WO2011152474A1 - Analysis device and manufacturing method for same - Google Patents

Analysis device and manufacturing method for same Download PDF

Info

Publication number
WO2011152474A1
WO2011152474A1 PCT/JP2011/062638 JP2011062638W WO2011152474A1 WO 2011152474 A1 WO2011152474 A1 WO 2011152474A1 JP 2011062638 W JP2011062638 W JP 2011062638W WO 2011152474 A1 WO2011152474 A1 WO 2011152474A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
recess
liquid
sensor
analysis apparatus
Prior art date
Application number
PCT/JP2011/062638
Other languages
French (fr)
Japanese (ja)
Inventor
憲児 坂本
亮 三宅
裕二 村上
祥太郎 石野
裕二 宮原
Original Assignee
国立大学法人広島大学
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学, 独立行政法人物質・材料研究機構 filed Critical 国立大学法人広島大学
Publication of WO2011152474A1 publication Critical patent/WO2011152474A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Definitions

  • the present invention relates to an analysis apparatus for detecting a reaction when a reagent such as a substrate is brought into contact with a target such as DNA (deoxyribonucleic acid) and analyzing the target, and a method for manufacturing the analysis apparatus.
  • the complete nucleotide sequence analysis of the human genome was completed in 2003. Based on the results, it is possible to examine constitution and genetic diseases by analyzing individual gene sequences. As a result, for example, it is expected to realize an order-made treatment in which a treatment method is individually determined according to the individual constitution based on the analyzed individual genetic information. In order to make the order-made treatment realistic, it is necessary to make it possible to quickly examine individual genetic information in clinical settings such as hospitals.
  • the human genome is composed of about 3 billion base pairs, and the amount of gene information for each person is enormous.
  • a technique that is most widely used in gene sequence analysis there is a separation analysis technique that combines a fluorescent dye and electrophoresis.
  • this technique requires about two weeks to analyze the genetic information of each person. For this reason, it is not a good idea to apply this technique as it is to order-made treatment.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an analysis apparatus capable of analyzing a target quickly and inexpensively and a method of manufacturing the analysis apparatus.
  • an analysis apparatus provides: A recess formed on the semiconductor substrate by etching; A field effect device formed in the recess, a sensor unit that changes electrical characteristics in response to a reaction of a target set in a gate region with a reagent; A pump unit formed in the recess to supply and / or discharge the liquid containing the reagent with respect to the sensor unit; A cover portion that is attached to the semiconductor substrate so as to cover the recess and provided with an inlet and an outlet for the liquid with respect to the recess.
  • the pump unit is A flow path portion for supplying the liquid injected from the injection port to the sensor section, and a flow path section in which a wall surface of the flow path is formed of a dielectric;
  • An electrode part having a pair of electrodes for applying an electric field in a direction from the inlet to the sensor part for generating a flow by an electroosmotic flow method in the liquid in the flow path may be provided.
  • the pump unit A flow path section for discharging the liquid supplied to the sensor section to the discharge port, and a flow path section in which a wall surface of the flow path is formed of a dielectric; An electrode part having a pair of electrodes for applying an electric field in a direction from the sensor part to the discharge port for generating a flow by an electroosmotic flow method in the liquid in the flow path.
  • the flow path having a width satisfying the condition for generating the electroosmotic flow may be formed in a mesh shape.
  • a plurality of main paths extending along the direction of the electric field There may be provided a plurality of branch paths that connect the two adjacent main paths in the middle and extend in the direction of the electric field.
  • the flow path of the flow path section is It is good also as being formed so that it may become narrow as it goes to a bottom face.
  • the recess is It is good also as being formed so that it may become narrow as it goes to a bottom face.
  • the recess is It may be formed by deep etching.
  • the manufacturing method of the analyzer according to the second aspect of the present invention is as follows: An etching step of forming a recess on the semiconductor substrate by etching and forming a flow path for performing at least one of supply and discharge of the liquid containing the reagent in the recess, In the recess, a sensor part forming step for forming a field effect device in which a target is set in the gate region; Forming an electrode connected to the field effect device, and forming an electrode of a pump unit for performing at least one of supply and discharge of the liquid containing the reagent to the sensor unit; and A cover part forming step for forming a cover part formed so as to cover the recess and provided with the liquid inlet and outlet.
  • the pump part for flowing the liquid containing the reagent is formed in the recess of the semiconductor element together with the sensor part, it is not necessary to provide a large pump for flowing the liquid outside.
  • the whole apparatus can be reduced in size and the operativity can be improved.
  • the target can be analyzed quickly and inexpensively.
  • the apparatus can be integrated, the target can be analyzed quickly and inexpensively.
  • FIG. 1 It is a perspective view which shows the structure of the analyzer which concerns on embodiment of this invention. It is sectional drawing which shows the structure of the analyzer of FIG. It is sectional drawing of the recessed part of the analyzer of FIG. It is sectional drawing of the sensor part which comprises the analyzer of FIG. It is a top view of the pump part which comprises the analyzer of FIG. It is an enlarged view of the flow-path part of FIG. It is a figure for demonstrating the principle of an electroosmotic flow. It is a figure (the 1) for demonstrating extension reaction. It is FIG. (2) for demonstrating extension reaction. It is a flowchart of the manufacturing process of the analyzer of FIG. It is a perspective view of the semiconductor element after deep etching.
  • the analysis device is a device for analyzing the base sequence of DNA.
  • the configuration of the analysis apparatus 100 according to the present embodiment will be described with reference to the perspective view of FIG. 1 and the cross-sectional view of FIG. As shown in FIGS. 1 and 2, the analysis apparatus 100 is formed on a semiconductor substrate 1 made of silicon or the like.
  • a recess 2 is formed in the semiconductor substrate 1 by etching, that is, deep RIE (Reactive Ion Etching).
  • the depth of the recess 2 is very deep, for example, about 10 microns.
  • the recess 2 has a flat bottom surface.
  • the sensor unit 5 and the pump units 6A and 6B are formed on the bottom surface.
  • the recess 2 is formed so as to become narrower toward the bottom surface. That is, the cross-sectional shape of the recess 2 is tapered. Thereby, a resist can be reliably apply
  • the inclination angle of the side surface of the recess 2 may be about 60 degrees, for example, but is not limited thereto.
  • a flat cover 3 is installed on the semiconductor substrate 1.
  • the cover 3 is bonded to the semiconductor substrate 1 so as to cover the recess 2.
  • the cover 3 is provided with an inlet 4A and an outlet 4B.
  • a liquid containing reagents such as DNA polymerase and substrates (dATP, dGTP, dCTP, dTTP) is injected into the recess 2 from the inlet 4A and discharged from the outlet 4B.
  • a sensor unit 5 In the recess 2, a sensor unit 5, pump units 6A and 6B, a liquid storage unit 7A, and a waste liquid unit 7B are provided.
  • a liquid reservoir 7A, a pump part 6A, a sensor part 5, a pump part 6B, and a waste liquid part 7B are arranged in this order from the inlet 4A to the outlet 4B.
  • the sensor unit 5 is a field effect device formed in the recess 2.
  • Sample DNA as an analysis target (target) is set in the gate region of the field effect device.
  • the sample DNA may react with a substrate or the like contained in the liquid, and the electric characteristics of the field effect device may change.
  • the sensor unit 5 detects a change in electrical characteristics of the field effect device.
  • a field effect transistor as shown in FIG. 4 can be adopted.
  • a p-well 20 is formed on an n-type semiconductor substrate 1, and a source 21 and a drain 22 as n-type regions are formed in the p-well 20.
  • a lower insulating film 23 is formed on the p-well 20, and an upper insulating film 24 is formed thereon.
  • a sample DNA 30 to be analyzed is set on the upper insulating film 24.
  • a silicon dioxide (SiO 2 ) film is used as the lower insulating film 23, and a Si 3 N 4 film is used as the upper insulating film 24, for example.
  • Sample DNA as a target is set in the upper insulating film 24.
  • the pump unit 6A includes a flow path unit 8A and electrode units 9A and 10A.
  • An electrode portion 9A, a flow path portion 8A, and a pump portion 10A are sequentially arranged from the liquid storage portion 7A toward the sensor portion 5.
  • FIG. 5 shows a top view of the pump section 6A.
  • the flow path portion 8 ⁇ / b> A has a flow path for supplying a liquid to the sensor unit 5.
  • the flow path is formed in a mesh shape.
  • the wall surface of the flow path is formed of a dielectric (for example, glass or the like).
  • the flow path portion 8A is provided with a plurality of main paths 31 as flow paths.
  • the main paths 31 are parallel to each other and communicate between the liquid reservoir 7A and the sensor unit 5.
  • branch paths 32 are provided in the flow path portion 8A.
  • the branch path 32 communicates between two adjacent main paths 31 on the way, and extends across the direction of the electric field.
  • the flow path portions 8A and 8B are also formed so that the width becomes narrower toward the bottom surface (the cross section has a tapered shape) so that the resist is applied, similarly to the concave portion 2.
  • the pump unit 6A sends a liquid containing a reagent from the liquid storage unit 7A to the sensor unit 5 by an electroosmotic flow method.
  • the electroosmotic flow technology is a technology capable of controlling the delivery of a small amount of liquid by an electric field.
  • FIG. 7 schematically shows a part of the main path 31.
  • the wall surface of the main path 31 is formed of a dielectric. When the dielectric contacts the liquid, the dielectric is negatively charged and the liquid is positively charged, as shown in FIG. Thereby, an electric double layer is formed.
  • the pump unit 6A supplies the liquid injected from the injection port 4A to the sensor unit 5.
  • the pump unit 6B includes a flow channel unit 8B and electrode units 9B and 10B.
  • the electrode part 9B, the flow path part 8B, and the electrode part 10B are arranged in order from the sensor part 5 toward the discharge port 4B.
  • the channel portion 8B is also provided with a mesh-like channel similar to the channel portion 8A.
  • the flow path portion 8B has a flow path that communicates between the sensor portion 5 and the waste liquid portion 7B.
  • the wall surface of the flow path of the flow path portion 8B is formed of a dielectric.
  • the electrode portion 9B is a positive electrode
  • the electrode portion 10B is a negative electrode
  • a direct current voltage is applied
  • the electric field in the direction from the sensor portion 5 toward the waste liquid portion 7B is applied to the liquid in the flow path.
  • An electroosmotic flow is generated in the path in the flow path portion 8A, and the liquid flows from the sensor portion 5 to the waste liquid portion 7B.
  • the pump parts 6A and 6B are formed in the recess 2 in order to perform at least one of supply and discharge of the liquid containing the reagent to the sensor part 5.
  • a reverse bias DC voltage may be applied by the pair of electrode portions 9A and 10A and the pair of electrode portions 9B and 10B.
  • the liquid storage part 7A is formed in the recess 2 to temporarily store the liquid injected from the injection port 4A.
  • the pump unit 6 ⁇ / b> A supplies the liquid stored in the liquid storage unit 7 ⁇ / b> A to the sensor unit 5.
  • the liquid sent to the sensor unit 5 is sent as waste liquid to the waste liquid part 7B by the pump 6B.
  • the waste liquid part 7B is formed in the recess 2 in order to temporarily store the liquid discharged from the discharge port 4B.
  • the waste liquid stored in the waste liquid part 7B is discharged from the discharge port 4B.
  • the nucleic acid probe 11 is fixed to the gate of the sensor unit 5, for example, as shown in FIG.
  • a single-stranded target gene 30 is hybridized to the nucleic acid probe 11.
  • a reagent containing a tack DNA polymerase and a substrate is passed through the sensor unit 5, an extension reaction occurs if the substrate is complementary to the base sequence of the target gene 30.
  • the negative charge of DNA in the aqueous solution increases, and the electric characteristics (threshold voltage) of the field effect transistor of the sensor unit 5 change. Therefore, if this change in threshold voltage is detected, the base sequence of the target gene 30 can be analyzed.
  • FIG. 10 shows a flowchart of the manufacturing process of the analysis apparatus 100.
  • CMOS complementary metal oxide semiconductor
  • the recess 2 is formed on the semiconductor substrate 1 by performing deep etching on the semiconductor substrate 1 using the deep etcher. Further, the flow path portions 8A and 8B for performing at least one of supply and discharge of the liquid containing the reagent are formed in the recess 2 (step S1).
  • the regions where the liquid reservoirs 7A and 7B and the sensor unit 5 are formed are broadly formed as planar regions, and the flow paths shown in FIGS. 4 to 6 are formed in the flow paths 8A and 8B.
  • a liquid reservoir 7A and a waste liquid part 7B are also formed as shown in FIG.
  • the deep etching is performed in a state where the resist remains in a portion other than the portion where the recess 2 is formed through resist coating, pre-baking, exposure, PEB, development, and the like.
  • the side surfaces of the concave portion 2 and the flow passage portions 8A and 8B are formed in a tapered shape. Is done. Since the side surfaces are tapered, only SF 6 gas is used in the etching process. Further, CF 4 gas as a deposition gas is not used in order to prevent bonding between carbon and silicon, and oxygen gas is used as an atmospheric gas during etching in order to make the etching rate appropriate. Further, the concave portion 2 is formed in a tapered shape by setting the substrate bias low and weakening the straight advance force of the etching ions.
  • the sensor unit 5 is formed in the sensing region using a CMOS process such as resist coating, pre-baking, exposure, post-baking, development, etching, and the like (step S2).
  • a CMOS process such as resist coating, pre-baking, exposure, post-baking, development, etching, and the like
  • a MOS transistor see FIG. 4
  • the pump units 6A and 6B are also oxidized simultaneously. Thereby, the oxidation process which oxidizes the pump parts 6A and 6B can be omitted.
  • Electrode part formation Following the sensor part formation (step S2), the electrodes of the sensor part 5 are formed by metal deposition or the like, and the electrode parts 9A, 9B, 10A, and 10B are formed as shown in FIG. (Step S3).
  • gold wiring having high chemical resistance is used for the electrode portions 9A, 9B, 10A, and 10B.
  • the cover part 3 is formed (step S4).
  • the cover 3 is formed by bonding using an adhesive or the like. However, before bonding, it is necessary to form holes serving as the inlet 4A and the outlet 4B in the cover 3.
  • the cover portion 3 for example, glass, silicon, or PDMS (polydimethylsiloxane) can be used.
  • the analysis device 100 is manufactured through the above four steps.
  • this analyzing apparatus 100 a total of nine transistors in three vertical rows and three horizontal rows are formed in the sensor unit 5 and integrated.
  • the size of each transistor is, for example, 5 mm ⁇ 5 mm.
  • eight transistors are transistors for detecting the reaction of the target gene 30, and the remaining one is the concentration sensor 40.
  • the substrates dATP, dGTP, dCTP, and dTTP are set to have different concentrations, and the concentration sensor 40 detects the substrate that currently flows through the sensor unit 5 based on the difference in concentration.
  • the outputs of the eight transistors and the output of the concentration sensor 40 are input to the analysis unit 50.
  • the analysis unit 50 detects the timing at which the threshold voltage changes based on the output of the sensor unit 5. Further, the analysis unit 50 detects the substrate flowing when the threshold voltage changes based on the output of the concentration sensor 40. The analysis unit 50 analyzes the base sequence based on the detected substrate.
  • the analysis apparatus 100 includes an inlet 4AA and a liquid reservoir 7AA for the substrate dATP, an inlet 4AG and a liquid reservoir 7AG for the substrate dGTP, an inlet 4AC and a liquid reservoir 7AC for the substrate dCTP, and a substrate dTTP.
  • An inlet 4AT and a liquid reservoir 7AT are provided. Further, a cleaning liquid inlet 4AS and a liquid reservoir 7AS are provided.
  • five pump parts 6AA, 6AG, 6AC, 6AT, 6AS for supplying the substrates dATP, dGTP, dCTP, dTTP, and the cleaning liquid to the sensor part 5 from the liquid storage parts 7AA, 7AG, 7AC, 7AT, 7AS, respectively, are formed. ing.
  • the waste liquid part 7B is not provided, and only two pump parts 6B1 and 6B2 on the waste liquid side are provided.
  • the pump unit 6B1 communicates with the discharge port 4B1, and the pump unit 6B2 communicates with the discharge port 4B2.
  • the analysis apparatus 100 is provided with a power supply 41 for supplying a DC voltage to the pump units 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, and 6B2.
  • FIG. 17 shows a control system of the pump units 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, and 6B2 in the analysis apparatus 100.
  • the control part 51 is provided between the power supplies 41 with the pump parts 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, and 6B2.
  • the control unit 51 controls the DC voltage applied from the power source 41 to the pump units 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, and 6B2.
  • the control unit 51 applies a DC voltage to the pump units 6AA and 6B1. Thereby, the substrate dATP flows to the sensor unit 5.
  • the concentration detected by the concentration sensor 40 is a concentration indicating that the substrate dATP is flowing in the sensor unit 5.
  • the threshold voltage fluctuates based on the output of the sensor unit 5 and an extension reaction is observed, the base of the target gene 30 bound this time is thymine.
  • control unit 51 stops applying the DC voltage to the pump units 6AA and 6B1, and applies the DC voltage to the pump units 6AS and 6B2. As a result, the cleaning liquid flows into the sensor unit 5 and the substrate dATP is washed away.
  • the control unit 51 stops applying the DC voltage to the pump units 6AS and 6B2, and applies the DC voltage to the pump units 6AG and 6B1.
  • the substrate dGTP flows into the sensor unit 5.
  • the concentration detected by the concentration sensor 40 is a concentration indicating that the substrate dGTP is flowing in the sensor unit 5.
  • the threshold voltage fluctuates based on the output of the sensor unit 5 and an extension reaction is observed, the base of the target gene 30 bound this time is cytosine.
  • control unit 51 stops applying the DC voltage to the pump units 6AG and 6B1, and applies the DC voltage to the pump units 6AS and 6B2. As a result, the cleaning liquid flows into the sensor unit 5 and the substrate dGTP is washed away.
  • the control unit 51 stops applying the DC voltage to the pump units 6AS and 6B2, and applies the DC voltage to the pump units 6AC and 6B1.
  • the substrate dCTP flows to the sensor unit 5.
  • the concentration detected by the concentration sensor 40 is a concentration indicating that the substrate dCTP is flowing in the sensor unit 5.
  • the threshold voltage fluctuates based on the output of the sensor unit 5 and an extension reaction is observed, the base of the target gene 30 bound this time is guanine.
  • control unit 51 stops applying the DC voltage to the pump units 6AC and 6B1, and applies the DC voltage to the pump units 6AS and 6B2. As a result, the cleaning liquid flows into the sensor unit 5 and the substrate dCTP is washed away.
  • the control unit 51 stops applying the DC voltage to the pump units 6AS and 6B2, and applies the DC voltage to the pump units 6AT and 6B1.
  • the substrate dTTP flows to the sensor unit 5.
  • the concentration detected by the concentration sensor 40 is a concentration indicating that the substrate dTTP is flowing in the sensor unit 5.
  • the threshold voltage fluctuates based on the output of the sensor unit 5 and an elongation reaction is observed, the base of the target gene 30 bound this time is adenine.
  • control unit 51 stops applying the DC voltage to the pump units 6AT and 6B1, and applies the DC voltage to the pump units 6AS and 6B2. As a result, the cleaning liquid flows into the sensor unit 5 and the substrate dTTP is washed away.
  • the analysis unit 50 repeats such an operation, so that the target gene 30 is based on the variation in the threshold voltage detected by the sensor unit 5 and the type of base obtained from the concentration detected by the concentration sensor.
  • the base sequence of is analyzed.
  • the analysis apparatus 100 shown in FIG. 15 can be further integrated as shown in FIG. As a result, a large amount of target genes can be analyzed simultaneously, so that the base sequence analysis can be significantly speeded up.
  • the pump parts 6A and 6B for flowing the liquid containing the reagent are formed in the recess 2 of the semiconductor element 1 together with the sensor part 5, so that the liquid flows.
  • the whole apparatus can be reduced in size and the operativity can be improved.
  • the target gene 30 can be analyzed quickly and inexpensively.
  • the apparatus can be integrated, a large amount of target genes 30 can be analyzed quickly and inexpensively.
  • sequence analysis of the target gene 30 can be quickly performed at the clinical site.
  • specific gene sequences such as SNPs (Single Nucleotide Polymorphism) can be rapidly analyzed in clinical settings. The ability to perform such analyzes in the clinical setting will greatly reduce the risk of medications and treatment methods and will allow patients to receive non-stop medical services.
  • the liquid is supplied and discharged by the electroosmotic flow method, but the present invention is not limited to this.
  • the liquid may be supplied or discharged by an electrophoresis method. Further, the liquid may be supplied or discharged by a so-called inkjet method. Further, a liquid may be supplied or discharged using a dynamic actuator.
  • the flow paths in the flow path portions 8A and 8B are flow paths having a width that satisfies the conditions for generating the electroosmotic flow, and are formed in a mesh shape. In this way, since the surface area of the flow path where the electric double layer is generated can be increased, the efficiency of the electroosmotic flow method can be increased. Furthermore, bubbles generated in the flow path can be easily removed.
  • the flow paths 8A and 8B communicate with each other between the plurality of main paths 31 extending along the direction of the electric field and the adjacent main paths 31 as the flow paths.
  • a plurality of branch paths 32 extending in the direction are provided. In this way, the surface area of the flow path where the electric double layer is actually generated can be increased.
  • the recessed part 2 is formed so that it may become narrow as it goes to a bottom face.
  • the resist can be applied to the bottom surface of the recess 2, the sensor unit 5 and the like can be formed by the same method as in the semiconductor process.
  • the sensor unit 5 and the pump units 6A and 6B are manufactured by deep etching in the recess 2 of the semiconductor substrate 1 by a process having high affinity with the CMOS process, and have a so-called monolithic structure. Therefore, mass production is easy, and the analysis apparatus 100 can be further integrated and manufactured. Therefore, an extremely small and inexpensive giga sequencer can be manufactured. Thereby, for example, the analysis of the human genome, which took several days, can be analyzed in a few minutes.
  • the depth of the recess 2 is about 10 microns, but the present invention is not limited to this.
  • the depth of the recess 2 may be shallower or deeper than 10 microns.
  • the flow channel having a mesh structure is formed by a trapezoidal column.
  • the column shape may be a cylinder, or may be another polygonal column.
  • the recesses 2 and the like may be formed using wet etching or other dry etching.
  • the base sequence of DNA is analyzed, but the present invention can also be applied to analysis of other targets.
  • the present invention can also be applied to an analyzer that detects and analyzes antibody-antigen reaction.
  • the present invention is suitable for target analysis based on a reaction when a liquid is contacted, such as when a reagent such as a substrate is contacted with a target such as DNA (deoxyribonucleic acid).
  • SYMBOLS 1 Semiconductor substrate 2 Recessed part 3 Cover part 4A, 4AA, 4AG, 4AC, 4AT, 4AS Inlet 4B, 4B1, 4B2 Outlet 5 Sensor part 6A, 6B, 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, 6B2 Pump part 7A, 7AA, 7AG, 7AC, 7AT, 7AS Liquid storage part 7B Waste liquid part 8A, 8B Channel part 9A, 9B Electrode part 10A, 10B Electrode part 11 Nucleic acid probe 20 P well 21 Source 22 Drain 23 Lower layer insulation film 24 Upper layer insulation Membrane 30 Target Gene 31 Main Path 32 Branch Path 40 Concentration Sensor 41 Power Supply 50 Analysis Unit 51 Control Unit 100 Analysis Device

Abstract

In order to analyse a target quickly and at low cost: a recess section (2) is formed on a semi conductor substrate (1) by means of deep etching; a sensor section (5), which is an electric field-effect device formed in the recess section (2), has electrical properties which change according to the reactions of a target reagent which has been set in a gate region; pump units (6A, 6B) are formed inside the recess section (2) in order to implement the supply and/or discharge of a fluid which contains the reagent to the sensor section (5); and a cover section (3) is bonded to the semiconductor substrate (1) so as to cover the recess section (2), and is provided with an injection opening and a discharge opening for the fluid relative to the recess section (2).

Description

解析装置及び解析装置の製造方法Analysis device and method of manufacturing analysis device
 本発明は、例えば、DNA(デオキシリボ核酸)等のターゲットに基質等の試薬を接触させたときの反応を検出して、ターゲットを解析する解析装置及びその解析装置の製造方法に関する。 The present invention relates to an analysis apparatus for detecting a reaction when a reagent such as a substrate is brought into contact with a target such as DNA (deoxyribonucleic acid) and analyzing the target, and a method for manufacturing the analysis apparatus.
 ヒトゲノムの全塩基配列解析が2003年に終了した。その成果を基盤として、個人の遺伝子配列を解析することにより、体質の検査や遺伝病を調べることが可能となっている。これにより、例えば、解析された個人の遺伝子情報に基づいて、個人の体質に応じて個別に治療方法を決定していくオーダメイド治療の実現が期待されている。オーダメイド治療を現実的なものとするためには、病院等の臨床現場で個人の遺伝子情報を迅速に調べられるようにする必要がある。 The complete nucleotide sequence analysis of the human genome was completed in 2003. Based on the results, it is possible to examine constitution and genetic diseases by analyzing individual gene sequences. As a result, for example, it is expected to realize an order-made treatment in which a treatment method is individually determined according to the individual constitution based on the analyzed individual genetic information. In order to make the order-made treatment realistic, it is necessary to make it possible to quickly examine individual genetic information in clinical settings such as hospitals.
 ヒトゲノムは、約30億個の塩基対から構成されており、人ひとりの遺伝子情報の情報量も膨大である。遺伝子配列解析でもっとも広範に用いられている技術として、蛍光色素と電気泳動法とを組み合わせた分離分析技術がある。しかし、この技術では人ひとりの遺伝子情報を解析するのに約2週間程度を要する。このため、この技術を、そのままオーダメイド治療に適用するのは得策ではない。 The human genome is composed of about 3 billion base pairs, and the amount of gene information for each person is enormous. As a technique that is most widely used in gene sequence analysis, there is a separation analysis technique that combines a fluorescent dye and electrophoresis. However, this technique requires about two weeks to analyze the genetic information of each person. For this reason, it is not a good idea to apply this technique as it is to order-made treatment.
 また、短時間に遺伝子配列を解析可能な解析装置(ギガシーケンサ)も存在する。しかし、このような解析装置は、非常に大型であって利便性に欠けるうえ、数千万円から1億円と非常に高価である。このため、このような解析装置の導入には多大な投資と労力を必要とする。 There is also an analyzer (Giga Sequencer) that can analyze gene sequences in a short time. However, such an analysis apparatus is very large and lacks convenience, and is very expensive, ranging from tens of millions of yen to 100 million yen. For this reason, the introduction of such an analysis apparatus requires a great deal of investment and labor.
 このような背景から、迅速かつ安価に遺伝子情報を解析することができる解析ツールの登場が望まれている。例えば、遺伝子情報の新たな解析ツールとして、トランジスタを用いたDNAチップ(遺伝子トランジスタ)が提案されている(例えば、特許文献1参照)。この遺伝子トランジスタは、ゲート領域に固定化した一本鎖遺伝子の相補的反応を電気化学的に検出する簡便な遺伝子解析センサとして注目されている。 From such a background, the emergence of an analysis tool that can analyze gene information quickly and inexpensively is desired. For example, as a new analysis tool for gene information, a DNA chip (gene transistor) using a transistor has been proposed (see, for example, Patent Document 1). This gene transistor has attracted attention as a simple gene analysis sensor that electrochemically detects a complementary reaction of a single-stranded gene immobilized on a gate region.
国際公開第2006/022370号International Publication No. 2006/022370
 しかしながら、遺伝子トランジスタでは、試薬(塩基)を含む溶液や洗浄液を交互に流すための大型ポンプを外部に設ける必要がある。このことが、遺伝子トランジスタを用いた解析装置全体の小型化や操作性の向上、引いては解析の高速化を阻んでいる。 However, in the gene transistor, it is necessary to provide a large pump for flowing a solution containing a reagent (base) and a washing solution alternately. This hinders miniaturization and operability improvement of the entire analysis apparatus using gene transistors, and thus speeding up the analysis.
 本発明は、上記実情に鑑みてなされたものであり、迅速かつ安価に、ターゲットを解析することができる解析装置及びその解析装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an analysis apparatus capable of analyzing a target quickly and inexpensively and a method of manufacturing the analysis apparatus.
 上記目的を達成するため、本発明の第1の観点に係る解析装置は、
 エッチングにより半導体基板上に形成された凹部と、
 前記凹部内に形成された電界効果デバイスであって、ゲート領域にセットされたターゲットの試薬に対する反応に応じて電気的特性を変化させるセンサ部と、
 前記センサ部に対する前記試薬を含む液体の供給及び排出の少なくとも一方を行うために前記凹部内に形成されたポンプ部と、
 前記凹部を覆うように前記半導体基板に張り合わされ、前記凹部に対する前記液体の注入口と排出口とが設けられたカバー部と、を備える。
In order to achieve the above object, an analysis apparatus according to the first aspect of the present invention provides:
A recess formed on the semiconductor substrate by etching;
A field effect device formed in the recess, a sensor unit that changes electrical characteristics in response to a reaction of a target set in a gate region with a reagent;
A pump unit formed in the recess to supply and / or discharge the liquid containing the reagent with respect to the sensor unit;
A cover portion that is attached to the semiconductor substrate so as to cover the recess and provided with an inlet and an outlet for the liquid with respect to the recess.
 この場合、前記ポンプ部は、
 前記注入口から注入された前記液体を前記センサ部に供給するための流路を有し、前記流路の壁面が誘電体で形成された流路部と、
 前記流路内の前記液体に、電気浸透流方式による流れを発生させるための前記注入口から前記センサ部へ向かう方向の電界を与える一対の電極を有する電極部と、を備える、こととしてもよい。
In this case, the pump unit is
A flow path portion for supplying the liquid injected from the injection port to the sensor section, and a flow path section in which a wall surface of the flow path is formed of a dielectric;
An electrode part having a pair of electrodes for applying an electric field in a direction from the inlet to the sensor part for generating a flow by an electroosmotic flow method in the liquid in the flow path may be provided. .
 また、前記ポンプ部は、
 前記センサ部に供給された前記液体を前記排出口に排出するための流路を有し、前記流路の壁面が誘電体で形成された流路部と、
 前記流路内の前記液体に、電気浸透流方式による流れを発生させるための前記センサ部から前記排出口へ向かう方向の電界を与える一対の電極を有する電極部と、を備える、こととしてもよい。
In addition, the pump unit
A flow path section for discharging the liquid supplied to the sensor section to the discharge port, and a flow path section in which a wall surface of the flow path is formed of a dielectric;
An electrode part having a pair of electrodes for applying an electric field in a direction from the sensor part to the discharge port for generating a flow by an electroosmotic flow method in the liquid in the flow path. .
 また、前記流路部では、
 電気浸透流の発生条件を満たす幅の前記流路が、網の目状に形成されている、こととしてもよい。
Further, in the flow path section,
The flow path having a width satisfying the condition for generating the electroosmotic flow may be formed in a mesh shape.
 この場合、前記流路部では、
 前記流路として、
 前記電界の方向に沿って延びる複数の主経路と、
 隣接する2つの前記主経路を途中で連通し、前記電界の方向に交差して延びる複数の分岐経路と、が設けられている、こととしてもよい。
In this case, in the channel portion,
As the flow path,
A plurality of main paths extending along the direction of the electric field;
There may be provided a plurality of branch paths that connect the two adjacent main paths in the middle and extend in the direction of the electric field.
 また、前記流路部の流路は、
 底面に向かうにつれて狭くなるように形成されている、こととしてもよい。
The flow path of the flow path section is
It is good also as being formed so that it may become narrow as it goes to a bottom face.
 前記凹部は、
 底面に向かうにつれて狭くなるように形成されている、こととしてもよい。
The recess is
It is good also as being formed so that it may become narrow as it goes to a bottom face.
 また、前記凹部は、
 深堀エッチングにより形成されている、こととしてもよい。
In addition, the recess is
It may be formed by deep etching.
 また、本発明の第2の観点に係る解析装置の製造方法は、
 エッチングにより、半導体基板上に凹部を形成するとともに、前記凹部内に、試薬を含む液体の供給及び排出の少なくとも一方を行うための流路を形成するエッチング工程と、
 前記凹部内に、ゲート領域にターゲットがセットされる電界効果デバイスを形成するセンサ部形成工程と、
 前記電界効果デバイスに接続される電極を形成するとともに、センサ部への前記試薬を含む液体の供給及び排出の少なくとも一方を行うためのポンプ部の電極を形成する電極形成工程と、
 前記凹部を覆うように形成され、前記液体の注入口と排出口とが設けられたカバー部を形成するカバー部形成工程と、を含む。
Moreover, the manufacturing method of the analyzer according to the second aspect of the present invention is as follows:
An etching step of forming a recess on the semiconductor substrate by etching and forming a flow path for performing at least one of supply and discharge of the liquid containing the reagent in the recess,
In the recess, a sensor part forming step for forming a field effect device in which a target is set in the gate region;
Forming an electrode connected to the field effect device, and forming an electrode of a pump unit for performing at least one of supply and discharge of the liquid containing the reagent to the sensor unit; and
A cover part forming step for forming a cover part formed so as to cover the recess and provided with the liquid inlet and outlet.
 本発明によれば、試薬を含む液体を流すためのポンプ部がセンサ部とともに半導体素子の凹部内に形成されているので、液体を流すための大型ポンプを外部に設ける必要がない。これにより、装置全体を小型化させることができ、その操作性を向上させることができる。この結果、迅速かつ安価に、ターゲットを解析することができる。さらに、装置の集積化が可能となるので、迅速かつ安価に、ターゲットを解析することができる。 According to the present invention, since the pump part for flowing the liquid containing the reagent is formed in the recess of the semiconductor element together with the sensor part, it is not necessary to provide a large pump for flowing the liquid outside. Thereby, the whole apparatus can be reduced in size and the operativity can be improved. As a result, the target can be analyzed quickly and inexpensively. Furthermore, since the apparatus can be integrated, the target can be analyzed quickly and inexpensively.
本発明の実施形態に係る解析装置の構成を示す斜視図である。It is a perspective view which shows the structure of the analyzer which concerns on embodiment of this invention. 図1の解析装置の構成を示す断面図である。It is sectional drawing which shows the structure of the analyzer of FIG. 図1の解析装置の凹部の断面図である。It is sectional drawing of the recessed part of the analyzer of FIG. 図1の解析装置を構成するセンサ部の断面図である。It is sectional drawing of the sensor part which comprises the analyzer of FIG. 図1の解析装置を構成するポンプ部の上面図である。It is a top view of the pump part which comprises the analyzer of FIG. 図5の流路部の拡大図である。It is an enlarged view of the flow-path part of FIG. 電気浸透流の原理を説明するための図である。It is a figure for demonstrating the principle of an electroosmotic flow. 伸長反応を説明するための図(その1)である。It is a figure (the 1) for demonstrating extension reaction. 伸長反応を説明するための図(その2)である。It is FIG. (2) for demonstrating extension reaction. 図1の解析装置の製造工程のフローチャートである。It is a flowchart of the manufacturing process of the analyzer of FIG. 深堀エッチング後の半導体素子の斜視図である。It is a perspective view of the semiconductor element after deep etching. センサ部が形成された様子を示す半導体素子の斜視図である。It is a perspective view of the semiconductor element which shows a mode that the sensor part was formed. 電極部が形成された様子を示す半導体素子の斜視図である。It is a perspective view of the semiconductor element which shows a mode that the electrode part was formed. カバー部が形成された様子を示す半導体素子の斜視図である。It is a perspective view of the semiconductor element which shows a mode that the cover part was formed. 解析装置のより詳細な構成を示す斜視図である。It is a perspective view which shows the more detailed structure of an analyzer. 解析装置のシステム構成図(その1)である。It is a system configuration figure (the 1) of an analysis device. 解析装置のシステム構成図(その2)である。It is a system block diagram (the 2) of an analyzer. 集積化された解析装置の斜視図である。It is a perspective view of the integrated analyzer.
 この発明の実施の形態について、図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
 本実施形態に係る解析装置は、DNAの塩基配列を解析する装置である。 The analysis device according to this embodiment is a device for analyzing the base sequence of DNA.
 まず、図1の斜視図及び図2の断面図を参照して、本実施形態に係る解析装置100の構成について説明する。図1及び図2に示すように、解析装置100は、シリコン等から成る半導体基板1上に形成されている。 First, the configuration of the analysis apparatus 100 according to the present embodiment will be described with reference to the perspective view of FIG. 1 and the cross-sectional view of FIG. As shown in FIGS. 1 and 2, the analysis apparatus 100 is formed on a semiconductor substrate 1 made of silicon or the like.
 半導体基板1には、エッチング、すなわち深堀RIE(Reactive Ion Etching)により凹部2が形成されている。凹部2の深さは、本実施形態では、例えば、10ミクロン程度と非常に深い。 A recess 2 is formed in the semiconductor substrate 1 by etching, that is, deep RIE (Reactive Ion Etching). In the present embodiment, the depth of the recess 2 is very deep, for example, about 10 microns.
 図3に示すように、凹部2には、フラットな底面が設けられている。この底面に、センサ部5や、ポンプ部6A,6Bが形成される。 As shown in FIG. 3, the recess 2 has a flat bottom surface. The sensor unit 5 and the pump units 6A and 6B are formed on the bottom surface.
 また、実際には、凹部2は、底面に向かうにつれて、狭くなるように形成されている。すなわち、凹部2の断面形状はテーパ状である。これにより、後述する製造工程において、凹部2の底面にレジストを確実に塗布することができる。凹部2の側面の傾斜角度は例えば約60度とすればよいが、これには限定されない。 Actually, the recess 2 is formed so as to become narrower toward the bottom surface. That is, the cross-sectional shape of the recess 2 is tapered. Thereby, a resist can be reliably apply | coated to the bottom face of the recessed part 2 in the manufacturing process mentioned later. The inclination angle of the side surface of the recess 2 may be about 60 degrees, for example, but is not limited thereto.
 半導体基板1の上には、平板状のカバー部3が設置されている。カバー部3は、凹部2を覆うように、半導体基板1に張り合わされている。 A flat cover 3 is installed on the semiconductor substrate 1. The cover 3 is bonded to the semiconductor substrate 1 so as to cover the recess 2.
 カバー部3には、注入口4A及び排出口4Bが設けられている。DNAポリメラーゼや基質(dATP、dGTP、dCTP、dTTP)等の試薬を含む液体は、注入口4Aから凹部2内に注入され、排出口4Bから排出される。 The cover 3 is provided with an inlet 4A and an outlet 4B. A liquid containing reagents such as DNA polymerase and substrates (dATP, dGTP, dCTP, dTTP) is injected into the recess 2 from the inlet 4A and discharged from the outlet 4B.
 凹部2内には、センサ部5と、ポンプ部6A、6B、液貯め部7A、廃液部7Bが設けられている。注入口4Aから排出口4Bに向かって、順に、液貯め部7A、ポンプ部6A、センサ部5、ポンプ部6B、廃液部7Bが配列されている。 In the recess 2, a sensor unit 5, pump units 6A and 6B, a liquid storage unit 7A, and a waste liquid unit 7B are provided. A liquid reservoir 7A, a pump part 6A, a sensor part 5, a pump part 6B, and a waste liquid part 7B are arranged in this order from the inlet 4A to the outlet 4B.
 センサ部5は、凹部2内に形成された電界効果デバイスである。この電界効果デバイスのゲート領域に、解析対象(ターゲット)としての試料DNAがセットされる。試料DNAに上記液体を添加すると、試料DNAが液体に含まれる基質等に対して反応して、電界効果デバイスの電気的特性が変化する場合がある。センサ部5は、この電界効果デバイスの電気的特性の変化を検出する。 The sensor unit 5 is a field effect device formed in the recess 2. Sample DNA as an analysis target (target) is set in the gate region of the field effect device. When the liquid is added to the sample DNA, the sample DNA may react with a substrate or the like contained in the liquid, and the electric characteristics of the field effect device may change. The sensor unit 5 detects a change in electrical characteristics of the field effect device.
 センサ部5としては、例えば、図4に示すような電界効果トランジスタを採用することができる。図4に示すように、センサ部5では、n型の半導体基板1上にpウエル20が形成され、pウエル20の中にn型領域としてのソース21とドレイン22が形成されている。 As the sensor unit 5, for example, a field effect transistor as shown in FIG. 4 can be adopted. As shown in FIG. 4, in the sensor unit 5, a p-well 20 is formed on an n-type semiconductor substrate 1, and a source 21 and a drain 22 as n-type regions are formed in the p-well 20.
 また、pウエル20上には、下層絶縁膜23が形成され、その上に、上層絶縁膜24が形成されている。上層絶縁膜24上に、解析対象となる試料DNA30がセットされる。なお、下層絶縁膜23としては、例えば、二酸化シリコン(SiO2)の膜が用いられ、上層絶縁膜24としては、例えば、Si34の膜が用いられる。この上層絶縁膜24にターゲットとしての試料DNAがセットされる。 A lower insulating film 23 is formed on the p-well 20, and an upper insulating film 24 is formed thereon. A sample DNA 30 to be analyzed is set on the upper insulating film 24. For example, a silicon dioxide (SiO 2 ) film is used as the lower insulating film 23, and a Si 3 N 4 film is used as the upper insulating film 24, for example. Sample DNA as a target is set in the upper insulating film 24.
 図1及び図2に戻り、ポンプ部6Aは、流路部8A、電極部9A、10Aを備える。液貯め部7Aからセンサ部5に向かって、順に、電極部9A、流路部8A、ポンプ部10Aが配列されている。 1 and 2, the pump unit 6A includes a flow path unit 8A and electrode units 9A and 10A. An electrode portion 9A, a flow path portion 8A, and a pump portion 10A are sequentially arranged from the liquid storage portion 7A toward the sensor portion 5.
 図5には、ポンプ部6Aの上面図が示されている。流路部8Aは、センサ部5へ液体を供給するための流路を有している。図5に示すように、流路部8Aでは、この流路が網の目状に形成されている。流路の壁面は誘電体(例えばガラス等)で形成されている。 FIG. 5 shows a top view of the pump section 6A. The flow path portion 8 </ b> A has a flow path for supplying a liquid to the sensor unit 5. As shown in FIG. 5, in the flow path portion 8A, the flow path is formed in a mesh shape. The wall surface of the flow path is formed of a dielectric (for example, glass or the like).
 さらに具体的には、図6に示すように、流路部8Aには、流路として、複数の主経路31が設けられている。主経路31は、互いに平行であり、液貯め部7Aとセンサ部5との間を連通する。 More specifically, as shown in FIG. 6, the flow path portion 8A is provided with a plurality of main paths 31 as flow paths. The main paths 31 are parallel to each other and communicate between the liquid reservoir 7A and the sensor unit 5.
 また、流路部8Aには、複数の分岐経路32が設けられている。分岐経路32は、隣接する2つの主経路31の間を途中で連通し、電界の方向に交差して延びている。 Further, a plurality of branch paths 32 are provided in the flow path portion 8A. The branch path 32 communicates between two adjacent main paths 31 on the way, and extends across the direction of the electric field.
 なお、流路部8A、8Bも、凹部2と同様に、レジストが塗布されるように、底面に向かうにつれて幅が狭くなるように(断面がテーパ形状に)形成されている。 Note that the flow path portions 8A and 8B are also formed so that the width becomes narrower toward the bottom surface (the cross section has a tapered shape) so that the resist is applied, similarly to the concave portion 2.
 ポンプ部6Aは、電気浸透流方式により、試薬を含む液体を、液貯め部7Aからセンサ部5に送る。電気浸透流技術は、電場により微量液の送液制御可能な技術である。 The pump unit 6A sends a liquid containing a reagent from the liquid storage unit 7A to the sensor unit 5 by an electroosmotic flow method. The electroosmotic flow technology is a technology capable of controlling the delivery of a small amount of liquid by an electric field.
 電気浸透流の発生原理について、図7を参照して説明する。図7には、主経路31の一部が、模式的に示されている。主経路31の壁面は、誘電体で形成されている。誘電体が液体と接触すると、図7に示すように、誘電体は負に帯電し、液体は正に帯電する。これにより、電気二重層が形成される。 The generation principle of electroosmotic flow will be described with reference to FIG. FIG. 7 schematically shows a part of the main path 31. The wall surface of the main path 31 is formed of a dielectric. When the dielectric contacts the liquid, the dielectric is negatively charged and the liquid is positively charged, as shown in FIG. Thereby, an electric double layer is formed.
 この状態で、一対の電極部9A、10Aのうち、電極部9Aを正極とし電極部10Aを負極として、直流電圧を印加すると、電極部9Aから電極部10Aへ向かう電界(すなわち、液貯め部7Aからセンサ部5へ向かう方向の電界)が発生し、この電界が主経路31内の液体に与えられる。この電界により、主経路31の壁面に形成された液体の電荷層は、電極部9Aから電極部10Aの方へ流れる。この流れが流路中央の液体まで及び、全体の流れ(電気浸透流)が生じる。 In this state, when a DC voltage is applied using the electrode portion 9A as the positive electrode and the electrode portion 10A as the negative electrode of the pair of electrode portions 9A and 10A, an electric field (that is, the liquid storage portion 7A) from the electrode portion 9A to the electrode portion 10A is applied. The electric field in the direction from the first to the sensor unit 5 is generated, and this electric field is applied to the liquid in the main path 31. Due to this electric field, the liquid charge layer formed on the wall surface of the main path 31 flows from the electrode portion 9A toward the electrode portion 10A. This flow reaches the liquid in the center of the flow path, and the entire flow (electroosmotic flow) is generated.
 この電気浸透流の原理により、ポンプ部6Aは、注入口4Aから注入された液体を、センサ部5に供給する。 According to the principle of electroosmotic flow, the pump unit 6A supplies the liquid injected from the injection port 4A to the sensor unit 5.
 一方、ポンプ部6Bは、流路部8B、電極部9B、10Bを備える。センサ部5から排出口4Bに向かって、順に、電極部9B、流路部8B、電極部10Bが配列されている。 On the other hand, the pump unit 6B includes a flow channel unit 8B and electrode units 9B and 10B. The electrode part 9B, the flow path part 8B, and the electrode part 10B are arranged in order from the sensor part 5 toward the discharge port 4B.
 流路部8Bにも、流路部8Aと同じような網の目状の流路が設けられている。流路部8Bは、センサ部5と廃液部7Bとの間を連通する流路を有する。流路部8Bの流路の壁面は、誘電体で形成されている。 The channel portion 8B is also provided with a mesh-like channel similar to the channel portion 8A. The flow path portion 8B has a flow path that communicates between the sensor portion 5 and the waste liquid portion 7B. The wall surface of the flow path of the flow path portion 8B is formed of a dielectric.
 一対の電極部9B、10Bのうち、電極部9Bを正極とし、電極部10Bを負極として、直流電圧を印加して、流路内の液体に、センサ部5から廃液部7Bへ向かう方向の電界を与えると、流路部8A内の経路に電気浸透流が発生し、液体がセンサ部5から廃液部7Bに流れるようになる。 Of the pair of electrode portions 9B and 10B, the electrode portion 9B is a positive electrode, the electrode portion 10B is a negative electrode, a direct current voltage is applied, and the electric field in the direction from the sensor portion 5 toward the waste liquid portion 7B is applied to the liquid in the flow path. , An electroosmotic flow is generated in the path in the flow path portion 8A, and the liquid flows from the sensor portion 5 to the waste liquid portion 7B.
 このように、ポンプ部6A、6Bは、センサ部5への試薬を含む液体の供給及び排出の少なくとも一方を行うために、凹部2内に形成されている。なお、電気浸透流の流速を制御するために、一対の電極部9A、10Aや一対の電極部9B、10Bにより、逆バイアスの直流電圧を印加できるようになっていてもよい。 As described above, the pump parts 6A and 6B are formed in the recess 2 in order to perform at least one of supply and discharge of the liquid containing the reagent to the sensor part 5. In order to control the flow rate of the electroosmotic flow, a reverse bias DC voltage may be applied by the pair of electrode portions 9A and 10A and the pair of electrode portions 9B and 10B.
 液貯め部7Aは、注入口4Aから注入された液体を一時的に貯留するために凹部2内に形成されている。ポンプ部6Aは、液貯め部7Aに貯留された液体を、センサ部5に供給する。 The liquid storage part 7A is formed in the recess 2 to temporarily store the liquid injected from the injection port 4A. The pump unit 6 </ b> A supplies the liquid stored in the liquid storage unit 7 </ b> A to the sensor unit 5.
 センサ部5に送られた液体は、ポンプ6Bにより、廃液として廃液部7Bに送られる。廃液部7Bは、排出口4Bから排出される液体を一時的に貯留するために凹部2内に形成されている。廃液部7Bに貯められた廃液は、排出口4Bから排出される。 The liquid sent to the sensor unit 5 is sent as waste liquid to the waste liquid part 7B by the pump 6B. The waste liquid part 7B is formed in the recess 2 in order to temporarily store the liquid discharged from the discharge port 4B. The waste liquid stored in the waste liquid part 7B is discharged from the discharge port 4B.
 センサ部5のゲートには、例えば、図8に示すように、核酸プローブ11が固定される。この核酸プローブ11に、一本鎖のターゲット遺伝子30をハイブリダイズさせる。この状態で、タックDNAポリメラーゼ及び基質を含む試薬を、センサ部5に流すと、その基質が、ターゲット遺伝子30の塩基配列に相補的であれば、伸長反応が起こる。 The nucleic acid probe 11 is fixed to the gate of the sensor unit 5, for example, as shown in FIG. A single-stranded target gene 30 is hybridized to the nucleic acid probe 11. In this state, when a reagent containing a tack DNA polymerase and a substrate is passed through the sensor unit 5, an extension reaction occurs if the substrate is complementary to the base sequence of the target gene 30.
 伸長反応が起こると、水溶液中でのDNAの負の電荷が増大して、センサ部5の電界効果トランジスタの電気的特性(しきい値電圧)が変化する。したがって、このしきい値電圧の変化を検出すれば、ターゲット遺伝子30の塩基配列を解析することができる。 When the elongation reaction occurs, the negative charge of DNA in the aqueous solution increases, and the electric characteristics (threshold voltage) of the field effect transistor of the sensor unit 5 change. Therefore, if this change in threshold voltage is detected, the base sequence of the target gene 30 can be analyzed.
(解析装置の製造方法)
 次に、本実施形態に係る解析装置100の製造方法について説明する。解析装置100は、CMOS(Complementary Metal Oxide Semiconductor)プロセスと親和性の高いプロセスを用いて製造される。図10には、解析装置100の製造工程のフローチャートが示されている。
(Analyzer manufacturing method)
Next, a method for manufacturing the analysis apparatus 100 according to this embodiment will be described. The analysis apparatus 100 is manufactured using a process having a high affinity with a complementary metal oxide semiconductor (CMOS) process. FIG. 10 shows a flowchart of the manufacturing process of the analysis apparatus 100.
≪深堀エッチング≫
 まず、深堀エッチャーを用いて、半導体基板1に対して深堀エッチングを行うことにより、半導体基板1上に凹部2を形成する。更に、凹部2内に、試薬を含む液体の供給及び排出の少なくとも一方を行うための流路部8A、8Bを形成する(ステップS1)。液貯め部7A、7Bやセンサ部5が形成される領域は、広く平面領域として形成され、流路部8A、8Bには、図4乃至図6に示す流路が形成される。
≪Fukahori Etching≫
First, the recess 2 is formed on the semiconductor substrate 1 by performing deep etching on the semiconductor substrate 1 using the deep etcher. Further, the flow path portions 8A and 8B for performing at least one of supply and discharge of the liquid containing the reagent are formed in the recess 2 (step S1). The regions where the liquid reservoirs 7A and 7B and the sensor unit 5 are formed are broadly formed as planar regions, and the flow paths shown in FIGS. 4 to 6 are formed in the flow paths 8A and 8B.
 この深堀エッチングにより、図11に示すように、液貯め部7A、廃液部7Bも形成される。深堀エッチングは、レジスト塗布、プリベーク、露光、PEB、現像などを経て、凹部2を形成する部分以外の部分等にレジストが残存する状態で行われる。 By this deep etching, a liquid reservoir 7A and a waste liquid part 7B are also formed as shown in FIG. The deep etching is performed in a state where the resist remains in a portion other than the portion where the recess 2 is formed through resist coating, pre-baking, exposure, PEB, development, and the like.
 この深堀エッチングでは、後続のセンサ部や電極を形成する工程において、凹部2の底面にレジストを塗布しやすくするため、凹部2や流路部8A、8Bの流路の側面が、テーパ状に形成される。側面をテーパ状とするため、エッチングプロセスではSF6ガスのみが使用される。また、炭素とシリコンとの結合を防ぐべくデポガスとしてのCF4ガスは用いられず、エッチングレートを適切なものとするためにエッチング中の雰囲気ガスとして酸素ガスが用いられる。また、基板バイアスを低く設定して、エッチングイオンの直進力を弱めることにより、凹部2が、テーパ状に形成されるようにしている。 In this deep etching, in order to make it easier to apply a resist to the bottom surface of the concave portion 2 in the process of forming the subsequent sensor portion and electrode, the side surfaces of the concave portion 2 and the flow passage portions 8A and 8B are formed in a tapered shape. Is done. Since the side surfaces are tapered, only SF 6 gas is used in the etching process. Further, CF 4 gas as a deposition gas is not used in order to prevent bonding between carbon and silicon, and oxygen gas is used as an atmospheric gas during etching in order to make the etching rate appropriate. Further, the concave portion 2 is formed in a tapered shape by setting the substrate bias low and weakening the straight advance force of the etching ions.
≪センサ部形成≫
 図10に戻り、深堀エッチング(ステップS1)に続いて、レジスト塗布、プリベーク、露光、ポストベーク、現像、エッチング等のCMOSプロセスを用いてセンシング領域にセンサ部5を形成する(ステップS2)。ここで、図12に示すように、センサ部5に、例えばMOS型のトランジスタ(図4参照)が形成される。なお、センサ部5の酸化プロセスではポンプ部6A、6Bも同時に酸化する。これにより、ポンプ部6A、6Bを酸化する酸化工程を省略することができる。
≪Sensor part formation≫
Returning to FIG. 10, following the deep etching (step S1), the sensor unit 5 is formed in the sensing region using a CMOS process such as resist coating, pre-baking, exposure, post-baking, development, etching, and the like (step S2). Here, as shown in FIG. 12, for example, a MOS transistor (see FIG. 4) is formed in the sensor unit 5. In the oxidation process of the sensor unit 5, the pump units 6A and 6B are also oxidized simultaneously. Thereby, the oxidation process which oxidizes the pump parts 6A and 6B can be omitted.
≪電極部形成≫
 図10に戻り、センサ部形成(ステップS2)に続いて、金属蒸着等により、センサ部5の電極を形成するとともに、図13に示すように、電極部9A、9B、10A、10Bを形成する(ステップS3)。電極部9A、9B、10A、10Bには、薬品耐性の強い金配線が用いられる。
≪Electrode part formation≫
Returning to FIG. 10, following the sensor part formation (step S2), the electrodes of the sensor part 5 are formed by metal deposition or the like, and the electrode parts 9A, 9B, 10A, and 10B are formed as shown in FIG. (Step S3). For the electrode portions 9A, 9B, 10A, and 10B, gold wiring having high chemical resistance is used.
≪カバー部形成≫
 図10に戻り、電極部形成(ステップS3)に続いて、カバー部3を形成する(ステップS4)。ここでは、図14に示すように、接着剤等を用いた張り合わせによりカバー部3が形成される。ただし、張り合わせる前にカバー部3には注入口4Aと排出口4Bとなるホールを形成しておく必要がある。カバー部3としては、例えば、ガラス、シリコン、PDMS(ポリジメチルシロキサン)を用いることができる。
≪Cover part formation≫
Returning to FIG. 10, following the electrode part formation (step S3), the cover part 3 is formed (step S4). Here, as shown in FIG. 14, the cover 3 is formed by bonding using an adhesive or the like. However, before bonding, it is necessary to form holes serving as the inlet 4A and the outlet 4B in the cover 3. As the cover portion 3, for example, glass, silicon, or PDMS (polydimethylsiloxane) can be used.
 以上の4工程により、解析装置100が製造される。 The analysis device 100 is manufactured through the above four steps.
 これまでは、解析装置100の原理をするための最小の構造、動作及び製造方法について説明してきた。以下では、図15には、解析装置100のより詳細な構成が模式的に示されている。 So far, the minimum structure, operation and manufacturing method for operating the principle of the analysis apparatus 100 have been described. In the following, a more detailed configuration of the analysis apparatus 100 is schematically shown in FIG.
 図15に示すように、この解析装置100では、センサ部5に縦3列、横3列の合計9個のトランジスタが形成され、集積化されている。各トランジスタのサイズは、例えば5mm×5mmである。なお、9個のトランジスタのうち、8つのトランジスタはターゲット遺伝子30の反応を検出するためのトランジスタであり、残る1つは濃度センサ40である。基質dATP、dGTP、dCTP、dTTPについては、濃度がそれぞれ異なるように設定されており、濃度センサ40は、その濃度の違いに基づいて、現在センサ部5に流れる基質を検出する。 As shown in FIG. 15, in this analyzing apparatus 100, a total of nine transistors in three vertical rows and three horizontal rows are formed in the sensor unit 5 and integrated. The size of each transistor is, for example, 5 mm × 5 mm. Of the nine transistors, eight transistors are transistors for detecting the reaction of the target gene 30, and the remaining one is the concentration sensor 40. The substrates dATP, dGTP, dCTP, and dTTP are set to have different concentrations, and the concentration sensor 40 detects the substrate that currently flows through the sensor unit 5 based on the difference in concentration.
 図16に示すように、8つのトランジスタの出力と濃度センサ40の出力とは、解析部50に入力されている。解析部50は、センサ部5の出力に基づいて、しきい値電圧が変化するタイミングを検出する。また、解析部50は、濃度センサ40の出力に基づいて、しきい値電圧が変化したときに流れている基質を検出する。解析部50は、検出された基質に基づいて、塩基配列を解析する。 As shown in FIG. 16, the outputs of the eight transistors and the output of the concentration sensor 40 are input to the analysis unit 50. The analysis unit 50 detects the timing at which the threshold voltage changes based on the output of the sensor unit 5. Further, the analysis unit 50 detects the substrate flowing when the threshold voltage changes based on the output of the concentration sensor 40. The analysis unit 50 analyzes the base sequence based on the detected substrate.
 この解析装置100には、基質dATP用の注入口4AA及び液貯め部7AA、基質dGTP用の注入口4AG及び液貯め部7AG、基質dCTP用の注入口4AC及び液貯め部7AC、基質dTTP用の注入口4AT及び液貯め部7ATがそれぞれ設けられている。また、洗浄液の注入口4AS及び液貯め部7ASが設けられている。 The analysis apparatus 100 includes an inlet 4AA and a liquid reservoir 7AA for the substrate dATP, an inlet 4AG and a liquid reservoir 7AG for the substrate dGTP, an inlet 4AC and a liquid reservoir 7AC for the substrate dCTP, and a substrate dTTP. An inlet 4AT and a liquid reservoir 7AT are provided. Further, a cleaning liquid inlet 4AS and a liquid reservoir 7AS are provided.
 また、各液貯め部7AA、7AG、7AC、7AT、7ASからセンサ部5に基質dATP、dGTP、dCTP、dTTP、洗浄液をそれぞれ供給する5つのポンプ部6AA、6AG、6AC、6AT、6ASが形成されている。 Further, five pump parts 6AA, 6AG, 6AC, 6AT, 6AS for supplying the substrates dATP, dGTP, dCTP, dTTP, and the cleaning liquid to the sensor part 5 from the liquid storage parts 7AA, 7AG, 7AC, 7AT, 7AS, respectively, are formed. ing.
 なお、この解析装置100では、廃液部7Bは設けられておらず、廃液側のポンプ部6B1、6B2は、2つしか設けられていない。ポンプ部6B1は、排出口4B1に連通し、ポンプ部6B2は、排出口4B2に連通している。 In this analysis apparatus 100, the waste liquid part 7B is not provided, and only two pump parts 6B1 and 6B2 on the waste liquid side are provided. The pump unit 6B1 communicates with the discharge port 4B1, and the pump unit 6B2 communicates with the discharge port 4B2.
 また、解析装置100には、ポンプ部6AA、6AG、6AC、6AT、6AS、6B1、6B2に直流電圧を供給する電源41が設けられている。 Further, the analysis apparatus 100 is provided with a power supply 41 for supplying a DC voltage to the pump units 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, and 6B2.
 図17には、この解析装置100におけるポンプ部6AA、6AG、6AC、6AT、6AS、6B1、6B2の制御系が示されている。図17に示すように、ポンプ部6AA、6AG、6AC、6AT、6AS、6B1、6B2との電源41との間に制御部51が設けられている。制御部51は、電源41からポンプ部6AA、6AG、6AC、6AT、6AS、6B1、6B2に印加される直流電圧を制御する。 FIG. 17 shows a control system of the pump units 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, and 6B2 in the analysis apparatus 100. As shown in FIG. 17, the control part 51 is provided between the power supplies 41 with the pump parts 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, and 6B2. The control unit 51 controls the DC voltage applied from the power source 41 to the pump units 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, and 6B2.
 制御部51は、ポンプ部6AA、6B1に直流電圧を印加する。これにより、基質dATPが、センサ部5に流れる。ここで、濃度センサ40で検出される濃度は、センサ部5に基質dATPが流れていることを示す濃度となる。この状態で、センサ部5の出力に基づいて、しきい値電圧が変動し、伸長反応が観測されると、今回結合したターゲット遺伝子30の塩基はチミンであるということになる。 The control unit 51 applies a DC voltage to the pump units 6AA and 6B1. Thereby, the substrate dATP flows to the sensor unit 5. Here, the concentration detected by the concentration sensor 40 is a concentration indicating that the substrate dATP is flowing in the sensor unit 5. In this state, when the threshold voltage fluctuates based on the output of the sensor unit 5 and an extension reaction is observed, the base of the target gene 30 bound this time is thymine.
 続いて、制御部51は、ポンプ部6AA、6B1への直流電圧の印加を停止し、ポンプ部6AS、6B2に対して直流電圧を印加する。これにより洗浄液が、センサ部5に流れ、基質dATPが洗い流される。 Subsequently, the control unit 51 stops applying the DC voltage to the pump units 6AA and 6B1, and applies the DC voltage to the pump units 6AS and 6B2. As a result, the cleaning liquid flows into the sensor unit 5 and the substrate dATP is washed away.
 続いて、制御部51は、ポンプ部6AS、6B2への直流電圧の印加を停止し、ポンプ部6AG、6B1に直流電圧を印加する。これにより、基質dGTPが、センサ部5に流れる。ここで、濃度センサ40で検出される濃度は、センサ部5に基質dGTPが流れていることを示す濃度となる。この状態で、センサ部5の出力に基づいて、しきい値電圧が変動し、伸長反応が観測されると、今回結合したターゲット遺伝子30の塩基はシトシンであるということになる。 Subsequently, the control unit 51 stops applying the DC voltage to the pump units 6AS and 6B2, and applies the DC voltage to the pump units 6AG and 6B1. Thereby, the substrate dGTP flows into the sensor unit 5. Here, the concentration detected by the concentration sensor 40 is a concentration indicating that the substrate dGTP is flowing in the sensor unit 5. In this state, when the threshold voltage fluctuates based on the output of the sensor unit 5 and an extension reaction is observed, the base of the target gene 30 bound this time is cytosine.
 続いて、制御部51は、ポンプ部6AG、6B1への直流電圧の印加を停止し、ポンプ部6AS、6B2に対して直流電圧を印加する。これにより洗浄液が、センサ部5に流れ、基質dGTPが洗い流される。 Subsequently, the control unit 51 stops applying the DC voltage to the pump units 6AG and 6B1, and applies the DC voltage to the pump units 6AS and 6B2. As a result, the cleaning liquid flows into the sensor unit 5 and the substrate dGTP is washed away.
 続いて、制御部51は、ポンプ部6AS、6B2への直流電圧の印加を停止し、ポンプ部6AC、6B1に直流電圧を印加する。これにより、基質dCTPが、センサ部5に流れる。ここで、濃度センサ40で検出される濃度は、センサ部5に基質dCTPが流れていることを示す濃度となる。この状態で、センサ部5の出力に基づいて、しきい値電圧が変動し、伸長反応が観測されると、今回結合したターゲット遺伝子30の塩基はグアニンであるということになる。 Subsequently, the control unit 51 stops applying the DC voltage to the pump units 6AS and 6B2, and applies the DC voltage to the pump units 6AC and 6B1. Thereby, the substrate dCTP flows to the sensor unit 5. Here, the concentration detected by the concentration sensor 40 is a concentration indicating that the substrate dCTP is flowing in the sensor unit 5. In this state, when the threshold voltage fluctuates based on the output of the sensor unit 5 and an extension reaction is observed, the base of the target gene 30 bound this time is guanine.
 続いて、制御部51は、ポンプ部6AC、6B1への直流電圧の印加を停止し、ポンプ部6AS、6B2に対して直流電圧を印加する。これにより洗浄液が、センサ部5に流れ、基質dCTPが洗い流される。 Subsequently, the control unit 51 stops applying the DC voltage to the pump units 6AC and 6B1, and applies the DC voltage to the pump units 6AS and 6B2. As a result, the cleaning liquid flows into the sensor unit 5 and the substrate dCTP is washed away.
 続いて、制御部51は、ポンプ部6AS、6B2への直流電圧の印加を停止し、ポンプ部6AT、6B1に直流電圧を印加する。これにより、基質dTTPが、センサ部5に流れる。ここで、濃度センサ40で検出される濃度は、センサ部5に基質dTTPが流れていることを示す濃度となる。この状態で、センサ部5の出力に基づいて、しきい値電圧が変動し、伸長反応が観測されると、今回結合したターゲット遺伝子30の塩基は、アデニンであるということになる。 Subsequently, the control unit 51 stops applying the DC voltage to the pump units 6AS and 6B2, and applies the DC voltage to the pump units 6AT and 6B1. Thereby, the substrate dTTP flows to the sensor unit 5. Here, the concentration detected by the concentration sensor 40 is a concentration indicating that the substrate dTTP is flowing in the sensor unit 5. In this state, when the threshold voltage fluctuates based on the output of the sensor unit 5 and an elongation reaction is observed, the base of the target gene 30 bound this time is adenine.
 続いて、制御部51は、ポンプ部6AT、6B1への直流電圧の印加を停止し、ポンプ部6AS、6B2に対して直流電圧を印加する。これにより洗浄液が、センサ部5に流れ、基質dTTPが洗い流される。 Subsequently, the control unit 51 stops applying the DC voltage to the pump units 6AT and 6B1, and applies the DC voltage to the pump units 6AS and 6B2. As a result, the cleaning liquid flows into the sensor unit 5 and the substrate dTTP is washed away.
 解析部50は、このような動作を繰り返すことにより、センサ部5で検出されたしきい値電圧の変動と、濃度センサで検出された濃度から得られる塩基の種類とに基づいて、ターゲット遺伝子30の塩基配列を解析する。 The analysis unit 50 repeats such an operation, so that the target gene 30 is based on the variation in the threshold voltage detected by the sensor unit 5 and the type of base obtained from the concentration detected by the concentration sensor. The base sequence of is analyzed.
 図15に示す解析装置100は、図18に示すようにさらなる集積化が可能である。これにより、大量のターゲット遺伝子を同時に解析することができるようになるので、塩基配列の解析を格段に高速化することができる。 The analysis apparatus 100 shown in FIG. 15 can be further integrated as shown in FIG. As a result, a large amount of target genes can be analyzed simultaneously, so that the base sequence analysis can be significantly speeded up.
 以上詳細に説明したように、本実施形態によれば、試薬を含む液体を流すためのポンプ部6A、6Bがセンサ部5とともに半導体素子1の凹部2内に形成されているので、液体を流すための大型ポンプを外部に設ける必要がない。これにより、装置全体を小型化させることができ、その操作性を向上させることができる。この結果、迅速かつ安価に、ターゲット遺伝子30を解析することができる。さらに、装置の集積化が可能となるので、迅速かつ安価に、大量のターゲット遺伝子30を解析することができる。 As described above in detail, according to the present embodiment, the pump parts 6A and 6B for flowing the liquid containing the reagent are formed in the recess 2 of the semiconductor element 1 together with the sensor part 5, so that the liquid flows. There is no need to provide a large pump for the outside. Thereby, the whole apparatus can be reduced in size and the operativity can be improved. As a result, the target gene 30 can be analyzed quickly and inexpensively. Furthermore, since the apparatus can be integrated, a large amount of target genes 30 can be analyzed quickly and inexpensively.
 これにより、ターゲット遺伝子30の配列解析を臨床現場で迅速に行うことができる。例えば、臨床現場において、SNPs(Single Nucleotide Polymorphism)などの特定遺伝子配列を迅速に解析することができる。臨床現場でこうした解析ができるようになれば、投薬や治療方法のリスクを大幅に減らすことができるようになるうえ、患者がノンストップの医療サービスを受けられるようになる。 Thereby, the sequence analysis of the target gene 30 can be quickly performed at the clinical site. For example, specific gene sequences such as SNPs (Single Nucleotide Polymorphism) can be rapidly analyzed in clinical settings. The ability to perform such analyzes in the clinical setting will greatly reduce the risk of medications and treatment methods and will allow patients to receive non-stop medical services.
 また、本実施形態では、電気浸透流方式により液体の供給及び排出を行ったが、本発明はこれには限られない。電気泳動方式により、液体の供給又は排出を行うようにしてもよい。また、いわゆるインクジェット方式により、液体の供給又は排出を行うようにしてもよい。さらには、力学的なアクチュエータを用いて、液体の供給又は排出を行うようにしてもよい。 In the present embodiment, the liquid is supplied and discharged by the electroosmotic flow method, but the present invention is not limited to this. The liquid may be supplied or discharged by an electrophoresis method. Further, the liquid may be supplied or discharged by a so-called inkjet method. Further, a liquid may be supplied or discharged using a dynamic actuator.
 また、本実施形態によれば、流路部8A、8Bにおける流路は、電気浸透流の発生条件を満たす幅の流路であり、網の目状に形成されている。このようにすれば、電気二重層が発生する流路の表面積を大きくすることができるので、電気浸透流方式の効率を高めることができる。更に、流路内に発生する気泡を抜けやすくすることができる。 Further, according to the present embodiment, the flow paths in the flow path portions 8A and 8B are flow paths having a width that satisfies the conditions for generating the electroosmotic flow, and are formed in a mesh shape. In this way, since the surface area of the flow path where the electric double layer is generated can be increased, the efficiency of the electroosmotic flow method can be increased. Furthermore, bubbles generated in the flow path can be easily removed.
 また、本実施形態によれば、流路部8A、8Bでは、流路として、電界の方向に沿って延びる複数の主経路31と、隣接する主経路31の間を途中で連通し、電界の方向に交差して延びる複数の分岐経路32とが設けられている。このようにすれば、実際に電気二重層が発生する流路の表面積をより大きくすることができる。 Further, according to the present embodiment, in the flow path portions 8A and 8B, the flow paths 8A and 8B communicate with each other between the plurality of main paths 31 extending along the direction of the electric field and the adjacent main paths 31 as the flow paths. A plurality of branch paths 32 extending in the direction are provided. In this way, the surface area of the flow path where the electric double layer is actually generated can be increased.
 また、本実施形態によれば、凹部2は、底面に向かうにつれて狭くなるように形成されている。このようにすれば、凹部2の底面にレジストを塗布することができるので、半導体工程と同様な方法で、センサ部5等を形成することができる。 Moreover, according to this embodiment, the recessed part 2 is formed so that it may become narrow as it goes to a bottom face. In this way, since the resist can be applied to the bottom surface of the recess 2, the sensor unit 5 and the like can be formed by the same method as in the semiconductor process.
 この解析装置100において、センサ部5とポンプ部6A、6Bは、深堀エッチングにより、半導体基板1の凹部2内にCMOSプロセスと親和性の高いプロセスで製造され、いわゆるモノシリック構造となっている。このため、量産が容易であり、解析装置100をさらに集積化して製造できる。したがって、極めて小型で安価なギガシーケンサを製造することが可能となる。これにより、例えば、数日かかっていたヒトゲノムの解析が数分で解析することができるようになる。 In this analyzing apparatus 100, the sensor unit 5 and the pump units 6A and 6B are manufactured by deep etching in the recess 2 of the semiconductor substrate 1 by a process having high affinity with the CMOS process, and have a so-called monolithic structure. Therefore, mass production is easy, and the analysis apparatus 100 can be further integrated and manufactured. Therefore, an extremely small and inexpensive giga sequencer can be manufactured. Thereby, for example, the analysis of the human genome, which took several days, can be analyzed in a few minutes.
 なお、本実施形態では、凹部2の深さを、10ミクロン程度としたが、本発明はこれには限られない。凹部2の深さは、10ミクロンより浅くてもよいし、深くてもよい。 In this embodiment, the depth of the recess 2 is about 10 microns, but the present invention is not limited to this. The depth of the recess 2 may be shallower or deeper than 10 microns.
 また、本実施形態では、図5及び図6に示すように、流路部8A、8Bでは、流路を網の目構造の流路は、台形の柱によって形成されたものであったが、柱の形状は、円柱であってもよいし、他の多角形の柱であってもよい。要は、電気浸透流を発生させる電気二重層が形成される面積をより大きくすることができるように、流路部8A、8Bの流路が網の目構造になっていればよい。 Further, in the present embodiment, as shown in FIGS. 5 and 6, in the flow channel portions 8A and 8B, the flow channel having a mesh structure is formed by a trapezoidal column. The column shape may be a cylinder, or may be another polygonal column. In short, it is only necessary that the flow paths of the flow path portions 8A and 8B have a mesh structure so that the area where the electric double layer for generating the electroosmotic flow is formed can be increased.
 また、本実施形態では、凹部2等を形成するのに深堀エッチングを用いたが、ウエットエッチングや、他のドライエッチングを用いて凹部2等を形成するようにしてもよい。 In this embodiment, deep etching is used to form the recesses 2 and the like. However, the recesses 2 and the like may be formed using wet etching or other dry etching.
 また、本実施形態では、DNAの塩基配列を解析したが、他のターゲットの解析にも本発明を適用することができる。例えば、抗体抗原反応を検出し、解析する解析装置にも適用することができる。 In this embodiment, the base sequence of DNA is analyzed, but the present invention can also be applied to analysis of other targets. For example, the present invention can also be applied to an analyzer that detects and analyzes antibody-antigen reaction.
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。 It should be noted that the present invention can be variously modified and modified without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention.
 本出願は、2010年6月1日に出願された日本国特許出願2010-126335号に基づく。本明細書中に、日本国特許出願2010-126335号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2010-126335 filed on June 1, 2010. In this specification, the specification, claims, and entire drawings of Japanese Patent Application No. 2010-126335 are incorporated by reference.
 本発明は、DNA(デオキシリボ核酸)等のターゲットに基質等の試薬を接触させたときなど、液体を接触したときの反応に基づくターゲットの解析に適している。 The present invention is suitable for target analysis based on a reaction when a liquid is contacted, such as when a reagent such as a substrate is contacted with a target such as DNA (deoxyribonucleic acid).
 1 半導体基板
 2 凹部
 3 カバー部
 4A、4AA、4AG、4AC、4AT、4AS 注入口
 4B、4B1、4B2 排出口
 5 センサ部
 6A、6B、6AA、6AG、6AC、6AT、6AS、6B1、6B2 ポンプ部
 7A、7AA、7AG、7AC、7AT、7AS 液貯め部
 7B 廃液部
 8A、8B 流路部
 9A、9B 電極部
 10A、10B 電極部
 11 核酸プローブ
 20 pウエル
 21 ソース
 22 ドレイン
 23 下層絶縁膜
 24 上層絶縁膜
 30 ターゲット遺伝子
 31 主経路
 32 分岐経路
 40 濃度センサ
 41 電源
 50 解析部
 51 制御部
 100 解析装置
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Recessed part 3 Cover part 4A, 4AA, 4AG, 4AC, 4AT, 4AS Inlet 4B, 4B1, 4B2 Outlet 5 Sensor part 6A, 6B, 6AA, 6AG, 6AC, 6AT, 6AS, 6B1, 6B2 Pump part 7A, 7AA, 7AG, 7AC, 7AT, 7AS Liquid storage part 7B Waste liquid part 8A, 8B Channel part 9A, 9B Electrode part 10A, 10B Electrode part 11 Nucleic acid probe 20 P well 21 Source 22 Drain 23 Lower layer insulation film 24 Upper layer insulation Membrane 30 Target Gene 31 Main Path 32 Branch Path 40 Concentration Sensor 41 Power Supply 50 Analysis Unit 51 Control Unit 100 Analysis Device

Claims (9)

  1.  エッチングにより半導体基板上に形成された凹部と、
     前記凹部内に形成された電界効果デバイスであって、ゲート領域にセットされたターゲットの試薬に対する反応に応じて電気的特性を変化させるセンサ部と、
     前記センサ部に対する前記試薬を含む液体の供給及び排出の少なくとも一方を行うために前記凹部内に形成されたポンプ部と、
     前記凹部を覆うように前記半導体基板に張り合わされ、前記凹部に対する前記液体の注入口と排出口とが設けられたカバー部と、
     を備える解析装置。
    A recess formed on the semiconductor substrate by etching;
    A field effect device formed in the recess, a sensor unit that changes electrical characteristics in response to a reaction of a target set in a gate region with a reagent;
    A pump unit formed in the recess to supply and / or discharge the liquid containing the reagent with respect to the sensor unit;
    A cover portion that is bonded to the semiconductor substrate so as to cover the recess, and is provided with an inlet and an outlet for the liquid with respect to the recess;
    An analysis apparatus comprising:
  2.  前記ポンプ部は、
     前記注入口から注入された前記液体を前記センサ部に供給するための流路を有し、前記流路の壁面が誘電体で形成された流路部と、
     前記流路内の前記液体に、前記注入口から前記センサ部へ向かう方向の電界を与える一対の電極を有する電極部と、
     を備える、
     ことを特徴とする請求項1に記載の解析装置。
    The pump part is
    A flow path portion for supplying the liquid injected from the injection port to the sensor section, and a flow path section in which a wall surface of the flow path is formed of a dielectric;
    An electrode part having a pair of electrodes for applying an electric field in a direction from the inlet to the sensor part to the liquid in the flow path;
    Comprising
    The analysis apparatus according to claim 1, wherein:
  3.  前記ポンプ部は、
     前記センサ部に供給された前記液体を前記排出口に排出するための流路を有し、前記流路の壁面が誘電体で形成された流路部と、
     前記流路内の前記液体に、前記センサ部から前記排出口へ向かう方向の電界を与える一対の電極を有する電極部と、
     を備える、
     ことを特徴とする請求項1に記載の解析装置。
    The pump part is
    A flow path section for discharging the liquid supplied to the sensor section to the discharge port, and a flow path section in which a wall surface of the flow path is formed of a dielectric;
    An electrode part having a pair of electrodes for applying an electric field in a direction from the sensor part to the discharge port to the liquid in the flow path;
    Comprising
    The analysis apparatus according to claim 1, wherein:
  4.  前記流路部では、
     電気浸透流の発生条件を満たす幅の前記流路が、網の目状に形成されている、
     ことを特徴とする請求項2又は3に記載の解析装置。
    In the flow path section,
    The flow path having a width satisfying the condition for generating the electroosmotic flow is formed in a mesh shape,
    The analysis apparatus according to claim 2 or 3, wherein
  5.  前記流路部では、
     前記流路として、
     前記電界の方向に沿って延びる複数の主経路と、
     隣接する2つの前記主経路を途中で連通し、前記電界の方向に交差して延びる複数の分岐経路と、
     が設けられている、
     ことを特徴とする請求項4に記載の解析装置。
    In the flow path section,
    As the flow path,
    A plurality of main paths extending along the direction of the electric field;
    A plurality of branch paths that connect two adjacent main paths in the middle and extend across the direction of the electric field;
    Is provided,
    The analysis apparatus according to claim 4.
  6.  前記流路部の流路は、
     底面に向かうにつれて狭くなるように形成されている、
     ことを特徴とする請求項2に記載の解析装置。
    The flow path of the flow path section is
    It is formed to become narrower toward the bottom,
    The analysis apparatus according to claim 2, wherein:
  7.  前記凹部は、
     底面に向かうにつれて狭くなるように形成されている、
     ことを特徴とする請求項1に記載の解析装置。
    The recess is
    It is formed to become narrower toward the bottom,
    The analysis apparatus according to claim 1, wherein:
  8.  前記凹部は、
     深堀エッチングにより形成されている、
     ことを特徴とする請求項1に記載の解析装置。
    The recess is
    Formed by deep etching,
    The analysis apparatus according to claim 1, wherein:
  9.  エッチングにより、半導体基板上に凹部を形成するとともに、前記凹部内に、試薬を含む液体の供給及び排出の少なくとも一方を行うための流路を形成するエッチング工程と、
     前記凹部内に、ゲート領域にターゲットがセットされる電界効果デバイスを形成するセンサ部形成工程と、
     前記電界効果デバイスに接続される電極を形成するとともに、センサ部への前記試薬を含む液体の供給及び排出の少なくとも一方を行うためのポンプ部の電極を形成する電極形成工程と、
     前記凹部を覆うように形成され、前記液体の注入口と排出口とが設けられたカバー部を形成するカバー部形成工程と、
     を含む解析装置の製造方法。
    An etching step of forming a recess on the semiconductor substrate by etching and forming a flow path for performing at least one of supply and discharge of the liquid containing the reagent in the recess,
    In the recess, a sensor part forming step for forming a field effect device in which a target is set in the gate region;
    Forming an electrode connected to the field effect device, and forming an electrode of a pump unit for performing at least one of supply and discharge of the liquid containing the reagent to the sensor unit; and
    A cover part forming step for forming a cover part formed so as to cover the recess and provided with the liquid inlet and outlet;
    A method for manufacturing an analysis apparatus including:
PCT/JP2011/062638 2010-06-01 2011-06-01 Analysis device and manufacturing method for same WO2011152474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-126335 2010-06-01
JP2010126335A JP5728778B2 (en) 2010-06-01 2010-06-01 Analysis device and method of manufacturing analysis device

Publications (1)

Publication Number Publication Date
WO2011152474A1 true WO2011152474A1 (en) 2011-12-08

Family

ID=45066831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062638 WO2011152474A1 (en) 2010-06-01 2011-06-01 Analysis device and manufacturing method for same

Country Status (2)

Country Link
JP (1) JP5728778B2 (en)
WO (1) WO2011152474A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282036B2 (en) * 2012-12-27 2018-02-21 クオンタムバイオシステムズ株式会社 Method and control apparatus for controlling movement speed of substance

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258868A (en) * 2000-03-15 2001-09-25 Jun Kikuchi Method and device for blood analysis
JP2003065906A (en) * 2001-08-23 2003-03-05 Jun Kikuchi Liquid moving device, liquid component analyzer and method for manufacturing them
JP2004182481A (en) * 2002-11-29 2004-07-02 Mitsubishi Rayon Co Ltd Substrate for microreactor chip
JP2005171824A (en) * 2003-12-09 2005-06-30 Tama Tlo Kk Micro pump and mixer integrated device
JP2005274574A (en) * 2004-03-23 2005-10-06 Fujitsu Ltd On-chip integrated detector for fluid analysis
JP2006283965A (en) * 2005-03-10 2006-10-19 Nagano Keiki Co Ltd Fluid control structure of micro flow passage, blocking member, microchip, manufacturing method for microchip, device applying fluid control structure, and blocking member operation device
JP2006341154A (en) * 2005-06-07 2006-12-21 Kobe Steel Ltd Micro fluid device and its manufacturing method
JP2008151801A (en) * 2008-01-24 2008-07-03 Toshiba Corp Molecular recognition sensor
JP2009264904A (en) * 2008-04-24 2009-11-12 Sharp Corp Sensor element using nano-structure, analyzing chip, analyzer, method for manufacturing sensor element and analysis method
JP2010112730A (en) * 2008-11-04 2010-05-20 Fujifilm Corp Detecting method using flow passage type sensor chip, flow passage type sensor chip and manufacturing method for the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056337A (en) * 1999-08-19 2001-02-27 Hitachi Ltd Dna analyzer
WO2004008132A1 (en) * 2002-07-11 2004-01-22 Mitsubishi Denki Kabushiki Kaisha Bio-molecule separation cell, manufacturing method thereof, and dna fragmentation apparatus
US20070196820A1 (en) * 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
JP5360519B2 (en) * 2006-09-22 2013-12-04 西川 正名 Electroosmotic material, manufacturing method thereof, and electroosmotic flow pump

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258868A (en) * 2000-03-15 2001-09-25 Jun Kikuchi Method and device for blood analysis
JP2003065906A (en) * 2001-08-23 2003-03-05 Jun Kikuchi Liquid moving device, liquid component analyzer and method for manufacturing them
JP2004182481A (en) * 2002-11-29 2004-07-02 Mitsubishi Rayon Co Ltd Substrate for microreactor chip
JP2005171824A (en) * 2003-12-09 2005-06-30 Tama Tlo Kk Micro pump and mixer integrated device
JP2005274574A (en) * 2004-03-23 2005-10-06 Fujitsu Ltd On-chip integrated detector for fluid analysis
JP2006283965A (en) * 2005-03-10 2006-10-19 Nagano Keiki Co Ltd Fluid control structure of micro flow passage, blocking member, microchip, manufacturing method for microchip, device applying fluid control structure, and blocking member operation device
JP2006341154A (en) * 2005-06-07 2006-12-21 Kobe Steel Ltd Micro fluid device and its manufacturing method
JP2008151801A (en) * 2008-01-24 2008-07-03 Toshiba Corp Molecular recognition sensor
JP2009264904A (en) * 2008-04-24 2009-11-12 Sharp Corp Sensor element using nano-structure, analyzing chip, analyzer, method for manufacturing sensor element and analysis method
JP2010112730A (en) * 2008-11-04 2010-05-20 Fujifilm Corp Detecting method using flow passage type sensor chip, flow passage type sensor chip and manufacturing method for the same

Also Published As

Publication number Publication date
JP2011252776A (en) 2011-12-15
JP5728778B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
US11286522B2 (en) Systems and methods for high efficiency electronic sequencing and detection
CA2858036C (en) Diamond electrode nanogap transducers
CN107254510B (en) Array and sensing device for template polynucleotide amplification
JP5368321B2 (en) QPCR using solid phase pH detection
US8500979B2 (en) Nanogap chemical and biochemical sensors
US9500617B2 (en) Nanogap transducers with selective surface immobilization sites
US11254978B2 (en) Non-thermal cycling for polymerase chain reaction
US20130008789A1 (en) Method and apparatus using electric field for improved biological assays
US20040110277A1 (en) Sensor cell, bio-sensor, capacitance element manufacturing method, biological reaction detection method and genetic analytical method
JP2007292734A (en) Field-effect transistor for ionic substance detection, and ionic substance detection method using the same
US20140220668A1 (en) Microfluidic device
JP2009002808A (en) System and method for measuring dna
KR20040038878A (en) Microfluidic system for analyzing nucleic acids
TW200911375A (en) A microfluidic chip for and a method of handling fluidic droplets
US9080968B2 (en) Methods and systems for point of use removal of sacrificial material
US20080166770A1 (en) Method and apparatus for amplifying and synthesisizing nucleic acid with denaturant
US9650668B2 (en) Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
KR101404455B1 (en) Real-time PCR device for detecting electrochemcial signal, and Real-time PCR using the same
JP5728778B2 (en) Analysis device and method of manufacturing analysis device
JP7253045B2 (en) Biopolymer analyzer and biopolymer analysis method
WO2014035167A1 (en) Pcr chip comprising thermal block in which heater units are repeatedly arranged for detecting electrochemical signals, pcr device comprising same, and real-time pcr method using pcr device
WO2014014268A1 (en) Real-time polymerase chain reaction apparatus for detecting electrochemical signal using metallic nano particles
KR20140028431A (en) Pcr chip for detecting electrochemcial signal comprising heating block of repetitively disposed heater unit, real-time pcr device comprising the same, and real-time pcr using the same
WO2014035163A1 (en) Real-time pcr device comprising thermal block in which heater units are repeatedly arranged for detecting electrochemical signals and real-time pcr method using same
TW201513337A (en) Chemical device with thin conductive element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789876

Country of ref document: EP

Kind code of ref document: A1