发至核心网,和 /或从核心网接收下行用户数 据并将所述下行用户数据转发至所述服务网关设备。
PCT/CN2011/074982 2011-05-31 2011-05-31 数据传输方法、分流点设备、用户设备和系统 WO2011157129A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180000963.6A CN102918922B (zh) 2011-05-31 2011-05-31 数据传输方法、分流点设备、用户设备和系统
EP11795095.6A EP2709418B1 (en) 2011-05-31 2011-05-31 Offloading point device, user equipment and corresponding methods
PCT/CN2011/074982 WO2011157129A2 (zh) 2011-05-31 2011-05-31 数据传输方法、分流点设备、用户设备和系统
US14/092,397 US9414281B2 (en) 2011-05-31 2013-11-27 Data transmission method, offloading point device, user equipment, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074982 WO2011157129A2 (zh) 2011-05-31 2011-05-31 数据传输方法、分流点设备、用户设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/092,397 Continuation US9414281B2 (en) 2011-05-31 2013-11-27 Data transmission method, offloading point device, user equipment, and system

Publications (2)

Publication Number Publication Date
WO2011157129A2 true WO2011157129A2 (zh) 2011-12-22
WO2011157129A3 WO2011157129A3 (zh) 2012-04-19

Family

ID=45348617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074982 WO2011157129A2 (zh) 2011-05-31 2011-05-31 数据传输方法、分流点设备、用户设备和系统

Country Status (4)

Country Link
US (1) US9414281B2 (zh)
EP (1) EP2709418B1 (zh)
CN (1) CN102918922B (zh)
WO (1) WO2011157129A2 (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197873A (ja) * 2012-03-19 2013-09-30 Kddi Corp 通信装置及び基地局装置
CN103338483A (zh) * 2013-07-24 2013-10-02 成都西加云杉科技有限公司 数据分流方法、数据分流设备及异构网络
WO2013155916A1 (zh) * 2012-04-18 2013-10-24 中兴通讯股份有限公司 应用于wlan的分流信息的获取方法及系统
CN103379590A (zh) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 数据传输方法及装置
WO2013159659A1 (zh) * 2012-04-28 2013-10-31 华为技术有限公司 网络分流的方法、基站、和终端
CN103428769A (zh) * 2012-05-16 2013-12-04 华为技术有限公司 一种数据分流传输方法、装置及系统
CN103582079A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 一种联合传输的实现方法和系统
CN103945461A (zh) * 2013-01-23 2014-07-23 中兴通讯股份有限公司 数据多流传输方法及装置
CN103959855A (zh) * 2012-11-07 2014-07-30 华为技术有限公司 数据分流方法及数据分流控制设备、传输点、终端
EP2675230A3 (en) * 2012-06-12 2014-10-08 Nokia Corporation Methods, apparatuses and computer program products for configuration of signaling radio bearers
WO2014166520A1 (en) * 2013-04-08 2014-10-16 Nokia Solutions And Networks Oy Control of offloading by the network
WO2014193303A1 (en) * 2013-05-30 2014-12-04 Telefonaktiebolaget L M Ericsson (Publ) Ran-controlled selective handover between first and second ran:s
CN104396333A (zh) * 2013-06-28 2015-03-04 华为技术有限公司 数据调度方法及装置、系统
WO2015043645A1 (en) * 2013-09-27 2015-04-02 Nokia Solutions And Networks Oy Method, apparatus and computer program for control of a data bearer
EP2871811A4 (en) * 2012-07-25 2015-05-20 Huawei Tech Co Ltd DATA DERIVATION METHOD, DATA TRANSMISSION DEVICE, AND DERIVATION NODE DEVICE
WO2015090360A1 (en) * 2013-12-17 2015-06-25 Nokia Solutions And Networks Gmbh & Co. Kg Cell load based content data network selection
EP2897438A1 (en) * 2014-01-20 2015-07-22 Telefonaktiebolaget L M Ericsson (publ) Routing an IP session over WLAN
WO2015126999A1 (en) * 2014-02-19 2015-08-27 Convida Wireless, Llc Serving gateway extensions for inter-system mobility
WO2015028924A3 (en) * 2013-08-29 2015-08-27 Telefonaktiebolaget L M Ericsson (Publ) 3gpp bearer-based qos model support on wifi
CN105264993A (zh) * 2013-05-17 2016-01-20 华为技术有限公司 一种业务数据分流方法、接入网设备以及终端
JP2016507993A (ja) * 2013-01-16 2016-03-10 モヘビー、ベザード コアネットワークへのハイブリッドアクセスの方法および機器
CN105557019A (zh) * 2014-08-21 2016-05-04 华为技术有限公司 一种资源分配、业务传输方法及装置
US9380494B2 (en) 2013-09-27 2016-06-28 Intel IP Corporation Systems, methods and devices for traffic offloading
JP2016529826A (ja) * 2013-08-09 2016-09-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated ディスジョイントベアラルーティング
CN106470452A (zh) * 2015-08-18 2017-03-01 中兴通讯股份有限公司 一种终端发起接入请求的方法和装置
CN106550474A (zh) * 2015-09-18 2017-03-29 中华电信股份有限公司 异质网络整合方法及装置
US9642060B2 (en) 2013-12-20 2017-05-02 Industrial Technology Research Institute Communication methods of IP flow mobility with radio access network level enhancement
WO2018000322A1 (zh) * 2016-06-30 2018-01-04 北京小米移动软件有限公司 数据传输方法及装置
CN108337633A (zh) * 2012-04-20 2018-07-27 华为技术有限公司 数据分流配置方法、基站系统和用户终端
CN109155786A (zh) * 2016-06-09 2019-01-04 英特尔公司 从用户设备到网络的卸载处理
EP2832116B1 (en) * 2012-03-30 2021-04-28 Nec Corporation Communications device, base station, communications node, communications system and method thereof

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9374744B2 (en) * 2011-08-10 2016-06-21 Kt Corporation Apparatus and method for seamless handoff of a service between different types of networks
EP2888913B1 (en) * 2012-08-23 2018-10-10 Telefonaktiebolaget LM Ericsson (publ) Access control for a wireless local area network
CN108650691B (zh) * 2013-04-16 2021-08-13 华为技术有限公司 小区切换方法及设备
CN106416138A (zh) * 2013-12-31 2017-02-15 班德韦斯克公司 用于分配备选网络接入资源的系统和方法
US9191410B2 (en) * 2014-01-13 2015-11-17 Nokia Solutions And Networks Oy Method and apparatus for enhancing communication security
US9420503B2 (en) * 2014-01-21 2016-08-16 Cisco Technology, Inc. System and method for seamless mobility in a network environment
US20150215840A1 (en) * 2014-01-30 2015-07-30 Intel IP Corporation Systems, methods and devices for application specific routing in dual connectivity
WO2015120876A1 (en) * 2014-02-11 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Wlan - 3gpp interworking
US10306514B2 (en) 2014-04-02 2019-05-28 Samsung Electronics Co., Ltd. Method and apparatus for steering traffic between cellular network and wireless local area network (LAN) network in mobile communication system
US20150304898A1 (en) * 2014-04-21 2015-10-22 Qualcomm Incorporated Systems, methods and apparatus for controlling offloadability of public data network connections to wireless local area networks and detach from cellular networks
US9538418B2 (en) * 2014-05-08 2017-01-03 Intel IP Corporation Apparatus, system and method of communicating wireless local area network (WLAN) offloading information between cellular managers
WO2015195021A1 (en) 2014-06-18 2015-12-23 Telefonaktiebolaget L M Ericsson (Publ) Method for generating a common identifier for a wireless device in at least two different types of networks
US9392519B2 (en) * 2014-06-23 2016-07-12 Intel Corporation Apparatus, system and method of tunneling data radio bearers via a wireless local area network link
FR3022665B1 (fr) * 2014-06-23 2016-07-15 Sigfox Procede de recuperation d'un code d'authentification requis par une borne de controle et systeme correspondant
EP3170360B1 (en) 2014-07-14 2021-04-07 Convida Wireless, LLC Inter-system handover and multi-connectivity via an integrated small cell and wifi gateway
CN105472764A (zh) * 2014-08-20 2016-04-06 深圳市中兴微电子技术有限公司 一种接入lte网络的方法及电子设备
CN105472767B (zh) * 2014-09-02 2019-03-08 中国电信股份有限公司 通信方法和系统以及lte宏基站和lte小基站
US10292142B2 (en) 2014-09-08 2019-05-14 Blackberry Limited Method and apparatus for simultaneous use of both licensed and unlicensed wireless spectrum
US10560846B2 (en) * 2014-09-08 2020-02-11 Blackberry Limited Method and apparatus for authenticating a network entity using unlicensed wireless spectrum
US9887907B2 (en) * 2014-09-18 2018-02-06 Qualcomm Incorporated Base station initiated control mechanism for supporting supplemental link
US20170223698A1 (en) * 2014-10-15 2017-08-03 Huaning Niu Ul traffic control method in tightly integrated wifi/lte
US10104705B2 (en) * 2014-11-05 2018-10-16 Intel IP Corporation Apparatus, system and method of communicating between a cellular manager and a user equipment (UE) via a WLAN access device
US9788237B2 (en) * 2014-11-07 2017-10-10 Qualcomm Incorporated Handling of WLAN offloadability indication
KR101905941B1 (ko) * 2014-11-13 2018-10-11 주식회사 케이티 Wlan 캐리어를 이용한 데이터 송수신 방법 및 그 장치
JP6541787B2 (ja) * 2014-12-12 2019-07-10 コンヴィーダ ワイヤレス, エルエルシー 統合スモールセル/WiFiネットワーク(ISWN)における課金
US20180014346A1 (en) * 2015-01-20 2018-01-11 Intel IP Corporation Apparatus and method for bidirectional ip flow mobility control
GB2534865A (en) * 2015-01-30 2016-08-10 Nec Corp Communication system
CN107251644B (zh) * 2015-02-20 2022-06-03 富士通株式会社 无线通信系统、基站和移动台
WO2016155089A1 (zh) * 2015-03-27 2016-10-06 华为技术有限公司 一种数据传输方法、装置及系统
EP3278514B1 (en) 2015-03-30 2019-03-06 British Telecommunications public limited company Data transmission
US10356706B2 (en) 2015-03-31 2019-07-16 British Telecommunications Public Limited Company Interface selection
WO2016156430A1 (en) * 2015-03-31 2016-10-06 British Telecommunications Public Limited Company Wlan-lte interface selection
EP3278627B1 (en) 2015-03-31 2019-10-30 British Telecommunications public limited company Interface selection in a wireless router
CN108307696A (zh) * 2015-04-24 2018-07-20 华为技术有限公司 一种同时连接蜂窝网络和wlan的方法及装置
EP3119118B1 (en) * 2015-07-17 2020-07-15 HTC Corporation Handling of cellular-wireless local area network aggregation
WO2017018968A1 (en) 2015-07-24 2017-02-02 Intel IP Corporation Apparatus, system and method of communicating between a cellular manager and a user equipment (ue) via a wlan node
GB2541392A (en) * 2015-08-14 2017-02-22 Nec Corp Communication system
WO2017059064A1 (en) 2015-09-29 2017-04-06 Bandwidthx Inc. Authentication and authorization of mobile devices for usage of access points in an alternative network
DE102015122936A1 (de) * 2015-12-29 2017-06-29 Deutsche Telekom Ag Verfahren zur flexibleren Ressourcennutzung bei der Telekommunikation
CN105592559B (zh) * 2016-02-16 2019-06-07 北京佰才邦技术有限公司 基于基站调度业务数据的方法和装置
EP3447986B1 (en) * 2016-04-19 2022-01-12 Sony Group Corporation Information processing device, information processing system, and information processing method
WO2017214927A1 (en) * 2016-06-16 2017-12-21 Hewlett Packard Enterprise Development Lp Generating a set of rules corresponding to an internet protocol flow using a reflection mode
US11115385B1 (en) 2016-07-27 2021-09-07 Cisco Technology, Inc. Selective offloading of packet flows with flow state management
CN106488511A (zh) * 2016-11-08 2017-03-08 北京佰才邦技术有限公司 一种流量卸载的方法、基站和wlan设备
CN109417741B (zh) * 2016-11-16 2021-01-29 华为技术有限公司 数据迁移方法及装置
CN109275160B (zh) * 2017-07-17 2020-07-07 华为技术有限公司 数据分流方法、设备及系统
CN107241356B (zh) * 2017-07-24 2020-08-14 无锡江南计算技术研究所 一种网络设备合法性验证方法
CN109788578B (zh) * 2017-11-14 2020-11-24 北京佰才邦技术有限公司 一种lte与wifi聚合的方法、网络设备及终端设备
US11265922B2 (en) * 2017-11-24 2022-03-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for accessing wireless local area network, terminal device, and network device
CN108449755A (zh) * 2018-04-03 2018-08-24 新华三技术有限公司 一种终端接入方法和装置
US10993110B2 (en) * 2018-07-13 2021-04-27 Nvidia Corp. Connectionless fast method for configuring Wi-Fi on displayless Wi-Fi IoT device
US11005913B1 (en) * 2019-01-11 2021-05-11 TeliApp Corporation System for obtaining internet access for computing device tethered to mobile device having internet connection via universal translating software adapter and universal muxer data tracker
CN109889448B (zh) * 2019-03-25 2021-03-02 武汉思普崚技术有限公司 一种网络流量的分流方法及装置
CN112437404B (zh) * 2020-09-29 2022-05-17 海能达通信股份有限公司 实现端到端的数据传输的方法、单元及网关
CN114173422B (zh) * 2021-12-08 2022-09-06 深圳市领创星通科技有限公司 一种上行数据处理方法、接入网设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795643A (zh) * 2003-03-12 2006-06-28 个人软件公司 通过切换将局域电话系统扩展到广域网
CN101150493A (zh) * 2006-09-20 2008-03-26 华为技术有限公司 一种在接入终端上实现业务分流的方法及系统
US20100075659A1 (en) * 2006-09-29 2010-03-25 Electronics And Telecommunications Research Institute Method for transmitting data in evolved utms network system
CN101897158A (zh) * 2007-12-13 2010-11-24 英国电讯有限公司 数据访问
CN102045714A (zh) * 2009-10-10 2011-05-04 上海贝尔股份有限公司 提供3gpp网络与无线局域网互通安全的方法和装置
CN102075566A (zh) * 2010-12-24 2011-05-25 华为技术有限公司 业务的分流处理方法、通信设备及网络系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203024B (zh) * 2006-12-15 2012-05-23 华为技术有限公司 无线网络搜索方法和系统及多模设备
EP2375818B1 (en) * 2009-01-06 2019-01-30 Sharp Kabushiki Kaisha Control station, mobile station, and communication method
TWI574569B (zh) * 2009-01-09 2017-03-11 內數位專利控股公司 無線發射/接收單元及在無線發射/接收單元中使用的方法
US8867486B2 (en) * 2009-04-17 2014-10-21 Qualcomm Incorporated Wireless data communications employing IP flow mobility
CN102177743B (zh) * 2009-09-24 2013-04-17 华为技术有限公司 一种网络流量分流方法、设备及系统
US8693367B2 (en) * 2009-09-26 2014-04-08 Cisco Technology, Inc. Providing offloads in a communication network
US9237060B2 (en) * 2010-06-11 2016-01-12 Blackberry Limited Method and apparatus for handling peers with dynamic IP connectivity status in peer-to-peer networks
US8590023B2 (en) * 2011-06-30 2013-11-19 Intel Corporation Mobile device and method for automatic connectivity, data offloading and roaming between networks
US8594628B1 (en) * 2011-09-28 2013-11-26 Juniper Networks, Inc. Credential generation for automatic authentication on wireless access network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795643A (zh) * 2003-03-12 2006-06-28 个人软件公司 通过切换将局域电话系统扩展到广域网
CN101150493A (zh) * 2006-09-20 2008-03-26 华为技术有限公司 一种在接入终端上实现业务分流的方法及系统
US20100075659A1 (en) * 2006-09-29 2010-03-25 Electronics And Telecommunications Research Institute Method for transmitting data in evolved utms network system
CN101897158A (zh) * 2007-12-13 2010-11-24 英国电讯有限公司 数据访问
CN102045714A (zh) * 2009-10-10 2011-05-04 上海贝尔股份有限公司 提供3gpp网络与无线局域网互通安全的方法和装置
CN102075566A (zh) * 2010-12-24 2011-05-25 华为技术有限公司 业务的分流处理方法、通信设备及网络系统

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197873A (ja) * 2012-03-19 2013-09-30 Kddi Corp 通信装置及び基地局装置
EP2832116B1 (en) * 2012-03-30 2021-04-28 Nec Corporation Communications device, base station, communications node, communications system and method thereof
WO2013155916A1 (zh) * 2012-04-18 2013-10-24 中兴通讯股份有限公司 应用于wlan的分流信息的获取方法及系统
CN108337633A (zh) * 2012-04-20 2018-07-27 华为技术有限公司 数据分流配置方法、基站系统和用户终端
CN103379590A (zh) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 数据传输方法及装置
US9642067B2 (en) 2012-04-28 2017-05-02 Huawei Technologies Co., Ltd. Method for network offloading, base station, and terminal
WO2013159659A1 (zh) * 2012-04-28 2013-10-31 华为技术有限公司 网络分流的方法、基站、和终端
EP2836010A4 (en) * 2012-05-16 2015-04-15 Huawei Tech Co Ltd METHOD, APPARATUS AND SYSTEM FOR TRANSMITTING DATA DISTRIBUTION
CN103428769A (zh) * 2012-05-16 2013-12-04 华为技术有限公司 一种数据分流传输方法、装置及系统
EP2836010A1 (en) * 2012-05-16 2015-02-11 Huawei Technologies Co., Ltd Data distribution transmission method, apparatus and system
US9820181B2 (en) 2012-05-16 2017-11-14 Huawei Technologies Co., Ltd. Data offload transmission method, apparatus and system
EP2675230A3 (en) * 2012-06-12 2014-10-08 Nokia Corporation Methods, apparatuses and computer program products for configuration of signaling radio bearers
US9241273B2 (en) 2012-06-12 2016-01-19 Nokia Technologies Oy Methods, apparatuses and computer program products for configuration of signaling radio bearers
EP2871811A4 (en) * 2012-07-25 2015-05-20 Huawei Tech Co Ltd DATA DERIVATION METHOD, DATA TRANSMISSION DEVICE, AND DERIVATION NODE DEVICE
US10630801B2 (en) 2012-07-25 2020-04-21 Huawei Technologies Co., Ltd. Data shunting method, data transmission device, and shunting node device
CN103582079A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 一种联合传输的实现方法和系统
CN103959855B (zh) * 2012-11-07 2018-01-12 华为技术有限公司 数据分流方法及数据分流控制设备、传输点、终端
CN103959855A (zh) * 2012-11-07 2014-07-30 华为技术有限公司 数据分流方法及数据分流控制设备、传输点、终端
JP2016507993A (ja) * 2013-01-16 2016-03-10 モヘビー、ベザード コアネットワークへのハイブリッドアクセスの方法および機器
CN103945461A (zh) * 2013-01-23 2014-07-23 中兴通讯股份有限公司 数据多流传输方法及装置
EP2950577A4 (en) * 2013-01-23 2016-01-20 Zte Corp METHOD AND APPARATUS FOR MULTIFLUX DATA TRANSMISSION
US9832684B2 (en) 2013-04-08 2017-11-28 Nokia Solutions And Networks Oy Control of offloading by the network
WO2014166520A1 (en) * 2013-04-08 2014-10-16 Nokia Solutions And Networks Oy Control of offloading by the network
CN105264993A (zh) * 2013-05-17 2016-01-20 华为技术有限公司 一种业务数据分流方法、接入网设备以及终端
CN105264993B (zh) * 2013-05-17 2019-08-20 华为技术有限公司 一种业务数据分流方法、接入网设备以及终端
EP2983434A4 (en) * 2013-05-17 2016-04-20 Huawei Tech Co Ltd METHOD FOR DISTRIBUTING SERVICE DATA, ACCESS NETWORK EQUIPMENT AND TERMINAL
US9985826B2 (en) 2013-05-17 2018-05-29 Huawei Technologies Co., Ltd Service data offloading method, access network device, and terminal
US10834649B2 (en) 2013-05-30 2020-11-10 Telefonaktiebolaget Lm Ericsson (Publ) RAN-controlled selective handover between first and second RAN:S
WO2014193303A1 (en) * 2013-05-30 2014-12-04 Telefonaktiebolaget L M Ericsson (Publ) Ran-controlled selective handover between first and second ran:s
CN104396333A (zh) * 2013-06-28 2015-03-04 华为技术有限公司 数据调度方法及装置、系统
CN103338483A (zh) * 2013-07-24 2013-10-02 成都西加云杉科技有限公司 数据分流方法、数据分流设备及异构网络
CN103338483B (zh) * 2013-07-24 2016-08-10 成都西加云杉科技有限公司 数据分流方法、数据分流设备及异构网络
JP2016529826A (ja) * 2013-08-09 2016-09-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated ディスジョイントベアラルーティング
US10716097B2 (en) 2013-08-09 2020-07-14 Qualcomm Incorporated Disjoint bearer routing
WO2015028924A3 (en) * 2013-08-29 2015-08-27 Telefonaktiebolaget L M Ericsson (Publ) 3gpp bearer-based qos model support on wifi
US9578647B2 (en) 2013-08-29 2017-02-21 Telefonaktiebolaget Lm Ericsson (Publ) 3GPP bearer-based QoS model support on WiFi
CN110087331A (zh) * 2013-08-29 2019-08-02 瑞典爱立信有限公司 Wifi上基于3gpp承载的qos模型支持
WO2015043645A1 (en) * 2013-09-27 2015-04-02 Nokia Solutions And Networks Oy Method, apparatus and computer program for control of a data bearer
US9832677B2 (en) 2013-09-27 2017-11-28 Intel IP Corporation Systems, methods and devices for traffic offloading
US10306507B2 (en) 2013-09-27 2019-05-28 Intel IP Corporation Systems, methods and devices for traffic offloading
US9380494B2 (en) 2013-09-27 2016-06-28 Intel IP Corporation Systems, methods and devices for traffic offloading
WO2015090360A1 (en) * 2013-12-17 2015-06-25 Nokia Solutions And Networks Gmbh & Co. Kg Cell load based content data network selection
US9642060B2 (en) 2013-12-20 2017-05-02 Industrial Technology Research Institute Communication methods of IP flow mobility with radio access network level enhancement
US9794852B2 (en) 2014-01-20 2017-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Routing an IP session over WLAN
EP2897438A1 (en) * 2014-01-20 2015-07-22 Telefonaktiebolaget L M Ericsson (publ) Routing an IP session over WLAN
CN106105382A (zh) * 2014-02-19 2016-11-09 康维达无线有限责任公司 用于系统间移动性的服务网关扩展
KR102131233B1 (ko) * 2014-02-19 2020-07-07 콘비다 와이어리스, 엘엘씨 시스템 간 이동성을 위한 서빙 게이트웨이 확장들
KR101868886B1 (ko) * 2014-02-19 2018-06-19 콘비다 와이어리스, 엘엘씨 시스템 간 이동성을 위한 서빙 게이트웨이 확장들
JP2018191356A (ja) * 2014-02-19 2018-11-29 コンヴィーダ ワイヤレス, エルエルシー システム間モビリティのためのサービングゲートウェイ拡張
CN113194511A (zh) * 2014-02-19 2021-07-30 康维达无线有限责任公司 用于系统间移动性的服务网关扩展
US11146956B2 (en) 2014-02-19 2021-10-12 Convida Wireless, Llc Serving gateway extensions for inter-system mobility
KR20180067731A (ko) * 2014-02-19 2018-06-20 콘비다 와이어리스, 엘엘씨 시스템 간 이동성을 위한 서빙 게이트웨이 확장들
EP3917212A1 (en) * 2014-02-19 2021-12-01 Convida Wireless, LLC Serving gateway extensions for inter-system mobility
WO2015126999A1 (en) * 2014-02-19 2015-08-27 Convida Wireless, Llc Serving gateway extensions for inter-system mobility
JP2017506465A (ja) * 2014-02-19 2017-03-02 コンヴィーダ ワイヤレス, エルエルシー システム間モビリティのためのサービングゲートウェイ拡張
KR20160122233A (ko) * 2014-02-19 2016-10-21 콘비다 와이어리스, 엘엘씨 시스템 간 이동성을 위한 서빙 게이트웨이 확장들
US10285103B2 (en) 2014-08-21 2019-05-07 Huawei Technologies Co., Ltd. Resource allocation method, service transmission method, and apparatus
CN105557019A (zh) * 2014-08-21 2016-05-04 华为技术有限公司 一种资源分配、业务传输方法及装置
CN105557019B (zh) * 2014-08-21 2019-06-21 华为技术有限公司 一种资源分配、业务传输方法及装置
CN106470452A (zh) * 2015-08-18 2017-03-01 中兴通讯股份有限公司 一种终端发起接入请求的方法和装置
CN106470452B (zh) * 2015-08-18 2021-08-13 中兴通讯股份有限公司 一种终端发起接入请求的方法和装置
CN106550474B (zh) * 2015-09-18 2020-07-31 中华电信股份有限公司 异质网络整合方法及装置
CN106550474A (zh) * 2015-09-18 2017-03-29 中华电信股份有限公司 异质网络整合方法及装置
CN109155786A (zh) * 2016-06-09 2019-01-04 英特尔公司 从用户设备到网络的卸载处理
WO2018000322A1 (zh) * 2016-06-30 2018-01-04 北京小米移动软件有限公司 数据传输方法及装置
US11071137B2 (en) 2016-06-30 2021-07-20 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and device, and computer-readable storage medium

Also Published As

Publication number Publication date
CN102918922B (zh) 2016-12-07
EP2709418A2 (en) 2014-03-19
US20140086211A1 (en) 2014-03-27
EP2709418B1 (en) 2020-03-25
US9414281B2 (en) 2016-08-09
EP2709418A4 (en) 2014-06-18
CN102918922A (zh) 2013-02-06
WO2011157129A3 (zh) 2012-04-19

Similar Documents

Publication Publication Date Title
WO2011157129A2 (zh) 数据传输方法、分流点设备、用户设备和系统
US11903075B2 (en) Resource allocation for device-to-device (D2D) communications
US9161264B2 (en) Convergent transmission system and apparatus, data offloading and converging method
CN110035564B (zh) 通信方法和装置
CN107079287B (zh) 在集成无线网络中的系统间移动性
US9554301B2 (en) Shunting method and system for multi-network joint transmission, and access network element
US8806042B2 (en) Mobile router in EPS
US20140369198A1 (en) Method and apparatus to route packet flows over two transport radios
WO2011140927A1 (zh) 一种增强移动性的分流方法及装置
WO2016141545A1 (zh) 业务流分流的方法和装置
JP5820782B2 (ja) フロー分配システム、フロー分配装置、フロー分配方法、及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000963.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795095

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011795095

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795095

Country of ref document: EP

Kind code of ref document: A2