WO2011157022A1 - 金属化开槽基板集成波导 - Google Patents

金属化开槽基板集成波导 Download PDF

Info

Publication number
WO2011157022A1
WO2011157022A1 PCT/CN2010/077957 CN2010077957W WO2011157022A1 WO 2011157022 A1 WO2011157022 A1 WO 2011157022A1 CN 2010077957 W CN2010077957 W CN 2010077957W WO 2011157022 A1 WO2011157022 A1 WO 2011157022A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal patch
substrate
integrated waveguide
metal
substrate integrated
Prior art date
Application number
PCT/CN2010/077957
Other languages
English (en)
French (fr)
Inventor
彭琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011157022A1 publication Critical patent/WO2011157022A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present invention relates to the field of radio frequency and microwave millimeter wave waveguide structures, and more particularly to a metalized slotted substrate integrated waveguide. Background technique
  • rectangular waveguide In the existing RF and microwave, millimeter wave passive device design, rectangular waveguide has been widely used as a well-guided waveguide structure.
  • the rectangular waveguide has a rectangular box shape and is made of metal.
  • the middle part can be filled with some non-metallic medium.
  • the drawback is that it is bulky, costly to process, and difficult to integrate.
  • the substrate integrated waveguide emerged in recent years, based on the similar waveguide characteristics of the rectangular waveguide, can be processed by standard printed circuit board process. Significant improvements have been made in terms of cost, size, and integration with planar circuits.
  • the existing substrate integrated waveguide adopts a metallized through hole design, specifically, two rows of spaced through holes are arranged on the substrate, and a metal layer is coated on the inner wall of the through hole for transmission to the metallized through hole.
  • the interval is set, so there is a leakage wave effect, which increases the radiation loss.
  • the main object of the present invention is to provide a metallized slotted substrate integrated waveguide for reducing leakage waves and reducing radiation loss.
  • the present invention provides a metallized slotted substrate integrated waveguide, comprising a substrate, a first metal patch and a second metal patch, the first metal patch or the second metal patch being respectively located on the front or back of the substrate
  • the front and back sides are parallel to each other, and two mutually parallel strip-shaped slots are disposed between the front and back sides, and the inner wall of the slot is plated with a metal layer, and the first metal patch and the first metal patch are The second metal patch is connected.
  • the strip slot is perpendicular to the front or back side.
  • the second metal patch has a shape and size that coincides with the back or front side of the substrate.
  • the material of the first metal patch and the second metal patch comprises at least: copper, silver or gold.
  • the metallized slotted substrate integrated waveguide provided by the invention has two parallel strip-shaped slots formed on the substrate, the inner wall of the slot is plated with a metal layer, and the first metal patch and the second metal patch are respectively located Both sides of the substrate are connected by a metal layer of the inner wall of the groove, and thus have a transmission characteristic consistent with the rectangular waveguide.
  • the gap between the metallized vias in the existing substrate integrated waveguide is avoided, the leakage wave effect can be reduced, and the radiation loss can be reduced; and the integrated waveguide structure of the invention has metal coverage on the upper, lower, left and right sides, and the anti-interference ability
  • the present invention uses a metallized slot to realize a complete integrated waveguide vertical metal sidewall, the propagation characteristics of which are consistent with the conventional rectangular waveguide of the internal filling medium, and can completely borrow the design of the conventional rectangular waveguide.
  • the method has a fast and complicated design, and can also integrate various circuits on the substrate, so that the existing substrate integrated waveguide has the advantages of low processing cost, small size, and easy integration.
  • FIG. 1 is a schematic structural view of a metallized slotted substrate integrated waveguide according to an embodiment of the present invention. detailed description
  • the metallized slotted substrate integrated waveguide includes a substrate 10, a first metal patch 20, and The second metal patch 30, the first metal patch 20 or the second metal patch 30 are respectively located on the front surface 11 or the back surface 12 of the substrate 10.
  • the front surface 11 and the back surface 12 are parallel to each other, and are disposed between the two sides.
  • Two mutually parallel strip-shaped slots 13 are formed, and the inner wall of the slot 13 is plated with a metal layer to connect the first metal patch 20 and the second metal patch 30.
  • the substrate 10 may have a square shape and may be a PCB (Printed Circuit Board) substrate.
  • the first metal patch 20 and the second metal patch 30 are disposed on the two surfaces of the substrate 10 and connected through the metal layer of the slot 13. Therefore, the metallized slotted substrate integrated waveguide in the embodiment can form a square box.
  • the outer side of the square box is the first metal patch 20 and the second metal patch 30, and the side wall is an inner wall metal layer of the slot 13 filled with the dielectric substrate 10, which is actually the same shape as the rectangular waveguide for transmitting radio frequency.
  • the transmission metallized slotted substrate integrated waveguide which is compatible with the rectangular waveguide can avoid the gap between the metallized via holes in the existing substrate integrated waveguide, can effectively avoid the leakage wave effect, and reduce the radiation loss; in addition, due to the substrate 10
  • the material is a PCB substrate, and various circuits can be integrated on the substrate 10. Therefore, the substrate integrated waveguide has the advantages of low processing cost, small size, and easy integration.
  • the strip-shaped slits 13 may be disposed perpendicular to the front surface 11 of the substrate 10, and may be two in number. In the pitch, the groove width may be set to 1 mm, and the spacing between the two is 25 mm.
  • the design method of the conventional rectangular waveguide is well known to those skilled in the art and will not be described herein.
  • the first metal patch 20 may be located between the two strip-shaped slots 13 of the front surface 11 and adhered to the substrate 10 by a copper coating or coating process.
  • the material of the first metal patch 20 may be copper, and may be adhered to the front surface 11 of the substrate 10 by a copper clad process in a PCB manufacturing process, and the first metal patch 20 is connected to the metal layer of the slot 13;
  • the first metal patch 20 can be bonded to the substrate 10 by applying glue to the front surface 11 of the substrate 10, but the first metal patch 20 is brought into contact with the metal layer of the groove 13. Referring to FIG. 1, the input ends of the first metal patch 20 may also be provided. 21 and output 22 for inputting/outputting RF or microwave signals.
  • the second metal patch 30 can be located on the back surface 12 of the substrate 10, and has the same shape and size as the back surface 12 of the substrate 10. It can also be bonded to the back surface 12 by a copper coating or coating process.
  • the material of the first metal patch 20 and the second metal patch 30 may also be silver or gold.
  • the first metal patch 20 may be located on the back surface 12 of the substrate 10, and correspondingly, the second metal patch 30 is located on the front surface 11 of the substrate 10.
  • the anti-interference ability of the metallized slotted substrate integrated waveguide of the present invention is stronger than that of the existing substrate integrated waveguide.
  • the existing substrate integrated waveguide uses metallized vias, the transmission characteristics are similar to those of the conventional rectangular waveguides, but they are not completely the same.
  • the design method of the rectangular waveguide cannot be completely borrowed, and the electromagnetic wave full wave value is required to achieve accurate design. Simulation, but the current electromagnetic wave full-wave numerical simulation has low simulation efficiency for the substrate integrated waveguide structure, especially the complex substrate integrated waveguide circuit design, which greatly affects the product design speed.
  • the metallized slotted substrate integrated waveguide of the present invention uses a metallized slot to realize a complete integrated waveguide vertical metal sidewall, and its propagation characteristics are consistent with the conventional rectangular waveguide of the internal filling medium, and the design method of the conventional rectangular waveguide can be completely borrowed. Compared with some substrate integrated waveguides, the design efficiency is greatly improved.

Description

金属化开槽 集成波导 技术领域
本发明涉及射频以及微波毫米波波导结构技术领域, 尤其涉及一种金 属化开槽基板集成波导。 背景技术
在现有的射频以及微波、 毫米波无源器件设计中, 矩形波导作为一种 性能优良的导波结构得到了广泛的应用。 矩形波导的外形为一长方形盒体, 材质为金属, 中部可填充一些非金属介质。 其缺陷在于, 体积较大、 加工 成本高、 不易集成。 随着技术的不断发展, 近几年中涌现出来的基片集成 波导, 在保持了与矩形波导相似的导波特性的基础之上, 可以釆用标准的 印刷电路板工艺进行加工, 在生产成本、 体积以及与平面电路的集成方面 做出了重大改进。 但现有的基片集成波导釆用金属化通孔设计, 具体为在 基板上设置两排间隔设置的通孔, 并在通孔内壁涂覆金属层, 用以传输射 于金属化通孔呈间隔设置, 因而存在漏波效应, 增加了辐射损耗。 发明内容
本发明的主要目的在于提供一种金属化开槽基板集成波导, 旨在减少 漏波, 降低辐射损耗。
本发明提供一种金属化开槽基板集成波导, 包括基板、 第一金属贴片 和第二金属贴片, 所述第一金属贴片或第二金属贴片分别位于所述基板的 正面或背面, 所述正面和背面相互平行, 所述正面和背面之间设有两条相 互平行的条形开槽, 所述开槽的内壁镀有金属层, 将所述第一金属贴片和 第二金属贴片连接。
优选地, 所述条形开槽垂直所述正面或背面。
优选地, 所述第二金属贴片的形状和大小与所述基板的所述背面或正 面一致。
优选地, 所述第一金属贴片、 第二金属贴片的材质至少包括: 铜、 银 或金。
本发明所提供的金属化开槽基板集成波导, 在基板上开设两条相互平 行的条形开槽, 该开槽的内壁镀有金属层, 第一金属贴片、 第二金属贴片 分别位于基板的两面, 并且通过开槽内壁金属层相连, 因而具有与矩形波 导一致的传输特性。 避免了现有基片集成波导中金属化通孔之间的空隙, 可减少漏波效应, 降低辐射损耗; 而且由于本发明集成波导结构上、 下、 左、 右均有金属覆盖, 抗干扰能力比现有基片集成波导更强; 另外, 本发 明使用金属化开槽实现完整的集成波导垂直金属侧壁, 其传播特性与内部 填充介质的传统矩形波导一致, 可以完全借用传统矩形波导的设计方法, 进行快速复杂设计, 还可在基板上集成各种电路, 因而还具有现有基片集 成波导加工成本低、 体积小、 易集成等优点。 附图说明
图 1为本发明一种实施方式中金属化开槽基板集成波导的结构示意图。 具体实施方式
本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一 步说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不 用于限定本发明。
图 1示出了本发明的一个实施方式中金属化开槽基板集成波导的结构。 如图 1所示, 该金属化开槽基板集成波导包括基板 10、 第一金属贴片 20和 第二金属贴片 30, 所述第一金属贴片 20或第二金属贴片 30分别位于所述 基板 10的正面 11或背面 12 , 所述正面 11和背面 12相互平行, 两面之间 设有两条相互平行的条形开槽 13 , 所述开槽 13的内壁镀有金属层, 将所述 第一金属贴片 20和第二金属贴片 30连接。
基板 10的形状可以为方形, 其材质可以为 PCB ( Printed Circuit Board , 印刷电路板)基板。 第一金属贴片 20、 第二金属贴片 30分设于基板 10的 两表面并通过开槽 13的金属层相连, 因而本实施方式中金属化开槽基板集 成波导可构成一方形盒体, 该方形盒体的外部为第一金属贴片 20和第二金 属贴片 30, 侧壁为开槽 13的内壁金属层, 内部填充介质基板 10, 实际上 与矩形波导用于传输射频的外形相同, 因而可获得与矩形波导一致的传输 金属化开槽基板集成波导避免了现有基片集成波导中金属化通孔之间的空 隙,可有效避免漏波效应,降低辐射损耗;另外,由于基板 10的材质为 PCB 基板, 还可在基板 10上集成各种电路, 因而还具有基片集成波导中加工成 本低、 体积小、 易集成等优点。
条形开槽 13可垂直于基板 10的正面 11设置, 数量可以为两条, 间距 中, 可设置槽宽为 1mm, 两两之间的间距为 25mm。 传统矩形波导的设计 方法为本领域技术人员所周知, 在此不作赘述。
在一实施例中, 第一金属贴片 20可位于正面 11的两条条形开槽 13之 间, 通过覆铜或涂覆工艺与基板 10贴合。 第一金属贴片 20的材质可以为 铜, 可使用 PCB制造工艺中的覆铜工艺与基板 10的正面 11贴合, 并使第 一金属贴片 20与开槽 13的金属层相接; 也可通过在基板 10的正面 11涂 覆胶水, 将第一金属贴片 20与基板 10贴合, 但需将第一金属贴片 20与开 槽 13的金属层相接。 参照图 1 , 第一金属贴片 20的两端还可设置输入端 21和输出端 22, 以便输入 /输出射频或微波信号。 第二金属贴片 30可位于 基板 10背面 12, 其形状和大小与所述基板 10的背面 12—致, 亦可通过覆 铜或涂覆工艺与背面 12贴合。
在另一实施例中, 第一金属贴片 20和第二金属贴片 30的材质也可为 银或金。 第一金属贴片 20可位于基板 10的背面 12, 对应地, 第二金属贴 片 30则位于基板 10的正面 11。
上述实施例中, 由于上、 下、 左、 右均有金属覆盖, 因而本发明金属 化开槽基板集成波导的抗干扰能力比现有基片集成波导更强。
此外, 由于现有的基片集成波导釆用金属化通孔, 其传输特性与传统 矩形波导相似但并不完全相同, 不能完全借用矩形波导的设计方法, 要达 到精确设计需要借助电磁场全波数值仿真, 但目前电磁场全波数值仿真对 于基片集成波导结构尤其是复杂基片集成波导电路设计仿真效率低下, 极 大地影响产品设计速度。 而本发明金属化开槽基板集成波导使用金属化开 槽实现完整的集成波导垂直金属侧壁, 其传播特性与内部填充介质的传统 矩形波导一致, 可以完全借用传统矩形波导的设计方法, 与现有的基片集 成波导相比, 设计效率大大提高。
以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡 是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围 内。

Claims

权利要求书
1、 一种金属化开槽基板集成波导, 其特征在于, 包括基板、 第一金属 贴片和第二金属贴片, 所述第一金属贴片或第二金属贴片分别位于所述基 板的正面或背面, 所述正面和背面相互平行, 所述正面和背面之间设有两 条相互平行的条形开槽, 所述开槽的内壁镀有金属层, 将所述第一金属贴 片和第二金属贴片连接。
2、 如权利要求 1所述的金属化开槽基板集成波导, 其特征在于, 所述 条形开槽垂直所述正面或背面。
3、 如权利要求 2所述的金属化开槽基板集成波导, 其特征在于, 所述 第二金属贴片的形状和大小与所述基板的所述背面或正面一致。
4、 如权利要求 1至 3任一项所述的金属化开槽基板集成波导, 其特征 在于, 所述第一金属贴片、 第二金属贴片的材质至少包括: 铜、 银或金。
PCT/CN2010/077957 2010-06-13 2010-10-21 金属化开槽基板集成波导 WO2011157022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010202678.X 2010-06-13
CN201010202678XA CN102280679A (zh) 2010-06-13 2010-06-13 金属化开槽基板集成波导

Publications (1)

Publication Number Publication Date
WO2011157022A1 true WO2011157022A1 (zh) 2011-12-22

Family

ID=45105957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077957 WO2011157022A1 (zh) 2010-06-13 2010-10-21 金属化开槽基板集成波导

Country Status (2)

Country Link
CN (1) CN102280679A (zh)
WO (1) WO2011157022A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923255B2 (en) 2015-11-06 2018-03-20 Apollo Microwaves Ltd. Cross-guide coupler with main waveguide arm and substrate integrated waveguide (SIW) secondary arm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244581B (zh) * 2015-07-30 2019-01-18 东南大学 矩形波导-梯形减高过渡-基片集成波导转换器及其组装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185354B1 (en) * 1998-05-15 2001-02-06 Motorola, Inc. Printed circuit board having integral waveguide
US20020055199A1 (en) * 2000-10-31 2002-05-09 Leif Bergstedt Arrangement mounted on a printed circuit board and method of producing such an arrangement
EP1376746B1 (en) * 2002-06-27 2006-08-23 Siemens Mobile Communications S.p.A. Tuneless rectangular dielectric waveguide filter
CN201383535Y (zh) * 2009-04-01 2010-01-13 惠州市硕贝德通讯科技有限公司 一种矩形波导-基片集成波导信号转换及功率分配器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418263C (zh) * 2006-07-10 2008-09-10 东南大学 半模基片集成波导

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185354B1 (en) * 1998-05-15 2001-02-06 Motorola, Inc. Printed circuit board having integral waveguide
US20020055199A1 (en) * 2000-10-31 2002-05-09 Leif Bergstedt Arrangement mounted on a printed circuit board and method of producing such an arrangement
EP1376746B1 (en) * 2002-06-27 2006-08-23 Siemens Mobile Communications S.p.A. Tuneless rectangular dielectric waveguide filter
CN201383535Y (zh) * 2009-04-01 2010-01-13 惠州市硕贝德通讯科技有限公司 一种矩形波导-基片集成波导信号转换及功率分配器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923255B2 (en) 2015-11-06 2018-03-20 Apollo Microwaves Ltd. Cross-guide coupler with main waveguide arm and substrate integrated waveguide (SIW) secondary arm

Also Published As

Publication number Publication date
CN102280679A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
US9673532B2 (en) Antenna
CN103441340B (zh) 极化可变和频率扫描的半模基片集成波导漏波天线
CN104092028A (zh) 抑制共模噪声的平衡馈电差分缝隙天线
CN109301416B (zh) 悬置基片集成波导传输线
WO2013078976A1 (zh) 平面波导、波导滤波器及天线
CN100418263C (zh) 半模基片集成波导
JP2009539291A (ja) 十字を有するフィルター
US20150054593A1 (en) Multi-layer circuit board with waveguide to microstrip transition structure
TWI776601B (zh) 具有波導管的線路板結構及其製作方法
CN206490160U (zh) 一种带状传输线
WO2011157022A1 (zh) 金属化开槽基板集成波导
Zou et al. Design of an X-band symmetrical window bandpass filter based on substrate integrated waveguide
CN109301415B (zh) 基于高介陶瓷的铁氧体半填充式siw环行器及加工方法
CN100388556C (zh) 基片集成波导180度三分贝定向耦合器
CN2914356Y (zh) 半模基片集成波导连续耦合定向耦合器
CN2914354Y (zh) 半模基片集成波导
CN202111205U (zh) 一种t型端口平面集成波导环行器
CN109585992B (zh) 一种应用于l和s波段的带状传输线
CN210926321U (zh) 一种带状线馈电的宽带毫米波天线单元
CN211045677U (zh) 耦合器
CN211045679U (zh) 耦合器
CN100459282C (zh) 半模基片集成波导90度三分贝定向耦合器
CN114156624A (zh) 基于间隙波导结构的毫米波宽带低损耗定向耦合器
CN2914357Y (zh) 半模基片集成波导180度三分贝定向耦合器
CN111244619A (zh) 基于空气基片集成波导的贴片阵列天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853130

Country of ref document: EP

Kind code of ref document: A1