WO2011155271A1 - Method for measuring flare point height of perpendicular magnetic recording head - Google Patents

Method for measuring flare point height of perpendicular magnetic recording head Download PDF

Info

Publication number
WO2011155271A1
WO2011155271A1 PCT/JP2011/059946 JP2011059946W WO2011155271A1 WO 2011155271 A1 WO2011155271 A1 WO 2011155271A1 JP 2011059946 W JP2011059946 W JP 2011059946W WO 2011155271 A1 WO2011155271 A1 WO 2011155271A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
point height
flare point
recording head
magnetic field
Prior art date
Application number
PCT/JP2011/059946
Other languages
French (fr)
Japanese (ja)
Inventor
徹 松村
俊雄 高橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011155271A1 publication Critical patent/WO2011155271A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • G11B5/3166Testing or indicating in relation thereto, e.g. before the fabrication is completed
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • G11B5/3173Batch fabrication, i.e. producing a plurality of head structures in one batch

Definitions

  • the present invention relates to a method for measuring a main magnetic pole flare point height of a magnetic head slider mounted on a magnetic recording device such as a magnetic disk device, in particular, a perpendicular magnetic recording head.
  • the perpendicular magnetic recording system has a feature that fine recording magnetization is thermally stable compared to the conventional in-plane magnetic recording system because magnetic data is arranged perpendicular to the disk surface.
  • These dimensions are formed by stopping the polishing process when the processing progresses until each element has an appropriate dimension when polishing the air bearing surface of the magnetic head slider. At that time, with respect to the reproducing element, a current is passed through the guide resistor formed in the vicinity of the element, and the size of the guide resistor is calculated from the resistance value to obtain an estimated height of the actual reproducing element.
  • the element structure does not have a structure in which a current flows in a portion having a dimension that requires high accuracy, and it is very difficult to form a guide resistor in a shape that matches the flare point.
  • the recording element and the reproducing element separated by several ⁇ m in the film formation direction, the alignment accuracy of exposure when forming both elements, and (2) the element based on the exposed pattern (3) The perpendicularity of the air bearing surface with respect to the film surface during row bar cutting and air bearing surface lapping in the slider process, (4) The reproducing element height when processing the air bearing surface based on the reproducing element height reference
  • the flare point height varies greatly due to factors such as variations in machining dimensions.
  • the misalignment can be corrected by tilting the slider during the floating polishing process and removing excess material so that the reproducing element and the recording element have appropriate dimensions.
  • it is necessary to correctly grasp both the size of the reproducing element being processed and the recording element flare point height.
  • a pseudo perpendicular magnetic recording medium is formed on the air bearing surface of the magnetic head slider to be inspected. Then, perpendicular magnetic recording is performed from the recording element of the magnetic head slider, and the recording state is read by a magneto-optical effect or a magnetic force microscope to estimate the magnetic domain structure of the recording element and judge the quality of the magnetic head.
  • a magneto-optical effect or a magnetic force microscope to estimate the magnetic domain structure of the recording element and judge the quality of the magnetic head.
  • Non-Patent Document 1 discloses a method of measuring and visualizing information recorded on a separately prepared medium by using another magnetic recording / reproducing element. In this case as well, the estimation of the element size is assumed. In addition, since the measurement is performed via the medium, the measurement result depends on the medium.
  • SMRM Scanning magnetoresistance microscopy
  • Patent Document 2 discloses that the magnetic field intensity in the vicinity of the main magnetic pole of the perpendicular magnetic recording head is measured by a magnetic sensor, and the main magnetic pole is calculated from the rate of change in magnetic field strength in the normal direction of the air bearing surface of the magnetic head slider.
  • a manufacturing method is disclosed in which a slider slant polishing process is performed based on an accurate flare point height by estimating a flare point height of the read element and measuring a read element height from an actual measurement of a resistance value of the read element. .
  • an object of the present invention is to provide a technique for obtaining the flare point height of the main pole of a perpendicular magnetic recording head with higher accuracy in a non-destructive manner.
  • the flare point height measuring method of the perpendicular magnetic recording head includes a main magnetic pole having a shape narrowed toward the air bearing surface, and an auxiliary magnetic pole and a yoke inside the head.
  • a method for obtaining a flare point height of a perpendicular magnetic recording head comprising a return magnetic pole forming a magnetic circuit and a coil surrounding the magnetic circuit, wherein an electric signal is applied to the coil so as to face the vicinity of the main magnetic pole.
  • the arranged magnetic sensor is scanned, and the flare point height is obtained from the characteristics of the magnetic field intensity distribution in the vicinity of the main magnetic pole calculated from the intensity ratio between the applied electric signal and the signal obtained as the output of the magnetic sensor.
  • the flare point height measuring method is based on the characteristics of the magnetic field intensity distribution in the vicinity of the main magnetic pole calculated from the intensity ratio of the applied electric signal and the signal obtained as the output of the magnetic sensor. The distance from the main magnetic pole to the magnetic sensor is obtained, and the flare point height is obtained from the value of the magnetic field strength with respect to the position of the magnetic sensor.
  • the flare point height measurement method is the highest from the two-dimensional magnetic field strength distribution in a plane parallel to the air bearing surface of the perpendicular magnetic recording head to be measured.
  • the position where the intensity is obtained is specified, and then the positive peak value and the negative peak value of the one-dimensional magnetic field profile obtained by scanning the magnetic sensor in the down track direction of the perpendicular magnetic recording head including the position are obtained.
  • the distance from the main magnetic pole to the magnetic sensor is obtained from the obtained position interval.
  • the flare point height of the main magnetic pole of the perpendicular magnetic recording head can be obtained nondestructively and with higher accuracy.
  • FIG. 1 It is a schematic diagram which shows arrangement
  • FIG. 2 is a schematic diagram showing a magnetic head slider and a schematic diagram showing directions of orthogonal coordinate axes. It is a figure which shows the difference by the distance from a main magnetic pole to a magnetic sensor of the change of the magnetic field intensity with respect to the value of flare point height.
  • the perpendicular magnetic recording head 30 has a magnetic head element portion in which a reproducing head 31 and a recording head 35 are laminated on the element forming surface of a slider (see FIGS. 5 to 8).
  • the reproducing head 31 is configured by sandwiching a reproducing element 32 such as a GMR or TMR element between a lower magnetic shield 33 and an upper magnetic shield 34.
  • the recording head 35 includes a recording element (main magnetic pole) 36, a return magnetic pole 37, a rear magnetic pole 38, and a conductor coil 39.
  • a magnetic field is applied to the recording layer 41 sandwiched between the soft magnetic backing layer 42 and the main magnetic pole 36 of the double-layer recording medium 40, and the magnetic material of the recording layer 41 is magnetized 44 in a direction perpendicular to the disk surface.
  • This is a magnetic recording method for recording information.
  • FIG. 3 shows a schematic configuration of the perpendicular magnetic recording head element section.
  • the main magnetic pole 36 of the recording head 35 has a shape that is narrowed down toward the air bearing surface.
  • the portion of the change point that connects the main magnetic pole 36 to the parallel portion of the main magnetic pole from the fan-shaped portion (flare) is called a flare point, and the height H from the air bearing surface to the flare point is flare. This is called point height.
  • point height As shown in the relationship diagram of the recording magnetic field strength and the flare point height H in FIG. 4, in order to obtain a large recording magnetic field, it is necessary to make the flare point height H as short as possible. However, if the height dimension is too short, the writing of the recording is blurred. If the height dimension is too long, post-recording erasure occurs due to residual magnetization, so that very high accuracy is required.
  • the height L of the reproducing element 32 is of course required to have high dimensional accuracy.
  • a large number of magnetic head elements are formed in a lattice pattern on a wafer substrate by a process similar to a semiconductor photolithography process.
  • the air bearing surface of the magnetic head slider is formed as a cross section of the substrate and the element layer, and the element dimensions, air bearing surface flatness and smoothness are defined by polishing. Then, it is cut out from the wafer 1 in the shape of a bar-shaped work-in-process 2 in which several tens of sliders are connected (301).
  • the air bearing surface of the magnetic head slider is formed by polishing in the state of the row bar 2, and the polishing process is a first step, in which the material of the air bearing surface is made of relatively large abrasive grains. Is removed by a thickness of about several ⁇ m, and rough processing (302) for roughly aligning the flare point height dimensions of the reproducing element and the recording element within the row bar is performed, and then, as a second step, a relatively small particle size is obtained. With small abrasive grains, the material of the air bearing surface is removed by several tens of nanometers to keep the flatness and smoothness of the slider air bearing surface within the specifications, and the flare point height of each reproducing element and recording element is precisely aligned. It is divided into two steps of finishing (303).
  • the positional deviation between the reproducing element 32 and the recording element 36 generated in the process of forming the element on the wafer substrate causes the removal of material from the reproducing element 32 and the recording element 36 by tilting the polishing surface in the polishing process. It is corrected by adjusting, and the method of finishing the dimensions of both elements at the same time with high precision at the end of polishing is taken. At this time, the material removal amount in the latter finishing step (303) is about several tens of nm. Since the amount of misalignment that can be corrected during this period is 1 nm or less because it is very small, the correction of the element size due to the inclination of the polishing surface is mainly performed in the first roughing step (302). .
  • the finishing process makes the flatness, smoothness,
  • the row bar whose dimensions of both the reproducing and recording elements are adjusted is then sent to the air bearing surface groove shape forming step (305).
  • the air bearing surface groove shape forming step (305) first, a protective film made of a high-hardness thin film for protecting the element portion is formed on the slider air bearing surface, and then a magnetic storage disk device is formed on the slider air bearing surface by photolithography and etching processes. A groove shape is formed to stabilize the slider flying state during operation.
  • the sliders having the groove shape formed on the air bearing surface are finally separated from the row bar 2 one by one, and become the magnetic head slider 3 of the product.
  • the tilting process is performed in the row bar state and the finishing process is performed in the row bar state.
  • the tilt process is performed in the row bar state as shown in FIG.
  • the tilting process may be performed by a single item slider, and the finishing process may be performed by a single item slider.
  • the recording element 36 of the recording head 35 does not have a structure in which an electric current is passed through a portion of the element structure that has a dimension that requires high accuracy, that is, a portion that forms the flare point height H.
  • a portion that forms the flare point height H In general, near the end of the slider manufacturing process, that is, the slider is attached to the suspension, and the magnetic recording medium is actually used. On the other hand, the quality cannot be determined until the magnetic characteristics are measured in the inspection process for recording and reproducing signals.
  • an X axis, a Y axis, and a Z axis orthogonal to each other are defined.
  • the Z axis is the normal direction of the slider flying surface
  • the Y axis is the direction along the track of the magnetic recording medium (down track direction)
  • the X axis is the direction perpendicular to the track of the magnetic recording medium (cross track direction).
  • Fig. 9 shows the calculation result of the change in the magnetic field intensity emitted from the main pole with different flare point heights with respect to the distance in the Z direction from the air bearing surface to the magnetic sensor.
  • the calculation is based on the intersection of perpendicular lines from the center of the main pole to the magnetic film surface when the magnetic film imitating the soft magnetic layer of the perpendicular magnetic recording medium is opposed to the main magnetic pole and the magnetic film is gradually moved away from the air bearing surface.
  • the magnetic field intensity at is calculated.
  • the magnetic field intensity decays exponentially with respect to the distance from the air bearing surface, but when the distance from the air bearing surface is the same, the shorter flare point height is.
  • the high magnetic field strength is as described in the explanation using FIG.
  • the flare point height can be estimated.
  • accurate direct measurement of this distance is very difficult. Therefore, if the distance can be estimated from the spatial distribution of the measured recording magnetic field strength, the above estimation can be performed. The method is shown below.
  • FIG. 10 shows a one-dimensional magnetic field profile in the down-track direction including the central portion of the main magnetic pole on the air bearing surface (the point at which the XY plane distribution of the recording magnetic field intensity is maximized). ) Shows the results measured on the plane. 10A shows the case where the Z direction displacement is ⁇ 0.6 ⁇ m, and FIG. 10B shows the case where the Z direction displacement is 0 ⁇ m. At each measurement position, the positive peak value of the one-dimensional magnetic field profile corresponds to the magnetic field strength near the main magnetic pole, and the negative peak value corresponds to the magnetic field strength near the return magnetic pole.
  • the position of the positive peak value and the negative peak value in the one-dimensional magnetic field profile in the down-track direction moves, and the peak position interval changes.
  • the lines of magnetic force generated from the main pole by passing a current through the coil are directed to the return pole to form a spatially widened loop as shown in FIG. This is because it changes along the distance from the magnetic sensor to the magnetic sensor.
  • the intensity of the one-dimensional magnetic field profile is different because the magnetic field intensity is exponentially attenuated with respect to the distance from the air bearing surface.
  • FIG. 11 shows the result of calculating the relationship between the peak position interval and the distance in the Z direction from the air bearing surface by simulation. It can be seen from the graph that the peak position interval decreases as the magnetic sensor approaches the air bearing surface. It can also be seen that even if the flare point height changes, the relationship between the peak position interval and the Z-direction distance from the air bearing surface has little effect. Therefore, the distance in the Z direction from the air bearing surface can be uniquely determined by measuring the peak position interval in the one-dimensional magnetic field profile.
  • the flare point height of each sample is accurately measured by the measurement method and the relationship between the flare point height and the magnetic field strength is prepared as a database, the magnetic field strength of a new magnetic head sample can be measured thereafter.
  • the flare point height of the sample can be estimated nondestructively.
  • the above measurement is based on the premise that the measurement point is gradually separated in the Z direction from the vicinity of the air bearing surface, starting from the point where the magnetic field strength is maximum in the XY plane.
  • a raster scan of the measurement point in the X direction or the Y direction is performed in the immediate vicinity of the air bearing surface, and the measurement value is determined as the maximum position.
  • the method for measuring the main magnetic pole flare point height of the perpendicular magnetic recording head is as follows. (1) The magnetic sensor is brought close to the air bearing surface, and the measurement point is raster scanned in the X direction or the Y direction to determine the point where the measurement value is maximized, and set it as the main magnetic pole center. (2) The magnetic sensor is scanned about 30 microns in the down track direction including the center point, and the one-dimensional magnetic field profile is measured. (3) The measurement of the one-dimensional magnetic field profile is repeated while gradually moving the magnetic sensor along the Z direction, and the positive peak value and the negative value in the measured one-dimensional magnetic field profile in the down-track direction with respect to the displacement in the Z direction are measured.
  • the change of the interval of the position where the peak value is obtained is obtained.
  • a positive or negative magnetic field strength peak value is plotted against the interval between positions where a positive peak value and a negative peak value are obtained in the measured one-dimensional magnetic field profile in the down-track direction. Obtain the value of the magnetic field strength at the interval.
  • the magnetic field strength value at a certain reference peak position interval obtained in (4) above is compared with a separately prepared database of samples with known flare point heights, and the flare point of the sample is compared. Estimate the height.
  • the magnetic sensor has various types such as an induction coil, a Hall effect element, a magnetoresistive effect element (AMR, GMR, TMR, etc.). It does not affect the essence of the present invention. Therefore, here, an embodiment will be described in which a magnetoresistive effect element mounted as a reproducing element on a magnetic head slider is used as a magnetic sensor.
  • a magnetoresistive element is an element whose electric resistance changes in accordance with a change in the intensity of an external magnetic field, and has a certain size (width: several tens of nm ⁇ height: several tens of nm ⁇ thickness: Therefore, the information on the resistance value obtained by the measurement does not represent the distribution of the recording magnetic field itself generated by the electric signal input to the coil 39 of the recording head 35, but the size of the magnetoresistive element.
  • the sample of the target sample is compared with a separately prepared database of samples with known flare point heights. Since it is assumed that the size is estimated, measurement using a magnetoresistive element having a finite size may be performed.
  • FIG. 14 shows a configuration diagram of the apparatus used for the measurement.
  • the magnetoresistive element used as a magnetic sensor for measurement is a magnetic head slider for a magnetic disk storage device fixed to a sensor holding jig attached to a fine movement stage having a three-dimensional translational freedom degree, and the magnetic head terminal portion is fixed to the holding jig.
  • the terminal placed above was wire-bonded.
  • the magnetic head slider with the recording element to be measured is the one where the row bar after polishing is fixed to the row bar holding jig attached to the fixed base, and the magnetic head terminal is wire bonded to the terminal placed on the holding jig Was used.
  • An arrangement of a magnetic head slider provided with a recording element to be measured and a magnetic head slider provided with a magnetoresistive effect element serving as a magnetic sensor is shown in FIG. 1 as a schematic diagram.
  • the measurement is performed by inputting an electric signal of a sine high frequency with a constant effective voltage to the target recording head, and an output voltage generated as a sine high frequency of the same frequency as the input sine high frequency in a magnetoresistive effect element arranged in the immediate vicinity of the recording element. This is done by recording the ratio of the intensity to the input signal and the phase difference.
  • a magnetoresistive element measures a change in resistance value of an element that changes in accordance with an external magnetic field as a voltage generated at both ends of the element in a state where a constant sense current is passed through the element.
  • the change in the output of the magnetoresistive effect element when the magnetoresistive effect element, which is a magnetic sensor, is slightly displaced three-dimensionally relative to the recording element to be measured is the change of the element described above. This corresponds to the distribution of the magnetic field strength in the vicinity of the recording element including the effect of a finite size.
  • the three-dimensional minute displacement of the magnetic sensor in Example 1 was controlled with a three-axis piezo stage that can be positioned with a resolution of 1 nm in each of the X, Y, and Z directions. Any actuator and stage that can accurately position with a resolution of 1 nm or less can be used.
  • the recording head 35 forms a magnetic circuit in the order of the main magnetic pole 36, the medium recording layer 41, the medium soft magnetic backing layer 42, the medium recording layer 41, the return magnetic pole 37, and the rear magnetic pole 38. Therefore, the direction of the magnetic field is reversed between the vicinity of the main magnetic pole and the vicinity of the return magnetic pole. Therefore, in order to facilitate the detection of the main magnetic pole center in the vicinity of the main magnetic pole, the phase is simultaneously measured in addition to the output ratio. This is because if the direction of the magnetic field is reversed, the phase of the output signal is also shifted by 180 degrees, so that the magnetic field distribution near the main magnetic pole and the magnetic field distribution near the return magnetic pole can be easily distinguished.
  • the magnetoresistive effect element measured in a state in which a constant current sense current is passed through a magnetoresistive effect element which is a magnetic sensor arranged in the vicinity of the recording element and a sine high frequency signal having a constant effective voltage applied to the recording head to be measured
  • the measurement of the intensity ratio of the voltage output signal and the phase difference was performed by a vector network analyzer capable of measuring both of them simultaneously.
  • FIG. 12 shows a plot of the measurement results obtained by measurement, with the horizontal axis representing the Z-direction displacement and the vertical axis representing the peak position interval. It is observed that the peak position interval decreases as the slider approaches the Z direction.
  • the reason why the peak position interval is constant after being reduced to a certain value is that the magnetic head slider, which is a magnetic sensor, and the magnetic head row bar to be measured are in physical contact with each other and cannot be approached any further. is there.
  • FIG. 13 is a graph of magnetic field strength and flare point height at a distance where a peak position interval of 4 ⁇ m is obtained, and is a result of measurement for a plurality of samples having different flare point heights in the row bar. It was confirmed that there was a significant correlation between them. That is, for a certain reference peak position interval, the recording magnetic field intensity at that distance is uniquely determined with respect to the flare point height of each sample. Therefore, it was confirmed that the flare point height can be estimated from the recording magnetic field intensity measured by the sensor by using this method.
  • the main magnetic pole flare point height of the perpendicular magnetic recording head can be measured more accurately in a non-destructive manner.
  • the flare point height is estimated using the main magnetic pole flare point height measurement method of the perpendicular magnetic recording head, and on the other hand, by measuring the reproducing element height from the actual measurement of the resistance value of the reproducing element.
  • an accurate flare point is calculated in the slider process. The slider slant polishing process based on the height can be performed, and the slider manufacturing yield is improved.
  • the main magnetic pole flare point height measurement method of the perpendicular magnetic recording head of the present invention can be applied to the inspection and manufacture of a perpendicular magnetic recording head mounted on a magnetic storage disk device.

Abstract

When measuring a magnetic field intensity change rate in order to estimate flare point height, measurement noise, etc., can obscure the difference in the rate of signal intensity change caused by the flare point dimensions, resulting in poor S/N ratios, making it difficult to estimate flare point height. By preparing samples having various flare points, and measuring magnetic field intensity at measurement points at which peak position spacing of a given standard can be obtained for each sample, accurately measuring flare point height in each of these samples using destructive measurement methods such as FIB and etching and preparing a database of the relationships between these flare point heights and magnetic field intensities, it is subsequently possible to estimate flare point height in that sample in a non-destructive manner by measuring the magnetic field intensity in the peak position spacing that becomes the new magnetic head sample standard and referring to the aforementioned database.

Description

垂直磁気記録ヘッドのフレアポイントハイト測定方法Flare point height measurement method for perpendicular magnetic recording head
 本発明は、磁気ディスク装置等の磁気記録装置に搭載される磁気ヘッドスライダ、特に垂直磁気記録ヘッドの主磁極フレアポイントハイトの測定方法に関する。 The present invention relates to a method for measuring a main magnetic pole flare point height of a magnetic head slider mounted on a magnetic recording device such as a magnetic disk device, in particular, a perpendicular magnetic recording head.
 近年、磁気ディスク記憶装置(HDD:Hard Disk Drive)は、取扱情報量の増大に伴って高記録密度化が急速に進展している。この傾向の中でより一層の性能向上の実現するために、2005年、垂直磁気記録方式が実用化された。垂直磁気記録方式は、磁気データをディスク面に対して垂直に配置するため、従来の面内磁気記録方式に比べ、微細な記録磁化が熱的に安定となる特徴を持つ。 In recent years, the recording density of magnetic disk storage devices (HDD: Hard Disk Drive) has been rapidly increasing as the amount of information handled increases. In order to realize further improvement in performance in this trend, a perpendicular magnetic recording system was put into practical use in 2005. The perpendicular magnetic recording system has a feature that fine recording magnetization is thermally stable compared to the conventional in-plane magnetic recording system because magnetic data is arranged perpendicular to the disk surface.
 面内記録方式では、記録素子の磁極の高さに対し、それほど厳しい精度は求められない。しかし、垂直記録方式では、磁極の高さが記録磁化分布に大きな影響を及ぼすため、非常に高い精度が求められる。一方で、再生素子の高さは、垂直記録方式においても、面内記録方式と変わらず、高い寸法精度が求められ、こちらの精度も同時に満足させなければならない。 In the in-plane recording method, a very strict accuracy is not required for the height of the magnetic pole of the recording element. However, in the perpendicular recording system, since the height of the magnetic pole greatly affects the recording magnetization distribution, very high accuracy is required. On the other hand, the height of the reproducing element is not different from that in the in-plane recording method even in the perpendicular recording method, and high dimensional accuracy is required, and this accuracy must be satisfied at the same time.
 これらの寸法は、磁気ヘッドスライダの浮上面を研磨加工する際に、各素子が適切な寸法となるまで加工が進んだところで研磨加工を停止することで形成される。その際、再生素子に関しては、素子近傍に形成したガイド抵抗に電流を流してその抵抗値からガイド抵抗の寸法を算出し、実再生素子の高さの推定値としているが、記録素子に関しては、素子構造物中、高い精度が必要な寸法をなす部分には電流を流す構造にはなっておらず、また、ガイド抵抗も、フレアポイントに合わせた形状に形成することが非常に困難である。さらに、フレアポイントハイトの寸法については、(1)膜の形成方向に数μm離れた記録素子と再生素子、両素子の形成時の露光の合わせ精度、(2)露光されたパタンに基づいて素子を形成する際のミリング精度、(3)スライダプロセスにおけるロウバー切り出しおよび浮上面ラップ時の膜面に対する浮上面の直角度、(4)再生素子高さ基準で浮上面加工を行う際の再生素子高さ加工寸法のばらつきなどの要因から、フレアポイントハイトは大きくばらついてしまう。 These dimensions are formed by stopping the polishing process when the processing progresses until each element has an appropriate dimension when polishing the air bearing surface of the magnetic head slider. At that time, with respect to the reproducing element, a current is passed through the guide resistor formed in the vicinity of the element, and the size of the guide resistor is calculated from the resistance value to obtain an estimated height of the actual reproducing element. The element structure does not have a structure in which a current flows in a portion having a dimension that requires high accuracy, and it is very difficult to form a guide resistor in a shape that matches the flare point. Further, regarding the dimensions of the flare point height, (1) the recording element and the reproducing element separated by several μm in the film formation direction, the alignment accuracy of exposure when forming both elements, and (2) the element based on the exposed pattern (3) The perpendicularity of the air bearing surface with respect to the film surface during row bar cutting and air bearing surface lapping in the slider process, (4) The reproducing element height when processing the air bearing surface based on the reproducing element height reference The flare point height varies greatly due to factors such as variations in machining dimensions.
 ウェハ上に再生素子と記録素子を形成する際に生じる露光の合わせずれ、および露光されたパタンに基づいて素子を形成する際のミリング精度などをあわせた、ウェハ工程起因の再生素子と記録素子の位置ずれは、浮上研磨加工の際にスライダを傾斜させて、再生素子と記録素子それぞれが適切な寸法になるように余分な材料を除去することによって補正することができる。しかしこの位置ずれを正しく補正するためには、加工中の再生素子寸法、記録素子フレアポイントハイトの両者を正しく把握していなければならない。 Combined exposure misalignment that occurs when the reproducing element and recording element are formed on the wafer, and milling accuracy when forming the element based on the exposed pattern. The misalignment can be corrected by tilting the slider during the floating polishing process and removing excess material so that the reproducing element and the recording element have appropriate dimensions. However, in order to correct this misalignment correctly, it is necessary to correctly grasp both the size of the reproducing element being processed and the recording element flare point height.
 ガイド抵抗などによらず、記録素子の状態について検査を行う方法として、例えば、特許文献1に提案されているように、検査対象の磁気ヘッドスライダ浮上面に擬似的な垂直磁気記録媒体を形成し、そこへ当該の磁気ヘッドスライダの記録素子から垂直磁気記録を行い、その記録状態を磁気光学効果または磁気力顕微鏡によって読み取ることで記録素子の磁区構造などを推定し、磁気ヘッドの良否を判断する方法などがあるが、素子の寸法までは推定することができず、また媒体を介しているため、観察測定の結果はその媒体の媒体ごとの特性のばらつきにも依存する。 As a method for inspecting the state of the recording element regardless of the guide resistance or the like, for example, as proposed in Patent Document 1, a pseudo perpendicular magnetic recording medium is formed on the air bearing surface of the magnetic head slider to be inspected. Then, perpendicular magnetic recording is performed from the recording element of the magnetic head slider, and the recording state is read by a magneto-optical effect or a magnetic force microscope to estimate the magnetic domain structure of the recording element and judge the quality of the magnetic head. Although there is a method, the size of the element cannot be estimated, and since the measurement is performed via the medium, the result of the observation measurement depends on the characteristic variation of the medium for each medium.
 また非特許文献1には、別途用意した媒体に記録された情報を、別な磁気記録再生素子によって測定し可視化する方法が示されているが、この場合も、素子寸法の推定は想定しておらず、また測定には媒体を介しているため、測定結果は媒体に依存する。 Non-Patent Document 1 discloses a method of measuring and visualizing information recorded on a separately prepared medium by using another magnetic recording / reproducing element. In this case as well, the estimation of the element size is assumed. In addition, since the measurement is performed via the medium, the measurement result depends on the medium.
特開2006-309836号公報JP 2006-309836 A 特開2010-3332号公報JP 2010-3332 A
 上述した問題を解決する手段として、上記特許文献2は、垂直磁気記録ヘッドの主磁極近傍の磁界強度を磁気センサにより測定し、磁気ヘッドスライダ浮上面の法線方向の磁界強度変化率から主磁極のフレアポイントハイトを推定し、また一方、再生素子の抵抗値の実測から再生素子高さを測定することにより、正確なフレアポイントハイトに基づいたスライダ傾斜研磨加工を行う製造方法を開示している。 As means for solving the above-mentioned problem, Patent Document 2 discloses that the magnetic field intensity in the vicinity of the main magnetic pole of the perpendicular magnetic recording head is measured by a magnetic sensor, and the main magnetic pole is calculated from the rate of change in magnetic field strength in the normal direction of the air bearing surface of the magnetic head slider. A manufacturing method is disclosed in which a slider slant polishing process is performed based on an accurate flare point height by estimating a flare point height of the read element and measuring a read element height from an actual measurement of a resistance value of the read element. .
 しかし、特許文献2に記載の方法に従い、フレアポイントハイト推定のための磁界強度変化率測定を行うと、フレアポイントハイト寸法による信号強度変化率の差が測定ノイズ等に埋もれてしまいSN比が上がらず、フレアポイントハイトの推定を行うことが困難である。 However, when the magnetic field strength change rate measurement for flare point height estimation is performed according to the method described in Patent Document 2, the difference in signal strength change rate due to the flare point height dimension is buried in measurement noise and the S / N ratio is increased. Therefore, it is difficult to estimate the flare point height.
 そのため、本発明の目的は、垂直磁気記録ヘッドの主磁極のフレアポイントハイトを、非破壊的に、より高精度に求める技術を提供することである。 Therefore, an object of the present invention is to provide a technique for obtaining the flare point height of the main pole of a perpendicular magnetic recording head with higher accuracy in a non-destructive manner.
 このような課題を解決するために、本発明の垂直磁気記録ヘッドのフレアポイントハイト測定方法は、浮上面に向かって絞り込まれた形状を有する主磁極と、ヘッド内部で補助磁極およびヨークを介して磁気回路を形成する戻り磁極と、前記磁気回路を取り囲むコイルからなる垂直磁気記録ヘッドのフレアポイントハイトを求める方法であって、前記コイルに電気信号を印加し、前記主磁極近傍に対向するように配置した磁気センサを走査し、印加した電気信号と前記磁気センサの出力として得られる信号の強度比から算出される前記主磁極近傍の磁界強度分布の特性から、フレアポイントハイトを求めるものである。 In order to solve such a problem, the flare point height measuring method of the perpendicular magnetic recording head according to the present invention includes a main magnetic pole having a shape narrowed toward the air bearing surface, and an auxiliary magnetic pole and a yoke inside the head. A method for obtaining a flare point height of a perpendicular magnetic recording head comprising a return magnetic pole forming a magnetic circuit and a coil surrounding the magnetic circuit, wherein an electric signal is applied to the coil so as to face the vicinity of the main magnetic pole. The arranged magnetic sensor is scanned, and the flare point height is obtained from the characteristics of the magnetic field intensity distribution in the vicinity of the main magnetic pole calculated from the intensity ratio between the applied electric signal and the signal obtained as the output of the magnetic sensor.
 また、本発明の好ましい様態として、前記フレアポイントハイトの測定方法は、印加した電気信号と前記磁気センサの出力として得られる信号の強度比から算出される前記主磁極近傍の磁界強度分布の特性から、前記主磁極から前記磁気センサまでの距離を求め、前記磁気センサの位置に対する磁界強度の値からフレアポイントハイトを求めるものである。 Further, as a preferred aspect of the present invention, the flare point height measuring method is based on the characteristics of the magnetic field intensity distribution in the vicinity of the main magnetic pole calculated from the intensity ratio of the applied electric signal and the signal obtained as the output of the magnetic sensor. The distance from the main magnetic pole to the magnetic sensor is obtained, and the flare point height is obtained from the value of the magnetic field strength with respect to the position of the magnetic sensor.
 また、本発明の好ましい様態として、前記フレアポイントハイトの測定方法は、まず、被測定物となる前記垂直磁気記録ヘッドの浮上面に平行な平面内の二次元的な磁界強度分布から、最も高い強度が得られる位置を特定し、次に、その位置を含む前記垂直磁気記録ヘッドのダウントラック方向に磁気センサを走査することで得られる一次元磁界プロファイルの正のピーク値と負のピーク値が得られる位置の間隔から、前記主磁極から前記磁気センサまでの距離を求めるものである。 Further, as a preferred aspect of the present invention, the flare point height measurement method is the highest from the two-dimensional magnetic field strength distribution in a plane parallel to the air bearing surface of the perpendicular magnetic recording head to be measured. The position where the intensity is obtained is specified, and then the positive peak value and the negative peak value of the one-dimensional magnetic field profile obtained by scanning the magnetic sensor in the down track direction of the perpendicular magnetic recording head including the position are obtained. The distance from the main magnetic pole to the magnetic sensor is obtained from the obtained position interval.
 本発明によれば、垂直磁気記録ヘッドの主磁極のフレアポイントハイトを、非破壊的に、より高精度に求めることができる。 According to the present invention, the flare point height of the main magnetic pole of the perpendicular magnetic recording head can be obtained nondestructively and with higher accuracy.
本発明の実施例による主磁極周辺の磁界強度出力を測定する磁気センサに磁気ヘッド内の磁気抵抗効果素子を用いた場合の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning at the time of using the magnetoresistive effect element in a magnetic head for the magnetic sensor which measures the magnetic field strength output around the main pole by the Example of this invention. 垂直磁気記録ヘッドの構成と動作概念を示す図である。It is a figure which shows the structure and operation | movement concept of a perpendicular magnetic recording head. 垂直磁気記録ヘッド素子部の構成図である。It is a block diagram of a perpendicular magnetic recording head element part. 垂直磁気記録ヘッドの記録磁界強度と記録素子のフレアポイントハイトとの関係を示す図である。It is a figure which shows the relationship between the recording magnetic field strength of a perpendicular magnetic recording head, and the flare point height of a recording element. 本発明によるフレアポイントハイトの測定方法を適用する対象のロウバー傾斜加工、およびロウバー仕上げ加工を含む磁気ヘッド加工プロセスを示す図である。It is a figure which shows the magnetic head processing process including the row bar inclination process of the object to which the measuring method of flare point height by this invention is applied, and a row bar finishing process. 本発明によるフレアポイントハイトの測定方法を適用する対象の、ロウバー傾斜加工、および単品スライダ仕上げ加工を含む磁気ヘッド加工プロセスを示す図である。It is a figure which shows the magnetic head process including the row bar inclination process and the single-piece slider finishing process of the object to which the flare point height measuring method according to the present invention is applied. 本発明によるフレアポイントハイトの測定方法を適用する対象の、単品スライダ傾斜加工、および単品スライダ仕上げ加工を含む磁気ヘッド加工プロセスを示す図である。It is a figure which shows the magnetic head processing process including the single-piece slider inclination process and the single-piece slider finishing process of the object to which the flare point height measuring method according to the present invention is applied. 磁気ヘッドスライダの模式図および、直交座標軸の方向を示す模式図である。FIG. 2 is a schematic diagram showing a magnetic head slider and a schematic diagram showing directions of orthogonal coordinate axes. フレアポイントハイトの値に対する磁界強度の変化の、主磁極から磁気センサまでの距離による違いを示す図である。It is a figure which shows the difference by the distance from a main magnetic pole to a magnetic sensor of the change of the magnetic field intensity with respect to the value of flare point height. 主磁極から磁気センサまでの距離が異なる場合の、浮上面上の主磁極中心部を含むダウントラック方向の一次元磁界プロファイルのピーク位置の間隔の違いを示す図である。(a)はZ方向変位が-0.6μmの場合、(b)はZ方向変位が0μmの場合である。It is a figure which shows the difference in the space | interval of the peak position of the one-dimensional magnetic field profile of a down track direction containing the main-magnetic-pole center part on an air bearing surface in case the distance from a main pole to a magnetic sensor differs. (A) shows the case where the displacement in the Z direction is −0.6 μm, and (b) shows the case where the displacement in the Z direction is 0 μm. フレアポイントハイトが異なる3通りのサンプルについて、主磁極から磁気センサまでの距離に対する一次元磁界プロファイルのピーク位置間隔の変化を示す図である。It is a figure which shows the change of the peak position space | interval of the one-dimensional magnetic field profile with respect to the distance from a main pole to a magnetic sensor about three types of samples from which flare point height differs. フレアポイントハイトが異なる5通りのサンプルについて、Z方向の距離を徐々に変えた場合の一次元磁界プロファイルのピーク位置間隔の変化を示す図である。It is a figure which shows the change of the peak position space | interval of the one-dimensional magnetic field profile when the distance of a Z direction is changed gradually about five types of samples from which flare point height differs. ピーク位置間隔4μmが得られる距離における磁界強度とフレアポイントハイト相関を示す図である。It is a figure which shows the magnetic field intensity and flare point height correlation in the distance where the peak position space | interval of 4 micrometers is obtained. 実施例によるフレアポイントハイトの測定方法を実施するための装置構成の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus structure for enforcing the measuring method of the flare point height by an Example. 主磁極から戻り磁極に向かって形成される磁力線ループの空間的な広がりを示す図である。It is a figure which shows the spatial expansion of the magnetic field line loop formed toward a return magnetic pole from a main magnetic pole.
 本発明の実施例を説明する前に、理解を容易にするために、まず、磁気ヘッドスライダ(垂直磁気記録ヘッド)の構成と動作概念、ならびに一般的な磁気ヘッドスライダ製造プロセスを説明する。
  図2に示されるように、垂直磁気記録ヘッド30はスライダ(図5~8参照)の素子形成面に再生ヘッド31と記録ヘッド35が積層された磁気ヘッド素子部を有する。再生ヘッド31はGMRやTMR素子等の再生素子32を下部磁気シールド33と上部磁気シールド34で挟んで構成される。記録ヘッド35は記録素子(主磁極)36と、戻り磁極37と、後部磁極38と、導体コイル39で構成される。垂直磁気記録は、二層記録メディア40の軟磁性裏打ち層42と主磁極36で挟まれた記録層41に磁界を印加して、記録層41の磁性体をディスク面に垂直な方向に磁化44することで情報を記録する磁気記録方式である。
Before describing the embodiments of the present invention, in order to facilitate understanding, first, the configuration and operation concept of a magnetic head slider (perpendicular magnetic recording head) and a general magnetic head slider manufacturing process will be described.
As shown in FIG. 2, the perpendicular magnetic recording head 30 has a magnetic head element portion in which a reproducing head 31 and a recording head 35 are laminated on the element forming surface of a slider (see FIGS. 5 to 8). The reproducing head 31 is configured by sandwiching a reproducing element 32 such as a GMR or TMR element between a lower magnetic shield 33 and an upper magnetic shield 34. The recording head 35 includes a recording element (main magnetic pole) 36, a return magnetic pole 37, a rear magnetic pole 38, and a conductor coil 39. In perpendicular magnetic recording, a magnetic field is applied to the recording layer 41 sandwiched between the soft magnetic backing layer 42 and the main magnetic pole 36 of the double-layer recording medium 40, and the magnetic material of the recording layer 41 is magnetized 44 in a direction perpendicular to the disk surface. This is a magnetic recording method for recording information.
 図3に、垂直磁気記録ヘッド素子部の概略構成を示す。記録ヘッド35の主磁極36は、浮上面に向かって絞り込まれた形状を有する。主磁極36が扇状の形状になっている部分(フレア)から、主磁極の平行部へとつながる変化点の部分をフレアポイントと称し、磁気ヘッド浮上面から前記フレアポイントまでの高さHをフレアポイントハイトと称する。ここで図4の、記録磁界強度とフレアポイントハイトHの関係図に示すように、大きな記録磁界を得るためには、フレアポイントハイトHをできるだけ短くする必要がある。しかし、この高さ寸法が短すぎると記録の書きにじみが生じ、長すぎると、残留磁化による記録後消去が発生してしまうので、非常に高い精度が要求される。その一方で、従来方式の面内磁気記録と同様、再生素子32の高さLももちろん高い寸法精度が要求される。 FIG. 3 shows a schematic configuration of the perpendicular magnetic recording head element section. The main magnetic pole 36 of the recording head 35 has a shape that is narrowed down toward the air bearing surface. The portion of the change point that connects the main magnetic pole 36 to the parallel portion of the main magnetic pole from the fan-shaped portion (flare) is called a flare point, and the height H from the air bearing surface to the flare point is flare. This is called point height. Here, as shown in the relationship diagram of the recording magnetic field strength and the flare point height H in FIG. 4, in order to obtain a large recording magnetic field, it is necessary to make the flare point height H as short as possible. However, if the height dimension is too short, the writing of the recording is blurred. If the height dimension is too long, post-recording erasure occurs due to residual magnetization, so that very high accuracy is required. On the other hand, like the conventional longitudinal magnetic recording, the height L of the reproducing element 32 is of course required to have high dimensional accuracy.
 次に、図5を参照して、磁気ヘッドスライダ製造プロセスの基本的な工程を説明する。
磁気ヘッドの素子はまず、半導体のフォトリソグラフィ工程と同様の工程によって、ウェハ基板上に格子状に多数形成される。磁気ヘッドスライダの浮上面は、前記基板および素子層の断面として形成され、研磨加工によって素子寸法および浮上面平面度、平滑度を規定するため、効率よく生産を行う目的で、一旦、ロウバーと呼ばれる、スライダが数十個つながったバー状の仕掛品2の形状でウェハ1より切り出す(301)。
Next, basic steps of the magnetic head slider manufacturing process will be described with reference to FIG.
First, a large number of magnetic head elements are formed in a lattice pattern on a wafer substrate by a process similar to a semiconductor photolithography process. The air bearing surface of the magnetic head slider is formed as a cross section of the substrate and the element layer, and the element dimensions, air bearing surface flatness and smoothness are defined by polishing. Then, it is cut out from the wafer 1 in the shape of a bar-shaped work-in-process 2 in which several tens of sliders are connected (301).
 次に前記ロウバー2の状態で、磁気ヘッドスライダの浮上面を研磨加工にて形成するが、研磨加工工程は、さらに一つ目の工程として、比較的粒径の大きい砥粒で浮上面の材料を厚さ数μm程度除去し、ロウバー内に数十ある再生素子と記録素子のフレアポイントハイト寸法をそれぞれ大まかに揃える粗加工(302)と、その後、二つ目の工程として比較的粒径の小さい砥粒で、さらに浮上面の材料を厚さ数十nm程度除去してスライダ浮上面の平面度、平滑度を仕様内に収め、かつ各再生素子、記録素子のフレアポイントハイトを精密に揃える仕上げ加工(303)の二つの工程に分けられる。 Next, the air bearing surface of the magnetic head slider is formed by polishing in the state of the row bar 2, and the polishing process is a first step, in which the material of the air bearing surface is made of relatively large abrasive grains. Is removed by a thickness of about several μm, and rough processing (302) for roughly aligning the flare point height dimensions of the reproducing element and the recording element within the row bar is performed, and then, as a second step, a relatively small particle size is obtained. With small abrasive grains, the material of the air bearing surface is removed by several tens of nanometers to keep the flatness and smoothness of the slider air bearing surface within the specifications, and the flare point height of each reproducing element and recording element is precisely aligned. It is divided into two steps of finishing (303).
 前記のウェハ基板上に素子を形成する工程において生じた再生素子32と記録素子36の位置ずれは、前記研磨加工工程において、研磨面を傾斜させて再生素子32と記録素子36の材料除去量を調整することで補正し、研磨終了時の両素子の寸法を同時に高精度に仕上げるという方法を取るが、この際、後半の仕上げ工程(303)での材料除去量は厚さ数十nm程度と非常に少ないため、この間に補正可能な位置ずれ量は1nm以下で事実上補正が不可能であるため、研磨面の傾斜による素子寸法の補正は、主に前半の粗加工工程(302)で行う。 The positional deviation between the reproducing element 32 and the recording element 36 generated in the process of forming the element on the wafer substrate causes the removal of material from the reproducing element 32 and the recording element 36 by tilting the polishing surface in the polishing process. It is corrected by adjusting, and the method of finishing the dimensions of both elements at the same time with high precision at the end of polishing is taken. At this time, the material removal amount in the latter finishing step (303) is about several tens of nm. Since the amount of misalignment that can be corrected during this period is 1 nm or less because it is very small, the correction of the element size due to the inclination of the polishing surface is mainly performed in the first roughing step (302). .
 前記粗加工(302)により再生素子寸法と記録素子フレアポイントハイトの位置ずれを補正し、かつロウバー内の寸法ばらつきをできる限り低減した後、前記仕上げ加工によりスライダ浮上面の平面度、平滑度、再生記録両素子の寸法を整えられたロウバーは、次に、浮上面溝形状形成工程(305)に送られる。 After correcting the positional deviation of the reproducing element dimension and the recording element flare point height by the roughing (302) and reducing the dimensional variation in the row bar as much as possible, the finishing process makes the flatness, smoothness, The row bar whose dimensions of both the reproducing and recording elements are adjusted is then sent to the air bearing surface groove shape forming step (305).
 浮上面溝形状形成工程(305)では、まずスライダ浮上面に素子部を保護するための高硬度薄膜による保護膜を形成し、しかる後にフォトリソグラフィおよびエッチング工程にてスライダ浮上面に磁気記憶ディスク装置動作時のスライダ浮上状態を安定化するための溝形状を形成する。 In the air bearing surface groove shape forming step (305), first, a protective film made of a high-hardness thin film for protecting the element portion is formed on the slider air bearing surface, and then a magnetic storage disk device is formed on the slider air bearing surface by photolithography and etching processes. A groove shape is formed to stabilize the slider flying state during operation.
 前記工程において、浮上面に溝形状を形成されたスライダは、最後にロウバー2よりひとつひとつに切り離され、製品の磁気ヘッドスライダ3となる。 In the above process, the sliders having the groove shape formed on the air bearing surface are finally separated from the row bar 2 one by one, and become the magnetic head slider 3 of the product.
 前記図5に沿った工程では、傾斜加工をロウバー状態で、仕上げ加工もロウバー状態で行うが、図6に示すように傾斜加工をロウバー状態で、仕上げ加工は単品スライダ状態で、あるいは図7に示すように、傾斜加工も単品スライダで、仕上げ加工も単品スライダで行うような工程としてもよい。 In the process shown in FIG. 5, the tilting process is performed in the row bar state and the finishing process is performed in the row bar state. However, the tilt process is performed in the row bar state as shown in FIG. As shown, the tilting process may be performed by a single item slider, and the finishing process may be performed by a single item slider.
 記録ヘッド35の記録素子36は、素子構造物中、高い精度が必要な寸法をなす部分、すなわちフレアポイントハイトHをなす部分には電流を流す構造にはなっておらず、再生素子32のように素子に電流を流しながら、その抵抗値を測定して、素子寸法を推定するという方法を取れないため、通常、スライダ製造工程の最終近く、すなわちスライダがサスペンションに取り付けられ、実際に磁気記録媒体に対して信号の記録再生を行う検査工程において磁気特性を測定するまで、その良否は判別できない。 The recording element 36 of the recording head 35 does not have a structure in which an electric current is passed through a portion of the element structure that has a dimension that requires high accuracy, that is, a portion that forms the flare point height H. In general, near the end of the slider manufacturing process, that is, the slider is attached to the suspension, and the magnetic recording medium is actually used. On the other hand, the quality cannot be determined until the magnetic characteristics are measured in the inspection process for recording and reproducing signals.
 以上、磁気ヘッドスライダ(垂直磁気記録ヘッド)の構成と動作概念、ならびに磁気ヘッドスライダ製造プロセスの基本的な工程の説明をしたので、これを念頭において本発明の特徴である垂直磁気記録ヘッド主磁極フレアポイントハイトの測定方法について以下に説明する。 The configuration and operation concept of the magnetic head slider (perpendicular magnetic recording head) and the basic steps of the magnetic head slider manufacturing process have been described above. With this in mind, the perpendicular magnetic recording head main pole, which is a feature of the present invention, is described. A method for measuring the flare point height will be described below.
 まず、図8に示すように、垂直磁気記録ヘッドにおいて、互いに直交するX軸、Y軸およびZ軸を定義する。Z軸はスライダ浮上面の法線方向、Y軸は、磁気記録媒体のトラックに沿う方向(ダウントラック方向)、X軸は、磁気記録媒体のトラックに直交する方向(クロストラック方向)である。 First, as shown in FIG. 8, in the perpendicular magnetic recording head, an X axis, a Y axis, and a Z axis orthogonal to each other are defined. The Z axis is the normal direction of the slider flying surface, the Y axis is the direction along the track of the magnetic recording medium (down track direction), and the X axis is the direction perpendicular to the track of the magnetic recording medium (cross track direction).
 図9に、フレアポイントハイトが異なる主磁極から発せられる磁界強度の、浮上面から磁気センサまでのZ方向の距離に対する変化をシミュレーションにより計算した結果を示す。計算は、垂直磁気記録媒体の軟磁性層を模した磁性膜を主磁極に対向させ、この磁性膜を浮上面から徐々に遠ざけた際の、主磁極中心から磁性膜面に下ろした垂線の交点での磁界強度を算出したものである。それぞれのフレアポイントハイトの条件に応じて、磁界強度が、浮上面からの距離に対して指数関数的に減衰しているが、浮上面からの距離が同じところで見ると、フレアポイントハイトの短いほうが、磁界強度が高いのは、図4を用いた説明でも触れたとおりである。 Fig. 9 shows the calculation result of the change in the magnetic field intensity emitted from the main pole with different flare point heights with respect to the distance in the Z direction from the air bearing surface to the magnetic sensor. The calculation is based on the intersection of perpendicular lines from the center of the main pole to the magnetic film surface when the magnetic film imitating the soft magnetic layer of the perpendicular magnetic recording medium is opposed to the main magnetic pole and the magnetic film is gradually moved away from the air bearing surface. The magnetic field intensity at is calculated. Depending on the condition of each flare point height, the magnetic field intensity decays exponentially with respect to the distance from the air bearing surface, but when the distance from the air bearing surface is the same, the shorter flare point height is. The high magnetic field strength is as described in the explanation using FIG.
 このように、磁気ヘッド浮上面から磁気センサまでのZ方向の距離と、その位置における磁界強度の絶対値が分かれば、フレアポイントハイトを推定することができる。しかしこれを実現するためには、磁気センサの浮上面からの距離をnmオーダーで正確に測定する必要がある。しかし、どのような磁気センサを使用するにしても、この距離の正確な直接的測定は非常に困難である。そのため、測定される記録磁界強度の空間分布から距離を推定することができれば上記の推定を行うことができる。その方法を以下に示す。 Thus, if the distance in the Z direction from the air bearing surface to the magnetic sensor and the absolute value of the magnetic field strength at that position are known, the flare point height can be estimated. However, in order to realize this, it is necessary to accurately measure the distance from the air bearing surface of the magnetic sensor on the order of nm. However, no matter what magnetic sensor is used, accurate direct measurement of this distance is very difficult. Therefore, if the distance can be estimated from the spatial distribution of the measured recording magnetic field strength, the above estimation can be performed. The method is shown below.
 図10に、浮上面上の主磁極中心部(記録磁界強度のXY平面分布が極大となる点)を含むダウントラック方向の一次元磁界プロファイルを、Z方向の距離が異なる2つのXY(二次元)平面において測定した結果を示す。図10(a)はZ方向変位が-0.6μmの場合、同図(b)はZ方向変位が0μmの場合を表わしている。各測定位置において、一次元磁界プロファイルの正のピーク値が主磁極近傍の磁界強度に対応し、負のピーク値が戻り磁極近傍の磁界強度に対応する。ここから分かるように、磁気センサの浮上面からのZ方向の距離が異なると、一次元磁界プロファイルにおける正のピーク値と負のピーク値のダウントラック方向の位置が移動し、ピーク位置間隔が変化することが分かる。これは、コイルに電流を流すことで主磁極から発せられる磁力線は、戻り磁極に向かい、図15に示すように空間的に広がったループを形成し、ループのダウントラック方向の幅は、浮上面から磁気センサまでの距離に沿って変化するためである。また、一次元磁界プロファイルの強度が異なるのは、磁界強度が浮上面からの距離に対して指数関数的に減衰しているためである。 FIG. 10 shows a one-dimensional magnetic field profile in the down-track direction including the central portion of the main magnetic pole on the air bearing surface (the point at which the XY plane distribution of the recording magnetic field intensity is maximized). ) Shows the results measured on the plane. 10A shows the case where the Z direction displacement is −0.6 μm, and FIG. 10B shows the case where the Z direction displacement is 0 μm. At each measurement position, the positive peak value of the one-dimensional magnetic field profile corresponds to the magnetic field strength near the main magnetic pole, and the negative peak value corresponds to the magnetic field strength near the return magnetic pole. As you can see, if the Z-direction distance from the air bearing surface of the magnetic sensor is different, the position of the positive peak value and the negative peak value in the one-dimensional magnetic field profile in the down-track direction moves, and the peak position interval changes. I understand that This is because the lines of magnetic force generated from the main pole by passing a current through the coil are directed to the return pole to form a spatially widened loop as shown in FIG. This is because it changes along the distance from the magnetic sensor to the magnetic sensor. Further, the intensity of the one-dimensional magnetic field profile is different because the magnetic field intensity is exponentially attenuated with respect to the distance from the air bearing surface.
 図11は、前記ピーク位置間隔と、浮上面からのZ方向距離との関係をシミュレーションにより計算した結果である。グラフから、磁気センサが浮上面に近づくにつれてピーク位置間隔が減少していくのが分かる。また、フレアポイントハイトが変化しても、ピーク位置間隔と浮上面からのZ方向距離との関係にはほとんど影響がないことが分かる。そのため、一次元磁界プロファイルにおけるピーク位置間隔を測定することで、浮上面からのZ方向距離を一意に決定するとこができる。 FIG. 11 shows the result of calculating the relationship between the peak position interval and the distance in the Z direction from the air bearing surface by simulation. It can be seen from the graph that the peak position interval decreases as the magnetic sensor approaches the air bearing surface. It can also be seen that even if the flare point height changes, the relationship between the peak position interval and the Z-direction distance from the air bearing surface has little effect. Therefore, the distance in the Z direction from the air bearing surface can be uniquely determined by measuring the peak position interval in the one-dimensional magnetic field profile.
 したがって、まずはじめに、さまざまなフレアポイントを持つサンプルを用意し、それぞれのサンプルの、ある基準のピーク位置間隔が得られる測定点における磁界強度を測定し、しかる後に、FIBやエッチング等の破壊的な測定法にてそれぞれのサンプルのフレアポイントハイトを正確に測定し、そのフレアポイントハイトと磁界強度の関係をデータベースとして用意しておけば、以降、新しい磁気ヘッドサンプルの磁界強度を測定してやれば、前記データベースを参照して、そのサンプルのフレアポイントハイトを非破壊的に推定できることになる。 Therefore, first, prepare samples with various flare points, measure the magnetic field strength of each sample at the measurement point where a certain standard peak position interval is obtained, and then destructive such as FIB or etching. If the flare point height of each sample is accurately measured by the measurement method and the relationship between the flare point height and the magnetic field strength is prepared as a database, the magnetic field strength of a new magnetic head sample can be measured thereafter. By referring to the database, the flare point height of the sample can be estimated nondestructively.
 一方、上記測定は、XY平面内で磁界強度が極大となる点を起点に、浮上面近傍から徐々に測定点の距離をZ方向に離していくことを前提としているが、前記磁界強度極大点は、まず浮上面のごく近傍で、X方向またはY方向に測定点をラスタースキャンして測定値が最大となる位置として決定する。 On the other hand, the above measurement is based on the premise that the measurement point is gradually separated in the Z direction from the vicinity of the air bearing surface, starting from the point where the magnetic field strength is maximum in the XY plane. First, a raster scan of the measurement point in the X direction or the Y direction is performed in the immediate vicinity of the air bearing surface, and the measurement value is determined as the maximum position.
 これらの説明をまとめると、実施例1による垂直磁気記録ヘッド主磁極フレアポイントハイトの測定方法は、以下のようになる。
(1)磁気センサを浮上面近傍まで接近させ、X方向またはY方向に測定点をラスタースキャンし、測定値が最大となる点を決定して主磁極中心とする。
(2)磁気センサを、前記中心点を含むダウントラック方向に30ミクロン程度走査し、一次元磁界プロファイルを測定する。
(3)磁気センサをZ方向に沿って徐々に動かしながら、前記一次元磁界プロファイルの測定を繰り返し行い、Z方向の変位に対する、測定されたダウントラック方向一次元磁界プロファイルにおける正のピーク値と負のピーク値が得られる位置の間隔の変化を求める。
(4)測定されたダウントラック方向一次元磁界プロファイルにおける正のピーク値と負のピーク値が得られる位置の間隔に対し、正または負の磁界強度ピーク値をプロットし、ある基準となるピーク位置間隔における磁界強度の値を求める。
(5)前記(4)で求めた、ある基準となるピーク位置間隔における磁界強度の値を、別途、用意していたフレアポイントハイトのわかっているサンプルのデータベースと比較し、当該サンプルのフレアポイントハイトを推定する。
Summarizing these descriptions, the method for measuring the main magnetic pole flare point height of the perpendicular magnetic recording head according to the first embodiment is as follows.
(1) The magnetic sensor is brought close to the air bearing surface, and the measurement point is raster scanned in the X direction or the Y direction to determine the point where the measurement value is maximized, and set it as the main magnetic pole center.
(2) The magnetic sensor is scanned about 30 microns in the down track direction including the center point, and the one-dimensional magnetic field profile is measured.
(3) The measurement of the one-dimensional magnetic field profile is repeated while gradually moving the magnetic sensor along the Z direction, and the positive peak value and the negative value in the measured one-dimensional magnetic field profile in the down-track direction with respect to the displacement in the Z direction are measured. The change of the interval of the position where the peak value is obtained is obtained.
(4) A positive or negative magnetic field strength peak value is plotted against the interval between positions where a positive peak value and a negative peak value are obtained in the measured one-dimensional magnetic field profile in the down-track direction. Obtain the value of the magnetic field strength at the interval.
(5) The magnetic field strength value at a certain reference peak position interval obtained in (4) above is compared with a separately prepared database of samples with known flare point heights, and the flare point of the sample is compared. Estimate the height.
 上記実施例1において、磁気センサには、インダクションコイル、ホール効果素子、磁気抵抗効果素子(AMR、GMR、TMR等)など様々な形式があるが、どのような磁界強度測定方法を用いても、本発明の本質には影響しない。そこで、ここでは磁気ヘッドスライダに再生素子として搭載された磁気抵抗効果素子を磁気センサとして用いた実施例を説明する。 In the first embodiment, the magnetic sensor has various types such as an induction coil, a Hall effect element, a magnetoresistive effect element (AMR, GMR, TMR, etc.). It does not affect the essence of the present invention. Therefore, here, an embodiment will be described in which a magnetoresistive effect element mounted as a reproducing element on a magnetic head slider is used as a magnetic sensor.
 磁気抵抗効果素子は、外部磁界の強度変化に応じて電気抵抗が変化する素子であり、素子自体がある一定の大きさを持つ(幅:数十nm×高さ:数十nm×厚さ:数nm)ため、測定によって得られる抵抗値の情報は、記録ヘッド35のコイル39への電気信号入力により発せられる記録磁界そのものの分布を表しているのではなく、前記磁気抵抗効果素子の大きさにわたって積分したものに対応した値となるが、本発明の目的、すなわち記録素子寸法の推定に関しては、別途、用意していたフレアポイントハイトのわかっているサンプルのデータベースと比較して対象のサンプルの寸法の推定を行うことを前提としているため、有限の大きさを持った磁気抵抗効果素子による測定を行って差し支えない。 A magnetoresistive element is an element whose electric resistance changes in accordance with a change in the intensity of an external magnetic field, and has a certain size (width: several tens of nm × height: several tens of nm × thickness: Therefore, the information on the resistance value obtained by the measurement does not represent the distribution of the recording magnetic field itself generated by the electric signal input to the coil 39 of the recording head 35, but the size of the magnetoresistive element. However, with regard to the purpose of the present invention, that is, the estimation of the recording element size, the sample of the target sample is compared with a separately prepared database of samples with known flare point heights. Since it is assumed that the size is estimated, measurement using a magnetoresistive element having a finite size may be performed.
 図14に、測定に用いた装置の構成図を示す。測定用磁気センサとして用いる磁気抵抗効果素子は、磁気ディスク記憶装置用磁気ヘッドスライダを、三次元の並進移動自由度を持つ微動ステージに取り付けるセンサ保持冶具に固定し、磁気ヘッド端子部を、保持冶具上に配した端子にワイヤボンディングしたものを用いた。測定対象となる記録素子を持つ磁気ヘッドスライダは、研磨加工終了後のロウバーを、固定台に取り付けるロウバー保持冶具に固定し、磁気ヘッド端子部を、保持冶具上に配した端子にワイヤボンディングしたものを用いた。測定対象の記録素子を備えた磁気ヘッドスライダと、磁気センサとなる磁気抵抗効果素子を備えた磁気ヘッドスライダの配置を模式図として図1に示す。 FIG. 14 shows a configuration diagram of the apparatus used for the measurement. The magnetoresistive element used as a magnetic sensor for measurement is a magnetic head slider for a magnetic disk storage device fixed to a sensor holding jig attached to a fine movement stage having a three-dimensional translational freedom degree, and the magnetic head terminal portion is fixed to the holding jig. The terminal placed above was wire-bonded. The magnetic head slider with the recording element to be measured is the one where the row bar after polishing is fixed to the row bar holding jig attached to the fixed base, and the magnetic head terminal is wire bonded to the terminal placed on the holding jig Was used. An arrangement of a magnetic head slider provided with a recording element to be measured and a magnetic head slider provided with a magnetoresistive effect element serving as a magnetic sensor is shown in FIG. 1 as a schematic diagram.
 測定は、対象の記録ヘッドに実効電圧一定の正弦高周波の電気信号を入力し、記録素子の極近傍に配置した磁気抵抗効果素子に、前記入力正弦高周波と同じ周波数の正弦高周波として生ずる出力電圧の、入力信号に対する強度の比と位相の差を記録することによって行う。磁気抵抗効果素子は、外部磁界に応じて変化する素子の抵抗値変化を、定電流のセンス電流を素子に流した状態で、素子の両端に生じる電圧として測定するものである。したがって、磁気センサである磁気抵抗効果素子を測定対象の記録素子に対して相対的に三次元的に微小に変位させた際の、磁気抵抗効果素子の出力の変化は、前記で説明した素子の有限の大きさの影響を含めた記録素子近傍部の磁界強度の分布に対応している。 The measurement is performed by inputting an electric signal of a sine high frequency with a constant effective voltage to the target recording head, and an output voltage generated as a sine high frequency of the same frequency as the input sine high frequency in a magnetoresistive effect element arranged in the immediate vicinity of the recording element. This is done by recording the ratio of the intensity to the input signal and the phase difference. A magnetoresistive element measures a change in resistance value of an element that changes in accordance with an external magnetic field as a voltage generated at both ends of the element in a state where a constant sense current is passed through the element. Therefore, the change in the output of the magnetoresistive effect element when the magnetoresistive effect element, which is a magnetic sensor, is slightly displaced three-dimensionally relative to the recording element to be measured is the change of the element described above. This corresponds to the distribution of the magnetic field strength in the vicinity of the recording element including the effect of a finite size.
 本実施例1における磁気センサの三次元的微小変位は、X、YおよびZ方向にそれぞれ1nmの分解能で位置決め可能な三軸ピエゾステージをもって制御を行った。このように1nmまたはそれ以下の分解能で正確に位置決めのできるアクチュエータ、ステージの類であれば、何を用いてもよい。 The three-dimensional minute displacement of the magnetic sensor in Example 1 was controlled with a three-axis piezo stage that can be positioned with a resolution of 1 nm in each of the X, Y, and Z directions. Any actuator and stage that can accurately position with a resolution of 1 nm or less can be used.
 また、記録ヘッド35は、図2に示されるように、主磁極36、媒体記録層41、媒体軟磁性裏打ち層42、媒体記録層41、戻り磁極37、後部磁極38という順に磁気回路を形成しているため、主磁極近傍と戻り磁極近傍とでは、磁界の向きが逆になっている。したがって、主磁極近傍で主磁極中心検出を行うのを容易とするため、前記出力の比に加えて、位相も同時に測定する。磁界の向きが逆になっていると、出力信号の位相も180度ずれるため、主磁極近傍の磁界分布と戻り磁極近傍の磁界分布の判別が容易となるためである。 Further, as shown in FIG. 2, the recording head 35 forms a magnetic circuit in the order of the main magnetic pole 36, the medium recording layer 41, the medium soft magnetic backing layer 42, the medium recording layer 41, the return magnetic pole 37, and the rear magnetic pole 38. Therefore, the direction of the magnetic field is reversed between the vicinity of the main magnetic pole and the vicinity of the return magnetic pole. Therefore, in order to facilitate the detection of the main magnetic pole center in the vicinity of the main magnetic pole, the phase is simultaneously measured in addition to the output ratio. This is because if the direction of the magnetic field is reversed, the phase of the output signal is also shifted by 180 degrees, so that the magnetic field distribution near the main magnetic pole and the magnetic field distribution near the return magnetic pole can be easily distinguished.
 測定対象の記録ヘッドに印加する実効電圧一定の正弦高周波信号と、記録素子近傍に配置した磁気センサである磁気抵抗効果素子に定電流のセンス電流を流した状態で測定される前記磁気抵抗効果素子の電圧出力信号の強度比、および位相差の測定は、前記両者を同時に測定することのできるベクトルネットワークアナライザにより行った。 The magnetoresistive effect element measured in a state in which a constant current sense current is passed through a magnetoresistive effect element which is a magnetic sensor arranged in the vicinity of the recording element and a sine high frequency signal having a constant effective voltage applied to the recording head to be measured The measurement of the intensity ratio of the voltage output signal and the phase difference was performed by a vector network analyzer capable of measuring both of them simultaneously.
 ネットワークアナライザのポートの一方から測定対象の垂直磁気記録ヘッドに実効電圧一定の正弦高周波信号を印加する一方で、定電流電源から、DC信号とRF信号を分離するためのバイアスTを介し、磁界強度センサである磁気抵抗効果素子へ定電流を印加し、前記記録素子の近傍を微小に変位させることによって前記磁気抵抗効果素子に生じる出力正弦高周波信号の強度変化を、バイアスT、アンプを介してネットワークアナライザのもう一方のポートに取り込み、両ポートの信号の強度比較、および位相の比較をピエゾステージの位置情報と対にしてデータ処理することで、三次元的なデータのマップ情報を得る。 While applying a sinusoidal high-frequency signal with a constant effective voltage from one of the network analyzer ports to the perpendicular magnetic recording head to be measured, the magnetic field strength via a bias T to separate the DC and RF signals from the constant current power supply Applying a constant current to the magnetoresistive effect element as a sensor and minutely displacing the vicinity of the recording element, a change in the intensity of the output sine high-frequency signal generated in the magnetoresistive effect element is networked via a bias T and an amplifier. Three-dimensional data map information is obtained by taking in the other port of the analyzer and processing the data by comparing the signal intensity comparison and phase comparison of both ports with the position information of the piezo stage.
 次に、本発明による主磁極フレアポイントハイトの推定方法を実証するため、加工によりロウバー内であらかじめフレアポイントハイトを30nm程度振ったサンプルを、前記の方法で、センサの浮上面からのZ方向の距離を200nmずつ近づけながら、前記主磁極中心点を含むダウントラック方向に30ミクロン程度磁気センサを走査し一次元磁界プロファイルを測定した。測定により得られた測定の結果を、横軸にZ方向変位、縦軸にピーク位置の間隔をとってプロットしたものを図12に示す。スライダがZ方向に近づくに従って、ピーク位置間隔が減少する様子が観察される。ここで、ピーク位置間隔がある値まで減少した後に一定となっているのは、磁気センサである磁気ヘッドスライダと被測定磁気ヘッドロウバーが物理的に接触し、これ以上近づけることができないためである。 Next, in order to verify the estimation method of the main magnetic pole flare point height according to the present invention, a sample in which the flare point height is shaken about 30 nm in advance in the row bar by processing is processed in the Z direction from the air bearing surface of the sensor by the above method. While reducing the distance by 200 nm, a one-dimensional magnetic field profile was measured by scanning a magnetic sensor about 30 microns in the down track direction including the main magnetic pole center point. FIG. 12 shows a plot of the measurement results obtained by measurement, with the horizontal axis representing the Z-direction displacement and the vertical axis representing the peak position interval. It is observed that the peak position interval decreases as the slider approaches the Z direction. Here, the reason why the peak position interval is constant after being reduced to a certain value is that the magnetic head slider, which is a magnetic sensor, and the magnetic head row bar to be measured are in physical contact with each other and cannot be approached any further. is there.
 図13は、ピーク位置間隔4μmが得られる距離における磁界強度とフレアポイントハイトのグラフであり、ロウバー内の異なるフレアポイントハイトをもつ複数サンプルに対して測定した結果である。これらの間に有意な相関があることが確認された。すなわち、ある基準のピーク位置間隔に対して、その距離での記録磁界強度は、それぞれのサンプルのもつフレアポイントハイトに対して一意に定まっているということを意味する。したがって、この方法を用いることで、センサで測定される記録磁界強度からフレアポイントハイトを推定することが出来ることが確認された。 FIG. 13 is a graph of magnetic field strength and flare point height at a distance where a peak position interval of 4 μm is obtained, and is a result of measurement for a plurality of samples having different flare point heights in the row bar. It was confirmed that there was a significant correlation between them. That is, for a certain reference peak position interval, the recording magnetic field intensity at that distance is uniquely determined with respect to the flare point height of each sample. Therefore, it was confirmed that the flare point height can be estimated from the recording magnetic field intensity measured by the sensor by using this method.
 以上説明したように、本発明の実施例によれば、垂直磁気記録ヘッドの主磁極フレアポイントハイトを非破壊的に、より正確に測定することができる。また、前記スライダ工程において、前記垂直磁気記録ヘッドの主磁極フレアポイントハイト測定方法を用いて、フレアポイントハイトを推定し、一方、再生素子の抵抗値の実測から再生素子高さを測定することにより、記録素子の寸法と再生素子の寸法を比較して、前記ウェハ工程での記録素子と再生素子の位置ずれを算出し、前記位置ずれを補正するために、前記スライダ工程において、正確なフレアポイントハイトに基づいたスライダ傾斜研磨加工を行うことができ、スライダ製造歩留りが向上する。また、前記スライダ工程の終端で、フレアポイントハイトによって決まる磁気特性に基づく不良品選別を行うことで、この段階で不良とわかるスライダを、スライダをサスペンションに取り付け、実際に磁気記録媒体に対して信号の記録再生を行う検査工程まで送ることがなくなり、生産管理上のロスを低減することができる。 As described above, according to the embodiment of the present invention, the main magnetic pole flare point height of the perpendicular magnetic recording head can be measured more accurately in a non-destructive manner. Further, in the slider step, the flare point height is estimated using the main magnetic pole flare point height measurement method of the perpendicular magnetic recording head, and on the other hand, by measuring the reproducing element height from the actual measurement of the resistance value of the reproducing element. In order to calculate the positional deviation between the recording element and the reproducing element in the wafer process by comparing the dimensions of the recording element and the reproducing element, and to correct the positional deviation, an accurate flare point is calculated in the slider process. The slider slant polishing process based on the height can be performed, and the slider manufacturing yield is improved. Also, at the end of the slider process, defective products are selected based on the magnetic characteristics determined by the flare point height, so that a slider that is found to be defective at this stage is attached to the suspension and the signal is actually sent to the magnetic recording medium. Thus, it is no longer necessary to send an inspection process for recording / reproducing, thereby reducing production management loss.
 本発明の垂直磁気記録ヘッドの主磁極フレアポイントハイト測定方法は、磁気記憶ディスク装置に搭載される垂直磁気記録ヘッドの検査及び製造に適用することができる。 The main magnetic pole flare point height measurement method of the perpendicular magnetic recording head of the present invention can be applied to the inspection and manufacture of a perpendicular magnetic recording head mounted on a magnetic storage disk device.
1…ウェハ、2…ロウバー、3…スライダ、4…スライダ傾斜機構、5…ロウバー傾斜機構、6…浮上面溝加工治具、30…垂直磁気記録ヘッド、31…再生ヘッド、32…再生素子、33…下部磁気シールド、34…上部磁気シールド、35…記録ヘッド、36…記録素子(主磁極)、37…戻り磁極、38…後部磁極、39…導体コイル、40…二層記録メディア、41…記録層、42…軟磁性裏打層、44…垂直磁化。 DESCRIPTION OF SYMBOLS 1 ... Wafer, 2 ... Row bar, 3 ... Slider, 4 ... Slider inclination mechanism, 5 ... Row bar inclination mechanism, 6 ... Air bearing surface groove processing jig, 30 ... Perpendicular magnetic recording head, 31 ... Reproduction head, 32 ... Reproduction element, 33 ... Lower magnetic shield, 34 ... Upper magnetic shield, 35 ... Recording head, 36 ... Recording element (main magnetic pole), 37 ... Return magnetic pole, 38 ... Rear magnetic pole, 39 ... Conductor coil, 40 ... Double-layer recording medium, 41 ... Recording layer 42... Soft magnetic underlayer 44. Perpendicular magnetization.

Claims (15)

  1.  浮上面に向かって絞り込まれた形状を有する主磁極と、該主磁極とで磁気回路を形成する戻り磁極と、前記磁気回路を取り囲むコイルとを有する垂直磁気記録ヘッドのフレアポイントハイト測定方法であって、前記コイルに電気信号を印加し、前記主磁極近傍に対向するように配置した磁気センサを走査し、印加した電気信号と前記磁気センサの出力として得られる信号の強度比から算出される前記主磁極近傍の磁界強度分布の特性から、前記主磁極のフレアポイントハイトを求めることを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 This is a method for measuring the flare point height of a perpendicular magnetic recording head having a main pole having a shape that is narrowed toward the air bearing surface, a return pole that forms a magnetic circuit with the main pole, and a coil that surrounds the magnetic circuit. Then, an electric signal is applied to the coil, a magnetic sensor disposed so as to face the vicinity of the main magnetic pole is scanned, and calculated from the intensity ratio of the applied electric signal and the signal obtained as the output of the magnetic sensor. A method for measuring a flare point height of a perpendicular magnetic recording head, characterized in that a flare point height of the main magnetic pole is obtained from characteristics of a magnetic field intensity distribution near the main magnetic pole.
  2.  請求項1記載の垂直磁気記録ヘッドのフレアポイントハイト測定方法において、前記主磁極近傍の磁界強度分布の特性から、前記主磁極から前記磁気センサまでの距離を求め、前記磁気センサの位置に対する磁界強度の値から前記主磁極のフレアポイントハイトを求めることを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 2. A method for measuring flare point height of a perpendicular magnetic recording head according to claim 1, wherein a distance from the main magnetic pole to the magnetic sensor is obtained from a characteristic of magnetic field intensity distribution in the vicinity of the main magnetic pole, and the magnetic field intensity with respect to the position of the magnetic sensor. A flare point height measurement method for a perpendicular magnetic recording head, wherein the flare point height of the main magnetic pole is obtained from the value of.
  3.  請求項2記載の垂直磁気記録ヘッドのフレアポイントハイト測定方法において、前記主磁極から前記磁気センサまでの距離は、被測定物となる垂直磁気記録ヘッドの浮上面に平行な平面内の二次元的な磁界強度分布から最も高い強度が得られる位置を特定し、次に、その位置を含む前記垂直磁気記録ヘッドのダウントラック方向に前記磁気センサを走査することで得られる一次元磁界プロファイルの正のピーク値と負のピーク値が得られる位置の間隔から求めることを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 3. The method for measuring a flare point height of a perpendicular magnetic recording head according to claim 2, wherein the distance from the main magnetic pole to the magnetic sensor is two-dimensionally in a plane parallel to the air bearing surface of the perpendicular magnetic recording head as the object to be measured. A position where the highest intensity can be obtained from the magnetic field intensity distribution, and then scanning the magnetic sensor in the down-track direction of the perpendicular magnetic recording head including the position, and a positive one-dimensional magnetic field profile obtained by scanning the magnetic sensor A flare point height measurement method for a perpendicular magnetic recording head, characterized in that the flare point height is obtained from an interval between positions where a peak value and a negative peak value are obtained.
  4.  請求項1記載の垂直磁気記録ヘッドのフレアポイントハイト測定方法において、前記磁気センサとしてGMR、TMRのいずれかの磁気抵抗効果素子を用いることを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 2. The method for measuring flare point height of a perpendicular magnetic recording head according to claim 1, wherein a magnetoresistive effect element of either GMR or TMR is used as the magnetic sensor.
  5.  浮上面に向かって絞り込まれた形状を有する主磁極と、該主磁極とで磁気回路を形成する戻り磁極と、前記磁気回路を取り囲むコイルとを備える垂直磁気記録素子と、再生素子とを有する垂直磁気記録ヘッドのフレアポイントハイト測定方法において、
     異なるフレアポイントを有する複数の垂直磁気記録ヘッドをサンプルとして用意し、該サンプルのコイルに通電して浮上面から磁界を発生させ、該サンプルの浮上面に対向して配置した磁気センサにより一次元磁界プロファイルを測定し、該一次元磁界プロファイルのある基準のピーク位置間隔が得られる測定点における磁界強度を測定し、続いて破壊的な測定法により前記サンプルのフレアポイントハイトを測定し、当該フレアポイントハイトと前記磁界強度の関係のデータベースを作成する工程と、
     被測定用垂直磁気記録ヘッドの浮上面に磁気センサを対向させ、浮上面の法線方向に該磁気センサを移動させながら一次元磁界プロファイルを測定し、前記基準となるピーク位置間隔における磁界強度を測定する工程と、
     測定した磁界強度と前記データベースとを比較して前記被測定用垂直磁気記録ヘッドのフレアポイントハイトを推定する工程と、
    を有することを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。
    A perpendicular magnetic recording element comprising a main magnetic pole having a shape narrowed toward the air bearing surface, a return magnetic pole that forms a magnetic circuit with the main magnetic pole, a coil surrounding the magnetic circuit, and a reproducing element In the flare point height measurement method of the magnetic recording head,
    A plurality of perpendicular magnetic recording heads having different flare points are prepared as samples, a magnetic field is generated from the air bearing surface by energizing the coil of the sample, and a one-dimensional magnetic field is provided by a magnetic sensor disposed opposite the air bearing surface of the sample. Measuring the profile, measuring the magnetic field strength at a measurement point where a certain reference peak position interval of the one-dimensional magnetic field profile is obtained, and subsequently measuring the flare point height of the sample by a destructive measurement method. Creating a database of the relationship between height and magnetic field strength;
    A magnetic sensor is opposed to the air bearing surface of the perpendicular magnetic recording head for measurement, the one-dimensional magnetic field profile is measured while moving the magnetic sensor in the normal direction of the air bearing surface, and the magnetic field strength at the reference peak position interval is measured. Measuring process;
    Comparing the measured magnetic field strength with the database to estimate the flare point height of the measured perpendicular magnetic recording head;
    A method for measuring the flare point height of a perpendicular magnetic recording head, comprising:
  6.  請求項5記載の垂直磁気記録ヘッドのフレアポイントハイト測定方法において、前記一次元磁界プロファイルの測定は、前記磁気センサを二次元的に移動して最も高い磁界強度が得られる位置を特定し、該位置を含むダウントラック方向に移動させて行うことを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 6. The method of measuring a flare point height of a perpendicular magnetic recording head according to claim 5, wherein the measurement of the one-dimensional magnetic field profile specifies a position where the highest magnetic field strength can be obtained by moving the magnetic sensor two-dimensionally, A method for measuring flare point height of a perpendicular magnetic recording head, wherein the flare point height is moved in the down track direction including the position.
  7.  請求項5記載の垂直磁気記録ヘッドのフレアポイントハイト測定方法において、前記磁界強度は、前記サンプル及び被測定用垂直磁気記録ヘッドのコイルに印加した電気信号の強度と、前記磁気センサの出力として得られる信号との強度比から求めることを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 6. The method of measuring a flare point height of a perpendicular magnetic recording head according to claim 5, wherein the magnetic field intensity is obtained as an intensity of an electric signal applied to the coil of the sample and a perpendicular magnetic recording head for measurement and an output of the magnetic sensor. A method for measuring flare point height of a perpendicular magnetic recording head, characterized in that the flare point height is obtained from an intensity ratio with respect to a received signal.
  8.  請求項5記載の垂直磁気記録ヘッドのフレアポイントハイト測定方法において、前記磁界強度を測定する工程において、一次元磁界プロファイルの位相差も測定することを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 6. The method for measuring a flare point height of a perpendicular magnetic recording head according to claim 5, wherein in the step of measuring the magnetic field intensity, a phase difference of a one-dimensional magnetic field profile is also measured. Method.
  9.  請求項5記載の垂直磁気記録ヘッドのフレアポイントハイト測定方法において、前記磁気センサは三次元の並進移動自由度を持つ微動ステージにより移動されることを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 6. The method for measuring flare point height of a perpendicular magnetic recording head according to claim 5, wherein the magnetic sensor is moved by a fine movement stage having a three-dimensional translational freedom degree. Method.
  10.  請求項9記載の垂直磁気記録ヘッドのフレアポイントハイト測定方法において、前記微動ステージは三軸ピエゾステージであることを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定方法。 10. The method for measuring a flare point height of a perpendicular magnetic recording head according to claim 9, wherein the fine movement stage is a three-axis piezo stage.
  11.  浮上面に向かって絞り込まれた形状を有する主磁極と、該主磁極とで磁気回路を形成する戻り磁極と、前記磁気回路を取り囲むコイルとを有する垂直磁気記録ヘッドのフレアポイントハイト測定方装置は、
     異なるフレアポイントを有する複数の垂直磁気記録ヘッドのフレアポイントハイトと磁界強度との関係を保持する記憶手段と、
     被測定用垂直磁気記録ヘッドの浮上面に対向させ、浮上面の法線方向に該磁気センサを移動させながら一次元磁界プロファイルを測定し、前記基準となるピーク位置間隔における磁界強度を測定する磁気センサと、
     前記磁気センサの三次元的微小変位を制御する三軸ピエゾステージと、
     前記三軸ピエゾステージによって前記磁気センサを三次元的に微小変位させながら測定した磁界強度と前記記憶手段の前記関係とを比較して前記被測定用垂直磁気記録ヘッドのフレアポイントハイトを推定する推定手段とを有することを特徴とする垂直磁気記録ヘッドのフレアポイントハイト測定装置。
    An apparatus for measuring the flare point height of a perpendicular magnetic recording head having a main magnetic pole having a shape narrowed toward the air bearing surface, a return magnetic pole that forms a magnetic circuit with the main magnetic pole, and a coil surrounding the magnetic circuit. ,
    Storage means for maintaining the relationship between flare point height and magnetic field strength of a plurality of perpendicular magnetic recording heads having different flare points;
    A magnet that measures the one-dimensional magnetic field profile while facing the air bearing surface of the perpendicular magnetic recording head for measurement, moving the magnetic sensor in the normal direction of the air bearing surface, and measures the magnetic field strength at the reference peak position interval. A sensor,
    A three-axis piezo stage for controlling the three-dimensional minute displacement of the magnetic sensor;
    Estimating the flare point height of the perpendicular magnetic recording head to be measured by comparing the magnetic field strength measured while three-dimensionally displacing the magnetic sensor with the three-axis piezo stage and the relationship of the storage means And a flare point height measuring device for a perpendicular magnetic recording head.
  12.  前記推定手段は、前記主磁極近傍の磁界強度分布の特性から、前記主磁極から前記磁気センサまでの距離を求め、前記磁気センサの位置に対する磁界強度の値から前記主磁極のフレアポイントハイトを求めることを特徴とする請求項11記載の垂直磁気記録ヘッドのフレアポイントハイト測定装置。 The estimation means obtains the distance from the main magnetic pole to the magnetic sensor from the characteristics of the magnetic field strength distribution near the main magnetic pole, and obtains the flare point height of the main magnetic pole from the value of the magnetic field strength with respect to the position of the magnetic sensor. The flare point height measuring apparatus for a perpendicular magnetic recording head according to claim 11.
  13.  前記推定手段は、前記主磁極から前記磁気センサまでの距離は、被測定物となる垂直磁気記録ヘッドの浮上面に平行な平面内の二次元的な磁界強度分布から最も高い強度が得られる位置を特定し、次に、その位置を含む前記垂直磁気記録ヘッドのダウントラック方向に前記磁気センサを走査することで得られる一次元磁界プロファイルの正のピーク値と負のピーク値が得られる位置の間隔から求めることを特徴とする請求項12記載の垂直磁気記録ヘッドのフレアポイントハイト測定装置。 The estimation means is such that the distance from the main magnetic pole to the magnetic sensor is a position where the highest intensity can be obtained from a two-dimensional magnetic field strength distribution in a plane parallel to the air bearing surface of the perpendicular magnetic recording head to be measured. Next, the positive peak value and the negative peak value of the one-dimensional magnetic field profile obtained by scanning the magnetic sensor in the down track direction of the perpendicular magnetic recording head including the position are obtained. 13. The flare point height measuring device for a perpendicular magnetic recording head according to claim 12, wherein the flare point height measuring device is obtained from the interval.
  14.  前記磁気センサとしてGMR、TMRのいずれかの磁気抵抗効果素子を用いることを特徴とする請求項11記載の垂直磁気記録ヘッドのフレアポイントハイト測定装置。 12. The flare point height measuring device for a perpendicular magnetic recording head according to claim 11, wherein the magnetoresistive element of either GMR or TMR is used as the magnetic sensor.
  15.  前記記憶手段に保持される前記関係は、異なるフレアポイントを有する複数の垂直磁気記録ヘッドをサンプルとして用意し、該サンプルのコイルに通電して浮上面から磁界を発生させ、該サンプルの浮上面に対向して配置した磁気センサにより一次元磁界プロファイルを測定し、該一次元磁界プロファイルのある基準のピーク位置間隔が得られる測定点における磁界強度を測定し、続いて破壊的な測定法により前記サンプルのフレアポイントハイトを測定した結果であることを特徴とする請求項11記載の垂直磁気記録ヘッドのフレアポイントハイト測定装置。 The relationship held in the storage means is that a plurality of perpendicular magnetic recording heads having different flare points are prepared as samples, a magnetic field is generated from the air bearing surface by energizing the coil of the sample, and A one-dimensional magnetic field profile is measured by magnetic sensors arranged opposite to each other, a magnetic field intensity at a measurement point at which a certain reference peak position interval of the one-dimensional magnetic field profile is obtained, and then the sample is measured by a destructive measurement method. 12. The flare point height measuring apparatus for a perpendicular magnetic recording head according to claim 11, wherein the flare point height of the perpendicular magnetic recording head is measured.
PCT/JP2011/059946 2010-06-11 2011-04-22 Method for measuring flare point height of perpendicular magnetic recording head WO2011155271A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010134056A JP2011258295A (en) 2010-06-11 2010-06-11 Measurement method of flare point height in vertical magnetic recording head
JP2010-134056 2010-06-11

Publications (1)

Publication Number Publication Date
WO2011155271A1 true WO2011155271A1 (en) 2011-12-15

Family

ID=45097885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059946 WO2011155271A1 (en) 2010-06-11 2011-04-22 Method for measuring flare point height of perpendicular magnetic recording head

Country Status (2)

Country Link
JP (1) JP2011258295A (en)
WO (1) WO2011155271A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301610A (en) * 2008-06-10 2009-12-24 Fujitsu Ltd Magnetic field strength measuring method and magnetic field strength measuring device
JP2010003332A (en) * 2008-06-18 2010-01-07 Hitachi Global Storage Technologies Netherlands Bv Manufacturing method of perpendicular magnetic recording head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301610A (en) * 2008-06-10 2009-12-24 Fujitsu Ltd Magnetic field strength measuring method and magnetic field strength measuring device
JP2010003332A (en) * 2008-06-18 2010-01-07 Hitachi Global Storage Technologies Netherlands Bv Manufacturing method of perpendicular magnetic recording head

Also Published As

Publication number Publication date
JP2011258295A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
US8278917B2 (en) Magnetic head inspection method and magnetic head inspection device
US7683610B2 (en) Method for inspecting magnetic characteristics of a plurality of thin magnetic heads by means of local application of magnetic field
US8225486B2 (en) Method of manufacturing a perpendicular magnetic recording head
US8299784B2 (en) Device for transporting magnetic head, device for inspecting magnetic head, and method for manufacturing magnetic head
JP5460386B2 (en) Magnetic head inspection method and magnetic head manufacturing method
US7810226B2 (en) Method of manufacturing a thin-film magnetic head having an element having a lower layer with a narrower width
US6664783B1 (en) System for measuring magnetostriction employing a plurality of external magnetic field rotation harmonics
US20070096725A1 (en) Measurement method and measurement apparatus for measuring recording magnetic field strength distribution of magnetic head, and manufacturing method for manufacturing the magnetic head
US9837108B2 (en) Magnetic sensor and a method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
US6255814B1 (en) Method and apparatus for measuring bias magnetic field for controlling magnetic domain of magnetoresistive effect element
WO2011155271A1 (en) Method for measuring flare point height of perpendicular magnetic recording head
JP4405234B2 (en) Thin film magnetic head polishing method
JP2009301610A (en) Magnetic field strength measuring method and magnetic field strength measuring device
US6798624B2 (en) Magnetization sensor for sensing the write field characteristics of a perpendicular or longitudinal recording head
JP4035487B2 (en) Method for manufacturing thin film magnetic head substrate
US8254066B2 (en) Technique for measuring process induced magnetic anisotropy in a magnetoresistive sensor
US11226194B1 (en) Apparatus and method for measuring distance between fiducial features, such as magnetic transducers, to an accuracy of within one nanometer
US20120127605A1 (en) Method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
JP2012234606A (en) Magnetic field sensor for inspecting recording element of perpendicular magnetic recording type magnetic head, recording element inspection device using the same, and method for inspecting recording element
US10672423B2 (en) Electronic test structures for one or more magnetoresistive elements, and related methods
JP2011028825A (en) Method for manufacturing magnetic head
JPH11250417A (en) Manufacture of magnetic head
Bordeos et al. Investigation of GMR sensor microstructural changes induced by HBM ESD using advanced microscopy approach
JP2003092441A (en) Magnetoresistance effect magnetic sensor, magnetoresistance effect magnetic head and their manufacturing method
JPH06349027A (en) Thin-film magnetic head wafer and inspecting method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792229

Country of ref document: EP

Kind code of ref document: A1