WO2011155066A1 - Information recording device, information processing device, method for controlling disk device, and program for controlling disk device - Google Patents

Information recording device, information processing device, method for controlling disk device, and program for controlling disk device Download PDF

Info

Publication number
WO2011155066A1
WO2011155066A1 PCT/JP2010/059963 JP2010059963W WO2011155066A1 WO 2011155066 A1 WO2011155066 A1 WO 2011155066A1 JP 2010059963 W JP2010059963 W JP 2010059963W WO 2011155066 A1 WO2011155066 A1 WO 2011155066A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
disk
disk device
disk devices
magnetic disk
Prior art date
Application number
PCT/JP2010/059963
Other languages
French (fr)
Japanese (ja)
Inventor
公昭 羽賀
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2010/059963 priority Critical patent/WO2011155066A1/en
Priority to JP2012519192A priority patent/JP5475881B2/en
Publication of WO2011155066A1 publication Critical patent/WO2011155066A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/04Arrangements for preventing, inhibiting, or warning against double recording on the same blank or against other recording or reproducing malfunctions
    • G11B19/041Detection or prevention of read or write errors
    • G11B19/042Detection or prevention of read or write errors due to external shock or vibration

Definitions

  • the present invention relates to an information recording device, an information processing device, a disk device control method, and a control program.
  • the present invention relates to, for example, an information recording apparatus and an information processing apparatus having a plurality of disk devices, and a control method and a control program for the plurality of disk devices.
  • It has a motor that drives the disk-shaped recording medium at multiple rotational speeds, and controls vibration, noise, heat generation, etc. generated from the hard disk device by controlling one of the multiple rotational speeds according to the output of the vibration sensor.
  • Technology to plan is known.
  • JP 2006-24326 A Japanese Patent Laid-Open No. 2001-1000094
  • Rotation of one of the two disk devices is selected such that two cycles are selected from the plurality of disk devices and the period of the envelope of the sound or vibration waveform of the plurality of disk devices is extended each time. Control is repeated to increase the number and decrease the rotational speed of the other disk device.
  • FIG. 3 is a diagram (part 1) for explaining a concept of a noise reduction method for a plurality of magnetic disk devices according to the first embodiment of the present invention
  • FIG. 6 is a diagram (No. 2) for explaining the concept of the noise reduction method for the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 6 is a diagram (No. 3) for explaining the concept of the noise reduction method for the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 1 is a block diagram (No.
  • FIG. 6 is a block diagram (No. 2) illustrating a configuration example of an information processing system that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to the first embodiment of the invention. It is FIG. (1) which shows the structural example of the information recording device which implements automatically the method of adjusting the rotation speed of the several magnetic disc apparatus by Example 1 of this invention.
  • FIG. 6 is a diagram (No.
  • FIG. 6 is a diagram (No. 3) illustrating a configuration example of an information recording apparatus that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to the first embodiment of the invention.
  • It is a block diagram which shows the structural example of the information processing system which automatically implements the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 1 of Example 1 of this invention.
  • It is a block diagram which shows the structural example of the information processing apparatus which automatically implements the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 2 of Example 1 of this invention.
  • FIG. 6 is a diagram (No. 1) for explaining a configuration example of a hard disk device that enables automatic execution of a method for adjusting the rotational speed of a plurality of magnetic disk devices according to Embodiment 1 of the present invention
  • FIG. 6 is a diagram (No. 2) for explaining the configuration example of the hard disk device that enables the method of adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the present invention to be automatically performed;
  • FIG. 1 for explaining a configuration example of a hard disk device that enables automatic execution of a method for adjusting the rotational speed of a plurality of magnetic disk devices according to Embodiment 1 of the present invention
  • FIG. 6 is a diagram (No. 2) for explaining the configuration example of the hard disk device that enables the method of adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the present invention to be automatically performed
  • FIG. 5 is a flowchart for explaining a flow of a method for adjusting the rotational speed of a plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 5 is a diagram (No. 1) for describing a specific example of the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention;
  • FIG. 6 is a diagram (No. 2) for describing the specific example of the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 6 is a diagram (No. 3) for explaining the specific example of the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 6 is a diagram (No. 1) for describing a specific example of the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 6 is a diagram (No. 2) for describing the specific example of the method for adjusting the rotation speed of
  • FIG. 6 is a diagram (No. 1) for explaining an example of a specific procedure in the method for adjusting the rotation speed of a plurality of magnetic disk devices according to the first embodiment of the invention
  • FIG. 8 is a diagram (No. 2) for explaining an example of a specific procedure in the method for adjusting the rotational speeds of the plurality of magnetic disk devices according to the first embodiment of the invention
  • FIG. 7 is a diagram (No. 3) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention
  • FIG. 8 is a diagram (No.
  • FIG. 8 is a diagram (No. 5) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 6 is a diagram (No. 6) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 7 is a view (No. 7) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 10 is a diagram (No.
  • FIG. 9 is a diagram (No. 9) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention.
  • FIG. 10 is a diagram (No. 10) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention; (11) for demonstrating an example of the specific procedure in the method of adjusting the rotation speed of the some magnetic disc unit by Example 1 of this invention.
  • FIG. 6 is a block diagram (No.
  • FIG. 10 is a block diagram (No. 2) illustrating a configuration example of an information processing system that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to a second embodiment of the present invention.
  • FIG. 10 is a block diagram (No. 3) illustrating a configuration example of an information processing system that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to a second embodiment of the invention.
  • FIG. 11 is a block diagram (No.
  • FIG. 10 is a block diagram (No. 2) showing another configuration example of the information processing system that automatically performs the method of adjusting the rotation speed of the plurality of magnetic disk devices according to the first modification of the second embodiment of the present invention. It is a block diagram which shows the structural example of the information processing apparatus which automatically implements the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 2 of Example 2 of this invention. It is a block diagram which shows the other structural example of the information processing apparatus which automatically implements the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 3 of Example 2 of this invention.
  • the method for adjusting the rotational speed of a plurality of magnetic disk devices according to the second embodiment, the first variation of the second embodiment, the second variation of the second embodiment, and the third variation of the second embodiment is automatically implemented. It is a figure for demonstrating the structural example of the hard disk device which enables it to do. It is a flowchart for demonstrating the flow of the method of adjusting the rotation speed of the several magnetic disc apparatus by the modification 2 of Example 2 and Example 2 of this invention. It is a flowchart for demonstrating the flow of the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 1 of Example 2 of this invention, and the modification 3 of Example 2.
  • an information recording device or information processing device equipped with a plurality of magnetic disk devices or an information processing system including the information recording device or information processing device. Furthermore, a situation is assumed in which the rotational speeds of the respective disk-shaped magnetic recording media (hereinafter simply referred to as magnetic disks) of the plurality of magnetic disk devices are shifted from each other. In the design, it is assumed that the rated rotational speeds of the respective magnetic disks of the plurality of magnetic disk devices coincide with each other (for example, 7200 [rpm]). However, due to various factors, it is considered difficult to make the rotational speeds of a plurality of magnetic disk devices exactly coincide with each other.
  • Variations in the rotational speed of the magnetic disks of the plurality of magnetic disk devices cause amplitude fluctuations in the waveform of the sound (synthetic sound) emitted by the plurality of magnetic disk apparatuses, and the amplitude fluctuations are noise (so-called “beat sound”). ) Is assumed.
  • a roaring sound is a sound in which the intensity of the sound is repeated.
  • vibration occurs due to the rotation of the magnetic disk.
  • periodic noise that is, beat noise
  • the waveforms of “HDD # 1 noise” and “HDD # 2 noise” shown in the upper part indicate waveforms of sound or vibration generated by each of the two magnetic disk devices. Both waveforms are stable with a constant amplitude. However, when the frequencies of the two waveforms are slightly different from each other, it can be seen that the amplitude of the synthesized waveform (“synthetic noise”) shown in the lower stage in FIG. 1A periodically varies, and so-called “beat noise” is generated (FIG. 1A). (See “Synthetic Waveform Envelope”). Note that the frequencies of the two waveforms correspond to the rotation speeds of the two corresponding magnetic disk devices, respectively, and the cause of the roaring sound can be considered as a difference in the rotation speeds of the two magnetic disk devices. .
  • a method for reducing such noise for example, a method of increasing the mechanical strength of a housing (housing) that accommodates a magnetic disk device, or a method of using a combination of magnetic disk devices having similar basic rotational speeds of magnetic disks. Etc. are considered.
  • Embodiment 1 of the present invention sound (synthetic sound) or vibration (synthetic vibration) of a plurality of disk devices is measured, a measurement result is analyzed, and each magnetic disk of the plurality of disk devices is analyzed based on the analysis result.
  • the beat noise is reduced. More specifically, beat noise is reduced by performing control to reduce the difference between the rotational speeds of the magnetic disks of a plurality of disk devices.
  • FIGS. 1B, 1C, and 1D a method for performing control for reducing the difference between the rotational speeds of the magnetic disks of the plurality of disk devices according to the first embodiment of the present invention will be described.
  • FIGS. 1B, 1C, and 1D shows the waveform of the HDD # 1 noise and the waveform of HDD # 2 noise in the upper stage, and the envelope of the synthesized noise waveform and the synthesized noise waveform (synthetic waveform) in the lower stage, as in FIG. 1A.
  • FIG. 1B shows the same state as FIG. 1A, and the difference in the rotational speed of the magnetic disk between the two magnetic disk devices is gradually reduced in the order of FIGS. 1B, 1C, and 1D.
  • the difference in the rotational speed of the magnetic disk between the two magnetic disk devices is zero.
  • the amplitude fluctuation period of the composite waveform (“synthetic noise”) (the peak period of the envelope of the composite waveform) gradually increases in the order of FIGS. 1B, 1C, and 1D.
  • synthetic noise the peak period of the envelope of the composite waveform
  • the envelope of the composite waveform The peak period is infinite. That is, as the rotational speed difference between the two magnetic disk devices is reduced, the peak period of the envelope of the composite waveform is extended, and as a result, the beat sound is reduced.
  • the rotation speeds coincide between the two magnetic disk devices the state shown in FIG. 1D
  • the amplitude fluctuation of the synthesized waveform is eliminated and the beat sound disappears.
  • noise or vibration generated by a plurality of magnetic disk devices is detected and analyzed, and control is performed to extend the period of the peak of the envelope of the noise or vibration, that is, the composite waveform, Reduces roaring noise.
  • each of the plurality of magnetic disk devices is monitored while monitoring the sound or vibration generated in the information recording device or information processing device equipped with the plurality of magnetic disk devices.
  • the rotational speed of the magnetic disk is adjusted.
  • examples of the information recording apparatus and the information processing apparatus to which the first embodiment of the present invention can be applied include a personal computer, a server, and a recording apparatus.
  • FIG. 2A is a block diagram illustrating a configuration example of the information processing system according to the first embodiment of the present invention.
  • the information processing system illustrated in FIG. 2A includes a host computer 100 and an information recording device 200 that are connected to each other by, for example, an interface cable.
  • the host computer 100 performs information processing using the information while writing information to the information recording apparatus 200 and reading information from the information recording apparatus 200.
  • the information recording device 200 accommodates a plurality of magnetic disk devices HDD-1, HDD-2,..., HDD-n in one housing (housing) and has a so-called disk array configuration.
  • the host computer 100 writes information to the plurality of magnetic disk devices HDD-1 to HDD-n of the information recording device 200 and reads information from the plurality of magnetic disk devices HDD-1 to HDD-n. Can do.
  • the information recording device 200 has a sensor circuit 210.
  • the sensor circuit 210 is a microphone that detects noise from a plurality of magnetic disk devices HDD-1 to HDD-n.
  • the microphone 210 is preferably installed at a position where sound from each of the plurality of magnetic disk devices HDD-1 to HDD-n can be detected evenly.
  • FIG. 2B is a block diagram illustrating a configuration example of the host computer 100.
  • the host computer 100 includes a CPU (Central Processor Unit) Cph for calculating information and a memory Mmh used by the CPU (Cph) as a work area.
  • the memory Mmh also stores a program executed by the CPU (Cph).
  • the host computer 100 further includes an analysis / control arbitration unit Ca0 (which can be either hardware or software as will be described later) and a nonvolatile memory Mm0 which will be described later.
  • FIG. 3A is a block diagram showing a configuration of the magnetic disk device HDD-1 shown in FIG. 2A.
  • the magnetic disk device HDD-1 includes a current control circuit Cc1 and a spindle motor (“motor” in the drawing) Mo1.
  • the analysis / control arbitration unit Ca0 analyzes the sound detected by the microphone 210 and adjusts the rotational speed of the magnetic disk included in each of the plurality of magnetic disk devices HDD-1 to HDD-n.
  • the analysis / control arbitration unit Ca0 controls the sound detected by the microphone 210 and the control for adjusting the number of rotations of the magnetic disks respectively included in the plurality of magnetic disk devices HDD-1 to HDD-n. Including the mediation department.
  • the non-volatile memory Mm0 is used by the analysis / control arbitration unit Ca0 to store a rotation speed setting value to be described later.
  • the spindle motor Mo1 rotates and drives the magnetic disk (not shown) of the magnetic disk device HDD-1.
  • the current control circuit Cc1 generates a control current for driving the spindle motor Mo1, and controls the rotational speed of the magnetic disk by controlling the control current.
  • the current control circuit Cc1 is controlled by the analysis / control arbitration unit Ca0 of the host computer 100.
  • Each of the other disk devices HDD-2 to HDD-n of the information recording device 200 has the same configuration as the disk device HDD-1. Accordingly, the rotational speed of each magnetic disk of the plurality of magnetic disk devices HDD-1 to HDD-n is controlled under the control of the analysis / control arbitration unit Ca0 of the host computer 100.
  • the analysis / control arbitration unit Ca0 includes an analysis unit Say and a control arbitration unit Cay.
  • the analysis unit Say includes a diode Dy, a low-pass filter Ly, and a DSP (Digital Signal Processor) Dsy.
  • the DSP (Dsy) includes an A / D (Analog-to-Digital) converter Ady, a memory My, and a CPU (Cpy).
  • the diode Dy detects the sound pressure waveform detected by the microphone 210, and the low-pass filter Ly removes a high-band component of the sound pressure waveform, thereby obtaining an envelope on one side of the detected sound pressure waveform.
  • the analog value of the envelope on one side of the sound pressure waveform is digitized by sampling by the A / D converter Ady, and the sampling value is held in the memory My.
  • the sampling frequency of the A / D converter Ady can be about 100 Hz or more when the cutoff frequency of the low-pass filter Ly is 12 Hz.
  • the CPU (Cpy) reads and analyzes the digital value (voltage value) of the envelope on one side of the sound pressure waveform from the memory My, and detects the peak of the envelope.
  • the waveform Wa indicates the waveform of the envelope on one side of the above sound pressure waveform (“LPF output”)
  • the waveform Wb schematically shows a state in which the waveform Wa is sampled and digitized by the A / D converter Ady.
  • Shown in A waveform Wc shows a state in which a circled portion of the waveform Wb is enlarged.
  • the waveform Wc has a, b, c, d, e, f, g as voltage values of the digitized waveform, and the voltage difference between them is d1, d2, d3, d4, d5, d6, respectively.
  • the voltage value gradually rises while the voltage value is a, b, c, d, e, and the voltage differences d1, d2, d3, and d4 have positive values.
  • the voltage value e which is a peak
  • the voltage value of the waveform gradually decreases during the voltage values e, f, ⁇ g, and the voltage differences d5, d6 have negative values during that time.
  • the CPU detects the peak of the envelope on one side of the sound pressure waveform by detecting the change of the voltage difference of the waveform voltage value from positive to negative.
  • the CPU (Cpy) obtains the peak period of the envelope curve on one side of the detected sound pressure waveform, determines whether or not the obtained peak period of the envelope curve increases with time, and determines the determination result. Notify the control arbitration unit Cay.
  • the contents of the adjustment of the rotational speed of the magnetic disk performed by the control arbitration unit Cay in response to the determination result by the CPU (Cpy) will be described later with reference to FIGS. 9, 10A to 10C, 11, and 12A to 12K.
  • FIG. 4 is a block diagram illustrating a configuration of an information recording apparatus 200A according to the first modification of the information processing system according to the first embodiment described above with reference to FIGS. 2A, 2B, 3A, 3B, and 3C.
  • the analysis / control arbitration unit Ca0 and the non-volatile memory Mm0 included in the host computer 100 are included in the information recording apparatus 200A as the analysis / control arbitration unit Ca0 and the non-volatile memory Mm1 in the first modification.
  • the analysis / control arbitration unit Ca1 and the nonvolatile memory Mm1 can be configured similarly to the analysis / control arbitration unit Ca0 and the nonvolatile memory Mm0 of the first embodiment, respectively.
  • the magnetic disk device HDD-1 includes an analysis / control arbitration unit Ca1, a nonvolatile memory Mm1, a current control circuit Cc1, and a spindle motor Mo1.
  • the analysis / control arbitration unit Ca1 and the nonvolatile memory Mm1 have the same configurations and functions as the analysis / control arbitration unit Ca0 and the nonvolatile memory Mm0 in the first embodiment, respectively.
  • the magnetic disk device HDD-1 functions as a master for adjusting the rotation speed of each of the magnetic disk devices HDD-1 to HDD-n.
  • the spindle motor Mo1 and the current control circuit Cc1 have the same configuration and functions as the spindle motor Mo1 and the current control circuit Cc1 of the first embodiment.
  • Each of the other disk devices HDD-2 to HDD-n of the information recording apparatus 200A has the same configuration as the disk devices HDD-2 to HDD-n in the first embodiment.
  • the rotational speed of each magnetic disk (not shown) of the plurality of magnetic disk devices HDD-1 to HDD-n is analyzed and controlled by the magnetic disk device HDD-1 as a master. It is adjusted under the control of the arbitration unit Ca1.
  • the analysis / control arbitration unit Ca1 is built in the magnetic disk device HDD-1 included in the information recording device 200A. With such a configuration, the host computer 100 does not need to have an analysis / control arbitration unit, and versatility is improved.
  • FIG. 5 is a block diagram illustrating a configuration of an information processing system according to the second modification of the first embodiment.
  • the host computer 100 writes information to and reads information from the information recording apparatus 200, which is a separate body connected by an interface cable or the like.
  • the host computer 100A itself incorporates a plurality of magnetic disk devices HDD-1 to HDD-n included in the information recording device 200 shown in FIG. 2A.
  • the microphone 210 is preferably installed at a position in the host computer 100A where sound from each of the plurality of magnetic disk devices HDD-1 to HDD-n can be detected evenly.
  • the host computer 100A in FIG. 5 includes a CPU (Cpx), a memory Mmx, an analysis / control arbitration unit Ca0, and a nonvolatile memory Mm0.
  • the CPU (Cpx), the memory Mmx, the analysis / control arbitration unit Ca0, and the nonvolatile memory Mm0 are respectively the CPU (Cph), the memory Mmh, the analysis / control arbitration unit Ca0, and the host computer 100 shown in FIG.
  • the configuration is the same as that of the nonvolatile memory Mm0.
  • Each of the plurality of magnetic disk devices HDD-1 to HDD-n has the same configuration as the disk devices HDD-1 to HDD-n in the first embodiment.
  • the rotational speed of each magnetic disk (not shown) of the plurality of magnetic disk devices HDD-1 to HDD-n in the host computer 100A is analyzed and controlled in the host computer 100A. It is adjusted under the control of the arbitration unit Ca0.
  • the rotational speed detection circuit Rd compares the speed command signal received from the analysis / control arbitration unit with the speed feedback signal obtained from the spindle motor Sm (corresponding to the spindle motor Mo1).
  • the speed feedback signal is, for example, an index signal.
  • the index signal is a signal having one pulse generated every time the spindle motor Sm rotates once.
  • the speed command signal is a signal for controlling the rotation of the spindle motor Sm, which is output from the analysis / control arbitration unit (analysis / control arbitration unit Ca1 in the case of HDD-1 in FIG. 4). Is a signal having one pulse.
  • the rotation speed detection circuit Rd compares the pulse frequency of the speed command signal and the speed feedback signal, finds the difference between the rotation speed indicated by the speed command signal and the rotation speed of the spindle motor Sm indicated by the speed feedback signal. A signal indicating the number difference is output.
  • the rotation control circuit Rc outputs a control signal corresponding to the signal output from the rotation speed detection circuit Rd to the motor driver Md, thereby rotating the spindle motor Sm via the motor driver Md at the rotation speed indicated by the speed command signal. To control.
  • FIG. 7 is a block diagram showing the overall configuration of the magnetic disk device HDD applicable as each of the magnetic disk devices HDD-1 to HDD-n.
  • the magnetic disk device HDD has a buffer circuit Bf, a hard disk controller circuit Hd, a channel circuit Cn, a spindle motor current control circuit Sc, a voice coil motor current control circuit Vc, and a CPU (Cp).
  • the magnetic disk device HDD further includes a head amplifier circuit Ha, a spindle motor Sm, a voice coil motor Vm, a magnetic head Mh, and a magnetic disk Dc.
  • the buffer circuit Bf functions as a cache and exchanges data with the hard disk controller circuit Hd.
  • the hard disk controller circuit Hd performs cache control and interface control.
  • the channel circuit Cn receives write data from the hard disk controller circuit Hd and transmits read data to the hard disk controller circuit Hd.
  • the channel circuit Cn demodulates read data read from the magnetic disk Dc and modulates write data to be written to the magnetic disk Dc.
  • the head amplifier circuit Ha receives and amplifies the read signal read from the magnetic disk Dc from the magnetic head Mh, generates read data, and transmits the read data to the channel circuit Cn.
  • the head amplifier circuit Ha generates and amplifies a write signal from the write data received from the channel circuit Cn, and transmits it to the magnetic head Mh.
  • the magnetic head Mh detects a read signal from the magnetic disk Dc, transmits it to the head amplifier circuit Ha, and writes the write signal received from the head amplifier circuit Ha to the magnetic disk Dc.
  • the spindle motor current control circuit Sc generates a control current and outputs it to the spindle motor Sm, controls the spindle motor Sm, and receives a speed feedback signal from the spindle motor Sm.
  • the voice coil motor current control circuit Vc generates a control current and outputs it to the voice coil motor Vm, controls the voice coil motor Vm, and receives a speed feedback signal from the voice coil motor Vm.
  • the spindle motor Sm rotates the magnetic disk Dc.
  • the voice coil motor Vm drives the magnetic head Mh via a head arm (not shown), and performs a seek operation on the magnetic disk Dc.
  • the seek operation is an operation in which the magnetic head Mh is moved on the magnetic disk Dc to reach a desired track on the magnetic disk Dc.
  • FIG. 8 shows a configuration example of the magnetic disk device HDD-1 applicable as the magnetic disk device HDD-1 as the master in the first modification of the first embodiment.
  • the configuration in FIG. 8 is basically the same as the configuration of the magnetic disk device HDD in FIG. 7 described above, and the same components are denoted by the same reference numerals and redundant description is omitted.
  • the configuration of FIG. 8 is different from the configuration of FIG. 7 in that an analysis / control arbitration unit Ca1 and a nonvolatile memory Mm1 are added.
  • the analysis / control arbitration unit Ca1 is inserted between the CPU (Cp) and the spindle motor current control circuit Sc, and as described above, each of the magnetic disks of the plurality of magnetic disk devices HDD-1 to HDD-n. Adjust the rotation speed.
  • the non-volatile memory Mm1 is used for storing a rotational speed setting value to be described later.
  • the operation of adjusting the rotational speed of the magnetic disk by the control / arbitration unit Cay of the analysis / control arbitration unit Ca0 or Ca1 shown in FIG. 3B will be described.
  • the sound generated by the magnetic disk device may be due to a seek operation other than the spindle motor that rotates the magnetic disk. Therefore, it is desirable to eliminate the influence of the sound due to the seek operation unrelated to the operation of adjusting the rotational speed of the magnetic disk by the control arbitration unit Cay. Therefore, when measuring the beat sound for adjusting the rotational speed of the magnetic disk, the initialization time during which only the spindle motor rotates without performing the seek operation in each of the plurality of magnetic disk devices HDD-1 to HDD-n. Is provided.
  • the sound generated at the initialization time is detected by the microphone 210, and the analysis unit Say of the analysis / control arbitration unit Ca0 or Ca1 determines the peak period of the envelope of the composite waveform by the configuration described above with reference to FIGS. 3B and 3C. Ask.
  • the adjustment operation of the rotational speed of the magnetic disk by the control arbitration unit Cay is performed with a plurality of magnetic disk devices HDD-1 ⁇ HDD aiming at making the peak period of one envelope of the detected sound pressure waveform close to infinity.
  • the rotational speed of each magnetic disk of the HDD-n is adjusted.
  • the cause of the amplitude fluctuation of the detected sound pressure waveform is considered to be the mutual deviation of the rotational speeds of the magnetic disks of the plurality of magnetic disk devices HDD-1 to HDD-n. For this reason, control is performed so that the rotational speed of each magnetic disk approaches the average value of the rotational speeds of both.
  • two different magnetic disk devices are sequentially selected from a plurality of magnetic disk devices HDD-1 to HDD-n. Each time two magnetic disk devices are selected, control is performed so that the rotational speed of the magnetic disk between the two selected magnetic disk devices is close to the rotational speed obtained by averaging both rotational speeds. In this way, the selection operation of the two magnetic disk devices and the control of bringing the rotation speed of the magnetic disk to the average rotation speed for the two selected disks are repeated.
  • the rotational speed of the magnetic disks of all the magnetic disk devices gradually approaches the averaged rotational speed, and as a result, the synthesis of the sound emitted from all the magnetic disk devices The period of the peak of the sound envelope approaches infinity. As a result, beat noise is reduced.
  • the power supply of the information processing system is turned on (step S1).
  • the rotational speed of each of the magnetic disk devices HDD-1 to HDD-n reaches the steady rotational speed (step S2), the seek operation of each magnetic disk device is prohibited (initialization time).
  • the envelope peak period of the sound pressure waveform of the synthesized sound of the plurality of magnetic disk devices HDD-1 to HDD-n detected by the microphone 210 (hereinafter simply referred to as “envelope peak period”). Is obtained (step S3).
  • the envelope peak period for example, the method described above with reference to FIG. 3C can be employed.
  • step S4 two different units are sequentially selected from the plurality of magnetic disk devices HDD-1 to HDD-n, and a plurality of combinations of the two units are set (step S4).
  • the number (n) of magnetic disk devices is an even number
  • “number ⁇ n / 2” combinations are obtained.
  • a combination of “number ⁇ (n ⁇ 1) / 2” is obtained.
  • a set of magnetic disk devices is extracted from the combinations of magnetic disk devices thus set (step S5).
  • the rotational speed of one of the two magnetic disk devices belonging to the extracted combination is increased to a first predetermined rotational speed, for example, two (+2 [rpm]), and the rotational speed of the other magnetic disk device is set to the first. (2 [rpm]) (step S6).
  • a first predetermined rotational speed for example, two (+2 [rpm]
  • step S6 As a result, it is confirmed whether or not the envelope peak period has been extended (step S7). If the period of the peak of the envelope has not increased (NO in S7), the process proceeds to step S8.
  • step S8 it is confirmed whether the period of the peak of the envelope has been extended by switching the respective targets for increasing and decreasing the rotational speed of the magnetic disk between the two magnetic disk devices belonging to the combination ( It is determined whether or not steps S9, S6, S7) have been performed. If the subject has not yet been exchanged and it has not been confirmed whether the envelope peak period has been extended (NO in S8), the process proceeds to step S9.
  • step S9 the targets for increasing and decreasing the rotational speed of the magnetic disk are switched between the two magnetic disk devices belonging to the set of combinations (step S9). Then, the rotation speed of the magnetic disk is increased and decreased (step S6), and the process proceeds to step S7.
  • the envelope peak period of the synthesized sound of the sounds emitted from all the magnetic disk devices is The rotational speed setting value of the two magnetic disk devices in the above combination (step S12).
  • the rotation speed setting value refers to the rotation speed indicated by the speed command signal described above with reference to FIG.
  • the value stored last in the nonvolatile memory as the rotation speed setting value of each magnetic disk device is used as the final (optimal) rotation speed setting value of each magnetic disk device. In this way, the rotational speed setting value is set for each magnetic disk device.
  • step S7 If it is determined in step S7 that the period of the peak of the envelope has been extended (YES in S7), the rotational speed of the magnetic disk device whose rotational speed is increased (increased) in S6 is set to the second predetermined rotational speed.
  • the number of rotations of the magnetic disk device for example, increased by one rotation (+1 [rpm]) and decreased (decrease) in S6, is decreased by a second predetermined rotation number ( ⁇ 1 [rpm])
  • the number of rotations of the disk is finely adjusted (step S10). As a result, it is determined whether or not the envelope peak period has been extended (step S11).
  • step S12 If the envelope peak period has not been extended (NO in S11), it is determined that the envelope peak period of the synthesized sound of sounds generated from all the magnetic disk devices is the longest, and step S12 is executed. On the other hand, if it is determined in step S11 that the period of the peak of the envelope has been extended (YES in S11), the increase and decrease of the rotational speed of the magnetic disk in step S10 are executed again.
  • steps S6 and S10 the rotation speed of the magnetic disk of each magnetic disk device is increased and decreased within the range of the limit value of the predetermined rotation speed. This is to prevent the rotation speed of the magnetic disk of each magnetic disk device from exceeding the normal operating range of the magnetic disk device. Therefore, if steps S6 and S10 are performed and the range of the predetermined rotational speed limit value is exceeded, the rotational speed of the magnetic disk in the same step is not increased and decreased, and the process proceeds to the next step.
  • step S12 After execution of step S12, it is determined whether or not the operations of steps S6 to S12 have been completed for all combinations of magnetic disk devices obtained in step S4 (step S13). When the operations in steps S6 to S12 have been completed for all the combinations obtained in step S4 (YES in S13), it is determined whether or not all possible combinations of magnetic disk devices have been set in step S4 (step S4). S15). In other words, in step S15, it is determined whether or not the confirmation operations shown in S6 to S9 have been executed for all possible combinations of magnetic disk devices.
  • step S15 If it is determined in step S15 that all possible combinations of magnetic disks have been set in S4 (YES in S15), the operation in FIG. 9 (one cycle operation) is terminated. Thereafter, if necessary, the operation from step S4 is repeated as the operation of the next cycle.
  • step S13 if the operations in steps S6 to S12 have not been completed for all the combinations obtained in step S4 (NO in S13), a combination of other magnetic disk devices that has not yet been extracted is selected (step S13). S14). Then, the operation starting from step S6 is executed for the two magnetic disk devices belonging to the combination extracted in S14.
  • step S15 If it is determined in step S15 that not all possible combinations have been set in S4 (NO in S15), the combination is different from the combination of magnetic disk devices set in S4 and a new one that has not been set yet.
  • a combination of magnetic disk devices is set (step S16). Then, for the combination of the magnetic disk devices set in S16, the operation starting from Step S5 is executed.
  • step S16 the magnetic disk device is preferentially included in the new combination, with one magnetic disk device leaking from the combination of magnetic disk devices set in S4. It is desirable to set a combination of devices.
  • FIGS. 10A, 10B, 10C, and 11 a specific example of the operation of FIG. 9 will be described by taking the case of five magnetic disk devices as an example.
  • the first and second predetermined rotational speeds are predetermined values smaller than 1.
  • 10A to 10C and FIG. 11, # 1 to # 5 indicate magnetic disk devices, respectively.
  • FIG. 10A shows a total of two combinations of the magnetic disk devices in the first round: the combination of # 1, # 2 and the combination of # 3, # 4 among the five magnetic disk devices # 1 to # 5.
  • the example which set the combination is shown.
  • FIG. 10B shows an example in which a total of two combinations of # 2, # 3 and # 4, # 5, which are different from those in FIG. Show.
  • FIG. 10C shows a total of two combinations of # 1, # 3 and # 2, # 5, which are different from those of FIG. 10A and FIG. An example of setting is shown.
  • FIG. 11 shows changes in the rotational speeds of the five magnetic disk devices # 1 to # 5 (rated rotational speed: n) when the adjustment operation of FIG. 9 is performed.
  • Each numerical value shown in FIG. 11 indicates the number of rotations of a difference with respect to n rotations.
  • the rotational speeds of the five magnetic disk devices # 1 to # 5 are n + 2, n + 1, n, n ⁇ 1, and n ⁇ 2, respectively. .
  • the rotation speeds of the magnetic disks of the two magnetic disk devices in each combination are ideally adjusted.
  • the combination of # 1, # 3 and the combination of # 2, # 4 are set.
  • the rotational speeds of # 1 and # 3 are averaged to be n ⁇ 0.09375 and n ⁇ 0.09375.
  • the rotation speeds of # 2 and # 4 are averaged to be n + 0.03125 and n + 0.03125.
  • the operation of averaging two magnetic disks and averaging the rotational speeds of the magnetic disks is repeated while sequentially changing the combination of the two disks, so that the rotational speeds of the five magnetic disks are as a whole.
  • FIGS. 12A to 12K show the results of simulating the same operation as in FIG.
  • the examples of FIGS. 12A to 12K are examples in which the number of magnetic disk devices is three (HDD1, HDD2, HDD3).
  • FIG. 12A shows the sound pressure waveforms of the three magnetic disk devices in the upper row, and the lower row. Shows the synthesized wave (synthesized waveform) and the envelope of the synthesized waveform.
  • FIGS. 12B to 12K shows a synthesized wave (synthetic waveform) of sound pressure waveforms generated by three magnetic disk devices and an envelope of the synthesized waveform.
  • the “envelope of the composite waveform” may be simply referred to as “envelope”.
  • the circle at the top of each figure indicates the position of the envelope peak.
  • the envelope peak period (also referred to as “envelope period”) is also referred to as the envelope peak interval.
  • FIG. 12A shows the initial state.
  • the combination of HDD1 and HDD2 is set, the rotational speed of the magnetic disk of HDD1 is decreased, and the rotational speed of the magnetic disk of HDD2 is increased.
  • the peak period of the envelope was shortened. Therefore, in this case, it is determined that the rotational speed difference between the HDD 1 and the HDD 2 is widened, that is, the reverse of the averaging, and the targets of increase and decrease of the rotational speed of the magnetic disks of the HDD 1 and HDD 2 are switched. Contrary to the above operation, the rotational speed of the magnetic disk of the HDD 1 is increased and the rotational speed of the HDD 2 is decreased.
  • the rotational speed of the magnetic disk of HDD1 is decreased and the rotational speed of HDD2 is decreased so as to cancel the increase in the rotational speed of the magnetic disk of HDD1 and the decrease in the rotational speed of HDD2 performed immediately before. Raised. Then, the rotation speed setting values determined as the optimum values of the HDD 1 and HDD 2 in that state were stored in the nonvolatile memory.
  • the combination of the magnetic disk devices was changed, the combination of HDD2 and HDD3 was set, the rotational speed of the magnetic disk of HDD2 was increased, and the rotational speed of the magnetic disk of HDD3 was decreased.
  • FIG. 12F the period of the peak of the envelope expanded from the state of FIG. 12E. Therefore, in this case, it was determined that the difference in rotational speed between the HDD 2 and the HDD 3 was narrowed, and the rotational speed of the magnetic disk of the HDD 2 was further increased and the rotational speed of the HDD 3 was decreased.
  • FIG. 12G the period of the peak of the envelope further expanded from the state of FIG. 12F.
  • the combination of HDD1 and HDD3 was set by further changing the combination of magnetic disk devices.
  • the same operation as the combination of HDD1 and HDD2 is performed, and the rotational speed setting values of HDD1 and HDD3 in a state where it can be determined that the rotational speed difference between HDD1 and HDD3 is most reduced (FIG. 12H) (determined as the optimum value).
  • FOG. 12H the rotational speed setting values of HDD1 and HDD3 in a state where it can be determined that the rotational speed difference between HDD1 and HDD3 is most reduced
  • FIG. 12H the rotational speed setting values of HDD1 and HDD3 in a state where it can be determined that the rotational speed difference between HDD1 and HDD3 is most reduced
  • next cycle as in the first cycle, first, a combination of HDD1 and HDD2 was set. Then, the same operation as the first cycle is performed, and the rotational speed setting values (determined to be optimum values) of HDD1 and HDD2 in a state where it can be determined that the rotational speed difference between HDD1 and HDD2 is most reduced (FIG. 12I) are stored in the nonvolatile memory. did.
  • a combination of two of the three magnetic disk devices is set, and the number of rotations of the combined two magnetic disks is set to the sound of the synthesized sound generated from the three disks.
  • the pressure waveform is increased or decreased so that the peak period of the envelope is increased.
  • the operation of increasing / decreasing the rotational speed of the magnetic disk device is repeated while changing the combination of the two units sequentially.
  • the period of the peak of the envelope of the sound pressure waveform of the synthesized sound of the sounds generated from the three units gradually increases, and as a result, it is possible to effectively reduce the beat sound due to the amplitude fluctuation of the sound pressure waveform of the synthesized sound.
  • the adjustment operation described above with reference to FIGS. 9 to 12K is not limited to the initialization time when the power is turned on, but the information processing system of each of the first modification of the first embodiment and the first modification of the first embodiment and the second modification of the first embodiment. It can be implemented at any time during operation. In this case, as with the initialization time, it is desirable to prohibit the seek operation and eliminate noise caused by factors other than the spindle motor.
  • the adjustment operation described above with reference to FIGS. 9 to 12K is preferably performed when no command is issued to a plurality of magnetic disk devices for a certain period of time. As a result, the influence on the performance of the information processing system can be reduced to the minimum.
  • the rotation speed setting value of each magnetic disk device after adjustment is stored in the nonvolatile memory. ing. For this reason, when the information processing system is turned on again, the rotational speed setting value of each magnetic disk device stored in the nonvolatile memory is read, and the magnetic disk of the magnetic disk is matched with the read rotational speed setting value. The rotation speed is controlled. Therefore, the use is started in an optimum state.
  • the sensor circuit 210 of the first embodiment is not a microphone but is a vibration sensor instead.
  • the vibration sensor 210 detects the vibration of the housing (housing) or the pedestal (frame) of the information recording apparatus 200 that houses the plurality of magnetic disk devices HDD-1 to HDD-n.
  • the analysis / control arbitration unit Ca0 detects the vibration waveform detected by the vibration sensor 210 instead of the sound pressure waveform. 9 to 12K, the combination of the two units is sequentially extracted from the plurality of magnetic disk devices HDD-1 to HDD-n as in the first embodiment by the adjustment operation described above.
  • the fourth modification of the first embodiment is a modification corresponding to the first modification of the first embodiment, has the configuration described above with reference to FIG. 4, and includes a vibration sensor 210 instead of the microphone 210.
  • the vibration sensor 210 detects the vibration of the housing (housing) or pedestal (frame) of the information recording apparatus 200A that accommodates the plurality of magnetic disk devices HDD-1 to HDD-n.
  • the operation by the analysis / control arbitration unit Ca1 is the same as the operation by the analysis / control arbitration unit Ca0 in the third modification.
  • a fifth modification of the first embodiment is a modification corresponding to the second modification of the first embodiment, has the configuration described above with reference to FIG. 5, and includes a vibration sensor 210 instead of the microphone 210.
  • the vibration sensor 210 detects the vibration of the housing (housing) or pedestal (frame) of the host computer 100A that houses the plurality of magnetic disk devices HDD-1 to HDD-n.
  • the operation by the analysis / control arbitration unit Ca0 is the same as the operation by the analysis / control arbitration unit Ca0 in the third modification of the first embodiment.
  • the analysis / control arbitration unit Ca0 or Ca1 may be formed by an electronic circuit as hardware, or the CPU may It may be realized by executing a program.
  • the function of the analysis / control arbitration unit can be realized by the CPU (Cph) executing the program stored in the memory Mmh in the configuration of FIG. 2B (Example 1).
  • the CPU (Cp) (see FIG. 8) of the magnetic disk device HDD-1 executes the program stored in the memory Mm1, thereby realizing the function of the analysis / control arbitration unit. it can.
  • the function of the analysis / control arbitration unit can be realized by the CPU (Cpx) executing a program stored in the memory Mmx.
  • the information processing system according to the second embodiment includes a plurality of magnetic disk devices HDD-1 to HDD-n.
  • the rated rotational speeds of the respective magnetic disks of the plurality of magnetic disk devices coincide with each other (for example, 7200 [rpm]).
  • a rotation speed signal (also referred to as a speed command signal) is transmitted from the host computer to each of the plurality of magnetic disk devices HDD-1 to HDD-n.
  • Each of the plurality of magnetic disk devices HDD-1 to HDD-n receives the rotational speed signal and controls the rotational speed of its own magnetic disk so as to follow the rotational speed signal.
  • the host computer automatically generates the rotation speed of the magnetic disk indicated by the rotation speed signal.
  • FIG. 13 is a block diagram illustrating a configuration of the information processing system according to the second embodiment.
  • the information processing system according to the second embodiment includes a host computer 100X and an information recording device 200XA having a plurality of magnetic disk devices HDD-1 to HDD-n.
  • FIG. 14A is a block diagram showing a configuration of the magnetic disk device HDD-1 shown in FIG. 13, and FIG. 14B is a block diagram showing a configuration of the host computer 100X1.
  • the magnetic disk device HDD-1 has a current control circuit Cc1 and a spindle motor Mo1.
  • These current control circuit Cc1 and spindle motor Mo1 have the same configuration as the current control circuit Cc1 and spindle motor Mo1 of the magnetic disk device HDD-1 of the first embodiment described above with reference to FIG. 3A.
  • the other magnetic disk devices HDD-2 to HDD-n have the same configuration as HDD-1 shown in FIG. 14A.
  • each magnetic disk device has a function of outputting a signal specifying the rotational speed of its own magnetic disk to the host computer 100X1.
  • a signal for specifying the rotation speed of its own magnetic disk can be a speed feedback signal (for example, an index signal) described later with reference to FIG.
  • Each magnetic disk device has a function of controlling the rotation speed of its own magnetic disk based on a rotation speed signal (speed command signal in FIG. 17) transmitted from the host computer 100X1.
  • the host computer 100X1 includes a rotation speed signal analysis unit Ra0 and a rotation speed signal generation unit Sg0 in addition to the CPU (Cph) and the memory Mmh.
  • the CPU (Cph) and the memory Mmh have the same configuration as the CPU (Cph) and the memory Mmh described above with reference to FIG. 2B.
  • the rotation speed signal analysis unit Ra0 receives and analyzes a signal specifying the rotation speed transmitted from each magnetic disk device.
  • the rotation speed signal generation unit Sg0 generates a rotation speed signal to be transmitted to each magnetic disk device according to the analysis result by the rotation speed signal analysis unit Ra0.
  • the rotation speed signal analysis unit Ra0 and the rotation speed signal generation unit Sg0 may be provided in any one of the magnetic disk devices of the information recording device 200XA instead of being provided in the host computer 100X1.
  • the magnetic disk device HDD-1 functions as a master, and other magnetic disk devices together with the rotation speed of its own magnetic disk.
  • the rotational speed of each magnetic disk of HDD-2 to HDD-n is also adjusted.
  • the rotation speed signal analysis unit Ra0 and the rotation speed signal generation unit Sg0 may each be formed by an electronic circuit as hardware, or the CPU (Cph) of the host computer 100X1 executes a program stored in the memory Mmh. It may be realized by. The operation flow of the second embodiment will be described later with reference to FIG.
  • 15A and 15B are block diagrams showing the configuration of the information processing system according to the first modification of the second embodiment.
  • the first modification of the second embodiment differs from the second embodiment described above with reference to FIGS. 13, 14A, and 14B in that the operator (operator) determines the number of rotations of the magnetic disk of each magnetic disk device. is there.
  • the host computer 100X2 includes a rotation speed signal generation unit Sg01 instead of the rotation speed signal generation unit Sg0 and the rotation speed signal analysis unit Ra0 in FIGS. 14A and 14B.
  • the CPU (Cph) and the memory Mmh in the host computer X2 have the same configuration as the CPU (Cph) and the memory Mmh described above with reference to FIG. 2B.
  • the rotation speed signal generation unit Sg01 generates a rotation speed signal indicating the input rotation speed according to the rotation speed of the magnetic disk input by the operator, and transmits it to each magnetic disk device.
  • the operation flow of the first modification of the second embodiment will be described later with reference to FIG.
  • the rotation speed signal generation unit Sg01 may be formed by an electronic circuit as hardware, or may be realized by the CPU (Cph) of the host computer 100X2 executing a program stored in the memory Mmh.
  • FIG. 16A is a block diagram illustrating a configuration of an information processing system according to the second modification of the second embodiment.
  • a plurality of magnetic disk devices HDD-1 to HDD-n are provided in the housing (housing) of the host computer 100XD. It has been.
  • the host computer 100XD according to the modified example 2 has a rotational speed signal having the same configuration as the rotational speed signal generation unit Sg0 and the rotational speed signal analysis unit Ra0 included in the host computer 100X1 of the second embodiment described above with reference to FIGS. 14A and 14B.
  • a generation unit Sg0 and a rotation speed signal analysis unit Ra0 are included.
  • the operations of the rotation speed signal generation unit Sg0 and the rotation speed signal analysis unit Ra0 are the same as those in the second embodiment described above with reference to FIGS. 13, 14A, and 14B.
  • the operation flow of the second modification of the second embodiment will be described later with reference to FIG.
  • the rotation speed signal generation unit Sg0 may be formed by an electronic circuit as hardware, or may be realized by executing a program stored in the memory Mmh by the CPU (Cph) of the host computer 100XD.
  • FIG. 16B is a block diagram illustrating a configuration of an information processing system according to the third modification of the second embodiment.
  • the third modification of the second embodiment as in the second modification of the first embodiment described above with reference to FIG. 5, a plurality of magnetic disk devices HDD-1 to HDD-n are provided in the housing (housing) of the host computer 100XE. It has been.
  • the host computer 100XE of the third modified example has a rotational speed signal generating unit Sg01 having the same configuration as the rotational speed signal generating unit Sg01 of the host computer 100X2 of the first modified example of the second embodiment described above with reference to FIGS. 15A and 15B.
  • the operation of the rotation speed signal generation unit Sg01 is the same as that in the first modification of the second embodiment described above with reference to FIGS. 15A and 15B.
  • the operation flow of the third modification of the second embodiment will be described later with reference to FIG.
  • the rotation speed signal generation unit Sg01 may be formed by an electronic circuit as hardware, or may be realized by executing a program stored in the memory Mmh by the CPU (Cph) of the host computer 100XE.
  • FIG. 17 is a block diagram illustrating a configuration example of a current control circuit of a magnetic disk device applicable to each of the second embodiment, the first modification of the second embodiment, the second modification of the second embodiment, and the third modification of the second embodiment.
  • FIG. The current control circuit Cc in FIG. 17 has substantially the same configuration as the current control circuit Cc of the magnetic disk device described above with reference to FIG. In FIG. 17, the same components as those in FIG. 6 are denoted by the same reference numerals, and redundant description is omitted.
  • the difference between the configuration of FIG. 17 and FIG. 6 is that a speed command signal generation circuit Ss is provided.
  • the speed command signal generation circuit Ss generates a speed command signal indicating the fixed number of rotations and supplies it to the rotation speed detection circuit Rd.
  • the speed command signal is also given as a rotational speed signal from the rotational speed signal generation unit Sg0 or Sg01.
  • the rotation speed detection circuit Rd receives the signal from the rotation speed signal generation unit Sg0 or Sg01. It has a switching function to select.
  • the speed command signal is generated by the speed command signal. It is input from both the circuit Ss and the rotation speed signal generator Sg0 or Sg01. Further, the entire configuration of the magnetic disk device applicable in each of the second embodiment, the first modification of the second embodiment, the second modification of the second embodiment, and the third modification of the second embodiment is the magnetic disk described above with reference to FIG. It can be the same as that described as the apparatus.
  • each magnetic disk device is activated.
  • the rotation of each magnetic disk is controlled by the speed command signal generated by the speed command signal generation circuit Ss.
  • each magnetic disk device transmits a signal for specifying the rotational speed of the magnetic disk to the rotational speed signal analysis unit Ra0.
  • the rotational speed signal analysis unit Ra0 receives a signal specifying the rotational speed of the magnetic disk from each magnetic disk device (step S32).
  • the rotation speed signal analysis unit Ra0 determines the current rotation speed of each magnetic disk of each magnetic disk device from the received signal, and transmits the calculated rotation speed to the rotation speed signal generation unit Sg0.
  • the rotational speed signal generator Sg0 When the rotational speed signal generator Sg0 receives the information on the rotational speeds of the respective magnetic disks from the rotational speed signal analyzer Ra0, the rotational speed signal generator Sg0 obtains the average of the rotational speeds of the magnetic disks of all the magnetic disk devices (step S33).
  • the rotational speed signal generation unit Sg0 generates a rotational speed signal indicating the obtained average rotational speed, and transmits it to each magnetic disk device as a speed command signal (step S34).
  • the rotational speed detection circuit Rd of the current control circuit Cc of each magnetic disk device receives the speed command signal from the rotational speed signal generation unit Sg0, it selects the speed command signal from the rotational speed signal generation unit Sg0 by the switching function. Transition to.
  • the current control circuit Cc of each magnetic disk device indicates a speed command signal (rotational speed signal) indicating the average rotational speed of all the magnetic disk devices instead of the speed command signal from the speed command signal generation circuit Ss. It controls to rotate its own magnetic disk at the rotational speed (step S35).
  • the speed command signal indicating the average rotation speed of the magnetic disks of all the magnetic disk apparatuses is transmitted from the rotation speed signal generation unit Sg0 to each magnetic disk apparatus. Sent.
  • Each magnetic disk device controls the rotation of its own magnetic disk in accordance with the speed command signal.
  • the rotation of the magnetic disk of each magnetic disk device is controlled by the speed command signal indicating the average number of rotations of all the magnetic disk devices.
  • the rotational speed indicated by the speed command signal generated by the speed command signal generation circuit Ss of each of the plurality of magnetic disk devices has a deviation between the magnetic disk devices for some reason.
  • the plurality of magnetic disk devices control the rotation of the magnetic disk by the speed command signal related to the generation of the speed command signal generation circuit Ss mounted on the magnetic disk device, the rotational speed deviation indicated by the speed command signal is shifted. Accordingly, a deviation occurs between the rotational speeds of the respective magnetic disks.
  • each magnetic disk device is controlled by the speed command signal indicating the average rotation speed of each magnetic disk device. Therefore, each magnetic disk of the plurality of magnetic disk devices starts to rotate at a rotational speed that matches the average rotational speed of all the disk devices, and a beat sound due to the rotational speed deviation between the respective magnetic disk devices is generated. It can be effectively reduced.
  • the reason why the rotation speed indicated by the speed command signal for controlling each magnetic disk device is the average rotation speed of all the magnetic disk devices is as follows. If control is performed such that the rotational speed of any one of the plurality of magnetic disk devices HDD-1 to HDD-n is combined with the rotational speed of each of the other magnetic disk devices, the arbitrary one In the unlikely event that the magnetic disk device has a rotational speed that is extremely biased, it is assumed that each of the other magnetic disk devices cannot follow.
  • the information processing system is powered on (step S41), each magnetic disk device is activated, and the operator inputs the rotation speed of the magnetic disk. (Step S42).
  • the rotation speed signal generation unit Sg01 calculates a period corresponding to the frequency indicating the rotation speed based on the input rotation speed of the magnetic disk (step S43).
  • the rotation speed signal generation unit Sg01 generates a rotation speed signal having the calculated period and transmits it as a speed command signal to each magnetic disk device (step S34).
  • the rotational speed signal generator Sg01 When the rotational speed detection circuit Rd of the current control circuit Cc of each magnetic disk device receives a speed command signal indicating the rotational speed input by the operator from the rotational speed signal generator Sg01, the rotational speed signal generator Sg01 is switched by the switching function. Transitions to a state in which the speed command signal from is selected. As a result, the current control circuit Cc of each magnetic disk device has its own rotational speed indicated by the speed command signal indicating the rotational speed related to the input by the operator, instead of the speed command signal from the speed command signal generation circuit Ss. The magnetic disk is controlled to rotate (step S35).
  • the speed command signal indicating the rotation speed input by the operator is transmitted from the rotation speed signal generation unit Sg01 to each magnetic disk device.
  • the Each magnetic disk device performs control to rotate its own magnetic disk at the rotational speed input by the operator.
  • each magnetic disk device is controlled to rotate at the rotational speed input by the operator, so that the magnetic disks of the plurality of magnetic disk devices HDD-1 to HDD-n rotate at the same rotational speed. It becomes like this. Therefore, the beat sound due to the rotational speed deviation between the respective magnetic disk devices is effectively reduced.

Landscapes

  • Rotational Drive Of Disk (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

Disclosed is an information processing device comprising a plurality of disk devices for recording and replaying information, a detection unit for detecting sound or vibration of the plurality of disk devices, and a control unit which alternately repeats a selection operation and an adjustment operation, wherein the selection operation selects two devices from the plurality of disk devices, and the adjustment operation increases the number of revolutions of one of the two disk devices and decreases the number of revolutions of the other disk device so that the cycle of the envelope waveform of the sound or vibration can be extended with respect to the plurality of disk devices detected by the detection device.

Description

情報記録装置、情報処理装置、ディスク装置の制御方法及びディスク装置の制御プログラムInformation recording apparatus, information processing apparatus, disk apparatus control method, and disk apparatus control program
 本発明は、情報記録装置、情報処理装置、ディスク装置の制御方法及び制御プログラムに係る。本発明は例えば、複数台のディスク装置を有する情報記録装置及び情報処理装置、並びに複数台のディスク装置の制御方法及び制御プログラムに関する。 The present invention relates to an information recording device, an information processing device, a disk device control method, and a control program. The present invention relates to, for example, an information recording apparatus and an information processing apparatus having a plurality of disk devices, and a control method and a control program for the plurality of disk devices.
 ディスク状記録媒体を複数の回転数で回転駆動するモータを有し、振動センサの出力によって複数の回転数の内の1つを設定する制御によってハードディスク装置から生じる振動、騒音、発熱等の低減を図る技術が知られている。 It has a motor that drives the disk-shaped recording medium at multiple rotational speeds, and controls vibration, noise, heat generation, etc. generated from the hard disk device by controlling one of the multiple rotational speeds according to the output of the vibration sensor. Technology to plan is known.
 また、ディスクアレイ装置において、同期信号線の接続を切り換えることによって同一の回転数を有するディスク装置の同期信号線のみを互いに接続可能とする技術が知られている。 Also, in the disk array device, a technique is known in which only the synchronization signal lines of the disk devices having the same rotation speed can be connected to each other by switching the connection of the synchronization signal lines.
特開2006-24326号公報JP 2006-24326 A 特開2001-100941号公報Japanese Patent Laid-Open No. 2001-1000094
 複数台のディスク装置の運転時の騒音を効果的に減少し得る構成を提供することが目的である。 It is an object to provide a configuration that can effectively reduce noise during operation of a plurality of disk devices.
 複数台のディスク装置のうちから2台ずつ選択し、その都度、複数台のディスク装置の音または振動の波形の包絡線の周期が伸びるように、2台のディスク装置の一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させる動作を繰り返す制御を行う。 Rotation of one of the two disk devices is selected such that two cycles are selected from the plurality of disk devices and the period of the envelope of the sound or vibration waveform of the plurality of disk devices is extended each time. Control is repeated to increase the number and decrease the rotational speed of the other disk device.
 簡易な構成により、複数台のディスク装置の運転時の騒音を効果的に減少させることが可能である。 簡易 With a simple configuration, it is possible to effectively reduce noise during operation of multiple disk units.
磁気ディスク装置の騒音について説明するための図である。It is a figure for demonstrating the noise of a magnetic disc unit. 本発明の実施例1による、複数台の磁気ディスク装置の騒音の低減方法の概念について説明するための図(その1)である。FIG. 3 is a diagram (part 1) for explaining a concept of a noise reduction method for a plurality of magnetic disk devices according to the first embodiment of the present invention; 本発明の実施例1による、複数台の磁気ディスク装置の騒音の低減方法の概念について説明するための図(その2)である。FIG. 6 is a diagram (No. 2) for explaining the concept of the noise reduction method for the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の騒音の低減方法の概念について説明するための図(その3)である。FIG. 6 is a diagram (No. 3) for explaining the concept of the noise reduction method for the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理システムの構成例を示すブロック図(その1)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram (No. 1) showing a configuration example of an information processing system that automatically implements a method for adjusting the rotational speed of a plurality of magnetic disk devices according to Embodiment 1 of the present invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理システムの構成例を示すブロック図(その2)である。FIG. 6 is a block diagram (No. 2) illustrating a configuration example of an information processing system that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報記録装置の構成例を示す図(その1)である。It is FIG. (1) which shows the structural example of the information recording device which implements automatically the method of adjusting the rotation speed of the several magnetic disc apparatus by Example 1 of this invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報記録装置の構成例を示す図(その2)である。FIG. 6 is a diagram (No. 2) illustrating a configuration example of an information recording device that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報記録装置の構成例を示す図(その3)である。FIG. 6 is a diagram (No. 3) illustrating a configuration example of an information recording apparatus that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1の変形例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing system which automatically implements the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 1 of Example 1 of this invention. 本発明の実施例1の変形例2による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing apparatus which automatically implements the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 2 of Example 1 of this invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施することを可能にするハードディスク装置の構成例について説明するための図(その1)である。FIG. 6 is a diagram (No. 1) for explaining a configuration example of a hard disk device that enables automatic execution of a method for adjusting the rotational speed of a plurality of magnetic disk devices according to Embodiment 1 of the present invention; 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施することを可能にするハードディスク装置の構成例について説明するための図(その2)である。FIG. 6 is a diagram (No. 2) for explaining the configuration example of the hard disk device that enables the method of adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the present invention to be automatically performed; 本発明の実施例1の変形例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する機能を実現するために要されるハードディスク装置の構成例について説明するための図である。For explaining a configuration example of a hard disk device required to realize a function of automatically executing a method of adjusting the rotational speed of a plurality of magnetic disk devices according to a first modification of the first embodiment of the present invention. FIG. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法の流れを説明するためのフローチャートである。5 is a flowchart for explaining a flow of a method for adjusting the rotational speed of a plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法の具体例について説明するための図(その1)である。FIG. 5 is a diagram (No. 1) for describing a specific example of the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention; 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法の具体例について説明するための図(その2)である。FIG. 6 is a diagram (No. 2) for describing the specific example of the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法の具体例について説明するための図(その3)である。FIG. 6 is a diagram (No. 3) for explaining the specific example of the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法の具体例について説明するための図(その4)である。FIG. 6 is a diagram (No. 4) for explaining the specific example of the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その1)である。FIG. 6 is a diagram (No. 1) for explaining an example of a specific procedure in the method for adjusting the rotation speed of a plurality of magnetic disk devices according to the first embodiment of the invention; 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その2)である。FIG. 8 is a diagram (No. 2) for explaining an example of a specific procedure in the method for adjusting the rotational speeds of the plurality of magnetic disk devices according to the first embodiment of the invention; 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その3)である。FIG. 7 is a diagram (No. 3) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention; 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その4)である。FIG. 8 is a diagram (No. 4) for explaining an example of a specific procedure in the method for adjusting the rotational speeds of the plurality of magnetic disk devices according to the first embodiment of the invention; 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その5)である。FIG. 8 is a diagram (No. 5) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その6)である。FIG. 6 is a diagram (No. 6) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その7)である。FIG. 7 is a view (No. 7) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その8)である。FIG. 10 is a diagram (No. 8) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その9)である。FIG. 9 is a diagram (No. 9) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention. 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その10)である。FIG. 10 is a diagram (No. 10) for explaining an example of a specific procedure in the method for adjusting the rotation speed of the plurality of magnetic disk devices according to the first embodiment of the invention; 本発明の実施例1による、複数台の磁気ディスク装置の回転数を調整する方法における具体的な手順の一例について説明するための図(その11)である。(11) for demonstrating an example of the specific procedure in the method of adjusting the rotation speed of the some magnetic disc unit by Example 1 of this invention. 本発明の実施例2による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理システムの構成例を示すブロック図(その1)である。FIG. 6 is a block diagram (No. 1) illustrating a configuration example of an information processing system that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to a second embodiment of the present invention. 本発明の実施例2による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理システムの構成例を示すブロック図(その2)である。FIG. 10 is a block diagram (No. 2) illustrating a configuration example of an information processing system that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to a second embodiment of the present invention. 本発明の実施例2による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理システムの構成例を示すブロック図(その3)である。FIG. 10 is a block diagram (No. 3) illustrating a configuration example of an information processing system that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to a second embodiment of the invention. 本発明の実施例2の変形例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理システムの他の構成例を示すブロック図(その1)である。FIG. 11 is a block diagram (No. 1) showing another configuration example of an information processing system that automatically performs a method of adjusting the rotation speed of a plurality of magnetic disk devices according to a first modification of the second embodiment of the present invention. 本発明の実施例2の変形例1による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理システムの他の構成例を示すブロック図(その2)である。FIG. 10 is a block diagram (No. 2) showing another configuration example of the information processing system that automatically performs the method of adjusting the rotation speed of the plurality of magnetic disk devices according to the first modification of the second embodiment of the present invention. 本発明の実施例2の変形例2による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing apparatus which automatically implements the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 2 of Example 2 of this invention. 本発明の実施例2の変形例3による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施する情報処理装置の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the information processing apparatus which automatically implements the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 3 of Example 2 of this invention. 本発明の実施例2、実施例2の変形例1、実施例2の変形例2及び実施例2の変形例3による、複数台の磁気ディスク装置の回転数を調整する方法を自動的に実施することを可能にするハードディスク装置の構成例について説明するための図である。The method for adjusting the rotational speed of a plurality of magnetic disk devices according to the second embodiment, the first variation of the second embodiment, the second variation of the second embodiment, and the third variation of the second embodiment is automatically implemented. It is a figure for demonstrating the structural example of the hard disk device which enables it to do. 本発明の実施例2及び実施例2の変形例2による、複数台の磁気ディスク装置の回転数を調整する方法の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the method of adjusting the rotation speed of the several magnetic disc apparatus by the modification 2 of Example 2 and Example 2 of this invention. 本発明の実施例2の変形例1及び実施例2の変形例3による、複数台の磁気ディスク装置の回転数を調整する方法の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the method of adjusting the rotation speed of several magnetic disk apparatus by the modification 1 of Example 2 of this invention, and the modification 3 of Example 2. FIG.
 以下に本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 複数台の磁気ディスク装置を搭載する情報記録装置もしくは情報処理装置、或いは当該情報記録装置或いは情報処理装置を含む情報処理システムを想定する。更に、複数台の磁気ディスク装置の夫々のディスク状磁気記録媒体(以下単に磁気ディスクと称する)の回転数に相互にズレが生ずる状況を想定する。尚、設計上は複数台の磁気ディスク装置の夫々の磁気ディスクの定格回転数は相互に一致(例えば7200[rpm])しているものとする。しかしながら、様々な要因により、複数台の磁気ディスク装置の回転数を相互に厳密に一致させることは困難と考えられる。 Suppose an information recording device or information processing device equipped with a plurality of magnetic disk devices, or an information processing system including the information recording device or information processing device. Furthermore, a situation is assumed in which the rotational speeds of the respective disk-shaped magnetic recording media (hereinafter simply referred to as magnetic disks) of the plurality of magnetic disk devices are shifted from each other. In the design, it is assumed that the rated rotational speeds of the respective magnetic disks of the plurality of magnetic disk devices coincide with each other (for example, 7200 [rpm]). However, due to various factors, it is considered difficult to make the rotational speeds of a plurality of magnetic disk devices exactly coincide with each other.
 複数台の磁気ディスク装置の夫々の磁気ディスクの回転数のズレにより、複数台の磁気ディスク装置が発する音(合成音)の波形の振幅変動が生じ、当該振幅変動が騒音(いわゆる「うなり音」)となる場合が想定される。うなり音とは、音の強弱が繰り返される態様の音を言う。また、磁気ディスク装置では、磁気ディスクを高速で回転させて磁気ディスクに対する情報の記録または磁気ディスクからの情報の再生を行うため、磁気ディスクの回転によって振動が発生する場合が想定される。複数台のディスク装置の磁気ディスクの回転数のズレにより複数台のディスク装置の振動の波形に振幅変動が生ずると、周期的な騒音、つまりうなり音が生ずる場合が想定される。 Variations in the rotational speed of the magnetic disks of the plurality of magnetic disk devices cause amplitude fluctuations in the waveform of the sound (synthetic sound) emitted by the plurality of magnetic disk apparatuses, and the amplitude fluctuations are noise (so-called “beat sound”). ) Is assumed. A roaring sound is a sound in which the intensity of the sound is repeated. Further, in the magnetic disk device, since the magnetic disk is rotated at a high speed to record information on the magnetic disk or to reproduce information from the magnetic disk, it is assumed that vibration occurs due to the rotation of the magnetic disk. When amplitude fluctuations occur in the vibration waveform of the plurality of disk devices due to the deviation of the rotational speeds of the magnetic disks of the plurality of disk devices, it may be assumed that periodic noise, that is, beat noise, is generated.
 以下に図1Aとともに音または振動の波形の振幅変動の発生について説明する。図1A中、上段に示す「HDD#1騒音」及び「HDD#2騒音」の夫々の波形は、2台の磁気ディスク装置の夫々が発する音或いは振動の波形を示す。両波形とも、各々単独では振幅が一定で安定している。しかしながら両波形の周波数が相互に微妙に異なる場合、図1A中、下段に示す合成波形(「合成騒音」)の振幅は周期的に変動し、いわゆる「うなり音」が生ずることが分かる(図1Aに図示した「合成波形の包絡線」参照)。尚、上記両波形の周波数は夫々対応する2台の磁気ディスク装置の回転数に対応しており、うなり音の要因は2台の磁気ディスク装置の回転数に差が生じるためと考えることができる。 Hereinafter, the occurrence of amplitude fluctuations in the sound or vibration waveform will be described with reference to FIG. 1A. In FIG. 1A, the waveforms of “HDD # 1 noise” and “HDD # 2 noise” shown in the upper part indicate waveforms of sound or vibration generated by each of the two magnetic disk devices. Both waveforms are stable with a constant amplitude. However, when the frequencies of the two waveforms are slightly different from each other, it can be seen that the amplitude of the synthesized waveform (“synthetic noise”) shown in the lower stage in FIG. 1A periodically varies, and so-called “beat noise” is generated (FIG. 1A). (See “Synthetic Waveform Envelope”). Note that the frequencies of the two waveforms correspond to the rotation speeds of the two corresponding magnetic disk devices, respectively, and the cause of the roaring sound can be considered as a difference in the rotation speeds of the two magnetic disk devices. .
 このような騒音を低減するための方法として、例えば磁気ディスク装置を収容する筐体(ハウジング)の機械的強度を上げる方法、磁気ディスクの基本回転数が近い磁気ディスク装置同士を組み合わせて使用する方法等が考えられる。 As a method for reducing such noise, for example, a method of increasing the mechanical strength of a housing (housing) that accommodates a magnetic disk device, or a method of using a combination of magnetic disk devices having similar basic rotational speeds of magnetic disks. Etc. are considered.
 本発明の実施例1では、複数台のディスク装置の音(合成音)または振動(合成振動)を測定し、測定結果を分析し、分析結果に基づいて複数台のディスク装置の夫々の磁気ディスクの回転数を調整することにより、うなり音を低減する。より具体的には、複数台のディスク装置の磁気ディスクの回転数間の差を縮める制御を行うことで、うなり音を低減する。 In Embodiment 1 of the present invention, sound (synthetic sound) or vibration (synthetic vibration) of a plurality of disk devices is measured, a measurement result is analyzed, and each magnetic disk of the plurality of disk devices is analyzed based on the analysis result. By adjusting the number of rotations, the beat noise is reduced. More specifically, beat noise is reduced by performing control to reduce the difference between the rotational speeds of the magnetic disks of a plurality of disk devices.
 図1B,1C,1Dとともに、本発明の実施例1による、複数台のディスク装置の磁気ディスクの回転数間の差を縮める制御を行う方法について説明する。図1B,1C,1Dの各々は、図1A同様、上段にHDD#1騒音の波形及びHDD#2騒音の波形を示し、下段に合成騒音の波形及び合成騒音の波形(合成波形)の包絡線を示す。ここで図1Bは図1Aと同様の状態を示し、図1B,1C,1Dの順で、2台の磁気ディスク装置間の磁気ディスクの回転数の差が徐々に縮まり、図1Dの状態は、2台の磁気ディスク装置間の磁気ディスクの回転数の差が零である。合成波形(「合成騒音」)の振幅の変動周期(合成波形の包絡線のピークの周期)は、図1B,1C,1Dの順で徐々に伸び、図1Dの状態では、合成波形の包絡線のピークの周期が無限大である。すなわち2台の磁気ディスク装置間の回転数の差が縮まるにつれて合成波形の包絡線のピークの周期が伸び、その結果うなり音が低減される。2台の磁気ディスク装置間で回転数が一致すると(図1Dの状態)、合成波形の振幅変動は解消し、うなり音が消滅する。 1B, 1C, and 1D, a method for performing control for reducing the difference between the rotational speeds of the magnetic disks of the plurality of disk devices according to the first embodiment of the present invention will be described. Each of FIGS. 1B, 1C, and 1D shows the waveform of the HDD # 1 noise and the waveform of HDD # 2 noise in the upper stage, and the envelope of the synthesized noise waveform and the synthesized noise waveform (synthetic waveform) in the lower stage, as in FIG. 1A. Indicates. Here, FIG. 1B shows the same state as FIG. 1A, and the difference in the rotational speed of the magnetic disk between the two magnetic disk devices is gradually reduced in the order of FIGS. 1B, 1C, and 1D. The difference in the rotational speed of the magnetic disk between the two magnetic disk devices is zero. The amplitude fluctuation period of the composite waveform (“synthetic noise”) (the peak period of the envelope of the composite waveform) gradually increases in the order of FIGS. 1B, 1C, and 1D. In the state of FIG. 1D, the envelope of the composite waveform The peak period is infinite. That is, as the rotational speed difference between the two magnetic disk devices is reduced, the peak period of the envelope of the composite waveform is extended, and as a result, the beat sound is reduced. When the rotation speeds coincide between the two magnetic disk devices (the state shown in FIG. 1D), the amplitude fluctuation of the synthesized waveform is eliminated and the beat sound disappears.
 本発明の実施例1では、複数台の磁気ディスク装置によって生ずる騒音或いは振動を検出して分析し、騒音または振動の波形、つまり合成波形の包絡線のピークの周期を伸ばす制御を行うことにより、うなり音を低減する。 In the first embodiment of the present invention, noise or vibration generated by a plurality of magnetic disk devices is detected and analyzed, and control is performed to extend the period of the peak of the envelope of the noise or vibration, that is, the composite waveform, Reduces roaring noise.
 このように本発明の実施例1によれば、複数台の磁気ディスク装置を搭載した情報記録装置或いは情報処理装置で生じている音或いは振動をモニタしながら、当該複数台の磁気ディスク装置が夫々有する磁気ディスクの回転数を調整する。磁気ディスクの回転数調整の結果、複数台の磁気ディスク装置間の磁気ディスクの回転数のズレによる騒音または振動に起因するうなり音の低減を図ることができる。 As described above, according to the first embodiment of the present invention, each of the plurality of magnetic disk devices is monitored while monitoring the sound or vibration generated in the information recording device or information processing device equipped with the plurality of magnetic disk devices. The rotational speed of the magnetic disk is adjusted. As a result of adjusting the rotational speed of the magnetic disk, it is possible to reduce noise caused by deviations in the rotational speed of the magnetic disk between a plurality of magnetic disk devices or beat noise caused by vibration.
 尚、本発明の実施例1を適用することができる情報記録装置及び情報処理装置の例として、パーソナルコンピュータ、サーバ、録画装置等が挙げられる。 Note that examples of the information recording apparatus and the information processing apparatus to which the first embodiment of the present invention can be applied include a personal computer, a server, and a recording apparatus.
 以下、図とともに本発明の実施例1について説明する。図2Aは本発明の実施例1による情報処理システムの構成例を示すブロック図である。図2Aに示す情報処理システムは、例えばインタフェースケーブル等によって相互に接続されたホストコンピュータ100及び情報記録装置200を有する。ホストコンピュータ100は情報記録装置200に対する情報の書き込み及び情報記録装置200からの情報の読み出しを行いながら、当該情報を使用した情報処理を行う。 Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 2A is a block diagram illustrating a configuration example of the information processing system according to the first embodiment of the present invention. The information processing system illustrated in FIG. 2A includes a host computer 100 and an information recording device 200 that are connected to each other by, for example, an interface cable. The host computer 100 performs information processing using the information while writing information to the information recording apparatus 200 and reading information from the information recording apparatus 200.
 情報記録装置200は、一つの筐体(ハウジング)内に複数台の磁気ディスク装置HDD-1,HDD-2,...,HDD-nを収容し、いわゆるディスクアレイの形態を有する。ホストコンピュータ100は、情報記録装置200の複数台の磁気ディスク装置HDD-1~HDD-nに対する情報の書き込み、及び複数台の磁気ディスク装置HDD-1~HDD-nからの情報の読み出しを行うことができる。情報記録装置200はセンサ回路210を有する。実施例1の場合、センサ回路210は複数台の磁気ディスク装置HDD-1~HDD-nからの騒音を検出するマイクロホンである。マイクロホン210は、複数台の磁気ディスク装置HDD-1~HDD-nの夫々からの音を均等に検出可能な位置に設置することが望ましい。 The information recording device 200 accommodates a plurality of magnetic disk devices HDD-1, HDD-2,..., HDD-n in one housing (housing) and has a so-called disk array configuration. The host computer 100 writes information to the plurality of magnetic disk devices HDD-1 to HDD-n of the information recording device 200 and reads information from the plurality of magnetic disk devices HDD-1 to HDD-n. Can do. The information recording device 200 has a sensor circuit 210. In the first embodiment, the sensor circuit 210 is a microphone that detects noise from a plurality of magnetic disk devices HDD-1 to HDD-n. The microphone 210 is preferably installed at a position where sound from each of the plurality of magnetic disk devices HDD-1 to HDD-n can be detected evenly.
 図2Bはホストコンピュータ100の構成例を示すブロック図である。ホストコンピュータ100は情報の演算を行うCPU(Central Processor Unit)Cphと、CPU(Cph)がワークエリアとして使用するメモリMmhとを含む。メモリMmhはまた、CPU(Cph)が実行するプログラムを格納する。ホストコンピュータ100は更に、後述する分析・制御調停部Ca0(後述の如く、ハードウェアでもソフトウェアでも可)及び不揮発性メモリMm0を有する。 FIG. 2B is a block diagram illustrating a configuration example of the host computer 100. The host computer 100 includes a CPU (Central Processor Unit) Cph for calculating information and a memory Mmh used by the CPU (Cph) as a work area. The memory Mmh also stores a program executed by the CPU (Cph). The host computer 100 further includes an analysis / control arbitration unit Ca0 (which can be either hardware or software as will be described later) and a nonvolatile memory Mm0 which will be described later.
 図3Aは、図2Aに示された磁気ディスク装置HDD-1の構成を示すブロック図である。磁気ディスク装置HDD-1は、電流制御回路Cc1と、スピンドルモータ(図示「モータ」)Mo1とを有する。分析・制御調停部Ca0は、マイクロホン210で検出された音を分析し、複数台の磁気ディスク装置HDD-1~HDD-nが夫々有する磁気ディスクの回転数を調整する。ここで、分析・制御調停部Ca0は、マイクロホン210で検出された音を分析する分析部と、複数台の磁気ディスク装置HDD-1~HDD-nが夫々有する磁気ディスクの回転数を調整する制御調停部とを含む。分析・制御調停部Ca0のうちの分析部の詳細につき、図3B,3Cとともに後述する。また分析・制御調停部Ca0の動作の詳細につき、図9,図10A~10C、図11,図12A~図12Kとともに後述する。不揮発性メモリMm0は、分析・制御調停部Ca0が、後述する回転数設定値を格納するために使用される。 FIG. 3A is a block diagram showing a configuration of the magnetic disk device HDD-1 shown in FIG. 2A. The magnetic disk device HDD-1 includes a current control circuit Cc1 and a spindle motor (“motor” in the drawing) Mo1. The analysis / control arbitration unit Ca0 analyzes the sound detected by the microphone 210 and adjusts the rotational speed of the magnetic disk included in each of the plurality of magnetic disk devices HDD-1 to HDD-n. Here, the analysis / control arbitration unit Ca0 controls the sound detected by the microphone 210 and the control for adjusting the number of rotations of the magnetic disks respectively included in the plurality of magnetic disk devices HDD-1 to HDD-n. Including the mediation department. Details of the analysis unit in the analysis / control arbitration unit Ca0 will be described later with reference to FIGS. 3B and 3C. Details of the operation of the analysis / control arbitration unit Ca0 will be described later with reference to FIGS. 9, 10A to 10C, and FIGS. 11 and 12A to 12K. The non-volatile memory Mm0 is used by the analysis / control arbitration unit Ca0 to store a rotation speed setting value to be described later.
 スピンドルモータMo1は、磁気ディスク装置HDD-1の磁気ディスク(図示を省略)を回転駆動する。電流制御回路Cc1はスピンドルモータMo1を駆動する制御電流を発生し、制御電流を制御することによって磁気ディスクの回転数を制御する。また電流制御回路Cc1は、ホストコンピュータ100の分析・制御調停部Ca0によって制御される。 The spindle motor Mo1 rotates and drives the magnetic disk (not shown) of the magnetic disk device HDD-1. The current control circuit Cc1 generates a control current for driving the spindle motor Mo1, and controls the rotational speed of the magnetic disk by controlling the control current. The current control circuit Cc1 is controlled by the analysis / control arbitration unit Ca0 of the host computer 100.
 情報記録装置200の他のディスク装置HDD-2~HDD-nの各々も、ディスク装置HDD-1と同様の構成を有する。したがって複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスクの回転数が、ホストコンピュータ100の分析・制御調停部Ca0の制御の下で、制御される。 Each of the other disk devices HDD-2 to HDD-n of the information recording device 200 has the same configuration as the disk device HDD-1. Accordingly, the rotational speed of each magnetic disk of the plurality of magnetic disk devices HDD-1 to HDD-n is controlled under the control of the analysis / control arbitration unit Ca0 of the host computer 100.
 図3B,図3Cとともに、分析・制御調停部Ca0が有する分析部による、音圧のピークの周期(すなわち音圧波形の包絡線のピークの周期)を求める動作について説明する。図3Bに示す如く、分析・制御調停部Ca0は、分析部Sayと、制御調停部Cayとを有する。分析部Sayは、ダイオードDy,ローパスフィルタLy及びDSP(Digital Signal Processor)Dsyを有する。また図3Bに示す如く、DSP(Dsy)は、A/D(Analog to Digital)変換器Ady、メモリMy及びCPU(Cpy)を有する。 3B and 3C, an operation for obtaining the period of the sound pressure peak (that is, the peak period of the envelope of the sound pressure waveform) by the analysis unit included in the analysis / control arbitration unit Ca0 will be described. As illustrated in FIG. 3B, the analysis / control arbitration unit Ca0 includes an analysis unit Say and a control arbitration unit Cay. The analysis unit Say includes a diode Dy, a low-pass filter Ly, and a DSP (Digital Signal Processor) Dsy. As shown in FIG. 3B, the DSP (Dsy) includes an A / D (Analog-to-Digital) converter Ady, a memory My, and a CPU (Cpy).
 図3B中、ダイオードDyはマイクロホン210が検出した音圧波形を検波し、ローパスフィルタLyが音圧波形の高帯域成分を除去することにより、当該検出した音圧波形の片側の包絡線が得られる。ここで、ローパスフィルタLyのカットオフ周波数は、磁気ディスク装置HDD-1~HDD-nの夫々の回転数に対応する周波数の1/10程度とすることができる。例えば、磁気ディスク装置HDD-1~HDD-nの夫々の回転数が7200[rpm]の場合、対応する周波数は、7200/60=120[Hz]であるから、カットオフ周波数は120/10=12[Hz]程度とする。 In FIG. 3B, the diode Dy detects the sound pressure waveform detected by the microphone 210, and the low-pass filter Ly removes a high-band component of the sound pressure waveform, thereby obtaining an envelope on one side of the detected sound pressure waveform. . Here, the cut-off frequency of the low-pass filter Ly can be set to about 1/10 of the frequency corresponding to the rotational speed of each of the magnetic disk devices HDD-1 to HDD-n. For example, when the rotational speed of each of the magnetic disk devices HDD-1 to HDD-n is 7200 [rpm], the corresponding frequency is 7200/60 = 120 [Hz], so the cutoff frequency is 120/10 = It is about 12 [Hz].
 DSP(Dsy)では、A/D変換器Adyによって上記音圧波形の片側の包絡線のアナログ値がサンプリングによりデジタル化され、サンプリング値がメモリMyに保持される。A/D変換器Adyのサンプリング周波数は、ローパスフィルタLyのカットオフ周波数が12Hzの場合、100Hz程度以上とすることができる。そしてCPU(Cpy)が、メモリMyから上記音圧波形の片側の包絡線のデジタル値(電圧値)を読み出して分析し、当該包絡線のピークを検出する。 In the DSP (Dsy), the analog value of the envelope on one side of the sound pressure waveform is digitized by sampling by the A / D converter Ady, and the sampling value is held in the memory My. The sampling frequency of the A / D converter Ady can be about 100 Hz or more when the cutoff frequency of the low-pass filter Ly is 12 Hz. Then, the CPU (Cpy) reads and analyzes the digital value (voltage value) of the envelope on one side of the sound pressure waveform from the memory My, and detects the peak of the envelope.
 図3Cとともに、CPU(Cpy)が波形のピークを検出する動作について説明する。図3C中、波形Waは上記音圧波形の片側の包絡線の波形(「LPF出力」)を示し、波形Wbは、波形WaをA/D変換器Adyによってサンプリングしデジタル化した状態を模式的に示す。波形Wcは、波形Wbの丸で囲った部分を拡大した状態を示す。波形Wcは、デジタル化した波形の電圧値としてa, b, c, d, e, f, gを有し、それら相互間の電圧差は夫々d1,d2,d3,d4,d5、d6である。ここで図3Cに図示の如く、電圧値がa, b, c, d, eの間、電圧値は徐々に上昇し、その間、電圧差d1,d2,d3,d4は正の値を有する。他方、ピークである電圧値eを過ぎると、電圧値e, f, gの間、波形の電圧値が徐々に下降し、その間、電圧差d5,d6は負の値を有する。CPU(Cpy)は、波形の電圧値の電圧差の正から負への変化を検出することにより、音圧波形の片側の包絡線のピークを検出する。更にCPU(Cpy)は、検出した音圧波形の片側の包絡線のピークの周期を求め、求められた包絡線のピークの周期が時間の経過とともに伸びるか否かを判定し、当該判定結果を制御調停部Cayへ通知する。制御調停部CayがCPU(Cpy)による判定結果を受けて実施する磁気ディスクの回転数の調整の内容につき、図9,図10A~10C,図11,図12A~12Kとともに後述する。 The operation in which the CPU (Cpy) detects the peak of the waveform will be described with reference to FIG. 3C. In FIG. 3C, the waveform Wa indicates the waveform of the envelope on one side of the above sound pressure waveform (“LPF output”), and the waveform Wb schematically shows a state in which the waveform Wa is sampled and digitized by the A / D converter Ady. Shown in A waveform Wc shows a state in which a circled portion of the waveform Wb is enlarged. The waveform Wc has a, b, c, d, e, f, g as voltage values of the digitized waveform, and the voltage difference between them is d1, d2, d3, d4, d5, d6, respectively. . Here, as shown in FIG. 3C, the voltage value gradually rises while the voltage value is a, b, c, d, e, and the voltage differences d1, d2, d3, and d4 have positive values. On the other hand, when the voltage value e, which is a peak, is passed, the voltage value of the waveform gradually decreases during the voltage values e, f, 、 g, and the voltage differences d5, d6 have negative values during that time. The CPU (Cpy) detects the peak of the envelope on one side of the sound pressure waveform by detecting the change of the voltage difference of the waveform voltage value from positive to negative. Further, the CPU (Cpy) obtains the peak period of the envelope curve on one side of the detected sound pressure waveform, determines whether or not the obtained peak period of the envelope curve increases with time, and determines the determination result. Notify the control arbitration unit Cay. The contents of the adjustment of the rotational speed of the magnetic disk performed by the control arbitration unit Cay in response to the determination result by the CPU (Cpy) will be described later with reference to FIGS. 9, 10A to 10C, 11, and 12A to 12K.
 図4は、図2A,2B,3A、3B,3Cとともに上述した実施例1の情報処理システムの変形例1による情報記録装置200Aの構成を示すブロック図である。実施例1ではホストコンピュータ100が有していた分析・制御調停部Ca0及び不揮発性メモリMm0が、変形例1では夫々分析・制御調停部Ca0及び不揮発性メモリMm1として、情報記録装置200Aが有する磁気ディスク装置HDD-1に内蔵される。実施例1の変形例1では、分析・制御調停部Ca1及び不揮発性メモリMm1は、夫々実施例1の分析・制御調停部Ca0及び不揮発性メモリMm0と同様の構成とすることができる。 FIG. 4 is a block diagram illustrating a configuration of an information recording apparatus 200A according to the first modification of the information processing system according to the first embodiment described above with reference to FIGS. 2A, 2B, 3A, 3B, and 3C. In the first embodiment, the analysis / control arbitration unit Ca0 and the non-volatile memory Mm0 included in the host computer 100 are included in the information recording apparatus 200A as the analysis / control arbitration unit Ca0 and the non-volatile memory Mm1 in the first modification. Built in the disk device HDD-1. In the first modification of the first embodiment, the analysis / control arbitration unit Ca1 and the nonvolatile memory Mm1 can be configured similarly to the analysis / control arbitration unit Ca0 and the nonvolatile memory Mm0 of the first embodiment, respectively.
 図4の構成では、磁気ディスク装置HDD-1は、分析・制御調停部Ca1と、不揮発性メモリMm1と、電流制御回路Cc1と、スピンドルモータMo1とを有する。分析・制御調停部Ca1及び不揮発性メモリMm1は、夫々実施例1における分析・制御調停部Ca0及び不揮発性メモリMm0と同様の構成及び機能を有する。図4に示す変形例1の場合、複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスクの回転数の調整に関し、磁気ディスク装置HDD-1がマスタとして機能する。また、スピンドルモータMo1及び電流制御回路Cc1は、実施例1のスピンドルモータMo1及び電流制御回路Cc1と同様の構成及び機能を有する。また、情報記録装置200Aの他のディスク装置HDD-2~HDD-nの夫々は、実施例1におけるディスク装置HDD-2~HDD-nと同様の構成を有する。実施例1の変形例1では、複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスク(図示を省略)の回転数が、マスタとしての磁気ディスク装置HDD-1の分析・制御調停部Ca1の制御の下で調整される。 In the configuration of FIG. 4, the magnetic disk device HDD-1 includes an analysis / control arbitration unit Ca1, a nonvolatile memory Mm1, a current control circuit Cc1, and a spindle motor Mo1. The analysis / control arbitration unit Ca1 and the nonvolatile memory Mm1 have the same configurations and functions as the analysis / control arbitration unit Ca0 and the nonvolatile memory Mm0 in the first embodiment, respectively. In the case of Modification 1 shown in FIG. 4, the magnetic disk device HDD-1 functions as a master for adjusting the rotation speed of each of the magnetic disk devices HDD-1 to HDD-n. The spindle motor Mo1 and the current control circuit Cc1 have the same configuration and functions as the spindle motor Mo1 and the current control circuit Cc1 of the first embodiment. Each of the other disk devices HDD-2 to HDD-n of the information recording apparatus 200A has the same configuration as the disk devices HDD-2 to HDD-n in the first embodiment. In the first modification of the first embodiment, the rotational speed of each magnetic disk (not shown) of the plurality of magnetic disk devices HDD-1 to HDD-n is analyzed and controlled by the magnetic disk device HDD-1 as a master. It is adjusted under the control of the arbitration unit Ca1.
 図4の実施例1の変形例1によれば、情報記録装置200Aが有する磁気ディスク装置HDD-1に分析・制御調停部Ca1が内蔵される。このような構成とすることにより、ホストコンピュータ100が分析・制御調停部を有する必要がなく、汎用性が向上する。 According to the first modification of the first embodiment in FIG. 4, the analysis / control arbitration unit Ca1 is built in the magnetic disk device HDD-1 included in the information recording device 200A. With such a configuration, the host computer 100 does not need to have an analysis / control arbitration unit, and versatility is improved.
 図5は、実施例1の変形例2による情報処理システムの構成を示すブロック図である。図2A、図2B、図3A等とともに上述した実施例1では、ホストコンピュータ100は、インタフェースケーブル等で接続された別体である情報記録装置200に情報を書き込み、情報記録装置200から情報を読み出す。これに対し、図5の実施例1の変形例2では、ホストコンピュータ100A自体が、図2Aの情報記録装置200が有していた複数台の磁気ディスク装置HDD-1~HDD-nを内蔵する。またマイクロホン210は、ホストコンピュータ100A内の、複数台の磁気ディスク装置HDD-1~HDD-nの夫々からの音を均等に検出可能な位置に設置されることが望ましい。更に図5のホストコンピュータ100Aは、CPU(Cpx),メモリMmx、分析・制御調停部Ca0及び不揮発性メモリMm0を有する。これらCPU(Cpx),メモリMmx、分析・制御調停部Ca0及び不揮発性メモリMm0は、夫々、図2Aのホストコンピュータ100が有していたCPU(Cph),メモリMmh、分析・制御調停部Ca0及び不揮発性メモリMm0と同様の構成を有する。また、複数台の磁気ディスク装置HDD-1~HDD-nの夫々は、実施例1におけるディスク装置HDD-1~HDD-nと同様の構成を有する。実施例1の変形例2では、ホストコンピュータ100A内の複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスク(図示を省略)の回転数が、ホストコンピュータ100A内の分析・制御調停部Ca0の制御の下で調整される。 FIG. 5 is a block diagram illustrating a configuration of an information processing system according to the second modification of the first embodiment. In the first embodiment described above with reference to FIGS. 2A, 2B, 3A, etc., the host computer 100 writes information to and reads information from the information recording apparatus 200, which is a separate body connected by an interface cable or the like. . On the other hand, in the second modification of the first embodiment shown in FIG. 5, the host computer 100A itself incorporates a plurality of magnetic disk devices HDD-1 to HDD-n included in the information recording device 200 shown in FIG. 2A. . The microphone 210 is preferably installed at a position in the host computer 100A where sound from each of the plurality of magnetic disk devices HDD-1 to HDD-n can be detected evenly. Further, the host computer 100A in FIG. 5 includes a CPU (Cpx), a memory Mmx, an analysis / control arbitration unit Ca0, and a nonvolatile memory Mm0. The CPU (Cpx), the memory Mmx, the analysis / control arbitration unit Ca0, and the nonvolatile memory Mm0 are respectively the CPU (Cph), the memory Mmh, the analysis / control arbitration unit Ca0, and the host computer 100 shown in FIG. The configuration is the same as that of the nonvolatile memory Mm0. Each of the plurality of magnetic disk devices HDD-1 to HDD-n has the same configuration as the disk devices HDD-1 to HDD-n in the first embodiment. In the second modification of the first embodiment, the rotational speed of each magnetic disk (not shown) of the plurality of magnetic disk devices HDD-1 to HDD-n in the host computer 100A is analyzed and controlled in the host computer 100A. It is adjusted under the control of the arbitration unit Ca0.
 次に図6、図7,図8とともに、磁気ディスク装置HDD-1~HDD-nの各々における電流制御回路(HDD-1の場合、電流制御回路Cc1)の構成について説明する。 Next, the configuration of the current control circuit (current control circuit Cc1 in the case of HDD-1) in each of the magnetic disk devices HDD-1 to HDD-n will be described with reference to FIGS.
 図6の電流制御回路Ccは、回転速度検出回路Rd,回転制御回路Rc,モータドライバMdを含む。回転速度検出回路Rdは、分析・制御調停部から受けた速度指令信号と、スピンドルモータSm(スピンドルモータMo1に対応する)から得られる速度フィードバック信号とを比較する。速度フィードバック信号は、例えばインデックス信号である。インデックス信号とは、スピンドルモータSmが1回転するたびに1個生成されるパルスを有する信号である。速度指令信号は分析・制御調停部(図4のHDD-1の場合分析・制御調停部Ca1)から出力される、スピンドルモータSmの回転を制御するための信号であり、スピンドルモータSmの1回転に対し1パルスを有する信号である。回転速度検出回路Rdは、速度指令信号と速度フィードバック信号とのパルスの周波数を比較し、速度指令信号が示す回転数と、速度フィードバック信号が示すスピンドルモータSmの回転数との差を求め、回転数差を示す信号を出力する。回転制御回路Rcは、回転速度検出回路Rdが出力した信号に応じた制御信号をモータドライバMdに出力することにより、モータドライバMdを介し、速度指令信号が示す回転数でスピンドルモータSmを回転させるように制御する。 6 includes a rotation speed detection circuit Rd, a rotation control circuit Rc, and a motor driver Md. The rotational speed detection circuit Rd compares the speed command signal received from the analysis / control arbitration unit with the speed feedback signal obtained from the spindle motor Sm (corresponding to the spindle motor Mo1). The speed feedback signal is, for example, an index signal. The index signal is a signal having one pulse generated every time the spindle motor Sm rotates once. The speed command signal is a signal for controlling the rotation of the spindle motor Sm, which is output from the analysis / control arbitration unit (analysis / control arbitration unit Ca1 in the case of HDD-1 in FIG. 4). Is a signal having one pulse. The rotation speed detection circuit Rd compares the pulse frequency of the speed command signal and the speed feedback signal, finds the difference between the rotation speed indicated by the speed command signal and the rotation speed of the spindle motor Sm indicated by the speed feedback signal. A signal indicating the number difference is output. The rotation control circuit Rc outputs a control signal corresponding to the signal output from the rotation speed detection circuit Rd to the motor driver Md, thereby rotating the spindle motor Sm via the motor driver Md at the rotation speed indicated by the speed command signal. To control.
 図7は、磁気ディスク装置HDD-1~HDD-nの各々として適用可能な磁気ディスク装置HDDの全体構成を示すブロック図である。磁気ディスク装置HDDは、バッファ回路Bf,ハードディスクコントローラ回路Hd,チャネル回路Cn,スピンドルモータ用電流制御回路Sc,ボイスコイルモータ用電流制御回路Vc,CPU(Cp)を有する。磁気ディスク装置HDDは更に、ヘッドアンプ回路Ha,スピンドルモータSm,ボイスコイルモータVm、磁気ヘッドMh及び磁気ディスクDcを有する。 FIG. 7 is a block diagram showing the overall configuration of the magnetic disk device HDD applicable as each of the magnetic disk devices HDD-1 to HDD-n. The magnetic disk device HDD has a buffer circuit Bf, a hard disk controller circuit Hd, a channel circuit Cn, a spindle motor current control circuit Sc, a voice coil motor current control circuit Vc, and a CPU (Cp). The magnetic disk device HDD further includes a head amplifier circuit Ha, a spindle motor Sm, a voice coil motor Vm, a magnetic head Mh, and a magnetic disk Dc.
 バッファ回路Bfはキャッシュとして機能し、ハードディスクコントローラ回路Hdとの間でデータをやり取りする。ハードディスクコントローラ回路Hdは、キャッシュ制御及びインタフェース制御を行う。チャネル回路Cnはライトデータをハードディスクコントローラ回路Hdから受信し、リードデータをハードディスクコントローラ回路Hdに送信する。チャネル回路Cnは、磁気ディスクDcから読み出したリードデータの復調及び磁気ディスクDcへ書き込むライトデータの変調を行う。ヘッドアンプ回路Haは磁気ディスクDcから読み出されたリード信号を磁気ヘッドMhから受信して増幅し、リードデータを生成してチャネル回路Cnに送信する。ヘッドアンプ回路Haは、チャネル回路Cnから受信したライトデータからライト信号を生成して増幅し、磁気ヘッドMhへ送信する。磁気ヘッドMhは、磁気ディスクDcからリード信号を検出してヘッドアンプ回路Haへ送信し、ヘッドアンプ回路Haから受信したライト信号を磁気ディスクDcへ書き込む。 The buffer circuit Bf functions as a cache and exchanges data with the hard disk controller circuit Hd. The hard disk controller circuit Hd performs cache control and interface control. The channel circuit Cn receives write data from the hard disk controller circuit Hd and transmits read data to the hard disk controller circuit Hd. The channel circuit Cn demodulates read data read from the magnetic disk Dc and modulates write data to be written to the magnetic disk Dc. The head amplifier circuit Ha receives and amplifies the read signal read from the magnetic disk Dc from the magnetic head Mh, generates read data, and transmits the read data to the channel circuit Cn. The head amplifier circuit Ha generates and amplifies a write signal from the write data received from the channel circuit Cn, and transmits it to the magnetic head Mh. The magnetic head Mh detects a read signal from the magnetic disk Dc, transmits it to the head amplifier circuit Ha, and writes the write signal received from the head amplifier circuit Ha to the magnetic disk Dc.
 CPU(Cp)は磁気ディスク装置HDD全体を制御する。スピンドルモータ用電流制御回路Scは制御電流を生成してスピンドルモータSmへ出力し、スピンドルモータSmを制御し、スピンドルモータSmから速度フィードバック信号を受信する。ボイスコイルモータ用電流制御回路Vcは、制御電流を生成してボイスコイルモータVmへ出力し、ボイスコイルモータVmを制御し、ボイスコイルモータVmから速度フィードバック信号を受信する。スピンドルモータSmは磁気ディスクDcを回転駆動する。ボイスコイルモータVmはヘッドアーム(図示を省略)を介して磁気ヘッドMhを駆動し、磁気ディスクDcに対しシーク動作を行う。シーク動作とは、磁気ヘッドMhを磁気ディスクDc上で移動させ、磁気ディスクDcの所望のトラック上に到達させる動作を言う。 CPU (Cp) controls the entire magnetic disk drive HDD. The spindle motor current control circuit Sc generates a control current and outputs it to the spindle motor Sm, controls the spindle motor Sm, and receives a speed feedback signal from the spindle motor Sm. The voice coil motor current control circuit Vc generates a control current and outputs it to the voice coil motor Vm, controls the voice coil motor Vm, and receives a speed feedback signal from the voice coil motor Vm. The spindle motor Sm rotates the magnetic disk Dc. The voice coil motor Vm drives the magnetic head Mh via a head arm (not shown), and performs a seek operation on the magnetic disk Dc. The seek operation is an operation in which the magnetic head Mh is moved on the magnetic disk Dc to reach a desired track on the magnetic disk Dc.
 図8は、実施例1の変形例1におけるマスタとしての磁気ディスク装置HDD-1として適用可能な磁気ディスク装置HDD-1の構成例を示す。図8の構成は基本的に上述した図7の磁気ディスク装置HDDの構成と同様であり、同一の構成要素には同一の符号を付し、重複する説明を省略する。図8の構成は、図7の構成に対し、分析・制御調停部Ca1及び不揮発性メモリMm1を加えた点が異なる。分析・制御調停部Ca1は、CPU(Cp)とスピンドルモータ用電流制御回路Scとの間に挿入され、上記の如く、複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスクの回転数を調整する。不揮発メモリMm1は、後述する回転数設定値を格納するために使用される。 FIG. 8 shows a configuration example of the magnetic disk device HDD-1 applicable as the magnetic disk device HDD-1 as the master in the first modification of the first embodiment. The configuration in FIG. 8 is basically the same as the configuration of the magnetic disk device HDD in FIG. 7 described above, and the same components are denoted by the same reference numerals and redundant description is omitted. The configuration of FIG. 8 is different from the configuration of FIG. 7 in that an analysis / control arbitration unit Ca1 and a nonvolatile memory Mm1 are added. The analysis / control arbitration unit Ca1 is inserted between the CPU (Cp) and the spindle motor current control circuit Sc, and as described above, each of the magnetic disks of the plurality of magnetic disk devices HDD-1 to HDD-n. Adjust the rotation speed. The non-volatile memory Mm1 is used for storing a rotational speed setting value to be described later.
 次に図3Bに示す、分析・制御調停部Ca0またはCa1の制御調停部Cayによる磁気ディスクの回転数の調整動作について説明する。尚、磁気ディスク装置が発生する音は、磁気ディスクを回転させるスピンドルモータによるもの以外に、シーク動作によるものがある。そこで制御調停部Cayにより、磁気ディスクの回転数の調整動作に無関係なシーク動作による音による影響を排除することが望ましい。このため、磁気ディスクの回転数調整のためにうなり音を測定するときには、複数台の磁気ディスク装置HDD-1~HDD-nの各々においてシーク動作を行わず、スピンドルモータの回転のみを行うイニシャライズ時間を設ける。そして、イニシャライズ時間に発生する音をマイクロホン210によって検出し、分析・制御調停部Ca0またはCa1の分析部Sayが、図3B,図3Cとともに上述した構成により、合成波形の包絡線のピークの周期を求める。 Next, the operation of adjusting the rotational speed of the magnetic disk by the control / arbitration unit Cay of the analysis / control arbitration unit Ca0 or Ca1 shown in FIG. 3B will be described. Note that the sound generated by the magnetic disk device may be due to a seek operation other than the spindle motor that rotates the magnetic disk. Therefore, it is desirable to eliminate the influence of the sound due to the seek operation unrelated to the operation of adjusting the rotational speed of the magnetic disk by the control arbitration unit Cay. Therefore, when measuring the beat sound for adjusting the rotational speed of the magnetic disk, the initialization time during which only the spindle motor rotates without performing the seek operation in each of the plurality of magnetic disk devices HDD-1 to HDD-n. Is provided. The sound generated at the initialization time is detected by the microphone 210, and the analysis unit Say of the analysis / control arbitration unit Ca0 or Ca1 determines the peak period of the envelope of the composite waveform by the configuration described above with reference to FIGS. 3B and 3C. Ask.
 制御調停部Cayによる磁気ディスクの回転数の調整動作は、検出された音圧波形の片側の包絡線のピークの周期を無限大に近づけることを目標に、複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスクの回転数を調整する。検出された音圧波形の振幅変動の要因は、複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスクの回転数の相互のズレと考えられる。このため、夫々の磁気ディスクの回転数を、両者の回転数を平均した値に近づける制御を行う。 The adjustment operation of the rotational speed of the magnetic disk by the control arbitration unit Cay is performed with a plurality of magnetic disk devices HDD-1˜HDD aiming at making the peak period of one envelope of the detected sound pressure waveform close to infinity. The rotational speed of each magnetic disk of the HDD-n is adjusted. The cause of the amplitude fluctuation of the detected sound pressure waveform is considered to be the mutual deviation of the rotational speeds of the magnetic disks of the plurality of magnetic disk devices HDD-1 to HDD-n. For this reason, control is performed so that the rotational speed of each magnetic disk approaches the average value of the rotational speeds of both.
 より具体的には、複数台の磁気ディスク装置HDD-1~HDD-nから順次異なる2台の磁気ディスク装置を選択する。そして2台の磁気ディスク装置選択のたびに、選択された2台の磁気ディスク装置間で磁気ディスクの回転数を、双方の回転数を平均した回転数に近づける制御を行う。このように、2台の磁気ディスク装置の選択動作、及び選択された2台につき磁気ディスクの回転数を平均した回転数に近づける制御を繰り返す。このような磁気ディスクの回転数の調整動作により、全ての磁気ディスク装置の磁気ディスクの回転数が平均化された回転数に徐々に近づき、結果的に全ての磁気ディスク装置から発せられる音の合成音の包絡線のピークの周期が無限大に近づく。その結果、うなり音が低減される。 More specifically, two different magnetic disk devices are sequentially selected from a plurality of magnetic disk devices HDD-1 to HDD-n. Each time two magnetic disk devices are selected, control is performed so that the rotational speed of the magnetic disk between the two selected magnetic disk devices is close to the rotational speed obtained by averaging both rotational speeds. In this way, the selection operation of the two magnetic disk devices and the control of bringing the rotation speed of the magnetic disk to the average rotation speed for the two selected disks are repeated. By adjusting the rotational speed of the magnetic disks, the rotational speed of the magnetic disks of all the magnetic disk devices gradually approaches the averaged rotational speed, and as a result, the synthesis of the sound emitted from all the magnetic disk devices The period of the peak of the sound envelope approaches infinity. As a result, beat noise is reduced.
 ここで2台の磁気ディスク装置間で磁気ディスクの回転数を、平均した回転数に近づける調整動作の例について以下に説明する。すなわち、2台を含む複数台の磁気ディスク装置HDD-1~HDD-nが発生する夫々の音の合成音の包絡線のピークの周期を伸ばすように、2台の磁気ディスク装置のディスクの回転数を調整する。 Here, an example of an adjustment operation for bringing the rotation speed of the magnetic disk between the two magnetic disk devices close to the average rotation speed will be described below. In other words, the rotation of the disks of the two magnetic disk devices so as to extend the peak period of the envelope of the synthesized sound of each sound generated by a plurality of magnetic disk devices HDD-1 to HDD-n including two. Adjust the number.
 以下に図9とともに、本発明の実施例1,実施例1の変形例1、実施例1の変形例2の各々における、制御調停部Cayによる磁気ディスクの回転数の調整動作の流れについて説明する。図1A~1Dとともに上述したように、2台の磁気ディスク装置間の回転数の差が縮まるにつれて2台の磁気ディスクの夫々の音の合成波形の包絡線のピークの周期が伸び、その結果うなり音が低減する。2台の磁気ディスク装置間で回転数が一致すると(図1Dの状態)、合成波形の振幅変動は解消する。そこで図9の制御では、複数台の磁気ディスク装置HDD-1~HDD-nの音の合成音の音圧波形の包絡線のピークの周期が伸びるように、磁気ディスクの回転数を調整する。 The flow of the adjustment operation of the rotational speed of the magnetic disk by the control mediation unit Cay in each of the first modification of the first embodiment, the first modification of the first embodiment, and the second modification of the first embodiment will be described below with reference to FIG. . As described above with reference to FIGS. 1A to 1D, as the rotational speed difference between the two magnetic disk devices is reduced, the peak period of the envelope of the synthesized waveform of the sound of each of the two magnetic disks is increased, resulting in a beat. Sound is reduced. When the rotational speeds are the same between the two magnetic disk devices (the state shown in FIG. 1D), the amplitude fluctuation of the combined waveform is eliminated. Therefore, in the control of FIG. 9, the rotational speed of the magnetic disk is adjusted so that the peak period of the envelope of the sound pressure waveform of the synthesized sound of the plurality of magnetic disk devices HDD-1 to HDD-n is extended.
 情報処理システムの電源がオンされる(ステップS1)。複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスクの回転数が定常回転数に到達する(ステップS2)と、各磁気ディスク装置のシーク動作が禁止され(イニシャライズ時間)る。次いで、マイクロホン210が検出した複数台の磁気ディスク装置HDD-1~HDD-nの音の合成音の音圧波形の包絡線のピークの周期(以下単に「包絡線のピークの周期」と称する)を求める(ステップS3)。包絡線のピークの周期を求める方法としては、例えば図3Cとともに上述した方法を採用することができる。次いで、複数台の磁気ディスク装置HDD-1~HDD-nの中から、異なる2台ずつを順次選択してゆき、各2台の組み合わせを複数個設定する(ステップS4)。磁気ディスク装置の台数(n)が偶数の場合、「台数×n/2」個の組み合わせが得られる。他方、磁気ディスク装置が奇数台の場合、「台数×(n-1)/2」個の組み合わせが得られる。 The power supply of the information processing system is turned on (step S1). When the rotational speed of each of the magnetic disk devices HDD-1 to HDD-n reaches the steady rotational speed (step S2), the seek operation of each magnetic disk device is prohibited (initialization time). Next, the envelope peak period of the sound pressure waveform of the synthesized sound of the plurality of magnetic disk devices HDD-1 to HDD-n detected by the microphone 210 (hereinafter simply referred to as “envelope peak period”). Is obtained (step S3). As a method of obtaining the envelope peak period, for example, the method described above with reference to FIG. 3C can be employed. Next, two different units are sequentially selected from the plurality of magnetic disk devices HDD-1 to HDD-n, and a plurality of combinations of the two units are set (step S4). When the number (n) of magnetic disk devices is an even number, “number × n / 2” combinations are obtained. On the other hand, when there are an odd number of magnetic disk devices, a combination of “number × (n−1) / 2” is obtained.
 このようにして設定された磁気ディスク装置の組み合わせの中から、一組の磁気ディスク装置の組み合わせを抽出する(ステップS5)。抽出した組み合わせに属する2台の磁気ディスク装置のうちの1台の回転数を第1の所定回転数、例えば2回転上昇させ(+2[rpm])、他の磁気ディスク装置の回転数を第1の所定回転数降下させる(-2[rpm])(ステップS6)。その結果、包絡線のピークの周期が伸びたか否かを確認する(ステップS7)。包絡線のピークの周期が伸びなかった場合(S7のNO)、ステップS8に進む。ステップS8では、当該組み合わせに属する2台の磁気ディスク装置の間で、磁気ディスクの回転数の上昇と降下とを行う夫々の対象を入れ替えて包絡線のピークの周期が伸びたか否かを確認(ステップS9,S6,S7)したか否かを判定する。未だ対象を入れ替えて包絡線のピークの周期が伸びたか否かを確認していなかった場合(S8のNO)、ステップS9に進む。ステップS9では、当該一組の組み合わせに属する2台の磁気ディスク装置の間で磁気ディスクの回転数の上昇と降下とを行う夫々の対象を入れ替える(ステップS9)。そして磁気ディスクの回転数の上昇及び降下を実行し(ステップS6)、ステップS7へ進む。 A set of magnetic disk devices is extracted from the combinations of magnetic disk devices thus set (step S5). The rotational speed of one of the two magnetic disk devices belonging to the extracted combination is increased to a first predetermined rotational speed, for example, two (+2 [rpm]), and the rotational speed of the other magnetic disk device is set to the first. (2 [rpm]) (step S6). As a result, it is confirmed whether or not the envelope peak period has been extended (step S7). If the period of the peak of the envelope has not increased (NO in S7), the process proceeds to step S8. In step S8, it is confirmed whether the period of the peak of the envelope has been extended by switching the respective targets for increasing and decreasing the rotational speed of the magnetic disk between the two magnetic disk devices belonging to the combination ( It is determined whether or not steps S9, S6, S7) have been performed. If the subject has not yet been exchanged and it has not been confirmed whether the envelope peak period has been extended (NO in S8), the process proceeds to step S9. In step S9, the targets for increasing and decreasing the rotational speed of the magnetic disk are switched between the two magnetic disk devices belonging to the set of combinations (step S9). Then, the rotation speed of the magnetic disk is increased and decreased (step S6), and the process proceeds to step S7.
 他方、既に対象を入れ替えて包絡線のピークの周期が伸びたか否かを確認していた場合(S8のYES)、全ての磁気ディスク装置から発せられる音の合成音の包絡線のピークの周期が最長であると判定し、上記組み合わせの2台の磁気ディスク装置の回転数設定値を不揮発性メモリMm0またはMm1に格納する(ステップS12)。ここで回転数設定値とは、図6とともに上述した速度指令信号が示す回転数を言う。また、各磁気ディスク装置の回転数設定値として、不揮発性メモリに最後に格納された値が、最終的(最適な)な各磁気ディスク装置の回転数設定値として使用される。このようにして、回転数設定値が、磁気ディスク装置毎に設定される。 On the other hand, if the target has already been replaced and it has been confirmed whether or not the envelope peak period has been extended (YES in S8), the envelope peak period of the synthesized sound of the sounds emitted from all the magnetic disk devices is The rotational speed setting value of the two magnetic disk devices in the above combination is stored in the nonvolatile memory Mm0 or Mm1 (step S12). Here, the rotation speed setting value refers to the rotation speed indicated by the speed command signal described above with reference to FIG. In addition, the value stored last in the nonvolatile memory as the rotation speed setting value of each magnetic disk device is used as the final (optimal) rotation speed setting value of each magnetic disk device. In this way, the rotational speed setting value is set for each magnetic disk device.
 また、ステップS7にて、包絡線のピークの周期が伸びたと判断された場合(S7のYES)場合、S6で回転数をアップ(上昇)させた磁気ディスク装置の回転数を第2の所定回転数、例えば1回転上昇させ(+1[rpm])、S6で回転数をダウン(降下)させた磁気ディスク装置の回転数を第2の所定回転数降下させて(-1[rpm])、磁気ディスクの回転数を微調整する(ステップS10)。その結果、包絡線のピークの周期が伸びたか否かを判断する(ステップS11)。包絡線のピークの周期が伸びなかった場合(S11のNO)、全ての磁気ディスク装置から発せられる音の合成音の包絡線のピークの周期が最長であると判定し、ステップS12を実行する。他方、ステップS11にて包絡線のピークの周期が伸びたと判断された場合(S11のYES)、ステップS10の磁気ディスクの回転数の上昇及び降下を再度実行する。 If it is determined in step S7 that the period of the peak of the envelope has been extended (YES in S7), the rotational speed of the magnetic disk device whose rotational speed is increased (increased) in S6 is set to the second predetermined rotational speed. The number of rotations of the magnetic disk device, for example, increased by one rotation (+1 [rpm]) and decreased (decrease) in S6, is decreased by a second predetermined rotation number (−1 [rpm]) The number of rotations of the disk is finely adjusted (step S10). As a result, it is determined whether or not the envelope peak period has been extended (step S11). If the envelope peak period has not been extended (NO in S11), it is determined that the envelope peak period of the synthesized sound of sounds generated from all the magnetic disk devices is the longest, and step S12 is executed. On the other hand, if it is determined in step S11 that the period of the peak of the envelope has been extended (YES in S11), the increase and decrease of the rotational speed of the magnetic disk in step S10 are executed again.
 尚、ステップS6及びS10における、各磁気ディスク装置の磁気ディスクの回転数の上昇及び降下は、所定の回転数のリミット値の範囲内で行う。これは、各磁気ディスク装置の磁気ディスクの回転数が、磁気ディスク装置の正常動作範囲を超えないようにするためである。したがって、ステップS6及びS10を実施すると所定の回転数のリミット値の範囲を超えてしまう場合、同ステップの磁気ディスクの回転数の上昇及び降下を実施せず、次のステップへ移行する。 In steps S6 and S10, the rotation speed of the magnetic disk of each magnetic disk device is increased and decreased within the range of the limit value of the predetermined rotation speed. This is to prevent the rotation speed of the magnetic disk of each magnetic disk device from exceeding the normal operating range of the magnetic disk device. Therefore, if steps S6 and S10 are performed and the range of the predetermined rotational speed limit value is exceeded, the rotational speed of the magnetic disk in the same step is not increased and decreased, and the process proceeds to the next step.
 ステップS12の実行後、ステップS4で得た全ての磁気ディスク装置の組み合わせについて、ステップS6乃至S12の動作を完了したか判定する(ステップS13)。ステップS4で得た全ての組み合わせについてステップS6乃至S12の動作を完了した場合(S13のYES)、ステップS4にて可能な全ての磁気ディスク装置の組み合わせを設定していたか否かを判定する(ステップS15)。言い換えると、ステップS15では、想定できる全ての磁気ディスク装置の組合せについて、S6乃至S9に示す確認動作を実行したか否かを判定する。 After execution of step S12, it is determined whether or not the operations of steps S6 to S12 have been completed for all combinations of magnetic disk devices obtained in step S4 (step S13). When the operations in steps S6 to S12 have been completed for all the combinations obtained in step S4 (YES in S13), it is determined whether or not all possible combinations of magnetic disk devices have been set in step S4 (step S4). S15). In other words, in step S15, it is determined whether or not the confirmation operations shown in S6 to S9 have been executed for all possible combinations of magnetic disk devices.
 ステップS15にて、想定可能な全ての磁気ディスクの組み合わせがS4で設定されていたと判断した場合(S15のYES)、図9の動作(1サイクルの動作)を終了する。その後、必要に応じ、ステップS4からの動作を、次サイクルの動作として繰り返す。 If it is determined in step S15 that all possible combinations of magnetic disks have been set in S4 (YES in S15), the operation in FIG. 9 (one cycle operation) is terminated. Thereafter, if necessary, the operation from step S4 is repeated as the operation of the next cycle.
 ステップS13にて、ステップS4で得た全ての組み合わせについてステップS6乃至S12の動作を完了していなかった場合(S13のNO)、未だ抽出されていない他の磁気ディスク装置の組み合わせを選択する(ステップS14)。そして、S14で抽出した組み合わせに属する2台の磁気ディスク装置につき、ステップS6から開始される動作を実行する。 In step S13, if the operations in steps S6 to S12 have not been completed for all the combinations obtained in step S4 (NO in S13), a combination of other magnetic disk devices that has not yet been extracted is selected (step S13). S14). Then, the operation starting from step S6 is executed for the two magnetic disk devices belonging to the combination extracted in S14.
 またステップS15にて、想定可能な全ての組み合わせをS4では設定していなかったと判断された場合(S15のNO)、S4で設定した磁気ディスク装置の組み合わせとは異なる、未だ設定していない新たな磁気ディスク装置の組み合わせを設定する(ステップS16)。そして、S16で設定された磁気ディスク装置の組み合わせにつき、ステップS5から開始される動作を実行する。 If it is determined in step S15 that not all possible combinations have been set in S4 (NO in S15), the combination is different from the combination of magnetic disk devices set in S4 and a new one that has not been set yet. A combination of magnetic disk devices is set (step S16). Then, for the combination of the magnetic disk devices set in S16, the operation starting from Step S5 is executed.
 尚、磁気ディスク装置が奇数台であった場合、ステップS16では、S4で設定した磁気ディスク装置の組み合わせから漏れていた1台の磁気ディスク装置を優先的に新たな組み合わせに含めるように、磁気ディスク装置の組み合わせを設定することが望ましい。 If the number of magnetic disk devices is an odd number, in step S16, the magnetic disk device is preferentially included in the new combination, with one magnetic disk device leaking from the combination of magnetic disk devices set in S4. It is desirable to set a combination of devices.
 次に図10A,図10B,図10C及び図11とともに、磁気ディスク装置が5台の場合を例に取り、図9の動作の具体例について説明する。尚、ここでは、第1及び第2の所定回転数は、夫々1より小さい所定値であるものとする。図10A乃至図10C、図11において、#1~#5はそれぞれ磁気ディスク装置を示す。 Next, with reference to FIGS. 10A, 10B, 10C, and 11, a specific example of the operation of FIG. 9 will be described by taking the case of five magnetic disk devices as an example. Here, it is assumed that the first and second predetermined rotational speeds are predetermined values smaller than 1. 10A to 10C and FIG. 11, # 1 to # 5 indicate magnetic disk devices, respectively.
 図10Aは、1巡目の磁気ディスク装置の組み合わせとして、5台の磁気ディスク装置#1~#5のうち、#1,#2の組み合わせ、#3,#4の組み合わせの、計2個の組み合わせを設定した例を示す。図10Bは、2巡目の磁気ディスク装置の組み合わせとして、図10Aのものとは異なる、#2,#3の組み合わせ、#4,#5の組み合わせの、計2個の組み合わせを設定した例を示す。図10Cは、3巡目の磁気ディスク装置の組み合わせとして、図10Aのものとも図10Bのものとも異なる、#1,#3の組み合わせ、#2,#5の組み合わせの、計2個の組み合わせを設定した例を示す。 FIG. 10A shows a total of two combinations of the magnetic disk devices in the first round: the combination of # 1, # 2 and the combination of # 3, # 4 among the five magnetic disk devices # 1 to # 5. The example which set the combination is shown. FIG. 10B shows an example in which a total of two combinations of # 2, # 3 and # 4, # 5, which are different from those in FIG. Show. FIG. 10C shows a total of two combinations of # 1, # 3 and # 2, # 5, which are different from those of FIG. 10A and FIG. An example of setting is shown.
 図11は、図9の調整動作を行った場合の、5台の磁気ディスク装置#1~#5(定格回転数:n)の回転数の推移を示す。図11に示す数値はそれぞれ、n回転に対する差の回転数を示す。図11の初期状態(図中「初期」)では、5台の磁気ディスク装置#1~#5の回転数は、夫々、n+2、n+1、n、n-1、n-2であるものとする。尚、図11の例の場合、説明の便宜上、各組み合わせにおける2台の磁気ディスク装置の磁気ディスクの回転数の調整が理想的になされ、磁気ディスク装置の回転数調整の結果、組み合わされた2台の磁気ディスク装置の回転数が両者の回転数を平均した回転数になった状況を想定している。尚、図11中、各時点において組み合わせる各2台の磁気ディスク装置につき、同じ種類の網掛けを施してある。 FIG. 11 shows changes in the rotational speeds of the five magnetic disk devices # 1 to # 5 (rated rotational speed: n) when the adjustment operation of FIG. 9 is performed. Each numerical value shown in FIG. 11 indicates the number of rotations of a difference with respect to n rotations. In the initial state of FIG. 11 (“initial” in the figure), the rotational speeds of the five magnetic disk devices # 1 to # 5 are n + 2, n + 1, n, n−1, and n−2, respectively. . In the case of the example of FIG. 11, for convenience of explanation, the rotation speeds of the magnetic disks of the two magnetic disk devices in each combination are ideally adjusted. As a result of the rotation speed adjustment of the magnetic disk devices, the combined 2 A situation is assumed in which the number of rotations of the magnetic disk device is the average number of both rotations. In FIG. 11, the same type of shading is applied to each of the two magnetic disk devices to be combined at each time point.
 図11の場合、1巡目の動作では、#2,#3の組み合わせ、#4,#5の組み合わせが設定されている。その結果(図中、「一巡完了後」)、#2,#3の回転数が平均化されてn+0.5、n+0.5となっている。同様に、#4,#5の回転数が平均化されてn-1.5、n-1.5となっている。 In the case of FIG. 11, in the operation of the first round, the combination of # 2, # 3 and the combination of # 4, # 5 are set. As a result (in the figure, “after completion of one round”), the rotational speeds of # 2 and # 3 are averaged to be n + 0.5 and n + 0.5. Similarly, the rotational speeds of # 4 and # 5 are averaged to be n-1.5 and n-1.5.
 2巡目の動作では、#1,#2の組み合わせ、#3,#5の組み合わせが設定されている。その結果(図中、「二巡完了後」)、#1,#2の回転数が平均化されてn+1.25、n+1.25となっている。同様に、#3,#5の回転数が平均化されてn-0.5、n-0.5となっている。 In the second round of operation, a combination of # 1, # 2 and a combination of # 3, # 5 are set. As a result (in the figure, “after completion of the second round”), the rotational speeds of # 1 and # 2 are averaged to be n + 1.25 and n + 1.25. Similarly, the rotational speeds of # 3 and # 5 are averaged to be n-0.5 and n-0.5.
 3巡目の動作では、#1,#4組み合わせ、#2,#5の組み合わせが設定されている。その結果(図中、「三巡完了後」)、#1,#4の回転数が平均化されてn-0.125、n-0.125となっている。同様に、#2,#5の回転数が平均化されてn+0.375、n+0.375となっている。 In the operation of the third round, the combination of # 1, # 4 and the combination of # 2, # 5 are set. As a result (in the figure, “after three rounds are completed”), the rotational speeds of # 1 and # 4 are averaged to be n−0.125 and n−0.125. Similarly, the rotational speeds of # 2 and # 5 are averaged to be n + 0.375 and n + 0.375.
 4巡目の動作では、#1,#5の組み合わせ、#3,#4の組み合わせが設定されている。その結果(図中、「四巡完了後」)、#1,#5の回転数が平均化されてn+0.125、n+0.125となっている。同様に、#3,#4の回転数が平均化されてn-0.3125、n-0.3125となっている。 In the fourth round operation, the combination of # 1, # 5 and the combination of # 3, # 4 are set. As a result (in the figure, “after completion of four rounds”), the rotational speeds of # 1 and # 5 are averaged to be n + 0.125 and n + 0.125. Similarly, the rotation speeds of # 3 and # 4 are averaged to be n-0.3125 and n-0.3125.
 5巡目の動作では、#1,#3の組み合わせ、#2,#4の組み合わせが設定されている。その結果(図中、「一サイクル完了後」)、#1,#3の回転数が平均化されてn-0.09375、n-0.09375となっている。同様に、#2,#4の回転数が平均化されてn+0.03125、n+0.03125となっている。 In the fifth round operation, the combination of # 1, # 3 and the combination of # 2, # 4 are set. As a result (in the figure, “after completion of one cycle”), the rotational speeds of # 1 and # 3 are averaged to be n−0.09375 and n−0.09375. Similarly, the rotation speeds of # 2 and # 4 are averaged to be n + 0.03125 and n + 0.03125.
 このように図11の例では、2台ずつ組み合わせて磁気ディスクの回転数を平均化する動作を、2台の組み合わせを順次変えながら繰り返すことにより、5台の磁気ディスクの回転数が全体的に平均化される様子が見て取れる。すなわち初期状態では5台の磁気ディスク装置の回転数の最大差はn+2-(n-2)=4であったものが、一サイクル完了後では回転数の最大差がn+0.125-(n-0.09375)=0.21875となり、回転数の最大差が縮まっている。したがて、全体的に回転数が平均化されていることが分かる。 As described above, in the example of FIG. 11, the operation of averaging two magnetic disks and averaging the rotational speeds of the magnetic disks is repeated while sequentially changing the combination of the two disks, so that the rotational speeds of the five magnetic disks are as a whole. You can see how they are averaged. That is, in the initial state, the maximum difference in the rotational speed of the five magnetic disk devices was n + 2− (n−2) = 4, but after the completion of one cycle, the maximum difference in the rotational speed was n + 0.125− (n− 0.09375) = 0.21875, and the maximum difference in rotational speed is reduced. Therefore, it turns out that the rotation speed is averaged as a whole.
 図12A~図12Kは、図9と同様の動作をシミュレーションした結果を示す。図12A~図12Kの例は、磁気ディスク装置の台数が3台(HDD1,HDD2,HDD3)の例であり、図12Aは、上段に3台の磁気ディスク装置夫々の音圧波形を示し、下段にその合成波(合成波形)及び合成波形の包絡線を示す。図12B~12Kの各々は、3台の磁気ディスク装置が発する音圧波形の合成波(合成波形)及び合成波形の包絡線を示す。「合成波形の包絡線」を単に「包絡線」と称する場合がある。また、各図の上部の丸印は、包絡線のピークの位置を示し、隣接する丸印間の間隔が狭いほど包絡線のピークの周期が小さく、広いほど包絡線のピークの周期が大きいことを示す。尚、包絡線のピークの周期(「包絡線の周期」とも称する)のことを、包絡線のピークの間隔とも称する。 12A to 12K show the results of simulating the same operation as in FIG. The examples of FIGS. 12A to 12K are examples in which the number of magnetic disk devices is three (HDD1, HDD2, HDD3). FIG. 12A shows the sound pressure waveforms of the three magnetic disk devices in the upper row, and the lower row. Shows the synthesized wave (synthesized waveform) and the envelope of the synthesized waveform. Each of FIGS. 12B to 12K shows a synthesized wave (synthetic waveform) of sound pressure waveforms generated by three magnetic disk devices and an envelope of the synthesized waveform. The “envelope of the composite waveform” may be simply referred to as “envelope”. The circle at the top of each figure indicates the position of the envelope peak. The narrower the interval between adjacent circles, the smaller the envelope peak period, and the wider the envelope peak period, the greater the envelope peak period. Indicates. Note that the envelope peak period (also referred to as “envelope period”) is also referred to as the envelope peak interval.
 図12Aが初期状態であり、まず、HDD1,HDD2の組み合わせを設定し、HDD1の磁気ディスクの回転数を降下させ、HDD2の磁気ディスクの回転数を上昇させた。その結果、図12Bに示す如く、包絡線のピークの周期が縮まった。したがって、この場合、HDD1とHDD2との回転数差が広がった、つまり平均化とは逆行したと判断し、HDD1、HDD2の磁気ディスクの回転数の上昇、降下の対象を入れ替えた。そして、上記動作とは逆に、HDD1の磁気ディスクの回転数を上昇させ、HDD2の回転数を降下させた。その結果図12Cに示す如く、包絡線のピークの周期が図12Aの状態と比較して広がった。したがって、この場合、HDD1とHDD2との回転数差が狭まった、つまり平均化されたと判断し、更にHDD1の磁気ディスクの回転数を上昇させ、HDD2の回転数を降下させた。その結果図12Dに示す如く、包絡線のピークの周期が図12Cの状態から更に広がった。したがって、この場合、HDD1とHDD2との回転数差が更に狭まった、つまり更に平均化されたと判断し、更にHDD1の磁気ディスクの回転数を上昇させ、HDD2の回転数を降下させた。その結果、図12Eに示す如く、包絡線のピークの周期が縮まった。したがって、この場合、HDD1とHDD2との回転数差が広がったと判断でき、最適状態を通り過ぎたと判断し、図12Dの状態が最もHDD1,HDD2の回転数差が縮まったと判断できる。したがって図12Dの状態に戻すべく、直前に行ったHDD1の磁気ディスクの回転数の上昇及びHDD2の回転数の降下を打ち消すように、HDD1の磁気ディスクの回転数を降下させ、HDD2の回転数を上昇させた。そして、その状態のHDD1,HDD2の夫々の最適値と判断される回転数設定値を不揮発性メモリに格納した。 FIG. 12A shows the initial state. First, the combination of HDD1 and HDD2 is set, the rotational speed of the magnetic disk of HDD1 is decreased, and the rotational speed of the magnetic disk of HDD2 is increased. As a result, as shown in FIG. 12B, the peak period of the envelope was shortened. Therefore, in this case, it is determined that the rotational speed difference between the HDD 1 and the HDD 2 is widened, that is, the reverse of the averaging, and the targets of increase and decrease of the rotational speed of the magnetic disks of the HDD 1 and HDD 2 are switched. Contrary to the above operation, the rotational speed of the magnetic disk of the HDD 1 is increased and the rotational speed of the HDD 2 is decreased. As a result, as shown in FIG. 12C, the period of the peak of the envelope spread compared with the state of FIG. 12A. Therefore, in this case, it is determined that the difference in rotational speed between the HDD 1 and the HDD 2 is narrowed, that is, averaged, the rotational speed of the magnetic disk of the HDD 1 is further increased, and the rotational speed of the HDD 2 is decreased. As a result, as shown in FIG. 12D, the envelope peak period further expanded from the state of FIG. 12C. Therefore, in this case, it is determined that the rotational speed difference between the HDD 1 and the HDD 2 is further narrowed, that is, further averaged, the rotational speed of the magnetic disk of the HDD 1 is further increased, and the rotational speed of the HDD 2 is decreased. As a result, as shown in FIG. 12E, the period of the peak of the envelope was shortened. Accordingly, in this case, it can be determined that the rotational speed difference between HDD1 and HDD2 has widened, it is determined that the optimum state has been passed, and it can be determined that the rotational speed difference between HDD1 and HDD2 has been reduced most in the state of FIG. Accordingly, in order to return to the state of FIG. 12D, the rotational speed of the magnetic disk of HDD1 is decreased and the rotational speed of HDD2 is decreased so as to cancel the increase in the rotational speed of the magnetic disk of HDD1 and the decrease in the rotational speed of HDD2 performed immediately before. Raised. Then, the rotation speed setting values determined as the optimum values of the HDD 1 and HDD 2 in that state were stored in the nonvolatile memory.
 次に、磁気ディスク装置の組み合わせを変え、HDD2,HDD3の組み合わせを設定し、HDD2の磁気ディスクの回転数を上昇させ、HDD3の磁気ディスクの回転数を降下させた。その結果図12Fに示す如く、包絡線のピークの周期が図12Eの状態から広がった。したがって、この場合、HDD2とHDD3との両者の回転数差が狭まったと判断し、更にHDD2の磁気ディスクの回転数を上昇させ、HDD3の回転数を降下させた。その結果図12Gに示す如く、包絡線のピークの周期が図12Fの状態から更に広がった。したがって、この場合、HDD2とHDD3との回転数差が狭まったと判断し、更にHDD2の磁気ディスクの回転数を上昇させ、HDD3の回転数を降下させた。このようにしてHDD1,HDD2の組み合わせの場合と同様の動作を行い、最もHDD2,HDD3の回転数差が縮まったと判断した状態のHDD2、HDD3の回転数設定値(最適値と判断される)を不揮発性メモリに格納した。 Next, the combination of the magnetic disk devices was changed, the combination of HDD2 and HDD3 was set, the rotational speed of the magnetic disk of HDD2 was increased, and the rotational speed of the magnetic disk of HDD3 was decreased. As a result, as shown in FIG. 12F, the period of the peak of the envelope expanded from the state of FIG. 12E. Therefore, in this case, it was determined that the difference in rotational speed between the HDD 2 and the HDD 3 was narrowed, and the rotational speed of the magnetic disk of the HDD 2 was further increased and the rotational speed of the HDD 3 was decreased. As a result, as shown in FIG. 12G, the period of the peak of the envelope further expanded from the state of FIG. 12F. Therefore, in this case, it was determined that the rotational speed difference between the HDD 2 and the HDD 3 was narrowed, and the rotational speed of the magnetic disk of the HDD 2 was further increased and the rotational speed of the HDD 3 was decreased. In this way, the same operation as in the case of the combination of HDD1 and HDD2 is performed, and the rotational speed setting values (determined to be optimum values) of HDD2 and HDD3 in the state where it is determined that the rotational speed difference between HDD2 and HDD3 is most reduced. Stored in non-volatile memory.
 次に、更に磁気ディスク装置の組み合わせを変え、HDD1,HDD3の組み合わせを設定した。この場合もHDD1,HDD2の組み合わせの場合と同様の動作を行い、最もHDD1,HDD3の回転数差が縮まったと判断できる状態(図12H)のHDD1、HDD3の回転数設定値(最適値と判断される)を不揮発性メモリに格納した。これで3台の磁気ディスク装置の組み合わせの設定を全て(HDD1-HDD2,HDD2-HDD3,HDD1-HDD3の計3通り)完了(1回目のサイクルの終了)したので、次のサイクルへ移行した。 Next, the combination of HDD1 and HDD3 was set by further changing the combination of magnetic disk devices. In this case, the same operation as the combination of HDD1 and HDD2 is performed, and the rotational speed setting values of HDD1 and HDD3 in a state where it can be determined that the rotational speed difference between HDD1 and HDD3 is most reduced (FIG. 12H) (determined as the optimum value). Stored in a non-volatile memory. This completes all the combinations of the three magnetic disk units (HDD1-HDD2, HDD2-HDD3, HDD1-HDD3) (the end of the first cycle), so the process moves to the next cycle.
 次のサイクルでも、1回目のサイクル同様、まず、HDD1,HDD2の組み合わせを設定した。そして1回目のサイクル同様の動作を行い、最もHDD1HDD2の回転数差が縮まったと判断できる状態(図12I)のHDD1、HDD2の回転数設定値(最適値と判断される)を不揮発性メモリに格納した。 In the next cycle, as in the first cycle, first, a combination of HDD1 and HDD2 was set. Then, the same operation as the first cycle is performed, and the rotational speed setting values (determined to be optimum values) of HDD1 and HDD2 in a state where it can be determined that the rotational speed difference between HDD1 and HDD2 is most reduced (FIG. 12I) are stored in the nonvolatile memory. did.
 次にHDD2,HDD3の組み合わせを設定した。そして1回目のサイクル同様の動作を行い、最もHDD2,HDD3の回転数差が縮まったと判断できる状態(図12J)のHDD2、HDD3の回転数設定値(最適値と判断される)を不揮発性メモリに格納した。 Next, the combination of HDD2 and HDD3 was set. Then, the same operation as the first cycle is performed, and the rotational speed setting values (determined to be optimum values) of the HDD 2 and HDD 3 in a state where it can be determined that the rotational speed difference between the HDDs 2 and 3 is most reduced (FIG. 12J). Stored.
 次にHDD1,HDD3の組み合わせを設定した。そして1回目のサイクル同様の動作を行い、最もHDD1,HDD3の回転数差が縮まったと判断できる状態(図12K)のHDD1、HDD3の回転数設定値(最適値と判断される)を不揮発性メモリに格納した。これで2回目のサイクルが終了した。 Next, the combination of HDD1 and HDD3 was set. Then, the same operation as the first cycle is performed, and the rotational speed setting values (determined to be optimum values) of HDD1 and HDD3 in a state where it is possible to determine that the rotational speed difference between HDD1 and HDD3 is most reduced (FIG. 12K) Stored. This completes the second cycle.
 これら2回のサイクルの終了後の図12Kの波形を図12Aの初期状態の波形と比べると、明らかに合成音圧波形の包絡線のピークの周期が伸びており、合成音圧波形の振幅変動によるうなり音が効果的に低減されたことが分かる。 When the waveform of FIG. 12K after the end of these two cycles is compared with the waveform of the initial state of FIG. 12A, the period of the peak of the envelope of the synthesized sound pressure waveform clearly extends, and the amplitude fluctuation of the synthesized sound pressure waveform It can be seen that the beat sound caused by is effectively reduced.
 図12A~12Kで示されるように、3台の磁気ディスク装置のうちの2台の組み合わせを設定し、組み合わせた2台の磁気ディスクの回転数を、3台から発せられる音の合成音の音圧波形の包絡線のピークの周期が伸びるように、増減する。そして、磁気ディスク装置の回転数を増減する動作を、順次2台の組み合わせを変えながら繰り返す。その結果、3台から発せられる音の合成音の音圧波形の包絡線のピークの周期が徐々に伸び、その結果、合成音の音圧波形の振幅変動によるうなり音を効果的に低減できる。 As shown in FIGS. 12A to 12K, a combination of two of the three magnetic disk devices is set, and the number of rotations of the combined two magnetic disks is set to the sound of the synthesized sound generated from the three disks. The pressure waveform is increased or decreased so that the peak period of the envelope is increased. Then, the operation of increasing / decreasing the rotational speed of the magnetic disk device is repeated while changing the combination of the two units sequentially. As a result, the period of the peak of the envelope of the sound pressure waveform of the synthesized sound of the sounds generated from the three units gradually increases, and as a result, it is possible to effectively reduce the beat sound due to the amplitude fluctuation of the sound pressure waveform of the synthesized sound.
 尚、図9~図12Kとともに上述した調整動作は、電源オン時のイニシャライズ時間のみでなく、実施例1,実施例1の変形例1、実施例1の変形例2の各々の情報処理システムの稼働中、任意のタイミングで実施可能である。この場合、イニシャライズ時間同様、シーク動作を禁止して、スピンドルモータ以外の要因による騒音を排除した状態で行うことが望ましい。 Note that the adjustment operation described above with reference to FIGS. 9 to 12K is not limited to the initialization time when the power is turned on, but the information processing system of each of the first modification of the first embodiment and the first modification of the first embodiment and the second modification of the first embodiment. It can be implemented at any time during operation. In this case, as with the initialization time, it is desirable to prohibit the seek operation and eliminate noise caused by factors other than the spindle motor.
 また図9~図12Kとともに上述した調整動作は、複数台の磁気ディスク装置に対するコマンドの発行が一定時間無い場合に実施することが望ましい。その結果、情報処理システムのパフォーマンスへの影響を最小限に減らすことができる。 Also, the adjustment operation described above with reference to FIGS. 9 to 12K is preferably performed when no command is issued to a plurality of magnetic disk devices for a certain period of time. As a result, the influence on the performance of the information processing system can be reduced to the minimum.
 また、情報処理システムの電源をオフする場合を考慮して、図9~図12Kとともに上述した調整動作を行った後に、調整後の各磁気ディスク装置の回転数設定値が不揮発性メモリに格納されている。このため、情報処理システムの電源が再度オンされた際には、不揮発性メモリに格納された各磁気ディスク装置の回転数設定値を読み出し、読み出した回転数設定値に合致するように磁気ディスクの回転数が制御される。したがって最適な状態で使用が開始される。 Further, considering the case where the information processing system is turned off, after performing the adjustment operation described above with reference to FIGS. 9 to 12K, the rotation speed setting value of each magnetic disk device after adjustment is stored in the nonvolatile memory. ing. For this reason, when the information processing system is turned on again, the rotational speed setting value of each magnetic disk device stored in the nonvolatile memory is read, and the magnetic disk of the magnetic disk is matched with the read rotational speed setting value. The rotation speed is controlled. Therefore, the use is started in an optimum state.
 次に実施例1の変形例3につき説明する。実施例1の変形例3では、実施例1のセンサ回路210がマイクロホンではなく、代わりに振動センサとされる。この場合、振動センサ210は、複数台の磁気ディスク装置HDD-1~HDD-nを収容する情報記録装置200の筐体(ハウジング)或いは台座(フレーム)の振動を検出する。そして変形例3では、分析・制御調停部Ca0は、音圧波形の代わりに振動センサ210が検出した振動波形を検出する。そして図9~図12Kとともに上述した調整動作にて、実施例1同様、複数台の磁気ディスク装置HDD-1~HDD-nから2台の組み合わせを順次抽出してゆく。そして、組合せの抽出のたびに、検出された振動波形の包絡線のピークの周期が伸びるように、抽出した2台の磁気ディスクの回転数を増減する調整動作を行う。その後、回転数の調整動作を磁気ディスク装置の組み合わせを変えながら順次繰り返す。その結果、振動波形の包絡線のピークの周期が徐々に伸び、振動波形の振幅変動によるうなり音を効果的に低減することができる。 Next, a third modification of the first embodiment will be described. In the third modification of the first embodiment, the sensor circuit 210 of the first embodiment is not a microphone but is a vibration sensor instead. In this case, the vibration sensor 210 detects the vibration of the housing (housing) or the pedestal (frame) of the information recording apparatus 200 that houses the plurality of magnetic disk devices HDD-1 to HDD-n. In the third modification, the analysis / control arbitration unit Ca0 detects the vibration waveform detected by the vibration sensor 210 instead of the sound pressure waveform. 9 to 12K, the combination of the two units is sequentially extracted from the plurality of magnetic disk devices HDD-1 to HDD-n as in the first embodiment by the adjustment operation described above. Then, every time a combination is extracted, an adjustment operation is performed to increase or decrease the rotation speeds of the two extracted magnetic disks so that the period of the peak of the detected envelope of the vibration waveform is extended. Thereafter, the rotational speed adjustment operation is sequentially repeated while changing the combination of the magnetic disk devices. As a result, the period of the peak of the envelope of the vibration waveform is gradually extended, and it is possible to effectively reduce the beat sound caused by the amplitude fluctuation of the vibration waveform.
 次に実施例1の変形例4について説明する。実施例1の変形例4は、実施例1の変形例1に対応する変形例であり、図4とともに上述した構成を有し、マイクロホン210の代わりに振動センサ210を設ける。振動センサ210は、複数台の磁気ディスク装置HDD-1~HDD-nを収容する情報記録装置200Aの筐体(ハウジング)或いは台座(フレーム)の振動を検出する。そして変形例4では、分析・制御調停部Ca1による動作は、変形例3の分析・制御調停部Ca0による動作と同様である。 Next, a fourth modification of the first embodiment will be described. The fourth modification of the first embodiment is a modification corresponding to the first modification of the first embodiment, has the configuration described above with reference to FIG. 4, and includes a vibration sensor 210 instead of the microphone 210. The vibration sensor 210 detects the vibration of the housing (housing) or pedestal (frame) of the information recording apparatus 200A that accommodates the plurality of magnetic disk devices HDD-1 to HDD-n. In the fourth modification, the operation by the analysis / control arbitration unit Ca1 is the same as the operation by the analysis / control arbitration unit Ca0 in the third modification.
 次に実施例1の変形例5について説明する。実施例1の変形例5は、実施例1の変形例2に対応する変形例であり、図5とともに上述した構成を有し、マイクロホン210の代わりに振動センサ210を設ける。振動センサ210は、複数台の磁気ディスク装置HDD-1~HDD-nを収容するホストコンピュータ100Aの筐体(ハウジング)或いは台座(フレーム)の振動を検出する。そして変形例5では、分析・制御調停部Ca0による動作は、実施例1の変形例3の分析・制御調停部Ca0による動作と同様である。 Next, a fifth modification of the first embodiment will be described. A fifth modification of the first embodiment is a modification corresponding to the second modification of the first embodiment, has the configuration described above with reference to FIG. 5, and includes a vibration sensor 210 instead of the microphone 210. The vibration sensor 210 detects the vibration of the housing (housing) or pedestal (frame) of the host computer 100A that houses the plurality of magnetic disk devices HDD-1 to HDD-n. In the fifth modification, the operation by the analysis / control arbitration unit Ca0 is the same as the operation by the analysis / control arbitration unit Ca0 in the third modification of the first embodiment.
 尚、上記実施例1、実施例1の変形例1~変形例5の各々において、分析・制御調停部Ca0またはCa1は、ハードウェアとしての電子回路で形成しても良いし、或いは、CPUがプログラムを実行することによって実現しても良い。後者の場合、図2Bの構成(実施例1)においてはメモリMmhに格納されたプログラムをCPU(Cph)が実施することによって、分析・制御調停部の機能を実現することができる。
 図4の構成においては、磁気ディスク装置HDD-1が有するCPU(Cp)(図8参照)がメモリMm1に格納されたプログラムを実施することによって、分析・制御調停部の機能を実現することができる。図5の構成においては、CPU(Cpx)がメモリMmxに格納されたプログラムを実施することによって、分析・制御調停部の機能を実現することができる。
In each of the first embodiment and the first to fifth modifications of the first embodiment, the analysis / control arbitration unit Ca0 or Ca1 may be formed by an electronic circuit as hardware, or the CPU may It may be realized by executing a program. In the latter case, the function of the analysis / control arbitration unit can be realized by the CPU (Cph) executing the program stored in the memory Mmh in the configuration of FIG. 2B (Example 1).
In the configuration of FIG. 4, the CPU (Cp) (see FIG. 8) of the magnetic disk device HDD-1 executes the program stored in the memory Mm1, thereby realizing the function of the analysis / control arbitration unit. it can. In the configuration of FIG. 5, the function of the analysis / control arbitration unit can be realized by the CPU (Cpx) executing a program stored in the memory Mmx.
 次に、図13~図18とともに、本発明の実施例2の情報処理システムについて説明する。実施例2の情報処理システムは実施例1同様、複数台の磁気ディスク装置HDD-1~HDD-nを有する。尚、設計上は複数台の磁気ディスク装置の夫々の磁気ディスクの定格回転数は相互に一致(例えば7200[rpm])しているものとする。 Next, an information processing system according to the second embodiment of the present invention will be described with reference to FIGS. As in the first embodiment, the information processing system according to the second embodiment includes a plurality of magnetic disk devices HDD-1 to HDD-n. In the design, it is assumed that the rated rotational speeds of the respective magnetic disks of the plurality of magnetic disk devices coincide with each other (for example, 7200 [rpm]).
 実施例2の場合、ホストコンピュータから回転速度信号(速度指令信号とも称する)を複数台の磁気ディスク装置HDD-1~HDD-nの各々に送信する。複数台の磁気ディスク装置HDD-1~HDD-nの各々は、回転速度信号を受信し、回転速度信号に追従するように、自己の磁気ディスクの回転数を制御する。尚、回転速度信号が示す磁気ディスクの回転数はホストコンピュータが自動的に生成する。 In the second embodiment, a rotation speed signal (also referred to as a speed command signal) is transmitted from the host computer to each of the plurality of magnetic disk devices HDD-1 to HDD-n. Each of the plurality of magnetic disk devices HDD-1 to HDD-n receives the rotational speed signal and controls the rotational speed of its own magnetic disk so as to follow the rotational speed signal. The host computer automatically generates the rotation speed of the magnetic disk indicated by the rotation speed signal.
 図13は、実施例2の情報処理システムの構成を示すブロック図である。実施例2の情報処理システムは、ホストコンピュータ100Xと、複数台の磁気ディスク装置HDD-1~HDD-nを有する情報記録装置200XAとを有する。 FIG. 13 is a block diagram illustrating a configuration of the information processing system according to the second embodiment. The information processing system according to the second embodiment includes a host computer 100X and an information recording device 200XA having a plurality of magnetic disk devices HDD-1 to HDD-n.
 図14Aは、図13に示される磁気ディスク装置HDD-1の構成を示すブロック図であり、図14Bはホストコンピュータ100X1の構成を示すブロック図である。図14Aに示す如く、磁気ディスク装置HDD-1は、電流制御回路Cc1とスピンドルモータMo1とを有する。これら電流制御回路Cc1及びスピンドルモータMo1は、図3Aとともに上述した実施例1の磁気ディスク装置HDD-1の電流制御回路Cc1及びスピンドルモータMo1と同様の構成を有する。他の磁気ディスク装置HDD-2~HDD-nも、図14Aに示すHDD-1と同様の構成を有する。また、各磁気ディスク装置は、自己の磁気ディスクの回転数を特定する信号をホストコンピュータ100X1へ出力する機能を有する。自己の磁気ディスクの回転数を特定する信号は、図17とともに後述する速度フィードバック信号(例えばインデックス信号)とすることができる。また各磁気ディスク装置は、ホストコンピュータ100X1から送信される回転速度信号(図17中、速度指令信号)に基づいて、自己の磁気ディスクの回転数を制御する機能を有する。 FIG. 14A is a block diagram showing a configuration of the magnetic disk device HDD-1 shown in FIG. 13, and FIG. 14B is a block diagram showing a configuration of the host computer 100X1. As shown in FIG. 14A, the magnetic disk device HDD-1 has a current control circuit Cc1 and a spindle motor Mo1. These current control circuit Cc1 and spindle motor Mo1 have the same configuration as the current control circuit Cc1 and spindle motor Mo1 of the magnetic disk device HDD-1 of the first embodiment described above with reference to FIG. 3A. The other magnetic disk devices HDD-2 to HDD-n have the same configuration as HDD-1 shown in FIG. 14A. In addition, each magnetic disk device has a function of outputting a signal specifying the rotational speed of its own magnetic disk to the host computer 100X1. A signal for specifying the rotation speed of its own magnetic disk can be a speed feedback signal (for example, an index signal) described later with reference to FIG. Each magnetic disk device has a function of controlling the rotation speed of its own magnetic disk based on a rotation speed signal (speed command signal in FIG. 17) transmitted from the host computer 100X1.
 図14Bに示す如く、ホストコンピュータ100X1は、CPU(Cph),メモリMmhに加え、回転数信号分析部Ra0及び回転速度信号生成部Sg0を有する。CPU(Cph),メモリMmhは、夫々図2Bとともに上述したCPU(Cph),メモリMmhと同様の構成を有する。回転数信号分析部Ra0は、各磁気ディスク装置から送信される、回転数を特定する信号を受信して分析する。回転速度信号生成部Sg0は、回転数信号分析部Ra0による分析結果に応じ、各磁気ディスク装置へ送信する回転速度信号を生成する。尚、回転数信号分析部Ra0及び回転速度信号生成部Sg0は、ホストコンピュータ100X1に設ける代わりに、情報記録装置200XAのいずれかの磁気ディスク装置に設けても良い。磁気ディスク装置HDD-1に回転数信号分析部Ra0及び回転速度信号生成部Sg0を設ける場合、磁気ディスク装置HDD-1がマスタとして機能し、自己の磁気ディスクの回転数とともに、他の磁気ディスク装置HDD-2~HDD-nの夫々の磁気ディスクの回転数をも調整する。回転数信号分析部Ra0及び回転速度信号生成部Sg0は、各々ハードウェアとしての電子回路で形成してもよいし、ホストコンピュータ100X1のCPU(Cph)がメモリMmhに格納されたプログラムを実施することによって実現してもよい。実施例2の動作の流れについては図18とともに後述する。 As shown in FIG. 14B, the host computer 100X1 includes a rotation speed signal analysis unit Ra0 and a rotation speed signal generation unit Sg0 in addition to the CPU (Cph) and the memory Mmh. The CPU (Cph) and the memory Mmh have the same configuration as the CPU (Cph) and the memory Mmh described above with reference to FIG. 2B. The rotation speed signal analysis unit Ra0 receives and analyzes a signal specifying the rotation speed transmitted from each magnetic disk device. The rotation speed signal generation unit Sg0 generates a rotation speed signal to be transmitted to each magnetic disk device according to the analysis result by the rotation speed signal analysis unit Ra0. The rotation speed signal analysis unit Ra0 and the rotation speed signal generation unit Sg0 may be provided in any one of the magnetic disk devices of the information recording device 200XA instead of being provided in the host computer 100X1. When the rotation speed signal analysis unit Ra0 and the rotation speed signal generation unit Sg0 are provided in the magnetic disk device HDD-1, the magnetic disk device HDD-1 functions as a master, and other magnetic disk devices together with the rotation speed of its own magnetic disk. The rotational speed of each magnetic disk of HDD-2 to HDD-n is also adjusted. The rotation speed signal analysis unit Ra0 and the rotation speed signal generation unit Sg0 may each be formed by an electronic circuit as hardware, or the CPU (Cph) of the host computer 100X1 executes a program stored in the memory Mmh. It may be realized by. The operation flow of the second embodiment will be described later with reference to FIG.
 図15A,図15Bは実施例2の変形例1による情報処理システムの構成を示すブロック図である。実施例2の変形例1が、図13,図14A,図14Bとともに上述した実施例2と異なる点は、各磁気ディスク装置の磁気ディスクの回転数を、操作者(オペレータ)が決定する点である。この場合、ホストコンピュータ100X2は、図14A、図14Bにおける回転速度信号生成部Sg0及び回転数信号分析部Ra0の代わりに、回転速度信号生成部Sg01を有する。ホストコンピュータX2におけるCPU(Cph),メモリMmhは、夫々図2Bとともに上述したCPU(Cph),メモリMmhと同様の構成を有する。回転速度信号生成部Sg01は、操作者が入力する磁気ディスクの回転数に応じ、入力された回転数を示す回転速度信号を生成し、各磁気ディスク装置へ送信する。実施例2の変形例1の動作の流れについては図19とともに後述する。回転速度信号生成部Sg01は、ハードウェアとしての電子回路で形成してもよいし、ホストコンピュータ100X2のCPU(Cph)がメモリMmhに格納されたプログラムを実施することによって実現してもよい。 15A and 15B are block diagrams showing the configuration of the information processing system according to the first modification of the second embodiment. The first modification of the second embodiment differs from the second embodiment described above with reference to FIGS. 13, 14A, and 14B in that the operator (operator) determines the number of rotations of the magnetic disk of each magnetic disk device. is there. In this case, the host computer 100X2 includes a rotation speed signal generation unit Sg01 instead of the rotation speed signal generation unit Sg0 and the rotation speed signal analysis unit Ra0 in FIGS. 14A and 14B. The CPU (Cph) and the memory Mmh in the host computer X2 have the same configuration as the CPU (Cph) and the memory Mmh described above with reference to FIG. 2B. The rotation speed signal generation unit Sg01 generates a rotation speed signal indicating the input rotation speed according to the rotation speed of the magnetic disk input by the operator, and transmits it to each magnetic disk device. The operation flow of the first modification of the second embodiment will be described later with reference to FIG. The rotation speed signal generation unit Sg01 may be formed by an electronic circuit as hardware, or may be realized by the CPU (Cph) of the host computer 100X2 executing a program stored in the memory Mmh.
 図16Aは、実施例2の変形例2による情報処理システムの構成を示すブロック図である。実施例2の変形例2では、図5とともに上述した実施例1の変形例2同様、ホストコンピュータ100XDの筐体(ハウジング)内に、複数台の磁気ディスク装置HDD-1~HDD-nが設けられている。更に、変形例2によるホストコンピュータ100XDは、図14A,図14Bとともに上述した実施例2のホストコンピュータ100X1が有する回転速度信号生成部Sg0及び回転数信号分析部Ra0と同様の構成を有する回転速度信号生成部Sg0及び回転数信号分析部Ra0を有する。回転速度信号生成部Sg0及び回転数信号分析部Ra0の動作は、図13,図14A,図14Bとともに上述した実施例2におけるものと同様である。実施例2の変形例2の動作の流れについては図18とともに後述する。回転速度信号生成部Sg0は、ハードウェアとしての電子回路で形成してもよいし、ホストコンピュータ100XDのCPU(Cph)がメモリMmhに格納されたプログラムを実施することによって実現してもよい。 FIG. 16A is a block diagram illustrating a configuration of an information processing system according to the second modification of the second embodiment. In the second modification of the second embodiment, as in the second modification of the first embodiment described above with reference to FIG. 5, a plurality of magnetic disk devices HDD-1 to HDD-n are provided in the housing (housing) of the host computer 100XD. It has been. Further, the host computer 100XD according to the modified example 2 has a rotational speed signal having the same configuration as the rotational speed signal generation unit Sg0 and the rotational speed signal analysis unit Ra0 included in the host computer 100X1 of the second embodiment described above with reference to FIGS. 14A and 14B. A generation unit Sg0 and a rotation speed signal analysis unit Ra0 are included. The operations of the rotation speed signal generation unit Sg0 and the rotation speed signal analysis unit Ra0 are the same as those in the second embodiment described above with reference to FIGS. 13, 14A, and 14B. The operation flow of the second modification of the second embodiment will be described later with reference to FIG. The rotation speed signal generation unit Sg0 may be formed by an electronic circuit as hardware, or may be realized by executing a program stored in the memory Mmh by the CPU (Cph) of the host computer 100XD.
 図16Bは、実施例2の変形例3による情報処理システムの構成を示すブロック図である。実施例2の変形例3では、図5とともに上述した実施例1の変形例2同様、ホストコンピュータ100XEの筐体(ハウジング)内に、複数台の磁気ディスク装置HDD-1~HDD-nが設けられている。更に、変形例3のホストコンピュータ100XEは、図15A,図15Bとともに上述した実施例2の変形例1のホストコンピュータ100X2が有する回転速度信号生成部Sg01と同様の構成を有する回転速度信号生成部Sg01を有する。回転速度信号生成部Sg01の動作は図15A,図15Bとともに上述した実施例2の変形例1におけるものと同様である。実施例2の変形例3の動作の流れについては図19とともに後述する。回転速度信号生成部Sg01は、ハードウェアとしての電子回路で形成してもよいし、ホストコンピュータ100XEのCPU(Cph)がメモリMmhに格納されたプログラムを実施することによって実現してもよい。 FIG. 16B is a block diagram illustrating a configuration of an information processing system according to the third modification of the second embodiment. In the third modification of the second embodiment, as in the second modification of the first embodiment described above with reference to FIG. 5, a plurality of magnetic disk devices HDD-1 to HDD-n are provided in the housing (housing) of the host computer 100XE. It has been. Further, the host computer 100XE of the third modified example has a rotational speed signal generating unit Sg01 having the same configuration as the rotational speed signal generating unit Sg01 of the host computer 100X2 of the first modified example of the second embodiment described above with reference to FIGS. 15A and 15B. Have The operation of the rotation speed signal generation unit Sg01 is the same as that in the first modification of the second embodiment described above with reference to FIGS. 15A and 15B. The operation flow of the third modification of the second embodiment will be described later with reference to FIG. The rotation speed signal generation unit Sg01 may be formed by an electronic circuit as hardware, or may be realized by executing a program stored in the memory Mmh by the CPU (Cph) of the host computer 100XE.
 図17は、実施例2、実施例2の変形例1、実施例2の変形例2,実施例2の変形例3の各々に適用可能な磁気ディスク装置の電流制御回路の構成例を示すブロック図である。図17の電流制御回路Ccは、図6とともに上述した磁気ディスク装置の電流制御回路Ccとほぼ同様の構成を有する。図17において、図6と同一の構成要素には同一の符号を付し、重複する説明を省略する。
 図17と図6の構成との相違点は、速度指令信号生成回路Ssを有する点である。速度指令信号生成回路Ssは、固定された回転数を示す速度指令信号を生成し、回転速度検出回路Rdに与える。また、図17の構成の場合、速度指令信号は、回転速度信号として回転速度信号生成部Sg0またはSg01からも与えられる。ここで回転速度検出回路Rdは、速度指令信号生成回路Ssと回転速度信号生成部Sg0またはSg01との双方から同時に速度指令信号が入力された場合、回転速度信号生成部Sg0またはSg01からの信号を選択する切り換え機能を有する。
FIG. 17 is a block diagram illustrating a configuration example of a current control circuit of a magnetic disk device applicable to each of the second embodiment, the first modification of the second embodiment, the second modification of the second embodiment, and the third modification of the second embodiment. FIG. The current control circuit Cc in FIG. 17 has substantially the same configuration as the current control circuit Cc of the magnetic disk device described above with reference to FIG. In FIG. 17, the same components as those in FIG. 6 are denoted by the same reference numerals, and redundant description is omitted.
The difference between the configuration of FIG. 17 and FIG. 6 is that a speed command signal generation circuit Ss is provided. The speed command signal generation circuit Ss generates a speed command signal indicating the fixed number of rotations and supplies it to the rotation speed detection circuit Rd. In the case of the configuration shown in FIG. 17, the speed command signal is also given as a rotational speed signal from the rotational speed signal generation unit Sg0 or Sg01. Here, when the speed command signal is simultaneously input from both the speed command signal generation circuit Ss and the rotation speed signal generation unit Sg0 or Sg01, the rotation speed detection circuit Rd receives the signal from the rotation speed signal generation unit Sg0 or Sg01. It has a switching function to select.
 このように、実施例2、実施例2の変形例1、実施例2の変形例2,実施例2の変形例3の各々では、実施例1等と異なり、速度指令信号が速度指令信号生成回路Ss及び回転速度信号生成部Sg0またはSg01の双方から入力される。また、実施例2、実施例2の変形例1、実施例2の変形例2,実施例2の変形例3の各々において適用可能な磁気ディスク装置の全体構成は、図7とともに上述した磁気ディスク装置として説明したものと同様とすることができる。 Thus, in each of the second embodiment, the first modification of the second embodiment, the second modification of the second embodiment, and the third modification of the second embodiment, unlike the first embodiment, the speed command signal is generated by the speed command signal. It is input from both the circuit Ss and the rotation speed signal generator Sg0 or Sg01. Further, the entire configuration of the magnetic disk device applicable in each of the second embodiment, the first modification of the second embodiment, the second modification of the second embodiment, and the third modification of the second embodiment is the magnetic disk described above with reference to FIG. It can be the same as that described as the apparatus.
 次に、実施例2及び実施例2の変形例2の各々における調整動作の流れにつき、図18とともに説明する。
 まず、実施例2及び実施例2の変形例2の場合、情報処理システムの電源がオンされる(ステップS31)。その結果、各磁気ディスク装置が起動され、まず、図17の構成において、速度指令信号生成回路Ssが生成する速度指令信号によって、夫々の磁気ディスクの回転が制御される。そして、各磁気ディスク装置は、磁気ディスクの回転数を特定する信号を回転数信号分析部Ra0に送信する。回転数信号分析部Ra0が、各磁気ディスク装置から磁気ディスクの回転数を特定する信号を受信する(ステップS32)。回転数信号分析部Ra0は、受信した信号から各磁気ディスク装置の夫々の磁気ディスクの現在の回転数を求め、回転速度信号生成部Sg0へ求めた回転数を送信する。
Next, the flow of the adjustment operation in each of the second embodiment and the second modification of the second embodiment will be described with reference to FIG.
First, in the case of the second embodiment and the second modification of the second embodiment, the information processing system is turned on (step S31). As a result, each magnetic disk device is activated. First, in the configuration of FIG. 17, the rotation of each magnetic disk is controlled by the speed command signal generated by the speed command signal generation circuit Ss. Then, each magnetic disk device transmits a signal for specifying the rotational speed of the magnetic disk to the rotational speed signal analysis unit Ra0. The rotational speed signal analysis unit Ra0 receives a signal specifying the rotational speed of the magnetic disk from each magnetic disk device (step S32). The rotation speed signal analysis unit Ra0 determines the current rotation speed of each magnetic disk of each magnetic disk device from the received signal, and transmits the calculated rotation speed to the rotation speed signal generation unit Sg0.
 回転速度信号生成部Sg0は、回転数信号分析部Ra0から夫々の磁気ディスクの回転数の情報を受信すると、全ての磁気ディスク装置の磁気ディスクの回転数の平均を求める(ステップS33)。回転速度信号生成部Sg0は、求めた平均の回転数を示す回転速度信号を生成し、各磁気ディスク装置へ速度指令信号として送信する(ステップS34)。
 各磁気ディスク装置の電流制御回路Ccの回転速度検出回路Rdは、回転速度信号生成部Sg0から速度指令信号を受信すると、切り換え機能によって、回転速度信号生成部Sg0からの速度指令信号を選択する状態に遷移する。その結果、各磁気ディスク装置の電流制御回路Ccは、速度指令信号生成回路Ssからの速度指令信号の代わりに、全磁気ディスク装置の平均の回転数を示す速度指令信号(回転速度信号)が示す回転数で、自己の磁気ディスクを回転するように制御する(ステップS35)
 このように実施例2及び実施例2の変形例2によれば、全ての磁気ディスク装置の磁気ディスクの平均の回転数を示す速度指令信号が、回転速度信号生成部Sg0から各磁気ディスク装置に送信される。そして、各磁気ディスク装置は速度指令信号にしたがって自己の磁気ディスクの回転を制御する。このように、各磁気ディスク装置の磁気ディスクの回転は、全磁気ディスク装置の平均の回転数を示す速度指令信号によって制御される。
 ここで、複数台の磁気ディスク装置の各々の速度指令信号生成回路Ssが生成する速度指令信号が示す回転数が、何らかの要因で磁気ディスク装置相互間でズレを有する場合を想定する。このような場合、複数台の磁気ディスク装置が、各々自身が搭載する速度指令信号生成回路Ssの生成に係る速度指令信号によって磁気ディスクの回転を制御すると、速度指令信号が示す回転数のズレに応じて夫々の磁気ディスクの回転数相互間にズレが生ずる。このような場合でも、実施例2または実施例2の変形例2によれば、夫々の磁気ディスク装置の回転数の平均を示す速度指令信号によって、各磁気ディスク装置が制御される。したがって、複数台の磁気ディスク装置の夫々の磁気ディスクが、全ディスク装置の平均の回転数に一致する回転数で回転するようになり、夫々の磁気ディスク装置間の回転数のズレによるうなり音を効果的に低減することができる。
When the rotational speed signal generator Sg0 receives the information on the rotational speeds of the respective magnetic disks from the rotational speed signal analyzer Ra0, the rotational speed signal generator Sg0 obtains the average of the rotational speeds of the magnetic disks of all the magnetic disk devices (step S33). The rotational speed signal generation unit Sg0 generates a rotational speed signal indicating the obtained average rotational speed, and transmits it to each magnetic disk device as a speed command signal (step S34).
When the rotational speed detection circuit Rd of the current control circuit Cc of each magnetic disk device receives the speed command signal from the rotational speed signal generation unit Sg0, it selects the speed command signal from the rotational speed signal generation unit Sg0 by the switching function. Transition to. As a result, the current control circuit Cc of each magnetic disk device indicates a speed command signal (rotational speed signal) indicating the average rotational speed of all the magnetic disk devices instead of the speed command signal from the speed command signal generation circuit Ss. It controls to rotate its own magnetic disk at the rotational speed (step S35).
As described above, according to the second embodiment and the second modification of the second embodiment, the speed command signal indicating the average rotation speed of the magnetic disks of all the magnetic disk apparatuses is transmitted from the rotation speed signal generation unit Sg0 to each magnetic disk apparatus. Sent. Each magnetic disk device controls the rotation of its own magnetic disk in accordance with the speed command signal. As described above, the rotation of the magnetic disk of each magnetic disk device is controlled by the speed command signal indicating the average number of rotations of all the magnetic disk devices.
Here, it is assumed that the rotational speed indicated by the speed command signal generated by the speed command signal generation circuit Ss of each of the plurality of magnetic disk devices has a deviation between the magnetic disk devices for some reason. In such a case, when the plurality of magnetic disk devices control the rotation of the magnetic disk by the speed command signal related to the generation of the speed command signal generation circuit Ss mounted on the magnetic disk device, the rotational speed deviation indicated by the speed command signal is shifted. Accordingly, a deviation occurs between the rotational speeds of the respective magnetic disks. Even in such a case, according to the second embodiment or the second modification of the second embodiment, each magnetic disk device is controlled by the speed command signal indicating the average rotation speed of each magnetic disk device. Therefore, each magnetic disk of the plurality of magnetic disk devices starts to rotate at a rotational speed that matches the average rotational speed of all the disk devices, and a beat sound due to the rotational speed deviation between the respective magnetic disk devices is generated. It can be effectively reduced.
 尚、各磁気ディスク装置を制御する速度指令信号が示す回転数を、全磁気ディスク装置の平均の回転数とするのは、以下に述べる理由による。仮に複数台の磁気ディスク装置HDD-1~HDD-nのうちの任意の1台の回転数に他の夫々の磁気ディスク装置の回転数を併せ込むような制御を行うとすると、任意の1台の磁気ディスク装置が万一極端に偏った回転数を有していた場合、他の夫々の磁気ディスク装置が追従できない事態が想定される。 The reason why the rotation speed indicated by the speed command signal for controlling each magnetic disk device is the average rotation speed of all the magnetic disk devices is as follows. If control is performed such that the rotational speed of any one of the plurality of magnetic disk devices HDD-1 to HDD-n is combined with the rotational speed of each of the other magnetic disk devices, the arbitrary one In the unlikely event that the magnetic disk device has a rotational speed that is extremely biased, it is assumed that each of the other magnetic disk devices cannot follow.
 次に、実施例2の変形例1及び実施例2の変形例3の各々における調整動作の流れにつき、図19とともに説明する。 Next, the flow of the adjustment operation in each of the first modification of the second embodiment and the third modification of the second embodiment will be described with reference to FIG.
 実施例2の変形例1及び実施例2の変形例3の場合、情報処理システムの電源がオンされ(ステップS41)、各磁気ディスク装置が起動し、操作者が磁気ディスクの回転数を入力する(ステップS42)。回転速度信号生成部Sg01は、入力された磁気ディスクの回転数に基づき、当該回転数を示す周波数に対応する周期を計算する(ステップS43)。回転速度信号生成部Sg01は計算した周期を有する回転速度信号を生成し、速度指令信号として各磁気ディスク装置へ送信する(ステップS34)。各磁気ディスク装置の電流制御回路Ccの回転速度検出回路Rdは、操作者が入力した回転数を示す速度指令信号を回転速度信号生成部Sg01から受信すると、切り換え機能によって、回転速度信号生成部Sg01からの速度指令信号を選択する状態に遷移する。その結果、各磁気ディスク装置の電流制御回路Ccは、速度指令信号生成回路Ssからの速度指令信号の代わりに、操作者の入力に係る回転数を示す速度指令信号が示す回転数で、自己の磁気ディスクを回転するように制御する(ステップS35)。 In the case of the first modification of the second embodiment and the third modification of the second embodiment, the information processing system is powered on (step S41), each magnetic disk device is activated, and the operator inputs the rotation speed of the magnetic disk. (Step S42). The rotation speed signal generation unit Sg01 calculates a period corresponding to the frequency indicating the rotation speed based on the input rotation speed of the magnetic disk (step S43). The rotation speed signal generation unit Sg01 generates a rotation speed signal having the calculated period and transmits it as a speed command signal to each magnetic disk device (step S34). When the rotational speed detection circuit Rd of the current control circuit Cc of each magnetic disk device receives a speed command signal indicating the rotational speed input by the operator from the rotational speed signal generator Sg01, the rotational speed signal generator Sg01 is switched by the switching function. Transitions to a state in which the speed command signal from is selected. As a result, the current control circuit Cc of each magnetic disk device has its own rotational speed indicated by the speed command signal indicating the rotational speed related to the input by the operator, instead of the speed command signal from the speed command signal generation circuit Ss. The magnetic disk is controlled to rotate (step S35).
 このように実施例2の変形例1及び実施例2の変形例3によれば、操作者が入力した回転数を示す速度指令信号が、回転速度信号生成部Sg01から各磁気ディスク装置に送信される。そして各磁気ディスク装置は、操作者が入力した回転数で自己の磁気ディスクを回転させるように制御を行う。その結果、各磁気ディスク装置は操作者が入力した回転数で回転するように制御されるため、複数台の磁気ディスク装置HDD-1~HDD-nの夫々の磁気ディスクが同一回転数で回転するようになる。したがって夫々の磁気ディスク装置間の回転数のズレによるうなり音が効果的に低減される。 As described above, according to the first modification of the second embodiment and the third modification of the second embodiment, the speed command signal indicating the rotation speed input by the operator is transmitted from the rotation speed signal generation unit Sg01 to each magnetic disk device. The Each magnetic disk device performs control to rotate its own magnetic disk at the rotational speed input by the operator. As a result, each magnetic disk device is controlled to rotate at the rotational speed input by the operator, so that the magnetic disks of the plurality of magnetic disk devices HDD-1 to HDD-n rotate at the same rotational speed. It becomes like this. Therefore, the beat sound due to the rotational speed deviation between the respective magnetic disk devices is effectively reduced.
 100、100A,100XD,100XE ホストコンピュータ
 200、200A、200XA 情報記録装置
 HDD-1~HDD-n 磁気ディスク装置
 210 センサ回路(マイクロホンまたは振動センサ)
 Ca0、Ca1 分析・制御調停部
 Mm0,Mm1 不揮発性メモリ
 Cc,Cc1 電流制御回路
 Mo1、Sm スピンドルモータ
 Say 分析部
 Cay 制御調停部
 Sg0,Sg01 回転速度信号生成部
 Ra0 回転数信号分析回路
100, 100A, 100XD, 100XE Host computer 200, 200A, 200XA Information recording device HDD-1 to HDD-n Magnetic disk device 210 Sensor circuit (microphone or vibration sensor)
Ca0, Ca1 Analysis / control arbitration unit Mm0, Mm1 Non-volatile memory Cc, Cc1 Current control circuit Mo1, Sm Spindle motor Say analysis unit Cay control arbitration unit Sg0, Sg01 Rotational speed signal generation unit Ra0 Rotational speed signal analysis circuit

Claims (16)

  1.  情報の記録及び再生を行う複数台のディスク装置と、
     前記複数台のディスク装置の音または振動を検出する検出部と、
     前記複数台のディスク装置のうちから2台を選択する選択動作及び、前記検出部が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びるように、選択された2台のディスク装置の一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させる調整動作を行い、前記選択動作及び調整動作を交互に繰り返す制御部と、を有することを特徴とする情報記録装置。
    A plurality of disk devices for recording and reproducing information; and
    A detection unit for detecting sound or vibration of the plurality of disk devices;
    The selection operation of selecting two of the plurality of disk devices and the selected 2 so that the period of the envelope of the sound or vibration waveform of the plurality of disk devices detected by the detection unit is extended. A control unit that performs an adjustment operation to increase the rotation speed of one disk device of a disk device and to decrease the rotation speed of the other disk device, and alternately repeats the selection operation and the adjustment operation. Information recording device.
  2.  前記選択動作は、前記複数台のディスク装置から順次異なる2台を選択する第1の選択動作と、前記第1の選択動作において選択されたディスク装置の組み合わせとは異なる組み合わせで前記複数台のディスク装置から順次異なる2台を選択する第2の選択動作とを有することを特徴とする請求項1記載の情報記録装置。 In the selection operation, the plurality of disks are combined in a combination different from a combination of a first selection operation for sequentially selecting two different ones from the plurality of disk devices and a combination of the disk devices selected in the first selection operation. The information recording apparatus according to claim 1, further comprising: a second selection operation for sequentially selecting two different units from the apparatus.
  3.  前記調整動作では、選択された2台のディスク装置のうちの一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させたのちに、前記検出部が検出したディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判別し、
     包絡線の周期が伸びた場合には、前記一方のディスク装置の回転数を更に上昇させ、前記他方のディスク装置の回転数を更に降下させたのちに、前記検出部が検出したディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判定することを特徴とする請求項1記載の情報記録装置。
    In the adjustment operation, after the rotational speed of one of the two selected disk devices is increased and the rotational speed of the other disk device is decreased, the sound of the disk device detected by the detection unit is detected. Or determine whether the period of the envelope of the vibration waveform has been extended,
    When the period of the envelope is extended, the rotational speed of the one disk device is further increased, and the rotational speed of the other disk device is further decreased, and then the sound of the disk device detected by the detection unit is detected. The information recording apparatus according to claim 1, wherein it is determined whether or not the period of the envelope of the vibration waveform has been extended.
  4.  前記調整動作では、選択された2台のディスク装置のうちの一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させたのちに,前記検出部が検出したディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判別し、
     包絡線の周期が伸びなかった場合には、前記他方のディスク装置の回転数を上昇させ一方のディスク装置の回転数を降下させ、そののちに前記検出部が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判定することを特徴とする請求項1記載の情報記録装置。
    In the adjustment operation, after the rotational speed of one of the two selected disk devices is increased and the rotational speed of the other disk device is decreased, the sound of the disk device detected by the detection unit is detected. Or determine whether the period of the envelope of the vibration waveform has been extended,
    If the period of the envelope does not extend, the rotational speed of the other disk device is increased and the rotational speed of one disk device is decreased, and then the plurality of disk devices detected by the detection unit are detected. 2. The information recording apparatus according to claim 1, wherein it is determined whether or not the period of the envelope of the sound or vibration waveform has been extended.
  5.  速度指令信号が示す回転数でディスクを回転させ、当該ディスクに対し、情報の記録及び再生を行う複数台のディスク装置と、
     前記複数台のディスク装置の夫々の回転数を検出する検出部と、
     前記検出部が検出した前記複数台のディスク装置の回転数の平均を求め、当該平均の回転数を示す速度指令信号を生成して前記複数台のディスク装置の各々に送信する制御部と、を有することを特徴とする情報記録装置。
    A plurality of disk devices that rotate the disk at a rotational speed indicated by the speed command signal, and record and reproduce information on the disk;
    A detection unit for detecting the number of rotations of each of the plurality of disk devices;
    A control unit that obtains an average rotation speed of the plurality of disk devices detected by the detection unit, generates a speed command signal indicating the average rotation speed, and transmits the speed command signal to each of the plurality of disk devices; An information recording apparatus comprising:
  6.  情報の演算を行う演算装置と、
     前記演算装置が演算を行う情報の記録及び再生を行う複数台のディスク装置と、
     前記複数台のディスク装置の音または振動を検出する検出部と、
     前記複数台のディスク装置のうちから2台を選択する選択動作及び、前記検出部が検出する前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びるように、前記2台のディスク装置の一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させる調整動作を行う制御部と、を有することを特徴とする情報処理装置。
    An arithmetic device that performs an operation of information;
    A plurality of disk devices for recording and reproducing information to be calculated by the calculation device;
    A detection unit for detecting sound or vibration of the plurality of disk devices;
    The selection operation for selecting two of the plurality of disk devices and the period of the envelope of the sound or vibration waveform of the plurality of disk devices detected by the detection unit are extended. An information processing apparatus comprising: a control unit that performs an adjustment operation of increasing a rotational speed of one disk device of the disk device and decreasing a rotational speed of the other disk device.
  7.  前記選択動作は、前記複数台のディスク装置から順次異なる2台を選択する第1の選択動作と、前記第1の選択動作における各2台の組み合わせとは異なる組み合わせで前記複数台のディスク装置から順次異なる2台を選択する第2の選択動作とを有することを特徴とする請求項6記載の情報処理装置。 The selection operation includes a first selection operation for sequentially selecting two different devices from the plurality of disk devices, and a combination different from the combination of the two devices in the first selection operation from the plurality of disk devices. The information processing apparatus according to claim 6, further comprising: a second selection operation for sequentially selecting two different units.
  8.  前記調整動作では、当該2台のディスク装置のうちの一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させたのちに前記検出部が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びた場合には、前記一方のディスク装置の回転数を更に、前回よりは小さい上昇幅で上昇させ前記他方のディスク装置の回転数を更に、前回よりは小さい降下幅で降下させたのちに前記検出部が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判定し、伸びた場合には前記一方のディスク装置の回転数を更に上昇させ前記他方のディスク装置の回転数を更に降下させ、
     前記調整動作では、当該2台のディスク装置のうちの一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させたのちに前記検出部が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びなかった場合には、前記他方のディスク装置の回転数を上昇させ一方のディスク装置の回転数を降下させたのちに前記検出部が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判定し、伸びた場合には、前記他方のディスク装置の回転数を更に、前回よりは小さい上昇幅で上昇させ前記一方のディスク装置の回転数を更に、前回よりは小さい降下幅で降下させたのちに前記検出部が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判定し、伸びた場合には前記他方のディスク装置の回転数を更に上昇させ前記一方のディスク装置の回転数を更に降下させることを特徴とする請求項6または7記載の情報処理装置。
    In the adjusting operation, after the rotational speed of one of the two disk devices is increased and the rotational speed of the other disk device is decreased, the plurality of disk devices detected by the detection unit are detected. When the period of the envelope of the sound or vibration waveform is extended, the rotational speed of the one disk device is further increased with a smaller increase than the previous time, and the rotational speed of the other disk device is further increased from the previous time. Determines whether the period of the envelope of the sound or vibration waveform of the plurality of disk devices detected by the detection unit after being lowered with a small drop width has been extended. Further increasing the rotational speed of the disk device and further decreasing the rotational speed of the other disk device;
    In the adjusting operation, after the rotational speed of one of the two disk devices is increased and the rotational speed of the other disk device is decreased, the plurality of disk devices detected by the detection unit are detected. When the period of the envelope of the sound or vibration waveform does not extend, the plurality of detected by the detection unit after increasing the number of rotations of the other disk device and decreasing the number of rotations of one disk device It is determined whether or not the period of the envelope of the sound or vibration waveform of the disk unit has been extended, and if so, the rotational speed of the other disk unit is further increased with a smaller increase range than the previous time. The cycle of the envelope of the sound or vibration waveforms of the plurality of disk devices detected by the detection unit is extended after the number of rotations of the one disk device is further lowered with a lower drop width than the previous time. 8. The information processing apparatus according to claim 6 or 7, wherein when it is extended, the rotation speed of the other disk device is further increased and the rotation speed of the one disk device is further decreased. .
  9.  情報の記録及び再生を行う複数台のディスク装置の音または振動を検出する検出段階と、
     前記検出した音または振動波形の包絡線のピークの間隔を判別する段階と、
     前記複数台のディスク装置のうちから選択された2台のディスク装置の一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させる段階と、
     選択された2台のディスク装置の回転数を上昇、降下させた結果、前記包絡線のピークの間隔が伸びたか否かを判別する段階と、を有することを特徴とするディスク装置の制御方法。
    A detection stage for detecting sound or vibration of a plurality of disk devices for recording and reproducing information; and
    Determining an interval between peaks of the detected sound or vibration waveform envelope;
    Increasing the rotational speed of one of the two disk devices selected from the plurality of disk devices and decreasing the rotational speed of the other disk device;
    And a step of discriminating whether or not the interval between the peaks of the envelope has increased as a result of increasing or decreasing the rotational speed of the two selected disk devices.
  10.  前記選択動作は、前記複数台のディスク装置から順次異なる2台を選択する第1の選択動作と、前記第1の選択動作における各2台の組み合わせとは異なる組み合わせで前記複数台のディスク装置から順次異なる2台を選択する第2の選択動作とを有することを特徴とする請求項9記載のディスク装置の制御方法。 The selection operation includes a first selection operation for sequentially selecting two different devices from the plurality of disk devices, and a combination different from the combination of the two devices in the first selection operation from the plurality of disk devices. The disk device control method according to claim 9, further comprising a second selection operation of sequentially selecting two different units.
  11.  当該2台のディスク装置のうちの一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させたのちに、ディスク装置の音または振動の波形の包絡線のピークの間隔が伸びた場合には、前記一方のディスク装置の回転数を更に上昇させる一方、前記他方のディスク装置の回転数を更に降下させ、
     当該2台のディスク装置のうちの一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させたのちに、ディスク装置の音または振動の波形の包絡線のピークの間隔が伸びなかった場合には、前記他方のディスク装置の回転数を上昇させ一方のディスク装置の回転数を降下させることを特徴とする請求項9または10記載のディスク装置の制御方法。
    After increasing the rotational speed of one of the two disk devices and decreasing the rotational speed of the other disk device, the peak interval of the envelope of the sound or vibration waveform of the disk device is extended. In this case, the rotational speed of the one disk device is further increased, while the rotational speed of the other disk device is further decreased,
    After increasing the rotational speed of one of the two disk devices and decreasing the rotational speed of the other disk device, the peak interval of the envelope of the sound or vibration waveform of the disk device is extended. 11. The disk device control method according to claim 9, wherein when there is no disk device, the rotational speed of the other disk device is increased and the rotational speed of the one disk device is decreased.
  12.  速度指令信号が示す回転数でディスクを回転させ、当該ディスクに対し、情報の記録及び再生を行う複数台のディスク装置の夫々の回転数を検出する検出段階と、
     前記検出段階で検出した前記複数台のディスク装置の夫々の回転数の平均を求め、当該平均の回転数を示す速度指令信号を生成して前記複数台のディスク装置の各々に送信する制御段階と、を有することを特徴とするディスク装置の制御方法。
    A detection step of rotating the disk at the number of revolutions indicated by the speed command signal and detecting the number of revolutions of each of a plurality of disk devices for recording and reproducing information on the disk;
    A control step of obtaining an average of the rotation speeds of the plurality of disk devices detected in the detection step, generating a speed command signal indicating the average rotation speed, and transmitting the speed command signal to each of the plurality of disk devices; A method for controlling a disk device, comprising:
  13.  コンピュータを、複数台のディスク装置のうちから2台を選択する選択動作及び、前記複数台のディスク装置の音または振動を検出する検出手段が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びるように、前記2台のディスク装置の一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させる調整動作を行い、前記選択動作及び調整動作を交互に繰り返す制御手段として機能させるための、ディスク装置の制御プログラム。 The selection operation of selecting two of the plurality of disk devices from the computer, and the sound or vibration waveforms of the plurality of disk devices detected by the detecting means for detecting the sound or vibration of the plurality of disk devices An adjustment operation is performed to increase the rotation speed of one of the two disk devices and decrease the rotation speed of the other disk device so that the period of the envelope of the two disk devices increases, and the selection operation and the adjustment operation are alternately performed. A control program for the disk device for functioning as a repeating control means.
  14.  前記選択動作は、前記複数台のディスク装置から順次異なる2台を選択する第1の選択動作と、前記第1の選択動作における各2台の組み合わせとは異なる組み合わせで前記複数台のディスク装置から順次異なる2台を選択する第2の選択動作とを有することを特徴とする請求項13記載のディスク装置の制御プログラム。 The selection operation includes a first selection operation for sequentially selecting two different devices from the plurality of disk devices, and a combination different from the combination of the two devices in the first selection operation from the plurality of disk devices. 14. The control program for a disk device according to claim 13, further comprising a second selection operation for selecting two different units sequentially.
  15.  前記調整動作では、当該2台のディスク装置のうちの一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させたのちに前記検出手段が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びた場合には、前記一方のディスク装置の回転数を更に、前回よりは小さい上昇幅で上昇させ前記他方のディスク装置の回転数を更に、前回よりは小さい降下幅で降下させたのちに前記検出手段が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判定し、伸びた場合には前記一方のディスク装置の回転数を更に上昇させ前記他方のディスク装置の回転数を更に降下させ、
     前記調整動作では、当該2台のディスク装置のうちの一方のディスク装置の回転数を上昇させ他方のディスク装置の回転数を降下させたのちに前記検出手段が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びなかった場合には、前記他方のディスク装置の回転数を上昇させ一方のディスク装置の回転数を降下させたのちに前記検出手段が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判定し、伸びた場合には、前記他方のディスク装置の回転数を更に、前回よりは小さい上昇幅で上昇させ前記一方のディスク装置の回転数を更に、前回よりは小さい降下幅で降下させたのちに前記検出手段が検出した前記複数台のディスク装置の音または振動の波形の包絡線の周期が伸びたか否かを判定し、伸びた場合には前記他方のディスク装置の回転数を更に上昇させ前記一方のディスク装置の回転数を更に降下させることを特徴とする請求項13または14記載のディスク装置の制御プログラム。
    In the adjusting operation, after the rotational speed of one of the two disk devices is increased and the rotational speed of the other disk device is decreased, the plurality of disk devices detected by the detecting means are detected. When the period of the envelope of the sound or vibration waveform is extended, the rotational speed of the one disk device is further increased with a smaller increase than the previous time, and the rotational speed of the other disk device is further increased from the previous time. Determines whether the period of the envelope of the sound or vibration waveform of the plurality of disk devices detected by the detecting means after being lowered with a small drop width has been extended. Further increasing the rotational speed of the disk device and further decreasing the rotational speed of the other disk device;
    In the adjusting operation, after the rotational speed of one of the two disk devices is increased and the rotational speed of the other disk device is decreased, the plurality of disk devices detected by the detecting means are detected. When the period of the envelope of the sound or vibration waveform does not extend, the plurality of detected by the detecting means after increasing the number of rotations of the other disk device and decreasing the number of rotations of one disk device It is determined whether or not the period of the envelope of the sound or vibration waveform of the disk unit has been extended, and if so, the rotational speed of the other disk unit is further increased with a smaller increase range than the previous time. The cycle of the envelope of the sound or vibration waveforms of the plurality of disk devices detected by the detection means after the rotational speed of the one disk device is further lowered with a lower drop width than the previous time. 15. The disk according to claim 13 or 14, wherein, when the disk is extended, the rotational speed of the other disk device is further increased and the rotational speed of the one disk device is further decreased. Device control program.
  16.  コンピュータを、前記複数台のディスク装置の夫々の回転数を検出する検出手段が検出した前記複数台のディスク装置の夫々の回転数の平均を求め、当該平均の回転数を示す速度指令信号を生成して前記複数台のディスク装置の各々に送信する制御手段として機能させるためのディスク装置の制御プログラム。 The computer calculates an average of the rotational speeds of the plurality of disk devices detected by the detecting means for detecting the rotational speeds of the plurality of disk devices, and generates a speed command signal indicating the average rotational speed. And a control program for the disk device for causing the disk device to function as control means for transmission to each of the plurality of disk devices.
PCT/JP2010/059963 2010-06-11 2010-06-11 Information recording device, information processing device, method for controlling disk device, and program for controlling disk device WO2011155066A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/059963 WO2011155066A1 (en) 2010-06-11 2010-06-11 Information recording device, information processing device, method for controlling disk device, and program for controlling disk device
JP2012519192A JP5475881B2 (en) 2010-06-11 2010-06-11 Information recording apparatus, information processing apparatus, disk apparatus control method, and disk apparatus control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059963 WO2011155066A1 (en) 2010-06-11 2010-06-11 Information recording device, information processing device, method for controlling disk device, and program for controlling disk device

Publications (1)

Publication Number Publication Date
WO2011155066A1 true WO2011155066A1 (en) 2011-12-15

Family

ID=45097695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059963 WO2011155066A1 (en) 2010-06-11 2010-06-11 Information recording device, information processing device, method for controlling disk device, and program for controlling disk device

Country Status (2)

Country Link
JP (1) JP5475881B2 (en)
WO (1) WO2011155066A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012203748A (en) * 2011-03-26 2012-10-22 Fujitsu Ltd Storage device and storage system
JP2014222324A (en) * 2013-05-14 2014-11-27 株式会社Ihi Noise reduction device and noise reduction method
JP2018050190A (en) * 2016-09-21 2018-03-29 横河電機株式会社 Period detection apparatus and period detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10127089A (en) * 1996-10-02 1998-05-15 Lucent Technol Inc Method for reducing tone energy emitted from rotary machine
JP2006024326A (en) * 2004-07-09 2006-01-26 Hitachi Ltd Hard disk device which can alter disk rotational speed
WO2006070433A1 (en) * 2004-12-27 2006-07-06 Fujitsu Limited Electronic device, controller, electronic apparatus, control method and control program
WO2006088119A1 (en) * 2005-02-21 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fan filter unit
WO2009028009A1 (en) * 2007-08-27 2009-03-05 Fujitsu Limited Fan controller for reducing beating sound from a plurality of fans
JP2009211510A (en) * 2008-03-05 2009-09-17 Hitachi Ltd Disk array device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10127089A (en) * 1996-10-02 1998-05-15 Lucent Technol Inc Method for reducing tone energy emitted from rotary machine
JP2006024326A (en) * 2004-07-09 2006-01-26 Hitachi Ltd Hard disk device which can alter disk rotational speed
WO2006070433A1 (en) * 2004-12-27 2006-07-06 Fujitsu Limited Electronic device, controller, electronic apparatus, control method and control program
WO2006088119A1 (en) * 2005-02-21 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fan filter unit
WO2009028009A1 (en) * 2007-08-27 2009-03-05 Fujitsu Limited Fan controller for reducing beating sound from a plurality of fans
JP2009211510A (en) * 2008-03-05 2009-09-17 Hitachi Ltd Disk array device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012203748A (en) * 2011-03-26 2012-10-22 Fujitsu Ltd Storage device and storage system
JP2014222324A (en) * 2013-05-14 2014-11-27 株式会社Ihi Noise reduction device and noise reduction method
JP2018050190A (en) * 2016-09-21 2018-03-29 横河電機株式会社 Period detection apparatus and period detection method

Also Published As

Publication number Publication date
JPWO2011155066A1 (en) 2013-08-01
JP5475881B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US10431256B2 (en) Method of performing read/write process on recording medium, parameter adjustment method, storage device, computer system, and storage medium employing the methods
US20070019321A1 (en) Method and apparatus for suppressing resonance of hard disk drive using notch filter
JP2008204601A (en) Hard disk drive, and method for optimizing recording parameter of hard disk drive
US8896955B1 (en) Adaptive track follow control
JP2003109336A (en) Rotary recorder and controlling method thereof
JP5732959B2 (en) Storage device and storage system
JP5475881B2 (en) Information recording apparatus, information processing apparatus, disk apparatus control method, and disk apparatus control program
JP2010073284A (en) Servo control system of head and servo control method of head
JP4509952B2 (en) Control device, disk device, and seek trajectory generation method
JP2007293968A (en) Write-once storage device, control method, and program
JP2001023106A (en) Magnetic disk apparatus
KR20090027148A (en) Positioning control system and positioning control method
JP2001283544A (en) Information recording and reproducing device, medium and information assembly
US20070156396A1 (en) System and method for state space control of seek acoustics
JPH10513595A (en) System and method for reconstructing signal wave in partial response read channel
JP2001076451A (en) System and method for controlling head positioning in disk storage device
KR100480624B1 (en) Method for measuring the amount of unbalance of disc weight and apparatus thereof
JPH0696538A (en) Head-positioning control device for data recording and reproduction apparatus
JPH0376085A (en) Peak detecting method for digital audio signal
TWI246678B (en) Method for detecting and controlling the warp of disc and its device
JP2006031825A (en) Recording and reproducing control method, and recording and reproducing control apparatus
JPS62281127A (en) Optical disk reproducing device
WO2006093111A1 (en) Recording medium reproducing device
JP2666747B2 (en) Magnetic head positioning circuit for magnetic disk drive
JP2006236402A (en) Magnetic disk device and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519192

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852902

Country of ref document: EP

Kind code of ref document: A1