WO2011153718A1 - 直流电能表及直流电能计量方法 - Google Patents

直流电能表及直流电能计量方法 Download PDF

Info

Publication number
WO2011153718A1
WO2011153718A1 PCT/CN2010/074163 CN2010074163W WO2011153718A1 WO 2011153718 A1 WO2011153718 A1 WO 2011153718A1 CN 2010074163 W CN2010074163 W CN 2010074163W WO 2011153718 A1 WO2011153718 A1 WO 2011153718A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
module
electric energy
processing module
parameter
Prior art date
Application number
PCT/CN2010/074163
Other languages
English (en)
French (fr)
Inventor
刘春华
Original Assignee
深圳市科陆电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科陆电子科技股份有限公司 filed Critical 深圳市科陆电子科技股份有限公司
Publication of WO2011153718A1 publication Critical patent/WO2011153718A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/10Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques

Definitions

  • the invention relates to a metering device and a method, in particular to a direct current electric energy meter and a direct current electric energy measuring method.
  • the conventional electric meter uses a mechanical metering device, which records the user's power consumption by a mechanical counter, and is mostly installed outdoors, is relatively stable during use, and the recorded data is not easily lost.
  • the traditional meter function is relatively simple, and often only has the function of metering and display, that is, it realizes stable and accurate measurement of the user's power consumption and display.
  • a DC electric energy meter includes at least a detection module for sampling voltage and current, acquiring a voltage signal and a current signal, and converting the detection signal into a processing module, and processing a module for calculating the electric energy parameter according to the detection signal And storing in the storage module; the storage module is configured to store the calculated power parameter; the interaction module is configured to be connected to the processing module, and obtain and display the calculated power parameter.
  • an verification module is further included, and the verification module is connected to the processing module for outputting a power pulse signal.
  • the method further includes a communication module, and the communication module is connected to the processing module for transmitting the power parameter and receiving the operation instruction.
  • the method further includes a clock module, where the clock module is configured to collect the clock information and transmit the clock information to the processing module.
  • the processing module includes an analog/digital sampling circuit and an electric energy metering circuit, and the detection signal is input into the analog/digital sampling circuit and the electric energy metering circuit to calculate a power parameter; and the electric energy is accumulated by the electric energy parameter.
  • the processing module is further configured to divide the set time period into a plurality of time segments according to parameters preset in the DC energy meter, and classify the power parameters of the different time segments into the storage module according to the clock information. .
  • the processing module is further configured to measure electrical energy of a single power consumption, the processing module generates a measurement command after receiving the communication frame, and controls the detection module to start acquiring the detection signal according to the measurement command and calculate; The module stops counting when it receives the end frame.
  • the interaction module is further configured to collect a query instruction of the user, obtain a power parameter according to the query instruction, and display the parameter.
  • a DC energy metering method comprises the steps of: sampling a voltage and a current, obtaining a voltage signal and a current signal, converting into a detection signal and transmitting; calculating a power parameter according to the detection signal and storing; displaying the stored power parameter.
  • the method further includes the steps of: calculating electrical energy according to the electrical energy parameter, and outputting the electrical energy pulse signal according to the information of the electrical energy.
  • the method further comprises the steps of: transmitting the power parameter and receiving the remote operation instruction.
  • the method further comprises the steps of: counting the power consumption time, and generating a clock signal and transmitting.
  • the statistical power consumption time further comprises the steps of: dividing the set time period into a plurality of time segments according to the preset parameters, and classifying and storing the power parameters of the different time segments.
  • the method further includes the step of: measuring the electrical energy of the single-use power, the specific step is: after receiving the communication frame, generating a measurement command, acquiring the detection signal according to the measurement command and calculating; and stopping receiving the measurement when the end frame is received.
  • the method further includes the steps of: collecting a query instruction of the user, acquiring the power parameter according to the query instruction, and displaying the parameter.
  • the voltage and current are sampled by the detecting module, and the corresponding voltage and current signals are obtained, and converted into detection signals and transmitted to the processing module.
  • the processing module calculates the power parameters according to the detection signals and stores them in the storage module, and displays the Power parameters; the new DC energy meter with all-electronic devices has higher measurement accuracy than the traditional mechanical electromagnetic structure DC energy meter; at the same time, it has longer service life and external anti-interference ability.
  • the verification module outputs an electric pulse signal, which represents information of the DC power electric energy; the external verification device receives the output electric pulse signal, and can verify the measurement accuracy of the DC electric energy meter, thereby effectively ensuring the DC electric energy meter. Accurate metering.
  • the communication module is provided, and the power parameter can be transmitted to the remote control terminal and receive the operation instruction in real time, and the power consumption information can be provided to the remote user in real time, and the remote operation can also be received, thereby improving the convenience of using the DC energy meter.
  • the clock module provides a clock signal for the DC energy meter, so that the DC energy meter can measure the power parameters in real time, facilitates statistical power consumption time and real-time calculation of electric energy, and enriches the function of the DC energy meter.
  • the analog/digital converter is used to expand the measurement range of the DC energy meter compared to the conventional DC energy meter.
  • the processing module can divide the set time period into several time segments, and can measure the energy according to the user's selection in a time-sharing manner, thereby facilitating the function of calculating the electricity consumption cost by the user by time period and the rate, so as to be fully applied.
  • the electrical equipment such as electric energy charging stations and charging vehicles, accurate single, multiple, and cumulative power usage billing is performed.
  • the DC electric energy meter can be used for measuring a single electric energy, and provides a power settlement function for powering an electric device such as an electric vehicle, further increasing the function of the DC electric energy meter.
  • the interaction module can collect the user's instructions, and according to the user's instructions and display specific power parameters, further improves the interaction and operability of the DC energy meter, fully embodies the humanization of the DC energy meter.
  • FIG. 1 is a schematic structural view of a DC electric energy meter in an embodiment
  • FIG. 2 is a flow chart of a DC energy metering method in one embodiment.
  • the DC energy meter includes: a detection module 100, an verification module 200
  • the detecting module 100 is configured to sample voltage and current, obtain a voltage signal and a current signal, and convert the detected signal into a processing module. 400.
  • the detection signal is a small amplitude signal, that is, a voltage signal and a current signal that are obtained into a strong electric power, and a weak electric signal that can make the electronic device work normally.
  • the detection module 100 Collect high voltage DC voltage and current to obtain high voltage DC voltage signal and high voltage DC current signal, and convert it into detection signal under the action of sampling circuit.
  • the verification module 200 is used to output a power pulse signal.
  • the verification module 200 As an output part of the electric energy pulse signal of the direct current electric energy meter, the electric energy pulse signal represents electric energy of the direct current power (for example, a value representing the electric power of the direct current power), and is transmitted to an external verification device for the measurement accuracy of the direct current electric energy meter.
  • the verification ensures effective measurement of the DC energy meter.
  • the processing module 400 is configured to calculate the power parameter by using the detection signal and store it in the storage module 500.
  • the processing module The 400 includes an A/D sampling circuit (analog/digital sampling circuit) and an energy metering circuit, and the processing module 400 inputs the detection signal to the A/D.
  • the sampling circuit and the energy metering circuit calculate the power parameter and store it in the storage module 500.
  • the A/D sampling circuit can be a 24-bit ⁇ - ⁇ type A/D
  • the converter completes the analog-to-digital conversion of the analog signal, that is, the detection signal, and inputs it into the energy metering circuit, and performs the cumulative calculation of the electric energy according to the following formula:
  • the power parameter includes a measured value of a parameter such as a direct current voltage, a current, a power, and a calculated value of the direct current energy, which may be a cumulative from zero;
  • the A/D sampling circuit provides a wider measurement range.
  • the processing module 400 controls the verification module 200 according to the accumulated electrical energy.
  • Output power pulse signal Specifically, an electric energy pulse signal representing DC power energy is output to an external verification device for verification of the measurement accuracy of the DC energy meter.
  • the processing module 400 further divides a certain time period into a plurality of time segments according to parameters preset in the DC energy meter, for example, dividing the 24 hours of the day into a plurality of time segments, and according to the clock module 700
  • the generated clock information stores the energy parameters of different time segments in the storage module 500, thereby implementing the function of time-division measurement, which is convenient for time-dividing and rate-based charging for users.
  • the processing module 400 is further used for the measurement of DC energy for a single use of electricity.
  • the remote end when a power event occurs, the remote end sends a communication frame by using RS-485 or infrared communication, and the processing module 400 After receiving the communication frame, a measurement command is generated to control the detection module 100 to perform energy measurement.
  • the measurement of the electrical energy is stopped, and the power parameter of the current power event is stored in the storage module 500.
  • the single-use electric DC energy metering function of the DC energy meter can be applied to the occasion of car charging and the like, and a DC electric energy meter is used to provide a DC charging function for a plurality of automobile users.
  • Communication module 300 and processing module 400 Connected for transmitting power parameters to remote control terminals and receiving remote operation commands.
  • the communication module 300 can implement remote power parameter transmission and provide an interface for remote operation of the user, and the communication mode is specifically RS-485 can also use IR or infrared communication.
  • the remotely located user or device Under the action of the user, the remotely located user or device can obtain the energy parameters stored in the DC energy meter at any time to understand the current power consumption status, and can also remotely operate the DC energy meter, thereby improving the convenience of the DC energy meter.
  • Storage module 500 for processing module 400 Connected to store the calculated power parameters.
  • the power parameters are stored in the storage module 500 so that the user can extract and view the power parameters at any time.
  • the clock module 700 is used to count the power consumption time, obtain clock information, and transmit it to the processing module 400. . In one embodiment, to obtain real-time power parameters, the clock module 700 counts the power usage time to facilitate calculation of electrical energy by real-time power.
  • the interaction module 600 is configured to acquire and display the calculated power parameters.
  • the interaction module 600 The current power parameters are displayed in real time to facilitate the user to understand the power usage.
  • the interaction module 600 is further configured to collect a query instruction of the user, obtain a power parameter according to the query instruction, and display the parameter.
  • Interaction module 600 Obtaining the power parameter that the user wants to query according to the query instruction input by the user, and querying the instruction from the storage module 500 The power parameters are adjusted and displayed on the screen.
  • the manner in which the user inputs the query command may be input through a button or input through a touch screen.
  • the DC energy meter further includes a power source (not shown), and is the above detecting module 100, the verification module 200, and the communication module 300.
  • the processing module 400, the storage module 500, the interaction module 600, and the clock module 700 provide a stable and reliable power supply to ensure accurate metering of electrical energy.
  • FIG. 2 shows a flow chart of a method for measuring DC energy in an embodiment, and the specific process is as follows:
  • step S10 The voltage and current are sampled, and the voltage signal and the current signal are obtained, converted into a detection signal and transmitted; specifically, the detection module 100
  • the utility model is configured to sample the high voltage direct current voltage and the high voltage direct current flowing through, obtain corresponding voltage signals and current signals, and convert the detected signals into the processing module 400.
  • Step S20 calculating and storing the electric energy parameter by the detection signal; the processing module 400 inputs the electric energy parameter to the A/D sampling circuit and the electric energy metering circuit according to the small detection signal, and stores the electric energy parameter into the storage module 500; the A/D The sampling circuit is a 24-bit ⁇ - ⁇ type A/D converter, which completes the analog-to-digital conversion process of the detection signal; the electric energy accumulation method of the energy metering circuit is: , among them, Is the instantaneous voltage, It is the instantaneous current.
  • the obtained power parameter is stored in the storage module 500, so that the user can extract and view the power parameter at any time.
  • Step S30 Display the stored power parameter; obtain and display the calculated power parameter, so that the user can understand the power usage status in real time.
  • the method for measuring the DC energy further includes the following steps:
  • the electric energy pulse signal representing the DC power electric energy is output and transmitted to an external verification device for verification of the measurement accuracy of the DC electric energy meter, thereby effectively ensuring accurate measurement of the DC electric energy meter.
  • communication module 300 Realize remote power parameter transmission and provide interface for remote operation of users; the specific communication mode is RS-485 or infrared communication; it is convenient for users to understand the current power consumption status and remote operation at the same time.
  • the power consumption time is counted, and a clock signal is generated and transmitted; the clock time is obtained by statistical power consumption time and transmitted to the processing module 400.
  • the user's query instruction is collected, and the power parameter is obtained and displayed according to the query instruction; the user's query instruction is input through a button or a touch screen, and the query command is collected to provide the user with the power parameter, and the interaction module is real-time display.
  • the method further includes: measuring the electrical energy of the single-use power, the specific step is: generating a measurement command after receiving the communication frame, and acquiring the detection signal and calculating; when the end frame is received, stopping the measurement.
  • the step of calculating the power consumption time and generating the clock signal and transmitting further includes: dividing the set time period into a plurality of time segments according to the preset parameters, and classifying the power parameters of the different time segments; specifically, For example, one day The 24 hours are divided into several time segments, and the energy parameters of different time segments are classified and stored according to the clock information, thereby realizing the function of time-division measurement, which is convenient for time-dividing and rate-based charging for users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

直流电能表及直流电能计量方法 技术领域
本发明涉及计量装置及方法,特别是涉及一种直流电能表和直流电能计量方法。
背景技术
传统的电表使用的是机械式的计量装置,由机械式的计数器来记录用户的用电量,大多安装于室外,在使用过程中比较稳定,所记录的数据不易丢失。传统的电表功能较为单一,常常只具备计量与显示的功能,即实现了稳定而准确地计量用户用电量并显示。
然而,在实际的使用过程中,这些机械式的传统电表精度低、测量的范围较窄,不能够提供准确的计量统计数据,影响了用户的用电量及电费结算,同时还易受到外部磁场的干扰,存在着寿命短、故障率高的缺陷。
技术问题
基于此,有必要提供一种计量准确度高的直流电能表。
此外,还有必要提供一种计量准确度高的直流电能计量方法。
技术解决方案
一种直流电能表,至少包括:检测模块,用于对电压和电流进行采样,获取电压信号和电流信号,并转化为检测信号传输至处理模块;处理模块,用于根据检测信号计算得到电能参数,并存储于存储模块中;存储模块,用于存储计算得到的电能参数;交互模块,用于与所述处理模块相连,获取并显示计算得到的电能参数。
优选地,还包括检定模块,所述检定模块与所述处理模块相连,用于输出电能脉冲信号。
优选地,还包括通讯模块,所述通讯模块与所述处理模块相连,用于传输电能参数及接收操作指令。
优选地,还包括时钟模块,所述时钟模块用于统计用电时间,生成时钟信息,并传输至所述处理模块。
优选地,所述处理模块包括模 / 数采样电路及电能计量电路,将所述检测信号输入模 / 数采样电路及电能计量电路中,计算得到电能参数;通过所述电能参数获得电能量的累计计算公式:
Figure PCTCN2010074163-appb-I000001
其中,
Figure PCTCN2010074163-appb-I000002
是瞬时电压,
Figure PCTCN2010074163-appb-I000003
是瞬时电流。
优选地,所述处理模块进一步用于根据直流电能表中预先设置的参数,将设定时间段划分为若干时间区段,并根据时钟信息将不同时间区段的电能参数分类存储于存储模块中。
优选地,所述处理模块进一步用于计量单次用电的电能量,所述处理模块接收通讯帧后生成计量命令,且根据所述计量命令控制检测模块开始获取检测信号并计算;所述处理模块在收到结束帧时,停止计量。
优选地,所述交互模块进一步用于采集用户的查询指令,根据查询指令获取电能参数并显示。
一种直流电能计量方法,包括如下步骤:对电压和电流进行采样,获取电压信号和电流信号,转化成检测信号并传输;根据所述检测信号计算得到电能参数并存储;显示存储的电能参数。
优选地,还包括步骤:根据所述电能参数计算得到电能量,根据所述电能量的信息输出电能脉冲信号。
优选地,还包括步骤:传输电能参数及接收远程操作指令。
优选地,还包括步骤:统计用电时间,且生成时钟信号并传输。
优选地,所述统计用电时间进一步包括步骤:根据预先设置的参数,将设定时间段划分为若干时间区段,并将不同时间区段的电能参数分类存储。
优选地,还包括步骤:计量单次用电的电能量,具体步骤是,接收通讯帧后生成计量命令,根据计量命令获取检测信号并计算;在收到结束帧时,停止计量。
优选地,还包括步骤:采集用户的查询指令,根据查询指令获取电能参数并显示。
有益效果
上述直流电能表及电能计量的方法,获得如下有益效果:
通过检测模块对电压和电流进行采样,获得相应的电压和电流信号,且转化为检测信号并传输至处理模块,处理模块根据该检测信号计算得到电能参数并存储至存储模块,通过交互模块显示该电能参数;采用全电子器件的全新直流电能表,较之传统的机械电磁结构的直流电能表,具有更高的计量准确度;同时,有更长的使用寿命及外部抗干扰能力。
另外,检定模块输出电脉冲信号,该脉冲信号代表直流功率电能量的信息;外部检定装置接收到输出的该电脉冲信号,能够为直流电能表的计量准确度进行检定,从而有效保证直流电能表的精确计量。
设有通信模块,可以把电能参数实时传输至远程控制端及接收操作指令,实时为远程用户提供用电信息,同时也可以接收远程操作,提高了直流电能表的使用便捷性。
时钟模块为直流电能表提供了时钟信号,使得直流电能表能够实时计量电能参数,便于统计用电时间及实时计算电能量,丰富了直流电能表的功能。
采用模 / 数转换器较之传统的直流电能表,扩大了直流电能表的测量范围。
通过预设参数,处理模块可以把设定时间段分成若干个时间区段,可以根据用户的选择分时计量电能,便于实现用户分时段、分费率计算用电费用的功能,从而充分应用于电能充电站、充电车等用电设备当中,以进行准确的单次、多次以及累计的用电计费。
该直流电能表可以用于计量单次的电能量,为电动车等用电设备供电提供电量结算功能,进一步的增加了该直流电能表的功能。
交互模块可以采集用户的指令,根据用户的指令并显示特定的电能参数,进一步的提高了该直流电能表的互动性和可操作性,充分体现了该直流电能表的人性化。
附图说明
图 1 为一个实施例中直流电能表的结构示意图;
图 2 为一个实施例中直流电能计量方法的流程图。
本发明的最佳实施方式
本发明的实施方式
图 1 示出了一实施例中直流电能表的详细模块,该直流电能表包括:检测模块 100 、检定模块 200 、通讯模块 300 、处理模块 400 、存储模块 500 、交互模块 600 以及时钟模块 700 ,而处理模块 400 是直流电能表的核心,其中:
检测模块 100 用于对电压和电流进行采样,获取电压信号和电流信号,并转化成检测信号传输至处理模块 400 。该检测信号为小幅值信号,即把获取到强电的电压信号和电流信号转化成弱电的电压信号和电流信号,即能够使电子器件正常工作的弱电信号。一实施例中,检测模块 100 采集高压直流电压及电流,以得到高压直流电压信号和高压直流电流信号,并在取样电路的作用下,转化为检测信号。
检定模块 200 用于输出电能脉冲信号。一实施例中,检定模块 200 作为直流电能表的电能脉冲信号的输出部分,该电能脉冲信号代表直流功率的电能量(例如,代表直流功率电能量的数值),且传输至外部检定装置,以用于直流电能表计量准确度的检定,从而有效保证直流电能表的精确计量。
处理模块 400 用于通过检测信号计算得到电能参数,存储至存储模块 500 中。一实施例中,处理模块 400 包括 A/D 采样电路(模 / 数采样电路)及电能计量电路 ,该处理模块 400 将检测信号输入到 A/D 采样电路及电能计量电路,计算得到电能参数,并保存在存储模块 500 中。具体地, A/D 采样电路可以是 24 位 ∑- △型 A/D 转换器,以完成对模拟信号即检测信号的模数转换,并输入电能计量电路中,按如下公式完成电能量的累计计算:
Figure PCTCN2010074163-appb-I000004
其中,
Figure PCTCN2010074163-appb-I000005
是瞬时电压,
Figure PCTCN2010074163-appb-I000006
是瞬时电流。
该电能参数包括了直流电压、电流、功率等参数的测量值以及直流电能量的计算值,可以是从零开始的累计;该 A/D 采样电路能够提供更为宽的测量范围。
同时,该处理模块 400 根据累计的电能量控制检定模块 200 输出电能脉冲信号。具体地,输出代表直流功率电能量的电能脉冲信号至外部检定装置,用于直流电能表计量准确度的检定。
另一实施例中,处理模块 400 进一步用于根据直流电能表中预先设置的参数,将某一时间段划分为若干时间区段,例如将一天的 24 小时划分成若干时间区段,并根据时钟模块 700 所生成的时钟信息将不同时间区段的电能参数分类存储于存储模块 500 中,从而实现分时计量的功能,便于对用户进行分时段、分费率计费。其他实施例中,处理模块 400 进一步用于单次用电的直流电能量的计量。具体地,当一用电事件发生时,远端通过 RS-485 或者红外通讯方式发送通讯帧,处理模块 400 接收到通讯帧后即生成计量命令,以控制检测模块 100 进行电能计量,在收到结束帧时,停止电能量的计量,并获取本次用电事件的电能参数存储于存储模块 500 中。直流电能表的单次用电直流电能量计量功能可应用于汽车充电等场合,以一块直流电能表为多个汽车用户提供直流充电的电量结算功能。
通讯模块 300 与处理模块 400 相连,用于向远程控制终端传输电能参数及接收远程操作指令。一实施例中,通讯模块 300 可实现远端的电能参数传输,并为用户的远程操作提供接口,其通讯方式具体是 RS-485 ,也可以采用 IR 或红外通讯。在通讯模块 300 的作用下,位于远端的用户或装置可随时获取直流电能表中存储的电能参数,以了解当前的用电状况,也可对直流电能表进行远程操作,提高了直流电能表的便利性。
存储模块 500 用于与处理模块 400 相连,存储计算得到的电能参数。一实施例中,电能参数保存于存储模块 500 中,以便于用户随时提取、查看电能参数。
时钟模块 700 用于统计用电时间,得到时钟信息,并传输至处理模块 400 。一实施例中,为得到实时的电能参数,时钟模块 700 统计用电时间,以方便通过实时功率计算电能量。
交互模块 600 用于获取并显示计算得到的电能参数。一实施例中,交互模块 600 实时显示当前的电能参数,以方便用户了解用电状况。另一实施例中,交互模块 600 进一步用于采集用户的查询指令,根据查询指令获取电能参数并显示。交互模块 600 根据用户所输入的查询指令,获知用户所要查询的电能参数,通过查询指令从存储模块 500 中调出电能参数并显示于屏幕中。用户输入查询指令的方式可以是通过按键输入,也可以是通过触摸屏输入的。
该直流电能表还包括电源(图未示),为上述检测模块 100 、检定模块 200 、通讯模块 300 、处理模块 400 、存储模块 500 、交互模块 600 以及时钟模块 700 提供稳定可靠的电源,为精确计量电能提供保障。
图 2 示出一了实施例中直流电能计量的方法流程,具体过程如下:
在步骤 S10 中,对电压和电流进行采样,获取电压信号和电流信号,转化成检测信号并传输;具体的为检测模块 100 用于对流经的高压直流电压和高压直流电流进行采样,获取相应的电压信号和电流信号,并转化成检测信号传输至处理模块 400 。
步骤 S20 :通过检测信号计算得到电能参数并存储;处理模块 400 根据该小检测信号输入到 A/D 采样电路及电能计量电路,计算得到电能参数,并存储至存储模块 500 中;该 A/D 采样电路为 24 位 ∑- △型 A/D 转换器 ,完成检测信号的模数转换过程;该电能计量电路的电能量累计方法为:
Figure PCTCN2010074163-appb-I000007
, 其中,
Figure PCTCN2010074163-appb-I000008
是瞬时电压,
Figure PCTCN2010074163-appb-I000009
是瞬时电流。所获得的电能参数保存于存储模块 500 中,便于用户随时提取、查看电能参数。
步骤 S30 :显示存储的电能参数;获取并显示计算得到的电能参数,方便用户实时了解用电状况。
进一步的,该直流电能计量的方法还包括如下步骤:
根据电能参数计算得到直流功率的电能量,根据所述电能量的信息输出电能脉冲信号;检定模块 200 输出代表直流功率电能量的电能脉冲信号,且传输至外部检定装置,以用于直流电能表计量准确度的检定,从而有效保证直流电能表的精确计量。
传输电能参数及接收远程操作指令;通讯模块 300 实现远端的电能参数传输,及为用户的远程操作提供接口;具体通讯方式是 RS-485 ,或采用红外通讯;便于用户了解当前的用电状况,同时可进行远程操作。
统计用电时间,且生成时钟信号并传输;统计用电时间,得到时钟信息并传输至处理模块 400 。
采集用户的查询指令,根据查询指令获取电能参数并显示;通过按键或触摸屏输入用户的查询指令,采集该查询指令为用户提供电能参数,且通过交互模块 600 实时显示。
上述步骤 S20 进一步包括:计量单次用电的电能量,具体步骤是,接收通讯帧后生成计量命令,且获取检测信号并计算;在收到结束帧时,停止计量。
上述统计用电时间,且生成时钟信号并传输的步骤进一步包括:根据预先设置的参数,将设定时间段划分为若干时间区段,并将不同时间区段的电能参数分类存储;具体的,例如将一天的 24 小时划分成若干时间区段,根据时钟信息将不同时间区段的电能参数分类存储,从而实现分时计量的功能,便于对用户进行分时段、分费率计费。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
工业实用性
序列表自由内容

Claims (15)

1 、一种直流电能表,其特征在于,至少包括:
检测模块,用于对电压和电流进行采样,获取电压信号和电流信号,并转化为检测信号传输至处理模块;
处理模块,用于根据检测信号计算得到电能参数,并存储于存储模块中;
存储模块,用于存储计算得到的电能参数;
交互模块,用于与所述处理模块相连,获取并显示计算得到的电能参数。
2. 根据权利要求 1 所述的直流电能表,其特征在于,还包括检定模块,所述检定模块与所述处理模块相连,用于输出电能脉冲信号。
3. 根据权利要求 1 所述的直流电能表,其特征在于,还包括通讯模块,所述通讯模块与所述处理模块相连,用于传输电能参数及接收操作指令。
4. 根据权利要求 1 所述的直流电能表,其特征在于,还包括时钟模块,所述时钟模块用于统计用电时间,生成时钟信息,并传输至所述处理模块。
5. 根据权利要求 1 所述的直流电能表,其特征在于,所述处理模块包括模 / 数采样电路及电能计量电路,将所述检测信号输入模 / 数采样电路及电能计量电路中,计算得到电能参数;通过所述电能参数获得电能量的累计计算公式:
Figure PCTCN2010074163-appb-I000010
其中,
Figure PCTCN2010074163-appb-I000011
是瞬时电压,
Figure PCTCN2010074163-appb-I000012
是瞬时电流。
6. 根据权利要求 4 所述的直流电能表,其特征在于,所述处理模块进一步用于根据直流电能表中预先设置的参数,将设定时间段划分为若干时间区段,并根据时钟信息将不同时间区段的电能参数分类存储于存储模块中。
7. 根据权利要求 1 所述的直流电能表,其特征在于,所述处理模块进一步用于计量单次用电的电能量,所述处理模块接收通讯帧后生成计量命令,且根据所述计量命令控制检测模块开始获取检测信号并计算;所述处理模块在收到结束帧时,停止计量。
8. 根据权利要求 1 所述的直流电能表,其特征在于,所述交互模块进一步用于采集用户的查询指令,根据查询指令获取电能参数并显示。
9. 一种直流电能计量方法,包括如下步骤:
对电压和电流进行采样,获取电压信号和电流信号,转化成检测信号并传输;
根据所述检测信号计算得到电能参数并存储;
显示存储的电能参数。
10. 根据权利要求 9 所述的直流电能计量方法,其特征在于,还包括步骤:根据所述电能参数计算得到电能量,根据所述电能量的信息输出电能脉冲信号。
11. 根据权利要求 9 所述的直流电能计量方法,其特征在于,还包括步骤:传输电能参数及接收远程操作指令。
12. 根据权利要求 9 所述的直流电能计量方法,其特征在于,还包括步骤:统计用电时间,且生成时钟信号并传输。
13. 根据权利要求 12 所述的直流电能计量方法,其特征在于,所述统计用电时间进一步包括步骤:根据预先设置的参数,将设定时间段划分为若干时间区段,并将不同时间区段的电能参数分类存储。
14. 根据权利要求 9 所述的直流电能计量方法,其特征在于,还包括步骤:计量单次用电的电能量,具体步骤是,接收通讯帧后生成计量命令,根据计量命令获取检测信号并计算;在收到结束帧时,停止计量。
15. 根据权利要求 9 所述的直流电能计量方法,其特征在于,还包括步骤:采集用户的查询指令,根据查询指令获取电能参数并显示。
PCT/CN2010/074163 2010-06-08 2010-06-21 直流电能表及直流电能计量方法 WO2011153718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010195397.6 2010-06-08
CN2010101953976A CN101865949B (zh) 2010-06-08 2010-06-08 直流电能表及直流电能计量方法

Publications (1)

Publication Number Publication Date
WO2011153718A1 true WO2011153718A1 (zh) 2011-12-15

Family

ID=42957750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074163 WO2011153718A1 (zh) 2010-06-08 2010-06-21 直流电能表及直流电能计量方法

Country Status (2)

Country Link
CN (1) CN101865949B (zh)
WO (1) WO2011153718A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698426A (zh) * 2015-04-01 2015-06-10 无锡桑尼安科技有限公司 室外电能表故障自动检验终端
CN105116365A (zh) * 2015-07-22 2015-12-02 杭州厚达自动化系统有限公司 环境模拟拆回电表检测处理装置
CN106772202A (zh) * 2015-11-23 2017-05-31 云南电网有限责任公司电力科学研究院 一种电能表rs485通信接口综合性能测试模组及方法
CN107024615A (zh) * 2017-04-13 2017-08-08 国家电网公司 一种直接接入式三维计量电能表
CN107315156A (zh) * 2017-08-09 2017-11-03 浙江涵普电力科技有限公司 高精度直流标准电能表
CN108327567A (zh) * 2018-03-28 2018-07-27 徐州市恒源电器有限公司 一种智能电动汽充电桩客户端连接系统
CN109993455A (zh) * 2019-04-11 2019-07-09 国网山东省电力公司 一种电力系统信息安全数据整合方法
CN111289943A (zh) * 2020-02-28 2020-06-16 深圳市科陆精密仪器有限公司 一种电能表的检定方法和系统
CN112327177A (zh) * 2020-11-03 2021-02-05 镇江市公共交通有限公司 一种新能源汽车用电量异常测试的方法及装置
CN113702737A (zh) * 2021-08-25 2021-11-26 山东省计量科学研究院 一种充电桩和应用于充电桩的检验方法、装置及设备
CN116560454A (zh) * 2023-05-04 2023-08-08 深圳市通测检测技术有限公司 一种脉冲发生系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096990B (zh) * 2010-12-08 2013-01-09 北京华美博弈软件开发有限公司 电参数分项采集系统
CN102565492A (zh) * 2010-12-13 2012-07-11 上海安科瑞电气股份有限公司 一种用于光伏系统的多功能直流电表
CN104730487A (zh) * 2013-12-18 2015-06-24 国家电网公司 电能表的监测装置
CN106526313B (zh) * 2016-12-05 2019-05-28 威胜信息技术股份有限公司 一种直流计量方法
CN109377747A (zh) * 2018-12-26 2019-02-22 浙江大有实业有限公司杭州科技发展分公司 一种电量数据的辅助采集设备
CN110673083B (zh) * 2019-11-13 2020-11-27 云南电网有限责任公司电力科学研究院 一种用于检测电能表计量误差的直流标准源装置
CN114325086A (zh) * 2021-12-31 2022-04-12 北京博电新力电气股份有限公司 充电电能计量方法、装置、设备、介质及计算机程序产品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86203088U (zh) * 1986-07-18 1987-11-11 生寿国 可编程电能分时计量控制器
EP0644433A1 (en) * 1989-09-25 1995-03-22 General Electric Company Electronic watthour meter
CN1108390A (zh) * 1994-03-07 1995-09-13 裴立凡 自动时延和幅度补偿方法及使用该方法的电度计量装置
CN2335147Y (zh) * 1998-08-12 1999-08-25 梁福平 电力用抄表装置及其执行显示装置
CN2570800Y (zh) * 2002-09-09 2003-09-03 象山大港电力设备厂 外装式谷时有功电度表
CN101482578A (zh) * 2008-11-06 2009-07-15 丹东华通测控有限公司 多功能电能表
CN201281752Y (zh) * 2008-10-28 2009-07-29 邝利群 一种直流电能检测、显示装置
CN201378186Y (zh) * 2009-02-26 2010-01-06 浙江省电力试验研究院 交直流组合电能表
CN101694518A (zh) * 2009-10-09 2010-04-14 北京交通大学 直流电能表检验装置、能量误差检验方法和潜动校验方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201247272Y (zh) * 2008-08-25 2009-05-27 浙江恒业电子有限公司 电子式单相多费率电能表
CN101419251A (zh) * 2008-12-08 2009-04-29 首都师范大学 基于c8051f310soc单芯片的三相电能表
CN201369071Y (zh) * 2009-02-10 2009-12-23 宁夏隆基宁光仪表有限公司 电子式阶梯电价预付费电能表

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86203088U (zh) * 1986-07-18 1987-11-11 生寿国 可编程电能分时计量控制器
EP0644433A1 (en) * 1989-09-25 1995-03-22 General Electric Company Electronic watthour meter
CN1108390A (zh) * 1994-03-07 1995-09-13 裴立凡 自动时延和幅度补偿方法及使用该方法的电度计量装置
CN2335147Y (zh) * 1998-08-12 1999-08-25 梁福平 电力用抄表装置及其执行显示装置
CN2570800Y (zh) * 2002-09-09 2003-09-03 象山大港电力设备厂 外装式谷时有功电度表
CN201281752Y (zh) * 2008-10-28 2009-07-29 邝利群 一种直流电能检测、显示装置
CN101482578A (zh) * 2008-11-06 2009-07-15 丹东华通测控有限公司 多功能电能表
CN201378186Y (zh) * 2009-02-26 2010-01-06 浙江省电力试验研究院 交直流组合电能表
CN101694518A (zh) * 2009-10-09 2010-04-14 北京交通大学 直流电能表检验装置、能量误差检验方法和潜动校验方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698426B (zh) * 2015-04-01 2017-08-25 浙江晨泰科技股份有限公司 室外电能表故障自动检验终端
CN104698426A (zh) * 2015-04-01 2015-06-10 无锡桑尼安科技有限公司 室外电能表故障自动检验终端
CN105116365A (zh) * 2015-07-22 2015-12-02 杭州厚达自动化系统有限公司 环境模拟拆回电表检测处理装置
CN106772202B (zh) * 2015-11-23 2023-08-29 云南电网有限责任公司电力科学研究院 一种电能表rs485通信接口综合性能测试模组及方法
CN106772202A (zh) * 2015-11-23 2017-05-31 云南电网有限责任公司电力科学研究院 一种电能表rs485通信接口综合性能测试模组及方法
CN107024615A (zh) * 2017-04-13 2017-08-08 国家电网公司 一种直接接入式三维计量电能表
CN107024615B (zh) * 2017-04-13 2024-03-26 国家电网公司 一种直接接入式三维计量电能表
CN107315156A (zh) * 2017-08-09 2017-11-03 浙江涵普电力科技有限公司 高精度直流标准电能表
CN107315156B (zh) * 2017-08-09 2024-04-16 浙江涵普电力科技有限公司 高精度直流标准电能表
CN108327567A (zh) * 2018-03-28 2018-07-27 徐州市恒源电器有限公司 一种智能电动汽充电桩客户端连接系统
CN109993455A (zh) * 2019-04-11 2019-07-09 国网山东省电力公司 一种电力系统信息安全数据整合方法
CN111289943A (zh) * 2020-02-28 2020-06-16 深圳市科陆精密仪器有限公司 一种电能表的检定方法和系统
CN112327177A (zh) * 2020-11-03 2021-02-05 镇江市公共交通有限公司 一种新能源汽车用电量异常测试的方法及装置
CN113702737A (zh) * 2021-08-25 2021-11-26 山东省计量科学研究院 一种充电桩和应用于充电桩的检验方法、装置及设备
CN113702737B (zh) * 2021-08-25 2024-04-23 山东省计量科学研究院 一种充电桩和应用于充电桩的检验方法、装置及设备
CN116560454A (zh) * 2023-05-04 2023-08-08 深圳市通测检测技术有限公司 一种脉冲发生系统
CN116560454B (zh) * 2023-05-04 2024-05-17 深圳市通测检测技术有限公司 一种脉冲发生系统

Also Published As

Publication number Publication date
CN101865949B (zh) 2012-09-05
CN101865949A (zh) 2010-10-20

Similar Documents

Publication Publication Date Title
WO2011153718A1 (zh) 直流电能表及直流电能计量方法
CN2938136Y (zh) 带虚拟负载的电能表现场测试仪
CN2921839Y (zh) 一种反窃电装置
US4199817A (en) Digital averager
CN202794284U (zh) 多功能智能电力仪表
WO2015013942A1 (zh) 电量查询装置及方法
CN106018931B (zh) 电压合格率监测方法和系统
CN103364083B (zh) 基于等精度测频的光信号检测装置和方法
CN214845733U (zh) 一种电压源远程校准系统
CN203084169U (zh) 一种光伏发电蓄电池储能系统监测装置
WO2012075823A1 (zh) 数字电源及与其连接的外部显示装置
CN2543071Y (zh) 一种功率因数、频率组合变送器
CN205317925U (zh) 智能电能表计量误差判别装置
CN203275640U (zh) 便携式电能表校表仪
CN107121659A (zh) 一种三相电能表现场检测装置及检测方法
CN211014450U (zh) 一种配电设备的电气量采集装置
CN2458635Y (zh) 多功能谐波功率电源
CN112578288A (zh) 一种电池充放电记录器系统
CN111337840A (zh) 一种充电过程的容量测量方法
CN216117786U (zh) 一种基于磁隧道电阻的充电桩计量表
CN221883744U (zh) 一种具有太阳能光辐照度检测功能的钳形数字万用表
CN102539947A (zh) 用于充电器测试的主动式电压负增长测试仪
CN201909822U (zh) 用于充电器测试的主动式电压负增长测试仪
CN214755662U (zh) 一种精确测量电池电量的电路
JP3161079U (ja) 簡易電力計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.05.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10852711

Country of ref document: EP

Kind code of ref document: A1