WO2011155512A1 - 無線基地局及びその制御方法 - Google Patents

無線基地局及びその制御方法 Download PDF

Info

Publication number
WO2011155512A1
WO2011155512A1 PCT/JP2011/063109 JP2011063109W WO2011155512A1 WO 2011155512 A1 WO2011155512 A1 WO 2011155512A1 JP 2011063109 W JP2011063109 W JP 2011063109W WO 2011155512 A1 WO2011155512 A1 WO 2011155512A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
base station
radio base
radio
movement speed
Prior art date
Application number
PCT/JP2011/063109
Other languages
English (en)
French (fr)
Inventor
三浩 北地
智春 山崎
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/702,570 priority Critical patent/US20130084871A1/en
Publication of WO2011155512A1 publication Critical patent/WO2011155512A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data

Definitions

  • the present invention relates to a radio base station to which SON technology is applied and a control method thereof.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • a handover parameter for controlling handover is adjusted based on handover failure information related to handover failure in order to reduce a failure rate of handover of a wireless terminal (that is, switching of a connected base station).
  • a method for optimizing handover parameters has been proposed (see, for example, Non-Patent Document 1).
  • MRO Mobility Robustness Optimization
  • 3GPP TR36.902 “4.5 Mobility Robustness Optimization”
  • 3GPP TS36.331 “5.5.4 Measurement report triggering”
  • the radio propagation environment differs depending on the moving speed of the radio terminal, and the optimum handover parameter differs for each radio propagation environment. Therefore, with the above method, the handover parameters cannot be adjusted appropriately, and there is a possibility that the handover failure rate cannot be sufficiently reduced.
  • an object of the present invention is to provide a radio base station that can sufficiently reduce a handover failure rate and a control method thereof.
  • a feature of the radio base station is that a storage unit (storage unit 130) stores handover parameters for controlling handover of a radio terminal in association with movement speed information indicating the movement speed of an arbitrary radio terminal. And a controller that controls the storage unit to detect a handover failure and adjust a handover parameter associated with movement speed information indicating a failure detection movement speed that is a movement speed of a wireless terminal in which the handover failure is detected. (Control unit 120).
  • the handover parameter can be adjusted for each moving speed, the handover parameter can be adjusted more appropriately and the handover failure rate can be sufficiently reduced.
  • the control unit is a handover parameter associated with movement speed information indicating a movement speed of a radio terminal connected to the own station. Is obtained from the storage unit, and the handover of the connected wireless terminal is controlled using the acquired handover parameter.
  • Another feature of the radio base station according to the present invention is that, in the radio base station according to the above feature, the control unit associates with the moving speed information indicating the failed detected moving speed in accordance with a failure reason of the handover failure.
  • the gist of the invention is to control the storage unit so as to adjust the received handover parameter.
  • Another feature of the radio base station according to the present invention is that, in the radio base station according to the above feature, when the failure reason is that the start of handover is too late, the control unit is configured to accelerate the start of handover. Further, the gist is to adjust a handover parameter associated with the movement speed information indicating the failure detection movement speed.
  • Another feature of the radio base station according to the present invention is that, in the radio base station according to the above feature, when the failure reason is that the start of the handover is too early, the control unit delays the start of the handover.
  • the gist is to adjust the handover parameter associated with the moving speed information indicating the failure detection moving speed.
  • the control unit includes: The gist is to adjust the handover parameter associated with the moving speed information indicating the failure detection moving speed so that the selection of the handover destination radio base station is appropriate.
  • a feature of the control method according to the present invention is a method for controlling a radio base station, wherein a handover parameter for controlling handover of a radio terminal is associated with movement speed information indicating a movement speed of an arbitrary radio terminal;
  • the gist of the present invention is to include a step of detecting a handover failure and a step of adjusting a handover parameter associated with movement speed information indicating a failure detection movement speed that is a movement speed of the wireless terminal in which the handover failure is detected.
  • FIG. 1 is a schematic system configuration diagram for explaining an overview of a wireless communication system according to an embodiment of the present invention. It is a conceptual diagram for demonstrating the classification (reason for failure) of the handover failure which concerns on embodiment of this invention (the 1). It is a conceptual diagram for demonstrating the classification (reason for failure) of the handover failure which concerns on embodiment of this invention (the 2). It is a conceptual diagram for demonstrating the classification (reason for failure) of the handover failure which concerns on embodiment of this invention (the 3). It is a block diagram which shows the structure of the wireless base station which concerns on embodiment of this invention. It is a conceptual diagram for demonstrating the structural example of the parameter table which concerns on embodiment of this invention (the 1).
  • FIG. 1 is a schematic system configuration diagram for explaining an overview of a radio communication system 1 according to the present embodiment.
  • the wireless communication system 1 is configured based on the LTE standard.
  • a plurality of radio base stations eNB (radio base stations eNB # 1 to eNB # 3) constitute an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network).
  • Each of the plurality of radio base stations eNB forms a cell that is a communication area that should provide a service to the radio terminal UE.
  • Each wireless base station eNB adjacent to each other can communicate via an X2 interface that is a logical communication path that provides inter-base station communication.
  • Each of the plurality of radio base stations eNB can communicate with EPC (Evolved Packet Core), specifically, MME (Mobility Management Entity) / S-GW (Serving Gateway) via the S1 interface.
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the radio terminal UE is a radio communication device possessed by a user and is also referred to as a user device.
  • the radio terminal UE # 1 is connected to the radio base station eNB # 1 in a cell formed by the radio base station eNB # 1.
  • the radio terminal UE # 2 connects to the radio base station eNB # 2 within a cell formed by the radio base station eNB # 2.
  • the radio terminal UE # 3 connects to the radio base station eNB # 3 within a cell formed by the radio base station eNB # 3.
  • the radio terminal UE measures the quality of the radio signal received from the radio base station eNB (that is, radio quality), and transmits a Measurement Report message that is a report related to the measurement result of the radio quality to the connection-destination radio base station eNB.
  • the radio quality is, for example, received power (RSRP) of a reference signal.
  • the Measurement Report message may be transmitted from the radio terminal UE to the radio base station eNB triggered by an event set by the radio base station eNB, or may be periodically transmitted from the radio terminal UE to the radio base station eNB.
  • the radio base station eNB to which the radio terminal UE is connected performs handover control for switching the connection destination of the radio terminal UE based on the Measurement Report message received from the radio terminal UE.
  • the Measurement-Report message may include a plurality of RSRPs corresponding to the plurality of radio base stations eNB.
  • the radio base station eNB to which the radio terminal UE is connected for example, performs handover (hereinafter referred to as the radio terminal UE) so that the radio base station eNB has the highest RSRP among the plurality of radio base stations eNB. (Abbreviated as “HO” as appropriate).
  • each radio base station eNB adjusts handover parameters based on detecting a handover failure of the radio terminal UE.
  • a handover parameter is, for example, an offset value for correcting RSRP measured by the radio terminal UE.
  • radio terminal UE # 1 can receive radio signals from radio base station eNB # 1 and radio base station eNB # 2, RSRP # 1 corresponding to radio base station eNB # 1 and radio base station Before comparing with RSRP # 2 corresponding to station eNB # 2, an offset value for correcting RSRP # 1 higher is added to RSRP # 1.
  • the offset value takes one value for each pair of radio base stations eNB and is shared by each pair of radio base stations eNB.
  • the radio terminal UE connected to the radio base station eNB # 1 adjusts the handover parameter of the radio base station eNB # 1 based on the fact that the handover to the radio base station eNB # 2 has failed. .
  • Too Late HO is not between handover start radio base station eNB # 1 and radio terminal UE before handover start or during handover execution (step S1) because handover start is too late.
  • RLF radio link disconnection
  • the radio terminal UE tries to reconnect to a radio base station eNB other than the handover destination radio base station eNB # 2 or the handover source radio base station eNB # 1 (step S3).
  • the reconnection-destination radio base station eNB notifies the handover-source radio base station eNB # 1 of an RLF Indication message indicating the occurrence of Too Late HO (step S4).
  • Too ⁇ Early HO is in between handover target radio base station eNB # 2 and radio terminal UE immediately after handover or during handover execution (step S1) because handover has started too early. It means that RLF has occurred (step S2). In this case, the radio terminal UE tries to reconnect to the handover source radio base station eNB # 1 (step S3).
  • the handover-destination radio base station eNB # 2 receives the RLF ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Indication message from the handover-source radio base station eNB # 1 (step S4), and the handover-destination radio base station eNB # 2 performs UE Context Release related to the handover completion. If the message has been sent to the handover source radio base station eNB # 1, a Handover Report message indicating the occurrence of Too Early HO may be sent to the handover source radio base station eNB # 1 (step S5).
  • the HO-to-Wrong cell is changed from the handover-source radio base station eNB # 1 to the handover-destination radio base station eNB # 2 due to inappropriate selection of the handover-target radio base station eNB.
  • step S1 it means that RLF has occurred between the radio base station eNB # 2 and the radio terminal UE (step S2).
  • step S3 the radio terminal UE tries to reconnect to a radio base station eNB # 3 other than the handover source radio base station eNB # 1 and the handover destination radio base station eNB # 2 (step S3).
  • the handover destination radio base station eNB # 2 receives the RLF Indication message from the radio base station eNB # 3 other than the handover source radio base station eNB # 1 (step S4), and the handover destination radio base station eNB # 2 has already When the UE Context Release message is sent to the handover source radio base station eNB # 1, the occurrence of HO toWrong Cell may be notified by the Handover Report message (step S5).
  • the radio base station The station eNB # 3 may send an RLF Indication message to the handover source radio base station eNB # 1 (step S5 ′).
  • Radio base stations eNB other than the radio base station eNB # 1 are configured in the same manner as the radio base station eNB # 1.
  • FIG. 3 is a block diagram illustrating a configuration of the radio base station eNB # 1.
  • the radio base station eNB # 1 includes an antenna unit 101, a radio communication unit 110, a control unit 120, a storage unit 130, and a network communication unit 140.
  • the antenna unit 101 is used for transmitting and receiving radio signals.
  • the radio communication unit 110 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, or the like, and transmits and receives radio signals to and from the radio terminal UE via the antenna unit 101.
  • the radio communication unit 110 also modulates / encodes the transmission signal and demodulates / decodes the reception signal.
  • the control unit 120 is configured using, for example, a CPU, and controls various functional blocks included in the radio base station eNB # 1.
  • the storage unit 130 is configured using, for example, a memory, and stores various types of information used for control and the like in the radio base station eNB # 1.
  • the network communication unit 140 performs inter-base station communication using the X2 interface and communication using the S1 interface.
  • the storage unit 130 stores a parameter table in which handover parameters for controlling handover of the radio terminal UE are associated with movement speed information indicating the movement speed of an arbitrary radio terminal.
  • the handover parameter means an offset value added to the RSRP measured by the radio terminal UE and a threshold value compared with the RSRP measured by the radio terminal UE. A specific example of the parameter table will be described later.
  • the control unit 120 includes a moving speed information acquisition unit 121, a handover parameter acquisition unit 122, a handover control unit 123, a handover failure detection unit 124, and a handover parameter adjustment unit 125.
  • the moving speed information acquisition unit 121 acquires moving speed information indicating the moving speed of the radio terminal UE connected to the radio base station eNB # 1. Specifically, when the radio terminal UE has a positioning function based on GPS (Global Positioning System), the moving speed information acquisition unit 121 acquires moving speed information from the positioning position by GPS and its positioning time interval. When the radio terminal UE does not have a GPS positioning function, the moving speed information acquisition unit 121 is configured to transmit the radio terminal UE from a terminal location measurement server (E-SLMC: “Evolved” Serving “Mobile” Location “Center”) provided on the core network side. The moving speed information is acquired from the positioning position and the positioning time interval.
  • E-SLMC terminal location measurement server
  • the mobile communication unit 110 may acquire the moving speed information from the fading pitch of the radio signal received from the radio terminal UE, or the mobile terminal UE acquires the moving speed information from the information on the number of cells that pass through per unit time. May be. Further, the moving speed information may be acquired from the time during which the radio terminal UE stays in the cell of the radio base station eNB # 1 and the history information of handover of the radio terminal UE.
  • the terminal location measurement server E-SLMC
  • the handover parameter acquisition unit 122 acquires the handover parameter associated with the movement speed information acquired by the movement speed information acquisition unit 121 from the parameter table stored in the storage unit 130.
  • the handover control unit 123 determines whether or not to cause the radio terminal UE to perform handover based on the Measurement Report message received by the radio communication unit 110 from the radio terminal UE and the handover parameter acquired by the handover parameter acquisition unit 122. Perform condition judgment.
  • RSRP # 1 corresponding to the radio base station eNB # 1 and RSRP # 2 corresponding to the radio base station eNB # 2 are included in the Measurement Report message, and the handover parameter is x [dB] in RSRP # 2.
  • the handover control unit 123 compares RSRP # 1 and (RSRP # 2 + x), and if (RSRP # 2 + x) exceeds RSRP # 1, Handover control is performed so that the radio terminal UE is handed over to the station eNB # 2. On the other hand, when (RSRP # 2 + x) is lower than RSRP # 1, the handover control unit 123 prevents the radio terminal UE from performing a handover to the radio base station eNB # 2.
  • the handover failure detection unit 124 detects a handover failure after the handover control unit 123 determines that the radio terminal UE performs handover to the handover destination radio base station eNB # 2.
  • the handover failure detection unit 124 detects Too Late HO by an RLF Indication message indicating the occurrence of Too Late HO that the network communication unit 140 receives from the handover destination radio base station eNB # 2.
  • the handover failure detection unit 124 detects Too Early HO when the radio terminal UE reconnects to the radio base station eNB # 1. Alternatively, the handover failure detection unit 124 detects Too Early HO by a Handover Report message indicating the occurrence of Too Early HO received by the network communication unit 140 from the handover destination radio base station eNB # 2.
  • the handover failure detection unit 124 detects the HO-to-Wrong cell by the Handover-Report message indicating the occurrence of the HO-to-Wrong cell received by the network communication unit 140 from the handover destination radio base station eNB # 2.
  • the handover failure detection unit 124 detects the HO to Wrong cell by the RLF Indication message indicating the occurrence of the HO to Wrong cell received by the network communication unit 140 from the other radio base station eNB # 3.
  • the handover failure detection unit 124 stores the handover failure status detected by the handover failure detection unit 124 in the storage unit 130 in association with the movement speed information acquired by the movement speed information acquisition unit 121.
  • the moving speed of the radio terminal UE in which the handover failure is detected is referred to as a failure detected moving speed.
  • the handover failure detection unit 124 associates the moving speed information indicating the failure detection moving speed with the type of handover failure (Too Late HO, Too Early HO, or HO to Wrong Cell) and stores them in the storage unit 130.
  • the handover parameter adjustment unit 125 refers to the storage unit 130 and controls the storage unit 130 to adjust the handover parameter associated with the movement speed information indicating the failure detection movement speed.
  • the handover parameter adjustment unit 125 adjusts the handover parameter associated with the moving speed information indicating the failure detection moving speed at which Too Late HO has occurred so as to accelerate the start of the handover.
  • the offset value added to RSRP # 1 corresponding to the radio base station eNB # 1 is decreased, or the offset value added to RSRP # 2 corresponding to the radio base station eNB # 2 is increased. By doing so, the start of the handover from the radio base station eNB # 1 to the radio base station eNB # 2 can be accelerated.
  • the handover parameter adjustment unit 125 adjusts the handover parameter associated with the moving speed information indicating the failure detection moving speed at which Too Early HO has occurred so as to delay the start of the handover.
  • the offset value added to RSRP # 1 corresponding to the radio base station eNB # 1 is increased, or the offset value added to RSRP # 2 corresponding to the radio base station eNB # 2 is decreased. By doing so, the start of the handover from the radio base station eNB # 1 to the radio base station eNB # 2 can be delayed.
  • the handover parameter adjustment unit 125 is associated with the moving speed information indicating the failure detection moving speed at which the HO to Wrong Cell is generated so that the selection of the handover destination radio base station eNB is appropriate. Adjust handover parameters.
  • the offset value added to RSRP # 2 corresponding to the radio base station eNB # 2 is reduced, or the offset value added to RSRP # 3 corresponding to the radio base station eNB # 3 is increased. By doing this, the radio base station eNB # 3 can be more easily selected as the handover destination than the radio base station eNB # 2.
  • the handover parameter adjusting unit 125 adjusts the handover parameter.
  • the parameter adjustment message transmitted and received between the radio base stations eNB refer to 3GPP TS36.423.
  • FIG. 4 is a conceptual diagram for explaining a parameter table configuration example.
  • the parameter table is a table associating movement speed information with handover parameters.
  • a handover parameter is associated with each moving speed information #A to #K.
  • the initial value of the handover parameter can be the same value for each of the moving speed information #A to #K.
  • the handover parameter adjusting unit 125 adjusts the handover parameter for each of the moving speed information #A to #K, so that the handover parameter is optimized for each moving speed.
  • the moving speed information #A to #K indicates the moving speed classification of an arbitrary radio terminal UE.
  • the moving speed classification is set every 20 km / h.
  • the moving speed information #B is applied to the radio terminal UE.
  • movement speed classification shown in FIG. 4B is an example, and may be a more detailed movement speed classification or a rough movement speed classification.
  • Operation pattern 1 shows the operation when Too Late HO occurs
  • operation pattern 2 shows the operation when Too Early HO occurs.
  • 3GPP TS36.300 3GPP TS36.300.
  • FIG. 5 is an operation sequence diagram showing an operation pattern 1 of the wireless communication system 1. In this operation example, it is assumed that the radio terminal UE periodically transmits a Measurement Report message to the radio base station eNB # 1.
  • step S101 the radio terminal UE connected to the radio base station eNB # 1 receives the reference signal from the radio base station eNB # 1, and measures RSRP # 1 from the received reference signal. Also, the radio terminal UE receives the reference signal from the radio base station eNB # 2, and measures RSRP # 2 from the received reference signal.
  • step S102 the radio terminal UE transmits a Measurement Report message including the measured RSRP # 1 and RSRP # 2 to the radio base station eNB # 1.
  • the radio communication unit 110 of the radio base station eNB # 1 receives the Measurement Report message.
  • step S103 the movement speed information acquisition unit 121 of the radio base station eNB # 1 acquires the movement speed information of the radio terminal UE.
  • step S104 the handover parameter acquisition unit 122 of the radio base station eNB # 1 refers to the parameter table stored in the storage unit 130, and determines the handover parameter associated with the movement speed information acquired by the movement speed information acquisition unit 121. get.
  • step S105 the handover control unit 123 of the radio base station eNB # 1 performs radio communication based on the Measurement Report message that the radio communication unit 110 receives from the radio terminal UE and the handover parameter acquired by the handover parameter acquisition unit 122.
  • a condition determination as to whether or not to allow the terminal UE to perform handover is performed.
  • the process proceeds to step S106.
  • the handover parameter associated with the moving speed information acquired by the handover parameter acquisition unit 122 may be an offset added to the normal adjusted handover parameter.
  • the handover control unit 123 adds the handover parameter associated with the moving speed information acquired by the handover parameter acquisition unit 122 to the normal adjusted handover parameter, and uses the result of the addition, A condition determination as to whether or not to allow the terminal UE to perform handover is performed.
  • step S106 the network communication unit 140 of the radio base station eNB # 1 transmits a Handover Request message to the radio base station eNB # 2 to request acceptance of the radio terminal UE.
  • the radio base station eNB # 2 receives the Handover Request message.
  • step S107 the radio base station eNB # 2 transmits to the radio base station eNB # 1 a Handover Acknowledge message indicating that acceptance of the radio terminal UE is permitted.
  • the network communication unit 140 of the radio base station eNB # 1 receives the Handover Acknowledge message.
  • step S108 the radio communication unit 110 of the radio base station eNB # 1 transmits to the radio terminal UE a Handover Command message for instructing handover to the radio base station eNB # 2.
  • RLF has occurred between the radio base station eNB # 1 and the radio terminal UE.
  • step S109 the radio terminal UE performs reconnection processing to the radio base station eNB # 2 because RLF has occurred with the radio base station eNB # 1.
  • step S110 since the radio terminal UE has reconnected, the radio base station eNB # 2 transmits an RLF Indication message indicating occurrence of Too Late HO to the radio base station eNB # 1.
  • the network communication unit 140 of the radio base station eNB # 1 receives the RLF Indication message indicating the occurrence of Too Late HO.
  • step S111 the handover failure detection unit 124 of the radio base station eNB # 1 detects Too Late HO by the RLF Indication message indicating the occurrence of Too Late HO received by the network communication unit 140.
  • the handover parameter adjustment unit 125 refers to the storage unit 130, and determines an adjusted handover parameter for the handover parameter associated with the movement speed information indicating the failure detection movement speed. Specifically, the handover parameter adjustment unit 125 adjusts the handover parameter associated with the movement speed information indicating the failure detection movement speed so as to accelerate the start of the handover.
  • the moving speed information indicating the failure detection moving speed the information acquired by the moving speed information acquiring unit 121 in step S103 is used.
  • step S113 the network communication unit 140 of the radio base station eNB # 1 transmits a Mobility Change Request message including the adjusted handover parameter determined by the handover parameter adjustment unit 125 to the radio base station eNB # 2.
  • the radio base station eNB # 2 receives the Mobility Change Request message.
  • step S114 the radio base station eNB # 2 transmits a Mobility Change Acknowledge message to the radio base station eNB # 1 when allowing the Mobility Change Request message.
  • the network communication unit 140 of the radio base station eNB # 1 receives the Mobility Change Acknowledge message.
  • step S115 the handover parameter adjustment unit 125 of the radio base station eNB # 1 updates the handover parameter associated with the movement speed information indicating the failure detection movement speed with the adjusted handover parameter.
  • step S116 the radio base station eNB # 2 sets the adjusted handover parameter in the own station.
  • FIG. 6 is an operation sequence diagram showing an operation pattern 2 of the wireless communication system 1. In this operation example, it is assumed that the radio terminal UE periodically transmits a Measurement Report message to the radio base station eNB # 1.
  • steps S201 to S207 are executed in the same manner as the processes in steps S201 to S207 described above.
  • step S208 the radio communication unit 110 of the radio base station eNB # 1 transmits to the radio terminal UE a Handover Command message for instructing handover to the radio base station eNB # 2.
  • step S209 the radio terminal UE performs a connection process to the radio base station eNB # 2. Thereafter, it is assumed that RLF has occurred between the radio base station eNB # 2 and the radio terminal UE.
  • step S210 since the RLF has occurred with the radio base station eNB # 2, the radio terminal UE performs reconnection processing to the radio base station eNB # 1.
  • step S211 the handover failure detection unit 124 of the radio base station eNB # 1 detects Too Early HO by reconnection by the radio terminal UE.
  • step S212 the network communication unit 140 of the radio base station eNB # 1 transmits an RLF Indication message indicating the occurrence of Too Early HO to the radio base station eNB # 2.
  • the radio base station eNB # 2 receives the RLF Indication message.
  • the handover parameter adjustment unit 125 refers to the storage unit 130, and determines an adjusted handover parameter for the handover parameter associated with the movement speed information indicating the failure detection movement speed. Specifically, the handover parameter adjustment unit 125 adjusts the handover parameter associated with the movement speed information indicating the failure detection movement speed so as to delay the start of the handover.
  • the moving speed information indicating the failure detection moving speed the information acquired by the moving speed information acquiring unit 121 in step S203 is used.
  • step S214 the network communication unit 140 of the radio base station eNB # 1 transmits a Mobility Change Request message including the adjusted handover parameter determined by the handover parameter adjustment unit 125 to the radio base station eNB # 2.
  • the radio base station eNB # 2 receives the Mobility Change Request message.
  • step S215 the radio base station eNB # 2 transmits a Mobility Change Acknowledge message to the radio base station eNB # 1 when allowing the Mobility Change Request message.
  • the network communication unit 140 of the radio base station eNB # 1 receives the Mobility Change Acknowledge message.
  • step S216 the handover parameter adjustment unit 125 of the radio base station eNB # 1 updates the handover parameter associated with the movement speed information indicating the failure detection movement speed with the adjusted handover parameter.
  • step S217 the radio base station eNB # 2 sets the adjusted handover parameter in the own station.
  • the radio base station eNB # 1 is associated with the storage unit 130 that stores the handover parameter in association with the movement speed information, and the movement speed information that indicates the failure detection movement speed. And a control unit 120 that controls the storage unit 130 so as to adjust the handover parameter.
  • the handover parameter can be optimized for each moving speed, so that the handover failure rate can be sufficiently reduced.
  • the control unit 120 of the radio base station eNB # 1 acquires, from the storage unit 130, the handover parameter associated with the moving speed information indicating the moving speed of the radio terminal UE connected to the own station, Condition determination is performed using the acquired handover parameter.
  • the handover condition determination it is possible to perform handover condition determination using a handover parameter that reflects the past handover failure status at the current moving speed of the radio terminal UE, and therefore the handover failure rate can be sufficiently reduced.
  • control unit 120 of the radio base station eNB # 1 is associated with moving speed information indicating the moving speed at which Too Late HO has occurred so as to accelerate the start of handover in response to detection of Too Late HO. Adjust the handover parameters. Thereby, generation
  • the control unit 120 of the radio base station eNB # 1 includes movement speed information indicating the movement speed at which Too Early HO is generated so as to delay the start of handover in response to detection of Too Early HO. Adjust associated handover parameters. Thereby, generation
  • the control unit 120 of the radio base station eNB # 1 generates the HO to Wrong Cell so that the selection of the handover destination radio base station eNB is appropriate in response to the detection of the HO to Wrong Cell.
  • the handover parameter associated with the moving speed information indicating the moving speed is adjusted. Thereby, generation
  • the offset value is mainly described as the handover parameter.
  • the threshold value to be compared with the RSRP may be adjusted for each moving speed without being limited to the offset value.
  • the radio base station eNB # 1 performs the condition determination using the handover parameter
  • the radio terminal UE may perform part of the condition determination using the handover parameter.
  • the handover parameter related to switching of the connection destination base station during communication execution has been mainly described. However, it relates to the switching of the connection destination base station in idle mode (waiting) (so-called cell reselection).
  • the present invention can also be applied to a cell reselection parameter that is a parameter. That is, in this specification, the handover parameter is a concept including a cell reselection parameter.
  • the radio communication system based on LTE 3GPP Release 8 or 9) has been described.
  • LTE Advanced 3GPP Release 10
  • provision of a heterogeneous network is planned, and the present invention may be applied to the heterogeneous network.
  • provision of a relay node that is a radio base station that configures a backhaul by radio is scheduled, and the relay node may be a radio base station according to the present invention.
  • the present invention may be applied to other wireless communication systems such as a wireless communication system based on mobile WiMAX (IEEE 802.16e).
  • the handover failure rate can be sufficiently reduced, which is useful in radio communications such as mobile communications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線基地局eNB#1は、ハンドオーバを制御するためのハンドオーバパラメータを、任意の無線端末の移動速度を示す移動速度情報と関連付けて記憶する記憶部130と、ハンドオーバ失敗を検出し、ハンドオーバ失敗が検出された無線端末の移動速度である失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するように記憶部130を制御する制御部120とを備える。

Description

無線基地局及びその制御方法
 本発明は、SON技術が適用される無線基地局及びその制御方法に関する。
 無線通信システムの標準化団体である3GPP(3rd Generation Partnership Project)で標準化されているLTE(Long Term Evolution)では、人手を介さずに、無線基地局に係るパラメータ設定を無線基地局自身が調整するSON(Self Organizing Network)技術が適用される。
 SON技術の一つとして、無線端末のハンドオーバ(すなわち接続先基地局の切り換え)の失敗率を低減するために、ハンドオーバ失敗に関するハンドオーバ失敗情報に基づいて、ハンドオーバを制御するためのハンドオーバパラメータを調整し、ハンドオーバパラメータの最適化を図る手法が提案されている(例えば、非特許文献1参照)。
 ハンドオーバパラメータの最適化により、ハンドオーバ失敗に起因する通信品質の劣化やネットワークリソースの無駄遣いを抑制できる。このような最適化の技術は、MRO(Mobility Robustness Optimization)と称される。なお、ハンドオーバパラメータの例については、非特許文献1及び2を参照されたい。
 上述したMROでは、一の無線基地局から他の無線基地局へのハンドオーバ制御の対象となる全ての無線端末について、同一のハンドオーバパラメータを適用することが想定されている。
 しかしながら、このような手法を採用する場合には、次のような問題がある。具体的には、無線端末の移動速度に応じて無線伝搬環境は異なり、且つ、最適なハンドオーバパラメータは無線伝搬環境毎に異なる。したがって、上記の手法では、必ずしもハンドオーバパラメータを適切に調整できず、ハンドオーバの失敗率を十分に低減できないおそれがある。
 そこで、本発明は、ハンドオーバの失敗率を十分に低減できる無線基地局及びその制御方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような特徴を有している。まず、本発明に係る無線基地局の特徴は、無線端末のハンドオーバを制御するためのハンドオーバパラメータを、任意の無線端末の移動速度を示す移動速度情報と関連付けて記憶する記憶部(記憶部130)と、ハンドオーバ失敗を検出し、前記ハンドオーバ失敗が検出された無線端末の移動速度である失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するように前記記憶部を制御する制御部(制御部120)とを備えることを要旨とする。
 このような無線基地局によれば、ハンドオーバパラメータを移動速度毎に調整可能になるため、ハンドオーバパラメータをより適切に調整でき、ハンドオーバの失敗率を十分に低減することができる。
 本発明に係る無線基地局の他の特徴は、上記の特徴に係る無線基地局において、前記制御部は、自局に接続中の無線端末の移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを前記記憶部から取得し、前記取得したハンドオーバパラメータを用いて、前記接続中の無線端末のハンドオーバを制御することを要旨とする。
 本発明に係る無線基地局の他の特徴は、上記の特徴に係る無線基地局において、前記制御部は、前記ハンドオーバ失敗の失敗事由に応じて、前記失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するように前記記憶部を制御することを要旨とする。
 本発明に係る無線基地局の他の特徴は、上記の特徴に係る無線基地局において、前記失敗事由がハンドオーバの開始が遅すぎたことである場合、前記制御部は、ハンドオーバの開始を早めるように、前記失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整することを要旨とする。
 本発明に係る無線基地局の他の特徴は、上記の特徴に係る無線基地局において、前記失敗事由がハンドオーバの開始が早すぎたことである場合、前記制御部は、ハンドオーバの開始を遅めるように、前記失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整することを要旨とする。
 本発明に係る無線基地局の他の特徴は、上記の特徴に係る無線基地局において、前記失敗事由がハンドオーバ先の無線基地局の選択が不適切であることである場合、前記制御部は、ハンドオーバ先の無線基地局の選択を適正にするように、前記失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整することを要旨とする。
 本発明に係る制御方法の特徴は、無線基地局の制御方法であって、無線端末のハンドオーバを制御するためのハンドオーバパラメータを、任意の無線端末の移動速度を示す移動速度情報と関連付けるステップと、ハンドオーバ失敗を検出するステップと、前記ハンドオーバ失敗が検出された無線端末の移動速度である失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するステップとを有することを要旨とする。
本発明の実施形態に係る無線通信システムの概要を説明するための概略システム構成図である。 本発明の実施形態に係るハンドオーバ失敗の種別(失敗事由)を説明するための概念図である(その1)。 本発明の実施形態に係るハンドオーバ失敗の種別(失敗事由)を説明するための概念図である(その2)。 本発明の実施形態に係るハンドオーバ失敗の種別(失敗事由)を説明するための概念図である(その3)。 本発明の実施形態に係る無線基地局の構成を示すブロック図である。 本発明の実施形態に係るパラメータテーブルの構成例を説明するための概念図である(その1)。 本発明の実施形態に係るパラメータテーブルの構成例を説明するための概念図である(その2)。 本発明の実施形態に係る無線通信システムの動作パターン1を示す動作シーケンス図である。 本発明の実施形態に係る無線通信システムの動作パターン2を示す動作シーケンス図である。
 図面を参照して、本発明の実施形態を説明する。具体的には、(1)無線通信システムの概要、(2)無線基地局の構成、(3)無線通信システムの動作例、(4)実施形態の効果、(5)その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (1)無線通信システムの概要
 図1は、本実施形態に係る無線通信システム1の概要を説明するための概略システム構成図である。無線通信システム1は、LTE規格に基づいて構成される。
 図1に示すように、複数の無線基地局eNB(無線基地局eNB#1~eNB#3)はE-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)を構成する。複数の無線基地局eNBのそれぞれは、無線端末UEにサービスを提供すべき通信エリアであるセルを形成する。
 相互に隣接する各無線基地局eNBは、基地局間通信を提供する論理的な通信路であるX2インターフェースを介して通信可能である。複数の無線基地局eNBのそれぞれは、S1インターフェースを介して、EPC(Evolved Packet Core)、具体的には、MME(Mobility Management Entity)/S-GW(Serving Gateway)と通信可能である。
 無線端末UEは、ユーザが所持する無線通信装置であり、ユーザ装置とも称される。無線端末UE#1は、無線基地局eNB#1が形成するセル内で無線基地局eNB#1に接続する。無線端末UE#2は、無線基地局eNB#2が形成するセル内で無線基地局eNB#2に接続する。無線端末UE#3は、無線基地局eNB#3が形成するセル内で無線基地局eNB#3に接続する。
 無線端末UEは、無線基地局eNBから受信する無線信号の品質(すなわち、無線品質)を測定し、無線品質の測定結果に係る報告であるMeasurement Reportメッセージを接続先の無線基地局eNBに送信する。ここで無線品質とは、例えば参照信号の受信電力(RSRP)である。Measurement Reportメッセージは、無線基地局eNBが設定したイベントをトリガとして無線端末UEから無線基地局eNBに送信されてもよく、無線端末UEから無線基地局eNBに定期的に送信されてもよい。
 無線端末UEの接続先の無線基地局eNBは、無線端末UEから受信するMeasurement Reportメッセージに基づいて、無線端末UEの接続先を切り換えるハンドオーバ制御を行う。無線端末UEが複数の無線基地局eNBからの参照信号を受信する場合、Measurement Reportメッセージは、複数の無線基地局eNBに対応する複数のRSRPを含んでもよい。無線端末UEの接続先の無線基地局eNBは、Measurement Reportメッセージに基づいて、例えば複数の無線基地局eNBのうちRSRPが最も高いものを無線端末UEの接続先とするように、ハンドオーバ(以下、適宜「HO」と略記する)を制御する。
 無線通信システム1は、上述したMROをサポートする。本実施形態では、各無線基地局eNBは、無線端末UEのハンドオーバ失敗を検出したことに基づいてハンドオーバパラメータを調整する。このようなハンドオーバパラメータは、例えば、無線端末UEが測定したRSRPを補正するためのオフセット値である。一例として、無線端末UE#1が無線基地局eNB#1及び無線基地局eNB#2のそれぞれから無線信号を受信可能な場合において、無線基地局eNB#1に対応するRSRP#1と、無線基地局eNB#2に対応するRSRP#2とを比較する前に、RSRP#1を高く補正するためのオフセット値をRSRP#1に加える。なお、不要なハンドオーバを避けるために、オフセット値は、無線基地局eNBの対で1つの値を取り、対をなす各無線基地局eNBで共有する。
 以下では、無線基地局eNB#1に接続する無線端末UEが無線基地局eNB#2へのハンドオーバに失敗したことに基づいて、無線基地局eNB#1のハンドオーバパラメータを調整するケースを主として説明する。
 図2に示すように、MROでは、ハンドオーバ失敗の種別は、ハンドオーバ失敗事由に応じて、“Too Late HO”、“Too Early HO”、及び“HO to Wrong Cell”の3つが定義されている(非特許文献1参照)。
 図2Aに示すように、Too Late HOは、ハンドオーバ開始が遅すぎたことにより、ハンドオーバ開始前又はハンドオーバ実行中において(ステップS1)、ハンドオーバ元の無線基地局eNB#1と無線端末UEとの間で無線リンク切断(RLF: Radio Link Failure)が生じた(ステップS2)ことを意味する。この場合、無線端末UEは、ハンドオーバ先の無線基地局eNB#2又はハンドオーバ元の無線基地局eNB#1以外の無線基地局eNBに再接続を試みる(ステップS3)。再接続先の無線基地局eNBは、Too Late HO発生を示すRLF Indicationメッセージをハンドオーバ元の無線基地局eNB#1に通知する(ステップS4)。
 図2Bに示すように、Too Early HOは、ハンドオーバ開始が早すぎたことにより、ハンドオーバ直後又はハンドオーバ実行中において(ステップS1)、ハンドオーバ先の無線基地局eNB#2と無線端末UEとの間でRLFが生じた(ステップS2)ことを意味する。この場合、無線端末UEは、ハンドオーバ元の無線基地局eNB#1に再接続を試みる(ステップS3)。ハンドオーバ先の無線基地局eNB#2は、ハンドオーバ元の無線基地局eNB#1からRLF Indicationメッセージを受信(ステップS4)した時で且つハンドオーバ先の無線基地局eNB#2がハンドオーバ完了に関するUE Context Releaseメッセージをハンドオーバ元の無線基地局eNB#1に送っていた場合、Too Early HO発生を示すHandover Reportメッセージをハンドオーバ元の無線基地局eNB#1に送ってもよい(ステップS5)。
 図2Cに示すように、HO to Wrong Cellは、ハンドオーバ先の無線基地局eNBの選択が不適切であることにより、ハンドオーバ元の無線基地局eNB#1からハンドオーバ先の無線基地局eNB#2へのハンドオーバ成功直後又はハンドオーバ実行中において(ステップS1)、ハンドオーバ先の無線基地局eNB#2と無線端末UEとの間でRLFが生じた(ステップS2)ことを意味する。この場合、無線端末UEは、ハンドオーバ元の無線基地局eNB#1及びハンドオーバ先の無線基地局eNB#2以外の無線基地局eNB#3に再接続を試みる(ステップS3)。ハンドオーバ先の無線基地局eNB#2がRLF Indicationメッセージをハンドオーバ元の無線基地局eNB#1以外の無線基地局eNB#3から受信し(ステップS4)、ハンドオーバ先の無線基地局eNB#2がすでにUE Context Releaseメッセージをハンドオーバ元の無線基地局eNB#1に送っている場合、Handover ReportメッセージでHO to Wrong Cell発生を通知してもよい(ステップS5)。また、ハンドオーバ元の無線基地局eNB#1からハンドオーバ先の無線基地局eNB#2へのハンドオーバが失敗し、無線端末UEがその他の無線基地局eNB#3への再接続を試みる場合、無線基地局eNB#3はハンドオーバ元の無線基地局eNB#1へRLF Indicationメッセージを送ってもよい(ステップS5’)。
 (2)無線基地局の構成
 次に、無線基地局eNB#1の構成について説明する。無線基地局eNB#1以外の無線基地局eNBは無線基地局eNB#1と同様に構成されるものとする。
 (2.1)機能ブロック構成
 図3は、無線基地局eNB#1の構成を示すブロック図である。
 図3に示すように、無線基地局eNB#1は、アンテナ部101、無線通信部110、制御部120、記憶部130、及びネットワーク通信部140を有する。
 アンテナ部101は、無線信号の送受信に用いられる。無線通信部110は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、アンテナ部101を介して無線端末UEと無線信号の送受信を行う。また、無線通信部110は、送信信号の変調・符号化と受信信号の復調・復号とを行う。
 制御部120は、例えばCPUを用いて構成され、無線基地局eNB#1が備える各種機能ブロックを制御する。記憶部130は、例えばメモリを用いて構成され、無線基地局eNB#1における制御等に用いられる各種の情報を記憶する。ネットワーク通信部140は、X2インタフェースを使用した基地局間通信と、S1インタフェースを使用した通信とを行う。
 記憶部130は、無線端末UEのハンドオーバを制御するためのハンドオーバパラメータを、任意の無線端末の移動速度を示す移動速度情報と関連付けたパラメータテーブルを記憶する。ハンドオーバパラメータとは、無線端末UEが測定するRSRPに付加されるオフセット値や、無線端末UEが測定するRSRPと比較される閾値を意味する。パラメータテーブルの具体例については後述する。
 制御部120は、移動速度情報取得部121、ハンドオーバパラメータ取得部122、ハンドオーバ制御部123、ハンドオーバ失敗検出部124、及びハンドオーバパラメータ調整部125を有する。
 移動速度情報取得部121は、無線基地局eNB#1に接続する無線端末UEの移動速度を示す移動速度情報を取得する。具体的には、無線端末UEがGPS(Global Positioning System)による測位機能を有している場合、移動速度情報取得部121は、GPSによる測位位置及びその測位時間間隔から移動速度情報を取得する。無線端末UEがGPSによる測位機能を有していない場合、移動速度情報取得部121は、コアネットワーク側に設けられる端末位置測定サーバ(E-SLMC: Evolved Serving Mobile Location Center)からの無線端末UEの測位位置及びその測位時間間隔から移動速度情報を取得する。あるいは、無線通信部110が無線端末UEから受信する無線信号のフェージングピッチから移動速度情報を取得してもよく、無線端末UEが単位時間当たりに通過するセル数の情報から移動速度情報を取得してもよい。また、無線端末UEが無線基地局eNB#1のセル内に滞在する時間と当該無線端末UEのハンドオーバの履歴情報とから移動速度情報を取得してもよい。なお、端末位置測定サーバ(E-SLMC)の詳細については、3GPP TS36.305を参照されたい。また、これらの移動速度情報の取得方法に限らず、既存の他の移動速度取得方法を用いて無線端末UEの移動速度情報を取得可能である。
 ハンドオーバパラメータ取得部122は、移動速度情報取得部121によって取得された移動速度情報と関連付けられたハンドオーバパラメータを、記憶部130が記憶するパラメータテーブルから取得する。
 ハンドオーバ制御部123は、無線通信部110が無線端末UEから受信するMeasurement Reportメッセージと、ハンドオーバパラメータ取得部122によって取得されたハンドオーバパラメータとに基づいて、無線端末UEにハンドオーバを行わせるか否かの条件判定を行う。
 一例として、無線基地局eNB#1に対応するRSRP#1と無線基地局eNB#2に対応するRSRP#2とがMeasurement Reportメッセージに含まれ、且つ、ハンドオーバパラメータがRSRP#2にx[dB]のオフセット値を付加するものである場合を想定すると、ハンドオーバ制御部123は、RSRP#1と(RSRP#2+x)とを比較し、(RSRP#2+x)がRSRP#1を上回る場合に、無線基地局eNB#2へのハンドオーバを無線端末UEに行わせるようにハンドオーバ制御を行う。一方、(RSRP#2+x)がRSRP#1を下回る場合、ハンドオーバ制御部123は、無線基地局eNB#2へのハンドオーバを無線端末UEに行わせないようにする。
 ハンドオーバ失敗検出部124は、ハンドオーバ制御部123がハンドオーバ先の無線基地局eNB#2へのハンドオーバを無線端末UEに行わせると決定した後、ハンドオーバ失敗を検出する。
 具体的には、ハンドオーバ失敗検出部124は、ネットワーク通信部140がハンドオーバ先の無線基地局eNB#2から受信する、Too Late HO発生を示すRLF Indicationメッセージによって、Too Late HOを検出する。
 また、ハンドオーバ失敗検出部124は、無線端末UEが無線基地局eNB#1への再接続を行ったことによって、Too Early HOを検出する。あるいは、ハンドオーバ失敗検出部124は、ネットワーク通信部140がハンドオーバ先の無線基地局eNB#2から受信する、Too Early HO発生を示すHandover Reportメッセージによって、Too Early HOを検出する。
 さらに、ハンドオーバ失敗検出部124は、ネットワーク通信部140がハンドオーバ先の無線基地局eNB#2から受信する、HO to Wrong Cell発生を示すHandover Reportメッセージによって、HO to Wrong Cellを検出する。あるいは、ハンドオーバ失敗検出部124は、ネットワーク通信部140がその他の無線基地局eNB#3から受信する、HO to Wrong Cell発生を示すRLF Indicationメッセージによって、HO to Wrong Cellを検出する。
 ハンドオーバ失敗検出部124は、ハンドオーバ失敗検出部124によって検出されたハンドオーバ失敗の状況を、移動速度情報取得部121によって取得された移動速度情報と関連付けて記憶部130に記憶させる。以下では、ハンドオーバ失敗が検出された無線端末UEの移動速度を失敗検出移動速度と称する。ハンドオーバ失敗検出部124は、失敗検出移動速度を示す移動速度情報と、ハンドオーバ失敗の種別(Too Late HO、Too Early HO、又はHO to Wrong Cell)とを関連付けて記憶部130に記憶させる。
 ハンドオーバパラメータ調整部125は、記憶部130を参照し、失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するように記憶部130を制御する。
 ハンドオーバパラメータ調整部125は、Too Late HOについては、ハンドオーバの開始を早めるように、Too Late HOが発生した失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する。図2Aの例では、無線基地局eNB#1に対応するRSRP#1に加算されるオフセット値を小さくする、あるいは、無線基地局eNB#2に対応するRSRP#2に加算されるオフセット値を大きくすることで、無線基地局eNB#1から無線基地局eNB#2へのハンドオーバの開始を早めることができる。
 ハンドオーバパラメータ調整部125は、Too Early HOについては、ハンドオーバの開始を遅めるように、Too Early HOが発生した失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する。図2Bの例では、無線基地局eNB#1に対応するRSRP#1に加算されるオフセット値を大きくする、あるいは、無線基地局eNB#2に対応するRSRP#2に加算されるオフセット値を小さくすることで、無線基地局eNB#1から無線基地局eNB#2へのハンドオーバの開始を遅めることができる。
 ハンドオーバパラメータ調整部125は、HO to Wrong Cellについては、ハンドオーバ先の無線基地局eNBの選択を適正にするように、HO to Wrong Cellが発生した失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する。図2Cの例では、無線基地局eNB#2に対応するRSRP#2に加算されるオフセット値を小さくする、あるいは、無線基地局eNB#3に対応するRSRP#3に加算されるオフセット値を大きくすることで、無線基地局eNB#2よりも無線基地局eNB#3がハンドオーバ先として選択され易くすることができる。
 ただし、ハンドオーバパラメータを調整するためには、他の無線基地局eNBからの許可が得られていることが必要である。そのため、Mobility Change Requestメッセージにより調整後のハンドオーバパラメータを通知し、当該調整後のハンドオーバパラメータが許容されることが確認できた場合に、ハンドオーバパラメータ調整部125がハンドオーバパラメータを調整する。無線基地局eNB間で送受信されるパラメータ調整用メッセージの詳細については、3GPP TS36.423を参照されたい。
 (2.2)パラメータテーブルの構成例
 図4は、パラメータテーブルの構成例を説明するための概念図である。
 図4Aに示すように、パラメータテーブルは、移動速度情報とハンドオーバパラメータとを関連付けるテーブルである。図4Aの例では、移動速度情報#A~#K毎にハンドオーバパラメータが関連付けられている。
 ハンドオーバパラメータの初期値は、移動速度情報#A~#Kのそれぞれについて同一の値とすることができる。そして、ハンドオーバパラメータ調整部125が移動速度情報#A~#Kのそれぞれについてハンドオーバパラメータを調整することによって、ハンドオーバパラメータが移動速度毎に最適化されることになる。
 図4Bに示すように、移動速度情報#A~#Kは、任意の無線端末UEの移動速度区分を示す。図4Bの例では、20km/h毎に移動速度区分が設定されている。
 無線端末UEが無線基地局eNB#1に接続中に無線基地局eNB#2に向けて移動し、当該無線端末UEの移動速度が30km/hである場合を想定すると、移動速度情報#Bに関連付けられたハンドオーバパラメータが無線端末UEに対して適用されることになる。
 なお、図4Bに示す移動速度区分は一例であり、より詳細な移動速度区分としてもよく、より大まかな移動速度区分としてもよい。
 (3)無線通信システムの動作例
 次に、無線通信システム1の動作を、動作パターン1及び2を例に説明する。動作パターン1はToo Late HO発生時の動作を示し、動作パターン2はToo Early HO発生時の動作を示す。なお、以下の動作説明ではハンドオーバシーケンスの概要を説明するが、ハンドオーバシーケンスの詳細については3GPP TS36.300を参照されたい。
 (3.1)動作パターン1
 図5は、無線通信システム1の動作パターン1を示す動作シーケンス図である。本動作例では、無線端末UEが、Measurement Reportメッセージを無線基地局eNB#1に周期的に送信するものとする。
 ステップS101において、無線基地局eNB#1に接続する無線端末UEは、無線基地局eNB#1からの参照信号を受信し、受信した参照信号からRSRP#1を測定する。また、無線端末UEは、無線基地局eNB#2からの参照信号を受信し、受信した参照信号からRSRP#2を測定する。
 ステップS102において、無線端末UEは、測定したRSRP#1及びRSRP#2を含むMeasurement Reportメッセージを無線基地局eNB#1に送信する。無線基地局eNB#1の無線通信部110は、Measurement Reportメッセージを受信する。
 ステップS103において、無線基地局eNB#1の移動速度情報取得部121は、無線端末UEの移動速度情報を取得する。
 ステップS104において、無線基地局eNB#1のハンドオーバパラメータ取得部122は、記憶部130が記憶するパラメータテーブルを参照し、移動速度情報取得部121によって取得された移動速度情報と関連付けられたハンドオーバパラメータを取得する。
 ステップS105において、無線基地局eNB#1のハンドオーバ制御部123は、無線通信部110が無線端末UEから受信するMeasurement Reportメッセージと、ハンドオーバパラメータ取得部122によって取得されたハンドオーバパラメータとに基づいて、無線端末UEにハンドオーバを行わせるか否かの条件判定を行う。無線基地局eNB#2へのハンドオーバを無線端末UEに行わせる場合には、処理がステップS106に進み、無線基地局eNB#2へのハンドオーバを無線端末UEに行わせない場合には、処理がステップS101に戻る。なお、ハンドオーバパラメータ取得部122によって取得される、移動速度情報と関連付けられたハンドオーバパラメータは、通常の調整されたハンドオーバパラメータに対して加算されるオフセットとしてもよい。この場合、ハンドオーバ制御部123は、通常の調整されたハンドオーバパラメータに対し、ハンドオーバパラメータ取得部122によって取得される、移動速度情報と関連付けられたハンドオーバパラメータを加算し、当該加算の結果を用いて無線端末UEにハンドオーバを行わせるか否かの条件判定を行うことになる。
 ステップS106において、無線基地局eNB#1のネットワーク通信部140は、無線端末UEの受け入れを要求する旨のHandover Requestメッセージを無線基地局eNB#2に送信する。無線基地局eNB#2は、Handover Requestメッセージを受信する。
 ステップS107において、無線基地局eNB#2は、無線端末UEの受け入れを許可する旨のHandover Acknowledgeメッセージを無線基地局eNB#1に送信する。無線基地局eNB#1のネットワーク通信部140は、Handover Acknowledgeメッセージを受信する。
 ステップS108において、無線基地局eNB#1の無線通信部110は、無線基地局eNB#2へのハンドオーバを指示する旨のHandover Commandメッセージを無線端末UEに送信する。ここで、無線基地局eNB#1と無線端末UEとの間でRLFが発生したものとする。
 ステップS109において、無線端末UEは、無線基地局eNB#1との間でRLFが発生したことから、無線基地局eNB#2への再接続処理を行う。
 ステップS110において、無線基地局eNB#2は、無線端末UEが再接続を行ったことから、Too Late HO発生を示すRLF Indicationメッセージを無線基地局eNB#1に送信する。無線基地局eNB#1のネットワーク通信部140は、Too Late HO発生を示すRLF Indicationメッセージを受信する。
 ステップS111において、無線基地局eNB#1のハンドオーバ失敗検出部124は、ネットワーク通信部140が受信した、Too Late HO発生を示すRLF Indicationメッセージによって、Too Late HOを検出する。
 ステップS112において、ハンドオーバパラメータ調整部125は、記憶部130を参照し、失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータに対し、調整後のハンドオーバパラメータを決定する。具体的には、ハンドオーバパラメータ調整部125は、ハンドオーバの開始を早めるように、失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する。ここで、失敗検出移動速度を示す移動速度情報は、ステップS103で移動速度情報取得部121が取得したものを使用する。
 ステップS113において、無線基地局eNB#1のネットワーク通信部140は、ハンドオーバパラメータ調整部125によって決定された調整後のハンドオーバパラメータを含むMobility Change Requestメッセージを無線基地局eNB#2に送信する。無線基地局eNB#2は、Mobility Change Requestメッセージを受信する。
 ステップS114において、無線基地局eNB#2は、Mobility Change Requestメッセージを許容する場合に、Mobility Change Acknowledgeメッセージを無線基地局eNB#1に送信する。無線基地局eNB#1のネットワーク通信部140は、Mobility Change Acknowledgeメッセージを受信する。
 ステップS115において、無線基地局eNB#1のハンドオーバパラメータ調整部125は、失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを、調整後のハンドオーバパラメータによって更新する。
 ステップS116において、無線基地局eNB#2は、調整後のハンドオーバパラメータを自局に設定する。
 (3.2)動作パターン2
 図6は、無線通信システム1の動作パターン2を示す動作シーケンス図である。本動作例では、無線端末UEが、Measurement Reportメッセージを無線基地局eNB#1に周期的に送信するものとする。
 ステップS201~S207の各処理は、上述したステップS201~S207の各処理と同様にして実行される。
 ステップS208において、無線基地局eNB#1の無線通信部110は、無線基地局eNB#2へのハンドオーバを指示する旨のHandover Commandメッセージを無線端末UEに送信する。
 ステップS209において、無線端末UEは、無線基地局eNB#2への接続処理を行う。その後、無線基地局eNB#2と無線端末UEとの間でRLFが発生したものとする。
 ステップS210において、無線端末UEは、無線基地局eNB#2との間でRLFが発生したことから、無線基地局eNB#1への再接続処理を行う。
 ステップS211において、無線基地局eNB#1のハンドオーバ失敗検出部124は、無線端末UEによる再接続によって、Too Early HOを検出する。
 ステップS212において、無線基地局eNB#1のネットワーク通信部140は、Too Early HO発生を示すRLF Indicationメッセージを無線基地局eNB#2に送信する。無線基地局eNB#2は、RLF Indicationメッセージを受信する。
 ステップS213において、ハンドオーバパラメータ調整部125は、記憶部130を参照し、失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータに対し、調整後のハンドオーバパラメータを決定する。具体的には、ハンドオーバパラメータ調整部125は、ハンドオーバの開始を遅めるように、失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する。ここで、失敗検出移動速度を示す移動速度情報は、ステップS203で移動速度情報取得部121が取得したものを使用する。
 ステップS214において、無線基地局eNB#1のネットワーク通信部140は、ハンドオーバパラメータ調整部125によって決定された調整後のハンドオーバパラメータを含むMobility Change Requestメッセージを無線基地局eNB#2に送信する。無線基地局eNB#2は、Mobility Change Requestメッセージを受信する。
 ステップS215において、無線基地局eNB#2は、Mobility Change Requestメッセージを許容する場合に、Mobility Change Acknowledgeメッセージを無線基地局eNB#1に送信する。無線基地局eNB#1のネットワーク通信部140は、Mobility Change Acknowledgeメッセージを受信する。
 ステップS216において、無線基地局eNB#1のハンドオーバパラメータ調整部125は、失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを、調整後のハンドオーバパラメータによって更新する。
 ステップS217において、無線基地局eNB#2は、調整後のハンドオーバパラメータを自局に設定する。
 (4)実施形態の効果
 以上説明したように、無線基地局eNB#1は、ハンドオーバパラメータを移動速度情報と関連付けて記憶する記憶部130と、失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するように記憶部130を制御する制御部120とを備える。これにより、ハンドオーバパラメータを移動速度毎に最適化可能になるため、ハンドオーバの失敗率を十分に低減することができる。
 本実施形態では、無線基地局eNB#1の制御部120は、自局に接続している無線端末UEの移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを記憶部130から取得するとともに、取得したハンドオーバパラメータを用いて条件判定を行う。これにより、無線端末UEの現在の移動速度における過去のハンドオーバ失敗の状況が反映されたハンドオーバパラメータを用いてハンドオーバの条件判定を行うことができるため、ハンドオーバの失敗率を十分に低減することができる。
 本実施形態では、無線基地局eNB#1の制御部120は、Too Late HOの検出に応じて、ハンドオーバの開始を早めるように、Too Late HOが生じた移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する。これにより、Too Late HOが生じた移動速度での、それ以降のToo Late HOの発生を抑制できる。
 本実施形態では、無線基地局eNB#1の制御部120は、Too Early HOの検出に応じて、ハンドオーバの開始を遅めるように、Too Early HOが生じた移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する。これにより、Too Early HOが生じた移動速度での、それ以降のToo Early HOの発生を抑制できる。
 本実施形態では、無線基地局eNB#1の制御部120は、HO to Wrong Cellの検出に応じて、ハンドオーバ先の無線基地局eNBの選択を適正にするように、HO to Wrong Cellが生じた移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する。これにより、HO to Wrong Cellが生じた移動速度での、それ以降のHO to Wrong Cellの発生を抑制できる。
 (5)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、ハンドオーバパラメータとして主にオフセット値を説明したが、オフセット値に限らず、RSRPと比較される閾値を移動速度毎に調整してもよい。また、ハンドオーバパラメータを用いた条件判定を無線基地局eNB#1が行っていたが、ハンドオーバパラメータを用いた条件判定の一部を無線端末UEが行ってもよい。
 さらに、上述した実施形態では、通信実行中における接続先基地局の切り換えに係るハンドオーバパラメータを主として説明したが、アイドルモード(待ち受け中)における接続先基地局の切り換え(いわゆる、セル再選択)に係るパラメータであるセル再選択パラメータについても本発明を適用可能である。すなわち、本明細書において、ハンドオーバパラメータは、セル再選択パラメータも含む概念である。
 上述した実施形態では、LTE(3GPP Release 8又は9)に基づく無線通信システムについて説明したが、LTEを高度化したLTE Advanced(3GPP Release 10)では、送信電力の異なる複数種類の無線基地局が混在するヘテロジーニアスネットワークの提供が予定されており、当該ヘテロジーニアスネットワークに本発明を適用してもよい。また、LTE Advancedでは、バックホールを無線により構成する無線基地局であるリレーノードの提供が予定されており、当該リレーノードを本発明に係る無線基地局としてもよい。
 さらに、上述した実施形態では、LTEシステムについて説明したが、モバイルWiMAX(IEEE 802.16e)に基づく無線通信システム等、他の無線通信システムに対して本発明を適用してもよい。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。
 なお、日本国特許出願第2010-131892号(2010年6月9日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る無線基地局及びその制御方法によれば、ハンドオーバの失敗率を十分に低減できるため、移動体通信などの無線通信において有用である。
 

Claims (7)

  1.  無線端末のハンドオーバを制御するためのハンドオーバパラメータを、任意の無線端末の移動速度を示す移動速度情報と関連付けて記憶する記憶部と、
     ハンドオーバ失敗を検出し、前記ハンドオーバ失敗が検出された無線端末の移動速度である失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するように前記記憶部を制御する制御部と、
    を備える無線基地局。
  2.  前記制御部は、
     自局に接続中の無線端末の移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを前記記憶部から取得し、
     前記取得したハンドオーバパラメータを用いて、前記接続中の無線端末のハンドオーバを制御する、請求項1に記載の無線基地局。
  3.  前記制御部は、前記ハンドオーバ失敗の失敗事由に応じて、前記失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するように前記記憶部を制御する、請求項1に記載の無線基地局。
  4.  前記失敗事由がハンドオーバの開始が遅すぎたことである場合、前記制御部は、ハンドオーバの開始を早めるように、前記失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する、請求項3に記載の無線基地局。
  5.  前記失敗事由がハンドオーバの開始が早すぎたことである場合、前記制御部は、ハンドオーバの開始を遅めるように、前記失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する、請求項3に記載の無線基地局。
  6.  前記失敗事由がハンドオーバ先の無線基地局の選択が不適切であることである場合、前記制御部は、ハンドオーバ先の無線基地局の選択を適正にするように、前記失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整する、請求項3に記載の無線基地局。
  7.  無線基地局の制御方法であって、
     無線端末のハンドオーバを制御するためのハンドオーバパラメータを、任意の無線端末の移動速度を示す移動速度情報と関連付けるステップと、
     ハンドオーバ失敗を検出するステップと、
     前記ハンドオーバ失敗が検出された無線端末の移動速度である失敗検出移動速度を示す移動速度情報と関連付けられたハンドオーバパラメータを調整するステップと、
    を有する制御方法。
PCT/JP2011/063109 2010-06-09 2011-06-08 無線基地局及びその制御方法 WO2011155512A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/702,570 US20130084871A1 (en) 2010-06-09 2011-06-08 Radio base station and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-131892 2010-06-09
JP2010131892A JP5366888B2 (ja) 2010-06-09 2010-06-09 無線基地局及びその制御方法

Publications (1)

Publication Number Publication Date
WO2011155512A1 true WO2011155512A1 (ja) 2011-12-15

Family

ID=45098116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063109 WO2011155512A1 (ja) 2010-06-09 2011-06-08 無線基地局及びその制御方法

Country Status (3)

Country Link
US (1) US20130084871A1 (ja)
JP (1) JP5366888B2 (ja)
WO (1) WO2011155512A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099737A (ja) * 2012-11-14 2014-05-29 Kddi Corp ハンドオーバログ作成装置、ハンドオーバパラメータ通知装置およびコンピュータプログラム
US9980188B2 (en) 2012-08-07 2018-05-22 Marvell World Trade Ltd. User mobility control for heterogeneous wireless networks

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281606B (zh) * 2010-06-11 2014-07-30 华为技术有限公司 通信路径切换方法、装置及系统
CN103108351B (zh) * 2011-11-14 2015-07-08 华为技术有限公司 一种无线链路失败统计方法和相关装置及通信系统
JP6052490B2 (ja) * 2012-08-06 2016-12-27 日本電気株式会社 無線通信システムおよびハンドオーバ最適化方法
EP2882230B1 (en) * 2012-08-06 2020-06-24 NEC Corporation Wireless communications system and handover control method
US9179384B2 (en) * 2012-09-26 2015-11-03 Alcatel Lucent Mobility robustness optimization based on reference signal strength maps
JP2014204159A (ja) * 2013-04-01 2014-10-27 ソフトバンクモバイル株式会社 無線通信システムの基地局パラメータの設定方法及び基地局
US20150045028A1 (en) * 2013-08-09 2015-02-12 Qualcomm Incorporated User equipment specific mobility optimization and improved performance metrics for improving handover performance
JP6133814B2 (ja) * 2014-04-21 2017-05-24 ソフトバンク株式会社 基地局、ハンドオーバ管理装置、移動通信システム及びハンドオーバ制御方法
US9585118B2 (en) 2014-09-24 2017-02-28 Parellel Wireless, Inc. Radio operation switch based on GPS mobility data
US9913095B2 (en) 2014-11-19 2018-03-06 Parallel Wireless, Inc. Enhanced mobile base station
US9392511B1 (en) * 2015-01-06 2016-07-12 Qualcomm Incorporated Assignment of mobility classifications to mobile devices
CN108141807A (zh) * 2015-09-29 2018-06-08 日本电气株式会社 通信系统和控制方法
KR102447859B1 (ko) * 2016-04-26 2022-09-27 삼성전자 주식회사 무선 통신 시스템에서 핸드오버를 지원하는 방법 및 장치
US11792701B2 (en) * 2017-11-16 2023-10-17 Nokia Technologies Oy Terminal device specific handover parameters
KR102664931B1 (ko) * 2018-10-29 2024-05-09 삼성전자주식회사 이동통신 시스템에서 핸드오버 성능을 개선하는 방법 및 장치
US11184232B2 (en) * 2018-11-26 2021-11-23 Eagle Technology, Llc Radio frequency (RF) communication system providing enhanced RF equipment configuration updates for mobile vehicles based upon reward matrices and related methods
DE102022111769B4 (de) 2022-05-11 2024-01-18 Rheinisch-Westfälische Technische Hochschule Aachen, Körperschaft des öffentlichen Rechts Batterievorrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055721A1 (ja) * 2008-11-14 2010-05-20 日本電気株式会社 無線通信網の品質監視システム、品質監視装置および品質監視方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244726A (ja) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd 通信端末装置
EP1881720A1 (en) * 2006-07-19 2008-01-23 Alcatel Lucent Method of controlling handover, base station and mobile station for use in a mobile communication network
US20080146218A1 (en) * 2006-12-13 2008-06-19 Ntt Docomo, Inc. Mobile communication terminal and mobile communication method
WO2010121418A1 (en) * 2009-04-21 2010-10-28 Huawei Technologies Co., Ltd. Method for handover problem identification
CN104936242B (zh) * 2009-09-29 2019-07-05 北京三星通信技术研究有限公司 处理无线链路失败报告的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055721A1 (ja) * 2008-11-14 2010-05-20 日本電気株式会社 無線通信網の品質監視システム、品質監視装置および品質監視方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-configuring and self-optimizing network (SON) use cases and solutions(Release 9)", 3GPP TR 36.902 V9.1.0 (2010-03), 3GPP, March 2010 (2010-03-01), pages 11 - 13 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9980188B2 (en) 2012-08-07 2018-05-22 Marvell World Trade Ltd. User mobility control for heterogeneous wireless networks
JP2014099737A (ja) * 2012-11-14 2014-05-29 Kddi Corp ハンドオーバログ作成装置、ハンドオーバパラメータ通知装置およびコンピュータプログラム

Also Published As

Publication number Publication date
JP5366888B2 (ja) 2013-12-11
US20130084871A1 (en) 2013-04-04
JP2011259206A (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5366888B2 (ja) 無線基地局及びその制御方法
JP5422492B2 (ja) 無線基地局及びその制御方法
US9888418B2 (en) Mobile communication method
US8917702B2 (en) Method and device for data processing in a wireless network
US9913182B2 (en) Radio communication system, base station, network management device, handover control method and program
US8781476B2 (en) Configuration of HS-DSCH serving cell change improvements
US9699697B2 (en) Classifying failure reports as either current or stale for mobility robustness optimization adjustments
US9585076B2 (en) Enhanced solution for handover
US9357398B2 (en) Radio base station, radio communication system, and control method
EP3949514B1 (en) Optional sending of complete message in conditional handover
US20150350968A1 (en) Target Network Node, Source Network Node and Methods for Mobility in a Wireless Communications Network
CN107454677B (zh) 通信方法、用户设备和基站
WO2011155511A1 (ja) 無線基地局及びその制御方法
US10993158B2 (en) Mobile terminal apparatus, base station apparatus, communication system, and communication control method
KR20200083156A (ko) RAN-Sharing 기술이 적용된 LTE 기반 이종망 공존 환경에서 핸드오버 파라미터를 제어하는 방법 및 장치
KR20180002968A (ko) 핸드오버 파라미터 최적화를 위한 방법 및 장치
KR102207843B1 (ko) 기지국간 협력을 통한 핸드오버 방법 및 그 장치
WO2016072465A1 (ja) 基地局及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13702570

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792469

Country of ref document: EP

Kind code of ref document: A1