WO2011155382A1 - Photosensitive siloxane composition, cured film formed form same, and element having cured film - Google Patents

Photosensitive siloxane composition, cured film formed form same, and element having cured film Download PDF

Info

Publication number
WO2011155382A1
WO2011155382A1 PCT/JP2011/062684 JP2011062684W WO2011155382A1 WO 2011155382 A1 WO2011155382 A1 WO 2011155382A1 JP 2011062684 W JP2011062684 W JP 2011062684W WO 2011155382 A1 WO2011155382 A1 WO 2011155382A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
cured film
hydrogen
Prior art date
Application number
PCT/JP2011/062684
Other languages
French (fr)
Japanese (ja)
Inventor
妹尾将秀
藤原建典
福原将
諏訪充史
山本栄悟
内田圭一
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201180028270.8A priority Critical patent/CN102918460B/en
Priority to JP2011535336A priority patent/JP5696665B2/en
Priority to KR1020127025114A priority patent/KR101761181B1/en
Publication of WO2011155382A1 publication Critical patent/WO2011155382A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention forms a flattening film for a thin film transistor (TFT) substrate such as a liquid crystal display element or an organic EL display element, a protective film or insulating film for a touch panel, an interlayer insulating film for a semiconductor element, or a core or cladding material for an optical waveguide.
  • TFT thin film transistor
  • the present invention relates to a photosensitive siloxane composition, a cured film formed therefrom, and an element having the cured film.
  • Patent Document 1 describes a method for increasing the aperture ratio of a display device as a method for realizing higher definition and higher resolution in a liquid crystal display, an organic EL display, or the like. This is a method in which the data line and the pixel electrode can be overlapped by providing a transparent flattening film as a protective film on the TFT substrate, and the aperture ratio is increased as compared with the prior art.
  • a material for such a flattening film for a TFT substrate it is necessary to form a hole pattern of several ⁇ m to 50 ⁇ m in order to connect the TFT substrate electrode and the ITO electrode with high heat resistance and high transparency.
  • a positive photosensitive material is used.
  • Patent Documents 2 and 3 describe a material in which a quinonediazide compound is combined with an acrylic resin as a representative positive photosensitive material.
  • polysiloxane is known as a material having high heat resistance and high transparency.
  • Patent Documents 4, 5, and 6 are combined with a quinonediazide compound to impart positive photosensitivity thereto. These materials have high heat resistance, and a highly transparent cured film can be obtained without generating defects such as cracks even by high-temperature treatment.
  • JP-A-9-152625 (Claim 1) JP 2001-281853 A (Claim 1) Japanese Patent Laid-Open No. 2001-281861 (Claim 1) JP 2006-178436 A (Claim 1) JP 2009-211033 A1 (Claim 1) JP 2010-33005 A (Claim 1)
  • Patent Documents 2 and 3 have insufficient heat resistance, and there is a problem that the cured film is colored by the high-temperature treatment of the substrate and the transparency is lowered.
  • the high transparency and high conductivity of ITO which is a transparent electrode member, are being studied.
  • these acrylic materials are insufficient in heat resistance and cannot form highly transparent ITO with high conductivity.
  • Patent Documents 4, 5, and 6 are not sufficiently resistant to chemicals such as an ITO etching solution and are required to improve chemical resistance.
  • the present invention has been made based on the above circumstances, and is a photosensitive siloxane composition capable of obtaining a cured film having high heat resistance and high transparency characteristics and good chemical resistance. It is an issue to provide.
  • Another object of the present invention is to provide a cured film such as a flattening film for a TFT substrate, an insulating film for a touch panel, and a liquid crystal display device having the cured film formed from the photosensitive siloxane composition. Let it be an issue.
  • an object of the present invention is (a) a polysiloxane synthesized by reacting one or more organosilanes represented by the general formula (1), (b) a quinonediazide compound, (c) a solvent, and (d It is achieved by a photosensitive siloxane composition containing a silicate compound represented by the general formula (2).
  • R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different.
  • R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same (N may represent an integer of 0 to 3)
  • R 3 to R 6 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • P is 2) Represents an integer of ⁇ 10)
  • a cured film having high heat resistance and high transparency and good chemical resistance can be obtained.
  • the obtained cured film can be suitably used as a planarizing film for a TFT substrate or an insulating film for a touch panel.
  • the photosensitive siloxane composition of the present invention is a photosensitive siloxane composition containing (a) polysiloxane, (b) a quinonediazide compound, (c) a solvent, and (d) a silicate compound.
  • the photosensitive siloxane composition of the present invention contains (a) polysiloxane.
  • the polysiloxane used in the present invention is a polysiloxane synthesized by reacting at least one organosilane represented by the general formula (1).
  • R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different.
  • R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same (N may represent an integer of 0 to 3).
  • R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms.
  • the plurality of R 1 may be the same or different from each other.
  • These alkyl groups, alkenyl groups, and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-decyl group, trifluoromethyl group, 3, 3 , 3-trifluoropropyl group, 3-glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, [(3-ethyl-3-oxetanyl) methoxy] propyl group, 3-aminopropyl group, Examples include 3-mercaptopropyl group and 3-isocyanatopropyl group.
  • alkenyl group examples include a vinyl group, a 3-acryloxypropyl group, and a 3-methacryloxypropyl group.
  • aryl group examples include phenyl, tolyl, p-hydroxyphenyl, 1- (p-hydroxyphenyl) ethyl, 2- (p-hydroxyphenyl) ethyl, 4-hydroxy-5- (p -Hydroxyphenylcarbonyloxy) pentyl group, naphthyl group.
  • R 2 in the general formula (1) is hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms, each of the plurality of R 2 are the same But it can be different.
  • These alkyl groups, acyl groups and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • Specific examples of the acyl group include an acetyl group.
  • Specific examples of the aryl group include a phenyl group.
  • N in the general formula (1) represents an integer of 0 to 3.
  • organosilane represented by the general formula (1) include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, and tetraphenoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and methyl.
  • a polysiloxane synthesized by reacting a silicate compound (d) described later may be used together with one or more kinds of organosilanes represented by the general formula (1).
  • the pattern resolution is improved by reacting the silicate compound. This is presumably because the incorporation of a polyfunctional silicate compound in the polysiloxane increases the glass transition temperature of the film and suppresses pattern dripping during thermosetting.
  • the mixing ratio in the case of using a silicate compound is not particularly limited, but is preferably 50% or less in terms of the number of moles of Si atoms relative to the number of moles of Si atoms in the whole polymer.
  • the Si atom molar ratio of the silicate compound to the total number of Si atoms in the polymer can be obtained from the integral ratio of the peak derived from the Si—C bond and the peak derived from the Si—O bond in IR.
  • the structure of the monomer other than the silicate compound is determined by 1H-NMR, 13C-NMR, IR, TOF-MS, etc., and further, the gas generated in the elemental analysis method and the remaining ash ( It can be calculated from the ratio of (all assumed to be SiO 2).
  • the content of phenyl groups in the polysiloxane for the purpose of improving the compatibility with the (b) quinonediazide compound described later and forming a uniform cured film without phase separation is preferably at least 30 mol%, more preferably at least 40 mol%, based on Si atoms.
  • the phenyl group content is within this preferred range, the polysiloxane and quinonediazide compound are unlikely to cause phase separation during coating, drying, thermal curing, etc., so the film does not become cloudy and the cured film has high transparency. Is preserved.
  • the content rate of a phenyl group it is preferable that it is 70 mol% or less with respect to Si atom.
  • the content of the phenyl group is within this preferable range, crosslinking during heat curing occurs sufficiently, and the cured film has excellent chemical resistance.
  • the phenyl group content can be determined, for example, by measuring 29Si-NMR of polysiloxane and determining the ratio of the peak area of Si bonded to the phenyl group and the peak area of Si bonded to no phenyl group.
  • the weight average molecular weight (Mw) of the polysiloxane used in the present invention is not particularly limited, but is preferably 1,000 to 100,000 in terms of polystyrene measured by GPC (gel permeation chromatography), more preferably 2, 000 to 50,000. When the Mw is within this preferred range, the coating properties are good and the solubility in the developer during pattern formation is good.
  • the polysiloxane used in the present invention is synthesized by hydrolysis and partial condensation of a monomer such as organosilane represented by the general formula (1).
  • a general method can be used for hydrolysis and partial condensation. For example, a solvent, water and, if necessary, a catalyst are added to the mixture, and the mixture is heated and stirred at 50 to 150 ° C. for about 0.5 to 100 hours. During stirring, if necessary, hydrolysis by-products (alcohols such as methanol) and condensation by-products (water) may be distilled off by distillation.
  • the reaction solvent is not particularly limited, but usually the same solvent as the solvent (c) described later is used.
  • the addition amount of the solvent is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the monomer such as organosilane.
  • the amount of water used for the hydrolysis reaction is preferably 0.5 to 2 moles per mole of hydrolyzable groups.
  • the catalyst added as necessary, but an acid catalyst and a base catalyst are preferably used.
  • the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, acetic acid, trifluoroacetic acid, formic acid, polyvalent carboxylic acid or anhydride thereof, and ion exchange resin.
  • the base catalyst examples include triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, diethylamine, triethanolamine, diethanolamine, sodium hydroxide, potassium hydroxide, amino
  • the base catalyst include triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, diethylamine, triethanolamine, diethanolamine, sodium hydroxide, potassium hydroxide, amino
  • the addition amount of the catalyst is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the monomer such as organosilane.
  • the catalyst is not contained in the polysiloxane solution after hydrolysis and partial condensation, and the catalyst can be removed as necessary.
  • a removal method Preferably water washing and / or the process of an ion exchange resin are mentioned.
  • Water washing is a method in which an organic layer obtained by diluting a polysiloxane solution with an appropriate hydrophobic solvent and washing several times with water is concentrated by an evaporator.
  • the treatment with an ion exchange resin is a method of bringing a polysiloxane solution into contact with an appropriate ion exchange resin.
  • the photosensitive siloxane composition of the present invention contains (b) a quinonediazide compound.
  • a quinonediazide compound By containing the quinonediazide compound, it is possible to form a positive type in which the exposed portion is removed with a developer.
  • the quinonediazide compound to be used is not particularly limited, but is a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group, and the ortho-position and para-position of the phenolic hydroxyl group of the compound are independently hydrogen, or A compound that is any of the substituents represented by the general formula (3) is preferably used.
  • R 7 , R 8 , and R 9 each independently represents any of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group. Also, R 7 , R 8 , R 9 9 may form a ring.
  • R 7 , R 8 and R 9 each independently represents any of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group.
  • the alkyl group may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n- Examples include an octyl group, a trifluoromethyl group, and a 2-carboxyethyl group.
  • a hydroxyl group is mentioned as a substituent substituted by a phenyl group.
  • R 7 , R 8 and R 9 may form a ring, and specific examples include a cyclopentane ring, a cyclohexane ring, an adamantane ring, and a fluorene ring.
  • oxidative decomposition is also caused by thermal curing. Since it does not occur, a conjugated compound represented by a quinoid structure is not formed, and the cured film is not colored and colorless and transparent are maintained.
  • quinonediazide compounds can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazidesulfonic acid chloride.
  • Specific examples of the compound having a phenolic hydroxyl group include the following compounds (all manufactured by Honshu Chemical Industry Co., Ltd.).
  • quinonediazide compound is a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group represented by the general formula (7).
  • R 24 and R 25 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 26 and R 27 each independently represents a hydrogen atom, Represents any one of an alkyl group having 1 to 8 carbon atoms, an alkoxyl group, a carboxyl group and an ester group, and a plurality of R 26 and R 27 may be the same or different.
  • c and d represent integers of 1 to 5. However, a + c and b + d are integers of 1 to 5, and c ⁇ d and c + d ⁇ 3.
  • the quinonediazide compound in which naphthoquinonediazidesulfonic acid is ester-bonded to the compound having a phenolic hydroxyl group represented by the general formula (7) has a low molecular weight and an asymmetric structure, (a) polysiloxane and (d) The compatibility with the silicate compound is good, and even when a large amount of the quinonediazide compound is added, film turbidity does not occur.
  • the dissolution contrast between the exposed portion and the unexposed portion can be improved, and the reduction of the developed film in the unexposed portion can be suppressed, thereby realizing a highly sensitive pattern formation.
  • Specific examples of the compound having a phenolic hydroxyl group represented by the general formula (7) include the following compounds.
  • 4-naphthoquinone diazide sulfonic acid or 5-naphthoquinone diazide sulfonic acid can be used. Since 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength 365 nm) region, it is suitable for i-line exposure. Further, the 5-naphthoquinonediazide sulfonic acid ester compound has absorption in a wide wavelength range and is therefore suitable for exposure in a wide wavelength range.
  • a 4-naphthoquinone diazide sulfonic acid ester compound and a 5-naphthoquinone diazide sulfonic acid ester compound may be mixed and used.
  • the addition amount of the quinonediazide compound is not particularly limited, but is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the polysiloxane.
  • the addition amount of the quinonediazide compound is within this preferable range, the dissolution contrast between the exposed part and the unexposed part is not too low, and the photosensitive property is realistic.
  • the compatibility between the polysiloxane and the quinonediazide compound is kept good, whitening of the coating film does not occur, and coloring due to decomposition of the quinonediazide compound during thermal curing can be suppressed. Kept.
  • the photosensitive siloxane composition of the present invention contains (c) a solvent.
  • a solvent for example, the compound which has alcoholic hydroxyl group is used.
  • these solvents are used, the polysiloxane and the quinonediazide compound are uniformly dissolved, and even when the composition is applied, the film is not whitened and high transparency can be achieved.
  • the compound having an alcoholic hydroxyl group is not particularly limited, but is preferably a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure.
  • the boiling point is in this preferred range, the amount of residual solvent in the film is small, film shrinkage during curing can be suppressed, and good flatness can be obtained.
  • the drying at the time of the coating film is not too fast, the film surface is not rough and the coating film properties are excellent.
  • the compound having an alcoholic hydroxyl group include acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy- 4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t- Butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, 3-methoxy-1 Butanol, 3-methyl-3-methoxy-1-butanol.
  • the photosensitive siloxane composition of the present invention may contain other solvents as long as the effects of the present invention are not impaired.
  • Other solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1- Esters such as butyl acetate and ethyl acetoacetate, ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone, diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl Ethers such as ether,
  • the amount of solvent added is not particularly limited, but is preferably in the range of 100 to 1000 parts by mass with respect to 100 parts by mass of polysiloxane.
  • the photosensitive siloxane composition of the present invention contains (d) a silicate compound represented by the general formula (2).
  • R 3 to R 6 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • P is 2) Represents an integer of ⁇ 10)
  • Specific examples of the silicate compound represented by the general formula (2) include methyl silicate 51 (manufactured by Fuso Chemical Industry), M silicate 51, silicate 40, silicate 45 (manufactured by Tama Chemical Industry Co., Ltd.), methyl Examples thereof include silicate 51, methyl silicate 53A, ethyl silicate 40, and ethyl silicate 48 (manufactured by Colcoat Co., Ltd.).
  • methyl silicate 51 manufactured by Fuso Chemical Industry Co., Ltd.
  • M silicate 51 manufactured by Tama Chemical Industry Co., Ltd.
  • methyl silicate 51, and methyl silicate 53A are preferable.
  • p is preferably 3 to 5.
  • methyl silicate 51 (manufactured by Fuso Chemical Industry Co., Ltd.), M silicate 51 (Tama Chemical Industry Co., Ltd.) And methyl silicate 51 (manufactured by Colcoat Co., Ltd.) are preferable.
  • the silicate compound is a highly heat-resistant and highly transparent compound, and has a good compatibility because it is similar in structure to polysiloxane. Since the silicate compound has many Si-OR groups in one molecule, it reacts with the silanol group in the polysiloxane at the time of thermosetting, thereby increasing the degree of cross-linking of the cured film and improving the chemical resistance. .
  • the addition amount of the silicate compound is not particularly limited, but is preferably 3 to 20 parts by mass with respect to 100 parts by mass of the polysiloxane. More preferably, it is 3 to 10 parts by mass.
  • the addition amount of the silicate compound is within this preferable range, the chemical resistance improvement effect is great.
  • the amount of development film reduction in the unexposed area is small, the film thickness uniformity is good.
  • the photosensitive resin composition of the present invention may contain (e) a metal chelate compound represented by the following general formula (6).
  • M is a metal atom.
  • R ⁇ 21> may be the same or different and each represents hydrogen, an alkyl group, an aryl group, an alkenyl group, and those substituted products.
  • a plurality of R 22 and R 23 may be the same or different and each represents hydrogen, an alkyl group, an aryl group, an alkenyl group, an alkoxy group, or a substituted product thereof.
  • j represents the valence of the metal atom M
  • k represents an integer of 0 or more and j or less.
  • the development adhesion is improved and the chemical resistance of the obtained cured film is improved.
  • M is a metal atom and is not particularly limited, but from the viewpoint of transparency, titanium, zirconium, aluminum, zinc, cobalt, molybdenum, lanthanum, barium, strontium, magnesium, calcium Metal atoms such as Among these, zirconium or aluminum is preferable from the viewpoint of development adhesion and chemical resistance of the cured film.
  • R 21 is methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decanyl group, octadecanyl group, phenyl group , Vinyl group, allyl group, oleyl group and the like.
  • n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n- An octadecyl group and a phenyl group are preferable.
  • R 22 and R 23 are hydrogen, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, phenyl group, vinyl group, methoxy group, ethoxy group, n -Propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n- An octadecyl group, a benzyloxy group, etc. are mentioned.
  • a methyl group, a t-butyl group, a phenyl group, a methoxy group, an ethoxy group, and an n-octadecyl group are preferable because they are easily synthesized and the compound is stable.
  • Examples of the compound represented by the general formula (6) include a zirconium tetra n-propoxide, zirconium tetra n-butoxide, zirconium tetra sec-butoxide, zirconium tetraphenoxide, zirconium tetraacetylacetonate, zirconium tetra (2,2,6,6-tetramethyl-3,5-heptanedionate), zirconium tetramethyl acetoacetate, zirconium tetraethyl acetoacetate, zirconium tetramethyl malonate, zirconium tetraethyl malonate, zirconium tetrabenzoyl acetonate, zirconium Tetradibenzoylmethanate, zirconium mono-n-butoxyacetylacetonate bis (ethylacetoacetate), zirconium Mono n-butoxyethyl ace
  • Aluminum compounds include aluminum trisisopropoxide, aluminum tris n-propoxide, aluminum tris sec-butoxide, aluminum tris n-butoxide, aluminum trisphenoxide, aluminum trisacetylacetonate, aluminum tris (2,2,6,6- Tetramethyl-3,5-heptanedionate), aluminum trisethyl acetoacetate, aluminum trismethyl acetoacetate, aluminum trismethyl malonate, aluminum trisethyl malonate, aluminum ethyl acetate di (isopropoxide), aluminum acetylacetonate ) Di (isopropoxide), aluminum methyl acetoacetate di (isopropoxide), aluminum oct Tadecyl acetoacetate di (isopropylate), aluminum monoacetylacetonate bis (ethyl acetoacetate) and the like can be mentioned.
  • Titanium compounds include titanium tetra n-propoxide, titanium tetra n-butoxide, titanium tetra sec-butoxide, titanium tetraphenoxide, titanium tetraacetylacetonate, titanium tetra (2,2,6,6-tetramethyl-3, 5-heptanedionate), titanium tetramethyl acetoacetate, titanium tetraethyl acetoacetate, titanium tetramethyl malonate, titanium tetraethyl malonate, titanium tetrabenzoyl acetonate, titanium tetradibenzoyl methacrylate, titanium mono n-butoxyacetylacetonate Bis (ethyl acetoacetate), Titanium mono n-butoxyethyl acetoacetate bis (acetylacetonate), Titanium mono n-butoxytris (acetylacetonate), Titanium mono n Butoxytris (acetylacet
  • zirconium tetranormal propoxide zirconium tetranormal butoxide, zirconium tetraphenoxide, zirconium tetraacetylacetonate, zirconium tetra (2,2,6,6-tetra Methyl-3,5-heptanedionate), zirconium tetramethyl malonate, zirconium tetraethyl malonate, zirconium tetraethyl acetoacetate, zirconium dinormalbutoxybis (ethylacetoacetate), zirconium mononormalbutoxyacetylacetonate bis (ethylacetoacetate) )
  • zirconium compounds aluminum trisacetylacetonate, aluminum tris (2,2,6,6-tetramethyl-3,5 Heptanedionate), aluminum trisethyl acetoa
  • the addition amount of the metal chelate compound is not particularly limited, but is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polysiloxane. More preferably, it is 0.3 to 4 parts by weight. By being in the above range, it is possible to achieve both development adhesion and chemical resistance of the cured film at a high level.
  • the photosensitive siloxane composition of the present invention is optionally provided with a silane coupling agent, a crosslinking agent, a crosslinking accelerator, a sensitizer, a thermal radical generator, a dissolution accelerator, a dissolution inhibitor, a surfactant, and a stable agent.
  • a silane coupling agent such as an agent and an antifoaming agent can also be contained.
  • the photosensitive siloxane composition of the present invention may contain a silane coupling agent.
  • a silane coupling agent By containing the silane coupling agent, the adhesion to the substrate is improved.
  • Specific examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltri Ethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxy
  • the addition amount of the silane coupling agent is not particularly limited, but is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount is within this preferred range, the effect of improving the adhesion is sufficient, while the silane coupling agents are difficult to undergo a condensation reaction during storage and do not cause undissolved residue during development.
  • the photosensitive siloxane composition of the present invention may contain a crosslinking agent.
  • the cross-linking agent is a compound that undergoes polysiloxane cross-linking during thermal curing and is incorporated into the resin.
  • the degree of cross-linking of the cured film is increased.
  • the chemical resistance of the cured film is improved, and a decrease in pattern resolution due to pattern dripping during thermosetting is suppressed.
  • R 10 represents any one of hydrogen and an alkyl group having 1 to 10 carbon atoms.
  • a plurality of R 10 in the compound may be the same or different.
  • R 10 represents either hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • a plurality of R 10 in the compound may be the same or different.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group and n-decyl group.
  • Specific examples of the compound having two or more groups represented by the general formula (4) include the following melamine derivatives and urea derivatives (trade name, manufactured by Sanwa Chemical Co., Ltd.).
  • crosslinking agent may be used individually or may be used in combination of 2 or more type.
  • the addition amount of the crosslinking agent is not particularly limited, but is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount of the crosslinking agent is within this preferred range, the resin is sufficiently crosslinked. On the other hand, the colorless transparency of the cured film is maintained and the storage stability of the composition is excellent.
  • the photosensitive siloxane composition of the present invention may contain a crosslinking accelerator.
  • a crosslinking accelerator is a compound that promotes crosslinking of polysiloxane during thermal curing, and is a thermal acid generator that generates acid during thermal curing, and a photoacid generator that generates acid during bleaching exposure before thermal curing. Is used.
  • the presence of an acid in the film at the time of thermosetting promotes the condensation reaction of unreacted silanol groups in the polysiloxane, and increases the degree of crosslinking of the cured film. As a result, the chemical resistance of the cured film is improved, and a decrease in pattern resolution due to pattern dripping during thermosetting is suppressed.
  • the thermal acid generator used in the present invention is a compound that generates an acid at the time of thermosetting, and it is preferable that no acid is generated or only a small amount is generated at the time of pre-baking after coating the composition. Therefore, a compound that generates an acid at a pre-bake temperature or higher, for example, 100 ° C. or higher is preferable.
  • a pre-bake temperature or higher for example, 100 ° C. or higher is preferable.
  • thermal acid generator preferably used include SI-60, SI-80, SI-100, SI-110, SI-145, SI-150, SI-60L, SI-80L, SI-100L, SI -110L, SI-145L, SI-150L, SI-160L, SI-180L (above trade names, manufactured by Sanshin Chemical Industry Co., Ltd.), 4-hydroxyphenyldimethylsulfonium trifluoromethanesulfonate, benzyl-4-hydroxyphenyl Methylsulfonium trifluoromethanesulfonate, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium trifluoromethanesulfonate, 4-acetoxyphenyldimethylsulfonium trifluoromethanesulfonate, 4-acetoxyphenylbenzylmethylsulfonium trifluor B methanesulfonate, 4-methoxycarbonyloxy-phenyl dimethyl sulfonium triflu
  • the photoacid generator used in the present invention is a compound that generates an acid during bleaching exposure, and is irradiated with an exposure wavelength of 365 nm (i-line), 405 nm (h-line), 436 nm (g-line), or a mixed line thereof. Is a compound that generates an acid. Therefore, although there is a possibility that acid is generated even in pattern exposure using the same light source, since the exposure amount of pattern exposure is smaller than bleaching exposure, only a small amount of acid is generated, which is not a problem.
  • the acid generated is preferably a strong acid such as perfluoroalkylsulfonic acid or p-toluenesulfonic acid, and the quinonediazide compound generating carboxylic acid does not have the function of a photoacid generator here. This is different from the crosslinking accelerator in the present invention.
  • photoacid generators preferably used include SI-100, SI-101, SI-105, SI-106, SI-109, PI-105, PI-106, PI-109, NAI-100, and NAI. -1002, NAI-1003, NAI-1004, NAI-101, NAI-105, NAI-106, NAI-109, NDI-101, NDI-105, NDI-106, NDI-109, PAI-01, PAI-101 , PAI-106, PAI-1001 (trade name, manufactured by Midori Chemical Co., Ltd.), SP-077, SP-082 (trade name, manufactured by ADEKA), TPS-PFBS (trade name, Toyo Gosei) Industrial Co., Ltd.), CGI-MDT, CGI-NIT (trade name, manufactured by Ciba Japan Co., Ltd.), WPAG-281, WP G-336, WPAG-339, WPAG-342, WPAG-344, WPAG-350, WPAG
  • the crosslinking accelerator the above-described thermal acid generator and photoacid generator can be used in combination.
  • the addition amount of the crosslinking accelerator is not particularly limited, but is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount of the crosslinking accelerator is within this preferable range, the effect is sufficient, while the polysiloxane is not crosslinked during pre-baking or pattern exposure.
  • the photosensitive siloxane composition of the present invention may contain a sensitizer.
  • a sensitizer By containing a sensitizer, the reaction of the naphthoquinone diazide compound, which is a photosensitizer, is promoted to improve sensitivity, and when a photoacid generator is contained as a crosslinking accelerator, reaction during bleaching exposure is performed. Is promoted to improve the chemical resistance and pattern resolution of the cured film.
  • the sensitizer used in the present invention is not particularly limited, but a sensitizer that vaporizes by heat treatment and / or fades by light irradiation is preferably used.
  • This sensitizer is required to have absorption at 365 nm (i-line), 405 nm (h-line), and 436 nm (g-line), which are wavelengths of the light source in pattern exposure and bleaching exposure, but is cured as it is. If the film remains in the film, absorption in the visible light region exists, so that colorless transparency is lowered.
  • the sensitizer used is faded by light irradiation such as a compound (sensitizer) that is vaporized by heat treatment such as thermosetting and / or bleaching exposure.
  • a compound (sensitizer) that is vaporized by heat treatment such as thermosetting and / or bleaching exposure.
  • Compounds (sensitizers) are preferred.
  • the sensitizer that is vaporized by the heat treatment and / or discolored by light irradiation include coumarin such as 3,3′-carbonylbis (diethylaminocoumarin), anthraquinone such as 9,10-anthraquinone, benzophenone, Aromatic ketones such as 4,4′-dimethoxybenzophenone, acetophenone, 4-methoxyacetophenone, benzaldehyde, biphenyl, 1,4-dimethylnaphthalene, 9-fluorenone, fluorene, phenanthrene, triphenylene, pyrene, anthracene, 9-phenylanthracene, 9-methoxyanthracene, 9,10-diphenylanthracene, 9,10-bis (4-methoxyphenyl) anthracene, 9,10-bis (triphenylsilyl) anthracene, 9,10-dimethoxy Nthracene,
  • the sensitizer that is vaporized by heat treatment is preferably a sensitizer that sublimates, evaporates, or thermally decomposes due to thermal decomposition sublimates or evaporates by heat treatment.
  • the vaporization temperature of the sensitizer is preferably 130 ° C. to 400 ° C., more preferably 150 ° C. to 250 ° C.
  • the sensitizer is not easily vaporized during pre-baking, and therefore it is not lost during the exposure process, and the sensitivity can be maintained high.
  • the sensitizer since the sensitizer is vaporized at the time of heat curing, it does not remain in the cured film and can maintain colorless transparency.
  • the vaporization temperature of a sensitizer is preferably 250 ° C. or less.
  • the sensitizer that fades when irradiated with light is preferably a sensitizer that absorbs light in the visible light region when irradiated with light from the viewpoint of transparency.
  • a compound that fades upon irradiation with light is a compound that dimerizes upon irradiation with light.
  • the sensitizer is preferably an anthracene compound in that it can achieve high sensitivity and dimerizes and fades when irradiated with light, and the anthracene compound in which the 9th and 10th positions are hydrogen is unstable to heat. Therefore, 9,10-disubstituted anthracene compounds are preferable. Furthermore, the 9,10-dialkoxyanthracene compound represented by the general formula (5) is preferable from the viewpoint of improving the solubility of the sensitizer and the reactivity of the photodimerization reaction.
  • R 11 to R 18 in the general formula (5) each independently represent hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, an aryl group, an acyl group, or an organic group in which they are substituted.
  • the alkyl group include a methyl group, an ethyl group, and an n-propyl group.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentyloxy group.
  • Specific examples of the alkenyl group include a vinyl group, an acryloxypropyl group, and a methacryloxypropyl group.
  • R 11 to R 18 are preferably hydrogen or an organic group having 1 to 6 carbon atoms. More preferably, R 11 , R 14 , R 15 , R 18 are preferably hydrogen.
  • R 19 and R 20 in the general formula (5) represent an alkoxy group having 1 to 20 carbon atoms and an organic group in which they are substituted.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentyloxy group, and a propoxy group and a butoxy group are preferable from the viewpoint of the solubility of the compound and a fading reaction due to photodimerization.
  • the addition amount of the sensitizer is not particularly limited, but it is preferably added in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount of the sensitizer is within this preferable range, the transparency is not lowered and the sensitivity is not lowered.
  • a method for forming a cured film using the photosensitive siloxane composition of the present invention will be described.
  • the composition of the present invention is applied onto a base substrate by a known method such as a spinner or a slit, and prebaked with a heating device such as a hot plate or oven.
  • Pre-baking is preferably performed in the range of 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after pre-baking is preferably 0.1 to 15 ⁇ m.
  • UV-visible exposure machine such as a stepper, mirror projection mask aligner (MPA), parallel light mask aligner (PLA), etc., and pass through the desired mask at a wavelength of about 10 to 4000 J / m 2 (wavelength 365 nm equivalent). Pattern exposure.
  • a developing method it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle.
  • a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, and tetramethyl hydroxide. Examples include aqueous solutions containing one or more quaternary ammonium salts such as ammonium and choline.
  • dehydration drying baking can be performed at a temperature of 50 to 150 ° C. with a heating device such as a hot plate or oven.
  • bleaching exposure By performing bleaching exposure, the unreacted quinonediazide compound remaining in the film is photodegraded, and the light transparency of the film is further improved.
  • a bleaching exposure method an entire surface is exposed to about 100 to 20000 J / m 2 (converted to a wavelength of 365 nm exposure amount) using an ultraviolet-visible exposure machine such as PLA.
  • the film subjected to bleaching exposure is soft-baked at a temperature of 50 to 150 ° C. for 30 seconds to 30 minutes with a heating device such as a hot plate or oven, if necessary, and then heated with a heating device such as a hot plate or oven.
  • Curing at 450 ° C for about 1 hour forms a flattening film for TFTs in display elements, protective films and insulating films for touch panels, interlayer insulating films in semiconductor elements, and core and cladding materials in optical waveguides. Is done.
  • the cured film produced using the photosensitive siloxane composition of the present invention has a light transmittance of 90% or more per film thickness of 3 ⁇ m at a wavelength of 400 nm, more preferably 92% or more.
  • the light transmittance of the cured film is within this preferable range, when used as a flattening film for a TFT substrate of a liquid crystal display element, the color change does not occur when the backlight passes and the white display becomes yellowish.
  • the light transmittance of the cured film is within this preferable range, when used as a flattening film for a TFT substrate of a liquid crystal display element, the color change does not occur when the backlight passes and the white display becomes yellowish.
  • the white display becomes yellowish.
  • the transmittance per 3 ⁇ m of film thickness at the wavelength of 400 nm is determined by the following method.
  • the composition is spin-coated on a Tempax glass plate at an arbitrary rotation number using a spin coater, and prebaked at 100 ° C. for 2 minutes using a hot plate.
  • the whole surface of the film was exposed to an ultrahigh pressure mercury lamp at 3000 J / m 2 (wavelength 365 nm exposure amount conversion), and thermally cured at 220 ° C. for 1 hour in air using an oven.
  • a 3 ⁇ m cured film is produced.
  • the ultraviolet-visible absorption spectrum of the obtained cured film is measured using “MultiSpec” -1500 manufactured by Shimadzu Corporation, and the transmittance at a wavelength of 400 nm is determined.
  • This cured film is suitably used as a planarizing film for TFT substrates such as liquid crystal display elements, protective films and insulating films for touch panels, interlayer insulating films for semiconductor elements, or cores and cladding materials for optical waveguides.
  • the element in the present invention refers to a liquid crystal display element having a cured film as described above, an organic EL display element, a touch panel, a semiconductor element, or an optical waveguide material, and in particular, a liquid crystal display element having a flattening film for a TFT substrate, and Effectively used for a touch panel having an insulating film.
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 64 g (0.1 mol) and 163.35 g of diacetone alcohol (hereinafter abbreviated as DAA) were charged, and 0.535 g of phosphoric acid (0.3% by mass with respect to the charged monomer) was added to 54 g of water while stirring at room temperature. The dissolved aqueous phosphoric acid solution was added over 10 minutes. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes.
  • DAA diacetone alcohol
  • the resulting polysiloxane solution (a) had a solid content concentration of 40% by mass, and the polysiloxane had a weight average molecular weight of 6500. In addition, the phenyl group content rate in polysiloxane was 50 mol% with respect to Si atom.
  • Synthesis Example 2 Synthesis of polysiloxane solution (b)] In a 500 ml three-necked flask, 40.86 g (0.3 mol) of methyltrimethoxysilane, 99.15 g (0.5 mol) of phenyltrimethoxysilane, and 12.12 of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • the resulting polysiloxane solution (b) had a solid content concentration of 40% by mass, and the polysiloxane had a weight average molecular weight of 10,000. In addition, the phenyl group content rate in polysiloxane was 50 mol% with respect to Si atom.
  • Synthesis of polysiloxane solution (c) In a 500 ml three-necked flask, 88.53 g (0.65 mol) of methyltrimethoxysilane, 49.58 g (0.25 mol) of phenyltrimethoxysilane, and 24. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • the polysiloxane solution (c) thus obtained had a solid content concentration of 40% by mass, and the weight average molecular weight of the polysiloxane was 9,000. In addition, the phenyl group content rate in polysiloxane was 25 mol% with respect to Si atom.
  • Synthesis Example 4 Synthesis of polysiloxane solution (d)] In a 500 ml three-necked flask, 20.43 g (0.15 mol) of methyltrimethoxysilane, 158.64 g (0.8 mol) of phenyltrimethoxysilane, and 12.12 of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • the polysiloxane solution (d) thus obtained had a solid content concentration of 40% by mass, and the weight average molecular weight of the polysiloxane was 7,000. In addition, the phenyl group content rate in polysiloxane was 80 mol% with respect to Si atom.
  • Synthesis Example 5 Synthesis of acrylic resin solution (a)] A 500 ml flask was charged with 5 g of 2,2′-azobis (isobutyronitrile) and 150 g of PGMEA.
  • the obtained acrylic resin solution (a) had a solid content concentration of 43% by mass, and the acrylic resin had a weight average molecular weight of 31,400.
  • Synthesis Example 6 Synthesis of quinonediazide compound (a)] Under a nitrogen stream, 21.23 g (0.05 mol) of TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 37.62 g (0.14 mol) of 5-naphthoquinone diazide sulfonyl chloride were added to 1,4-dioxane. Dissolved in 450 g and brought to room temperature.
  • the triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (b) having the following structure.
  • Example 1 25.51 g of the polysiloxane solution (a) obtained in Synthesis Example 1, 0.92 g of the quinonediazide compound (c) obtained in Synthesis Example 8, and M silicate 51 (trade name, manufactured by Tama Chemical Co., Ltd.) as the silicate compound ) 1.02 g, KBM303 (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.20 g as a silane coupling agent, CGI-MDT (as a crosslinking accelerator) 0.10 g (trade name, manufactured by Ciba Japan), 0.05 g of DPA (9,10-dipropoxyanthracene, product name, manufactured by Kawasaki Kasei Kogyo Co., Ltd.) as a sensitizer, 3.44 g of DAA as a solvent, PGMEA 18 .75 g was mixed and stirred under a yellow light to
  • Composition 1 was spin-coated on a silicon wafer and OA-10 glass plate (manufactured by Nippon Electric Glass Co., Ltd.) using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary rotation number, and then hot plate (Dainippon Screen Mfg. Co., Ltd. SCW-636) was pre-baked at 100 ° C. for 2 minutes to prepare a film having a thickness of 3 ⁇ m.
  • PLA parallel light mask aligner
  • PLA-501F manufactured by Canon Inc.
  • the produced film was subjected to pattern exposure with an ultra-high pressure mercury lamp through a gray scale mask for sensitivity measurement, and then automatically Using a developing device (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 80 seconds with ELM-D (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.) which is a 2.38 mass% tetramethylammonium hydroxide aqueous solution. Then rinsed with water for 30 seconds. After that, as bleaching exposure, PLA (Canon Co., Ltd.
  • PLA-501F PLA-501F was used, and the entire surface of the film was exposed to 3000 J / m 2 (wavelength 365 nm exposure amount conversion) with an ultrahigh pressure mercury lamp. Thereafter, soft baking was performed at 110 ° C. for 2 minutes using a hot plate, and then cured in an air at 220 ° C. for 1 hour using an oven (Tabba Espec Co., Ltd.) to prepare a cured film.
  • Table 2 shows the evaluation results of the photosensitive characteristics and the cured film characteristics.
  • the evaluation in the table was performed by the following method.
  • the following evaluations (3) to (6) were performed using a silicon wafer substrate, and (8) and (9) were evaluated using an OA-10 glass plate.
  • (4) Calculation of remaining film rate The remaining film rate was calculated according to the following formula.
  • Residual film ratio (%) unexposed film thickness after development / film thickness after pre-baking ⁇ 100 (5) Calculation of sensitivity The exposure amount that forms a 10 ⁇ m line-and-space pattern with a one-to-one width after exposure and development (hereinafter referred to as the optimum exposure amount) was defined as sensitivity. (6) Calculation of resolution The minimum pattern size after development at the optimum exposure amount was taken as post-development resolution, and the minimum pattern size after cure was taken as post-cure resolution. (7) Measurement of mass reduction rate About 100 mg of the composition was placed in an aluminum cell, and a thermal mass measurement apparatus (TGA-50, manufactured by Shimadzu Corporation) was used, and the temperature was increased to 300 ° C.
  • TGA-50 thermal mass measurement apparatus
  • a cured film of the composition was formed on the OA-10 glass plate (pattern exposure was not performed), this sample was measured with a single beam, and the light transmittance at a wavelength of 400 nm per 3 ⁇ m was obtained. The difference was the light transmittance of the cured film.
  • compositions 2 to 17 were produced in the same manner as Composition 1 according to the compositions described in Table 1.
  • methyl silicate 53A used as a silicate compound ethyl silicate 40, ethyl silicate 48 (trade name, manufactured by Colcoat Co., Ltd.), KBM403 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) used as a silane coupling agent, Nicalac MX-270 and Nicalac MW-30HM (trade names, manufactured by Sanwa Chemical Co., Ltd.) used as crosslinking agents are compounds having the structures shown below.
  • Example 2 Each composition was evaluated in the same manner as in Example 1 using each composition obtained. However, in the evaluation of Comparative Example 2, the development was performed by shower development for 80 seconds with a 0.4 mass% tetramethylammonium hydroxide aqueous solution (ELM-D diluted with water). The results are shown in Table 2. Since Comparative Examples 1, 2, and 4 do not contain the silicate compound represented by the general formula (2), the chemical resistance of the cured film properties is inferior. Moreover, since the resin is an acrylic resin, the comparative example 3 is inferior in the light transmittance among cured film characteristics.
  • the present invention forms a flattening film for a thin film transistor (TFT) substrate such as a liquid crystal display element or an organic EL display element, a protective film or insulating film for a touch panel, an interlayer insulating film for a semiconductor element, or a core or cladding material for an optical waveguide. Therefore, it can be suitably used for a photosensitive siloxane composition.
  • TFT thin film transistor

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a photosensitive siloxane composition having: (a) a polysiloxane synthesized by reacting at least one organosilane represented by general formula 1, (b) a quinone diazide compound, (c) a solvent, and (d) the silicate compound represented by general formula 2. (In formula 1, R1 represents any of hydrogen, an alkyl group having 1-10 carbon atoms, an alkenyl group having 2-10 carbon atoms, or an aryl group having 6-15 carbon atoms; the plurality of R1 may be the same or different. R2 represents any of hydrogen, an alkyl group having 1-6 carbon atoms, an acyl group having 2-6 carbon atoms, or an aryl group having 6-15 carbon atoms; the plurality of R2 may be the same or different; and n represents an integer from 0 to 3.) (In formula 2, R3 to R6 each independently represents any of hydrogen, an alkyl group having 1-6 carbon atoms, an acyl group having 2-6 carbon atoms; or an aryl group having 6-15 carbon atoms; and p represents an integer from 2 to 10.) Provided is the photosensitive siloxane composition that can yield a cured film having the properties of high heat resistance and high transparency, and of which the chemical resistance is favorable.

Description

感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
 本発明は、液晶表示素子や有機EL表示素子などの薄膜トランジスタ(TFT)基板用平坦化膜、タッチパネルの保護膜や絶縁膜、半導体素子の層間絶縁膜、あるいは光導波路のコアやクラッド材などを形成するための感光性シロキサン組成物、それから形成された硬化膜、およびその硬化膜を有する素子に関する。 The present invention forms a flattening film for a thin film transistor (TFT) substrate such as a liquid crystal display element or an organic EL display element, a protective film or insulating film for a touch panel, an interlayer insulating film for a semiconductor element, or a core or cladding material for an optical waveguide. The present invention relates to a photosensitive siloxane composition, a cured film formed therefrom, and an element having the cured film.
 近年、液晶ディスプレイや有機ELディスプレイなどにおいて、さらなる高精細、高解像度を実現することが求められている。 In recent years, it has been required to realize higher definition and higher resolution in liquid crystal displays and organic EL displays.
 また、近年、液晶ディスプレイなどにおいて、タッチパネルの採用が活発となっており、特に静電容量方式のタッチパネルが注目されている。 In recent years, the use of touch panels has become active in liquid crystal displays and the like, and in particular, capacitive touch panels have attracted attention.
 例えば、特許文献1には、液晶ディスプレイや有機ELディスプレイなどにおいて、さらなる高精細、高解像度を実現する方法として、表示装置の開口率を上げる方法が記載されている。これは、透明な平坦化膜をTFT基板の上部に保護膜として設けることによって、データラインと画素電極をオーバーラップさせることを可能とし、従来技術に比べて開口率を上げる方法である。 For example, Patent Document 1 describes a method for increasing the aperture ratio of a display device as a method for realizing higher definition and higher resolution in a liquid crystal display, an organic EL display, or the like. This is a method in which the data line and the pixel electrode can be overlapped by providing a transparent flattening film as a protective film on the TFT substrate, and the aperture ratio is increased as compared with the prior art.
 このようなTFT基板用平坦化膜の材料としては、高耐熱性、高透明性の特性を有し、かつTFT基板電極とITO電極をつなぐため数μm~50μm程度のホールパターン形成をする必要があり、一般的にポジ型感光性材料が用いられる。 As a material for such a flattening film for a TFT substrate, it is necessary to form a hole pattern of several μm to 50 μm in order to connect the TFT substrate electrode and the ITO electrode with high heat resistance and high transparency. In general, a positive photosensitive material is used.
 特許文献2、3には、ポジ型感光性材料の代表的なものとして、アクリル樹脂にキノンジアジド化合物を組み合わせた材料が記載されている。 Patent Documents 2 and 3 describe a material in which a quinonediazide compound is combined with an acrylic resin as a representative positive photosensitive material.
 一方、高耐熱性、高透明性の特性を有する材料として、ポリシロキサンが知られており、特許文献4、5、6には、これにポジ型の感光性を付与するためにキノンジアジド化合物を組み合わせた材料が記載されており、これらの材料は耐熱性が高く、高温処理によってもクラックなどの欠点が発生すること無く、高透明の硬化膜を得ることができる。
特開平9-152625号公報(請求項1) 特開2001-281853号公報(請求項1) 特開2001-281861号公報(請求項1) 特開2006-178436号公報(請求項1) 特開2009-211033号公報(請求項1) 特開2010-33005号公報(請求項1)
On the other hand, polysiloxane is known as a material having high heat resistance and high transparency. Patent Documents 4, 5, and 6 are combined with a quinonediazide compound to impart positive photosensitivity thereto. These materials have high heat resistance, and a highly transparent cured film can be obtained without generating defects such as cracks even by high-temperature treatment.
JP-A-9-152625 (Claim 1) JP 2001-281853 A (Claim 1) Japanese Patent Laid-Open No. 2001-281861 (Claim 1) JP 2006-178436 A (Claim 1) JP 2009-211033 A1 (Claim 1) JP 2010-33005 A (Claim 1)
 しかしながら、特許文献1の透明な平坦化膜は、アクリル樹脂材料を用いたものであるため耐熱性が不十分であった。 However, since the transparent flattening film of Patent Document 1 uses an acrylic resin material, the heat resistance is insufficient.
 また、特許文献2、3に記載された材料は耐熱性が不十分であり、基板の高温処理により硬化膜は着色して透明性が低下するという問題があった。また、タッチパネルにおいて、性能向上のために透明電極部材であるITOの高温成膜による高透明化と高導電化が検討されているのに伴って、保護膜や絶縁膜として用いられる材料に対しても耐熱性が求められるが、これらのアクリル材料では耐熱性が不十分であり、高透明、高導電のITOを形成することができない。 Also, the materials described in Patent Documents 2 and 3 have insufficient heat resistance, and there is a problem that the cured film is colored by the high-temperature treatment of the substrate and the transparency is lowered. In addition, in the touch panel, for the improvement of performance, the high transparency and high conductivity of ITO, which is a transparent electrode member, are being studied. However, these acrylic materials are insufficient in heat resistance and cannot form highly transparent ITO with high conductivity.
 特許文献4、5、6に記載された材料はITOエッチング液などの薬液への耐性が十分では無く、耐薬品性の向上が求められている。 The materials described in Patent Documents 4, 5, and 6 are not sufficiently resistant to chemicals such as an ITO etching solution and are required to improve chemical resistance.
 本発明は、上述のような事情に基づいてなされたものであり、高耐熱性、高透明性の特性を有し、かつ耐薬品性が良好な硬化膜を得ることができる感光性シロキサン組成物を提供することを課題とする。また、上記の感光性シロキサン組成物から形成されたTFT基板用平坦化膜、タッチパネル用絶縁膜などの硬化膜およびその硬化膜を有する液晶表示素子などの素子を提供することを本発明の別の課題とする。 The present invention has been made based on the above circumstances, and is a photosensitive siloxane composition capable of obtaining a cured film having high heat resistance and high transparency characteristics and good chemical resistance. It is an issue to provide. Another object of the present invention is to provide a cured film such as a flattening film for a TFT substrate, an insulating film for a touch panel, and a liquid crystal display device having the cured film formed from the photosensitive siloxane composition. Let it be an issue.
 すなわち、本発明の目的は、(a)一般式(1)で表されるオルガノシランの1種以上を反応させることによって合成されるポリシロキサン、(b)キノンジアジド化合物、(c)溶剤および(d)一般式(2)で表されるシリケート化合物を含有する感光性シロキサン組成物により達成される。 That is, an object of the present invention is (a) a polysiloxane synthesized by reacting one or more organosilanes represented by the general formula (1), (b) a quinonediazide compound, (c) a solvent, and (d It is achieved by a photosensitive siloxane composition containing a silicate compound represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。nは0~3の整数を表す。) (Wherein R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different. R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same (N may represent an integer of 0 to 3)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、RからRはそれぞれ独立に水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表す。pは2~10の整数を表す。) (Wherein R 3 to R 6 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms. P is 2) Represents an integer of ~ 10)
 本発明の感光性シロキサン組成物によれば、高耐熱性、高透明性の特性を有し、かつ耐薬品性が良好な硬化膜を得ることができる。また、得られた硬化膜は、TFT基板用平坦化膜やタッチパネル用絶縁膜として好適に用いることができる。 According to the photosensitive siloxane composition of the present invention, a cured film having high heat resistance and high transparency and good chemical resistance can be obtained. Moreover, the obtained cured film can be suitably used as a planarizing film for a TFT substrate or an insulating film for a touch panel.
 本発明の感光性シロキサン組成物は、(a)ポリシロキサン、(b)キノンジアジド化合物、(c)溶剤、(d)シリケート化合物を含有する感光性シロキサン組成物である。 The photosensitive siloxane composition of the present invention is a photosensitive siloxane composition containing (a) polysiloxane, (b) a quinonediazide compound, (c) a solvent, and (d) a silicate compound.
 本発明の感光性シロキサン組成物は、(a)ポリシロキサンを含有する。本発明で用いるポリシロキサンは、一般式(1)で表されるオルガノシランの1種以上を反応させることによって合成されるポリシロキサンである。 The photosensitive siloxane composition of the present invention contains (a) polysiloxane. The polysiloxane used in the present invention is a polysiloxane synthesized by reacting at least one organosilane represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Rは水素、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。nは0から3の整数を表す。)
 一般式(1)で表されるオルガノシランにおいて、Rは、水素、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アルケニル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-デシル基、トリフルオロメチル基、3,3,3-トリフルオロプロピル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、〔(3-エチル-3-オキセタニル)メトキシ〕プロピル基、3-アミノプロピル基、3-メルカプトプロピル基、3-イソシアネートプロピル基が挙げられる。アルケニル基の具体例としては、ビニル基、3-アクリロキシプロピル基、3-メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、p-ヒドロキシフェニル基、1-(p-ヒドロキシフェニル)エチル基、2-(p-ヒドロキシフェニル)エチル基、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチル基、ナフチル基が挙げられる。
(Wherein R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different. R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same (N may represent an integer of 0 to 3).
In the organosilane represented by the general formula (1), R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. The plurality of R 1 may be the same or different from each other. These alkyl groups, alkenyl groups, and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-decyl group, trifluoromethyl group, 3, 3 , 3-trifluoropropyl group, 3-glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, [(3-ethyl-3-oxetanyl) methoxy] propyl group, 3-aminopropyl group, Examples include 3-mercaptopropyl group and 3-isocyanatopropyl group. Specific examples of the alkenyl group include a vinyl group, a 3-acryloxypropyl group, and a 3-methacryloxypropyl group. Specific examples of the aryl group include phenyl, tolyl, p-hydroxyphenyl, 1- (p-hydroxyphenyl) ethyl, 2- (p-hydroxyphenyl) ethyl, 4-hydroxy-5- (p -Hydroxyphenylcarbonyloxy) pentyl group, naphthyl group.
 一般式(1)のRは水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。 R 2 in the general formula (1) is hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms, each of the plurality of R 2 are the same But it can be different. These alkyl groups, acyl groups and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Specific examples of the acyl group include an acetyl group. Specific examples of the aryl group include a phenyl group.
 一般式(1)のnは0から3の整数を表す。n=0の場合は4官能性シラン、n=1の場合は3官能性シラン、n=2の場合は2官能性シラン、x=3の場合は1官能性シランである。 N in the general formula (1) represents an integer of 0 to 3. A tetrafunctional silane when n = 0, a trifunctional silane when n = 1, a bifunctional silane when n = 2, and a monofunctional silane when x = 3.
 一般式(1)で表されるオルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシランなどの4官能性シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn-ブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-ヒドロキシフェニルトリメトキシシラン、1-(p-ヒドロキシフェニル)エチルトリメトキシシラン、2-(p-ヒドロキシフェニル)エチルトリメトキシシラン、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸などの3官能性シラン、ジメチルジメトキシシラン、ジメチルジエトキシラン、ジメチルジアセトキシシラン、ジn-ブチルジメトキシシラン、ジフェニルジメトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、(3-グリシドキシプロピル)メチルジエトキシシランなどの2官能性シラン、トリメチルメトキシシラン、トリn-ブチルエトキシシラン、(3-グリシドキシプロピル)ジメチルメトキシシラン、(3-グリシドキシプロピル)ジメチルエトキシシランなどの1官能性シランが挙げられる。なお、これらのオルガノシランは単独で使用しても、2種以上を組み合わせて使用してもよい。これらのオルガノシランの中でも、硬化膜の耐クラック性と硬度の点から3官能性シランが好ましく用いられる。 Specific examples of the organosilane represented by the general formula (1) include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, and tetraphenoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and methyl. Triisopropoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltrin-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyl Trimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, decyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3- Tacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, p-hydroxyphenyltrimethoxysilane, 1- (p-hydroxyphenyl) ) Ethyltrimethoxysilane, 2- (p-hydroxyphenyl) ethyltrimethoxysilane, 4-hydroxy-5- (p-hydroxyphenylcarbonyloxy) pentyltrimethoxysilane, trifluoromethyltrimethoxysilane, trifluoromethyltriethoxy Silane, 3,3,3-trifluoropropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrime Xysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, [(3-ethyl-3- Trifunctional silanes such as oxetanyl) methoxy] propyltrimethoxysilane, [(3-ethyl-3-oxetanyl) methoxy] propyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic acid, dimethyl Dimethoxysilane, dimethyldiethoxylane, dimethyldiacetoxysilane, di-n-butyldimethoxysilane, diphenyldimethoxysilane, (3-glycidoxypropyl) methyldimethoxysilane, (3-glycidoxypropyl) methyldiethoxysila And bifunctional silanes such as trimethylmethoxysilane, tri-n-butylethoxysilane, (3-glycidoxypropyl) dimethylmethoxysilane, and (3-glycidoxypropyl) dimethylethoxysilane. It is done. These organosilanes may be used alone or in combination of two or more. Among these organosilanes, trifunctional silanes are preferably used from the viewpoint of crack resistance and hardness of the cured film.
 また、本発明で用いるポリシロキサンにおいて、一般式(1)で表されるオルガノシランの1種以上とともに、後述する(d)シリケート化合物を反応させることによって合成されるポリシロキサンを用いても良い。シリケート化合物を反応させることで、パターン解像度が向上する。これは、ポリシロキサン中に多官能のシリケート化合物が組み込まれることで、膜のガラス転移温度が高くなり熱硬化時のパターンだれが抑えられるためと考えられる。 Further, in the polysiloxane used in the present invention, a polysiloxane synthesized by reacting a silicate compound (d) described later may be used together with one or more kinds of organosilanes represented by the general formula (1). The pattern resolution is improved by reacting the silicate compound. This is presumably because the incorporation of a polyfunctional silicate compound in the polysiloxane increases the glass transition temperature of the film and suppresses pattern dripping during thermosetting.
 シリケート化合物を用いる場合の混合比率は特に制限されないが、Si原子モル数でポリマー全体のSi原子モル数に対して50%以下が好ましい。シリケート化合物がこの範囲であると、ポリシロキサンとキノンジアジド化合物との相溶性が良くなり、硬化膜の透明性が保たれる。なお、ポリマー全体のSi原子モル数に対するシリケート化合物のSi原子モル比はIRにおいてSi-C結合由来のピークとSi-O結合由来のピークの積分比から求めることができる。ピークの重なりが多く求められない場合は、1H-NMR、13C-NMR、IR、TOF-MSなどによりシリケート化合物以外のモノマーの構造を決定し、さらに元素分析法において発生する気体と残存する灰(すべてSiO2と仮定する)の割合から求めることができる。 The mixing ratio in the case of using a silicate compound is not particularly limited, but is preferably 50% or less in terms of the number of moles of Si atoms relative to the number of moles of Si atoms in the whole polymer. When the silicate compound is within this range, the compatibility between the polysiloxane and the quinonediazide compound is improved, and the transparency of the cured film is maintained. The Si atom molar ratio of the silicate compound to the total number of Si atoms in the polymer can be obtained from the integral ratio of the peak derived from the Si—C bond and the peak derived from the Si—O bond in IR. If a large amount of peak overlap is not required, the structure of the monomer other than the silicate compound is determined by 1H-NMR, 13C-NMR, IR, TOF-MS, etc., and further, the gas generated in the elemental analysis method and the remaining ash ( It can be calculated from the ratio of (all assumed to be SiO 2).
 また、本発明で用いるポリシロキサンにおいて、後述する(b)キノンジアジド化合物との相溶性を向上し、相分離することなく均一な硬化膜を形成させる目的から、ポリシロキサン中にあるフェニル基の含有率はSi原子に対して30モル%以上が好ましく、さらに好ましくは40モル%以上である。フェニル基の含有率がこの好ましい範囲であると、ポリシロキサンとキノンジアジド化合物が塗布、乾燥、熱硬化中などにおいて、相分離を引き起こし難いので、膜が白濁することはなく、硬化膜の高透明性が保たれる。また、フェニル基の含有率の上限値としては、Si原子に対して70モル%以下であることが好ましい。フェニル基の含有率がこの好ましい範囲であると、熱硬化時の架橋が十分に起こり、硬化膜の耐薬品性に優れる。フェニル基の含有率は、例えば、ポリシロキサンの29Si-NMRを測定し、そのフェニル基が結合したSiのピーク面積とフェニル基が結合していないSiのピーク面積の比から求めることができる。 In addition, in the polysiloxane used in the present invention, the content of phenyl groups in the polysiloxane for the purpose of improving the compatibility with the (b) quinonediazide compound described later and forming a uniform cured film without phase separation. Is preferably at least 30 mol%, more preferably at least 40 mol%, based on Si atoms. When the phenyl group content is within this preferred range, the polysiloxane and quinonediazide compound are unlikely to cause phase separation during coating, drying, thermal curing, etc., so the film does not become cloudy and the cured film has high transparency. Is preserved. Moreover, as an upper limit of the content rate of a phenyl group, it is preferable that it is 70 mol% or less with respect to Si atom. When the content of the phenyl group is within this preferable range, crosslinking during heat curing occurs sufficiently, and the cured film has excellent chemical resistance. The phenyl group content can be determined, for example, by measuring 29Si-NMR of polysiloxane and determining the ratio of the peak area of Si bonded to the phenyl group and the peak area of Si bonded to no phenyl group.
 また、本発明で用いるポリシロキサンの重量平均分子量(Mw)は特に制限されないが、好ましくはGPC(ゲルパーミネーションクロマトグラフィ)で測定されるポリスチレン換算で1,000~100,000、さらに好ましくは2,000~50,000である。Mwがこの好ましい範囲であると、塗膜性が良好で、パターン形成時の現像液に対する溶解性も良好となる。 The weight average molecular weight (Mw) of the polysiloxane used in the present invention is not particularly limited, but is preferably 1,000 to 100,000 in terms of polystyrene measured by GPC (gel permeation chromatography), more preferably 2, 000 to 50,000. When the Mw is within this preferred range, the coating properties are good and the solubility in the developer during pattern formation is good.
 本発明で用いるポリシロキサンは、一般式(1)で表されるオルガノシランなどのモノマーを加水分解および部分縮合させることにより合成される。加水分解および部分縮合には一般的な方法を用いることができる。例えば、混合物に溶媒、水、必要に応じて触媒を添加し、50~150℃で0.5~100時間程度加熱攪拌する。なお、攪拌中、必要に応じて、蒸留によって加水分解副生物(メタノールなどのアルコール)や縮合副生物(水)の留去を行ってもよい。 The polysiloxane used in the present invention is synthesized by hydrolysis and partial condensation of a monomer such as organosilane represented by the general formula (1). A general method can be used for hydrolysis and partial condensation. For example, a solvent, water and, if necessary, a catalyst are added to the mixture, and the mixture is heated and stirred at 50 to 150 ° C. for about 0.5 to 100 hours. During stirring, if necessary, hydrolysis by-products (alcohols such as methanol) and condensation by-products (water) may be distilled off by distillation.
 上記の反応溶媒としては特に制限は無いが、通常は後述する(c)溶剤と同様のものが用いられる。溶媒の添加量はオルガノシランなどのモノマー100質量部に対して10~1000質量部が好ましい。また加水分解反応に用いる水の添加量は、加水分解性基1モルに対して0.5~2モルが好ましい。 The reaction solvent is not particularly limited, but usually the same solvent as the solvent (c) described later is used. The addition amount of the solvent is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the monomer such as organosilane. The amount of water used for the hydrolysis reaction is preferably 0.5 to 2 moles per mole of hydrolyzable groups.
 必要に応じて添加される触媒に特に制限はないが、酸触媒、塩基触媒が好ましく用いられる。酸触媒の具体例としては塩酸、硝酸、硫酸、フッ酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸、多価カルボン酸あるいはその無水物、イオン交換樹脂が挙げられる。塩基触媒の具体例としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウム、アミノ基を有するアルコキシシラン、イオン交換樹脂が挙げられる。触媒の添加量はオルガノシランなどのモノマー100質量部に対して0.01~10質量部が好ましい。 There is no particular limitation on the catalyst added as necessary, but an acid catalyst and a base catalyst are preferably used. Specific examples of the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, acetic acid, trifluoroacetic acid, formic acid, polyvalent carboxylic acid or anhydride thereof, and ion exchange resin. Specific examples of the base catalyst include triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, diethylamine, triethanolamine, diethanolamine, sodium hydroxide, potassium hydroxide, amino Examples include alkoxysilanes having groups and ion exchange resins. The addition amount of the catalyst is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the monomer such as organosilane.
 また、組成物の貯蔵安定性の観点から、加水分解、部分縮合後のポリシロキサン溶液には触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。除去方法としては特に制限は無いが、好ましくは水洗浄、および/またはイオン交換樹脂の処理が挙げられる。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶剤で希釈した後、水で数回洗浄して得られた有機層をエバポレーターで濃縮する方法である。イオン交換樹脂での処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。 Further, from the viewpoint of the storage stability of the composition, it is preferable that the catalyst is not contained in the polysiloxane solution after hydrolysis and partial condensation, and the catalyst can be removed as necessary. Although there is no restriction | limiting in particular as a removal method, Preferably water washing and / or the process of an ion exchange resin are mentioned. Water washing is a method in which an organic layer obtained by diluting a polysiloxane solution with an appropriate hydrophobic solvent and washing several times with water is concentrated by an evaporator. The treatment with an ion exchange resin is a method of bringing a polysiloxane solution into contact with an appropriate ion exchange resin.
 本発明の感光性シロキサン組成物は、(b)キノンジアジド化合物を含有する。キノンジアジド化合物を含有することにより、露光部が現像液で除去されるポジ型を形成することができる。用いるキノンジアジド化合物に特に制限は無いが、フェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物であり、当該化合物のフェノール性水酸基のオルト位、およびパラ位がそれぞれ独立して水素、もしくは一般式(3)で表される置換基のいずれかである化合物が好ましく用いられる。 The photosensitive siloxane composition of the present invention contains (b) a quinonediazide compound. By containing the quinonediazide compound, it is possible to form a positive type in which the exposed portion is removed with a developer. The quinonediazide compound to be used is not particularly limited, but is a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group, and the ortho-position and para-position of the phenolic hydroxyl group of the compound are independently hydrogen, or A compound that is any of the substituents represented by the general formula (3) is preferably used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R、R、Rはそれぞれ独立して炭素数1~10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。また、R、R、Rで環を形成してもよい。)
 一般式(3)で表される置換基において、R、R、Rはそれぞれ独立して炭素数1~10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。アルキル基は無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、トリフルオロメチル基、2-カルボキシエチル基が挙げられる。また、フェニル基に置換する置換基としては、水酸基が挙げられる。また、R、R、Rで環を形成してもよく、具体例としては、シクロペンタン環、シクロヘキサン環、アダマンタン環、フルオレン環が挙げられる。
(Wherein R 7 , R 8 , and R 9 each independently represents any of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group. Also, R 7 , R 8 , R 9 9 may form a ring.)
In the substituent represented by the general formula (3), R 7 , R 8 and R 9 each independently represents any of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group. The alkyl group may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n- Examples include an octyl group, a trifluoromethyl group, and a 2-carboxyethyl group. Moreover, a hydroxyl group is mentioned as a substituent substituted by a phenyl group. In addition, R 7 , R 8 and R 9 may form a ring, and specific examples include a cyclopentane ring, a cyclohexane ring, an adamantane ring, and a fluorene ring.
 フェノール性水酸基のオルト位、およびパラ位が上記のようにそれぞれ独立して水素、もしくは一般式(3)で表される置換基のいずれかである化合物である場合、熱硬化によっても酸化分解が起こらないので、キノイド構造に代表される共役系化合物が形成されることもなく、硬化膜が着色せず無色透明性が保たれる。 In the case where the ortho-position and para-position of the phenolic hydroxyl group are each independently hydrogen or a compound represented by the general formula (3) as described above, oxidative decomposition is also caused by thermal curing. Since it does not occur, a conjugated compound represented by a quinoid structure is not formed, and the cured film is not colored and colorless and transparent are maintained.
 なお、これらのキノンジアジド化合物は、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとの公知のエステル化反応により合成することができる。 These quinonediazide compounds can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazidesulfonic acid chloride.
 フェノール性水酸基を有する化合物の具体例としては、次の化合物が挙げられる(いずれも本州化学工業(株)製)。 Specific examples of the compound having a phenolic hydroxyl group include the following compounds (all manufactured by Honshu Chemical Industry Co., Ltd.).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、キノンジアジド化合物の別の好ましい形態としては、一般式(7)で表されるフェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物が挙げられる。 Another preferred form of the quinonediazide compound is a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group represented by the general formula (7).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、R24、R25はそれぞれ独立に水素、炭素数1~10のアルキル基、炭素数6~15のアリール基のいずれかを表す。R26、R27はそれぞれ独立に水素原子、炭素数1~8のアルキル基、アルコキシル基、カルボキシル基、エステル基のいずれかを表し、複数のR26、R27は同じであっても異なっていてもよい。a、bは0~4の整数を表し、c、dは1~5の整数を表す。ただし、a+c、およびb+dは1~5の整数であり、c≠d、c+d≧3である。)
 一般式(7)で表されるフェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合したキノンジアジド化合物は、低分子量で、かつ非対称な構造であることから、(a)ポリシロキサンや(d)シリケート化合物との相溶性が良好であり、キノンジアジド化合物を多めに添加しても膜白濁は発生しない。キノンジアジド化合物を多めに添加することで、露光部と未露光部との溶解コントラストが向上し、未露光部の現像膜減りを抑えて、高感度でのパターン形成が実現できる。
(Wherein R 24 and R 25 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms. R 26 and R 27 each independently represents a hydrogen atom, Represents any one of an alkyl group having 1 to 8 carbon atoms, an alkoxyl group, a carboxyl group and an ester group, and a plurality of R 26 and R 27 may be the same or different. And c and d represent integers of 1 to 5. However, a + c and b + d are integers of 1 to 5, and c ≠ d and c + d ≧ 3.
Since the quinonediazide compound in which naphthoquinonediazidesulfonic acid is ester-bonded to the compound having a phenolic hydroxyl group represented by the general formula (7) has a low molecular weight and an asymmetric structure, (a) polysiloxane and (d) The compatibility with the silicate compound is good, and even when a large amount of the quinonediazide compound is added, film turbidity does not occur. By adding a large amount of the quinonediazide compound, the dissolution contrast between the exposed portion and the unexposed portion can be improved, and the reduction of the developed film in the unexposed portion can be suppressed, thereby realizing a highly sensitive pattern formation.
 一般式(7)で表されるフェノール性水酸基を有する化合物の具体例としては、次の化合物が挙げられる。 Specific examples of the compound having a phenolic hydroxyl group represented by the general formula (7) include the following compounds.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ナフトキノンジアジドスルホン酸としては、4-ナフトキノンジアジドスルホン酸あるいは5-ナフトキノンジアジドスルホン酸を用いることができる。4-ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5-ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4-ナフトキノンジアジドスルホン酸エステル化合物、5-ナフトキノンジアジドスルホン酸エステル化合物を選択することが好ましい。4-ナフトキノンジアジドスルホン酸エステル化合物と5-ナフトキノンジアジドスルホン酸エステル化合物を混合して用いることもできる。 As the naphthoquinone diazide sulfonic acid, 4-naphthoquinone diazide sulfonic acid or 5-naphthoquinone diazide sulfonic acid can be used. Since 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength 365 nm) region, it is suitable for i-line exposure. Further, the 5-naphthoquinonediazide sulfonic acid ester compound has absorption in a wide wavelength range and is therefore suitable for exposure in a wide wavelength range. It is preferable to select a 4-naphthoquinone diazide sulfonic acid ester compound or a 5-naphthoquinone diazide sulfonic acid ester compound depending on the wavelength to be exposed. A 4-naphthoquinone diazide sulfonic acid ester compound and a 5-naphthoquinone diazide sulfonic acid ester compound may be mixed and used.
 キノンジアジド化合物の添加量は特に制限されないが、好ましくはポリシロキサン100質量部に対して1~20質量部であり、さらに好ましくは2~15質量部である。キノンジアジド化合物の添加量がこの好ましい範囲の場合、露光部と未露光部との溶解コントラストが低すぎることもなく、現実的な感光性を有する。一方、ポリシロキサンとキノンジアジド化合物との相溶性が良好に保たれるので、塗布膜の白化が起こらず、熱硬化時におけるキノンジアジド化合物の分解による着色を抑制できるために、硬化膜の無色透明性が保たれる。 The addition amount of the quinonediazide compound is not particularly limited, but is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount of the quinonediazide compound is within this preferable range, the dissolution contrast between the exposed part and the unexposed part is not too low, and the photosensitive property is realistic. On the other hand, since the compatibility between the polysiloxane and the quinonediazide compound is kept good, whitening of the coating film does not occur, and coloring due to decomposition of the quinonediazide compound during thermal curing can be suppressed. Kept.
 本発明の感光性シロキサン組成物は、(c)溶剤を含有する。使用する溶剤に特に制限はないが、好ましくはアルコール性水酸基を有する化合物が用いられる。これらの溶剤を用いると、ポリシロキサンとキノンジアジド化合物とが均一に溶解し、組成物を塗布成膜しても膜は白化することなく、高透明性が達成できる。 The photosensitive siloxane composition of the present invention contains (c) a solvent. Although there is no restriction | limiting in particular in the solvent to be used, Preferably the compound which has alcoholic hydroxyl group is used. When these solvents are used, the polysiloxane and the quinonediazide compound are uniformly dissolved, and even when the composition is applied, the film is not whitened and high transparency can be achieved.
 上記アルコール性水酸基を有する化合物は特に制限されないが、好ましくは大気圧下の沸点が110~250℃である化合物である。沸点がこの好ましい範囲であると、膜中の残存溶剤量が少なく、キュア時の膜収縮を抑制でき、良好な平坦性が得られる。一方、塗膜時の乾燥が速すぎることもないので、膜表面が荒れることはないなど塗膜性に優れる。 The compound having an alcoholic hydroxyl group is not particularly limited, but is preferably a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure. When the boiling point is in this preferred range, the amount of residual solvent in the film is small, film shrinkage during curing can be suppressed, and good flatness can be obtained. On the other hand, since the drying at the time of the coating film is not too fast, the film surface is not rough and the coating film properties are excellent.
 アルコール性水酸基を有する化合物の具体例としては、アセトール、3-ヒドロキシ-3-メチル-2-ブタノン、4-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノールなどが挙げられる。なお、これらのアルコール性水酸基を有する化合物は、単独、あるいは2種以上を組み合わせて使用してもよい。 Specific examples of the compound having an alcoholic hydroxyl group include acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy- 4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t- Butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, 3-methoxy-1 Butanol, 3-methyl-3-methoxy-1-butanol. In addition, you may use the compound which has these alcoholic hydroxyl groups individually or in combination of 2 or more types.
 また、本発明の感光性シロキサン組成物は、本発明の効果を損なわない限り、その他の溶剤を含有してもよい。その他の溶剤としては、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテート、3-メチル-3-メトキシ-1-ブチルアセテート、アセト酢酸エチルなどのエステル類、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトンなどのケトン類、ジエチルエーテル、ジイソプロピルエーテル、ジn-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテルなどのエーテル類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンなどが挙げられる。 Moreover, the photosensitive siloxane composition of the present invention may contain other solvents as long as the effects of the present invention are not impaired. Other solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1- Esters such as butyl acetate and ethyl acetoacetate, ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone, diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl Ethers such as ether, γ-butyrolactone, γ-valerolactone, δ-valerolactone, propylene carbonate, N-methyl Rupiroridon, cyclopentanone, cyclohexanone, etc. cycloheptanone and the like.
 溶剤の添加量に特に制限はないが、好ましくはポリシロキサン100質量部に対して100~1000質量部の範囲である。 The amount of solvent added is not particularly limited, but is preferably in the range of 100 to 1000 parts by mass with respect to 100 parts by mass of polysiloxane.
 本発明の感光性シロキサン組成物は、(d)一般式(2)で表されるシリケート化合物を含有する。 The photosensitive siloxane composition of the present invention contains (d) a silicate compound represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、RからRはそれぞれ独立に水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表す。pは2~10の整数を表す。)
 一般式(2)で表されるシリケート化合物の具体例としては、メチルシリケート51(扶桑化学工業(株)製)、Mシリケート51、シリケート40、シリケート45(多摩化学工業(株)製)、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48(コルコート(株)製)などが挙げられる。
(Wherein R 3 to R 6 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms. P is 2) Represents an integer of ~ 10)
Specific examples of the silicate compound represented by the general formula (2) include methyl silicate 51 (manufactured by Fuso Chemical Industry), M silicate 51, silicate 40, silicate 45 (manufactured by Tama Chemical Industry Co., Ltd.), methyl Examples thereof include silicate 51, methyl silicate 53A, ethyl silicate 40, and ethyl silicate 48 (manufactured by Colcoat Co., Ltd.).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 この中でも、熱硬化時のポリシロキサンとの反応性の観点から、RからRはメチル基である化合物が好ましく、具体的にはメチルシリケート51(扶桑化学工業(株)製)、Mシリケート51(多摩化学工業(株)製)、メチルシリケート51、メチルシリケート53A(コルコート(株)製)が好ましい。さらに、よりポリシロキサンとの反応性を高めるためには、pは3~5が好ましく、具体的にはメチルシリケート51(扶桑化学工業(株)製)、Mシリケート51(多摩化学工業(株)製)、メチルシリケート51(コルコート(株)製)が好ましい。 Among these, from the viewpoint of reactivity with polysiloxane at the time of thermosetting, compounds in which R 3 to R 6 are methyl groups are preferable. Specifically, methyl silicate 51 (manufactured by Fuso Chemical Industry Co., Ltd.), M silicate 51 (manufactured by Tama Chemical Industry Co., Ltd.), methyl silicate 51, and methyl silicate 53A (manufactured by Colcoat Co., Ltd.) are preferable. Furthermore, in order to further increase the reactivity with polysiloxane, p is preferably 3 to 5. Specifically, methyl silicate 51 (manufactured by Fuso Chemical Industry Co., Ltd.), M silicate 51 (Tama Chemical Industry Co., Ltd.) And methyl silicate 51 (manufactured by Colcoat Co., Ltd.) are preferable.
 シリケート化合物は高耐熱、高透明の化合物であるとともに、ポリシロキサンと構造が類似していることから相溶性は良好である。シリケート化合物は1分子中に多くのSi-OR基を有していることから、熱硬化時にポリシロキサン中のシラノール基と反応することで、硬化膜の架橋度が高くなり耐薬品性が向上する。 The silicate compound is a highly heat-resistant and highly transparent compound, and has a good compatibility because it is similar in structure to polysiloxane. Since the silicate compound has many Si-OR groups in one molecule, it reacts with the silanol group in the polysiloxane at the time of thermosetting, thereby increasing the degree of cross-linking of the cured film and improving the chemical resistance. .
 シリケート化合物の添加量は特に制限されないが、好ましくはポリシロキサン100質量部に対して3~20質量部である。より好ましくは3~10質量部である。シリケート化合物の添加量がこの好ましい範囲である場合、耐薬品性向上効果が大きい。一方、未露光部の現像膜減り量が少ないので、膜厚均一性が良好となる。 The addition amount of the silicate compound is not particularly limited, but is preferably 3 to 20 parts by mass with respect to 100 parts by mass of the polysiloxane. More preferably, it is 3 to 10 parts by mass. When the addition amount of the silicate compound is within this preferable range, the chemical resistance improvement effect is great. On the other hand, since the amount of development film reduction in the unexposed area is small, the film thickness uniformity is good.
 さらに、本発明の感光性樹脂組成物は、(e)下記一般式(6)で表される金属キレート化合物を含有してもよい。 Furthermore, the photosensitive resin composition of the present invention may contain (e) a metal chelate compound represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(6)で表される金属キレート化合物において、Mは金属原子である。複数のR21は、同一もしくは異なっていてもよく、それぞれ水素、アルキル基、アリール基、アルケニル基、およびそれらの置換体を表す。複数のR22、R23は、同一もしくは異なっていてもよく、それぞれ水素、アルキル基、アリール基、アルケニル基、アルコキシ基、およびそれらの置換体を表す。jは金属原子Mの原子価、kは0以上、j以下の整数を表す。 In the metal chelate compound represented by the general formula (6), M is a metal atom. Several R <21> may be the same or different and each represents hydrogen, an alkyl group, an aryl group, an alkenyl group, and those substituted products. A plurality of R 22 and R 23 may be the same or different and each represents hydrogen, an alkyl group, an aryl group, an alkenyl group, an alkoxy group, or a substituted product thereof. j represents the valence of the metal atom M, and k represents an integer of 0 or more and j or less.
 金属キレート化合物を含有することで、現像密着性が向上するとともに、得られる硬化膜の耐薬品性が向上する。 By including the metal chelate compound, the development adhesion is improved and the chemical resistance of the obtained cured film is improved.
 一般式(6)において、Mは金属原子であり、特に制限されることはないが、透明性の観点から、チタン、ジルコニウム、アルミニウム、亜鉛、コバルト、モリブデン、ランタン、バリウム、ストロンチウム、マグネシウム、カルシウムなどの金属原子が挙げられる。中でも、現像密着性と硬化膜の耐薬品性の観点から、ジルコニウム、またはアルミニウムが好ましい。 In the general formula (6), M is a metal atom and is not particularly limited, but from the viewpoint of transparency, titanium, zirconium, aluminum, zinc, cobalt, molybdenum, lanthanum, barium, strontium, magnesium, calcium Metal atoms such as Among these, zirconium or aluminum is preferable from the viewpoint of development adhesion and chemical resistance of the cured film.
 R21はメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デカニル基、オクタデカニル基、フェニル基、ビニル基、アリル基、オレイル基などが挙げられる。中でも化合物が安定であることからn-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-オクタデシル基、フェニル基が好ましい。R22およびR23は水素、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、フェニル基、ビニル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-オクタデシル基、ベンジルオキシ基などが挙げられる。中でも合成が容易であり、かつ化合物が安定であることからメチル基、t-ブチル基、フェニル基、メトキシ基、エトキシ基、n-オクタデシル基が好ましい。 R 21 is methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decanyl group, octadecanyl group, phenyl group , Vinyl group, allyl group, oleyl group and the like. Among them, since the compound is stable, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n- An octadecyl group and a phenyl group are preferable. R 22 and R 23 are hydrogen, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, phenyl group, vinyl group, methoxy group, ethoxy group, n -Propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n- An octadecyl group, a benzyloxy group, etc. are mentioned. Among them, a methyl group, a t-butyl group, a phenyl group, a methoxy group, an ethoxy group, and an n-octadecyl group are preferable because they are easily synthesized and the compound is stable.
 一般式(6)で表される化合物としては、たとえばジルコニウム化合物としては、ジルコニウムテトラn-プロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラsec-ブトキシド、ジルコニウムテトラフェノキシド、ジルコニウムテトラアセチルアセトネート、ジルコニウムテトラ(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、ジルコニウムテトラメチルアセトアセテート、ジルコニウムテトラエチルアセトアセテート、ジルコニウムテトラメチルマロネート、ジルコニウムテトラエチルマロネート、ジルコニウムテトラベンゾイルアセトネート、ジルコニウムテトラジベンゾイルメタネート、ジルコニウムモノn-ブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムモノn-ブトキシエチルアセトアセテートビス(アセチルアセトネート)、ジルコニウムモノn-ブトキシトリス(アセチルアセトネート)、ジルコニウムモノn-ブトキシトリス(アセチルアセトネート)、ジルコニウムジ(n-ブトキシ)ビス(エチルアセトアセテート)、ジルコニウムジ(n-ブトキシ)ビス(アセチルアセトネート)、ジルコニウムジ(n-ブトキシ)ビス(エチルマロネート)、ジルコニウムジ(n-ブトキシ)ビス(ベンゾイルアセトネート)、ジルコニウムジ(n-ブトキシ)ビス(ジベンゾイルメタネート)などが挙げられる。 Examples of the compound represented by the general formula (6) include a zirconium tetra n-propoxide, zirconium tetra n-butoxide, zirconium tetra sec-butoxide, zirconium tetraphenoxide, zirconium tetraacetylacetonate, zirconium tetra (2,2,6,6-tetramethyl-3,5-heptanedionate), zirconium tetramethyl acetoacetate, zirconium tetraethyl acetoacetate, zirconium tetramethyl malonate, zirconium tetraethyl malonate, zirconium tetrabenzoyl acetonate, zirconium Tetradibenzoylmethanate, zirconium mono-n-butoxyacetylacetonate bis (ethylacetoacetate), zirconium Mono n-butoxyethyl acetoacetate bis (acetylacetonate), zirconium mono n-butoxytris (acetylacetonate), zirconium mono n-butoxytris (acetylacetonate), zirconium di (n-butoxy) bis (ethylacetoacetate) ), Zirconium di (n-butoxy) bis (acetylacetonate), zirconium di (n-butoxy) bis (ethylmalonate), zirconium di (n-butoxy) bis (benzoylacetonate), zirconium di (n-butoxy) ) Bis (dibenzoylmethanate) and the like.
 アルミニウム化合物としては、アルミニウムトリスイソプロポキシド、アルミニウムトリスn-プロポキサイド、アルミニウムトリスsec-ブトキシド、アルミニウムトリスn-ブトキシド、アルミニウムトリスフェノキシド、アルミニウムトリスアセチルアセトネート、アルミニウムトリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスメチルアセトアセテート、アルミニウムトリスメチルマロネート、アルミニウムトリスエチルマロネート、アルミニウムエチルアセテートジ(イソプロポキシド)、アルミニウムアセチルアセトネート)ジ(イソプロポキシド)、アルミニウムメチルアセトアセテートジ(イソプロポキシド)、アルミニウムオクタデシルアセトアセテートジ(イソプロピレート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)などが挙げられる。 Aluminum compounds include aluminum trisisopropoxide, aluminum tris n-propoxide, aluminum tris sec-butoxide, aluminum tris n-butoxide, aluminum trisphenoxide, aluminum trisacetylacetonate, aluminum tris (2,2,6,6- Tetramethyl-3,5-heptanedionate), aluminum trisethyl acetoacetate, aluminum trismethyl acetoacetate, aluminum trismethyl malonate, aluminum trisethyl malonate, aluminum ethyl acetate di (isopropoxide), aluminum acetylacetonate ) Di (isopropoxide), aluminum methyl acetoacetate di (isopropoxide), aluminum oct Tadecyl acetoacetate di (isopropylate), aluminum monoacetylacetonate bis (ethyl acetoacetate) and the like can be mentioned.
 チタン化合物としては、チタンテトラn-プロポキシド、チタンテトラn-ブトキシド、チタンテトラsec-ブトキシド、チタンテトラフェノキシド、チタンテトラアセチルアセトネート、チタンテトラ(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、チタンテトラメチルアセトアセテート、チタンテトラエチルアセトアセテート、チタンテトラメチルマロネート、チタンテトラエチルマロネート、チタンテトラベンゾイルアセトネート、チタンテトラジベンゾイルメタネート、チタンモノn-ブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタンモノn-ブトキシエチルアセトアセテートビス(アセチルアセトネート)、チタンモノn-ブトキシトリス(アセチルアセトネート)、チタンモノn-ブトキシトリス(アセチルアセトネート)、チタンジ(n-ブトキシ)ビス(エチルアセトアセテート)、チタンジ(n-ブトキシ)ビス(アセチルアセトネート)、チタンジ(n-ブトキシ)ビス(エチルマロネート)、チタンジ(n-ブトキシ)ビス(ベンゾイルアセトネート)、チタンジ(n-ブトキシ)ビス(ジベンゾイルメタネート)、チタンテトラ-2-エチルへキシルオキシドなどが挙げられる。 Titanium compounds include titanium tetra n-propoxide, titanium tetra n-butoxide, titanium tetra sec-butoxide, titanium tetraphenoxide, titanium tetraacetylacetonate, titanium tetra (2,2,6,6-tetramethyl-3, 5-heptanedionate), titanium tetramethyl acetoacetate, titanium tetraethyl acetoacetate, titanium tetramethyl malonate, titanium tetraethyl malonate, titanium tetrabenzoyl acetonate, titanium tetradibenzoyl methacrylate, titanium mono n-butoxyacetylacetonate Bis (ethyl acetoacetate), Titanium mono n-butoxyethyl acetoacetate bis (acetylacetonate), Titanium mono n-butoxytris (acetylacetonate), Titanium mono n Butoxytris (acetylacetonate), titanium di (n-butoxy) bis (ethylacetoacetate), titaniumdi (n-butoxy) bis (acetylacetonate), titaniumdi (n-butoxy) bis (ethylmalonate), titaniumdi (n -Butoxy) bis (benzoylacetonate), titanium di (n-butoxy) bis (dibenzoylmethanate), titanium tetra-2-ethylhexyl oxide and the like.
 中でも、各種溶剤への溶解性や化合物の安定性の観点から、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド、ジルコニウムテトラフェノキシド、ジルコニウムテトラアセチルアセトネート、ジルコニウムテトラ(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、ジルコニウムテトラメチルマロネート、ジルコニウムテトラエチルマロネート、ジルコニウムテトラエチルアセトアセテート、ジルコニウムジノルマルブトキシビス(エチルアセトアセテート)、ジルコニウムモノノルマルブトキシアセチルアセトネートビス(エチルアセトアセテート)などのジルコニウム化合物、アルミニウムトリスアセチルアセトネート、アルミニウムトリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスメチルアセトアセテート、アルミニウムトリスメチルマロネート、アルミニウムトリスエチルマロネート、アルミニウムエチルアセテートジ(イソプロポキシド)、アルミニウムアセチルアセトネート)ジ(イソプロポキシド)、アルミニウムメチルアセトアセテートジ(イソプロポキシド)、アルミニウムオクタデシルアセトアセテートジ(イソプロピレート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)などのアルミニウム化合物、チタンテトラノルマルプロポキシド、チタンテトラノルマルブトキシド、チタンテトラフェノキシド、チタンテトラアセチルアセトネート、チタンテトラ(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、チタンテトラメチルマロネート、チタンテトラエチルマロネート、チタンテトラエチルアセトアセテート、チタンジノルマルブトキシビス(エチルアセトアセテート)、チタンモノノルマルブトキシアセチルアセトネートビス(エチルアセトアセテート)などのチタン化合物が好ましく、さらに金属錯体系が好ましく用いられる。 Among them, from the viewpoints of solubility in various solvents and stability of the compound, zirconium tetranormal propoxide, zirconium tetranormal butoxide, zirconium tetraphenoxide, zirconium tetraacetylacetonate, zirconium tetra (2,2,6,6-tetra Methyl-3,5-heptanedionate), zirconium tetramethyl malonate, zirconium tetraethyl malonate, zirconium tetraethyl acetoacetate, zirconium dinormalbutoxybis (ethylacetoacetate), zirconium mononormalbutoxyacetylacetonate bis (ethylacetoacetate) ) And other zirconium compounds, aluminum trisacetylacetonate, aluminum tris (2,2,6,6-tetramethyl-3,5 Heptanedionate), aluminum trisethyl acetoacetate, aluminum trismethyl acetoacetate, aluminum trismethyl malonate, aluminum trisethyl malonate, aluminum ethyl acetate di (isopropoxide), aluminum acetylacetonate) di (isopropoxide) , Aluminum compounds such as aluminum methyl acetoacetate di (isopropoxide), aluminum octadecyl acetoacetate di (isopropylate), aluminum monoacetylacetonate bis (ethyl acetoacetate), titanium tetranormal propoxide, titanium tetranormal butoxide, titanium Tetraphenoxide, titanium tetraacetylacetonate, titanium tetra (2,2,6,6-tetramethyl 3,5-heptanedionate), titanium tetramethyl malonate, titanium tetraethyl malonate, titanium tetraethyl acetoacetate, titanium dinormalbutoxy bis (ethyl acetoacetate), titanium mononormal butoxy acetylacetonate bis (ethyl acetoacetate) ) And the like, and metal complex systems are preferably used.
 金属キレート化合物の添加量に特に制限はないが、好ましくはポリシロキサン100重量部に対して0.1~5重量部である。さらに好ましくは、0.3~4重量部である。上記範囲であることにより、現像密着性、および硬化膜の耐薬品性を高いレベルで両立できる。 The addition amount of the metal chelate compound is not particularly limited, but is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polysiloxane. More preferably, it is 0.3 to 4 parts by weight. By being in the above range, it is possible to achieve both development adhesion and chemical resistance of the cured film at a high level.
 さらに、本発明の感光性シロキサン組成物は必要に応じて、シランカップリング剤、架橋剤、架橋促進剤、増感剤、熱ラジカル発生剤、溶解促進剤、溶解抑止剤、界面活性剤、安定剤、消泡剤などの添加剤を含有することもできる。 Furthermore, the photosensitive siloxane composition of the present invention is optionally provided with a silane coupling agent, a crosslinking agent, a crosslinking accelerator, a sensitizer, a thermal radical generator, a dissolution accelerator, a dissolution inhibitor, a surfactant, and a stable agent. An additive such as an agent and an antifoaming agent can also be contained.
 本発明の感光性シロキサン組成物は、シランカップリング剤を含有しても良い。シランカップリング剤を含有することで、基板との密着性が向上する。
シランカップリング剤の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸、N-t-ブチル-3-(3-トリメトキシシリルプロピル)コハク酸イミドなどが挙げられる。
The photosensitive siloxane composition of the present invention may contain a silane coupling agent. By containing the silane coupling agent, the adhesion to the substrate is improved.
Specific examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltri Ethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxy Propyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxy Lan, 3-acryloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl -3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) Ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, [(3-ethyl-3-oxetanyl) methoxy] propyltrimethoxysilane, [(3-ethyl-3-oxetanyl) methoxy] propyl Triethoxysilane, 3 Mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-ureidopropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-trimethoxysilylpropylsuccinic acid, Nt-butyl-3- (3- And trimethoxysilylpropyl) succinimide.
 シランカップリング剤の添加量に特に制限は無いが、好ましくはポリシロキサン100質量部に対して0.1~10質量部の範囲である。添加量がこの好ましい範囲であると、密着性向上の効果が十分で、一方、保管中にシランカップリン剤同士が縮合反応し難く、現像時の溶け残りの原因となることもない。 The addition amount of the silane coupling agent is not particularly limited, but is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount is within this preferred range, the effect of improving the adhesion is sufficient, while the silane coupling agents are difficult to undergo a condensation reaction during storage and do not cause undissolved residue during development.
 本発明の感光性シロキサン組成物は、架橋剤を含有してもよい。架橋剤は熱硬化時にポリシロキサン架橋して樹脂中に取り込まれる化合物であり、含有することによって硬化膜の架橋度が高くなる。これによって、硬化膜の耐薬品性が向上し、かつ熱硬化時のパターンだれによるパターン解像度の低下が抑制される。 The photosensitive siloxane composition of the present invention may contain a crosslinking agent. The cross-linking agent is a compound that undergoes polysiloxane cross-linking during thermal curing and is incorporated into the resin. By containing the cross-linking agent, the degree of cross-linking of the cured film is increased. As a result, the chemical resistance of the cured film is improved, and a decrease in pattern resolution due to pattern dripping during thermosetting is suppressed.
 架橋剤に特に制限は無いが、好ましくは一般式(4)で表される基を2個以上有する化合物が挙げられる。 Although there is no restriction | limiting in particular in a crosslinking agent, Preferably the compound which has 2 or more groups represented by General formula (4) is mentioned.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 R10は水素、炭素数1~10のアルキル基のいずれかを表す。なお、化合物中の複数のR10はそれぞれ同じでも異なっていてもよい。
一般式(4)で表される基を2個以上有する化合物において、R10は水素、炭素数1~10のアルキル基のいずれかを表す。なお、化合物中の複数のR10はそれぞれ同じでも異なっていてもよい。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-デシル基が挙げられる。
R 10 represents any one of hydrogen and an alkyl group having 1 to 10 carbon atoms. A plurality of R 10 in the compound may be the same or different.
In the compound having two or more groups represented by the general formula (4), R 10 represents either hydrogen or an alkyl group having 1 to 10 carbon atoms. A plurality of R 10 in the compound may be the same or different. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group and n-decyl group.
 一般式(4)で表される基を2個以上有する化合物の具体例としては、次のようなメラミン誘導体や尿素誘導体(商品名、三和ケミカル(株)製)が挙げられる。 Specific examples of the compound having two or more groups represented by the general formula (4) include the following melamine derivatives and urea derivatives (trade name, manufactured by Sanwa Chemical Co., Ltd.).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 なお、上記の架橋剤は、単独で使用しても、2種以上を組み合わせて使用してもよい。 In addition, said crosslinking agent may be used individually or may be used in combination of 2 or more type.
 架橋剤の添加量は特に制限されないが、好ましくはポリシロキサン100質量部に対して0.1~10質量部の範囲である。架橋剤の添加量がこの好ましい範囲であると、樹脂の架橋が十分となる。一方、硬化膜の無色透明性が保たれ、組成物の貯蔵安定性に優れる。 The addition amount of the crosslinking agent is not particularly limited, but is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount of the crosslinking agent is within this preferred range, the resin is sufficiently crosslinked. On the other hand, the colorless transparency of the cured film is maintained and the storage stability of the composition is excellent.
 本発明の感光性シロキサン組成物は、架橋促進剤を含有しても良い。架橋促進剤とは、熱硬化時のポリシロキサンの架橋を促進する化合物であり、熱硬化時に酸を発生する熱酸発生剤や、熱硬化前のブリーチング露光時に酸を発生する光酸発生剤が用いられる。熱硬化時に膜中に酸が存在することによって、ポリシロキサン中の未反応シラノール基の縮合反応が促進され、硬化膜の架橋度が高くなる。これによって、硬化膜の耐薬品性が向上し、かつ熱硬化時のパターンだれによるパターン解像度の低下が抑制される。 The photosensitive siloxane composition of the present invention may contain a crosslinking accelerator. A crosslinking accelerator is a compound that promotes crosslinking of polysiloxane during thermal curing, and is a thermal acid generator that generates acid during thermal curing, and a photoacid generator that generates acid during bleaching exposure before thermal curing. Is used. The presence of an acid in the film at the time of thermosetting promotes the condensation reaction of unreacted silanol groups in the polysiloxane, and increases the degree of crosslinking of the cured film. As a result, the chemical resistance of the cured film is improved, and a decrease in pattern resolution due to pattern dripping during thermosetting is suppressed.
 本発明で用いられる熱酸発生剤は、熱硬化時に酸を発生する化合物であり、組成物塗布後のプリベーク時には酸を発生しない、もしくは少量しか発生しないことが好ましい。故に、プリベーク温度以上、例えば100℃以上で酸を発生する化合物であることが好ましい。プリベーク温度以下で酸が発生すると、プリベーク時にポリシロキサンの架橋が起こりやすくなり感度が低下したり、現像時に溶け残りが発生したりする。 The thermal acid generator used in the present invention is a compound that generates an acid at the time of thermosetting, and it is preferable that no acid is generated or only a small amount is generated at the time of pre-baking after coating the composition. Therefore, a compound that generates an acid at a pre-bake temperature or higher, for example, 100 ° C. or higher is preferable. When acid is generated at a temperature lower than the pre-baking temperature, polysiloxane is easily cross-linked during pre-baking and sensitivity is lowered, or undissolved material is generated during development.
 好ましく用いられる熱酸発生剤の具体例としては、SI-60、SI-80、SI-100、SI-110、SI-145、SI-150、SI-60L、SI-80L、SI-100L、SI-110L、SI-145L、SI-150L、SI-160L、SI-180L(以上商品名、三新化学工業(株)製)、4-ヒドロキシフェニルジメチルスルホニウムトリフルオロメタンスルホナート、ベンジル-4-ヒドロキシフェニルメチルスルホニウムトリフルオロメタンスルホナート、2-メチルベンジル-4-ヒドロキシフェニルメチルスルホニウムトリフルオロメタンスルホナート、4-アセトキシフェニルジメチルスルホニウムトリフルオロメタンスルホナート、4-アセトキシフェニルベンジルメチルスルホニウムトリフルオロメタンスルホナート、4-メトキシカルボニルオキシフェニルジメチルスルホニウムトリフルオロメタンスルホナート、ベンジル-4-メトキシカルボニルオキシフェニルメチルスルホニウムトリフルオロメタンスルホナート(以上、三新化学工業(株)製)などが挙げられる。なお、これらの化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。 Specific examples of the thermal acid generator preferably used include SI-60, SI-80, SI-100, SI-110, SI-145, SI-150, SI-60L, SI-80L, SI-100L, SI -110L, SI-145L, SI-150L, SI-160L, SI-180L (above trade names, manufactured by Sanshin Chemical Industry Co., Ltd.), 4-hydroxyphenyldimethylsulfonium trifluoromethanesulfonate, benzyl-4-hydroxyphenyl Methylsulfonium trifluoromethanesulfonate, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium trifluoromethanesulfonate, 4-acetoxyphenyldimethylsulfonium trifluoromethanesulfonate, 4-acetoxyphenylbenzylmethylsulfonium trifluor B methanesulfonate, 4-methoxycarbonyloxy-phenyl dimethyl sulfonium trifluoromethanesulfonate, benzyl-4-methoxycarbonyloxy-phenyl methyl sulfonium trifluoromethanesulfonate (manufactured by Sanshin Chemical Industry Co.), and the like. These compounds may be used alone or in combination of two or more.
 本発明で用いられる光酸発生剤は、ブリーチング露光時に酸を発生する化合物であり、露光波長365nm(i線)、405nm(h線)、436nm(g線)、もしくはこれらの混合線の照射によって酸を発生する化合物である。したがって、同様の光源を用いるパターン露光においても酸が発生する可能性はあるが、パターン露光はブリーチング露光と比べて露光量が小さいために、少量の酸しか発生せずに問題とはならない。また、発生する酸としてはパーフルオロアルキルスルホン酸、p-トルエンスルホン酸などの強酸であることが好ましく、カルボン酸が発生するキノンジアジド化合物はここでいう光酸発生剤の機能は有しておらず、本発明における架橋促進剤とは異なるものである。 The photoacid generator used in the present invention is a compound that generates an acid during bleaching exposure, and is irradiated with an exposure wavelength of 365 nm (i-line), 405 nm (h-line), 436 nm (g-line), or a mixed line thereof. Is a compound that generates an acid. Therefore, although there is a possibility that acid is generated even in pattern exposure using the same light source, since the exposure amount of pattern exposure is smaller than bleaching exposure, only a small amount of acid is generated, which is not a problem. The acid generated is preferably a strong acid such as perfluoroalkylsulfonic acid or p-toluenesulfonic acid, and the quinonediazide compound generating carboxylic acid does not have the function of a photoacid generator here. This is different from the crosslinking accelerator in the present invention.
 好ましく用いられる光酸発生剤の具体例としては、SI-100、SI-101、SI-105、SI-106、SI-109、PI-105、PI-106、PI-109、NAI-100、NAI-1002、NAI-1003、NAI-1004、NAI-101、NAI-105、NAI-106、NAI-109、NDI-101、NDI-105、NDI-106、NDI-109、PAI-01、PAI-101、PAI-106、PAI-1001(以上商品名、みどり化学(株)製)、SP-077、SP-082(以上商品名、(株)ADEKA製)、TPS-PFBS(以上商品名、東洋合成工業(株)製)、CGI-MDT、CGI-NIT(以上商品名、チバジャパン((株))製)、WPAG-281、WPAG-336、WPAG-339、WPAG-342、WPAG-344、WPAG-350、WPAG-370、WPAG-372、WPAG-449、WPAG-469、WPAG-505、WPAG-506(以上商品名、和光純薬工業(株)製)などが挙げられる。なお、これらの化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。 Specific examples of photoacid generators preferably used include SI-100, SI-101, SI-105, SI-106, SI-109, PI-105, PI-106, PI-109, NAI-100, and NAI. -1002, NAI-1003, NAI-1004, NAI-101, NAI-105, NAI-106, NAI-109, NDI-101, NDI-105, NDI-106, NDI-109, PAI-01, PAI-101 , PAI-106, PAI-1001 (trade name, manufactured by Midori Chemical Co., Ltd.), SP-077, SP-082 (trade name, manufactured by ADEKA), TPS-PFBS (trade name, Toyo Gosei) Industrial Co., Ltd.), CGI-MDT, CGI-NIT (trade name, manufactured by Ciba Japan Co., Ltd.), WPAG-281, WP G-336, WPAG-339, WPAG-342, WPAG-344, WPAG-350, WPAG-370, WPAG-372, WPAG-449, WPAG-469, WPAG-505, WPAG-506 Yakuhin Kogyo Co., Ltd.). These compounds may be used alone or in combination of two or more.
 また、架橋促進剤として、上述した熱酸発生剤と光酸発生剤とを併用して用いることも可能である。架橋促進剤の添加量は、特に制限は無いが、好ましくはポリシロキサン100質量部に対して0.01~5質量部の範囲である。架橋促進剤の添加量がこの好ましい範囲であると、効果が十分で、一方、プリベーク時やパターン露光時にポリシロキサンの架橋が起こることはない。 Also, as the crosslinking accelerator, the above-described thermal acid generator and photoacid generator can be used in combination. The addition amount of the crosslinking accelerator is not particularly limited, but is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount of the crosslinking accelerator is within this preferable range, the effect is sufficient, while the polysiloxane is not crosslinked during pre-baking or pattern exposure.
 本発明の感光性シロキサン組成物は、増感剤を含有しても良い。増感剤を含有することによって、感光剤であるナフトキノンジアジド化合物の反応が促進されて感度が向上するとともに、架橋促進剤として光酸発生剤が含有されている場合は、ブリーチング露光時の反応が促進されて硬化膜の耐薬品性とパターン解像度が向上する。 The photosensitive siloxane composition of the present invention may contain a sensitizer. By containing a sensitizer, the reaction of the naphthoquinone diazide compound, which is a photosensitizer, is promoted to improve sensitivity, and when a photoacid generator is contained as a crosslinking accelerator, reaction during bleaching exposure is performed. Is promoted to improve the chemical resistance and pattern resolution of the cured film.
 本発明で用いられる増感剤は特に制限されないが、好ましくは熱処理により気化する、および/または光照射によって退色する増感剤が用いられる。この増感剤は、パターン露光やブリーチング露光における光源の波長である365nm(i線)、405nm(h線)、436nm(g線)に対して吸収をもつことが必要であるが、そのまま硬化膜に残存すると可視光領域に吸収が存在するために無色透明性が低下してしまう。そこで、増感剤による無色透明性の低下を防ぐために、用いられる増感剤は、熱硬化などの熱処理で気化する化合物(増感剤)、および/またはブリーチング露光などの光照射によって退色する化合物(増感剤)が好ましい。 The sensitizer used in the present invention is not particularly limited, but a sensitizer that vaporizes by heat treatment and / or fades by light irradiation is preferably used. This sensitizer is required to have absorption at 365 nm (i-line), 405 nm (h-line), and 436 nm (g-line), which are wavelengths of the light source in pattern exposure and bleaching exposure, but is cured as it is. If the film remains in the film, absorption in the visible light region exists, so that colorless transparency is lowered. Therefore, in order to prevent a decrease in colorless transparency due to the sensitizer, the sensitizer used is faded by light irradiation such as a compound (sensitizer) that is vaporized by heat treatment such as thermosetting and / or bleaching exposure. Compounds (sensitizers) are preferred.
 上記の熱処理により気化する、および/または光照射によって退色する増感剤の具体例としては、3,3’-カルボニルビス(ジエチルアミノクマリン)などのクマリン、9,10-アントラキノンなどのアントラキノン、ベンゾフェノン、4,4’-ジメトキシベンゾフェノン、アセトフェノン、4-メトキシアセトフェノン、ベンズアルデヒドなどの芳香族ケトン、ビフェニル、1,4-ジメチルナフタレン、9-フルオレノン、フルオレン、フェナントレン、トリフェニレン、ピレン、アントラセン、9-フェニルアントラセン、9-メトキシアントラセン、9,10-ジフェニルアントラセン、9,10-ビス(4-メトキシフェニル)アントラセン、9,10-ビス(トリフェニルシリル)アントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジブトキシアントラセン、9,10-ジペンタオキシアントラセン、2-t-ブチル-9,10-ジブトキシアントラセン、9,10-ビス(トリメチルシリルエチニル)アントラセンなどの縮合芳香族などが挙げられる。 Specific examples of the sensitizer that is vaporized by the heat treatment and / or discolored by light irradiation include coumarin such as 3,3′-carbonylbis (diethylaminocoumarin), anthraquinone such as 9,10-anthraquinone, benzophenone, Aromatic ketones such as 4,4′-dimethoxybenzophenone, acetophenone, 4-methoxyacetophenone, benzaldehyde, biphenyl, 1,4-dimethylnaphthalene, 9-fluorenone, fluorene, phenanthrene, triphenylene, pyrene, anthracene, 9-phenylanthracene, 9-methoxyanthracene, 9,10-diphenylanthracene, 9,10-bis (4-methoxyphenyl) anthracene, 9,10-bis (triphenylsilyl) anthracene, 9,10-dimethoxy Nthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-dibutoxyanthracene, 9,10-dipentaoxyanthracene, 2-t-butyl-9,10-dibutoxyanthracene, 9 , 10-bis (trimethylsilylethynyl) anthracene and the like.
 これらの増感剤の中で、熱処理により気化する増感剤は、好ましくは熱処理により昇華、蒸発、熱分解による熱分解物が昇華または蒸発する増感剤である。また、増感剤の気化温度としては、好ましくは130℃~400℃、さらに好ましくは150℃~250℃である。増感剤の気化温度がこの好ましい範囲であると、増感剤がプリベーク中に気化しにくいので露光プロセス中に存在しなくなることはなく感度を高く維持できる。一方、増感剤が熱硬化時に気化するので、硬化膜中に残存せず、無色透明性を保つことができる。また、熱硬化時に完全に気化させるためには、増感剤の気化温度は250℃以下が好ましい。 Among these sensitizers, the sensitizer that is vaporized by heat treatment is preferably a sensitizer that sublimates, evaporates, or thermally decomposes due to thermal decomposition sublimates or evaporates by heat treatment. The vaporization temperature of the sensitizer is preferably 130 ° C. to 400 ° C., more preferably 150 ° C. to 250 ° C. When the vaporization temperature of the sensitizer is within this preferred range, the sensitizer is not easily vaporized during pre-baking, and therefore it is not lost during the exposure process, and the sensitivity can be maintained high. On the other hand, since the sensitizer is vaporized at the time of heat curing, it does not remain in the cured film and can maintain colorless transparency. Moreover, in order to vaporize completely at the time of thermosetting, the vaporization temperature of a sensitizer is preferably 250 ° C. or less.
 一方、光照射によって退色する増感剤は、透明性の観点から可視光領域における吸収が光照射によって退色する増感剤が好ましい。また、さらに好ましい光照射によって退色する化合物は、光照射によって二量化する化合物である。光照射によって二量化することによって、分子量が増大して不溶化するので、耐薬品性向上、耐熱性向上、透明硬化膜からの抽出物の低減という効果が得られる。 On the other hand, the sensitizer that fades when irradiated with light is preferably a sensitizer that absorbs light in the visible light region when irradiated with light from the viewpoint of transparency. Further, a compound that fades upon irradiation with light is a compound that dimerizes upon irradiation with light. By dimerization by light irradiation, the molecular weight increases and insolubilization results in the effect of improving chemical resistance, improving heat resistance, and reducing the extract from the transparent cured film.
 また、増感剤は高感度を達成できるという点、光照射によって二量化して退色するという点からアントラセン系化合物が好ましく、さらに、9,10位が水素であるアントラセン系化合物は熱に不安定であるので、9,10-二置換アントラセン系化合物であることが好ましい。さらに、増感剤の溶解性の向上と光二量化反応の反応性の観点から一般式(5)で表される9,10-ジアルコキシアントラセン系化合物であることが好ましい。 The sensitizer is preferably an anthracene compound in that it can achieve high sensitivity and dimerizes and fades when irradiated with light, and the anthracene compound in which the 9th and 10th positions are hydrogen is unstable to heat. Therefore, 9,10-disubstituted anthracene compounds are preferable. Furthermore, the 9,10-dialkoxyanthracene compound represented by the general formula (5) is preferable from the viewpoint of improving the solubility of the sensitizer and the reactivity of the photodimerization reaction.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(5)のR11~R18は、それぞれ独立して水素、炭素数1~20のアルキル基、アルコキシ基、アルケニル基、アリール基、アシル基、およびそれらが置換された有機基を表す。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基が挙げられる。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基が挙げられる。アルケニル基の具体例としては、ビニル基、アクリロキシプロピル基、メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、ナフチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。化合物の気化性、光二量化の反応性の点から、R11~R18は水素、または炭素数は1~6までの有機基であることが好ましい。さらに好ましくは、R11、R14、R15、R18は水素であることが好ましい。 R 11 to R 18 in the general formula (5) each independently represent hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, an aryl group, an acyl group, or an organic group in which they are substituted. . Specific examples of the alkyl group include a methyl group, an ethyl group, and an n-propyl group. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentyloxy group. Specific examples of the alkenyl group include a vinyl group, an acryloxypropyl group, and a methacryloxypropyl group. Specific examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group. Specific examples of the acyl group include an acetyl group. From the viewpoint of the vaporization property of the compound and the reactivity of photodimerization, R 11 to R 18 are preferably hydrogen or an organic group having 1 to 6 carbon atoms. More preferably, R 11 , R 14 , R 15 , R 18 are preferably hydrogen.
 一般式(5)のR19、R20は炭素数1~20のアルコキシ基、およびそれらが置換された有機基を表す。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基が挙げられるが、化合物の溶解性と光二量化による退色反応の点から、プロポキシ基、ブトキシ基が好ましい。 R 19 and R 20 in the general formula (5) represent an alkoxy group having 1 to 20 carbon atoms and an organic group in which they are substituted. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentyloxy group, and a propoxy group and a butoxy group are preferable from the viewpoint of the solubility of the compound and a fading reaction due to photodimerization.
 増感剤の添加量は、特に制限は無いが、好ましくはポリシロキサン100質量部に対して0.01~5質量部の範囲で添加するのが好ましい。増感剤の添加量がこの好ましい範囲であると、透明性が低下せず、感度が低下することもない。 The addition amount of the sensitizer is not particularly limited, but it is preferably added in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polysiloxane. When the addition amount of the sensitizer is within this preferable range, the transparency is not lowered and the sensitivity is not lowered.
 本発明の感光性シロキサン組成物を用いた硬化膜の形成方法について説明する。本発明の組成物をスピナー、スリットなどの公知の方法によって下地基板上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークする。プリベークは、50~150℃の範囲で30秒~30分間行い、プリベーク後の膜厚は、0.1~15μmとするのが好ましい。 A method for forming a cured film using the photosensitive siloxane composition of the present invention will be described. The composition of the present invention is applied onto a base substrate by a known method such as a spinner or a slit, and prebaked with a heating device such as a hot plate or oven. Pre-baking is preferably performed in the range of 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after pre-baking is preferably 0.1 to 15 μm.
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などの紫外可視露光機を用い、10~4000J/m程度(波長365nm露光量換算)を所望のマスクを介してパターン露光する。 After pre-baking, use a UV-visible exposure machine such as a stepper, mirror projection mask aligner (MPA), parallel light mask aligner (PLA), etc., and pass through the desired mask at a wavelength of about 10 to 4000 J / m 2 (wavelength 365 nm equivalent). Pattern exposure.
 露光後、現像により露光部が溶解し、ポジ型のパターンを得ることができる。現像方法としては、シャワー、ディップ、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体的例としてはアルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、水酸化テトラメチルアンモニウム、コリン等の4級アンモニウム塩を1種あるいは2種以上含む水溶液等が挙げられる。また、現像後は水でリンスすることが好ましく、必要であればホットプレート、オーブンなどの加熱装置で50~150℃の範囲で脱水乾燥ベークを行うこともできる。 After exposure, the exposed area is dissolved by development, and a positive pattern can be obtained. As a developing method, it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, and tetramethyl hydroxide. Examples include aqueous solutions containing one or more quaternary ammonium salts such as ammonium and choline. Moreover, it is preferable to rinse with water after development, and if necessary, dehydration drying baking can be performed at a temperature of 50 to 150 ° C. with a heating device such as a hot plate or oven.
 その後、ブリーチング露光を行うことが好ましい。ブリーチング露光を行うことによって、膜中に残存する未反応のキノンジアジド化合物が光分解して、膜の光透明性がさらに向上する。ブリーチング露光の方法としては、PLAなどの紫外可視露光機を用い、100~20000J/m程度(波長365nm露光量換算)を全面に露光する。 Thereafter, it is preferable to perform bleaching exposure. By performing bleaching exposure, the unreacted quinonediazide compound remaining in the film is photodegraded, and the light transparency of the film is further improved. As a bleaching exposure method, an entire surface is exposed to about 100 to 20000 J / m 2 (converted to a wavelength of 365 nm exposure amount) using an ultraviolet-visible exposure machine such as PLA.
 ブリーチング露光した膜を、必要であればホットプレート、オーブンなどの加熱装置で50~150℃の範囲で30秒~30分間ソフトベークを行った後、ホットプレート、オーブンなどの加熱装置で150~450℃の範囲で1時間程度キュアすることで、表示素子におけるTFT用平坦化膜、タッチパネルの保護膜や絶縁膜、半導体素子における層間絶縁膜、あるいは光導波路におけるコアやクラッド材といった硬化膜が形成される。 The film subjected to bleaching exposure is soft-baked at a temperature of 50 to 150 ° C. for 30 seconds to 30 minutes with a heating device such as a hot plate or oven, if necessary, and then heated with a heating device such as a hot plate or oven. Curing at 450 ° C for about 1 hour forms a flattening film for TFTs in display elements, protective films and insulating films for touch panels, interlayer insulating films in semiconductor elements, and core and cladding materials in optical waveguides. Is done.
 本発明の感光性シロキサン組成物を用いて作製した硬化膜は、波長400nmにおける膜厚3μmあたりの光透過率が90%以上であり、さらに好ましくは92%以上である。硬化膜の光透過率がこの好ましい範囲であると、液晶表示素子のTFT基板用平坦化膜として用いた場合、バックライトが通過する際に色変化が起こらず、白色表示が黄色味を帯びることもない。 The cured film produced using the photosensitive siloxane composition of the present invention has a light transmittance of 90% or more per film thickness of 3 μm at a wavelength of 400 nm, more preferably 92% or more. When the light transmittance of the cured film is within this preferable range, when used as a flattening film for a TFT substrate of a liquid crystal display element, the color change does not occur when the backlight passes and the white display becomes yellowish. Nor.
 前記の波長400nmにおける膜厚3μmあたりの透過率は、次の方法により求められる。組成物をテンパックスガラス板にスピンコーターを用いて任意の回転数でスピンコートし、ホットプレートを用いて100℃で2分間プリベークする。その後、ブリーチング露光として、PLAを用いて、膜全面に超高圧水銀灯を3000J/m(波長365nm露光量換算)露光し、オーブンを用いて空気中220℃で1時間熱硬化して膜厚3μmの硬化膜を作製する。得られた硬化膜の紫外可視吸収スペクトルを(株)島津製作所製“MultiSpec”-1500を用いて測定し、波長400nmでの透過率を求める。 The transmittance per 3 μm of film thickness at the wavelength of 400 nm is determined by the following method. The composition is spin-coated on a Tempax glass plate at an arbitrary rotation number using a spin coater, and prebaked at 100 ° C. for 2 minutes using a hot plate. Then, as bleaching exposure, using PLA, the whole surface of the film was exposed to an ultrahigh pressure mercury lamp at 3000 J / m 2 (wavelength 365 nm exposure amount conversion), and thermally cured at 220 ° C. for 1 hour in air using an oven. A 3 μm cured film is produced. The ultraviolet-visible absorption spectrum of the obtained cured film is measured using “MultiSpec” -1500 manufactured by Shimadzu Corporation, and the transmittance at a wavelength of 400 nm is determined.
 この硬化膜は液晶表示素子などのTFT基板用平坦化膜、タッチパネルの保護膜や絶縁膜、半導体素子の層間絶縁膜、あるいは光導波路のコアやクラッド材などに好適に使用される。 This cured film is suitably used as a planarizing film for TFT substrates such as liquid crystal display elements, protective films and insulating films for touch panels, interlayer insulating films for semiconductor elements, or cores and cladding materials for optical waveguides.
 本発明における素子は、上述のような硬化膜を有する液晶表示素子や有機EL表示素子、タッチパネル、半導体素子、あるいは光導波路材を指し、特に、TFT基板用平坦化膜として有する液晶表示素子、ならびに絶縁膜として有するタッチパネルに有効に用いられる。 The element in the present invention refers to a liquid crystal display element having a cured film as described above, an organic EL display element, a touch panel, a semiconductor element, or an optical waveguide material, and in particular, a liquid crystal display element having a flattening film for a TFT substrate, and Effectively used for a touch panel having an insulating film.
 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。なお、用いた化合物のうち、略語を使用しているものについて、以下に示す。
DAA:ダイアセトンアルコール
PGMEA:プロピレングリコールモノメチルエーテルアセテート
PGME:プロピレングリコールモノメチルエーテル
 また、ポリシロキサン溶液、アクリル樹脂溶液の固形分濃度、およびポリシロキサン、アクリル樹脂の重量平均分子量(Mw)は、次のとおり求めた。
(1)固形分濃度
アルミカップにポリシロキサン(アクリル樹脂)溶液を1g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分を秤量して、ポリシロキサン(アクリル樹脂)溶液の固形分濃度を求めた。
(2)重量平均分子量
 重量平均分子量はGPC(Waters社製996型デテクター、展開溶剤:テトラヒドロフラン)にてポリスチレン換算により求めた。
[合成例1:ポリシロキサン溶液(a)の合成]
 500mlの三口フラスコにメチルトリメトキシシランを54.48g(0.4mol)、フェニルトリメトキシシランを99.15g(0.5mol)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを24.64g(0.1mol)、ダイアセトンアルコール(以下、DAAと略する)を163.35g仕込み、室温で攪拌しながら水54gにリン酸0.535g(仕込みモノマーに対して0.3質量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100~110℃)、ポリシロキサン溶液(a)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計120g留出した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples. In addition, it shows below about what used the abbreviation among the used compounds.
DAA: diacetone alcohol PGMEA: propylene glycol monomethyl ether acetate PGME: propylene glycol monomethyl ether The solid content concentration of polysiloxane solution and acrylic resin solution, and the weight average molecular weight (Mw) of polysiloxane and acrylic resin are as follows: Asked.
(1) 1 g of polysiloxane (acrylic resin) solution was weighed in an aluminum cup having a solid content, and the liquid was evaporated by heating at 250 ° C. for 30 minutes using a hot plate. The solid content remaining in the heated aluminum cup was weighed to determine the solid content concentration of the polysiloxane (acrylic resin) solution.
(2) Weight average molecular weight The weight average molecular weight was determined in terms of polystyrene by GPC (Waters 996 type detector, developing solvent: tetrahydrofuran).
[Synthesis Example 1: Synthesis of polysiloxane solution (a)]
In a 500 ml three-necked flask, 54.48 g (0.4 mol) of methyltrimethoxysilane, 99.15 g (0.5 mol) of phenyltrimethoxysilane, and 24. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. 64 g (0.1 mol) and 163.35 g of diacetone alcohol (hereinafter abbreviated as DAA) were charged, and 0.535 g of phosphoric acid (0.3% by mass with respect to the charged monomer) was added to 54 g of water while stirring at room temperature. The dissolved aqueous phosphoric acid solution was added over 10 minutes. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution (a). During heating and stirring, nitrogen was flowed at 0.05 l (liter) / min. During the reaction, a total of 120 g of methanol and water as by-products were distilled out.
 得られたポリシロキサン溶液(a)の固形分濃度は40質量%、ポリシロキサンの重量平均分子量は6500であった。なお、ポリシロキサン中のフェニル基含有率はSi原子に対して50モル%であった。
[合成例2:ポリシロキサン溶液(b)の合成]
 500mlの三口フラスコにメチルトリメトキシシランを40.86g(0.3mol)、フェニルトリメトキシシランを99.15g(0.5mol)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを12.32g(0.05mol)、Mシリケート51(多摩化学工業(株)製)を17.63g(シラン原子モル数で0.15mol)、プロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと略する)を153.66g仕込み、室温で攪拌しながら水53.55gにリン酸0.51g(仕込みモノマーに対して0.3質量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100~110℃)、ポリシロキサン溶液(b)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計120g留出した。
The resulting polysiloxane solution (a) had a solid content concentration of 40% by mass, and the polysiloxane had a weight average molecular weight of 6500. In addition, the phenyl group content rate in polysiloxane was 50 mol% with respect to Si atom.
[Synthesis Example 2: Synthesis of polysiloxane solution (b)]
In a 500 ml three-necked flask, 40.86 g (0.3 mol) of methyltrimethoxysilane, 99.15 g (0.5 mol) of phenyltrimethoxysilane, and 12.12 of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. 32 g (0.05 mol), 17.63 g of M silicate 51 (manufactured by Tama Chemical Industry Co., Ltd.) (0.15 mol in terms of silane atoms), and propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGMEA) 153. An aqueous phosphoric acid solution prepared by dissolving 0.51 g of phosphoric acid (0.3% by mass with respect to the charged monomer) in 53.55 g of water was added over 10 minutes while stirring at 66 g. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution (b). During heating and stirring, nitrogen was flowed at 0.05 l (liter) / min. During the reaction, a total of 120 g of methanol and water as by-products were distilled out.
 得られたポリシロキサン溶液(b)の固形分濃度は40質量%、ポリシロキサンの重量平均分子量は10000であった。なお、ポリシロキサン中のフェニル基含有率はSi原子に対して50モル%であった。
[合成例3:ポリシロキサン溶液(c)の合成]
 500mlの三口フラスコにメチルトリメトキシシランを88.53g(0.65mol)、フェニルトリメトキシシランを49.58g(0.25mol)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを24.64g(0.1mol)、DAAを144.83g仕込み、室温で攪拌しながら水54gにリン酸0.081g(仕込みモノマーに対して0.05質量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100~110℃)、ポリシロキサン溶液(c)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計120g留出した。
The resulting polysiloxane solution (b) had a solid content concentration of 40% by mass, and the polysiloxane had a weight average molecular weight of 10,000. In addition, the phenyl group content rate in polysiloxane was 50 mol% with respect to Si atom.
[Synthesis Example 3: Synthesis of polysiloxane solution (c)]
In a 500 ml three-necked flask, 88.53 g (0.65 mol) of methyltrimethoxysilane, 49.58 g (0.25 mol) of phenyltrimethoxysilane, and 24. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. 64 g (0.1 mol) and 144.83 g of DAA were charged, and a phosphoric acid aqueous solution in which 0.081 g of phosphoric acid (0.05% by mass with respect to the charged monomer) was dissolved in 54 g of water over 10 minutes while stirring at room temperature. Added. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., from which the mixture was heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution (c). During heating and stirring, nitrogen was flowed at 0.05 l (liter) / min. During the reaction, a total of 120 g of methanol and water as by-products were distilled out.
 得られたポリシロキサン溶液(c)の固形分濃度は40質量%、ポリシロキサンの重量平均分子量は9,000であった。なお、ポリシロキサン中のフェニル基含有率はSi原子に対して25モル%であった。
[合成例4:ポリシロキサン溶液(d)の合成]
 500mlの三口フラスコにメチルトリメトキシシランを20.43g(0.15mol)、フェニルトリメトキシシランを158.64g(0.8mol)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを12.32g(0.05mol)、DAAを179.54g仕込み、室温で攪拌しながら水54gにリン酸0.383g(仕込みモノマーに対して0.2質量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから3時間加熱攪拌し(内温は100~110℃)、ポリシロキサン溶液(d)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計120g留出した。
The polysiloxane solution (c) thus obtained had a solid content concentration of 40% by mass, and the weight average molecular weight of the polysiloxane was 9,000. In addition, the phenyl group content rate in polysiloxane was 25 mol% with respect to Si atom.
[Synthesis Example 4: Synthesis of polysiloxane solution (d)]
In a 500 ml three-necked flask, 20.43 g (0.15 mol) of methyltrimethoxysilane, 158.64 g (0.8 mol) of phenyltrimethoxysilane, and 12.12 of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. 32 g (0.05 mol) and 179.54 g of DAA were charged, and a phosphoric acid aqueous solution in which 0.383 g of phosphoric acid (0.2% by mass with respect to the charged monomer) was dissolved in 54 g of water over 10 minutes while stirring at room temperature. Added. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 3 hours (internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution (d). During heating and stirring, nitrogen was flowed at 0.05 l (liter) / min. During the reaction, a total of 120 g of methanol and water as by-products were distilled out.
 得られたポリシロキサン溶液(d)の固形分濃度は40質量%、ポリシロキサンの重量平均分子量は7,000であった。なお、ポリシロキサン中のフェニル基含有率はSi原子に対して80モル%であった。
[合成例5:アクリル樹脂溶液(a)の合成]
500mlのフラスコに2,2’-アゾビス(イソブチロニトリル)を5g、PGMEAを150g仕込んだ。その後、メタクリル酸を27g、ベンジルメタクリレートを38g、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレートを35g仕込み、室温でしばらく攪拌し、フラスコ内を窒素置換した後、70℃で5時間加熱攪拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g添加し、90℃で4時間加熱攪拌し、アクリル樹脂溶液(a)を得た。
The polysiloxane solution (d) thus obtained had a solid content concentration of 40% by mass, and the weight average molecular weight of the polysiloxane was 7,000. In addition, the phenyl group content rate in polysiloxane was 80 mol% with respect to Si atom.
[Synthesis Example 5: Synthesis of acrylic resin solution (a)]
A 500 ml flask was charged with 5 g of 2,2′-azobis (isobutyronitrile) and 150 g of PGMEA. Thereafter, 27 g of methacrylic acid, 38 g of benzyl methacrylate and 35 g of tricyclo [5.2.1.02,6] decan-8-yl methacrylate were charged and stirred at room temperature for a while. And stirred for 5 hours. Next, 15 g of glycidyl methacrylate, 1 g of dimethylbenzylamine and 0.2 g of p-methoxyphenol were added to the resulting solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain an acrylic resin solution (a).
 得られたアクリル樹脂溶液(a)の固形分濃度は43質量%、アクリル樹脂の重量平均分子量は31,400であった。
[合成例6:キノンジアジド化合物(a)の合成]
 乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)21.23g(0.05mol)と5-ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14mol)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン15.58g(0.154mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(a)を得た。
The obtained acrylic resin solution (a) had a solid content concentration of 43% by mass, and the acrylic resin had a weight average molecular weight of 31,400.
[Synthesis Example 6: Synthesis of quinonediazide compound (a)]
Under a nitrogen stream, 21.23 g (0.05 mol) of TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 37.62 g (0.14 mol) of 5-naphthoquinone diazide sulfonyl chloride were added to 1,4-dioxane. Dissolved in 450 g and brought to room temperature. Here, 15.58 g (0.154 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not exceed 35 ° C. It stirred at 30 degreeC after dripping for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (a) having the following structure.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[合成例7:キノンジアジド化合物(b)の合成]
 乾燥窒素気流下、TrisP-HAP(商品名、本州化学工業(株)製)15.32g(0.05mol)と5-ナフトキノンジアジドスルホニル酸クロリド26.87g(0.1mol)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン11.13g(0.11mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(b)を得た。
[Synthesis Example 7: Synthesis of quinonediazide compound (b)]
Under a dry nitrogen stream, TrisP-HAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) 15.32 g (0.05 mol) and 5-naphthoquinonediazidesulfonyl acid chloride 26.87 g (0.1 mol) were added to 1,4-dioxane. Dissolved in 450 g and brought to room temperature. To this, 11.13 g (0.11 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system did not exceed 35 ° C. It stirred at 30 degreeC after dripping for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (b) having the following structure.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[合成例8:キノンジアジド化合物(c)の合成]
乾燥窒素気流下、Ph-cc-AP-MF(商品名、本州化学工業(株)製)15.32g(0.05mol)と5-ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14mol)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン15.58g(0.154mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(c)を得た。
[Synthesis Example 8: Synthesis of quinonediazide compound (c)]
In a dry nitrogen stream, 15.32 g (0.05 mol) of Ph-cc-AP-MF (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 37.62 g (0.14 mol) of 5-naphthoquinone diazide sulfonyl chloride 1 , 4-Dioxane was dissolved in 450 g and brought to room temperature. Here, 15.58 g (0.154 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not exceed 35 ° C. It stirred at 30 degreeC after dripping for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (c) having the following structure.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(実施例1)
 合成例1で得られたポリシロキサン溶液(a)25.51g、合成例8で得られたキノンジアジド化合物(c)0.92g、シリケート化合物としてMシリケート51(商品名、多摩化学工業(株)製)1.02g、シランカップリング剤としてKBM303(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、商品名、信越化学工業(株)製)0.20g、架橋促進剤としてCGI-MDT(商品名、チバジャパン(株)製)0.10g、増感剤としてDPA(9,10-ジプロポキシアントラセン、商品名、川崎化成工業(株)製)0.05g、溶剤としてDAA3.44g、PGMEA18.75gを黄色灯下で混合、攪拌して均一溶液とした後、0.2μmのフィルターで濾過して組成物1を製造した。表1に組成を示す。なお、シリケート化合物として用いたMシリケート51、架橋促進剤として用いたCGI-MDTは下記に示した構造の化合物である。
Example 1
25.51 g of the polysiloxane solution (a) obtained in Synthesis Example 1, 0.92 g of the quinonediazide compound (c) obtained in Synthesis Example 8, and M silicate 51 (trade name, manufactured by Tama Chemical Co., Ltd.) as the silicate compound ) 1.02 g, KBM303 (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.20 g as a silane coupling agent, CGI-MDT (as a crosslinking accelerator) 0.10 g (trade name, manufactured by Ciba Japan), 0.05 g of DPA (9,10-dipropoxyanthracene, product name, manufactured by Kawasaki Kasei Kogyo Co., Ltd.) as a sensitizer, 3.44 g of DAA as a solvent, PGMEA 18 .75 g was mixed and stirred under a yellow light to obtain a uniform solution, and then filtered through a 0.2 μm filter to produce Composition 1. Table 1 shows the composition. The M silicate 51 used as the silicate compound and the CGI-MDT used as the crosslinking accelerator are compounds having the structures shown below.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 組成物1をシリコンウェハ、およびOA-10ガラス板(日本電気硝子(株)製)にスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数でスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて100℃で2分間プリベークし、膜厚3μmの膜を作製した。作製した膜をパラレルライトマスクアライナー(以下、PLAと略する)(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯を感度測定用のグレースケールマスクを介してパターン露光した後、自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38質量%水酸化テトラメチルアンモニウム水溶液であるELM-D(商品名、三菱ガス化学(株)製)で80秒間シャワー現像し、次いで水で30秒間リンスした。その後、ブリーチング露光として、PLA(キヤノン(株)製PLA-501F)を用いて、膜全面に超高圧水銀灯を3000J/m2(波長365nm露光量換算)露光した。その後、ホットプレートを用いて110℃で2分間ソフトベークし、次いでオーブン(タバイエスペック(株)製IHPS-222)を用いて空気中220℃で1時間キュアして硬化膜を作製した。 Composition 1 was spin-coated on a silicon wafer and OA-10 glass plate (manufactured by Nippon Electric Glass Co., Ltd.) using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary rotation number, and then hot plate (Dainippon Screen Mfg. Co., Ltd. SCW-636) was pre-baked at 100 ° C. for 2 minutes to prepare a film having a thickness of 3 μm. Using a parallel light mask aligner (hereinafter abbreviated as PLA) (PLA-501F manufactured by Canon Inc.), the produced film was subjected to pattern exposure with an ultra-high pressure mercury lamp through a gray scale mask for sensitivity measurement, and then automatically Using a developing device (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 80 seconds with ELM-D (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.) which is a 2.38 mass% tetramethylammonium hydroxide aqueous solution. Then rinsed with water for 30 seconds. After that, as bleaching exposure, PLA (Canon Co., Ltd. PLA-501F) was used, and the entire surface of the film was exposed to 3000 J / m 2 (wavelength 365 nm exposure amount conversion) with an ultrahigh pressure mercury lamp. Thereafter, soft baking was performed at 110 ° C. for 2 minutes using a hot plate, and then cured in an air at 220 ° C. for 1 hour using an oven (Tabba Espec Co., Ltd.) to prepare a cured film.
 感光特性、および硬化膜特性の評価結果を表2に示す。なお、表中の評価は次の方法で行った。なお、下記の(3)~(6)の評価はシリコンウェハ基板を、(8)、(9)の評価はOA-10ガラス板を用いて行った。
(3)膜厚測定
 “ラムダエース”STM-602(商品名、大日本スクリーン製)を用いて、屈折率1.50で測定を行った。
(4)残膜率の算出
 残膜率は次式に従って算出した。
Table 2 shows the evaluation results of the photosensitive characteristics and the cured film characteristics. The evaluation in the table was performed by the following method. The following evaluations (3) to (6) were performed using a silicon wafer substrate, and (8) and (9) were evaluated using an OA-10 glass plate.
(3) Film thickness measurement Using “Lambda Ace” STM-602 (trade name, manufactured by Dainippon Screen), measurement was performed at a refractive index of 1.50.
(4) Calculation of remaining film rate The remaining film rate was calculated according to the following formula.
 残膜率(%)=現像後の未露光部膜厚÷プリベーク後の膜厚×100
(5)感度の算出
 露光、現像後、10μmのライン・アンド・スペースパターンを1対1の幅に形成する露光量(以下、これを最適露光量という)を感度とした。
(6)解像度の算出
 最適露光量における現像後の最小パターン寸法を現像後解像度、キュア後の最小パターン寸法をキュア後解像度とした。
(7)質量減少率の測定
 組成物をアルミセルに約100mg入れ、熱質量測定装置(TGA-50、(株)島津製作所製)を用い、窒素雰囲気中、昇温速度10℃/分で300℃まで加熱し、そのまま1時間加熱硬化させ、その後昇温速度10℃/分で400℃までで昇温した時の、質量減少率を測定した。300℃に到達したときの質量を測定し、さらに400℃に到達した時の質量を測定し、300℃時の質量との差を求め、減少した質量分を質量減少率として求めた。
(8)光透過率の測定
 “MultiSpec”-1500(商品名、(株)島津製作所)を用いて、まずOA-10ガラス板のみを測定し、その紫外可視吸収スペクトルをリファレンスとした。次にOA-10ガラス板上に組成物の硬化膜を形成(パターン露光は行わない)し、このサンプルをシングルビームで測定し、3μmあたりの波長400nmでの光透過率を求め、リファレンスとの差異を硬化膜の光透過率とした。
(9)耐薬品性の評価
 OA-10ガラス板上に組成物の硬化膜を形成(パターン露光は行わない)し、その硬化膜に1mm間隔にてカッターナイフで10×10のマス目を作製した。その後、ITOエッチング液(塩酸/塩化カリウム/水=6/8/84(質量比))に50℃×300秒浸漬した。その後、マス目上にセロハンテープを貼り付け、剥がした時のマス目上の硬化膜の剥がれ率により、0%:A、5%以下:B、5~35%:C、35%以上:Fと評価した。
(実施例2~13、比較例1~4)
 組成物2~17を表1に記載の組成のとおりに、組成物1と同様にして製造した。なお、シリケート化合物として用いたメチルシリケート53A、エチルシリケート40、エチルシリケート48(商品名、コルコート(株)製)、シランカップリング剤として用いたKBM403(商品名、信越化学工業(株)製)、架橋剤として用いたニカラックMX-270、ニカラックMW-30HM(商品名、三和ケミカル(株)製)は下記に示した構造の化合物である。
Residual film ratio (%) = unexposed film thickness after development / film thickness after pre-baking × 100
(5) Calculation of sensitivity The exposure amount that forms a 10 μm line-and-space pattern with a one-to-one width after exposure and development (hereinafter referred to as the optimum exposure amount) was defined as sensitivity.
(6) Calculation of resolution The minimum pattern size after development at the optimum exposure amount was taken as post-development resolution, and the minimum pattern size after cure was taken as post-cure resolution.
(7) Measurement of mass reduction rate About 100 mg of the composition was placed in an aluminum cell, and a thermal mass measurement apparatus (TGA-50, manufactured by Shimadzu Corporation) was used, and the temperature was increased to 300 ° C. at a temperature rising rate of 10 ° C./min. Until the temperature was increased to 400 ° C. at a rate of temperature increase of 10 ° C./min, and the mass reduction rate was measured. The mass when reaching 300 ° C. was measured, the mass when reaching 400 ° C. was measured, the difference from the mass at 300 ° C. was determined, and the decreased mass was determined as the mass reduction rate.
(8) Measurement of light transmittance First, only the OA-10 glass plate was measured using “MultiSpec” -1500 (trade name, Shimadzu Corporation), and the UV-visible absorption spectrum was used as a reference. Next, a cured film of the composition was formed on the OA-10 glass plate (pattern exposure was not performed), this sample was measured with a single beam, and the light transmittance at a wavelength of 400 nm per 3 μm was obtained. The difference was the light transmittance of the cured film.
(9) Evaluation of chemical resistance A cured film of the composition is formed on an OA-10 glass plate (pattern exposure is not performed), and 10 × 10 squares are produced on the cured film with a cutter knife at intervals of 1 mm. did. Thereafter, it was immersed in an ITO etching solution (hydrochloric acid / potassium chloride / water = 6/8/84 (mass ratio)) at 50 ° C. for 300 seconds. Then, a cellophane tape is applied on the grid, and depending on the peel rate of the cured film on the grid, 0%: A, 5% or less: B, 5 to 35%: C, 35% or more: F It was evaluated.
(Examples 2 to 13, Comparative Examples 1 to 4)
Compositions 2 to 17 were produced in the same manner as Composition 1 according to the compositions described in Table 1. In addition, methyl silicate 53A used as a silicate compound, ethyl silicate 40, ethyl silicate 48 (trade name, manufactured by Colcoat Co., Ltd.), KBM403 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) used as a silane coupling agent, Nicalac MX-270 and Nicalac MW-30HM (trade names, manufactured by Sanwa Chemical Co., Ltd.) used as crosslinking agents are compounds having the structures shown below.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 得られた各組成物を用いて、実施例1と同様にして各組成物の評価を行った。ただし、比較例2の評価において、現像は0.4質量%水酸化テトラメチルアンモニウム水溶液(ELM-Dを水で希釈したもの)で80秒間シャワー現像して行った。結果を表2に示す。比較例1、2、および4は、一般式(2)で表されるシリケート化合物を含有しないので、硬化膜特性のうち耐薬品性に劣る。また、比較例3は、樹脂がアクリル樹脂であるために、硬化膜特性のうち光透過率に劣る。 Each composition was evaluated in the same manner as in Example 1 using each composition obtained. However, in the evaluation of Comparative Example 2, the development was performed by shower development for 80 seconds with a 0.4 mass% tetramethylammonium hydroxide aqueous solution (ELM-D diluted with water). The results are shown in Table 2. Since Comparative Examples 1, 2, and 4 do not contain the silicate compound represented by the general formula (2), the chemical resistance of the cured film properties is inferior. Moreover, since the resin is an acrylic resin, the comparative example 3 is inferior in the light transmittance among cured film characteristics.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 本発明は、液晶表示素子や有機EL表示素子などの薄膜トランジスタ(TFT)基板用平坦化膜、タッチパネルの保護膜や絶縁膜、半導体素子の層間絶縁膜、あるいは光導波路のコアやクラッド材などを形成するための感光性シロキサン組成物に好適に使用できる。 The present invention forms a flattening film for a thin film transistor (TFT) substrate such as a liquid crystal display element or an organic EL display element, a protective film or insulating film for a touch panel, an interlayer insulating film for a semiconductor element, or a core or cladding material for an optical waveguide. Therefore, it can be suitably used for a photosensitive siloxane composition.

Claims (6)

  1. (a)一般式(1)で表されるオルガノシランの1種以上を反応させることによって合成されるポリシロキサン、(b)キノンジアジド化合物、(c)溶剤および(d)一般式(2)で表されるシリケート化合物を含有する感光性シロキサン組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。nは0~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、RからRはそれぞれ独立に水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表す。pは2~10の整数を表す。)
    (A) a polysiloxane synthesized by reacting at least one organosilane represented by the general formula (1), (b) a quinonediazide compound, (c) a solvent, and (d) a general formula (2). A photosensitive siloxane composition containing a silicate compound.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different. R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same (N may represent an integer of 0 to 3)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 3 to R 6 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms. P is 2) Represents an integer of ~ 10)
  2. (d)一般式(2)で表されるシリケート化合物において、RからRがメチル基である請求項1記載の感光性シロキサン組成物。 (D) The photosensitive siloxane composition according to claim 1, wherein in the silicate compound represented by the general formula (2), R 3 to R 6 are methyl groups.
  3. さらに、(e)一般式(6)で表される金属キレート化合物を含有する請求項1記載の感光性シロキサン組成物。
    Figure JPOXMLDOC01-appb-C000003
     (式中、Mは金属原子である。複数のR21は、同一もしくは異なっていてもよく、それぞれ水素、アルキル基、アリール基、アルケニル基、およびそれらの置換体を表す。R22、R23は、同一もしくは異なっていてもよく、それぞれ水素、アルキル基、アリール基、アルケニル基、アルコキシ基、およびそれらの置換体を表す。jは金属原子Mの原子価、kは0以上、j以下の整数を表す。)
    Furthermore, (e) The photosensitive siloxane composition of Claim 1 containing the metal chelate compound represented by General formula (6).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, M is a metal atom. The plurality of R 21 may be the same or different, and each represents hydrogen, an alkyl group, an aryl group, an alkenyl group, or a substituent thereof. R 22 , R 23 May be the same or different and each represents hydrogen, an alkyl group, an aryl group, an alkenyl group, an alkoxy group, and a substituent thereof, j is a valence of a metal atom M, k is 0 or more, and j or less Represents an integer.)
  4. (b)キノンジアジド化合物が、一般式(7)で表されるフェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物である請求項1記載の感光性シロキサン組成物。
    Figure JPOXMLDOC01-appb-C000004
     (式中、R24、R25はそれぞれ独立に水素、炭素数1~10のアルキル基、炭素数6~15のアリール基のいずれかを表す。R26、R27はそれぞれ独立に水素原子、炭素数1~8のアルキル基、アルコキシル基、カルボキシル基、エステル基のいずれかを表し、複数のR26、R27は同じであっても異なっていてもよい。a、bは0~4の整数を表し、c、dは1~5の整数を表す。ただし、a+c、およびb+dは1~5の整数であり、c≠d、c+d≧3である。)
    (B) The photosensitive siloxane composition according to claim 1, wherein the quinonediazide compound is a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group represented by the general formula (7).
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 24 and R 25 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms. R 26 and R 27 each independently represents a hydrogen atom, Represents any one of an alkyl group having 1 to 8 carbon atoms, an alkoxyl group, a carboxyl group and an ester group, and a plurality of R 26 and R 27 may be the same or different. And c and d represent integers of 1 to 5. However, a + c and b + d are integers of 1 to 5, and c ≠ d and c + d ≧ 3.
  5. 請求項1記載の感光性シロキサン組成物から形成された硬化膜であって、波長400nmにおける膜厚3μmあたりの光透過率が90%以上である硬化膜。 A cured film formed from the photosensitive siloxane composition according to claim 1, wherein the light transmittance per film thickness of 3 μm at a wavelength of 400 nm is 90% or more.
  6. 請求項5記載の硬化膜を具備する素子。 An element comprising the cured film according to claim 5.
PCT/JP2011/062684 2010-06-09 2011-06-02 Photosensitive siloxane composition, cured film formed form same, and element having cured film WO2011155382A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180028270.8A CN102918460B (en) 2010-06-09 2011-06-02 Photosensitive siloxane composition, cured film formed form same, and element having cured film
JP2011535336A JP5696665B2 (en) 2010-06-09 2011-06-02 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
KR1020127025114A KR101761181B1 (en) 2010-06-09 2011-06-02 Photosensitive siloxane composition, cured film formed form same, and element having cured film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010131657 2010-06-09
JP2010-131657 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011155382A1 true WO2011155382A1 (en) 2011-12-15

Family

ID=45097990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062684 WO2011155382A1 (en) 2010-06-09 2011-06-02 Photosensitive siloxane composition, cured film formed form same, and element having cured film

Country Status (5)

Country Link
JP (1) JP5696665B2 (en)
KR (1) KR101761181B1 (en)
CN (1) CN102918460B (en)
TW (1) TWI482802B (en)
WO (1) WO2011155382A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203989A (en) * 2012-03-29 2013-10-07 Nippon Tungsten Co Ltd Organopolysiloxane mixture composition, filler-containing organopolysiloxane, coating material, and coated body
JP5505569B1 (en) * 2012-12-11 2014-05-28 東レ株式会社 Thermosetting coloring composition and cured film, touch panel provided with the cured film, and method for producing touch panel using the thermosetting coloring composition
WO2014156520A1 (en) * 2013-03-28 2014-10-02 東レ株式会社 Photosensitive resin composition, protection film or insulation film, touch panel and method for manufacturing same
US9704724B2 (en) 2011-12-26 2017-07-11 Toray Industries, Inc. Photosensitive resin composition and method for producing semiconductor device
JP2019530900A (en) * 2016-09-28 2019-10-24 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Photosensitive resin composition, cured film formed therefrom, and electronic device having the cured film
TWI771907B (en) * 2016-03-25 2022-07-21 盧森堡商Az電子材料盧森堡有限公司 Photosensitive siloxane composition and method for forming cured film

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150118582A (en) * 2013-02-12 2015-10-22 도레이 카부시키가이샤 Photosensitive resin composition, protective film or insulation film obtained by heat curing said composition, touch panel using said film, and production method for said touch panel
WO2016140057A1 (en) * 2015-03-05 2016-09-09 Jsr株式会社 Radiation-sensitive composition and pattern formation method
KR102380151B1 (en) * 2015-08-31 2022-03-28 삼성전자주식회사 Thin film transistor, and electronic device including same
TWI606302B (en) * 2016-10-18 2017-11-21 臺灣永光化學工業股份有限公司 Negative-type Photosensitive Resin Composition and Use thereof
KR102497140B1 (en) * 2018-11-02 2023-02-06 주식회사 엘지화학 Acrylic emulsion pressure snsitive adhesive composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152156A (en) * 1993-11-29 1995-06-16 Oki Electric Ind Co Ltd Resin composition
JP2008276190A (en) * 2007-04-06 2008-11-13 Asahi Kasei Electronics Co Ltd Positive photosensitive resin composition
JP2010033005A (en) * 2008-06-23 2010-02-12 Toray Ind Inc Photosensitive composition, cured film formed from the same, and element having cured film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449232B2 (en) * 1998-08-03 2003-09-22 信越化学工業株式会社 Resist material and method of manufacturing the same
JP4655914B2 (en) * 2005-12-13 2011-03-23 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
WO2008065944A1 (en) * 2006-11-30 2008-06-05 Toray Industries, Inc. Photosensitive siloxane composition, hardened film formed therefrom and device having the hardened film
WO2011078106A1 (en) * 2009-12-22 2011-06-30 東レ株式会社 Positive photosensitive resin composition, cured film formed from same, and element having cured film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152156A (en) * 1993-11-29 1995-06-16 Oki Electric Ind Co Ltd Resin composition
JP2008276190A (en) * 2007-04-06 2008-11-13 Asahi Kasei Electronics Co Ltd Positive photosensitive resin composition
JP2010033005A (en) * 2008-06-23 2010-02-12 Toray Ind Inc Photosensitive composition, cured film formed from the same, and element having cured film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9704724B2 (en) 2011-12-26 2017-07-11 Toray Industries, Inc. Photosensitive resin composition and method for producing semiconductor device
JP2013203989A (en) * 2012-03-29 2013-10-07 Nippon Tungsten Co Ltd Organopolysiloxane mixture composition, filler-containing organopolysiloxane, coating material, and coated body
JP5505569B1 (en) * 2012-12-11 2014-05-28 東レ株式会社 Thermosetting coloring composition and cured film, touch panel provided with the cured film, and method for producing touch panel using the thermosetting coloring composition
WO2014091811A1 (en) * 2012-12-11 2014-06-19 東レ株式会社 Heat-curable coloring composition, cured film, touch panel provided with said cured film, and method for producing touch panel using said heat-curable coloring composition
KR101938603B1 (en) 2012-12-11 2019-01-15 도레이 카부시키가이샤 Heat-curable coloring composition, cured film, touch panel provided with said cured film, and method for producing touch panel using said heat-curable coloring composition
WO2014156520A1 (en) * 2013-03-28 2014-10-02 東レ株式会社 Photosensitive resin composition, protection film or insulation film, touch panel and method for manufacturing same
JPWO2014156520A1 (en) * 2013-03-28 2017-02-16 東レ株式会社 Photosensitive resin composition, protective film or insulating film, touch panel and manufacturing method thereof
TWI771907B (en) * 2016-03-25 2022-07-21 盧森堡商Az電子材料盧森堡有限公司 Photosensitive siloxane composition and method for forming cured film
JP2019530900A (en) * 2016-09-28 2019-10-24 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Photosensitive resin composition, cured film formed therefrom, and electronic device having the cured film

Also Published As

Publication number Publication date
CN102918460B (en) 2015-07-22
TWI482802B (en) 2015-05-01
JPWO2011155382A1 (en) 2013-08-01
TW201211112A (en) 2012-03-16
CN102918460A (en) 2013-02-06
KR101761181B1 (en) 2017-07-25
KR20130090750A (en) 2013-08-14
JP5696665B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5696665B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP4784283B2 (en) Positive photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP4670693B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP4853228B2 (en) Photosensitive siloxane composition, cured film formed therefrom, element having cured film, and pattern forming method
JP4655914B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP5765235B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
WO2011078106A1 (en) Positive photosensitive resin composition, cured film formed from same, and element having cured film
JP4687315B2 (en) Photosensitive resin composition, cured film formed therefrom, and element having cured film
JP6318634B2 (en) Photosensitive siloxane composition, cured film and device
JP4725160B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP2007193318A (en) Photosensitive siloxane composition, cured film formed of the same and element having cured film
JP2013114238A (en) Positive photosensitive composition, cured film formed of the positive photosensitive composition and element having the cured film
JP5659561B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP4910646B2 (en) Photosensitive siloxane composition and method for producing the same, cured film formed from photosensitive siloxane composition, and element having cured film
JP2012053381A (en) Positive photosensitive composition, cured film formed therefrom and element having cured film
JP5444704B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
JP2007226214A (en) Photosensitive siloxane composition, cured film formed of the same and element having cured film
JP2009169343A (en) Photosensitive composition, cured film formed thereof, and element having cured film
JP5343649B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
JP2010032977A (en) Positive photosensitive composition, cured film formed of the same, and device with cured film
JP5169027B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP5540632B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
JP5233526B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
JP6186766B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film
JP2014149330A (en) Photosensitive siloxane composition, cured film and element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028270.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011535336

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025114

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792339

Country of ref document: EP

Kind code of ref document: A1