WO2011153920A1 - 一种功交换式能量回收装置 - Google Patents

一种功交换式能量回收装置 Download PDF

Info

Publication number
WO2011153920A1
WO2011153920A1 PCT/CN2011/075214 CN2011075214W WO2011153920A1 WO 2011153920 A1 WO2011153920 A1 WO 2011153920A1 CN 2011075214 W CN2011075214 W CN 2011075214W WO 2011153920 A1 WO2011153920 A1 WO 2011153920A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
drive
pressure fluid
distribution plate
hole
Prior art date
Application number
PCT/CN2011/075214
Other languages
English (en)
French (fr)
Inventor
陈杭英
Original Assignee
杭州帕尔水处理科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010197604 external-priority patent/CN101865192B/zh
Priority claimed from CN2010202224930U external-priority patent/CN201934428U/zh
Application filed by 杭州帕尔水处理科技有限公司 filed Critical 杭州帕尔水处理科技有限公司
Publication of WO2011153920A1 publication Critical patent/WO2011153920A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers

Definitions

  • the present invention relates to a pressure energy recovery device in a liquid system. Background technique
  • liquid residual pressure energy recovery devices There are many forms of liquid residual pressure energy recovery devices, which are complicated in structure and large in efficiency. They can be divided into two categories according to the working principle: hydraulic turbine energy recovery device and power exchange energy recovery device.
  • the energy conversion process is pressure energy - mechanical energy (shaft work) - pressure energy. That is to say, mechanical energy is the intermediate link of fluid energy transfer, so it is also called mechanical energy intermediation technology. It entered the market in the late 1970s and early 1980s. Typical device types are Francis Pump and PehonWheel. Impeller and hydraulic turbine (Turbo Charger), etc., this energy recovery technology is affected by multiple conversion of energy, although the technology is relatively mature, but the energy recovery efficiency is only 30-70%.
  • the energy conversion process is pressure energy - pressure energy. It allows high and low pressure fluids to exchange pressure energy directly. If the friction and leakage in the equipment are neglected, the efficiency of the device can theoretically reach 100%, and the actual efficiency can reach more than 90%. It is this high recycling efficiency that makes it a hot spot for many research and development researchers at home and abroad.
  • this type of device can be divided into a valve exchange (Worker Exchange) and a pressure exchanger (Pressure Exchange).
  • Worker Exchange representative products include Work Exchanger Energy Recovery (DWEER) of Calder, Switzerland, Aqualyng of Denmark, s System, Sigma, PressureExchange System (PES), etc. These energy recovery devices are bulky.
  • the material is made of precious and rare metal corrosion-resistant materials.
  • the control valve is frequently switched, and the switching amount is more than 1 million times/year.
  • the maintenance workload is large and the safety and stability of the device are low.
  • the pressure exchanger Pressure Exchange
  • the Pressure Exchanger (PX) and the inventive product, such energy recovery devices are small in size.
  • the product of American ERI company adopts the upper gap sealing structure on the distribution plate surface, and the energy recovery device is difficult to protect at a small processing capacity. With high recovery efficiency, it is difficult to miniaturize the device; with engineering ceramics as the main material of the rotating parts, the safety and stability are greatly reduced.
  • the energy recovery device disclosed in this product belongs to the power exchange type energy recovery device.
  • the principle of pressure exchange is adopted, and the new polymer wear-resistant engineering plastics and corrosion-resistant stainless steel materials are selected as the main materials, and the self-developed self-tightness is adopted on the key distribution surface.
  • Sealing structure and water-lubricated static pressure support technology basically no leakage on the high-pressure distribution surface, coupled with low-speed motor drive scheme, the device is not only efficient, but also safe and stable, small in size, long in life and low in noise. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a power exchange type energy recovery device capable of achieving stable pressure energy exchange by motor driving, end surface distribution, and self-tight sealing.
  • the present invention adopts the following technical solution: It comprises a rotating component, the rotating component comprises: a driving shaft, a moving ring for mechanical sealing outside the driving shaft, an upper thrust disk, an upper driving disk, one or more The thimble and the spring, the spring seat, the drive tube, the pressure exchange tube parallel to the axial direction of the drive shaft, the lower drive disc, the lower thrust disc, the driven shaft, the upper drive disc, and the lower drive disc are centered on the disc center Corresponding one or more circular holes are formed in the circumference, and the upper and lower thrust plates are respectively provided with corresponding one or more through grooves on the circumference centered on the center of the disk, and the upper end of the pressure exchange tube is pierced The circular hole of the driving disc is inserted into the through groove of the upper thrust plate and a sealing ring is arranged on the
  • the drive shaft, the upper drive plate, the drive tube, the lower drive plate, and the driven shaft are relatively fixed and firmly connected.
  • the upper thrust plate and the lower thrust disk are corresponding one or more through grooves on a circumference centered on the core, the through groove is circular at the insertion end of the pressure exchange tube, and the upper distribution plate and the lower distribution flow
  • the end of the disk is a fan-shaped arc segment, and the area of the fan-shaped arc is smaller than the area of the hole on the back surface, so that the fluid pressure on the upper thrust plate and the lower thrust plate can push the upper and lower thrust plates respectively.
  • the distribution plate and the lower distribution plate are corresponding one or more through grooves on a circumference centered on the core, the through groove is circular at the insertion end of the pressure exchange tube, and the upper distribution plate and the lower distribution flow
  • the end of the disk is a fan-shaped arc segment, and the area of the fan-shaped arc is smaller than the area of the hole on the back surface, so that the fluid pressure on the upper thrust plate and the lower thrust plate can push the upper and lower thrust plates respectively.
  • the distribution plate and the lower distribution plate are corresponding
  • the work-switching energy recovery device is further provided with a non-rotating component, the non-rotating component comprising a mechanical sealing cover, a static ring for mechanical sealing and a moving ring, an upper end cover, and a driving shaft mounted in the upper end cover
  • a non-rotating component comprising a mechanical sealing cover, a static ring for mechanical sealing and a moving ring, an upper end cover, and a driving shaft mounted in the upper end cover
  • the upper end cover is provided with a relatively high pressure fluid inlet and a relatively low pressure fluid outlet;
  • the lower end cover is provided with a relatively high pressure fluid outlet and a
  • the upper end cover is fixed to the upper end of the casing and is provided with a sealing ring.
  • the lower end cover is fixed at the lower end of the casing and is provided with a sealing ring.
  • the rotating component is installed in the casing, and the upper end surface of the upper thrust plate of the rotating component is not rotated.
  • the lower end surface of the distribution plate on the assembly and the lower end surface of the lower thrust plate of the rotating assembly are in contact with the upper end surface of the distribution plate under the non-rotating assembly and are relatively rotated to form two opposite sliding friction pairs;
  • the compression spring pushes the upper thrust through the ejector pin
  • the disc is pushed on the upper distribution plate, and the reaction force thereof pushes the lower stop plate on the lower distribution plate through the spring seat, the upper drive plate, the drive tube and the lower drive plate;
  • the drive shaft passes through the mechanical seal cover, the drive shaft bushing mounted on the upper end cover, the upper distribution plate, the upper thrust plate and is connected to the upper drive plate, and the driven shaft passes through the driven shaft bushing mounted on the lower end cover , the lower distribution plate, the lower thrust plate and the lower drive plate;
  • the upper distribution plate is provided with a high-pressure side channel and a low-pressure side channel
  • the lower distribution plate is provided with a high-pressure side channel and a low-pressure side channel
  • the two parts of the upper channel are separated by an upper distribution plate a sealing zone, the sealing zone separating the relatively high pressure fluid and the relatively low pressure fluid
  • the portion separating the two through grooves on the lower distribution plate is a sealing zone of the lower distribution plate, the sealing zone will be relatively high pressure fluid and relatively Low pressure fluid separation.
  • a relatively high-pressure fluid inlet disposed at the upper end cap, a high-pressure side channel of the upper distribution plate, and a relatively high-pressure fluid of the upper thrust disk a flow passage communicating with the inlet of the high pressure fluid inlet, a pressure exchange tube communicating with the passage groove of the upper distribution plate, a passage groove of the lower thrust plate communicating with the relatively high pressure fluid outlet and the relatively high pressure fluid inlet, and a high pressure side of the lower distribution plate a through groove and a relatively high pressure fluid outlet disposed on the lower end cap constitute a relatively high pressure zone;
  • the driven shaft is provided with an axial blind hole and a transverse through hole and communicates with each other, and the axial blind hole is connected to the inside of the driving pipe, and the transverse through hole is located below and above the driving shaft bushing and communicates with the axial blind hole
  • the driving shaft is provided with an axial blind hole and a transverse through hole and communicate with each other, and the axial blind hole is connected to the inside of the driving tube, and the horizontal through hole is located below and above the driving shaft bushing and communicates with the axial blind hole a first through hole is disposed between the upper end cover and the upper thrust plate, and the upper end cover is provided with a second through hole above the drive shaft bushing, the first through hole and the second through hole respectively and the relatively low pressure fluid outlet
  • Other areas in the housing pass through the through hole and the low pressure side channel on the upper distribution plate, the low pressure side channel on the lower distribution plate, the upper and lower thrust plates and the relatively low pressure fluid outlet and the relatively low pressure a fluid inlet port, a relatively low pressure fluid
  • the energy recovery efficiency of the power exchange type energy recovery device of the present invention is greater than 90%, and needs to be converted into intermediates such as a reverse pump type (Francis Pump), a Pelton Wheel (Pelton Wheel) and a hydraulic turbine (Turbo Charger).
  • the mechanical turbine's hydro-turbine energy utilization device has a much higher energy recovery efficiency of 30%-70%, and has a stronger ability to adapt to changing conditions, and can maintain energy recovery efficiency greater than 95% when conditions such as flow rate and temperature change. .
  • the work-switching energy recovery device of the present invention adopts an end-face distribution structure, and is equivalent to a valve-fitted Calder company's isopipe valve control exchange energy exchanger (Work Exchanger) and Chinese patent 90103747. 8 (copper liquid energy recovery for nitrogen fertilizer production) Device)
  • the disclosed differential pressure piston type power exchange energy recovery device has a simple structure, does not require a complicated valve control system, and is not only safe and stable, but also has no fluid pressure and flow fluctuation in the applied system, so that application energy recovery is performed.
  • the system of the device is also safe and stable.
  • the flow distribution pair of the power exchange type energy recovery device of the present invention adopts a floating self-tightening sealing structure, which is similar to the mechanical sealing technology in the water pump.
  • the high pressure fluid together with the spring presses the upper and lower thrust plates to the upper and lower two distribution plates.
  • the greater the pressure of the high pressure fluid the greater the force of the high pressure fluid on the thrust plate, forming a self-tightening seal between the thrust plate and the moving friction surface of the valve plate.
  • the structural design facilitates the adoption of a structure in which the ratio of the diameter of the flow passage to the length of the flow passage is small (for example, the ratio of d/1 is ⁇ 0.08), that is, a slender flow passage structure is adopted, so that in the desalination of seawater, concentrated water When the seawater is exchanged under pressure, the mixing of concentrated water and seawater is smaller when there is no piston in the overflow flow passage.
  • the rotor type power exchange type energy recovery device when the flow rate of the rotor flow passage is constant, the length of the flow path is inversely proportional to the rotation speed of the rotor, and the life of the self-tightening movement pair of the distribution plate and the thrust plate is extended.
  • the invention selects a novel polymer wear-resistant engineering plastic and a corrosion-resistant stainless steel material to match the movement auxiliary material, and adopts a scheme of a long-flow rotor low-speed motor drive. The advantage of this is that: not only the safety and stability of the device is well guaranteed, but the life of the motion pair of the energy recovery device is doubled, and the power of the drive motor is doubled.
  • the apparatus of the present invention has an exchange flow rate of 130 m 3 /h, a relative high pressure fluid pressure of 6 MPa, and a relatively low pressure fluid pressure of 0.2 MPa, and the driving power is only 0.79 kW; At low speeds (80-200 rpm), the noise is greatly reduced, only 68dBA.
  • the rotation of the rotating component of the invention is driven by a motor, which is convenient and convenient to realize precise control of the rotor rotation speed, and can avoid the change of the rotation speed of the rotor and the mixing ratio of the concentrated water and the seawater caused by the change of the water temperature and the viscosity of the water caused by the seasonal change, thereby improving The operational stability of the system using the device of the invention.
  • Figure 1 is a cross-sectional view of an embodiment of the present invention showing the structural principle of the present invention.
  • Figure 2a is a bottom plan view of the upper distribution plate 3 of Figure 1.
  • Figure 2b is a schematic cross-sectional view of the upper distribution plate 3 of Figure 1.
  • Figure 3a is a top plan view of the upper thrust plate 4 of Figure 1.
  • Figure 3b is a schematic cross-sectional view of the upper thrust plate 4 of Figure 1.
  • Figure 3c is a bottom plan view of the upper thrust plate 4 of Figure 1.
  • Figure 4a is a top plan view of the upper drive plate 5 of Figure 1.
  • Figure 4b is a cross-sectional view of the upper drive plate 5 of Figure 1.
  • Figure 5a is a cross-sectional view of the lower end cover of Figure 1.
  • Figure 5b is a top plan view of the lower end cover of Figure 1.
  • Figure 6a is a schematic cross-sectional view of the upper end cap 1 of Figure 1.
  • Figure 6b is a bottom plan view of the upper end cap 1 of Figure 1. detailed description
  • a rotating assembly comprising: a drive shaft 2, a moving ring 21 for mechanical sealing outside the drive shaft, an upper thrust plate 4, an upper drive plate 5, one or more thimbles 6 and a spring 7 a spring seat 18, a drive tube 17, a pressure exchange tube 8 parallel to the axial direction of the drive shaft, a lower drive plate 5', a lower thrust plate 4', a driven shaft 2', an upper drive plate 5, a lower drive plate 5'
  • Corresponding one or more circular holes 80 are formed in the circumference of the disk center centered on the core, and the upper thrust plate 4 and the lower thrust plate 4' have a corresponding one on the circumference centered on the core a plurality of through grooves 70, 70', the upper end of the pressure exchange tube 8 is inserted into the upper driving plate 5 and inserted into the upper thrust plate 4, and a sealing ring 16 is disposed on the insertion surface, and the lower end is driven out.
  • the disc 5' is inserted into the lower thrust disc 4' and is provided with a sealing ring 16 on the insertion surface, the upper driving disc is mounted on the upper end of the driving tube, the spring seat is mounted on the upper driving disc, and the lower driving disc is mounted on the lower end of the driving tube;
  • the work-switching energy recovery device is further provided with a non-rotating component, the non-rotating component comprises a mechanical sealing cover 22, a static ring 20 for mechanical sealing and a movable ring 21, an upper end cover 1, and an upper end cover
  • the lower distribution plate 3' on the end face, the driven shaft sleeve 10', the housing 19, the drive shaft sleeve 10 and the driven shaft sleeve 10' circumferentially position the rotating assembly;
  • the drive shaft bushing cover 9 fixes the upper distribution plate 3 on the upper end cover 1; the pin 15 and the driven shaft bushing cover 9' fix the lower distribution plate 3' to the lower end cover ;;
  • the upper end cover 1 is provided with a relatively high pressure fluid inlet 31, a relatively low pressure fluid outlet 34; the lower end cover is provided with a relatively high pressure fluid outlet 32, a relatively low pressure fluid inlet 33;
  • the upper end cover 1 is fixed to the upper end of the housing 19 and is provided with a sealing ring 14.
  • the lower end cover is fixed to the lower end of the housing 19 and is provided with a sealing ring 14.
  • the upper end cover 1, the lower end cover 1', and the housing 19 are fastened with fastening bolts.
  • the rotating assembly is mounted in the housing 19, the upper end surface of the upper thrust plate 4 of the rotating assembly and the lower end surface of the distribution plate 3 on the non-rotating assembly and the lower end surface of the lower thrust plate 4' of the rotating assembly
  • the upper end surface of the distribution plate 3' under the non-rotating component contacts and rotates to form two opposite sliding friction pairs;
  • the compression spring 7 pushes the upper thrust plate 4 against the upper distribution plate 3 through the ejector pin 6, and the reaction force thereof
  • the lower thrust plate 4' is pressed against the lower distribution plate 3' by the spring seat 18, the upper drive plate 5, the drive tube 17, and the lower drive plate 5', that is, the lower end surface of the upper distribution plate 3 and the upper end surface of the lower distribution plate 3' Positioning the rotating assembly up and down;
  • the drive shaft 2, the upper drive plate 5, the drive tube 17, the lower drive plate 5', and the driven shaft 2' are relatively fixed and firmly connected.
  • the upper and lower thrust plates are floated by the force of the spring and the reaction force and the pressure of the fluid to be in contact with the upper and lower distribution plates, respectively.
  • the upper thrust pusher 4 and the lower thrust pusher 4' are respectively corresponding to one or more through grooves 70, 70' on a circumference centered on the center of the disk, and the through groove is circular at one end of the pressure exchange tube 8
  • the one end communicating with the upper distribution plate 3 and the lower distribution plate 3' is a fan-shaped circular arc segment, and the fan-shaped circular arc area is smaller than the reverse circular hole area, so that the fluid pressure acting on the upper thrust plate 4 and the lower thrust plate 4' can be
  • the upper thrust plate 4 and the lower thrust plate 4' are respectively pressed against the upper distribution plate 3 and the lower distribution plate 3'.
  • the drive shaft 2 passes through the mechanical seal cover 22, the drive shaft bushing 10 mounted on the upper end cover 1, the upper distribution plate 3, and the upper end
  • the pusher 4 is firmly connected to the upper drive plate 5
  • the driven shaft 2' passes through the driven shaft sleeve 10', the lower distribution plate 3', the lower thrust plate 4', and the lower drive mounted on the lower end cover
  • the disk 5' is firmly connected;
  • the upper distribution plate 3 is provided with a high pressure side passage groove 50 and a low pressure side passage groove 60
  • the lower distribution plate 3' is provided with a high pressure side passage groove 50' and a low pressure side passage groove 60';
  • the portion separated by the through groove is a sealing portion of the upper distribution plate 3, the sealing portion separating the relatively high pressure fluid and the relatively low pressure fluid; the portion separating the two through grooves on the lower distribution plate 3' is the lower distribution plate 3 'The sealing zone, which separates the relatively high pressure fluid from the relatively low pressure fluid.
  • the pressure exchange tube 8 communicating with the through groove 50, the through groove 70' of the lower thrust plate 4' communicating with the relatively high pressure fluid outlet and the relatively high pressure fluid inlet, and the high pressure side groove 50' of the lower distribution plate 3' are disposed at
  • the relatively high pressure fluid outlet 32 on the lower end cap constitutes a relatively high pressure zone;
  • the driven shaft 2' is provided with an axial blind hole 41 and lateral through holes 4 ⁇ , 41" and communicate with each other.
  • the axial blind hole 41 is connected to the inside of the drive tube, and the transverse through holes 41', 41" are located at the drive shaft.
  • the drive shaft 2 is provided with an axial blind hole 42 and lateral through holes 42', 42" and communicate with each other, and the axial blind hole 42 is turned on.
  • the transverse through holes 42', 42" are located below and above the drive shaft sleeve 10 and communicate with the axial blind hole 42, and a through hole 43 is provided between the upper end cover and the upper thrust plate, the upper end
  • the cover is provided with a through hole 44 above the drive shaft sleeve 10, and the through hole 43 and the through hole 44 are respectively communicated with the relatively low pressure fluid outlet 34;
  • the other areas in the housing 19 pass through the through hole and the low pressure side of the upper distribution plate 3 a through groove 60, a low pressure side through groove 60' on the lower distribution plate 3', a through groove 70, 70' on the upper thrust plate 4 and the lower thrust plate, which communicate with the relatively low pressure fluid outlet and the relatively low pressure fluid inlet
  • a pressure exchange tube that communicates with the relatively low pressure fluid outlet and the relatively low pressure fluid inlet constitutes a relatively low pressure zone.
  • the compression spring 7 pushes the floating ejector pin 6 to press the upper thrust plate 4 against the upper distribution plate 3; in the running state, the liquid pressure relative to the high pressure fluid A will lift the push plate 4 Further pressing on the upper distribution plate 3 forms a self-tight sealing structure.
  • the reaction force of the compression spring 7 presses the lower thrust plate 4' against the lower distribution plate 3 through the drive tube 17; in the operating state, the liquid pressure relative to the high pressure fluid A pushes the lower thrust plate 4' further down.
  • a self-tight sealing structure is also formed on the distribution plate 3'.
  • the rotating member is driven to rotate by the motor through the drive shaft 2, and the upper and lower parts of the rotating member
  • the two end faces form a relatively operating friction distribution pair with the lower end surface of the upper distribution plate 3 and the upper end surface of the lower distribution plate 3'.
  • the exchange of pressure energy between the two high-pressure fluids A and the relatively low-pressure fluid B can be divided into four steps:
  • the relatively low pressure fluid B enters from the relatively low pressure fluid inlet 33 of the lower end cap, fills a pressure exchange tube 8, and simultaneously passes the fluid A in the pressure exchange tube 8 through the upper end cover 1 in a low pressure form.
  • the low pressure fluid outlet 34 is discharged;
  • the second step the rotor continues to rotate, enters the sealing zone, and the sealing zone on the upper distribution plate 3 and the lower distribution plate 3' seals the upper and lower ports of the pressure exchange pipe 8, and the fluid B is statically held in the pressure exchange pipe 8;
  • the third step the rotor continues to rotate.
  • the pressure exchange tube 8 enters the high pressure zone and communicates with the relatively high pressure fluid inlet 31 and the relatively high pressure fluid outlet 32, the high pressure fluid A places the fluid B in a high pressure form from the lower end of the relatively high pressure fluid.
  • the outlet 32 is discharged while the fluid A is filled with the pressure exchange tube 8;
  • the fourth step the rotor continues to rotate, enters another sealing zone, and the sealing zone on the upper distribution plate 3 and the lower distribution plate 3' seals the upper and lower ports of the pressure exchange pipe 8, and the fluid A is statically held in the pressure exchange pipe. 8 inside.
  • each pressure exchange tube 8 will continuously enter and drain water, and the relatively high pressure fluid B discharged from the plurality of pressure exchange tubes 8 is superimposed on the relatively high pressure fluid outlet 32, thereby forming pressure,
  • the high-pressure fluid whose flow rate is continuously uniform, the low-pressure fluids of the recovered energy discharged from the plurality of pressure exchange tubes 8 are superimposed in an orderly manner at the outlets 34 of the relatively low-pressure fluid A, thereby forming a low-pressure fluid which is continuously uniform in pressure and flow rate.
  • fluid A, fluid B or a mixed fluid column thereof is used as a piston; in order to reduce the mixing of fluid A and fluid B, a solid piston can be disposed in the circulation of the rotor, and the piston material can be a polymer wear-resistant engineering plastic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

说明书 一种功交换式能量回收装置 技术领域
本发明涉及液体系统中的压力能量回收装置。 背景技术
液体余压能量回收装置有多种形式, 结构上繁简差别很大, 效率差别较大, 按照工作 原理可分为二大类: 水力涡轮式能量回收装置和功交换式能量回收装置。
水力涡轮式能量回收装置, 能量的转换过程为压力能——机械能 (轴功)——压力能。 即以机械能作为流体能量传递的中间环节, 故又称为机械能中介式技术, 于 70年代末期、 80年代初期进人市场,典型装置类型有逆转泵型(Francis Pump) 、佩尔顿型(PehonWheel) 叶轮和水力透平 (Turbo Charger)等, 该能回收技术由于受到能量多次转换的影响, 虽技 术比较成熟, 但能量回收效率只有 30-70%。
功交换式能量回收装置, 能量的转换过程为压力能——压力能。 它使高低压流体直接 交换压力能, 如果忽略装备中的摩擦和泄漏, 装置的效率理论上可以达到 100 %, 实际效 率亦可达到 90 %以上。 正是这种高回收效率, 使其成为目前国内外许多研究学者研究、 开 发的热点。 按照运动部件的类型, 这类装置可分阀控功交换器 (Worker Exchange)和压力 交换器(Pressure Exchange)两种。 阀控功交换器(Worker Exchange) , 代表产品包括瑞士 Calder公司的 Work Exchanger Energy Recovery (DWEER) 、 丹麦 Aqualyng, s System 德国西格玛公司的 PressureExchange System (PES)等, 这类能量回收装置体积庞大, 主材 采用贵重稀有金属耐腐蚀材料制造, 另外控制阀门切换频繁, 其切换量在 100万次 /年以 上, 其维护工作量大和装置安全稳定性低; 压力交换器(Pressure Exchange) 代表产品 美国 ERI公司的 Pressure Exchanger (PX)和本发明产品, 这类能量回收装置体积小。 美 国 ERI公司的产品, 在配流盘面采用上间隙密封结构, 能量回收装置在小处理量时很难保 持高的回收效率, 装置小型化困难; 以工程陶瓷为转动部件主要材料, 安全稳定性大大下 降。
本产品公开的能量回收装置属功交换式能量回收装置, 利用压力交换的原理, 选用新 型高分子耐磨工程塑料和耐腐蚀不锈钢材料为主材, 在关键的配流面上采用自主研发的自 紧密封结构和水润滑静压支撑技术, 高压配流面上基本无泄漏, 再加上采用低速马达驱动 方案, 该装置不但效率高, 而且安全稳定、 体积小、 寿命长、 噪音低。 发明内容
本发明所要解决的技术问题是提供一种功交换式能量回收装置, 能通过马达驱动、 端 面配流、 自紧密封, 实现稳定的压力能量交换。 为此, 本发明采用以下技术方案: 它包括 转动组件, 所述转动组件包括: 驱动轴、套在驱动轴外的用于机械密封的动环、 上止推盘、 上驱动盘、 一个或多个顶针和弹簧、 弹簧座、 驱动管、 与驱动轴轴向平行的压力交换管、 下驱动盘、 下止推盘、 从动轴, 上驱动盘、 下驱动盘的盘面上以盘心为中心的圆周上开有 相应的一个或多个圆孔, 上止推盘、 下止推盘以盘心为中心的圆周上也开有相应的一个或 多个通槽, 压力交换管上端穿出上驱动盘的圆孔插入上止推盘的通槽并在插入面设置密封 圈、 下端穿出下驱动盘的圆孔插入下止推盘的通槽并在插入面设置密封圈, 上驱动盘安装 在驱动管的上端, 弹簧座安装在上驱动盘上, 下驱动盘安装在驱动管的下端;
驱动轴、 上驱动盘、 驱动管、 下驱动盘、 从动轴之间相对固定并牢固连接。
所述上止推盘、 下止推盘以盘心为中心的圆周上开的相应的一个或多个通槽, 该通槽 在压力交换管插入一端为圆形, 与上配流盘、 下配流盘相通一端为扇形圆弧段, 该扇形圆 弧面积小于反面圆孔面积, 这样作用在上止推盘、 下止推盘流体压力能够将上止推盘、 下 止推盘分别推压在上配流盘、 下配流盘上。
所述功交换式能量回收装置还设有不转组件, 所述不转组件包括机械密封盖、 用于机 械密封的与动环配合的静环、 上端盖、 安装在上端盖内的驱动轴轴套、 驱动轴轴套盖、 安 装在上端盖下端面上的上配流盘、 从动轴轴套盖、 下端盖、 安装在下端盖上端面上的下 配流盘、 从动轴轴套、 壳体, 驱动轴轴套与从动轴轴套将所述转动组件周向定位; 所述上端盖设有相对高压流体进口、 相对低压流体出口; 所述下端盖设有相对高压流 体出口、 相对低压流体进口;
上端盖固定在壳体的上端并装有密封圈, 下端盖固定在壳体的下端并装有密封圈, 所 述转动组件安装在壳体内, 转动组件的上止推盘的上端面与不转组件上配流盘的下端面和 转动组件的下止推盘的下端面与不转组件下配流盘的上端面接触且相对转动构成二个相 对滑动的摩擦副; 压縮弹簧通过顶针将上止推盘推压在上配流盘上, 同时其反作用力通过 弹簧座、 上驱动盘、 驱动管、 下驱动盘将下止推盘推压在下配流盘上;
驱动轴穿过机械密封盖、 安装在上端盖上的驱动轴轴套、 上配流盘、 上止推盘并与上 驱动盘连接, 从动轴穿过安装在下端盖上的从动轴轴套、 下配流盘、 下止推盘并与下驱动 盘连接;
上配流盘开有高压侧通槽和低压侧通槽, 下配流盘开有高压侧通槽和低压侧通槽; 将 上配流盘上的二个所述通槽分开的部分为上配流盘的密封区, 所述密封区将相对高压流体 和相对低压流体分隔; 将下配流盘上的二个所述通槽分开的部分为下配流盘的密封区, 所 述密封区将相对高压流体和相对低压流体分隔。
在采用本发明的上述技术方案的同时, 本发明还可采用以下进一步的技术方案: 设置 在上端盖的相对高压流体入口、 上配流盘的高压侧通槽、 上止推盘的与相对高压流体出口 和相对高压流体进口相通的通槽、 与上配流盘的通槽相通的压力交换管、 下止推盘的与相 对高压流体出口和相对高压流体进口相通的通槽、 下配流盘的高压侧通槽和设置在下端盖 上的相对高压流体出口构成相对高压区;
从动轴上设有轴向盲孔和横向通孔并相互连通, 轴向盲孔接通所述驱动管内部, 横向 通孔分处于驱动轴轴套的下方和上方并与轴向盲孔相通, 驱动轴上设有轴向盲孔和横向通 孔 并相互连通, 轴向盲孔接通所述驱动管内部, 横向通孔分处于驱动轴轴套的下方和上 方并与轴向盲孔相通, 上端盖和上止推盘之间设有第一通孔, 所述上端盖在驱动轴轴套的 上方设有第二通孔, 第一通孔和第二通孔分别与相对低压流体出口相通; 壳体内其他区域 通过上述通孔及上配流盘上的低压侧通槽、 下配流盘上的低压侧通槽、 上止推盘和下止 推盘上的与相对低压流体出口和相对低压流体进口相通的通槽、 与相对低压流体出口和相 对低压流体进口相通的压力交换管构成相对低压区。 由于采用本发明的技术方案, 本发明具体有的有益的效果是:
本发明功交换式能量回收装置的能量回收效率大于 90%, 比起反转泵型 (Francis Pump)、 佩尔顿透平(Pelton Wheel )和水力透平(Turbo Charger)之类需要中间转换成机 械能的水力涡轮式能量利用装置 30%-70%具有高得多的能量回收效率,而且适应工况变化 的能力更强, 在流量、 温度等条件变化时还能保持大于 95%的能量回收效率。
本发明功交换式能量回收装置采用端面配流结构, 比起阀配的瑞士 Calder 公司的等 压阀控功交换式能交换器 (Work Exchanger)和中国专利 90103747. 8 (氮肥生产用铜液能 量回收装置) 公开的差压活塞式功交换式能量回收装置结构简单, 不需要复杂的阀门控制 系统, 不但装置本身安全稳定, 而且在应用的系统中基本没有流体压力、 流量的波动, 使 应用能量回收装置的系统也安全稳定。
本发明功交换式能量回收装置的配流副采用浮动的自紧密封结构, 类似于水泵中的机 械密封的技术, 工作时高压流体与弹簧一起将上下二个止推盘压在上下二个配流盘上, 高 压流体压强越大, 高压流体对止推盘的作用力越大, 形成止推盘与配流盘运动摩擦面之间 的自紧密封。 这样做的好处是能量回收装置在小处理量时很容易保持高的容积效率, 实现 装置小型化。
另外本结构设计便于实现采取过流流道直径与长度比值小的结构 (例如: d/1 的比值 <0.08), 也就是采用了更细长的流道结构, 这样在海水淡化中, 浓水和海水在压力交换时, 在过流流道不设活塞时, 浓水与海水的混合更小。
在转子式功交换式能量回收装置中, 在转子流道过流流量一定的情况下, 流道长度与 转子转速是反比的关系, 为延长配流盘与止推盘自紧密封运动副的寿命, 本发明选用新型 高分子耐磨工程塑料和耐腐蚀不锈钢材料配对运动副材料, 采用长流道转子低转速马达驱 动的方案。 这样做的好处是: 不但装置的安全稳定性得到很好保证, 能量回收装置的运动 副的寿命成倍地延长, 驱动马达功率成倍下降。 以交换流量为 130m3/h, 相对高压流体压 力为 6MPa、 相对低压流体压力为 0.2MPa的本发明装置为例, 驱动功率仅 0.79kW; 而且 装置在低速情况下 (80-200rpm) 噪音大大下降, 只有 68dBA。 本发明转动部件的转动采 用电机驱动, 既容易又方便实现转子转速的精确控制, 可以避免因为季节变化引起水温变 化、 水的黏度变化而引起转子转速和浓水与海水的混合率变化, 从而提高使用本发明装置 的系统的运行稳定性。 附图说明
图 1为本发明所提供的实施例的剖视图, 显示了本发明的结构原理。
图 2a为图 1中上配流盘 3的仰视示意图。
图 2b为图 1中上配流盘 3的剖面示意图。
图 3a为图 1中上止推盘 4的俯视示意图。
图 3b为图 1中上止推盘 4的剖面示意图。
图 3c为图 1中上止推盘 4的仰视示意图。
图 4a为图 1中上驱动盘 5的俯视示意图。
图 4b为图 1中上驱动盘 5的剖面示意图。
图 5a为图 1中下端盖 Γ的剖面示意图。
图 5b为图 1中下端盖 Γ的俯视示意图。
图 6a为图 1中上端盖 1的剖面示意图。
图 6b为图 1中上端盖 1的仰视示意图。 具体实施方式
参照附图。 它包括转动组件, 所述转动组件包括: 驱动轴 2、 套在驱动轴外的用于机 械密封的动环 21、 上止推盘 4、 上驱动盘 5、 一个或多个顶针 6和弹簧 7、 弹簧座 18、 驱 动管 17、 与驱动轴轴向平行的压力交换管 8、 下驱动盘 5'、 下止推盘 4'、 从动轴 2', 上驱 动盘 5、 下驱动盘 5'的盘面上以盘心为中心的圆周上开有相应的一个或多个圆孔 80, 上止 推盘 4、 下止推盘 4'以盘心为中心的圆周上也开有相应的一个或多个通槽 70、 70', 压力 交换管 8上端穿出上驱动盘 5插入上止推盘 4并在插入面设置密封圈 16、下端穿出下驱动 盘 5'插入下止推盘 4'并在插入面设置密封圈 16,上驱动盘安装在驱动管的上端,弹簧座安 装在上驱动盘上, 下驱动盘安装在驱动管的下端;
所述功交换式能量回收装置还设有不转组件, 所述不转组件包括机械密封盖 22、用于 机械密封的与动环 21配合的静环 20、 上端盖 1、 安装在上端盖内的驱动轴轴套 10、 驱动 轴轴套盖 9、牢固安装在上端盖 1下端面上的上配流盘 3、从动轴轴套盖 9'、下端盖 1'、 牢 固安装在下端盖 Γ上端面上的下配流盘 3'、 从动轴轴套 10'、 壳体 19, 驱动轴轴套 10与 从动轴轴套 10'将转动组件周向定位;
销子 15、驱动轴轴套盖 9将上配流盘 3固定在上端盖 1上; 销子 15、从动轴轴套盖 9' 将下配流盘 3'固定在下端盖 Γ上;
所述上端盖 1设有相对高压流体进口 31、 相对低压流体出口 34; 所述下端盖 Γ设有 相对高压流体出口 32、 相对低压流体进口 33;
上端盖 1固定在壳体 19的上端并装有密封圈 14,下端盖 Γ固定在壳体 19的下端并装 有密封圈 14, 上端盖 1、 下端盖 1'、 壳体 19用紧固螺栓 13连接, 所述转动组件安装在壳 体 19内, 转动组件的上止推盘 4的上端面与不转组件上配流盘 3的下端面和转动组件的 下止推盘 4'的下端面与不转组件下配流盘 3'的上端面接触且相对转动构成二个相对滑动的 摩擦副; 压縮弹簧 7通过顶针 6将上止推盘 4推压在上配流盘 3上, 同时其反作用力通过 弹簧座 18、 上驱动盘 5、 驱动管 17、 下驱动盘 5'将下止推盘 4'推压在下配流盘 3'上, 即 上配流盘 3下端面和下配流盘 3'上端面将所述转动组件上下定位;
驱动轴 2、上驱动盘 5、驱动管 17、下驱动盘 5'、 从动轴 2'之间相对固定并牢固连接。 上止推盘和下止推盘可在弹簧的作用力和反作用力及流体的压力的作用下浮动而分别与 上配流盘和下配流盘接触。
所述上止推盘 4、 下止推盘 4'以盘心为中心的圆周上开的相应的一个或多个通槽 70、 70', 该通槽在压力交换管 8插入一端为圆形, 与上配流盘 3、 下配流盘 3'相通一端为扇形 圆弧段, 该扇形圆弧面积小于反面圆孔面积, 这样作用在上止推盘 4、 下止推盘 4'流体压 力能够将上止推盘 4、 下止推盘 4'分别推压在上配流盘 3、 下配流盘 3'上。
驱动轴 2穿过机械密封盖 22、 安装在上端盖 1上的驱动轴轴套 10、 上配流盘 3、 上止 推盘 4并与上驱动盘 5牢固连接, 从动轴 2'穿过安装在下端盖 Γ上的从动轴轴套 10'、 下 配流盘 3'、 下止推盘 4'并与下驱动盘 5' 牢固连接;
上配流盘 3开有高压侧通槽 50和低压侧通槽 60,下配流盘 3'开有高压侧通槽 50'和低 压侧通槽 60' ; 将上配流盘 3上的二个所述通槽分开的部分为上配流盘 3的密封区, 所述 密封区将相对高压流体和相对低压流体分隔; 将下配流盘 3'上的二个所述通槽分开的部分 为下配流盘 3'的密封区, 所述密封区将相对高压流体和相对低压流体分隔。
设置在上端盖 1 的相对高压流体入口 31、 上配流盘 3的高压侧通槽 50、 上止推盘 4 的与相对高压流体出口和相对高压流体进口相通的通槽 70、 与上配流盘 3的通槽 50相通 的压力交换管 8、 下止推盘 4'的与相对高压流体出口和相对高压流体进口相通的通槽 70'、 下配流盘 3'的高压侧通槽 50'和设置在下端盖 Γ上的相对高压流体出口 32构成相对高压 区;
从动轴 2'上设有轴向盲孔 41和横向通孔 4Γ 、 41"并相互连通, 轴向盲孔 41接通所 述驱动管内部, 横向通孔 41'、 41"分处于驱动轴轴套 10'的下方和上方并与轴向盲孔 41相 通, 驱动轴 2上设有轴向盲孔 42和横向通孔 42'、 42" 并相互连通, 轴向盲孔 42接通所 述驱动管内部, 横向通孔 42'、 42"分处于驱动轴轴套 10的下方和上方并与轴向盲孔 42相 通,上端盖和上止推盘之间设有通孔 43,所述上端盖在驱动轴轴套 10的上方设有通孔 44, 通孔 43和通孔 44分别与相对低压流体出口 34相通; 壳体 19内其他区域通过上述通孔及 上配流盘 3上的低压侧通槽 60、下配流盘 3'上的低压侧通槽 60'、 上止推盘 4和下止推盘 上的与相对低压流体出口和相对低压流体进口相通的通槽 70、 70'、 与相对低压流体出口 和相对低压流体进口相通的压力交换管构成相对低压区。 如图所示结构, 本装置初始状态, 压縮弹簧 7推浮动顶针 6将上止推盘 4压在上配流 盘 3上;运行状态时,相对高压流体 A的液体压力将上止推盘 4进一步压在上配流盘 3上, 形成自紧密封结构。 与此类似, 压縮弹簧 7的反作用力通过驱动管 17将下止推盘 4'压在 下配流盘 3上; 运行状态时, 相对高压流体 A的液体压力将下止推盘 4'进一步压在下配流 盘 3'上, 也形成自紧密封结构。 转动部件由马达通过驱动轴 2驱动旋转, 转动部件的上下 二个端面与上配流盘 3的下端面和下配流盘 3'的上端面形成相对运行的摩擦配流副。 实现相对高压流体 A和相对低压流体 B二种流体压力能量的相互交换,工作过程可以 分为 4步:
第一步: 在低压区, 相对低压流体 B从下端盖 Γ的相对低压流体进口 33进入, 充满 一个压力交换管 8, 同时将压力交换管 8管内的流体 A以低压形式通过上端盖 1的相对低 压流体出口 34排出;
第二步: 转子继续旋转, 进入密封区, 上配流盘 3和下配流盘 3'上的密封区将压力交 换管 8内上下二口封住, 流体 B静止保持在压力交换管 8内;
第三步: 转子继续旋转, 当该压力交换管 8进入高压区与相对高压流体进口 31和相 对高压流体出口 32相通时, 高压流体 A将流体 B以高压的形式从下端盖 Γ的相对高压流 体出口 32排出, 同时流体 A充满该压力交换管 8;
第四步: 转子继续旋转, 进入又一个密封区, 上配流盘 3和下配流盘 3'上的密封区将 该压力交换管 8内上下二口封住, 流体 A静止保持在该压力交换管 8内。
这样一个周期, 完成相对高压流体 A与低压流体 B的压力能量交换, 如此循环往复, 如此循环往复, 周期地运行。 随着驱动轴 2的旋转, 每个压力交换管 8将不断地进水、 排 水, 且多个压力交换管 8排出的相对高压流体 B在相对高压流体出口 32有序的叠加, 从 而形成压力、 流量连续均匀的高压流体, 多个压力交换管 8排出的已被回收能量的低压流 体在相对低压流体 A出口 34有序的叠加, 从而形成压力、流量连续均匀的低压流体排出。
本发明以流体 A、 流体 B或它们的混合流体柱作为活塞; 为减少流体 A、 流体 B的混 合, 可在转子流通内设置固体活塞, 活塞材料可采用高分子耐磨工程塑料。 最后, 以上仅是本发明的实施例。 显然, 本发明的实施方式不限于以上实施例, 还可 以有许多变形。 本领域的普通技术人员能从本公开的内容直接导出或联想到的所有变形, 均应认为是保护范围。

Claims

权利要求书
1、 一种功交换式能量回收装置, 其特征在于它包括转动组件, 所述转动组件包括: 驱动轴 (2)、 套在驱动轴外的用于机械密封的动环 (21)、 上止推盘 (4)、 上驱动盘 (5)、 一个或多个顶针 (6) 和弹簧 (7)、 弹簧座 (18)、 驱动管 (17)、 与驱动轴轴向平行的压 力交换管 (8)、 下驱动盘 (5')、 下止推盘 (4')、 从动轴 (2'), 上驱动盘 (5)、 下驱动盘 (5') 的盘面上以盘心为中心的圆周上开有相应的一个或多个圆孔 (80), 上止推盘 (4)、 下止推盘 (4') 以盘心为中心的圆周上也开有相应的一个或多个通槽 (70、 70'), 压力交 换管 (8) 上端穿出上驱动盘 (5) 的圆孔 (80) 插入上止推盘 (4) 的通槽 (70) 并在插 入面设置密封圈 (16)、 下端穿出下驱动盘 (5') 的圆孔 (80) 插入下止推盘 (4') 的通 槽 (70') 并在插入面设置密封圈 (16), 上驱动盘 (5) 安装在驱动管 (17) 的上端, 弹簧 座 (18) 安装在上驱动盘 (5) 上, 下驱动盘 (5,) 安装在驱动管 (17) 的下端;
所述功交换式能量回收装置还设有不转组件, 所述不转组件包括机械密封盖 (22)、 用于机械密封的与动环 (21) 配合的静环 (20)、 上端盖 (1)、 安装在上端盖内的驱动轴 轴套 (10)、 驱动轴轴套盖 (9)、 安装在上端盖 (1) 下端面上的上配流盘 (3)、 从动轴轴 套盖(9')、下端盖(1')、安装在下端盖(Γ)上端面上的下配流盘(3')、 从动轴轴套(10')、 壳体 (19), 驱动轴轴套 (10) 与从动轴轴套 (10') 将所述转动组件周向定位;
所述上端盖 (1) 设有相对高压流体进口 (31)、 相对低压流体出口 (34); 所述下端 盖 (Γ) 设有相对高压流体出口 (32)、 相对低压流体进口 (33);
上端盖 (1) 固定在壳体 (19) 的上端并装有密封圈 (14), 下端盖 (Γ) 固定在壳体 (19) 的下端并装有密封圈 (14), 所述转动组件安装在壳体 (19) 内, 转动组件的上止 推盘 (4) 的上端面与不转组件上配流盘 (3) 的下端面和转动组件的下止推盘 (4') 的下 端面与不转组件下配流盘 (3') 的上端面接触且相对转动构成二个相对滑动的摩擦副; 压 縮弹簧 (7) 通过顶针 (6) 将上止推盘 (4) 推压在上配流盘 (3) 上, 同时其反作用力通 过弹簧座 (18)、 上驱动盘 (5)、 驱动管 (17)、 下驱动盘 (5') 将下止推盘 (4') 推压在 下配流盘 (3,) 上; 驱动轴 (2) 穿过机械密封盖 (22)、 安装在上端盖 (1) 上的驱动轴轴套 (10)、 上配 流盘 (3)、 上止推盘 (4) 并与上驱动盘 (5) 连接, 从动轴 (2') 穿过安装在下端盖 (Γ) 上的从动轴轴套 (10')、 下配流盘 (3')、 下止推盘 (4') 并与下驱动盘 (5') 连接;
上配流盘 (3) 开有高压侧通槽 (50) 和低压侧通槽 (60), 下配流盘 (3') 开有高压 侧通槽 (50') 和低压侧通槽 (60'); 将上配流盘 (3) 上的二个所述通槽分开的部分为上 配流盘(3)的密封区, 所述密封区将相对高压流体和相对低压流体分隔; 将下配流盘(3') 上的二个所述通槽分开的部分为下配流盘 (3') 的密封区, 所述密封区将相对高压流体和 相对低压流体分隔。
2、 如权利要求 1所述的一种功交换式能量回收装置, 其特征在于设置在上端盖 (1) 的相对高压流体入口 (31)、 上配流盘 (3) 的高压侧通槽 (50)、 上止推盘 (4) 的与相对 高压流体出口和相对高压流体进口相通的通槽 (70)、 与上配流盘 (3) 的通槽 (50) 相通 的压力交换管 (8)、 下止推盘 (4') 的与相对高压流体出口和相对高压流体进口相通的通 槽 (70')、 下配流盘 (3') 的高压侧通槽 (50') 和设置在下端盖 (Γ) 上的相对高压流体 出口 (32) 构成相对高压区;
从动轴 (2') 上设有轴向盲孔 (41)和横向通孔 (41'、 41") 并相互连通, 轴向盲孔
(41)接通所述驱动管内部, 横向通孔 (41'、 41") 分处于驱动轴轴套 (10') 的下方和上 方并与轴向盲孔 (41) 相通, 驱动轴 (2) 上设有轴向盲孔 (42) 和横向通孔 (42,、 42") 并相互连通, 轴向盲孔 (42) 接通所述驱动管内部, 横向通孔 (42'、 42") 分处于驱动轴 轴套 (10) 的下方和上方并与轴向盲孔 (42) 相通, 上端盖和上止推盘之间设有第一通孔
(43), 所述上端盖在驱动轴轴套 (10) 的上方设有第二通孔 (44), 第一通孔 (43) 和第 二通孔 (44) 分别与相对低压流体出口 (34) 相通; 壳体 (19) 内其他区域通过上述通孔 及上配流盘 (3) 上的低压侧通槽 (60)、 下配流盘 (3') 上的低压侧通槽 (60')、 上止推 盘 (4) 和下止推盘 (4') 上的与相对低压流体出口和相对低压流体进口相通的通槽 (70、 70')、 与相对低压流体出口和相对低压流体进口相通的压力交换管构成相对低压区。
PCT/CN2011/075214 2010-06-08 2011-06-02 一种功交换式能量回收装置 WO2011153920A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010197604.1 2010-06-08
CN201020222493.0 2010-06-08
CN 201010197604 CN101865192B (zh) 2010-06-08 2010-06-08 一种功交换式能量回收装置
CN2010202224930U CN201934428U (zh) 2010-06-08 2010-06-08 一种功交换式能量回收装置

Publications (1)

Publication Number Publication Date
WO2011153920A1 true WO2011153920A1 (zh) 2011-12-15

Family

ID=45097531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075214 WO2011153920A1 (zh) 2010-06-08 2011-06-02 一种功交换式能量回收装置

Country Status (1)

Country Link
WO (1) WO2011153920A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1719920A1 (en) * 2005-05-02 2006-11-08 Energy Recovery, Inc. Rotary pressure exchanger
WO2007057650A1 (en) * 2005-11-15 2007-05-24 Rovex Ltd Pressure exchanger
CN101440828A (zh) * 2008-12-18 2009-05-27 杭州帕尔水处理科技有限公司 一种压力交换器
EP2078867A1 (de) * 2007-12-11 2009-07-15 Grundfos Management A/S Druckaustauscher zur Übertragung von Druckenergie von einem ersten Flüssigkeitsstrom auf einen zweiten Flüssigkeitsstrom
CN101865192A (zh) * 2010-06-08 2010-10-20 杭州帕尔水处理科技有限公司 一种功交换式能量回收装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1719920A1 (en) * 2005-05-02 2006-11-08 Energy Recovery, Inc. Rotary pressure exchanger
WO2007057650A1 (en) * 2005-11-15 2007-05-24 Rovex Ltd Pressure exchanger
EP2078867A1 (de) * 2007-12-11 2009-07-15 Grundfos Management A/S Druckaustauscher zur Übertragung von Druckenergie von einem ersten Flüssigkeitsstrom auf einen zweiten Flüssigkeitsstrom
CN101440828A (zh) * 2008-12-18 2009-05-27 杭州帕尔水处理科技有限公司 一种压力交换器
CN101865192A (zh) * 2010-06-08 2010-10-20 杭州帕尔水处理科技有限公司 一种功交换式能量回收装置

Similar Documents

Publication Publication Date Title
CN101865192B (zh) 一种功交换式能量回收装置
CN101865191B (zh) 一种液体余压能量回收器
CN101440828B (zh) 一种压力交换器
CN104791333B (zh) 一种旋转式能量回收装置
CN102563122B (zh) 一种可连续切换的四通旋转阀
CN106594009B (zh) 外驱动转子式能量回收装置
CN110778474B (zh) 一种可回收废弃流体中压力能的径向活塞式流体泵
CN1994905A (zh) 海水或苦咸水反渗透淡化系统用双转盘耦合式压力交换器
CN206468622U (zh) 外驱动转子式能量回收装置
CN201723528U (zh) 一种液体余压能量回收器
CN201934428U (zh) 一种功交换式能量回收装置
CN101586573A (zh) 冷却塔风机专用筒形冲动式水力驱动器
WO2011153920A1 (zh) 一种功交换式能量回收装置
CN101817573B (zh) 电动双作用能量回收装置
CN102527238B (zh) 一种转阀式能量回收单元装置
CN204692247U (zh) 一种旋转式能量回收装置
CN210021752U (zh) 转盘式能量回收装置
CN101985931A (zh) 轨道定位滑片式无堵塞泵
CN110064306B (zh) 一种能量回收装置
CN102442716B (zh) 一种阀控式能量回收单元装置
CN211358788U (zh) 固定阀同心圈旋转床
CN210422866U (zh) 容积式微型水轮机及基于该水轮机的固定混合比装置
CN110013768B (zh) 转盘式能量回收装置
CN202348682U (zh) 慢转速耐腐蚀耐磨离心泵
CN204533002U (zh) 电驱动转子式压力交换能量回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791911

Country of ref document: EP

Kind code of ref document: A1