WO2011152760A2 - Устройство для контроля газовой среды - Google Patents

Устройство для контроля газовой среды Download PDF

Info

Publication number
WO2011152760A2
WO2011152760A2 PCT/RU2011/000352 RU2011000352W WO2011152760A2 WO 2011152760 A2 WO2011152760 A2 WO 2011152760A2 RU 2011000352 W RU2011000352 W RU 2011000352W WO 2011152760 A2 WO2011152760 A2 WO 2011152760A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor
gas sensor
sensitive
peltier element
Prior art date
Application number
PCT/RU2011/000352
Other languages
English (en)
French (fr)
Other versions
WO2011152760A3 (ru
Inventor
Александр Львович ЧАПКЕВИЧ
Руслан Владимирович БЕЛЯНКИН
Александр Александрович ЧАПКЕВИЧ
Original Assignee
Chapkevich Alexander Lvovich
Belyankin Ruslan Vladimirovich
Chapkevich Alexander Alexandrovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chapkevich Alexander Lvovich, Belyankin Ruslan Vladimirovich, Chapkevich Alexander Alexandrovich filed Critical Chapkevich Alexander Lvovich
Publication of WO2011152760A2 publication Critical patent/WO2011152760A2/ru
Publication of WO2011152760A3 publication Critical patent/WO2011152760A3/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature

Definitions

  • the utility model relates to gas analytical instrumentation and microelectronics and can be used in the construction of gas analyzers designed to detect and measure the concentration of gases in air.
  • a known gas analyzer containing a power supply, a gas flow inducer, at least one gas sensitive sensor, an information processing and transmission unit with an analog-to-digital converter, and a microcontroller that controls the temperature of the sensor, in which the microcontroller allows you to cyclically change and maintain the temperature of the sensitive layer of the semiconductor sensor by changing the adjustable voltage supplied to its heater and continuously measure the conductivity of the sensitive about the sensor layer with subsequent processing of the obtained data, as a result of which the concentration values of each gas of the analyzed gas mixture are obtained.
  • the gas analyzer further comprises a digital gas concentration indicator, light and sound alarms and a control panel.
  • Monitoring of the gaseous medium using a known gas analyzer is carried out by continuously measuring the conductivity of the sensitive layer of the sensor, followed by processing of the obtained data, and the temperature of the sensor is cyclically changed in the measuring cycle. Forced heating and cooling of the sensor is carried out by applying to the heater a voltage sensor proportional to the required temperature of the sensor, which is set by the value of the variable resistance in the comparative arm of the bridge into which the heater is connected. litter.
  • the temperature is changed smoothly from a high heating level (450 ° C) to low (100 ° C), according to any given law (a rectangular, sinusoidal, sawtooth pulse), the sensitive layer of the sensor is cooled and passes all temperature optima (temperatures optimal sensitivity) of gases.
  • the technique for recognizing gaseous substances in a known device is based on measuring the relaxation conductivity currents of a semiconductor with gaseous substances adsorbed on it during its cooling, since the activation energy of each gas molecule is unique, it is possible to distinguish and identify different molecules. interacting with the semiconductor sensitive layer of the sensor.
  • a disadvantage of the known device is its low sensitivity to reducing gases.
  • a device for controlling a gas medium including a power supply unit, an analyte gas inlet system, a microcontroller that controls the temperature regime, a data processing unit with an analog-to-digital converter, and a vacuum measuring chamber containing at least one gas sensor.
  • the device is equipped with an emitter and a temperature sensor, a charge-sensitive amplifier connected to the gas sensor, while the gas sensor, emitter and temperature sensor are installed on the working surface of the Peltier element, and the gas sensor includes a gas-sensitive layer with contacts formed in in the form of a structure modified by ion implantation of argon on the surface of a high-resistance semiconductor substrate.
  • the technical problem to which the proposed utility model is aimed is to reduce the time, increase the reliability and productivity of the measurements performed by the device by identifying the components of the gas mixture when analyzing the composition of multicomponent gas mixtures by the activation energy of molecules interacting with solid surface by providing the possibility of synchronous measurements.
  • the device for monitoring the gas mixture in the device for monitoring the gas environment including the power supply unit, a system for inflowing the analyzed gas medium, a microcontroller that controls the temperature regime during the measurement, a vacuum measuring chamber containing Peltier, on the working surface of which there is a temperature sensor and a gas sensor, including a gas-sensitive layer with contacts, formed in the form of modified argon ion implantation structures on the surface of a high-resistance semiconductor substrate, a charge-sensitive amplifier connected to a gas sensor, according to the proposed utility model, the Peltier element is made at least two-stage, a gas sensor and a temperature sensor are installed on the working surface of each cascade, the charge-sensitive amplifier is multi-channel, number channels of the charge-sensitive amplifier corresponds to the number of gas sensors, the device is equipped with a control unit and data processing with analog Frova converter and discrete input-output channels and the unit's executive relay for switching operation modes of the device.
  • the technical result is that synchronous measurements of electrofluctuation spectra on gas-sensitive elements located simultaneously in the same analyzed gas atmosphere with a constant or variable gas flow, irradiation of gas-sensitive layers with visible light, exposure to layers of electromagnetic fields (as necessary), which reduces the analysis time due to simultaneous registration of electrofluctuation signals of gas-sensitive elements, to increase the reliability of measurements.
  • the proposed device provides simultaneous adsorption / desorption of atoms and molecules of the analyzed gases by gas-sensitive layers located at different temperatures, which allows us to compare the spectra of electrofluctuation signals obtained in this case using a more advanced technique for identifying the analyzed gases.
  • FIG. 1 presents a diagram of the inventive device
  • FIG. 2 structure of a silicon-based gas sensor.
  • FIG. 3 shows the design of a two-stage Peltier element.
  • FIG. 1 the following items are indicated:
  • ADC analog-to-digital Converter
  • the block of executive relays for switching the operating modes of the device includes: actuator 9, relay vacuum 13.
  • the power supply unit includes power sources Peltier element 1 1, LEDs 12.
  • the proposed device operates as follows.
  • the measuring cycle in the device consists of several stages: cleaning the gas-sensitive layer of the gas sensor, setting the temperature for measurements, filling the sample with simultaneous measurement We have electrical fluctuations on two gas-sensitive sensors located in the same volume at different temperatures.
  • the gas-sensitive layer of the sensor is cleaned by heating the sensor to a temperature of 60 ° C, in vacuum, for some time t H necessary to restore the physicochemical structure of the gas-sensitive layer.
  • the time and temperature of recovery can vary depending on the composition of the medium under study and the parameters of the sensor.
  • the temperature is set for measurements using a temperature controller that controls the voltage supplied to the Peltier element.
  • the sensor located on the second stage is cooled to a temperature T mouth .
  • the sensor located on the first stage to a temperature T mouth.
  • ⁇ - is determined by the physical principles of the two-stage Peltier element, its structural features, and clearly known for each temperature set point T vcm .
  • the most sensitive region of the spectrum that responds to the presence of an adsorbent on the surface of the gas-sensitive layer is the low-frequency part of the spectrum (not higher than 20 Hz).
  • the criterion for completing measurements and starting processing of the obtained results can be either a predetermined number of realizations over which the spectra are averaged, or the standard deviation of the averaged spectra obtained at the current and previous measurement iteration.
  • Recognition of the composition of the gaseous medium is made on the basis of data obtained by joint processing of the spectra of the noise signal measured on two gas-sensitive sensors, averaged over the results of N measurements.
  • the decision on the presence of one or another component in the analyzed medium is made based on a comparison of the result obtained by spectral processing of signals from sensors and data from the library of flicker-noise signs of various gases.
  • the fluctuation current spectra generated at different sensors at different temperatures are simultaneously recorded in parallel. This eliminates the need for a sequence of measurements of such spectra at different temperatures at different instants of time, which makes it possible to reduce the analysis time and increase the reliability of measurements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Полезная модель относится к газоаналитическому приборостроению и микроэлектронике и может быть использована при конструировании газоанализаторов, предназначенных для детектирования и измерения концентрации газов в воздухе. Технической задачей, на решение которой направлена предложенная полезная модель, является сокращение времени, повышение достоверности и производительности измерений, выполняемых устройством, по идентификации компонентов газовой смеси при анализе состава многокомпонентных газовых смесей по энергии активации молекул, взаимодействующих с поверхностью твердого тела за счет обеспечения возможности проведения синхронных измерений. Поставленная техническая задача решается тем, что в устройстве для контроля газовой смеси в устройстве для контроля газовой среды, включающем блок питания, систему напуска анализируемой газовой среды, микроконтроллер, управляющий температурным режимом в процессе измерения, вакуумную измерительную камеру, содержащую, элемент Пельтье, на рабочей поверхности которого установлены датчик температуры и газовый сенсор, включающий газочувствительный слой с контактами, сформированный в виде модифицированной ионной имплантацией аргона структуры на поверхности высокоомной полупроводниковой подложки, зарядочувствительный усилитель, соединенный с газовым сенсором, согласно предложенной полезной модели, элемент Пельтье выполнен, по меньшей мере, двухкаскадным, на рабочей поверхности каждого каскада установлен газовый сенсор и датчик температуры, зарядочувствительный усилитель выполнен многоканальным, количество каналов зарядочувствительного усилителя соответствует количеству газовых сенсоров, устройство снабжено блоком управления и обработки данных с аналого-цифровым преобразователем и дискретными каналами ввода-вывода и блоком исполнительных реле для переключения режимов работы устройства. Предложенное устройство обеспечивает одновременную адсорбцию/десорбцию атомов и молекул анализируемых газов газочувствительными слоями, находящимися при различных температурах, что позволяет сравнивать спектры электрофлуктуационных сигналов, полученных при этом, используя более совершенную методику идентификации анализируемых газов.

Description

УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ГАЗОВОЙ СРЕДЫ Полезная модель относится к газоаналитическому приборостроению и микроэлектронике и может быть использована при конструировании га- зоанализаторов, предназначенных для детектирования и измерения кон- центрации газов в воздухе.
Известен газоанализатор, содержащий блок питания, побудитель рас- хода газа, по крайне мере один газочувствительный датчик, блок обработ- ки и передачи информации с аналого-цифровым преобразователем, и мик- роконтроллер, управляющий температурным режимом датчика, в котором микроконтроллер позволяет циклически изменять и поддерживать темпе- ратуру чувствительного слоя полупроводникового датчика путем измене- ния подаваемого на его нагреватель регулируемого напряжения и осуще- ствлять непрерывное измерение проводимости чувствительного слоя дат- чика с последующей обработкой полученных данных, в результате чего получают значения концентраций каждого газа анализируемой газовой смеси. Газоанализатор дополнительно содержит цифровой индикатор кон- центрации газа, световую и звуковую сигнализации и панель управления. (Патент РФ на полезную модель Ν» 70992, МПК G01N 27/00, опубл. 2008.02.20)
Контроль газовой среды с использованием известного газоанализа- тора осуществляют путем непрерывного измерения проводимости чувст- вительного слоя датчика с последующей обработкой полученных данных, при этом циклически изменяют температуру сенсора в измерительном цикле. Принудительный нагрев и охлаждение сенсора производят путем подачи на нагреватель датчика напряжения, пропорционального требуемой температуре сенсора, которую задают величиной переменного сопротив- ления в сравнительном плече моста, в который включен нагреватель сен- сора. Изменение температуры производят плавно с высокого уровня на- грева (450°С) на низкий (100°С), по любому заданному закону (импульс прямоугольный, синусоидальный, пилообразный) при этом чувствитель- ный слой сенсора охлаждается и проходит все температурные оптимумы (температуры оптимальной чувствительности) газов. Методика распозна- вания газообразных веществ в известном устройстве основана на измере- нии релаксационных токов проводимости полупроводника с адсорбиро- ванными на нем газообразными веществами при его охлаждении, посколь- ку энергия активации каждой газовой молекулы уникальна, то можно раз- личать и идентифицировать разные молекулы, взаимодействующие с по- лупроводниковым чувствительным слоем датчика.
Недостатком известного устройства является низкая чувствитель- ность к восстановительным газам.
Известно устройство для контроля газовой среды, включающее блок питания, систему напуска анализируемой газовой среды, микроконтрол- лер, управляющий температурным режимом, блок обработки данных с аналого-цифровым преобразователем, вакуумную измерительную камеру, содержащую, по меньшей мере, один газовый сенсор. Устройство снабже- но излучателем и датчиком температуры, зарядочувствительным усилите- лем, соединенным с газовым сенсором, при этом газовый сенсор, излуча- тель и датчик температуры установлены на рабочей поверхности элемента Пельтье, а газовый сенсор включает газочувствительный слой с контакта- ми, сформированный в виде модифицированной ионной имплантацией ар- гона структуры на поверхности высокоомной полупроводниковой подлож- ки. (Патент РФ Ле 79182, МПК G01N27/00 , G01N27/12, опубл. 20.12.2008)
Недостатком известного устройства является необходимость прове- дения последовательности измерений при различных температурах при анализе состава многокомпонентных смесей с целью сканирования вели- чин энергий активации адсорбированных на поверхности газочувствитель- ного слоя молекул и сложность алгоритмов, которые требуются для иден- тификации компонент газовых смесей
Технической задачей, на решение которой направлена предложенная полезная модель, является сокращение времени, повышение достоверно- сти и производительности измерений, выполняемых устройством, по иден- тификации компонентов газовой смеси при анализе состава многокомпо- нентных газовых смесей по энергии активации молекул, взаимодействую- щих с поверхностью твердого тела за счет обеспечения возможности про- ведения синхронных измерений.
Поставленная техническая задача решается тем, что в устройстве для контроля газовой смеси в устройстве для контроля газовой среды, вклю- чающем блок питания, систему напуска анализируемой газовой среды, микроконтроллер, управляющий температурным режимом в процессе из- мерения, вакуумную измерительную камеру, содержащую, элемент Пель- тье, на рабочей поверхности которого установлены датчик температуры и газовый сенсор, включающий газочувствительный слой с контактами, сформированный в виде модифицированной ионной имплантацией аргона структуры на поверхности высокоомной полупроводниковой подложки, зарядочувствительный усилитель, соединенный с газовым сенсором, со- гласно предложенной полезной модели, элемент Пельтье выполнен, по меньшей мере, двухкаскадным, на рабочей поверхности каждого каскада установлен газовый сенсор и датчик температуры, зарядочувствительный усилитель выполнен многоканальным, количество каналов зарядочувстви- тельного усилителя соответствует количеству газовых сенсоров, устройст- во снабжено блоком управления и обработки данных с аналого-цифровым преобразователем и дискретными каналами ввода-вывода и блоком испол- нительных реле для переключения режимов работы устройства.
Технический результат, достижение которого обеспечивается реали- зацией всей заявленной совокупности существенных признаков, состоит в том, что обеспечивается синхронное измерения электрофлуктуационных спектров на газочувствительных элементах, находящихся одновременно в одной и той же анализируемой газовой атмосфере при постоянном или пе- ременном газовом потоке, облучении газочувствительных слоев видимым светом, воздействию на слои электромагнитных полей (по мере необходи- мости), что позволяет сократить время анализа за счет одновременной ре- гистрации электрофлуктуационных сигналов газочувствительных элемен- тов, повысить достоверность измерений.
Предложенное устройство обеспечивает одновременную адсорб- цию/десорбцию атомов и молекул анализируемых газов газочувствитель- ными слоями, находящимися при различных температурах, что позволяет сравнивать спектры электрофлуктуационных сигналов, полученных при этом, используя более совершенную методику идентифика- ции анализируемых газов.
Полезная модель иллюстрируется рисунком, где
на фиг. 1 представлено схема заявляемого устройства;
на фиг. 2 структура газового сенсора на основе кремния.
на фиг. 3 представлена конструкция двухкаскадного элемента Пельтье.
На фиг. 1 указаны следующие позиции:
1- газовый сенсор N° 1 ;
2 - газовый сенсор N° 2;
3 - светодиоды;
4 - датчики температуры;
5 - двухкаскадный элемент Пельтье;
6 - зарядочувствительные усилители;
7 - аналого-цифровой преобразователь ( АЦП);
8 - блок управления;
9 - исполнительное устройство;
10 - микроконтроллер, управляющий температурным режимом в процессе измерения;
1 1 - источник питания элемента Пельтье; 12 - источник питания и управления светодиодами;
13 - реле вакуумное;
14 - клапан напуска;
15 - вакуумный насос;
16 - вакуумная измерительная камера;
17 - анализируемый газ
Блок исполнительных реле для переключения режимов работы устройства включает: исполнительное устройство 9, реле вакуумное 13.
Блок питания включает источники питания элемент Пельтье 1 1 , светодио- дами 12.
На фиг. 3 указаны следующие позиции:
18 - корпус;
19 - кольцо установочное;
20 - цоколь монтажный;
21 - элемент Пельтье 2-х каскадный;
22 (1 ) - сенсор кремниевый газовый 1-й каскад охлаждения;
22 (2) - сенсор кремниевый газовый 2-й каскад;
23 (1) - термосопротивление Pt 1 -й каскад;
23 (2) - термосопротивление Pt 2-й каскад;
24 - прокладка изолирующая;
25 - пластина металлическая;
26 - винт из диэлектрика;
27 - вентилирующее отверстие;
28 - выводы электрические;
29 - уплотнение вакуумное витоновое.
Предложенное устройство работает следующим образом.
Измерительный цикл в устройстве состоит из несколько этапов: очистка газочувствительного слоя газового сенсора, установка температу- ры для проведения измерений, напуск пробы с одновременным измерени- ем электрических флуктуаций на двух газочувствительных сенсорах, нахо- дящихся в одном объеме при разных температурах.
Очистка газочувствительного слоя сенсора производится путем на- грева сенсора до температуры 60 °С, в вакууме, в течение некоторого вре- мени tH, необходимого для восстановления физико-химической структуры газочувствительного слоя. Время и температура восстановления могут меняться в зависимости от состава исследуемой среды и параметров сен- сора.
Установка температуры для проведения измерений осуществляется с помощью контроллера температуры, управляющего напряжением, пода- ваемым на элемент Пельтье. При этом сенсор, расположенный на втором каскаде охлаждается до температуры Туст., а сенсор, расположенный на первом каскаде до температуры Туст.- Т, где ΔΤ - определяется физиче- скими принципами работы двухкаскадного элемента Пельтье, его конст- руктивными особенностями, и четко известен для каждого значения тем- пературной уставки Tvcm.
Напуск пробы с одновременным измерением электрических флук- туаций на двух газочувствительных сенсорах, находящихся в одном объе- ме при разных температурах. Измерение электрических флуктуаций газо- вого сенсора проводится непрерывно в течение времени Т с целью получе- ния данных для построения спектра шумового сигнала с частотой дискре- тизации df=l/T. Наиболее чувствительной областью спектра, реагирующей на присутствие адсорбента на поверхности газочувствительного слоя, яв- ляется низкочастотная часть спектра (не выше 20 Гц). Критерием для окончания измерений и начала обработки полученных результатов может служить либо заданное заранее количество реализаций, по которым произ- водится усреднение спектров, либо среднеквадратичное отклонение усред- ненных спектров, полученных на текущей и предыдущей измерительной итерации. Распознавание состава газовой среды производится на основании данных, полученных при совместной обработке спектров шумового сигна- ла измеренного на двух газочувствительных сенсорах, усредненных по ре- зультатам N измерений.
Решение о присутствии того или иного компонента в анализируемой среде принимается на основании сравнения результата полученного при спектральной обработке сигналов с сенсоров и данных библиотеки флик- кер-шумовых признаков различных газов. В процессе измерения одновре- менно параллельно регистрируются флуктуационные токовые спектры, ге- нерируемые на различных датчиках, находящихся при различных темпера- турах. Тем самым исключается необходимость проведения последователь- ности измерений таких спектров при различных температурах в разные моменты времени, что позволяет сократить время анализа, повысить дос- товерность измерений.

Claims

ФОРМУЛА ПОЛЕЗНОЙ МОДЕЛИ 1. Устройство для контроля газовой среды, включающее блок питания, систему напуска анализируемой газовой среды, микроконтроллер, управляющий температурным режимом в процессе измерения, вакуумную измерительную камеру, содержащую, элемент Пельтье, на рабочей поверхности которого установлены датчик температуры и газовый сенсор, включающий газочувствительный слой с контактами, сформированный в виде модифицированной ионной имплантацией аргона структуры на поверхности высокоомной полупроводниковой подложки, зарядочувствительный усилитель, соединенный с газовым сенсором, отличающееся тем, что элемент Пельтье выполнен, по меньшей мере, двухкаскадным, на рабочей поверхности каждого каскада установлен газовый сенсор и датчик температуры, зарядочувствительный усилитель выполнен многоканальным, количество каналов зарядочувствительного усилителя соответствует количеству газовых сенсоров.
2. Устройство по п.1 , отличающееся тем, что снабжено блоком управления и обработки данных с аналого-цифровым преобразователем и дискретными каналами ввода-вывода и блоком исполнительных реле для переключения режимов работы устройства.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2011/000352 2010-06-01 2011-05-23 Устройство для контроля газовой среды WO2011152760A2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2010122027 2010-06-01
RU2010122027 2010-06-01

Publications (2)

Publication Number Publication Date
WO2011152760A2 true WO2011152760A2 (ru) 2011-12-08
WO2011152760A3 WO2011152760A3 (ru) 2012-02-23

Family

ID=45067218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000352 WO2011152760A2 (ru) 2010-06-01 2011-05-23 Устройство для контроля газовой среды

Country Status (1)

Country Link
WO (1) WO2011152760A2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2275562C2 (ru) * 2004-04-30 2006-04-27 Александр Николаевич Лапкин Способ разделения газа и устройство для его осуществления
RU79182U1 (ru) * 2008-07-11 2008-12-20 Александр Львович Чапкевич Газовый сенсор и устройство для контроля газовой среды
RU2383012C1 (ru) * 2008-07-11 2010-02-27 Александр Львович Чапкевич Способ контроля газовой среды и устройство для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2275562C2 (ru) * 2004-04-30 2006-04-27 Александр Николаевич Лапкин Способ разделения газа и устройство для его осуществления
RU79182U1 (ru) * 2008-07-11 2008-12-20 Александр Львович Чапкевич Газовый сенсор и устройство для контроля газовой среды
RU2383012C1 (ru) * 2008-07-11 2010-02-27 Александр Львович Чапкевич Способ контроля газовой среды и устройство для его осуществления

Also Published As

Publication number Publication date
WO2011152760A3 (ru) 2012-02-23

Similar Documents

Publication Publication Date Title
KR101966682B1 (ko) 다층 구조를 갖는 화학저항 유형 가스 센서
Althainz et al. Multisensor microsystem for contaminants in air
US8941059B2 (en) Sampling apparatus
CN1687765A (zh) 便携式气体检测仪
CN110108778B (zh) 一种挥发性有机物的uv-faims定量检测方法
US11566977B2 (en) Molecular detection apparatus
Schweizer-Berberich et al. Pulsed mode of operation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensors
CN106802333A (zh) 一种非甲烷总烃在线检测装置
CN102683151B (zh) 一种选择控制反应离子的化学电离质谱仪
US9753000B2 (en) Sensitivity and selectivity of chemoresistor type gas sensors
RU98818U1 (ru) Устройство для контроля газовой среды
Winter et al. Temporally resolved thermal desorption of volatile organics from nanoporous silica preconcentrator
RU2383012C1 (ru) Способ контроля газовой среды и устройство для его осуществления
WO2011152760A2 (ru) Устройство для контроля газовой среды
Miller et al. A micromachined field asymmetric ion mobility spectrometer (FA-IMS)
Gebicki Application of ionic liquids in electronic nose instruments
CN202049126U (zh) 电阻式二氧化氮气体传感器及利用该传感器制成的仪器
Meng et al. Recognition Algorithm for detection of precursor chemicals by semiconductor gas sensor array under dynamic measurement
Mandayo et al. Carbon monoxide detector fabricated on the basis of a tin oxide novel doping method
Nakamoto et al. Study of robust odor sensing system with auto-sensitivity control
KR102031900B1 (ko) 화학 물질 검출용 반도체형 센서, 검출 방법 및 검출 시스템
Szczurek et al. Gas sensor array with broad applicability
RU79182U1 (ru) Газовый сенсор и устройство для контроля газовой среды
Fan et al. Portable multi-dimensional gas chromatography device for rapid field analysis of chemical compounds
Shirke et al. Femtomolar isothermal desorption using microhotplate sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11790070

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11790070

Country of ref document: EP

Kind code of ref document: A2