WO2011157107A2 - 一种多天线系统中的数据发送方法和装置 - Google Patents

一种多天线系统中的数据发送方法和装置 Download PDF

Info

Publication number
WO2011157107A2
WO2011157107A2 PCT/CN2011/074861 CN2011074861W WO2011157107A2 WO 2011157107 A2 WO2011157107 A2 WO 2011157107A2 CN 2011074861 W CN2011074861 W CN 2011074861W WO 2011157107 A2 WO2011157107 A2 WO 2011157107A2
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
antenna
data
time
remaining
Prior art date
Application number
PCT/CN2011/074861
Other languages
English (en)
French (fr)
Other versions
WO2011157107A3 (zh
Inventor
张舜卿
陈雁
刘亚林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/074861 priority Critical patent/WO2011157107A2/zh
Priority to CN201180000567.3A priority patent/CN102918780B/zh
Priority to EP11795073.3A priority patent/EP2717491B1/en
Publication of WO2011157107A2 publication Critical patent/WO2011157107A2/zh
Publication of WO2011157107A3 publication Critical patent/WO2011157107A3/zh
Priority to US14/085,107 priority patent/US9008219B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • H04B7/0693Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas switching off a diversity branch, e.g. to save power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a data transmission method and apparatus in a multi-antenna system. Background technique
  • a multi-antenna system is a system in which both the transmitting end and the transmitting and receiving sides use multiple antennas for transmission or reception.
  • the multi-antenna technology utilizes the spatial channel characteristics provided by the multi-antenna system to achieve better spatial channel utilization through appropriate transmit signal form and receiver design under different working scenarios, thereby improving system capacity or increasing transmission reliability.
  • Multi-antenna technology has been shown to achieve a wide variety of different types of transmission gains without increasing the total transmit power. Based on the above advantages, multi-antenna technology has been widely used in many communication systems such as HSPA, LTE, WiM AX.
  • each transceiver antenna is connected to an RF channel that includes RF circuit modules such as power amplifiers and filters.
  • RF circuit modules such as power amplifiers and filters.
  • the energy consumption of the RF channel accounts for more than 50% of the energy consumption of the entire wireless base station. Even if the data is not transmitted, maintaining the static power consumption of the RF device in the RF channel in normal operation still requires a small power consumption. Therefore, in a multi-antenna system, as the number of radio frequency channels increases, the power consumption of the radio frequency channel increases accordingly, which ultimately increases the overall power consumption of the base station. How to reduce the power consumption in a multi-antenna system as much as possible without affecting the quality of service is an urgent problem to be solved.
  • an implementation method for reducing power consumption in a multi-antenna system is to employ an antenna switching diversity technique.
  • the antenna switching diversity technique refers to a technique of sequentially selecting one of the antennas in a certain order in time or frequency when there are multiple transmission antennas at the transmitting end. Wherein, if the antenna is switched on different subcarriers, it is Frequency Switched Transmit Diversity (FSTD); : 3 ⁇ 4 mouth switching antennas at different times, that is, time switching transmission diversity ( Time Switched Transmit Diversity, TSTD).
  • FSTD Frequency Switched Transmit Diversity
  • TSTD Time Switched Transmit Diversity
  • the antenna At each determined time or determined frequency, the antenna The number of open is fixed. For a multi-antenna system, transmitting data with a fixed number of antennas will inevitably affect the dynamic transmission performance of the system, such as packet loss rate or retransmission rate.
  • Another way to reduce power consumption in a multi-antenna system is to reduce the number of transmit antennas and thus turn off some of the frequency channels.
  • the specific method is as follows: The base station of each cell determines the number of transmitting antennas to be used in the next time according to the current service demand size and the service variation rule of a period of time; the base station notifies all terminals in the cell to send a message that the number of antennas is changed; the terminal obtains the notification message. Then perform the corresponding configuration.
  • Embodiments of the present invention provide a data transmission method and apparatus in a multi-antenna system, so as to reduce power consumption while taking into account dynamic transmission performance of the system, and may not add additional scheme design and signaling design, or may not Any changes to the terminal are required, reducing the complexity of the implementation.
  • a data transmission method in a multi-antenna system, applied to a transmit diversity mode includes: determining, during a data transmission period, a number of off antennas and a shutdown time according to a transmission quality of the system; and closing the determined number during the off time Antenna, turning on the remaining antennas except the antenna, and transmitting the data to be sent through the remaining antennas;
  • a data transmitting apparatus in a multi-antenna system is applied to a transmit diversity mode, and includes: a determining unit, configured to determine, according to a transmission quality of the system, a number of closed antennas and a closing time according to a transmission quality of the system; a first sending unit, configured to: when the closed time is closed, turn off the determined number of antennas, turn on remaining antennas except the antenna, and send data to be sent through the remaining antennas;
  • a second sending unit configured to: in the remaining time of the data sending period, except for the closing time, turn on all antennas, and send data to be sent through all antennas.
  • the technical solution disclosed by the present invention dynamically turns off the antenna by the transmission quality of the system, which not only reduces the dynamic and static energy consumption of the RF channel corresponding to the closed antenna, but also reduces the total power consumption of the transmitting system. Take into account the dynamic transmission performance of the system.
  • the disclosed technical solution of the embodiment of the present invention dynamically changes the number of transmitting antennas to achieve energy saving purposes, and reduces signaling signaling overhead and flexibility of application compared with the mechanism of changing the number of conventional antennas, mainly in:
  • the receiving end Since the application is in the diversity mode, when the data to be transmitted is transmitted only through the opened antenna, the receiving end also receives data according to the normal receiving manner before the antenna is turned off. Therefore, the receiver structure of the receiving end does not need to follow the number of transmitting antennas. The dynamic change of the change is still received in the manner of the original number of antennas, maintaining the continuity of the transceiver mode and reducing the protocol flow overhead;
  • the transmitting end since the receiving end also receives data according to the normal receiving manner before the antenna is turned off, the transmitting end does not need to notify the number of transmitting antennas to change, therefore, the transmitting end does not need to transmit additional signaling to the receiving end because the number of transmitting antennas changes. , reducing signaling overhead;
  • the antenna transmission mode can be flexibly changed to adapt to traffic changes in a short period of time. Or channel fluctuations.
  • FIG. 1 is a schematic structural diagram of data transmission using an antenna switching diversity technique in a multi-antenna system in the prior art
  • FIG. 2 is a flow chart of an embodiment of a data transmitting method in a multi-antenna system according to the present invention
  • 3 is a schematic structural diagram of data to be transmitted according to the present invention
  • FIG. 4 is a flow chart showing the design of a data transmission mode according to the present invention.
  • FIG. 5 is a schematic diagram of a transmission pattern of a two-antenna system according to the present invention.
  • FIG. 6 is a schematic diagram of a transmission pattern of a four-antenna system in the present invention.
  • FIG. 7 is a schematic diagram of a data transmission manner in a four-antenna system according to the present invention.
  • FIG. 8 is a flowchart of an embodiment of a data transmission method in a four-antenna system according to the present invention
  • FIG. 9 is a flow chart of another embodiment of a data transmission method in a four-antenna system according to the present invention.
  • FIG. 10 is a structural diagram of an embodiment of a data transmitting apparatus in a multi-antenna system according to the present invention.
  • Figure 11 is a schematic structural view of a determining unit in the present invention.
  • FIG. 12 is a schematic structural diagram of a first transmitting unit in the present invention.
  • FIG. 13 is another schematic structural diagram of the first transmitting unit in the present invention. detailed description
  • FIG. 2 is a flowchart of an embodiment of a data transmission method in a multi-antenna system according to the present invention.
  • the method is applied to a device having multiple antennas, such as a base station, a user terminal, etc.
  • Multiple antennas for wireless communication including the following steps:
  • Step 201 In the data sending period, determine the number of closed antennas and the closing time according to the transmission quality of the system;
  • the "transmission quality of the system” includes a bit error rate, a retransmission rate or a packet loss rate, and of course, other parameters that can reflect the transmission quality of the system.
  • the specific parameters of the transmission quality of the system are not limited.
  • the number of transmitting antennas is a multiple of two.
  • two antennas and four antennas are the most commonly used antenna configurations. Taking two antennas as an example, there are four antenna transmission states. As shown in the table below.
  • the number of closed antennas is two, that is, all antennas are turned off.
  • the number of closed antennas is one, and in state 3, the number of closed antennas is zero, that is, both antennas are not turned off.
  • the time to turn off the antenna is proportional to the transmission quality of the system. If the transmission quality of the system is determined to be low according to the size of the retransmission rate, the time for turning off the antenna is correspondingly reduced; if the transmission quality of the system is determined to be high according to the retransmission rate, the time for turning off the antenna can be increased.
  • the two-day line is off, only when no service needs to be sent (including pilot and data).
  • the length of the off time may also be different. For example, for a two-antenna system, if it is determined that the antenna transmission state is state 1, that is, antenna 0 is turned off, antenna 1 is turned on, and for antenna 0 that is turned off, the shutdown time can account for 20%, 40% of the entire data transmission period. , 60%, 80%, of course, can also be other percentages. Among them, it should be emphasized that among all the percentage values, 0% and 100% also have actual physical meaning. If the closing time of the antenna accounts for 0% of the entire data transmission period, the antenna is in the entire data transmission period.
  • the off time of the antenna accounts for 100% of the entire data transmission period, the antenna is turned off during the entire data transmission period.
  • the length of the shutdown time is also proportional to the transmission quality of the system. If the transmission quality of the system is determined to be low according to the retransmission rate, the shutdown time can be reduced accordingly, for example, the shutdown time is reduced. 20% of the entire data transmission cycle. If based on retransmission rate The size determines the transmission quality of the system is very high, and when the number of off antennas is determined, the off time can also be increased accordingly. For example, the shutdown time is 80% of the entire data transmission period.
  • the specific number of antennas to be turned off is not limited, and the specific time for turning off the antenna is not limited.
  • multi-antenna systems such as a two-antenna multi-antenna system or a four-antenna multi-antenna system, there are various antenna transmission states, and each antenna transmission state corresponds to a different number of off antennas.
  • the application depends on the specific system state (either two-antenna system or four-antenna system) and the operator's use requirements (for example, in two-antenna systems, when the transmission quality of the system is low, if the operator transmits data to the data The requirements are strict, and high-quality transmission is required. You can choose not to turn off the antenna. If the operator has loose data transmission requirements, you can choose to turn off one antenna to determine the final number.
  • determining the number of the closed antennas and the length of the closing time according to the transmission quality of the system include: a transmission quality of the timing acquisition system; and a transmission quality of the system acquired according to a timing period According to the proportional relationship, the number of closed antennas and the closing time in the current data transmission period are determined.
  • a timing period of acquiring the transmission quality of the system is set, and the transmission quality of the system is acquired at each timing period.
  • the timing period and the data transmission period have no strict size relationship, and the timing period may be greater than the data transmission period or less than the data transmission period.
  • the timing period is equal to the data transmission period.
  • a preferred method is: determining the number of off antennas and the off time in the current data transmission period based on the transmission quality of the system acquired in the most recent timing period.
  • Step 202 Turn off the determined number of antennas in the closing time, turn on the remaining antennas except the antennas, and send data to be sent through the remaining antennas.
  • the data transmission period is a minimum time unit in units of timing, and the timing unit includes symbols, time slots, subframes, or frames.
  • the time slot is composed of symbols
  • the sub-frame is composed of time slots
  • the frame is composed of sub-frames.
  • the subframe is used as the timing unit, if the entire data transmission period is 10 subframes, it is determined that the antenna closing time accounts for 20% of the entire data transmission period, that is, the shutdown time is 2 subframes, except
  • the timing unit for turning off the antenna is uniformly selected in the data transmission period, so that the timing units are all distributed in the data transmission period, wherein the total time of the timing unit of the off antenna is the determined off time, and the data transmission period is determined by the timing unit.
  • the timing unit includes a symbol, a time slot, a sub-frame or a frame; a closed antenna is selected for a timing unit of each off antenna from all the transmitting antennas, wherein the sum of the number of all closed antennas is a determined off The number of antennas.
  • the first sub-subframe when the shutdown time is 2 subframes, the first sub-subframe may be selected in the first 5 subframes of the data transmission period.
  • the frame is used as one subframe of the off time, and the first subframe is selected as the other subframe of the off time in the last five subframes, so that the two subframes of the off time are evenly distributed throughout the data transmission period.
  • other selectors may be used.
  • the timing unit may be a symbol slot or a frame.
  • the time slot is composed of symbols and the sub-frame is composed of time slots
  • the time unit is a time slot
  • the subframes are necessarily distributed in the same manner.
  • the closed antenna is selected from the timing units of each of the transmitting antennas for each of the transmitting antennas. For example, suppose that in a two-antenna system, the current data transmission period needs to be turned off for one antenna within the closing time of two subframe lengths, and the antenna 1 is selected to be turned off in two subframes of the off time.
  • the closed antenna can also be selected with equal probability. Therefore, it is further preferred that, in the closing time, turning off the determined number of antennas comprises: selecting a timing unit for turning off the antenna from the data sending period, so that the timing units are all distributed in the data sending period. , wherein, the sum of the time units of all the antennas that turn off the antenna is the determined off time, the data
  • the transmission period is a minimum time unit in a time unit, and the timing unit includes a symbol, a time slot, a sub-frame or a frame; the timing unit of each of the off antennas is equally selected from all the transmitting antennas according to the principle of equal selection probability.
  • the antenna where the sum of the number of all closed antennas is determined by the number of closed antennas.
  • the timing unit of the antenna selects the closed antennas with equal probability so that the probability of each antenna being selected is equal. For example, suppose that in a two-antenna system, the current data transmission period needs to turn off one antenna within the closing time of two subframe lengths, and select to turn off antenna 0 on the first subframe of the off time, and the second sub-time in the off time. Antenna 1 is turned off on the frame.
  • rotation off selection method
  • other selection methods may be adopted for other numbers of off antennas and other lengths of closing time, and each antenna may be selectively selected to be turned off.
  • the closed antennas may be selected for the timing unit of each of the closed antennas according to a predetermined selection ratio.
  • a predetermined selection ratio For example, 4 ⁇ is set in the two-antenna system, the shutdown time occupies 30% of the entire data transmission period, that is, the shutdown time is 3 subframes, and the number of closed antennas is 1, according to the principle of equal probability for each timing unit. Selecting the antenna, you can choose to turn off antenna 0 at the off time of the 1st and 7th subframes, and choose to turn off antenna 1 at the off time of the 4th subframe.
  • another preferred embodiment is to distinguish the data to be transmitted into two types: an overlay frame and an energy-saving frame.
  • the coverage frame is in a normal working state and is in a power-saving state in the energy-saving frame.
  • the determining the number of antennas in the determined length of the data transmission period includes: determining the number of coverage frames and the number of power-saving frames according to the size of the traffic, wherein the system is in a normal working state in the coverage frame.
  • the power-saving state is enabled; all the antennas are turned on in the coverage frame, and all the antennas are turned on in the important subframes in which the important signaling is transmitted in the energy-saving frame, and the energy-saving frames are important.
  • the closed antenna is selected in the remaining sub-frames outside the sub-frame.
  • the 0th subframe in which the broadcast information and the synchronization information are transmitted, the 5th subframe in which the synchronization information is transmitted, and the 4th subframe and the 9th subframe in which the paging information is transmitted are both transmission weights.
  • the subframe to be signaled are used as important subframes for transmitting important signaling.
  • important subframes for transmitting important signaling may be set according to a specific system design.
  • the embodiment of the present invention does not limit which subframes in a data frame are important subframes.
  • a preferred embodiment is to turn on all antennas in subframes 0 and 5 of the power-saving frame, and select a closed antenna on subframes 1, 2, 3, 6, 7, and 8 when When signaling is sent, all antennas are turned on in subframes 4 and 9. When traffic data is transmitted, the antennas are selected to be closed on subframes 4 and 9, wherein the number of all off antennas is integrated. Turn off the number of antennas. Further preferably, a predetermined number of coverage frames and energy-saving frames are set from the data to be transmitted according to the principle that the coverage frame and the energy-saving frame are evenly distributed in the data to be transmitted.
  • the ratio of the number of coverage frames to energy-saving frames is determined according to the traffic volume:
  • a predetermined number of coverage frames and energy-saving frames can be set in the data to be transmitted in an alternate manner of an overlay frame, an energy-saving frame, an overlay frame, and an energy-saving frame, so that the coverage frame and the energy-saving frame can be evenly distributed.
  • each of the coverage frame and the energy-saving frame includes 10 subframes, and the period of each subframe is 1 ms, and the coverage frame and the power-saving frame are used as the entire radio frame, and the period is 10 ms.
  • one way to turn off the antenna is to: turn off the entire RF channel on the determined number of antennas during the off time;
  • One way to turn off the antenna is to: turn off at least one of the radio frequency channels on the determined number of antennas during the off time.
  • one way to turn on the antenna is to: turn on the remaining antennas except the antenna, and the transmission power of the remaining antennas remains unchanged; another way to turn on the antenna is: The transmission power of the remaining antennas other than the antenna is turned off, and the increased transmission power is not greater than the maximum transmission power of the power amplifier, and the remaining antenna is turned on with the increased transmission power.
  • FIG. 4 is a flowchart of a data transmission mode according to the present invention, including the following steps: Step 401: Select the number of off antennas and the off time in one cycle;
  • the transmission quality of the system determines the number of closed antennas and the closing time in the current data transmission period according to a proportional relationship.
  • Step 402 Select which timing units are used to turn off the antenna
  • the data transmission period is a minimum time unit in units of timing, and the timing unit includes a symbol, a time slot, a subframe, or a frame.
  • the timing unit can be evenly distributed according to the principle that the timing unit is evenly distributed in the data transmission period, and the timing unit for turning off the antenna is uniformly selected from the data transmission period.
  • the number of coverage frames and the number of power-saving frames may be determined according to the size of the traffic.
  • the system is in a normal working state in the coverage frame, is in a power-saving state in the energy-saving frame, and selects a certain number of coverage frames from the data to be transmitted and Energy-saving frame, all antennas are turned on in the coverage frame, all antennas are turned on in the 0th and 5th subframes of the energy-saving frame, and closed on the 1st, 2nd, 3rd, 6th, 7th and 8th subframes Antenna, when transmitting signaling, turn on all antennas on subframes 4 and 9, and when transmitting traffic data, select closed antennas on subframes 4 and 9, where the number of all closed antennas The sum is the number of closed antennas determined.
  • a predetermined number of coverage frames and energy-saving frames are set from the data to be transmitted according to the principle that the coverage frame and the energy-saving frame are evenly distributed in the data to be transmitted.
  • Step 403 Select which antennas to turn off.
  • the closed antennas are equally selected from all the transmitting antennas for each of the transmitting antennas according to the principle of equal probability of selection, wherein the sum of the number of all closed antennas is the determined number of closed antennas.
  • Transmitting the data to be transmitted on the remaining antennas except the off antenna includes: truncated transmission, direct transmission, linear combined mapping, or overlapping combined mapping.
  • the intercepted transmission allocates data to be transmitted on the closed antenna to at least one remaining antenna, and discards the data to be transmitted on the at least one remaining antenna. For example, for a two-antenna system, if antenna 1 is selected to be turned off, the data to be transmitted (including the pilot signal and the data signal) on antenna 1 is allocated to antenna 0, and finally the transmitted data is transmitted by antenna 0.
  • the direct transmission is to discard the data to be transmitted on the closed antenna, and the data to be transmitted on the remaining antennas except the antenna is not changed.
  • the linear combined transmission linearly combines the data to be transmitted on the off antenna with the data to be transmitted on the remaining antennas except the off antenna, and distributes the linear combined data to the remaining antennas.
  • the data to be sent on antenna 1 is The data to be transmitted on the antenna o is linearly combined, and the combined data is distributed to the antenna 0, and finally the combined data is transmitted by the antenna 0.
  • the positions of the pilot signals may be orthogonal on different antennas, for the case of orthogonality, the remaining antennas at the position of the pilot signals simultaneously transmit all pilot signals on the closed antenna and on the remaining antennas.
  • the overlapping combined transmission combines the data to be transmitted on the off antenna with the data to be transmitted on the remaining antenna except the off antenna, and distributes the overlapped combined data to the remaining antenna. For example, in the two-antenna system, if both antenna 0 and antenna 1 use QPSK (Quadature Phase Shift Keying) to transmit data, when antenna 0 is selected to be turned off, antenna 0 and antenna 1 are to be placed. After the data is transmitted and the signals are overlapped, the antenna 0 can transmit the combined signal in a 16QAM manner.
  • QPSK Quadrature Phase Shift Keying
  • Step 203 Turn on all antennas in the remaining time of the data transmission period except the shutdown time, and send data to be sent through all antennas.
  • the data transmission period is 10 subframes.
  • the shutdown time occupies 20% of the entire data transmission period, such as the time of 2 subframes, all antennas are turned on in the remaining 8 subframes except the 2 subframes.
  • the data to be transmitted is sent on all antennas.
  • a data transmission method in each data transmission period is determined, and according to this number transmission method, a transmission pattern on the time axis can be determined.
  • Figure 4 is a schematic diagram of a transmission pattern of a two-antenna system in the present invention
  • Figure 6 is a schematic diagram of a transmission pattern of a four-antenna system in the present invention.
  • 501 in FIG. 5 is antenna 0
  • 502 is antenna 1
  • 503 is a signal sent by the antenna
  • 504 is a time axis
  • tl+6 means 7 consecutive timing units.
  • the non-transmission diversity mode such as the multiplexing mode
  • it can be converted to the transmit diversity mode first, and then the technical solution of the present invention is implemented in the transmit diversity mode.
  • the manner of converting the non-transmission diversity mode into the transmission diversity mode is not limited, and the conversion may be performed by any one of the methods provided in the prior art.
  • the transmit diversity mode includes a transmit diversity mode of space time coding or a transmit diversity mode of space frequency coding. When sending data in transmit diversity mode, no changes to the terminal are required.
  • the space-frequency coding method for the two-antenna system is proved as follows:
  • the transmission and reception structures are: For any given data transmission period t, on two different carriers, the transmission signals of the two antennas can be expressed as (assuming different matrices Columns indicate transmission signals on different transmit antennas)
  • the receiver using the Alamouti code is:
  • the two signals can be decoded separately.
  • the transmission and reception structures for turning off one of the antennas are:
  • the transmission signals of the two antennas on different carriers can be expressed as:
  • the demodulated signal is demodulated as:
  • the decoding method of the code can restore the original signal and restore (the principle is the same as (1)).
  • the multi-antenna discontinuous transmission mode does not need to be adjusted by the terminal side, and the other operations remain unchanged except that the transmitting end does not transmit the data and pilot corresponding to the closed antenna.
  • the average average energy of the radio is 10%, the capacity is reduced by 2.41%, and the remaining antenna power is doubled. In this case, the average total energy of the RF is saved by 6% and the capacity is reduced by 0.0056%.
  • the average average energy of the radio is 10%, the capacity is reduced by 3.94%, and the remaining antenna power is doubled. In this case, the average total energy of the RF is saved by 6% and the capacity is reduced by 2.76%.
  • the technical solution disclosed by the present invention dynamically turns off the antenna by the transmission quality of the system, which not only reduces the dynamic and static energy consumption of the RF channel corresponding to the closed antenna, but also reduces the total power consumption of the transmitting system. Take into account the dynamic transmission performance of the system.
  • the disclosed technical solution dynamically changes the number of transmitting antennas to achieve energy saving purposes, and reduces signaling signaling overhead and application flexibility compared with the mechanism of changing the number of conventional antennas, mainly in:
  • the receiving end Since the application is in the diversity mode, when the data to be transmitted is transmitted only through the opened antenna, the receiving end also receives data according to the normal receiving manner before the antenna is turned off. Therefore, the receiver structure of the receiving end does not need to follow the number of transmitting antennas. The dynamic change of the change is still received in the manner of the original number of antennas, maintaining the continuity of the transceiver mode and reducing the protocol flow overhead;
  • the transmitting end since the receiving end also receives data according to the normal receiving manner before the antenna is turned off, the transmitting end does not need to notify the number of transmitting antennas to change, therefore, the transmitting end does not need to change due to the number of transmitting antennas. And transmitting additional signaling to the receiving end, reducing signaling overhead;
  • the antenna transmission mode can be flexibly changed to adapt to traffic changes in a short period of time. Or channel fluctuations.
  • FIG. 7 is a schematic diagram of data transmission mode in the four-antenna system of the present invention.
  • FIG. 8 is a flowchart of an embodiment of a data sending method in a four-antenna system according to the present invention, including the following steps:
  • Step 801 Regularly acquire system information.
  • the system information includes a transmission mode, a number of terminals, and a retransmission rate of each terminal in a current timing period.
  • Step 802 Determine whether the transmission diversity mode is based on the transmission mode in the system information, if yes, proceed to step 805, otherwise, proceed to step 803;
  • Step 803 Determine whether the current transmission mode can be converted into a transmit diversity mode. If yes, go to step 804, otherwise, end the process;
  • Step 804 Convert the current transmission mode to a transmit diversity mode.
  • Step 805 In the next data sending period, determine the number of closed antennas and the closing time according to the retransmission rate of the terminal in the system information;
  • the timing period of setting the transmission quality of the acquisition system is the same as the synchronization period of the data transmission, it is easy to obtain that the retransmission rate acquired in the current timing period is used to determine the next data transmission.
  • the number of antennas and the length of the off time are turned off during the cycle.
  • the number of off antennas is determined to be two according to the retransmission rate, and the length of the off time is 20% of the entire data transmission period.
  • Step 806 Select to close the antenna 1 in the first subframe of the data transmission period, the remaining antennas are turned on, the antenna 2 is turned off in the sixth subframe, and the remaining antennas are turned on, and the data to be transmitted on the closed antenna is mapped to the remaining antennas; That is, the antenna 1 is turned off in the first subframe, and the antennas 0, 2, and 3 are turned on, and the data to be transmitted on the antenna 1 is turned off to be mapped to any one of the antennas 0, 2, and 3.
  • the antenna 2 is turned off, the antennas 0, 1 and 3 are turned on, and the data to be transmitted on the antenna 2 is turned off to be mapped to any one of the antennas 0, 1, and 3.
  • the shutdown mode is shown in the following table. As can be seen from the table, the off time is evenly distributed throughout the data transmission period, and the antenna is selectively turned off from the four transmit antennas.
  • Step 807 The data to be transmitted is sent by the remaining antennas except the antenna after the off time in the data transmission period, and the data to be sent is sent by all the antennas that are turned on during the non-off time in the data transmission period.
  • data to be transmitted is transmitted by antennas 0, 2, and 3.
  • the data to be transmitted includes data to be transmitted allocated by itself and data to be transmitted mapped by antenna 1; in the sixth subframe
  • the data to be transmitted is sent by the antennas 0, 1 and 3, and the data to be transmitted includes the data to be transmitted allocated by itself and the data to be transmitted mapped by the antenna 2.
  • the technical solution disclosed by the present invention dynamically turns off the antenna by the transmission quality of the system, which not only reduces the dynamic and static energy consumption of the RF channel corresponding to the closed antenna, but also reduces the total power consumption of the transmitting system. Take into account the dynamic transmission performance of the system.
  • the disclosed technical solution dynamically changes the number of transmitting antennas to achieve energy saving purposes, and reduces signaling signaling overhead and application flexibility compared with the mechanism of changing the number of conventional antennas, mainly in:
  • the receiving end Since the application is in the diversity mode, when the data to be transmitted is transmitted only through the opened antenna, the receiving end also receives data according to the normal receiving manner before the antenna is turned off. Therefore, the receiver structure of the receiving end does not need to follow the number of transmitting antennas. The dynamic change of the change is still received in the manner of the original number of antennas, maintaining the continuity of the transceiver mode and reducing the protocol flow overhead;
  • the transmitting end since the receiving end also receives data according to the normal receiving manner before the antenna is turned off, the transmitting end does not need to notify the number of transmitting antennas to change, therefore, the transmitting end does not need to transmit additional signaling to the receiving end because the number of transmitting antennas changes. , reducing signaling overhead;
  • Embodiment 3 Since the number of off antennas and the length of the off time can be changed within each data transmission period instead of a fixed value, the antenna transmission mode can be flexibly changed to adapt to traffic changes in a short period of time. Or channel fluctuations. Embodiment 3
  • FIG. 9 is a flowchart of another embodiment of a data sending method in a four-antenna system according to the present invention, including the following steps:
  • Step 901 Regularly acquire system information.
  • Step 902 Determine whether the system is currently in the middle traffic or low traffic phase, if yes, proceed to step 903, otherwise, proceed to step 909;
  • Step 903 Determine the number of coverage frames and the number of energy-saving frames according to the traffic volume.
  • the system is in a normal working state in the coverage frame, and is in a power-saving state in the energy-saving frame; Step 904: Turn off the antenna in the energy-saving frame;
  • the antenna can be turned off by turning off the entire RF channel on the antenna, or by turning off at least one RF unit in the RF channel on the antenna.
  • the number of the closed antennas and the length of the shutdown time in the energy-saving frame are in a proportional relationship, and the determination process is determined according to the transmission quality of the system. For the related determination process, refer to the first embodiment, and details are not described herein again.
  • Step 905 Convert the current transmission mode to a diversity transmission mode.
  • the current transmission mode is the diversity transmission mode, no conversion is required. If the current transmission mode is the diversity transmission mode, the current transmission mode needs to be converted to the diversity transmission mode.
  • Step 906 Determine whether the terminal is currently at the edge of the cell, and if yes, proceed to step 907, otherwise, proceed to step 908;
  • Step 907 Allocating data to be sent to the coverage frame
  • Step 908 Allocating data to be sent to the energy-saving frame
  • Step 909 It is judged whether the transmission is finished, and if so, the flow is ended, otherwise, the process returns to step 901 again.
  • the technical solution disclosed by the present invention dynamically turns off the antenna by the transmission quality of the system, which not only reduces the dynamic and static energy consumption of the RF channel corresponding to the closed antenna, but also reduces the total power consumption of the transmitting system. Take into account the dynamic transmission performance of the system.
  • the disclosed technical solution dynamically changes the number of transmitting antennas to achieve energy saving purposes, and reduces signaling signaling overhead and flexibility of application compared with the mechanism of changing the number of conventional antennas, mainly in: 1) Since the application is in the diversity mode, when the data to be transmitted is transmitted only through the opened antenna, the receiving end also receives data according to the normal receiving manner before the antenna is turned off. Therefore, the receiver structure of the receiving end does not need to follow the number of transmitting antennas. The dynamic change of the change is still received in the manner of the original number of antennas, maintaining the continuity of the transceiver mode and reducing the protocol flow overhead;
  • the transmitting end since the receiving end also receives data according to the normal receiving manner before the antenna is turned off, the transmitting end does not need to notify the number of transmitting antennas to change, therefore, the transmitting end does not need to transmit additional signaling to the receiving end because the number of transmitting antennas changes. , reducing signaling overhead;
  • the antenna transmission mode can be flexibly changed to adapt to traffic changes in a short period of time. Or channel fluctuations.
  • the embodiment of the present invention further provides a data transmitting apparatus in a multi-antenna system, such as a base station in wireless communication, supporting multi-antenna diversity in LTE, HSPA, WiMAX, and the like.
  • the device can be used in a wireless communication system.
  • the device is used to complete the steps and processes in the foregoing method embodiments.
  • the operations and processes that can be performed in the method can be performed by the corresponding modules or units in the facts of the device.
  • FIG. 10 it is a structural diagram of an embodiment of a data transmitting apparatus in a multi-antenna system according to the present invention.
  • the data transmitting apparatus 10 is applied to a transmit diversity mode, and includes: a determining unit 1001, a first sending unit 1002, and The second transmitting unit 1003.
  • the internal structure and connection relationship will be further described below in conjunction with the working principle of the device.
  • a determining unit 1001 configured to determine, according to a transmission quality of the system, a number of closed antennas and a closing time according to a data transmission period;
  • the first sending unit 1002 is configured to: when the off time is closed, turn off a certain number of antennas, turn on the remaining antennas except the off antenna, and send data to be sent through the remaining antennas;
  • the second sending unit 1003 is configured to enable all antennas in the remaining time of the data sending period except the closing time, and send data to be sent through all antennas.
  • the transmit diversity mode includes: a transmit diversity mode of space time coding or a transmit diversity mode of space time coding.
  • FIG. 11 is a schematic structural diagram of the determining unit in the present invention.
  • the determining unit 1001 includes: a transmission quality acquisition subunit 10011 and a current period determiner.
  • Unit 10012 the determining unit 1001 includes: a transmission quality acquisition subunit 10011 and a current period determiner. Unit 10012,
  • a transmission quality acquisition subunit 10011 configured to periodically acquire a transmission quality of the system
  • the current period determining subunit 10012 is configured to determine, according to a proportional relationship, the number of antennas to be turned off and the length of the closing time in the current data transmission period according to the transmission quality of the system acquired in one timing period.
  • FIG. 12 is a schematic structural diagram of a first sending unit according to the present invention.
  • the first sending unit 1002 includes: a time selecting subunit 10021 and a first antenna selecting subunit 10022.
  • the time selection subunit 10021 is configured to uniformly select a timing unit for turning off the antenna from the data transmission period, so that the timing units are all hooked in the data transmission period, wherein the total time of all the timing units of the off antenna is determined to be off.
  • Time, the data transmission period is a minimum time unit in a time unit, and the timing unit includes a symbol, a time slot, a subframe or a frame;
  • the first antenna selection subunit 10022 is configured to select a closed antenna from a timing unit of each of the off antennas for all the off antennas, wherein the sum of the number of all off antennas is a determined number of closed antennas.
  • the first sending unit 1002 includes: a time selecting subunit 10021 and a second antenna selecting subunit 10023.
  • the time selection sub-unit 10021 is configured to select a timing unit from the data transmission period, so that the timing units are all distributed in the data transmission period, wherein the total time of all the timing units that turn off the antenna is the determined shutdown time.
  • the data transmission period is a minimum time unit in a time unit, and the timing unit includes a symbol, a time slot, a subframe, or a frame;
  • a second antenna selection sub-unit 10023 configured to equally select a closed antenna for a timing unit of each off antenna from all transmitting antennas according to a principle of equal probability of selection, wherein the sum of the number of all closed antennas is a determined close The number of antennas.
  • the first transmitting unit includes: a quantity determining stator unit and a third antenna selecting sub unit, in addition to the preferred modes shown in FIG. 12 and FIG.
  • a quantity determining subunit configured to determine, according to the size of the traffic quantity, the number of the coverage frames and the number of the energy saving frames, where the system is in a normal working state in the coverage frame, and is in a power saving state in the energy saving frame; a frame selection sub-unit, configured to select a determined number of coverage frames and energy-saving frames from the to-be-transmitted data; a third antenna selection sub-unit, configured to enable all antennas in the coverage frame, and transmit important signals in the energy-saving frame All the antennas are turned on in the important subframes of the signaling, and the closed antennas are selected in the remaining subframes except the important subframes of the energy-saving frames, wherein the total number of all the closed antennas is the determined number of closed antennas.
  • the first sending unit 1002 when the antenna is turned off, includes: a first closing subunit, configured to turn off the entire radio frequency channel on the determined number of antennas during the closing time; or, the second closing sub And a unit, configured to turn off at least one of the radio frequency channels on the determined number of antennas during the off time.
  • the first sending unit 1002 when the antenna is turned on, includes: a first open subunit, configured to turn on remaining antennas except the antenna, and the transmit power of the remaining antenna remains unchanged; or, the second opener a unit, configured to increase a transmit power of the remaining antenna except the antenna, and the increased transmit power is not greater than a maximum transmit power of the power amplifier, and the increased transmit power is turned on to enable the remaining days, and the When the data to be transmitted on the antenna is mapped to the remaining antennas except the antenna, the first sending unit 1002 includes:
  • An intercepting transmitting subunit configured to allocate data to be transmitted on the closed antenna to at least one remaining antenna, and discard the to-be-sent data on the at least one remaining antenna;
  • a direct transmission sub-unit configured to discard data to be sent on the closed antenna, and the data to be transmitted on the remaining antennas except the antenna is not changed;
  • a linear combined transmission subunit configured to linearly combine the data to be transmitted on the off antenna with the data to be transmitted on the remaining antennas except the off antenna, and distribute the linear combined data to the remaining antennas;
  • the overlapping combined transmission sub-unit is configured to overlap the data to be transmitted on the closed antenna and the data to be transmitted on the remaining antennas except the closed antenna, and distribute the overlapped combined data to the remaining antenna.
  • the technical solution disclosed by the present invention moves through the transmission quality of the system. Turning off the antenna not only reduces the dynamic and static energy consumption of the RF channel corresponding to the closed antenna, but also reduces the total power consumption of the transmitting system, and also takes into account the dynamic transmission performance of the system.
  • the disclosed technical solution dynamically changes the number of transmitting antennas to achieve energy saving purposes, and reduces signaling signaling overhead and application flexibility compared with the mechanism of changing the number of conventional antennas, mainly in:
  • the receiving end Since the application is in the diversity mode, when the data to be transmitted is transmitted only through the opened antenna, the receiving end also receives data according to the normal receiving manner before the antenna is turned off. Therefore, the receiver structure of the receiving end does not need to follow the number of transmitting antennas. The dynamic change of the change is still received in the manner of the original number of antennas, maintaining the continuity of the transceiver mode and reducing the protocol flow overhead;
  • the transmitting end since the receiving end also receives data according to the normal receiving manner before the antenna is turned off, the transmitting end does not need to notify the number of transmitting antennas to change, therefore, the transmitting end does not need to transmit additional signaling to the receiving end because the number of transmitting antennas changes. , reducing signaling overhead;
  • the antenna transmission mode can be flexibly changed to adapt to traffic changes in a short period of time. Or channel fluctuations.
  • the program when executed, may include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明公开了一种多天线系统中的数据发送方法和装置。该方法可用于发送分集模式,包括:在数据发送周期,根据系统的传输质量确定关闭天线的数目和关闭时间;在关闭时间内,关闭所确定数目的天线,开启除关闭天线外的剩余天线,将待发送数据通过剩余天线发送;在数据发送周期的除关闭时间的剩余时间内,开启所有天线,通过所有天线发送待发送数据。根据本发明,可以在降低功耗的同时,保证系统的动态传输性能。既不需要增加额外的方案设计和信令设计,也不需要对终端进行改变,并降低了实施的复杂度。

Description

一种多天线系统中的数据发送方法和装置 技术领域
本发明涉及无线通信技术领域,特别是涉及一种多天线系统中的数据发送 方法和装置。 背景技术
多天线系统是指发送端或者收发双方都采用多根天线进行发送或者接收 的系统。 多天线技术则是利用多天线系统提供的空间信道特性, 在不同的工作 场景下, 通过适当的发射信号形式和接收机设计, 实现更好的空间信道利用, 从而提高系统容量或增加传输可靠性。多天线技术已被证明可以在不增加总发 射功率的同时, 实现多种不同类别的传输增益。 基于以上优势, 多天线技术已 在 HSPA、 LTE、 WiM AX等很多通信系统中得到广泛应用。
然而, 多天线技术的引入不是完全没有代价的。 通常来说, 每一根收发天 线都会连接一个射频通道,该射频通道包括功率放大器和滤波器等射频电路模 块。从能耗的角度看, 射频通道的能耗占整个无线基站能耗的 50%以上。 即使 在不发送数据的状况下,维持射频通道中射频器件在正常工作状态的静态功耗 仍需要不小的功耗开销。 因此, 在多天线系统中, 由于射频通道数增加, 射频 通道带来的功耗也相应地增加, 最终增加了基站的整体功耗。如何在不影响服 务质量的前提下, 尽可能地降低多天线系统中的功耗是当前亟待解决的问题。
在现有技术中,一种降低多天线系统中的功耗的实现方法是采用天线切换 分集技术。 所谓天线切换分集技术就是指当发送端存在多根传输天线时,从时 间上或者频率上按照一定的顺序依次选择其中一根天线进行传输的技术。 其 中, 如果在不同的子载波上进行天线的切换, 即为频率切换传输分集 ( Frequency Switched Transmit Diversity, FSTD ); :¾口果在不同的时间上进行天 线的切换, 即为时间切换传输分集( Time Switched Transmit Diversity , TSTD )。 请参阅图 1 , 其为现有技术中在多天线系统内采用天线切换分集技术进行数据 发送的结构示意图。 该方法中, 在每一个确定的时间或者确定的频率上, 天线 开启的个数都是固定不变的,对于多天线系统而言, 采用固定个数的天线发送 数据必然会影响系统的动态传输性能, 如丟包率或者重传率等。
另一种降低多天线系统中的功耗的实现方式是减少发射天线的数目,从而 关闭一些频率通道。具体方法为: 各小区基站根据当前的业务需求大小和一段 时间的业务变化规律, 决定下一段时间将要采用的小区发送天线数;基站通知 小区内所有终端发送天线数改变的消息; 终端得到通知消息后进行相应的配 置。在 LTE系统实现该方法的过程中,由于不同的发送天线数对应不同的 CRC mask, 因此, 一旦终端配置了错误的发送天线数, 在 CRC解码的时候就会使 用错误的 PBCH CRC mask, 进而导致 CRC校验失败。 为了保证终端不会在发 送天线数的配置上出现错误,必须要有相应的措施保证终端在当前获取正确的 发送天线数目, 这就需要进行额外的方案设计和信令设计, 必然会增加额外的 信令开销和处理时延。
并且, 对于终端本身而言, 需要改动终端的协议; 另外, 针对不同类型的 终端, 也需要采用不同的设计方案。 因此, 还增加了实施的复杂度。 发明内容
本发明实施例提供了一种多天线系统中的数据发送方法和装置,以降低功 耗的同时, 兼顾系统的动态传输性能, 并且, 可以不增加额外的方案设计和信 令设计, 也可以不需要对终端进行任何改变, 降低了实施的复杂度。
本发明实施例公开了如下技术方案:
一种多天线系统中的数据发送方法, 应用于发送分集模式, 包括: 在数据发送周期, 根据系统的传输质量确定关闭天线的数目和关闭时间; 在所述关闭时间内, 关闭所确定数目的天线, 开启除关闭天线外的剩余天线, 将待发送数据通过所述剩余天线发送;
在所述数据发送周期的除所述关闭时间的剩余时间内, 开启所有天线,通 过所有天线发送待发送数据。
一种多天线系统中的数据发送装置, 应用于发送分集模式, 包括: 确定单元, 用于在数据发送周期,根据系统的传输质量确定关闭天线的数 目和关闭时间; 第一发送单元, 用于在所述关闭时间内, 关闭所确定数目的天线, 开启除 关闭天线外的剩余天线, 将待发送数据通过所述剩余天线上发送;
第二发送单元, 用于在所述数据发送周期的除所述关闭时间的剩余时间 内, 开启所有天线, 通过所有天线发送待发送数据。
由上述实施例可以看出, 本发明公开的技术方案通过系统的传输质量, 动 态关闭天线, 不仅减少所关闭天线对应的射频通道的动态和静态能耗,从而减 少发送系统的总功耗, 也兼顾了系统的动态传输性能。
此外, 本发明实施例的公开的技术方案在动态改变发送天线数, 实现节能 目的的同时, 与传统天线数改变的机制相比, 减少通知信令开销, 提高应用的 灵活性, 主要表现在:
1 ) 由于应用在分集模式下, 当将待发送数据只通过开启的天线发送时, 接收端也按照天线被关闭前的正常接收方式接收数据, 因此,接收端的接收机 结构不需要随发送天线数的动态变化而改变,仍按照原天线数目下的方式进行 接收, 保持了收发方式的连续性, 减少了协议流程开销;
2 )进一步的, 由于接收端也按照天线被关闭前的正常接收方式接收数据, 发送端不需要通知发送天线数改变, 因此,发送端不需要因为发送天线数改变 而传送额外信令到接收端, 减少了信令开销;
3 ) 由于关闭天线的数目和关闭时间的长度可以在每个数据发送周期内发 生变化, 而不是一个固定的数值, 因此, 天线发送方式可实现灵活变化, 从而 适应较短时间内的业务量变化或信道波动。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1 为现有技术中在多天线系统内采用天线切换分集技术进行数据发送 的结构示意图;
图 2为本发明一种多天线系统中的数据发送方法的一个实施例的流程图; 图 3为本发明待发送数据的一个结构示意图;
图 4为本发明一种数据发送模式的设计流程图;
图 5为本发明中两天线系统的一种发送图样示意图;
图 6为本发明中四天线系统的一种发送图样示意图;
图 7为本发明中四天线系统中的数据发送方式示意图;
图 8为本发明一种四天线系统中的数据发送方法的一个实施例的流程图; 图 9 为本发明一种四天线系统中的数据发送方法的另一个实施例的流程 图;
图 10 为本发明一种多天线系统中的数据发送装置的一个实施例的结构 图;
图 11为本发明中确定单元的一个结构示意图;
图 12为本发明中第一发送单元的一个结构示意图;
图 13为本发明中第一发送单元的另一个结构示意图。 具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明实施例进行详细描述。 实施例一
请参阅图 2, 其为本发明一种多天线系统中的数据发送方法的一个实施例 的流程图, 该方法应用由于具有多天线设备, 例如基站, 用户终端等, 该设备 在可以通过其上的多天线进行无线通信, 包括以下步骤:
步骤 201 : 在数据发送周期, 根据系统的传输质量确定关闭天线的数目和 关闭时间;
需要强调的是, 在本发明的技术方案中, "系统的传输质量" 包括误码率、 重传率或者丟包率, 当然, 也包括其它可以反映系统的传输质量的参数。 在本 发明实施例中, 对系统的传输质量的具体参数不——进行限定。
在发送分集模式的多天线系统中, 发送天线数是 2的倍数。 其中, 两天线 和四天线是最常用的天线配置方式。 以两天线为例, 共有四种天线发送状态, 如下表所示。
Figure imgf000006_0001
其中, 在状态 0中, 关闭天线的数目为 2个, 即, 关闭所有的天线。 在状 态 1和 2中, 关闭天线的数目都为 1个, 在状态 3中, 关闭天线的数目为 0 个, 即, 两个天线都不关闭。
优选的, 关闭天线的时间与系统的传输质量成正比例关系。如果才艮据重传 率的大小确定系统的传输质量很低, 则关闭天线的时间也相应地减少; 如果根 据重传率的大小确定系统的传输质量很高, 则关闭天线的时间可以增长。 两天 线均关闭的状态, 仅用在无业务需要发送(包括导频和数据) 的时刻。
在每一种天线发送状态下, 关闭时间的长度也可以不同。 例如, 对于两天 线的系统, 如果确定了天线发送状态为状态 1 , 即, 关闭天线 0, 开启天线 1 , 对于关闭的天线 0 ,其关闭的时间可以占整个数据发送周期的 20% , 40%, 60%、 80% , 当然, 也可以是其它的百分比。 其中, 需要强调的是, 在所有的百分比 数值中, 0%和 100%也具有实际物理意义, 如果天线的关闭的时间占整个数据 发送周期的 0%, 则说明天线在整个数据发送周期内都不关闭, 如果天线的关 闭时间占整个数据发送周期的 100%, 则说明天线在整个数据发送周期内都是 关闭的。 关闭时间的长度也与系统的传输质量成正比例关系,如果根据重传率 的大小确定系统的传输质量很低, 当关闭天线的数目已经确定后, 关闭时间可 以相应地减少, 例如, 关闭时间占整个数据发送周期的 20%。 如果根据重传率 的大小确定系统的传输质量很高, 当关闭天线的数目确定后, 关闭时间也可以 相应地增加。 例如, 关闭时间占整个数据发送周期的 80%。
需要说明的是, 在本发明的技术方案中, 并不限定关闭天线的具体数目, 也不限定关闭天线的具体时间。在不同的多天线系统中, 如两天线的多天线系 统或者四天线的多天线系统,会有各种不同的天线发送状态,每一种天线发送 状态都对应不同的关闭天线数目。 在应用中, 需要根据具体的系统状态(是两 天线系统还是四天线系统)和运营商的使用需求(如, 在两天线系统中, 当系 统的传输质量很低时,如果运营商对数据传输要求比较严格, 需要保证高质量 的传输, 则可以选择不关闭天线, 如果运营商对数据传输要求比较宽松, 则可 以选择关闭一个天线) 来确定最终的数目。 同样, 对于确定数目的关闭天线, 也需要根据运营商的使用需求(如, 在两天线系统中, 如果关闭了一个天线, 当系统的传输质量很低时,如果运营商对数据传输要求比较严格, 需要保证高 质量的传输,则可以适当减少关闭时间,如果运营商对数据传输要求比较宽松, 则可以适当增加关闭时间)来确定关闭时间的具体长度。
优选的, 所述在任意一个数据发送周期, 按照正比例关系, 根据系统的传 输质量确定关闭天线的数目和关闭时间的长度包括: 定时获取系统的传输质 量; 根据一个定时周期获取的系统的传输质量,按照正比例关系确定当前数据 发送周期内关闭天线的数目和关闭时间。
在上述优选的方案中,为了保证根据实时的系统的传输质量确定关闭天线 的数目和关闭时间的长度,设定一个获取系统的传输质量的定时周期, 在每个 定时周期定时获取系统的传输质量。其中, 该定时周期与数据发送周期没有严 格的大小关系, 定时周期可以大于数据发送周期, 也可以小于数据发送周期, 优选的, 使定时周期与数据发送周期相等。 对于当前数据发送周期而言, 一种 优选的方法是: 根据最近一个定时周期获取的系统的传输质量, 确定当前数据 发送周期内关闭天线的数目和关闭时间。
步骤 202: 在所述关闭时间内, 关闭所确定数目的天线, 开启除关闭天线 外的剩余天线, 将待发送数据通过所述剩余天线发送;
通常,数据发送周期以计时单位为最小时间单位,所述计时单位包括符号、 时隙、 子帧或者帧。 而时隙由符号构成, 子帧由时隙构成, 帧由子帧构成。 假 设, 以子帧为计时单位为例, 如果整个数据发送周期为 10个子帧的时间, 确 定了天线的关闭时间占整个数据发送周期的 20% ,即关闭时间为 2个子帧的时 间, 除了可以从 10个子帧的数据发送周期中任意选择两个连续的子帧作为关 闭时间外, 为了进一步提高系统的传输性能, 优选的, 在所述关闭时间内, 关 闭所确定数目的天线包括:从所述数据发送周期中均匀地选择关闭天线的计时 单位, 使得计时单位均勾分布在数据发送周期, 其中, 所述关闭天线的计时单 位的时间总和为确定的关闭时间, 数据发送周期以计时单位为最小时间单位, 所述计时单位包括符号、 时隙、 子帧或者帧; 从所有的发送天线中为每个关闭 天线的计时单位选择关闭的天线, 其中, 所有关闭天线数目的总和为确定的关 闭天线数目。
在上述优选的方案中, 按照计时单位均匀分布的原则, 例如, 对于 10个 子帧的发送周期, 关闭时间为 2 个子帧的情况, 可以在数据发送周期的前 5 个子帧中选择第一个子帧作为关闭时间的一个子帧,在后 5个子帧中选择第一 个子帧作为关闭时间的另一个子帧,从而使关闭时间的 2个子帧均匀地分布在 整个数据发送周期中。 当然, 除了上述选择方式外, 还可以采用其它的选择方 计时单位除了可以是子帧外, 还可以是符号时隙、 或者帧。 很容想到, 由于时 隙由符号构成, 子帧由时隙构成, 因此, 当计时单位为时隙时, 如果使时隙均 匀分布在整个数据发送周期, 子帧也就必然均勾地分布在整个数据发送周期; 当计时单位为符号时,如果使符号均勾地分布在整个数据发送周期, 时隙也就 必然均勾地分布在整个数据发送周期上,最终也可以保证子帧均勾地分布在整 个数据发送周期上。在确定了关闭天线的计时单位后,再从所有的发送天线中 为每个关闭天线的计时单位选择关闭的天线。 如, 假设在两天线系统中, 当前 数据发送周期需要在两个子帧长度的关闭时间内关闭一个天线,选择在关闭时 间的 2个子帧上关闭天线 1。
为了提高系统的传输性能, 还可以等概率地选择关闭的天线。 因此, 进一 步优选的, 所述在所述关闭时间内, 关闭所确定数目的天线包括: 从所述数据 发送周期中均勾地选择关闭天线的计时单位,使得计时单位均勾分布在数据发 送周期, 其中, 所有关闭天线的计时单位的时间总和为确定的关闭时间, 数据 发送周期以计时单位为最小时间单位, 所述计时单位包括符号、 时隙、 子帧或 者帧;按照选择概率相等的原则从所有的发送天线中为每个关闭天线的计时单 位等概率地选择关闭的天线, 其中, 所有关闭天线的数目总和为确定的关闭天 线数目。
在该进一步的优选方案中,除了从所有的发送天线中任意地为每个关闭天 线的计时单位选择关闭的天线外,也可以按照等概率选择的原则,从所有的发 送天线中为每个关闭天线的计时单位等概率地选择关闭的天线,使每个天线被 选择的概率是相等的。 如, 假设在两天线系统中, 当前数据发送周期需要在两 个子帧长度的关闭时间内关闭一个天线,选择在关闭时间的第一个子帧上关闭 天线 0, 而在关闭时间的第二个子帧上关闭天线 1。 当然, 除了上述 "轮换关 断" 的选择方式外, 对于其它数目的关闭天线和其它长度的关闭时间, 还可以 采用其它的选择方式, 也可以保证每个天线等概率地被选择关闭。
另外,除了按照概率相等的原则从所有的发送天线中为每个关闭天线的计 时单位等概率地选择关闭的天线外,还可以按照预定的选择比例为每个关闭天 线的计时单位选择关闭的天线。 如, 4叚设在两天线系统中, 关闭时间占用整个 数据发送周期的 30%, 即关闭时间为 3个子帧的时间, 关闭天线的数目为 1 个,按照等概率的原则为每个计时单位选择天线, 则可以选择在第 1和 7个子 帧的关闭时间关闭天线 0, 而选择在第 4个子帧的关闭时间关闭天线 1。
除了上述在数据发送周期的确定长度的时间内,关闭确定数目的天线的实 施方式之外, 另一种优选的实施方式是,将待发送的数据区分为覆盖帧和节能 帧两种, 系统在覆盖帧中处于正常工作状态,在节能帧中处于节能状态,这样, 通过调节覆盖帧数量与节能帧数量的比例,可以实现节能功耗的目的。基于此, 所述在数据发送周期的确定长度的时间内, 关闭确定数目的天线包括: 根据业 务量的大小确定覆盖帧数量和节能帧数量, 其中, 系统在所述覆盖帧中处于正 常工作状态,在所述节能帧中处于节能状态;在所述覆盖帧中开启所有的天线, 在所述节能帧中传输重要信令的重要子帧上开启所有的天线,在所述节能帧的 除重要子帧外的其余子帧中选择关闭的天线。
在目前的技术中, 在 LTE系统中, 传输广播信息和同步信息的第 0子帧, 传输同步信息的第 5子帧以及传输寻呼信息的第 4子帧和第 9子帧都是传输重 要信令的子帧。 当然, 除了将这些子帧作为传输重要信令的重要子帧之外, 还 可以根据具体的系统设计设定传输重要信令的重要子帧。本发明实施例对一个 数据帧中哪些子帧为重要子帧并不进行限定。
一种优选的实施方式是,在所述节能帧的第 0和 5号子帧上开启所有的天 线, 在第 1、 2、 3、 6、 7和 8号子帧上选择关闭的天线, 当发送信令时, 在第 4和 9号子帧上开启所有的天线, 当发送业务数据时, 在第 4和 9号子帧上选 择关闭的天线, 其中, 所有关闭天线的数目综合为确定的关闭天线数目。 进一 步优选的, 可以按照覆盖帧和节能帧均匀分布在待发送数据中的原则,从待发 送数据中设置确定数量的覆盖帧和节能帧。
例如, 如图 3所示, 根据业务量确定了覆盖帧与节能帧的数量比例为 1 :
1 , 可以按照一个覆盖帧、 一个节能帧、 一个覆盖帧、 一个节能帧这种交替的 方式在待发送数据中设置确定数量的覆盖帧和节能帧,使覆盖帧和节能帧能够 均匀地分布在待发送数据中, 每个覆盖帧和节能帧都包括 10个子帧, 每个子 帧的周期为 1ms, 而覆盖帧和节能帧作为整个无线帧, 其周期为 10ms。 在覆 盖帧中开启所有的天线, 在节能帧的第 0和 5号子帧上开启所有的天线,在第 1、 2、 3、 6、 7和 8号子帧上选择关闭的天线, 当发送信令时, 在第 4和 9号 子帧上开启所有的天线, 当发送业务数据时,在第 4和 9号子帧上选择关闭的 天线。
另外,在数据发送周期的确定长度的关闭时间内,关闭确定数目的天线时, 一种关闭天线的方式是: 在所述关闭时间内, 关闭所确定数目的天线上的整条 射频通道; 另一种关闭天线的方式是: 在所述关闭时间内, 关闭确定数目的天 线上射频通道中的至少一个射频单元。
在开启除关闭天线外的剩余天线时, 一种开启天线的方式是: 开启除关闭 天线外的剩余天线,且所述剩余天线的发射功率保持不变; 另一种开启天线的 方式是: 增大除关闭天线外的剩余天线的发射功率,且增大后的发射功率不大 于功放的最大发射功率, 以增大后的发射功率开启所述剩余天线。
请参阅图 4,其为本发明一种数据发送模式的设计流程图,包括以下步骤: 步骤 401: 选择一个周期内关闭天线的数目和关闭时间;
具体地, 需要定时获取系统的传输质量,根据最近一个定时周期获取的系 统的传输质量,按照正比例关系确定当前数据发送周期内关闭天线的数目和关 闭时间。
步骤 402: 选择在哪些计时单元上关闭天线;
其中, 数据发送周期以计时单位为最小时间单位, 计时单位包括符号、 时 隙、 子帧或者帧。 可以按照计时单位均匀分布在数据发送周期的原则, 从数据 发送周期中均匀地选择关闭天线的计时单位。或者,还可以根据业务量的大小 确定覆盖帧数量和节能帧数量, 这里, 系统在覆盖帧中处于正常工作状态, 在 节能帧中处于节能状态,从待发送数据中选取确定数量的覆盖帧和节能帧,在 覆盖帧中开启所有的天线,在所述节能帧的第 0和 5号子帧上开启所有的天线, 在第 1、 2、 3、 6、 7和 8号子帧上选择关闭的天线, 当发送信令时, 在第 4 和 9号子帧上开启所有的天线, 当发送业务数据时,在第 4和 9号子帧上选择 关闭的天线,其中,所有关闭天线的数目总和为确定的关闭天线数目。优选的, 按照覆盖帧和节能帧均匀分布在待发送数据中的原则,从待发送数据中设置确 定数量的覆盖帧和节能帧。
步骤 403: 选择关闭哪些天线。
其中,优选的,按照选择概率相等的原则从所有的发送天线中为每个关闭 天线的计时单位等概率地选择关闭的天线, 其中, 所有关闭天线的数目总和为 确定的关闭天线数目。
将待发送的数据在除关闭天线外的剩余天线上发送包括: 截取式发送、直 接式发送、 线性组合式映射或者重叠组合式映射。
其中,截取式发送是将关闭天线上的待发送数据分配到至少一个剩余天线 上, 将所述至少一个剩余天线上的待发送数据丟弃。 例如, 对于两天线系统, 如果选择关闭天线 1 , 将天线 1上的待发送数据 (包括导频信号和数据信号 ) 分配到天线 0上, 最后由天线 0将分配的数据发送出去。
直接式发送是将关闭天线上的待发送数据丟弃,除关闭天线外的剩余天线 上的待发送数据不变。
线性组合式发送是将关闭天线上的待发送数据与除关闭天线外的剩余天 线上的待发送数据进行线性组合, 将线性组合后的数据分配到所述剩余天线 上。 如, 对于两天线系统, 如果选择关闭天线 1 , 将天线 1上的待发送数据与 天线 o上的待发送数据进行线性组合,再将组合后的数据分配到天线 0上, 最 后由天线 0将组合后的数据发送出去。特别的, 由于导频信号的位置在不同的 天线上可能会正交, 对于正交的情况, 剩余天线在导频信号的位置上, 同时发 送关闭天线上和剩余天线上的所有导频信号。
重叠组合式发送是将关闭天线上的待发送数据与除关闭天线外的剩余天 线上的待发送数据进行重叠组合, 将重叠组合后的数据分配到所述剩余天线 上。如,在两天线系统中,如果天线 0和天线 1都采用 QPSK( Quadrature Phase Shift Keying, 四相相移键控)方式发射数据, 当选择关闭天线 0时, 将天线 0和天线 1上的待发送数据进行信号重叠后, 天线 0可以采用 16QAM的方式 发射组合后的信号。
步骤 203: 在所述数据发送周期的除所述关闭时间的剩余时间内, 开启所 有天线, 通过所有天线发送待发送数据。
例如, 数据发送周期为 10个子帧, 当确定关闭时间占用整个数据发送周 期的 20%, 如 2个子帧的时间时, 在除这 2个子帧外的剩余 8个子帧内, 开启 所有天线, 从所有天线上发送待发送数据。
在上述步骤 201-203中, 确定了每一个数据发送周期内的数据发送方法, 根据这种数目发送方法, 可以确定一个在时间轴上的发送图样。 如图 5 和 6 所示, 图 4为本发明中两天线系统的一种发送图样示意图, 图 6为本发明中四 天线系统的一种发送图样示意图。 其中, 图 5中的 501为天线 0, 502为天线 1 , 503为天线发送出的信号, 504为时间轴, tl、 tl+l、 tl+2、 tl+3、 tl+4、 tl+5和 tl+6表示 7个连续的计时单位,表中 "0"代表天线处于关闭状态, "Γ 代表天线处于打开状态。 图 6中的 601为天线 0, 602为天线 1 , 603为天线 2, 604为天线 3 , 605为天线发送出的信号, 606为时间轴, tl、 tl+l、 tl+2、 tl+3、 tl+4、 tl+5和 tl+6表示 7个连续的计时单位, 表中 "0" 代表天线处于关闭状 态, "Γ 代表天线处于打开状态。
对于非发送分集模式, 如复用模式, 可以先将其转换为发送分集模式, 然 后在发送分集模式中实施本发明的技术方案。 这里, 需要说明的是, 在本发明 的技术方案中, 并不限定采用何种方式将非发送分集模式转换为发送分集模 式, 可以采用现有技术中所提供的任何一种方式进行转换。 其中,发送分集模式包括空时编码的发送分集模式或者空频编码的发送分 集模式。 当采用发送分集模式发送数据时, 不需要对终端进行任何改变。 针对 两天线系统的空频编码方式, 现证明如下:
当发送端采用非发送分集模式的空频编码时, 发送、 接收结构为: 对任一个给定数据发送周期 t, 在两个不同载波上, 两个天线的传输信号 可表示为 (假设矩阵不同列表示不同发送天线上的传输信号)
假设接收端以单接收天线接收(目前最普遍的接收天线配置方式), 则信 道增益可表示为 2*1 的矢量 h- ^^ , 其中 = «0^^,/¾ = 0^^ , 和¾分别 是两条空间径上的信号衰减幅度和相位。 在接收时, 采用 Alamouti码的接收 机进 为:
Figure imgf000013_0001
因此, 可对两个信号分别进行解码。
当采用本发明中发送分集模式的空频编码方案时,关闭其中一个天线的发 送、 接收结构为:
关闭一个天线 (假设关闭天线 1), 但保持另一个天线上正常发送(假设 为天线 、 0), 则在发送周期 t, 不同载波上、 两根天线的传输信号可表示为:
0、 经过同样的信道¾= ?后, 采用相同的接收机结构, 在接收端的信号 为: r 0 = r t、 = h +n0 r0* = r*(t) = h +n0*
ri = At + T) = ~h i + f 经过变换可得 r* = r*(t + T) = -h^, + n[
进行解调信号 解调信号为:
Figure imgf000013_0002
由于天线 1关闭的过程中,我们将导频信号同时进行关闭, 因此接收机侧 完成信道估计后, 天线 1的信道增益估计值接近于 0, 即 -0。 那么, 原来的 和 信号, 即可以筒化为 和 = 因而, 采用 Alamouti 码的译码方式能够将原始信号 和 还原 (原理同 (1 ) )。
经过上述论证可以发现,提出的发送分集模式下, 多天线非连续发射方式 不需要终端侧进行调整,发送端除了不发送关闭天线对应的数据和导频外, 其 他操作均保持不变。
利用相同方法,还可以证明在空时编码的发送分集模式中,也不需要对终 端进行任何改变。 具体证明原理同上, 此处不再赘述。
下面再论证一下有益效果: 以两天线为例, 基站功率 P=40w, 噪声功率 No=0.1w, 4叚设 10%的数据发送周期内, 天线 0开启, 天线 1关闭 (此处关闭 指整条射频通道关闭, 节约 50%的射频总能耗); 10%的数据发送周期内。 天 线 1开启, 天线 0关闭; 80%的时间, 系统处于两天线均开启的工作状态, 那 么,
当天线增益 Ih0l=0.9, lhll=0.85时, 进入非连续发送后, 在剩余天线功率不 变的情况下, 射频平均总能量节约 10%, 容量降低 2.41%; 在剩余天线功率增 大一倍的情况下, 射频平均总能量节约 6%, 容量降低 0.0056%。
当天线增益 Ih0l=0.9, lhll=0.10时, 进入非连续发送后, 在剩余天线功率不 变的情况下, 射频平均总能量节约 10%, 容量降低 3.94%; 在剩余天线功率增 大一倍的情况下, 射频平均总能量节约 6%, 容量降低 2.76%。
由上述实施例可以看出, 本发明公开的技术方案通过系统的传输质量, 动 态关闭天线, 不仅减少所关闭天线对应的射频通道的动态和静态能耗,从而减 少发送系统的总功耗, 也兼顾了系统的动态传输性能。
此外, 本发明的公开的技术方案在动态改变发送天线数, 实现节能目的的 同时,与传统天线数改变的机制相比,减少通知信令开销,提高应用的灵活性, 主要表现在:
1 ) 由于应用在分集模式下, 当将待发送数据只通过开启的天线发送时, 接收端也按照天线被关闭前的正常接收方式接收数据, 因此,接收端的接收机 结构不需要随发送天线数的动态变化而改变,仍按照原天线数目下的方式进行 接收, 保持了收发方式的连续性, 减少了协议流程开销;
2 )进一步的, 由于接收端也按照天线被关闭前的正常接收方式接收数据, 发送端不需要通知发送天线数改变, 因此,发送端不需要因为发送天线数改变 而传送额外信令到接收端, 减少了信令开销;
3 ) 由于关闭天线的数目和关闭时间的长度可以在每个数据发送周期内发 生变化, 而不是一个固定的数值, 因此, 天线发送方式可实现灵活变化, 从而 适应较短时间内的业务量变化或信道波动。
实施例二
下面以四天线系统的设备或者装置为例,详细说明在四天线系统中如何进 行数据发送。 可以直接知道的是, 在四天线系统中, 共有 16种数据发送方式, 如图 7所示, 其为本发明中四天线系统中的数据发送方式示意图。 此外, 还设 定获取系统的传输质量的定时周期与数据发送的周期相同且同步,多天线的数 据发送周期为 10个子帧的时间。 请参阅图 8, 其为本发明一种四天线系统中 的数据发送方法的一个实施例的流程图, 包括以下步骤:
步骤 801 : 定时获取系统信息;
其中, 该系统信息包括传输模式、终端数以及每个终端在当前定时周期内 的重传率。
步骤 802:根据系统信息中的传输模式判断是否为发送分集模式,如果是, 进入步骤 805 , 否则, 进入步骤 803;
步骤 803: 判断当前的传输模式是否可以转换为发送分集模式, 如果是, 进入步骤 804, 否则, 结束流程;
步骤 804: 将当前的传输模式转换为发送分集模式;
步骤 805: 在下一个数据发送周期, 根据系统信息中终端的重传率确定关 闭天线的数目和关闭时间;
其中,在本实施例中, 由于设定获取系统的传输质量的定时周期与数据发 送的周期相同且同步, 因此, 很容易得到, 在当前定时周期获取的重传率用于 确定下一个数据发送周期中关闭天线的数目和关闭时间的长度。
假设, 在本发明实施例中, 根据重传率确定了关闭天线的数目为 2个, 关 闭时间的长度占整个数据发送周期的 20%。
步骤 806: 选择在数据发送周期的第一子帧关闭天线 1 , 剩余天线开启, 在第六个子帧关闭天线 2, 剩余天线开启, 将关闭天线上待发送数据映射到剩 余天线上; 即, 在第一个子帧上关闭天线 1 , 天线 0、 2和 3开启, 将关闭天线 1上 的待发送数据映射到天线 0、 2和 3中的任意一个天线上; 在第六个子帧上关 闭天线 2, 天线 0、 1和 3开启, 将关闭天线 2上的待发送数据映射到天线 0、 1和 3中的任意一个天线上。
关闭模式如下表所示,从表中可以看出, 关闭时间均匀地分布在整个数据 发送周期, 等概率地从 4个发送天线中选择关闭天线。
步骤 807: 在数据发送周期中的关闭时间, 由除关闭天线外的剩余天线发 送待发送数据,在数据发送周期中的非关闭时间, 由开启的所有天线发送待发 送的数据。
在第一个子帧上, 由天线 0、 2和 3发送待发送数据, 该待发送数据包括 自身所分配的待发送数据和由天线 1 映射而来的待发送数据; 在第六个子帧 上, 由天线 0、 1和 3发送待发送数据, 该待发送数据包括自身所分配的待发 送数据和由天线 2映射而来的待发送数据。
由上述实施例可以看出, 本发明公开的技术方案通过系统的传输质量, 动 态关闭天线, 不仅减少所关闭天线对应的射频通道的动态和静态能耗,从而减 少发送系统的总功耗, 也兼顾了系统的动态传输性能。
此外, 本发明的公开的技术方案在动态改变发送天线数, 实现节能目的的 同时,与传统天线数改变的机制相比,减少通知信令开销,提高应用的灵活性, 主要表现在:
1 ) 由于应用在分集模式下, 当将待发送数据只通过开启的天线发送时, 接收端也按照天线被关闭前的正常接收方式接收数据, 因此,接收端的接收机 结构不需要随发送天线数的动态变化而改变,仍按照原天线数目下的方式进行 接收, 保持了收发方式的连续性, 减少了协议流程开销;
2 )进一步的, 由于接收端也按照天线被关闭前的正常接收方式接收数据, 发送端不需要通知发送天线数改变, 因此,发送端不需要因为发送天线数改变 而传送额外信令到接收端, 减少了信令开销;
3 ) 由于关闭天线的数目和关闭时间的长度可以在每个数据发送周期内发 生变化, 而不是一个固定的数值, 因此, 天线发送方式可实现灵活变化, 从而 适应较短时间内的业务量变化或信道波动。 实施例三
下面再以在四天线系统中通过设定覆盖帧和节能帧的比例为例,说明另一 种数据发送的方法。 请参阅图 9, 其为本发明一种四天线系统中的数据发送方 法的另一个实施例的流程图, 包括以下步骤:
步骤 901 : 定时获取系统信息;
步骤 902: 判断系统当前是否处于中业务量或者低业务量阶段, 如果是, 进入步骤 903 , 否则, 进入步骤 909;
步骤 903: 根据业务量确定覆盖帧数量和节能帧数量;
其中, 系统在覆盖帧中处于正常工作状态, 在节能帧中处于节能状态; 步骤 904: 在节能帧中关闭天线;
其中, 关闭天线的方式可以是关闭天线上的整条射频通道,还可以是关闭 天线上射频通道中的至少一个射频单元。而在节能帧中关闭天线的数目和关闭 时间的长度按照正比例关系,根据系统的传输质量确定,相关的确定过程可以 参见实施例一, 此次不再赘述。
步骤 905: 将当前的传输模式转换为分集传输模式;
如果当前的传输模式为分集传输模式, 则不需要进行任何转换, 如果当前 的传输模式为分集传输模式, 则需要将当前的传输模式转换为分集传输模式。
步骤 906: 判断终端当前是否处于小区的边缘, 如果是, 进入步骤 907 , 否则, 进入步骤 908;
步骤 907: 将待发送数据分配到覆盖帧中;
步骤 908; 将待发送数据分配到节能帧中;
步骤 909: 判断传输是否结束, 如果是, 结束流程, 否则, 重新返回到步 骤 901。
由上述实施例可以看出, 本发明公开的技术方案通过系统的传输质量, 动 态关闭天线, 不仅减少所关闭天线对应的射频通道的动态和静态能耗,从而减 少发送系统的总功耗, 也兼顾了系统的动态传输性能。
此外, 本发明的公开的技术方案在动态改变发送天线数, 实现节能目的的 同时,与传统天线数改变的机制相比,减少通知信令开销,提高应用的灵活性, 主要表现在: 1 ) 由于应用在分集模式下, 当将待发送数据只通过开启的天线发送时, 接收端也按照天线被关闭前的正常接收方式接收数据, 因此,接收端的接收机 结构不需要随发送天线数的动态变化而改变,仍按照原天线数目下的方式进行 接收, 保持了收发方式的连续性, 减少了协议流程开销;
2 )进一步的, 由于接收端也按照天线被关闭前的正常接收方式接收数据, 发送端不需要通知发送天线数改变, 因此,发送端不需要因为发送天线数改变 而传送额外信令到接收端, 减少了信令开销;
3 ) 由于关闭天线的数目和关闭时间的长度可以在每个数据发送周期内发 生变化, 而不是一个固定的数值, 因此, 天线发送方式可实现灵活变化, 从而 适应较短时间内的业务量变化或信道波动。
实施例四
为了实施与上述一种多天线系统中的数据发送方法,本发明实施例还提供 一种多天线系统中的数据发送装置, 例如无线通信中的基站, 在 LTE、 HSPA、 WiMAX等支持多天线分集方式的无线通信系统中均可使用, 该装置用于完成 上述方法实施例中的各步骤及流程,方法中可以进行的操作与处理在装置的事 实例中对应的模块或单元能够执行。 请参阅图 10, 其为本发明一种多天线系 统中的数据发送装置的一个实施例的结构图, 该数据发送装置 10应用于发送 分集模式, 包括: 确定单元 1001、 第一发送单元 1002和第二发送单元 1003。 下面结合该装置的工作原理进一步介绍其内部结构以及连接关系。
确定单元 1001 , 用于在数据发送周期, 根据系统的传输质量确定关闭天 线的数目和关闭时间;
第一发送单元 1002, 用于在所述关闭时间内, 关闭确定数目的天线, 开 启除关闭天线外的剩余天线, 将待发送数据通过所述剩余天线发送;
第二发送单元 1003 , 用于在所述数据发送周期的除所述关闭时间的剩余 时间内, 开启所有天线, 通过所有天线发送待发送数据。
优选的, 所述发送分集模式包括: 空时编码的发送分集模式或者空时编码 的发送分集模式。
优选的, 请参阅图 11 , 其为本发明中确定单元的一个结构示意图。 如图 11所示, 确定单元 1001包括: 传输质量获取子单元 10011和当前周期确定子 单元 10012,
传输质量获取子单元 10011 , 用于定时获取系统的传输质量;
当前周期确定子单元 10012, 用于根据一个定时周期获取的系统的传输质 量,按照正比例关系确定当前数据发送周期内关闭天线的数目和关闭时间的长 度。
优选的, 请参阅图 12, 其为本发明中第一发送单元的一个结构示意图, 如图 12所示, 第一发送单元 1002包括: 时间选择子单元 10021和第一天线选 择子单元 10022,
时间选择子单元 10021 , 用于从所述数据发送周期中均匀地选择关闭天线 的计时单位, 使得计时单位均勾分布在数据发送周期, 其中, 所有关闭天线的 计时单位的时间总和为确定的关闭时间,数据发送周期以计时单位为最小时间 单位, 所述计时单位包括符号、 时隙、 子帧或者帧;
第一天线选择子单元 10022, 用于从所有的发送天线中为每个关闭天线的 计时单位选择关闭的天线, 其中, 所有关闭天线的数目总和为确定的关闭天线 数目。
除了图 12的结构外, 优选的, 请参阅图 13, 其为本发明中第一发送单元 的另一个结构示意图。 如图 13所示, 第一发送单元 1002包括: 时间选择子单 元 10021和第二天线选择子单元 10023 ,
时间选择子单元 10021 , 用于从所述数据发送周期中均勾地选择计时单 位, 使得计时单位均勾分布在数据发送周期, 其中, 所有关闭天线的计时单位 的时间总和为确定的关闭时间,数据发送周期以计时单位为最小时间单位, 所 述计时单位包括符号、 时隙、 子帧或者帧;
第二天线选择子单元 10023 , 用于按照选择概率相等的原则从所有的发送 天线中为每个关闭天线的计时单位等概率地选择关闭的天线, 其中, 所有关闭 天线的数目总和为确定的关闭天线数目。
或者, 除了图 12和图 13所示的优选方式外, 第一发送单元包括: 数量确 定子单元和第三天线选择子单元,
数量确定子单元, 用于根据业务量的大小确定覆盖帧数量和节能帧数量, 其中,系统在所述覆盖帧中处于正常工作状态,在所述节能帧中处于节能状态; 帧选子单元, 用于从待发送数据中选取确定数量的覆盖帧和节能帧; 第三天线选择子单元, 用于在所述覆盖帧中开启所有的天线,在所述节能 帧中传输重要信令的重要子帧上开启所有的天线,在所述节能帧的除重要子帧 外的其余子帧中选择关闭的天线, 其中, 所有关闭天线的数目总和为确定的关 闭天线数目。
另外, 优选的, 在关闭天线时, 第一发送单元 1002包括: 第一关闭子单 元, 用于在所述关闭时间内, 关闭确定数目的天线上的整条射频通道; 或者, 第二关闭子单元, 用于在所述关闭时间内, 关闭确定数目的天线上射频通道中 的至少一个射频元件。
优选的, 在开启天线时, 第一发送单元 1002包括: 第一开启子单元, 用 于开启除关闭天线外的剩余天线,且所述剩余天线的发射功率保持不变;或者, 第二开启子单元, 用于增大除关闭天线外的剩余天线的发射功率,且增大后的 发射功率不大于功放的最大发射功率, 以增大后的发射功率开启所述剩余天 优选的,在将关闭天线上的待发送数据映射到除关闭天线外的剩余天线上 时, 第一发送单元 1002包括:
截取式发送子单元,用于将关闭天线上的待发送数据分配到至少一个剩余 天线上, 将所述至少一个剩余天线上的待发送数据丟弃;
或者,
直接式发送子单元, 用于将关闭天线上的待发送数据丟弃, 除关闭天线外 的剩余天线上的待发送数据不变;
或者,
线性组合式发送子单元,用于将关闭天线上的待发送数据与除关闭天线外 的剩余天线上的待发送数据进行线性组合,将线性组合后的数据分配到所述剩 余天线上; 或者,
重叠组合式发送子单元,用于将关闭天线上的待发送数据与除关闭天线外 的剩余天线上的待发送数据进行重叠组合,将重叠组合后的数据分配到所述剩 余天线上。
由上述实施例可以看出, 本发明公开的技术方案通过系统的传输质量, 动 态关闭天线, 不仅减少所关闭天线对应的射频通道的动态和静态能耗,从而减 少发送系统的总功耗, 也兼顾了系统的动态传输性能。
此外, 本发明的公开的技术方案在动态改变发送天线数, 实现节能目的的 同时,与传统天线数改变的机制相比,减少通知信令开销,提高应用的灵活性, 主要表现在:
1 ) 由于应用在分集模式下, 当将待发送数据只通过开启的天线发送时, 接收端也按照天线被关闭前的正常接收方式接收数据, 因此,接收端的接收机 结构不需要随发送天线数的动态变化而改变,仍按照原天线数目下的方式进行 接收, 保持了收发方式的连续性, 减少了协议流程开销;
2 )进一步的, 由于接收端也按照天线被关闭前的正常接收方式接收数据, 发送端不需要通知发送天线数改变, 因此,发送端不需要因为发送天线数改变 而传送额外信令到接收端, 减少了信令开销;
3 ) 由于关闭天线的数目和关闭时间的长度可以在每个数据发送周期内发 生变化, 而不是一个固定的数值, 因此, 天线发送方式可实现灵活变化, 从而 适应较短时间内的业务量变化或信道波动。 需要说明的是,本领域普通技术人员可以理解实现上述实施例方法中的全 部或部分流程,是可以通过计算机程序来指令相关的硬件来完成, 所述的程序 可存储于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法 的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体 ( Read-Only Memory, ROM )或随机存储记忆体 ( Random Access Memory, RAM )等。
以上对本发明所提供的一种多天线系统中的数据发送方法和装置进行了 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于 本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均 会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

1、 一种多天线系统中的数据发送方法, 其特征在于, 应用于发送分集模 式, 包括:
在数据发送周期, 根据系统的传输质量确定关闭天线的数目和关闭时间; 在所述关闭时间内, 关闭所确定数目的天线, 开启除关闭天线外的剩余天线, 将待发送数据通过所述剩余天线发送;
在所述数据发送周期的除所述关闭时间的剩余时间内, 开启所有天线,通 过所有天线发送待发送数据。 利
2
2、 根据权利要求 1所述的方法, 其要特征在于, 所述发送分集模式包括空 时编码的发送分集模式或者空频编码的发送分求集模式。
3、 根据权利要求 1所述的方法, 其特征在于, 在所述数据发送周期, 根 据系统的传输质量确定关闭天线的数目和关闭时间包括:
定时获取系统的传输质量;
根据一个定时周期获取的系统的传输质量,按照正比例关系确定当前数据 发送周期内关闭天线的数目和关闭时间。
4、 根据权利要求 1所述的方法, 其特征在于, 所述在所所述关闭时间内, 关闭所确定数目的天线包括:
从所述数据发送周期中均勾地选择关闭天线的计时单位,使得所述计时单 位均勾分布在所述数据发送周期, 其中, 所有关闭天线的计时单位的时间总和 为确定的关闭时间,数据发送周期以计时单位为最小时间单位, 所述计时单位 包括符号、 时隙、 子帧或者帧;
从所有的发送天线中为每个关闭天线的计时单位选择关闭的天线, 其中, 所有关闭天线的数目总和为确定的关闭天线数目。
5、 根据权利要求 1所述的方法, 其特征在于, 所述在所述关闭时间内, 关闭所确定数目的天线包括:
根据业务量的大小确定覆盖帧数量和节能帧数量, 其中, 系统在所述覆盖 帧中处于正常工作状态, 在所述节能帧中处于节能状态;
在所述覆盖帧中开启所有的天线,在所述节能帧中传输重要信令的重要子 帧上开启所有的天线,在所述节能帧的除重要子帧外的其余子帧中选择关闭的 天线, 其中, 所有关闭天线的数目总和为确定的关闭天线数目。
6、 根据权利要求 5所述的方法, 其特征在于, 所述从待发送数据中选取 确定数量的覆盖帧和节能帧包括:
按照覆盖帧和节能帧均匀分布在待发送数据中的原则,从待发送数据中设 置确定数量的覆盖帧和节能帧。
7、 根据权利要求 1所述的方法, 其特征在于, 所述在所述关闭时间内, 关闭所确定数目的天线包括:
从所述数据发送周期中均勾地选择关闭天线的计时单位,使得计时单位均 匀分布在数据发送周期, 其中, 所有关闭天线的计时单位的时间总和为确定的 关闭时间,数据发送周期以计时单位为最小时间单位,所述计时单位包括符号、 时隙、 子帧或者帧;
按照选择概率相等的原则从所有的发送天线中为每个关闭天线的计时单 位等概率地选择关闭的天线, 其中, 所有关闭天线的数目总和为确定的关闭天 线数目。
8、 根据权利要求 1所述的方法, 其特征在于, 所述在所述关闭时间内, 关闭所确定数目的天线包括:
在所述关闭时间内, 关闭确定数目的天线上的整条射频通道;
或者,
在所述关闭时间内,关闭确定数目的天线上射频通道中的至少一个射频元 件。
9、 根据权利要求 1所述的方法, 其特征在于, 所述开启除关闭天线外的 剩余天线包括:
开启除关闭天线外的剩余天线, 且所述剩余天线的发射功率保持不变; 或者,
增大除关闭天线外的剩余天线的发射功率,且增大后的发射功率不大于功 放的最大发射功率, 以增大后的发射功率开启所述剩余天线。
10、 根据权利要求 1所述的方法, 其特征在于, 所述将待发送数据通过所 述剩余天线发送包括:
将关闭天线上的待发送数据丟弃,除关闭天线外的剩余天线上的待发送数 据不变;
或者,
将关闭天线上的待发送数据分配到至少一个剩余天线上,将所述至少一个 剩余天线上的待发送数据丟弃;
或者,
将关闭天线上的待发送数据与除关闭天线外的剩余天线上的待发送数据 进行线性组合, 将线性组合后的数据分配到所述剩余天线上;
或者,
将关闭天线上的待发送数据与除关闭天线外的剩余天线上的待发送数据 进行重叠组合, 将重叠组合后的数据分配到所述剩余天线上。
11、 一种多天线系统中的数据发送装置, 其特征在于, 应用于发送分集模 式, 包括:
确定单元, 用于在数据发送周期,根据系统的传输质量确定关闭天线的数 目和关闭时间;
第一发送单元, 用于在所述关闭时间内, 关闭所确定数目的天线, 开启除 关闭天线外的剩余天线, 将待发送数据通过所述剩余天线上发送;
第二发送单元, 用于在所述数据发送周期的除所述关闭时间的剩余时间 内, 开启所有天线, 通过所有天线发送待发送数据。
12、 根据权利要求 11所述的装置, 其特征在于, 所述发送分集模式包括 空时编码的发送分集模式或者空频编码的发送分集模式。
13、 根据权利要求 11所述的装置, 其特征在于, 所述确定单元包括: 传输质量获取子单元, 用于定时获取系统的传输质量;
当前周期确定子单元, 用于根据一个定时周期获取的系统的传输质量,按 照正比例关系确定当前数据发送周期内关闭天线的数目和关闭时间。
14、 根据权利要求 11所述的装置, 其特征在于, 所述第一发送单元包括: 时间选择子单元,用于从所述数据发送周期中均匀地选择关闭天线的计时 单位, 使得所述计时单位均勾地分布在所述数据发送周期, 其中, 所有关闭天 线的计时单位的时间总和为确定的关闭时间,数据发送周期以计时单位为最小 时间单位, 所述计时单位包括符号、 时隙、 子帧或者帧; 第一天线选择子单元,用于从所有的发送天线中为每个关闭天线的计时单 位选择关闭的天线, 其中, 所有关闭天线的数目总和为确定的关闭天线数目。
15、 根据权利要求 11所述的装置, 其特征在于, 所述第一发送单元包括: 时间选择子单元, 用于从所述数据发送周期中均勾地选择计时单位,使得 计时单位均勾分布在数据发送周期, 其中, 所有关闭天线的计时单位的时间总 和为确定的关闭时间,数据发送周期以计时单位为最小时间单位, 所述计时单 位包括符号、 时隙、 子帧或者帧;
第二天线选择子单元,用于按照选择概率相等的原则从所有的发送天线中 为每个关闭天线的计时单位等概率地选择关闭的天线, 其中, 所有关闭天线的 数目总和为确定的关闭天线数目。
16、 根据权利要求 11所述的装置, 其特征在于, 所述第一发送单元包括: 数量确定子单元, 用于根据业务量的大小确定覆盖帧数量和节能帧数量, 其中,系统在所述覆盖帧中处于正常工作状态,在所述节能帧中处于节能状态; 第三天线选择子单元, 用于在所述覆盖帧中开启所有的天线,在所述节能 帧中传输重要信令的重要子帧上开启所有的天线,在所述节能帧的除重要子帧 外的其余子帧中选择关闭的天线, 其中, 所有关闭天线的数目总和为确定的关 闭天线数目。
17、 根据权利要求 11所述装置, 其特征在于, 所述第一发送单元包括: 第一关闭子单元, 用于在所述关闭时间内, 关闭确定数目的天线上的整条 射频通道;
或者,
第二关闭子单元, 用于在所述关闭时间内, 关闭确定数目的天线上射频通 道中的至少一个射频元件。
18、 根据权利要求 11所述的装置, 其特征在于, 所述第一发送单元包括: 第一开启子单元, 用于开启除关闭天线外的剩余天线,且所述剩余天线的 发射功率保持不变;
或者,
第二开启子单元, 用于增大除关闭天线外的剩余天线的发射功率,且增大 后的发射功率不大于功放的最大发射功率,以增大后的发射功率开启所述剩余 天线。
19、 根据权利要求 11所述的装置, 其特征在于, 所述第一发送单元包括: 截取式发送子单元,用于将关闭天线上的待发送数据分配到至少一个剩余 天线上, 将所述至少一个剩余天线上的待发送数据丟弃;
或者,
直接式发送子单元, 用于将关闭天线上的待发送数据丟弃, 除关闭天线外 的剩余天线上的待发送数据不变;
或者,
线性组合式发送子单元,用于将关闭天线上的待发送数据与除关闭天线外 的剩余天线上的待发送数据进行线性组合,将线性组合后的数据分配到所述剩 余天线上;
或者,
重叠组合式发送子单元,用于将关闭天线上的待发送数据与除关闭天线外 的剩余天线上的待发送数据进行重叠组合,将重叠组合后的数据分配到所述剩 余天线上。
PCT/CN2011/074861 2011-05-30 2011-05-30 一种多天线系统中的数据发送方法和装置 WO2011157107A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2011/074861 WO2011157107A2 (zh) 2011-05-30 2011-05-30 一种多天线系统中的数据发送方法和装置
CN201180000567.3A CN102918780B (zh) 2011-05-30 2011-05-30 一种多天线系统中的数据发送方法和装置
EP11795073.3A EP2717491B1 (en) 2011-05-30 2011-05-30 Method and device for data transmission in multiple antennas system
US14/085,107 US9008219B2 (en) 2011-05-30 2013-11-20 Method and apparatus for transmitting data in multiple-antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074861 WO2011157107A2 (zh) 2011-05-30 2011-05-30 一种多天线系统中的数据发送方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/085,107 Continuation US9008219B2 (en) 2011-05-30 2013-11-20 Method and apparatus for transmitting data in multiple-antenna system

Publications (2)

Publication Number Publication Date
WO2011157107A2 true WO2011157107A2 (zh) 2011-12-22
WO2011157107A3 WO2011157107A3 (zh) 2012-04-19

Family

ID=45348603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074861 WO2011157107A2 (zh) 2011-05-30 2011-05-30 一种多天线系统中的数据发送方法和装置

Country Status (4)

Country Link
US (1) US9008219B2 (zh)
EP (1) EP2717491B1 (zh)
CN (1) CN102918780B (zh)
WO (1) WO2011157107A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119159A1 (en) 2012-02-06 2013-08-15 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for antenna mode switching
CN103840874A (zh) * 2012-11-21 2014-06-04 英特尔移动通信有限责任公司 通信设备和用于接收数据的方法
CN106954241A (zh) * 2016-01-06 2017-07-14 中国移动通信集团公司 一种多天线终端中接收天线数目的切换方法及装置
US10097286B2 (en) 2014-02-19 2018-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Data transmission over a reduced number of physical antennas
WO2019041977A1 (zh) * 2017-09-01 2019-03-07 格力电器(武汉)有限公司 数据传输方法及装置
CN110312298A (zh) * 2019-06-19 2019-10-08 Oppo广东移动通信有限公司 一种射频电路及电子设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982934B2 (en) * 2011-11-02 2015-03-17 Futurewei Technologies, Inc. Symbol-gated discontinuous mode for efficient power management of digital subscriber line transceivers
CN104038990B (zh) * 2013-03-06 2018-02-13 国基电子(上海)有限公司 天线控制系统及控制方法
KR102171178B1 (ko) * 2013-12-11 2020-10-28 삼성전자 주식회사 다수의 안테나를 사용하는 무선 통신 시스템에서 빔 선택 방법 및 장치
CN104270804B (zh) * 2014-09-28 2018-07-17 北京大学 一种基于数据缓存的基站节能方法及节能系统
CN105850209B (zh) * 2014-10-31 2019-06-21 华为技术有限公司 一种接入方法和设备
CN106817749A (zh) * 2015-12-01 2017-06-09 展讯通信(上海)有限公司 一种动态天线开闭方法及移动终端
CN107682059A (zh) * 2016-08-02 2018-02-09 索尼公司 用于网络控制端和中央处理节点的电子设备和方法
CN106888043B (zh) * 2016-12-31 2021-09-17 上海无线通信研究中心 一种混合预编码毫米波传输系统的自适应参数调整方法
US9936456B1 (en) * 2017-03-28 2018-04-03 Arris Enterprises Llc Power consumption management based on enabling and disabling wireless chains
US10904843B2 (en) 2017-05-15 2021-01-26 Qualcomm Incorporated Techniques and apparatuses for handling power state transitions of a beamforming apparatus
CN108495359B (zh) * 2018-03-01 2020-08-14 Oppo广东移动通信有限公司 天线控制方法、装置、存储介质及电子设备
CN111294891B (zh) * 2018-12-07 2021-06-22 成都华为技术有限公司 一种天线面板及波束的管理方法和设备
CN111756434A (zh) * 2020-05-14 2020-10-09 广州程星通信科技有限公司 一种相控阵功耗控制方法、系统、装置及存储介质
CN116315667B (zh) * 2022-01-25 2023-11-17 荣耀终端有限公司 数据传输方法、装置、设备及存储介质
WO2024035421A1 (en) * 2022-08-09 2024-02-15 Rakuten Mobile Usa Llc Method and apparatus for network energy saving by turning off transmit chains

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000002504A (ko) 1998-06-20 2000-01-15 윤종용 이동통신 시스템의 선택적 송신 다이버시티 장치 및 방법
EP1284545B1 (en) * 2001-08-13 2008-07-02 Motorola, Inc. Transmit diversity wireless communication
CN100392994C (zh) 2002-11-08 2008-06-04 中兴通讯股份有限公司 一种无线通信系统天线转换分集的方法
US7542733B1 (en) * 2003-02-04 2009-06-02 Sprint Spectrum L.P. Method and apparatus for diversity transmission from a mobile station
KR100857750B1 (ko) * 2004-03-05 2008-09-09 퀄컴 인코포레이티드 무선 통신에서의 수신 다이버시티 제어용 방법 및 장치
JP4482026B2 (ja) * 2004-03-05 2010-06-16 クゥアルコム・インコーポレイテッド 無線通信におけるマルチアンテナ受信ダイバーシティ制御
US8155712B2 (en) * 2006-03-23 2012-04-10 Sibeam, Inc. Low power very high-data rate device
US8000673B2 (en) 2006-04-04 2011-08-16 Panasonic Corporation Diversity receiving device and receiving scheme switching method
CN100472982C (zh) * 2006-04-11 2009-03-25 中兴通讯股份有限公司 无线系统上行不连续发射时下行闭环发射分集方法
CN100466489C (zh) * 2006-04-11 2009-03-04 中兴通讯股份有限公司 支持上行不连续发射无线系统的下行发射分集方法
US9590715B2 (en) 2006-12-22 2017-03-07 Sony Corporation WCDMA power saving with transmit diversity
US8086195B2 (en) * 2008-02-22 2011-12-27 Motorola Mobility, Inc. Communication unit and method of operation therefor
US8374260B2 (en) * 2009-06-22 2013-02-12 Motorola Mobility Llc Method and apparatus for implementing uplink transmit diversity in a switched antenna orthogonal frequency division multiplexing communication system
CN101778458B (zh) * 2010-01-05 2015-09-16 中兴通讯股份有限公司 一种基站节能方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2717491A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119159A1 (en) 2012-02-06 2013-08-15 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for antenna mode switching
EP2813110A4 (en) * 2012-02-06 2015-07-08 Ericsson Telefon Ab L M METHOD AND ARRANGEMENT FOR ANTENNA MODE SWITCHING
US9252828B2 (en) 2012-02-06 2016-02-02 Telefonaktiebolaget L M Ericsson Methods and arrangements for switching antenna mode with reduced power consumption
CN103840874A (zh) * 2012-11-21 2014-06-04 英特尔移动通信有限责任公司 通信设备和用于接收数据的方法
US10097286B2 (en) 2014-02-19 2018-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Data transmission over a reduced number of physical antennas
US10735114B2 (en) 2014-02-19 2020-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Data transmission over a reduced number of physical antennas
CN106954241A (zh) * 2016-01-06 2017-07-14 中国移动通信集团公司 一种多天线终端中接收天线数目的切换方法及装置
CN106954241B (zh) * 2016-01-06 2020-08-25 中国移动通信集团公司 一种多天线终端中接收天线数目的切换方法及装置
WO2019041977A1 (zh) * 2017-09-01 2019-03-07 格力电器(武汉)有限公司 数据传输方法及装置
CN110312298A (zh) * 2019-06-19 2019-10-08 Oppo广东移动通信有限公司 一种射频电路及电子设备

Also Published As

Publication number Publication date
EP2717491A2 (en) 2014-04-09
CN102918780A (zh) 2013-02-06
US9008219B2 (en) 2015-04-14
EP2717491A4 (en) 2014-07-09
CN102918780B (zh) 2016-03-09
WO2011157107A3 (zh) 2012-04-19
US20140093012A1 (en) 2014-04-03
EP2717491B1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
WO2011157107A2 (zh) 一种多天线系统中的数据发送方法和装置
JP6612408B2 (ja) Harqを実装するシステムにおけるコードワード対レイヤ・マッピング
US10686512B2 (en) Adaptive transmission systems and methods
US8837274B2 (en) Methods and apparatus for multi-dimensional data permutation in wireless networks
EP1882327B1 (en) Multi-carrier scheduling
CA2794175C (en) Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting mimo
US11283563B2 (en) Turbo HSDPA system
JP4987077B2 (ja) 多重アンテナを用いる多重副搬送波通信システムにおける誤り訂正方法及び装置
KR101710616B1 (ko) 업링크 송신 다이버시티를 위한 시그널링 및 채널 추정
CN101529738B (zh) 下行链路多输入多输出传输控制方法以及基站装置
CN104871438A (zh) 一致wlan多ap物理层方法
WO2010006114A2 (en) System level architectures for relayed uplink communication
CN105075321A (zh) 在无线通信系统中报告用于三维波束形成的信道状态信息的方法及其设备
TWI493913B (zh) 具有可配置的空間時頻編碼的無線通訊設備及其使用方法
CN104065453B (zh) 控制信息的发送和接收方法、装置和通信系统
US8649293B2 (en) Control information transmission method and control information receiving terminal
CN102263582B (zh) 协作分集系统波束成型方法及装置
Zhao et al. Adaptive modulation for cooperative wireless communication systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000567.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795073

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE