WO2011152461A1 - Solid-liquid separator device and operation method thereof - Google Patents

Solid-liquid separator device and operation method thereof Download PDF

Info

Publication number
WO2011152461A1
WO2011152461A1 PCT/JP2011/062610 JP2011062610W WO2011152461A1 WO 2011152461 A1 WO2011152461 A1 WO 2011152461A1 JP 2011062610 W JP2011062610 W JP 2011062610W WO 2011152461 A1 WO2011152461 A1 WO 2011152461A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
air
air diffuser
tubes
membrane
Prior art date
Application number
PCT/JP2011/062610
Other languages
French (fr)
Japanese (ja)
Inventor
勝行 矢ノ根
朋樹 川岸
信也 末吉
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201190000639.XU priority Critical patent/CN203379815U/en
Priority to JP2011526314A priority patent/JP5982822B2/en
Publication of WO2011152461A1 publication Critical patent/WO2011152461A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a solid-liquid separation apparatus that performs solid-liquid separation in water treatment and an operation method thereof.
  • This application claims priority based on Japanese Patent Application No. 2010-125927 filed in Japan on June 1, 2010, the contents of which are incorporated herein by reference.
  • Patent Document 1 proposes to set the number of gas discharge ports of the diffuser according to the horizontal sectional area of the separation membrane module.
  • the present invention has been made in view of such circumstances, and even when filtration is performed over a long period of time, there is little blockage of the gas discharge port of the diffuser tube, and as a result, there is little blockage of the pores on the membrane surface due to the suspension, and the stable
  • An object of the present invention is to provide a solid-liquid separator capable of continuing the filtration for a long period of time and an operation method thereof.
  • the present invention includes the following aspects.
  • separation membrane modules for example, separation membrane module 11 in the embodiment
  • separation membrane module 11 in the embodiment separation membrane module 11 in the embodiment
  • a diffuser tube for example, a diffuser in the embodiment
  • gas discharge port for example, the gas discharge port 16 in the embodiment
  • An air diffuser for example, the air diffuser 4 in the embodiment
  • gas diffuser provided with a plurality of air tubes 13
  • a plurality of the diffuser tubes are arranged in a horizontal direction, and the plurality of diffusers arranged in the horizontal direction are arranged.
  • a plurality of air diffusion tube groups (for example, the air diffusion tube groups 13G and 14G in the embodiment) made of tubes are arranged in a plurality of layers in the vertical direction so that adjacent air diffusion tubes do not line up on the vertical line. It is a solid-liquid separator having means for switching supply air to the air diffusing tube group (for example, an automatic valve such as a valve in the embodiment).
  • the air diffusing device includes at least one air diffusing tube group (for example, the air diffusing tube group 13G in the embodiment) of the plurality of air diffusing tube groups, A plurality of air diffusers configured with at least one gas supply pipe header (for example, the gas supply pipe header 12A in the embodiment) that communicates with each of the air diffusion pipes of the air diffusion pipe group on the same plane and supplies gas to each of the air diffusion pipes.
  • the diffuser tube group is arranged in the vertical direction so that adjacent diffuser pipes do not line up on the vertical line. It is preferable to arrange them in a stacked manner.
  • the filtration membrane sheet is preferably a filtration membrane sheet in which a number of hollow fiber membranes are arranged in parallel.
  • the solid-liquid separator according to [1] to [3] is adjacent when the diffuser tube group arranged in a plurality of stages is viewed from the horizontal direction in the axial direction of the diffuser tube.
  • the distance between the axes of the diffuser tubes which is the distance between the axes of the diffuser tubes of the pair of diffuser tubes, A distance between an axis of one of the pair of air diffuser groups and a straight line obtained by projecting an axis of the other air diffuser onto a horizontal plane including the axis of the one air diffuser;
  • a second aspect of the present invention is a method for operating a solid-liquid separation device using the solid-liquid separation device according to any one of [1] to [4], wherein the plurality of aeration tubes A step of supplying air to one diffuser tube group, a step of stopping air supply to the diffuser tube group supplied with the air, and another diffuser tube different from the diffuser tube group stopped with the air supply. Supplying air to one of the trachea groups; The operation method of the solid-liquid separator which repeats every fixed period. It is.
  • the present invention even when filtration is performed over a long period of time, it is possible to suppress the blockage of the gas discharge port of the diffusing tube, and as a result, it is possible to suppress the blockage of the pores of the membrane surface due to the suspension, and to stabilize Filtration can be continued for a long time.
  • FIG. 1 It is a schematic block diagram of the membrane separation activated sludge processing apparatus which concerns on embodiment of this invention. It is a perspective view of the aeration apparatus in a membrane separation activated sludge processing apparatus. It is a perspective view of the diffuser tube in an air diffuser. It is a perspective view explaining arrangement
  • FIG. 1 is a schematic configuration diagram of a membrane separation activated sludge treatment apparatus 1 which is a solid-liquid separation apparatus according to an embodiment of the present invention.
  • the membrane separation activated sludge treatment apparatus 1 includes a membrane separation apparatus 3 provided in a membrane separation tank 2 and an air diffuser 4 for membrane cleaning.
  • a blower 5 is connected to the air diffuser 4, and a suction pump 6 is connected to the membrane separator 3.
  • the membrane separation device 3 performs solid-liquid separation by suction filtration of the water 7 to be treated in the membrane separation tank 2 by the suction pump 6 to obtain treated water.
  • a pressure gauge 8 is provided between the membrane separation device 3 and the suction pump 6, and during the operation of the membrane separation activated sludge treatment device 1, the transmembrane differential pressure in the membrane separation device 3 is caused by the pressure gauge 8. It has been measured.
  • the membrane separation device 3 has a plurality of separation membrane modules 11 arranged in parallel (assembled) with a plurality of filtration membrane sheets 10 in which a plurality of hollow fiber membranes 9 which are separation membranes are arranged in parallel.
  • the hollow fiber membrane 9 is formed with a plurality of pores, and the water 7 to be treated passes through the pores, whereby solid-liquid separation is performed.
  • the separation membrane mounted in the separation membrane module 11 is preferably a microfiltration membrane or an ultrafiltration membrane, and a flat membrane, a tubular membrane, a bag-like membrane, etc. may be used in addition to a hollow fiber membrane.
  • a hollow fiber membrane capable of highly integrating the membrane area when compared at the base is preferable.
  • polyethylene polyethylene, cellulose, polyolefin, polysulfone, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene (polytetrafluoroethylene)), ceramics, or the like can be applied.
  • the pore size of the pores of the separation membrane is not particularly limited, but a pore size of 0.001 to 0.1 ⁇ m, generally called an ultrafiltration membrane, or a pore size of 0.1, generally called a microfiltration membrane. Those having a pore size of ⁇ 1 ⁇ m or larger can be used, and are selected according to the particle size of the substance to be subjected to solid-liquid separation. For example, if it is used for solid-liquid separation of activated sludge, the thickness is preferably 0.5 ⁇ m or less, and if sterilization is required, such as filtration of purified water, it is preferably 0.1 ⁇ m or less.
  • the air diffuser 4 is provided below the membrane separator 3 and includes gas supply pipe headers 12A to 12D, which are tubular bodies having a rectangular cross section in communication with the blower 5 with reference to FIG. 12A and 12B are arranged in parallel at a predetermined interval, and a first air diffuser 20 configured by arranging a plurality of air diffusers 13 between the gas supply pipe headers 12A and 12B, a gas supply pipe header 12C, 12D is arranged in parallel with a predetermined interval, and a second air diffuser 21 configured by disposing a plurality of air diffusers 14 between the gas supply pipe headers 12C and 12D.
  • gas supply pipe headers 12A to 12D which are tubular bodies having a rectangular cross section in communication with the blower 5 with reference to FIG. 12A and 12B are arranged in parallel at a predetermined interval
  • a first air diffuser 20 configured by arranging a plurality of air diffusers 13 between the gas supply pipe headers 12A and 12B, a gas supply pipe header 12C
  • the gas supply pipe headers 12A to 12D are provided with air supply ports 15A to 15D to which air supplied from the blower 5 is supplied, respectively. Both ends of the air diffuser 13 are connected to the opposing inner surfaces of the gas supply pipe headers 12A and 12B, and the inside of the air diffuser 13 communicates with the gas supply pipe headers 12A and 12B. Both ends of the air diffuser pipe 14 are connected to the opposing inner surfaces of the gas supply pipe headers 12C and 12D, and the inside of the air diffuser pipe 14 communicates with the gas supply pipe headers 12C and 12D.
  • the plurality of air diffusion tubes 13 are arranged in parallel with each other at a predetermined interval in the horizontal direction, and one end portions thereof are respectively connected on the same plane of the gas supply tube header 12A, and the gas supply tube header 12B. The other ends are connected on the same plane.
  • a plurality of diffuser tubes 14 are arranged in parallel with each other at a predetermined interval in the horizontal direction, and one end portions thereof are connected to the same plane of the gas supply tube header 12C, respectively. The other end is connected to the same plane of 12D.
  • the present invention is characterized in that a plurality of diffuser tube groups each composed of a plurality of diffuser tubes 13 arranged on the same horizontal plane are provided. Further, these diffuser tube groups are adjacent to each other.
  • the diffusing tubes are stacked and arranged so as not to line up on the vertical line.
  • the diffuser tubes vibrate as the gas passes through the diffuser tube during operation, etc. There are cases in which they approach each other or make the worst contact, so that a sufficient liquid flow path between the diffuser tubes cannot be secured, and there is a possibility that uniform aeration cannot be performed.
  • diffuser tubes may be arranged in a staggered pattern when viewed from the side.
  • the first air diffuser 20 is disposed so as to be stacked above the second air diffuser 21, and the plurality of air diffusers arranged in the horizontal direction in the first air diffuser 20.
  • the diffuser tube group 13G composed of 13 is arranged to be stacked above the diffuser tube group 14G composed of a plurality of diffuser tubes 14 arranged in the horizontal direction in the second air diffuser 21.
  • the axial center of the diffusing tube 13 in the diffusing tube group 13G and the axial center of the diffusing tube 14 in the diffusing tube group 14G are spaced apart in the horizontal direction, and the diffusing tube group 13G and the diffusing tube group 14G are viewed from the vertical direction.
  • the diffuser tube 14 is positioned so as to be shifted between the adjacent diffuser tubes 13, and the diffuser tube 13 is positioned between the adjacent diffuser tubes 14.
  • the air diffuser group is arranged in two stages, and the first air diffuser and the second air diffuser are arranged so as to be located in a mountain and a valley.
  • the positions of the air diffuser groups in the positional relationship between the m-th stage and the n-th stage (mn ⁇ 2) may be the same in the vertical direction.
  • a plurality of gas discharge ports 16 and a plurality of gas discharge ports 17 are formed on the uppermost surfaces of the diffusion tube 13 and the diffusion tube 14, and sludge is formed on the lowermost surfaces of the diffusion tube 13 and the diffusion tube 14.
  • a sludge flow discharge hole 18 for inflow and discharge is formed.
  • the position of the sludge flow discharge hole 18 in the longitudinal direction to be opened with respect to the diffuser pipe 13 and the diffuser pipe 14 can be arbitrarily set, but in this embodiment, the gas supply pipe headers 12A and 12B and gas on both sides are provided.
  • a sludge flow discharge hole 18 is formed at the center of each of the air diffusion pipes 13 and the air diffusion pipes 14. Further, the number of the sludge flow discharge holes 18 in one aeration pipe is not particularly limited. Further, the sludge flow discharge hole 18 may not be formed in the air diffuser 13 but may be formed only in the air diffuser 14. Further, as the material used for the air diffuser 4, it is easy to manufacture and inexpensive to use a structure in which the gas discharge ports 16 and 17 are opened in the air diffusion tube 13 and the air diffusion tube 14 made of metal, resin or the like. preferable.
  • the air supplied from the blower 5 is first supplied to the air supply ports 15A to 15D, and then sent to the gas supply pipe headers 12A to 12D.
  • the gas is supplied to the air diffuser 13 and the air diffuser 14 and is discharged from the gas outlet 16 and the gas outlet 17.
  • the air bubbles continuously or intermittently diffused from the gas discharge port 16 and the gas discharge port 17 of the diffuser 4 reach the membrane separation device 3 through the liquid of the water 7 to be treated, and are further separated. It passes through the vicinity of the membrane surface of the membrane module 11 and is discharged from the water surface.
  • FIG. 4 shows an enlarged view of the arrangement portion of the diffuser tube 13 and the diffuser tube 14 in the perspective view of the diffuser device
  • FIG. 5 shows the arrangement portion of the diffuser tube 13 and the diffuser tube 14 in the perspective view of the diffuser device.
  • the figure seen in the horizontal direction (axial direction) is shown.
  • the arrangement configuration of the air diffuser 13 and the air diffuser 14 in a state where the first air diffuser 20 and the second air diffuser 21 are laminated will be described. Adjacent when the first air diffuser 20 and the second air diffuser 21 (air diffuser tube group 13G and air diffuser tube group 14G) are viewed from the horizontal direction in the axial direction of the air diffusers 13 and 14 (in the direction of arrow H in FIG. 4).
  • the distance between the axes (center distance) between the air diffuser 13 and the air diffuser 14 is d1
  • the axis of the air diffuser 13 and the axis of the air diffuser 14 are
  • d2 is the distance from the straight line projected onto the horizontal plane including the axis (sometimes referred to as the distance between the second air diffuser axes, see FIGS. 4 and 6)
  • D is the outer diameter of the air diffuser 13 and the air diffuser 14.
  • d1 1.1 ⁇ d2 to 5.0 ⁇ d2
  • the 2nd air diffuser distance is the vertical direction (arrow of FIG. 5) of the 1st air diffuser 20 and the 2nd air diffuser 21 (air diffuser tube group 13G and air diffuser tube group 14G) which are arrange
  • the “adjacent diffuser tube” in the case of arranging three or more stages of diffusers is provided in the diffuser of the stage adjacent to the diffuser including the diffuser tube when viewed from a certain diffuser tube.
  • the diffusing tubes that are adjacent when viewed from the horizontal direction, that is, d2 is the smallest.
  • the outer diameters of the tubes used for the diffuser tube 13 and the diffuser tube 14 are preferably 5 ⁇ D ⁇ 100 mm, and 20 ⁇ D ⁇ 50 mm in consideration of the element clearance arranged at the top of the diffuser 4.
  • the hole diameter of the gas discharge port 16 and the gas discharge port 17 in the diffuser tube 13 and the diffuser tube 14 is preferably 1 to 15 mm, considering the viewpoint of uniform aeration and hole blockage. In this case, the thickness is more preferably 4 to 6 mm.
  • the hole pitch of the adjacent gas discharge ports 16 and the hole pitch of the adjacent gas discharge ports 17 are preferably 10 to 500 mm, and more preferably 50 to 200 mm in view of uniform aeration. .
  • the shape of the sludge flow discharge hole 18 in the air diffuser 13 and the air diffuser 14 can be arbitrarily set, such as a round hole or a long hole. When the diameters of the trachea 13 and the diffuser 14 are D, the hole diameter is 0.1D to 0.9D, and when sludge inflow and discharge are taken into account, 0.4D to 0. 6D is more preferable.
  • the permeation flow rate (LV) of the membrane separation device 3 is preferably 0.01 to 1.5 m 3 / m 2 ⁇ day in the membrane separation activated sludge treatment. This permeation flow rate is an index indicating the permeation flow rate per day and per m 2 (m 3 / m 2 ⁇ day).
  • the air diffuser 4 the air is supplied to one of the first air diffuser 20 and the second air diffuser 21, and the air diffuser supplied with air after a predetermined time has passed. Then, oxygen is supplied to the water to be treated 7 by repeating the step of supplying air to another air diffuser different from the air diffuser that stopped the air supply at regular intervals. That is, in the air diffuser 4, the air diffuser group 13G and the air diffuser group 14G are operated alternately.
  • the bubbles due to oxygen from the diffuser 4 move upward to the water surface through the water 7 to be treated, so that an upward gas-liquid mixed flow composed of the water 7 to be treated and bubbles is generated.
  • the membrane separation activated sludge treatment apparatus 1 the gas-liquid mixed flow is prevented from adhering to the membrane surface of the solid content by scrubbing the membrane surface of the separation membrane module 11, and the membrane surface is rapidly clogged. Can be prevented.
  • the first air diffuser 20 and the second air diffuser 21 are operated alternately, and the first air diffuser 20 and the second air diffuser 21 are continuously operated from different positions. By performing a good aeration, it is possible to supply oxygen uniformly to the separation membrane module 11 with a high density.
  • the aeration condition of the aeration device 4 is preferably aeration in the range of 50 to 300 m 3 / m 2 / hr at the aeration linear velocity.
  • This aeration linear velocity is an index indicating the amount of air (m 3 / hr.) Diffused per 1 m 2 of the membrane separation device projection area of the amount of air diffused from the diffuser 4.
  • the MLSS (biological reaction tank suspended solids) concentration of the water to be treated 7 in the membrane separation tank 2 is preferably set to 3000 to 15000 mg / L.
  • MLSS concentration is an alternative indicator of microbial concentration.
  • the MLSS concentration is more preferably 7000 to 12000 mg / L.
  • the membrane separation device 3 and the air diffuser 4 connected to the blower 5 are provided in the membrane separation tank 2, and the membrane separation device 3 sucks and filters the water 7 to be treated by the suction pump 6.
  • the water 7 to be treated is subjected to solid-liquid separation.
  • the transmembrane pressure difference is measured by the pressure gauge 8 installed between the membrane separation device 3 and the suction pump 6, and the value of the pressure gauge 8 is monitored.
  • the operation management of the membrane separation device 3 is possible.
  • the first air diffuser 20 and the second air diffuser 21 are stacked in two stages, that is, the air diffuser group 13G and the air diffuser group 14G are stacked in two stages and adjacent to each other.
  • the mode in which the first air diffuser 20 and the second air diffuser 21 are stacked and arranged in two stages has been described. There may be.
  • air is supplied to one of the air diffusers, and the air supply to the air diffuser that has supplied air after a predetermined time has elapsed is stopped. Thereafter, the step of supplying air to one of the other air diffusers different from the air diffuser that has stopped supplying air can be repeated at regular intervals.
  • oxygen can be uniformly supplied to the separation membrane module 11 with high density.
  • the diffuser tube group 13G is provided in the 1st diffuser 20, and the diffuser tube group 14G is provided in the 2nd diffuser 21, and the diffuser tube group 13G and the diffuser tube group 14G are laminated
  • a plurality of air diffuser groups are stacked in a single air diffuser in a plurality of stages in the vertical direction so that adjacent air diffuser tubes are not aligned on the vertical line, for example, a staggered arrangement Good.
  • a plurality of diffuser tubes are arranged side by side in the horizontal direction, and a plurality of diffuser tube groups composed of the plurality of diffuser tubes arranged in the horizontal direction are arranged in a plurality of stages in the vertical direction.
  • the gas supply pipe header may be arranged so as to supply gas to each air diffuser through a single air supply port of the gas supply pipe header.
  • a means for switching the flow path of the gas supplied into the gas supply pipe header such as a valve is provided, so that the air is diffused by a group of diffused pipes stacked vertically. You may make it comprise so that change is possible.
  • a plurality of air diffusers 13 are disposed between the gas supply pipe headers 12A and 12B, and a plurality of air diffusers 14 are disposed between the gas supply pipe headers 12C and 12D.
  • the aspect which comprises the 2nd air diffuser 21 was demonstrated, it is the aspect which provides a gas supply pipe header only in the one side of the air diffuser 13 and the air diffuser 14 of the 1st air diffuser 20 and the 2nd air diffuser 21. It doesn't matter.
  • Example 1 In Example 1, specific dimensions were set in the membrane separation activated sludge treatment apparatus 1 described above, and operation was performed under predetermined conditions.
  • a hollow fiber membrane module as a separation membrane module 11 (trade name: SADF membrane, manufactured by Mitsubishi Rayon Co., Ltd .: hollow fiber) in which a polyethylene hollow fiber membrane for microfiltration with an average pore size of 0.1 ⁇ m is developed and fixed as a separation membrane in a screen shape.
  • the module length in the fiber axis direction of the membrane is 125 cm; the membrane area is 25 m 2, and the 11 modules are arranged in the horizontal direction so that the center distance between adjacent modules is 4.5 cm, and the length is 130 cm, the width is 75 cm, and the height is 210 cm.
  • the membrane separation device 3 placed in a frame was immersed in the water 7 to be treated.
  • the first air diffuser 20 is formed by branching and providing six air diffuser tubes 13 installed on the same plane of the gas supply pipe headers 12A and 12B (in addition, a plurality of gas diffuser tubes arranged in the horizontal direction are arranged in six lines).
  • a diffuser tube group 13G is constituted by the diffuser tube 13).
  • the 2nd air diffuser 21 was comprised by branching from each of the gas supply pipe headers 12C and 12D, and providing the six air diffusion pipes 14 installed on the same plane of the gas supply pipe headers 12C and 12D.
  • a diffuser tube group 14G is composed of six diffuser tubes 14 arranged side by side in the horizontal direction).
  • the diameters of the air supply ports 15A to 15D were 32 mm, and air was supplied evenly to the gas supply pipe headers 12A to 12D, respectively.
  • As the gas supply pipe headers 12A to 12D square pipes having an outer diameter of 50 mm were used, and the gas supply pipe headers facing each other were connected by a diffuser pipe.
  • the distance d1 between the trachea axes is set to 4.8 cm, and when the first air diffuser 20 and the second air diffuser 21 are stacked and installed, the air diffuser 13 and the air diffuser 14 adjacent to each other when viewed from the vertical direction are set.
  • the distance between the second air diffuser tubes is set to 2.7 cm, and the air diffuser 13 and the air diffuser 14 are made of stainless steel having an outer diameter of 2.7 cm, an inner diameter of 2.4 cm, and a length of 114.5 cm.
  • the diffuser pipe 13 and the diffuser pipe 14 each have 22 circular gas discharge ports 16 and 17 each having a diameter of 0.4 cm on the uppermost surface and an interval of 5 cm between the discharge ports, and a sludge flow discharge hole 18 on the lowermost surface. As described above, one elongated hole having a width of 1.5 cm and a length of 5 cm was provided in the central portion.
  • the blower 5 was used to supply the aeration tube 13 and the aeration tube 14 at 140 L / min and aeration linear velocity of 150 m 3 / m 2 / hr.
  • the filtration process was continued for one month with intermittent operation for 1 minute. And the continuous operation was performed for one month, measuring the transmembrane differential pressure at the time of suction filtration with the pressure gauge 8 installed between the membrane separator 3 and the suction pump 6.
  • FIG. 9 shows the operation results of the membrane separation activated sludge treatment apparatus 1 according to Example 1.
  • the diamond-shaped plots in the figure show the operation results of Example 1.
  • the membrane separation activated sludge treatment apparatus 1 according to Example 1 no increase in transmembrane pressure difference was observed, and stable operation was possible while maintaining the initial differential pressure of 6 kPa. Further, when the membrane separation device 3 was pulled up and visually confirmed, the separation membrane mounted on the membrane separation device 3 was maintained at the initial level without adhesion of sludge.
  • Example 2 the dimension setting of each part is changed from Example 1 above, and the membrane separation device 3 is immersed in activated sludge under the same conditions as in Example 1 for the aeration condition and filtration condition, and the suction pump 6 was used for driving.
  • the separation membrane module 11 used in the membrane separation device 3 was the same as that used in Example 1.
  • the air diffuser 4 four gas supply pipe headers 12A to 12D having four air supply ports 15A to 15D are prepared and branched from the gas supply pipe headers 12A and 12B, respectively.
  • the first diffuser 20 is configured by providing six diffuser tubes 13 installed on the same plane of 12B (in addition, the diffuser tube group 13G is composed of six diffuser tubes 13 arranged side by side in the horizontal direction. Configured).
  • the 2nd air diffuser 21 was comprised by branching from each of the gas supply pipe headers 12C and 12D, and providing the six air diffusion pipes 14 installed on the same plane of the gas supply pipe headers 12C and 12D.
  • a diffuser tube group 14G is composed of six diffuser tubes 14 arranged side by side in the horizontal direction).
  • the diameters of the air supply ports 15A to 15D were 32 mm, and air was supplied evenly to the gas supply pipe headers 12A to 12D, respectively.
  • As the gas supply pipe headers 12A to 12D square pipes having an outer diameter of 50 mm were used, and the gas supply pipe headers facing each other were connected by a diffuser pipe.
  • the distance d1 is set to 11 cm and the first air diffuser 20 and the second air diffuser 21 are stacked and installed
  • the second distance between the adjacent air diffuser 13 and the air diffuser 14 seen from the vertical direction is shown.
  • the distance d2 between the diffuser tubes is set to 4.5 cm
  • the diffuser tube 13 and diffuser tube 14 are 12 stainless steel pipes having an outer diameter of 2.7 cm, an inner diameter of 2.4 cm, and a length of 114.5 cm. They were used so that their longitudinal directions were parallel to the longitudinal direction of the hollow fiber membrane.
  • the diffuser pipe 13 and the diffuser pipe 14 each have 22 circular gas discharge ports 16 and 17 each having a diameter of 0.4 cm on the uppermost surface and an interval of 5 cm between the discharge ports, and a sludge flow discharge hole 18 on the lowermost surface. As described above, one elongated hole having a width of 1.5 cm and a length of 5 cm was provided in the central portion.
  • FIG. 9 shows the operation results of the membrane separation activated sludge treatment apparatus 1 according to Example 2.
  • the plots with square marks in the figure show the operation results of Example 2.
  • no increase in transmembrane pressure difference was observed, and stable operation was possible while maintaining the initial pressure difference of 6 kPa.
  • the membrane separation device 3 was pulled up and visually confirmed, the separation membrane mounted on the membrane separation device 3 was maintained at the initial level without adhesion of sludge.
  • Example 3 the dimension setting of each part was changed from the said Example 1, the membrane separation apparatus 3 was immersed in activated sludge on the conditions similar to Example 1 for aeration conditions and filtration conditions, and a suction pump was used. Used to drive.
  • the air diffuser 4 four gas supply pipe headers 12A to 12D having four air supply ports 15A to 15D are prepared and branched from the gas supply pipe headers 12A and 12B, respectively.
  • the first diffuser 20 is configured by providing six diffuser tubes 13 installed on the same plane of 12B (in addition, the diffuser tube group 13G is composed of six diffuser tubes 13 arranged side by side in the horizontal direction. Configured).
  • the 2nd air diffuser 21 was comprised by branching from each of the gas supply pipe headers 12C and 12D, and providing the six air diffusion pipes 14 installed on the same plane of the gas supply pipe headers 12C and 12D.
  • a diffuser tube group 14G is composed of six diffuser tubes 14 arranged side by side in the horizontal direction).
  • the diameters of the air supply ports 15A to 15D were 32 mm, and air was supplied evenly to the gas supply pipe headers 12A to 12D, respectively.
  • As the gas supply pipe headers 12A to 12D square pipes having an outer diameter of 50 mm were used, and the gas supply pipe headers facing each other were connected by a diffuser pipe.
  • the first diffuser tube axis between the diffuser tubes 13 and 14 adjacent to each other when viewed from the horizontal direction when the first diffuser device 20 and the second diffuser device 21 are stacked and installed.
  • the tube distance d1 is set to 5.1 cm and the first air diffuser 20 and the second air diffuser 21 are stacked and installed, the distance between the adjacent air diffuser 13 and the air diffuser 14 seen from the vertical direction is set.
  • the distance d2 between the second air diffuser tubes is set to 1.2 cm.
  • the stainless steel pipe 12 having an outer diameter of 2.7 cm, an inner diameter of 2.4 cm, and a length of 114.5 cm is used.
  • the books were used and arranged so that the longitudinal direction thereof was parallel to the longitudinal direction of the hollow fiber membrane.
  • the diffuser pipe 13 and the diffuser pipe 14 each have 22 circular gas discharge ports 16 and 17 each having a diameter of 0.4 cm on the uppermost surface and an interval of 5 cm between the discharge ports, and a sludge flow discharge hole 18 on the lowermost surface.
  • one elongated hole having a width of 1.5 cm and a length of 5 cm was provided in the central portion.
  • the operation result of the membrane separation activated sludge treatment apparatus 1 according to Example 3 is shown in FIG.
  • the triangle marks in the figure show the operation results of Example 3.
  • a slight increase in the transmembrane pressure difference was observed, and after 30 days, a 3 kPa increase was observed from the initial pressure difference. Stable operation was possible.
  • the membrane separation device 3 was pulled up and visually confirmed, the separation membrane mounted on the membrane separation device 3 did not adhere to sludge and maintained the initial level.
  • Example 4 the dimension setting of each part was changed from Example 1 above, and the membrane separation device 3 was immersed in activated sludge under the same conditions as in Example 1 for the aeration condition and filtration condition, and the suction pump 6 Driving was performed using.
  • the air diffuser 4 is arranged below the membrane separation device 3, and four gas supply pipe headers 12A to 12D having four air supply ports 15A to 15D are prepared and branched from the gas supply pipe headers 12A and 12B, respectively.
  • the six air diffusers 13 installed on the same plane of the gas supply pipe headers 12A and 12B are provided to form the first air diffuser 20 (note that a plurality of diffusers arranged in the horizontal direction are arranged in parallel.
  • the trachea 13 constitutes a diffuser tube group 13G).
  • the 2nd air diffuser 21 was comprised by branching from each of the gas supply pipe headers 12C and 12D, and providing the six air diffusion pipes 14 installed on the same plane of the gas supply pipe headers 12C and 12D.
  • a diffuser tube group 14G is composed of six diffuser tubes 14 arranged side by side in the horizontal direction).
  • the diameters of the air supply ports 15A to 15D were 32 mm, and air was supplied evenly to the gas supply pipe headers 12A to 12D, respectively.
  • As the gas supply pipe headers 12A to 12D square pipes having an outer diameter of 50 mm were used, and the gas supply pipe headers facing each other were connected by a diffuser pipe.
  • the air diffuser 13 and the 2nd air diffuser of the 1st air diffuser 20 which adjoins seeing from the horizontal direction.
  • the vertical distance when the first air diffuser axis distance d1 between the air diffuser 14 and the air diffuser 14 is set to 3.8 cm and the first air diffuser 20 and the second air diffuser 21 are stacked and installed.
  • the distance d2 between the second air diffuser axes between the air diffuser 13 of the first air diffuser 20 and the air diffuser 14 adjacent to the second air diffuser 21 is set to be 2.7 cm.
  • each air diffuser has 22 circular gas outlets with a diameter of ⁇ 0.4 cm on the uppermost surface, the interval between the outlets is 5 cm, and the lowermost surface is a sludge flow discharge hole 18 with a width of 1.5 cm and a length of 5 cm.
  • One long hole was provided at the center.
  • d1 1.27D and d1> 1.3D are satisfied between the outer diameter D of the air diffuser, the first air diffuser axis distance d1, and the second air diffuser axis distance d2.
  • d1 1.41d2
  • d1 1.1 ⁇ d2 to 5.0 ⁇ d2 is satisfied.
  • a pressure gauge was installed between the membrane separator and the suction pump, and continuous operation was performed for one month while measuring the transmembrane pressure difference during suction filtration.
  • FIG. 9 shows the operation result of the membrane separation activated sludge treatment apparatus according to Example 4.
  • the x-marked plot in the figure shows the operation result of Example 4.
  • the transmembrane pressure difference gradually increased from the past 20 days, and after 30 days, the pressure difference increased by 30 kPa from the initial pressure difference. Observed. Further, when the membrane separator was pulled up and visually confirmed, some sludge was observed on the separation membrane mounted on the membrane separator.
  • d2 is the distance from the straight line projected onto the horizontal plane including the axis of (diffusion tube distance) d2 and the outer diameters of the diffusion tube 13 and the diffusion tube 14 are D. It was confirmed that stable filtration can be continued for a longer period when the diffuser 13 and the diffuser 14 are arranged so as to satisfy the relationship of 0 ⁇ d2, d1> 1.3D.
  • the solid-liquid separation device of the present invention has less obstruction of the gas discharge port of the air diffuser even after long-term filtration. Since it can be continued, it is useful, for example, as a membrane separation activated sludge treatment apparatus.
  • Membrane separation activated sludge treatment equipment solid-liquid separation equipment
  • Membrane separator 4 Air diffuser 9
  • Hollow fiber membrane 10 Filtration membrane sheet 11
  • Separation membrane module 12 Gas supply pipe header 13, 14 Air diffuser 13G, 14G Air diffuser group 16, 17 Gas outlet 20

Abstract

A membrane separation device has multiple separation membrane modules arranged so as to be separated by an interval, and the separation membrane modules have multiple filtration membrane sheets arranged in parallel. Below the aforementioned separation membrane modules is disposed an aeration device provided with multiple aeration tubes which have a gas outlet and are arranged in parallel. Gas is supplied to the aforementioned aeration tubes, and in the solid-liquid separator device, which aerates the aforementioned separation membrane modules from the aforementioned gas outlets, the aforementioned aeration tubes are arranged in horizontal rows. Aeration tube groups, which comprise said multiple aeration tubes arranged in horizontal rows, are arranged so as to be stacked in multiple vertical levels, wherein the aeration tubes on neighboring levels are not vertically aligned. The solid-liquid separator device has a means for switching the supply of air to the different aeration tube groups.

Description

固液分離装置及びその運転方法Solid-liquid separator and operation method thereof
 本発明は、水処理にて、固液分離を行う固液分離装置及びその運転方法に関する。
本願は、2010年6月1日に、日本に出願された特願2010-125927号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solid-liquid separation apparatus that performs solid-liquid separation in water treatment and an operation method thereof.
This application claims priority based on Japanese Patent Application No. 2010-125927 filed in Japan on June 1, 2010, the contents of which are incorporated herein by reference.
 従来より、浄水処理、下排水処理、或いは産業排水の処理等、濁度の高い被処理水の固液分離を行う方法として、砂濾過や重力沈殿等が行われている。しかしながら、これら方法による固液分離は、得られる処理水の水質が不充分となる場合が生じることや、固液分離のために広大な用地を必要とするといった不都合を有している。そこで、このような不都合を解決する方法として、近年精密濾過膜、限外濾過膜等の分離膜を配設した分離膜モジュールを用いて被処理水の固液分離を行う方法が種々検討されている。分離膜を用いて被処理水の濾過処理を行うと、水質の高い処理水を得ることができる。 Conventionally, sand filtration, gravity precipitation, and the like have been performed as methods for solid-liquid separation of water to be treated with high turbidity, such as water purification treatment, sewage treatment, or industrial wastewater treatment. However, solid-liquid separation by these methods has disadvantages that the quality of the treated water obtained may be insufficient, and that a large site is required for solid-liquid separation. Therefore, as a method for solving such inconvenience, various methods for performing solid-liquid separation of water to be treated using a separation membrane module provided with a separation membrane such as a microfiltration membrane and an ultrafiltration membrane have been recently studied. Yes. When water to be treated is filtered using a separation membrane, treated water with high water quality can be obtained.
 分離膜を用いて被処理水の固液分離を行う場合、濾過処理を継続するに従って懸濁物質による分離膜表面の細孔の目詰まりが進行するため、濾過流量の低下、或いは膜間差圧の上昇が生じる。そこで、このような状態を回復させるため、分離膜を用いた濾過処理では通常、膜モジュールの下方に散気管を配設し、散気管からエアーの散気を行い、分離膜を揺動させることにより膜表面の懸濁物質を引き剥がす方法が行われている。 When solid-liquid separation of water to be treated is performed using a separation membrane, the clogging of pores on the separation membrane surface due to suspended substances progresses as the filtration treatment continues, so the filtration flow rate decreases or the transmembrane pressure difference Rise. Therefore, in order to recover such a state, in a filtration process using a separation membrane, a diffusion tube is usually provided below the membrane module, air is diffused from the diffusion tube, and the separation membrane is swung. The method of peeling off the suspended substance on the surface of the membrane is performed.
 しかしながら、膜モジュールを用いて排水の濾過を行う方式においても、運転が長期にわたった場合、散気装置より吐出される気泡を分離膜に対し均一に当て続けることが困難であり、懸濁物質が膜表面の細孔を閉塞し、濾過流量が低下するため、低下した濾過流量を回復するための、頻繁なメンテナンス作業が必要になるといった不都合があった。
 そこで、これに対し特許文献1には、分離膜モジュールの水平方向の断面積に応じて散気装置の気体吐出口数を設定する提案がなされている。
However, even in the case of drainage filtration using a membrane module, it is difficult to keep the bubbles discharged from the air diffuser uniformly applied to the separation membrane when the operation is performed over a long period of time. However, there is a problem that frequent maintenance work is required to recover the reduced filtration flow rate because the pores on the membrane surface are blocked and the filtration flow rate is lowered.
In view of this, Patent Document 1 proposes to set the number of gas discharge ports of the diffuser according to the horizontal sectional area of the separation membrane module.
国際公開第99/29630号パンフレットWO99 / 29630 pamphlet
 しかしながら、特許文献1に記載の技術に準じて散気装置の気体吐出口数を設定した場合には、気体吐出口数が過剰に多くなる場合があり、気体吐出口数を設ける散気管数が増大し、分離膜モジュールの水平方向の断面積に占める散気管の割合が大きくなり、散気管間の流路が狭くならざるを得ず、曝気が不均一となり分離膜モジュールが閉塞する可能性があるという不都合がある。 However, when the number of gas discharge ports of the air diffuser is set according to the technique described in Patent Document 1, the number of gas discharge ports may be excessively increased, and the number of air diffuser tubes provided with the number of gas discharge ports increases. The ratio of the diffuser tube to the horizontal cross-sectional area of the separation membrane module becomes large, the flow path between the diffuser tubes must be narrowed, and aeration may become uneven and the separation membrane module may be blocked. There is.
 本発明はかかる実情に鑑みてなされたものであり、長期にわたる濾過を行っても散気管の気体吐出口の閉塞が少なく、その結果、懸濁物による膜面の細孔の閉塞が少なく、安定した濾過が長期間継続可能な固液分離装置及びその運転方法の提供を目的とする。 The present invention has been made in view of such circumstances, and even when filtration is performed over a long period of time, there is little blockage of the gas discharge port of the diffuser tube, and as a result, there is little blockage of the pores on the membrane surface due to the suspension, and the stable An object of the present invention is to provide a solid-liquid separator capable of continuing the filtration for a long period of time and an operation method thereof.
 上記課題の解決手段として、本発明は以下の態様を包含する。 As a means for solving the above problems, the present invention includes the following aspects.
[1]本発明の第一の態様は、濾過膜シート(例えば実施形態における濾過膜シート10)を複数枚並列して配置した分離膜モジュール(例えば実施形態における分離膜モジュール11)を間隔を隔てて複数配置した膜分離装置(例えば実施の形態における膜分離装置3)の前記分離膜モジュールの下方に、気体吐出口(例えば実施形態における気体吐出口16)を有する散気管(例えば実施形態における散気管13)を複数備えるとともに該複数の散気管をそれぞれ平行に設ける散気装置(例えば実施形態における散気装置4)を設け、前記散気管に気体を供給し、前記気体吐出口から前記分離膜モジュールに対して散気を行なう固液分離装置において、前記散気管を水平方向に複数並べて配置し、該水平方向に並べて配置された複数の散気管からなる散気管群(例えば実施形態における散気管群13G、14G)を上下方向に複数段、かつ、隣接する段の散気管同士が鉛直線上に並ばないように積層して配置し、それぞれの散気管群に対して給気を切り替える手段(例えば、実施形態におけるバルブ等の自動弁)を有する固液分離装置である。 [1] In the first aspect of the present invention, separation membrane modules (for example, separation membrane module 11 in the embodiment) in which a plurality of filtration membrane sheets (for example, the filtration membrane sheet 10 in the embodiment) are arranged in parallel are spaced apart. A diffuser tube (for example, a diffuser in the embodiment) having a gas discharge port (for example, the gas discharge port 16 in the embodiment) below the separation membrane module of a plurality of membrane separation devices (for example, the membrane separation device 3 in the embodiment). An air diffuser (for example, the air diffuser 4 in the embodiment) provided with a plurality of air tubes 13) and provided in parallel with each other is provided, gas is supplied to the air diffuser, and the separation membrane is supplied from the gas discharge port. In a solid-liquid separator that diffuses air to a module, a plurality of the diffuser tubes are arranged in a horizontal direction, and the plurality of diffusers arranged in the horizontal direction are arranged. A plurality of air diffusion tube groups (for example, the air diffusion tube groups 13G and 14G in the embodiment) made of tubes are arranged in a plurality of layers in the vertical direction so that adjacent air diffusion tubes do not line up on the vertical line. It is a solid-liquid separator having means for switching supply air to the air diffusing tube group (for example, an automatic valve such as a valve in the embodiment).
[2]前記[1]に記載の固液分離装置は、前記散気装置を、複数の前記散気管群のうちの少なくとも一つの散気管群(例えば実施形態における散気管群13G)と、該散気管群の各散気管に同一平面上で連通し各散気管に気体を供給する少なくとも一本の気体供給管ヘッダー(例えば実施形態における気体供給管ヘッダー12A)とで構成される複数の散気装置で構成し、前記複数の散気装置を上下方向に複数段に積層して設置することで、前記散気管群を上下方向に、隣接する段の散気管同士が鉛直線上に並ばないように積層して配置することが好ましい。 [2] In the solid-liquid separation device according to [1], the air diffusing device includes at least one air diffusing tube group (for example, the air diffusing tube group 13G in the embodiment) of the plurality of air diffusing tube groups, A plurality of air diffusers configured with at least one gas supply pipe header (for example, the gas supply pipe header 12A in the embodiment) that communicates with each of the air diffusion pipes of the air diffusion pipe group on the same plane and supplies gas to each of the air diffusion pipes. By configuring the apparatus and stacking the plurality of diffuser devices in a plurality of stages in the vertical direction, the diffuser tube group is arranged in the vertical direction so that adjacent diffuser pipes do not line up on the vertical line. It is preferable to arrange them in a stacked manner.
[3]前記[1]又は[2]に記載の固液分離装置は、前記濾過膜シートが、多数の中空糸膜を平行に並べてなる濾過膜シートであることが好ましい。 [3] In the solid-liquid separator according to [1] or [2], the filtration membrane sheet is preferably a filtration membrane sheet in which a number of hollow fiber membranes are arranged in parallel.
[4]前記[1]~[3]に記載の固液分離装置は、複数段に積層して配置された前記散気管群を水平方向から前記散気管の軸方向に見た場合に隣接する、一対の散気管群の散気管の軸間距離である散気管軸間距離をd1、
 前記一対の散気管群のうちの一方の散気管の軸線と、前記他方の散気管の軸線を前記一方の散気管の軸線を含む水平面上に射影した直線との距離をd2、
 前記散気管の外径をD、としたときに、
 d1=1.1×d2~5.0×d2を満足し、かつ、d1>1.3Dを満足するように前記散気管が配置されていることが好ましい。
[4] The solid-liquid separator according to [1] to [3] is adjacent when the diffuser tube group arranged in a plurality of stages is viewed from the horizontal direction in the axial direction of the diffuser tube. , The distance between the axes of the diffuser tubes, which is the distance between the axes of the diffuser tubes of the pair of diffuser tubes,
A distance between an axis of one of the pair of air diffuser groups and a straight line obtained by projecting an axis of the other air diffuser onto a horizontal plane including the axis of the one air diffuser;
When the outer diameter of the air diffuser is D,
It is preferable that the air diffuser is disposed so as to satisfy d1 = 1.1 × d2 to 5.0 × d2 and d1> 1.3D.
[5]本発明の第二の態様は、上記[1]~[4]、のいずれかに記載の固液分離装置を用いた固液分離装置の運転方法であって、前記複数の散気管群のうち、一つの散気管群に空気を供給する工程と、前記空気を供給した散気管群への空気供給を停止する工程と、前記空気供給を停止した散気管群とは異なる他の散気管群のうちの一つの散気管群に空気を供給する工程と、
を一定期間毎に繰り返す固液分離装置の運転方法。である。
[5] A second aspect of the present invention is a method for operating a solid-liquid separation device using the solid-liquid separation device according to any one of [1] to [4], wherein the plurality of aeration tubes A step of supplying air to one diffuser tube group, a step of stopping air supply to the diffuser tube group supplied with the air, and another diffuser tube different from the diffuser tube group stopped with the air supply. Supplying air to one of the trachea groups;
The operation method of the solid-liquid separator which repeats every fixed period. It is.
 本発明によれば、長期にわたる濾過を行っても散気管の気体吐出口の閉塞を少なく抑えることができ、その結果、懸濁物による膜面の細孔の閉塞を少なく抑えることができ、安定した濾過が長期間継続可能となる。 According to the present invention, even when filtration is performed over a long period of time, it is possible to suppress the blockage of the gas discharge port of the diffusing tube, and as a result, it is possible to suppress the blockage of the pores of the membrane surface due to the suspension, and to stabilize Filtration can be continued for a long time.
本発明の実施の形態に係る膜分離活性汚泥処理装置の概略構成図である。It is a schematic block diagram of the membrane separation activated sludge processing apparatus which concerns on embodiment of this invention. 膜分離活性汚泥処理装置における散気装置の斜視図である。It is a perspective view of the aeration apparatus in a membrane separation activated sludge processing apparatus. 散気装置における散気管の斜視図である。It is a perspective view of the diffuser tube in an air diffuser. 散気管の配置を説明する斜視図である。It is a perspective view explaining arrangement | positioning of a diffuser tube. 散気管を水平方向(軸方向)に見た図である。It is the figure which looked at the diffuser tube in the horizontal direction (axial direction). 本発明の実施例1に係る膜分離活性汚泥処理装置の散気管の配置を説明する図である。It is a figure explaining arrangement | positioning of the diffuser tube of the membrane separation activated sludge processing apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る膜分離活性汚泥処理装置の散気管の配置を説明する図である。It is a figure explaining arrangement | positioning of the diffuser tube of the membrane separation activated sludge processing apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る膜分離活性汚泥処理装置の散気管の配置を説明する図である。It is a figure explaining arrangement | positioning of the diffuser tube of the membrane separation activated sludge processing apparatus which concerns on Example 3 of this invention. 実施例に係る膜分離活性汚泥処理装置の運転結果を示した図である。It is the figure which showed the driving | operation result of the membrane separation activated sludge processing apparatus which concerns on an Example.
 以下、図面に基づいて本発明の実施の形態を詳細に説明する。
 図1は本発明の実施の形態に係る固液分離装置である膜分離活性汚泥処理装置1の概略構成図である。本実施形態の膜分離活性汚泥処理装置1は、膜分離槽2内に設けられた膜分離装置3と、膜洗浄用の散気装置4とを備えている。散気装置4にはブロワー5が接続され、膜分離装置3には吸引ポンプ6が接続されている。膜分離装置3は、吸引ポンプ6により膜分離槽2内の被処理水7を吸引濾過することで固液分離し処理水を得る。また、膜分離装置3と吸引ポンプ6との間には圧力計8が設けられており、膜分離活性汚泥処理装置1の運転中には圧力計8により膜分離装置3における膜間差圧が測定されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a membrane separation activated sludge treatment apparatus 1 which is a solid-liquid separation apparatus according to an embodiment of the present invention. The membrane separation activated sludge treatment apparatus 1 according to this embodiment includes a membrane separation apparatus 3 provided in a membrane separation tank 2 and an air diffuser 4 for membrane cleaning. A blower 5 is connected to the air diffuser 4, and a suction pump 6 is connected to the membrane separator 3. The membrane separation device 3 performs solid-liquid separation by suction filtration of the water 7 to be treated in the membrane separation tank 2 by the suction pump 6 to obtain treated water. In addition, a pressure gauge 8 is provided between the membrane separation device 3 and the suction pump 6, and during the operation of the membrane separation activated sludge treatment device 1, the transmembrane differential pressure in the membrane separation device 3 is caused by the pressure gauge 8. It has been measured.
 膜分離装置3は、多数の分離膜である中空糸膜9を平行に並べてなる濾過膜シート10を複数枚並列して配置した(組んだ)分離膜モジュール11を一定の間隔を隔てて複数配置して構成されており、中空糸膜9には複数の細孔が形成され、この細孔を被処理水7が通過することで固液分離がなされる。分離膜モジュール11で搭載する分離膜としては、精密濾過膜または限外濾過膜とすることが好ましく、中空糸膜の他、平膜、管状膜、袋状膜等を用いてもよいが、容積ベースで比較した場合に膜面積の高集積が可能である中空糸膜が好ましい。また、分離膜の材質としては、ポリエチレン、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン(ポリテトラフルオロエチレン))、セラミックス等を適用することができる。 The membrane separation device 3 has a plurality of separation membrane modules 11 arranged in parallel (assembled) with a plurality of filtration membrane sheets 10 in which a plurality of hollow fiber membranes 9 which are separation membranes are arranged in parallel. The hollow fiber membrane 9 is formed with a plurality of pores, and the water 7 to be treated passes through the pores, whereby solid-liquid separation is performed. The separation membrane mounted in the separation membrane module 11 is preferably a microfiltration membrane or an ultrafiltration membrane, and a flat membrane, a tubular membrane, a bag-like membrane, etc. may be used in addition to a hollow fiber membrane. A hollow fiber membrane capable of highly integrating the membrane area when compared at the base is preferable. Moreover, as a material of the separation membrane, polyethylene, cellulose, polyolefin, polysulfone, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene (polytetrafluoroethylene)), ceramics, or the like can be applied.
 上記分離膜の細孔の孔径としては、特に限定されるものではないが、一般に限外濾過膜と呼ばれる孔径0.001~0.1μmのもの、または、一般に精密濾過膜と呼ばれる孔径0.1~1μmのもの、あるいはそれ以上の孔径のものを用いることが可能であり、固液分離の対象となる物質の粒径に応じて選択される。例えば活性汚泥の固液分離に用いるならば、0.5μm以下とするのが好ましく、また、浄水の濾過のように、除菌が必要な場合は0.1μm以下とするのが好ましい。 The pore size of the pores of the separation membrane is not particularly limited, but a pore size of 0.001 to 0.1 μm, generally called an ultrafiltration membrane, or a pore size of 0.1, generally called a microfiltration membrane. Those having a pore size of ˜1 μm or larger can be used, and are selected according to the particle size of the substance to be subjected to solid-liquid separation. For example, if it is used for solid-liquid separation of activated sludge, the thickness is preferably 0.5 μm or less, and if sterilization is required, such as filtration of purified water, it is preferably 0.1 μm or less.
 散気装置4は膜分離装置3の下方に設けられ、図2を併せて参照し、ブロワー5と連通する断面視矩形の管状体である気体供給管ヘッダー12A~12Dを備え、気体供給管ヘッダー12A、12Bを一定間隔を隔てて平行配置するとともに、気体供給管ヘッダー12A、12B間に散気管13を複数配設することで構成される第1散気装置20と、気体供給管ヘッダー12C、12Dを一定間隔を隔てて平行配置するとともに、気体供給管ヘッダー12C、12D間に散気管14を複数配設することで構成される第2散気装置21とで構成されている。 The air diffuser 4 is provided below the membrane separator 3 and includes gas supply pipe headers 12A to 12D, which are tubular bodies having a rectangular cross section in communication with the blower 5 with reference to FIG. 12A and 12B are arranged in parallel at a predetermined interval, and a first air diffuser 20 configured by arranging a plurality of air diffusers 13 between the gas supply pipe headers 12A and 12B, a gas supply pipe header 12C, 12D is arranged in parallel with a predetermined interval, and a second air diffuser 21 configured by disposing a plurality of air diffusers 14 between the gas supply pipe headers 12C and 12D.
 気体供給管ヘッダー12A~12Dの一端部にはそれぞれ、ブロワー5より送気された空気が供給される給気口15A~15Dが設けられている。散気管13は、気体供給管ヘッダー12A、12Bの対向する各内面に両端部が接続されており、散気管13の内部は、気体供給管ヘッダー12A、12B内部に連通されている。散気管14は、気体供給管ヘッダー12C、12Dの対向する各内面に両端部が接続されており、散気管14の内部は、気体供給管ヘッダー12C、12D内部に連通されている。 The gas supply pipe headers 12A to 12D are provided with air supply ports 15A to 15D to which air supplied from the blower 5 is supplied, respectively. Both ends of the air diffuser 13 are connected to the opposing inner surfaces of the gas supply pipe headers 12A and 12B, and the inside of the air diffuser 13 communicates with the gas supply pipe headers 12A and 12B. Both ends of the air diffuser pipe 14 are connected to the opposing inner surfaces of the gas supply pipe headers 12C and 12D, and the inside of the air diffuser pipe 14 communicates with the gas supply pipe headers 12C and 12D.
 複数の散気管13は相互に平行な状態で、水平方向に一定の間隔を隔てて複数並べて配置され、気体供給管ヘッダー12Aの同一平面上にその一端部がそれぞれ接続され、気体供給管ヘッダー12Bの同一平面上にその他端部がそれぞれ接続されている。また、複数の散気管14も相互に平行な状態で、水平方向に一定の間隔を隔てて複数並べて配置され、気体供給管ヘッダー12Cの同一平面上に一端部をそれぞれ接続され、気体供給管ヘッダー12Dの同一平面上に他端部をそれぞれ接続されている。
 上記の通り、本発明においては、同一水平面上に配された複数の散気管13で構成される散気管群が複数段設けることを特徴としているが、さらに、これらの散気管群は隣接する段の散気管同士が鉛直線上に並ばないように積層して配置することを特徴としている。
隣接する散気管同士を鉛直方向同一面上に配置した場合、運転中に散気管内を気体が通過すること等に伴い散気管が振動するが、これに伴い、隣接する散気管同士が極端に近づくか最悪接触するケースがあり、散気管間の液体流路を十分確保することができず、均一な散気ができなくなるおそれがある。一方、隣接しない散気管群についてはこの点考慮する必要はなく、例えば横から見た場合に千鳥格子に散気管を配置してもよい。
The plurality of air diffusion tubes 13 are arranged in parallel with each other at a predetermined interval in the horizontal direction, and one end portions thereof are respectively connected on the same plane of the gas supply tube header 12A, and the gas supply tube header 12B. The other ends are connected on the same plane. In addition, a plurality of diffuser tubes 14 are arranged in parallel with each other at a predetermined interval in the horizontal direction, and one end portions thereof are connected to the same plane of the gas supply tube header 12C, respectively. The other end is connected to the same plane of 12D.
As described above, the present invention is characterized in that a plurality of diffuser tube groups each composed of a plurality of diffuser tubes 13 arranged on the same horizontal plane are provided. Further, these diffuser tube groups are adjacent to each other. The diffusing tubes are stacked and arranged so as not to line up on the vertical line.
When adjacent diffuser tubes are arranged on the same plane in the vertical direction, the diffuser tubes vibrate as the gas passes through the diffuser tube during operation, etc. There are cases in which they approach each other or make the worst contact, so that a sufficient liquid flow path between the diffuser tubes cannot be secured, and there is a possibility that uniform aeration cannot be performed. On the other hand, it is not necessary to consider this point for non-adjacent diffuser groups. For example, diffuser tubes may be arranged in a staggered pattern when viewed from the side.
 本実施の形態においては、第1散気装置20は、第2散気装置21の上方に積層されるように配置され、第1散気装置20において水平方向に並べて配置された複数の散気管13からなる散気管群13Gは、第2散気装置21において水平方向に並べて配置された複数の散気管14からなる散気管群14Gの上方に積層されるように配置されている。散気管群13Gにおける散気管13の軸中心と散気管群14Gにおける散気管14の軸中心とは、水平方向に離間して配置され、鉛直方向から散気管群13G及び散気管群14Gを見た場合に、隣接する散気管13の間にずらして散気管14が位置付けられ、隣接する散気管14の間に散気管13が位置付けられている。本実施形態では、散気管群を2段配置し、第1段の散気管と第2段の散気管は山と谷に位置するように配置されているが、例えば3段以上とすることも可能であり、この場合例えば、第m段と第n段(m-n≧2)の位置関係にある散気管群の位置は鉛直方向に同一であってもよい。 In the present embodiment, the first air diffuser 20 is disposed so as to be stacked above the second air diffuser 21, and the plurality of air diffusers arranged in the horizontal direction in the first air diffuser 20. The diffuser tube group 13G composed of 13 is arranged to be stacked above the diffuser tube group 14G composed of a plurality of diffuser tubes 14 arranged in the horizontal direction in the second air diffuser 21. The axial center of the diffusing tube 13 in the diffusing tube group 13G and the axial center of the diffusing tube 14 in the diffusing tube group 14G are spaced apart in the horizontal direction, and the diffusing tube group 13G and the diffusing tube group 14G are viewed from the vertical direction. In some cases, the diffuser tube 14 is positioned so as to be shifted between the adjacent diffuser tubes 13, and the diffuser tube 13 is positioned between the adjacent diffuser tubes 14. In this embodiment, the air diffuser group is arranged in two stages, and the first air diffuser and the second air diffuser are arranged so as to be located in a mountain and a valley. In this case, for example, the positions of the air diffuser groups in the positional relationship between the m-th stage and the n-th stage (mn ≧ 2) may be the same in the vertical direction.
 図3を参照し、散気管13および散気管14の最上面には、複数の気体吐出口16および気体吐出口17が複数形成され、また、散気管13および散気管14の最下面には汚泥流入及び排出を行うための汚泥流排出穴18が形成されている。汚泥流排出穴18の散気管13および散気管14に対しての開口させる長手方向の位置としては任意に設定することができるが、本実施形態では両サイドの気体供給管ヘッダー12A、12Bおよび気体供給管ヘッダー12C、12Dより給気していることから、各散気管13および散気管14の中央に汚泥流排出穴18が形成されている。また、汚泥流排出穴18は、1つの散気管における数は特に限定されない。さらに、汚泥流排出穴18は、散気管13には形成されず、散気管14のみに形成されていてもよい。また、散気装置4に使用する材質としては、金属、樹脂等からなる散気管13および散気管14に気体吐出口16および17を開口させた構造を用いることが製作が容易かつ安価なことから好ましい。 Referring to FIG. 3, a plurality of gas discharge ports 16 and a plurality of gas discharge ports 17 are formed on the uppermost surfaces of the diffusion tube 13 and the diffusion tube 14, and sludge is formed on the lowermost surfaces of the diffusion tube 13 and the diffusion tube 14. A sludge flow discharge hole 18 for inflow and discharge is formed. The position of the sludge flow discharge hole 18 in the longitudinal direction to be opened with respect to the diffuser pipe 13 and the diffuser pipe 14 can be arbitrarily set, but in this embodiment, the gas supply pipe headers 12A and 12B and gas on both sides are provided. Since air is supplied from the supply pipe headers 12 </ b> C and 12 </ b> D, a sludge flow discharge hole 18 is formed at the center of each of the air diffusion pipes 13 and the air diffusion pipes 14. Further, the number of the sludge flow discharge holes 18 in one aeration pipe is not particularly limited. Further, the sludge flow discharge hole 18 may not be formed in the air diffuser 13 but may be formed only in the air diffuser 14. Further, as the material used for the air diffuser 4, it is easy to manufacture and inexpensive to use a structure in which the gas discharge ports 16 and 17 are opened in the air diffusion tube 13 and the air diffusion tube 14 made of metal, resin or the like. preferable.
 この第1散気装置20および第2散気装置21では、ブロワー5より送気された空気が、先ず給気口15A~15Dへ供給され、次いで気体供給管ヘッダー12A~12Dへ送られ、次いで散気管13および散気管14へ供給され、気体吐出口16および気体吐出口17より放出される。これにより、散気装置4の気体吐出口16および気体吐出口17から連続的もしくは断続的に散気された気泡が、被処理水7の液中を通って膜分離装置3に達し、さらに分離膜モジュール11の膜面の近傍を通過して水面から放出されるようになっている。 In the first air diffuser 20 and the second air diffuser 21, the air supplied from the blower 5 is first supplied to the air supply ports 15A to 15D, and then sent to the gas supply pipe headers 12A to 12D. The gas is supplied to the air diffuser 13 and the air diffuser 14 and is discharged from the gas outlet 16 and the gas outlet 17. Thereby, the air bubbles continuously or intermittently diffused from the gas discharge port 16 and the gas discharge port 17 of the diffuser 4 reach the membrane separation device 3 through the liquid of the water 7 to be treated, and are further separated. It passes through the vicinity of the membrane surface of the membrane module 11 and is discharged from the water surface.
 図4には散気装置の斜視図における散気管13および散気管14の配置部分の拡大図が示され、図5には散気装置の斜視図における散気管13および散気管14の配置部分を水平方向(軸方向)に見た図が示されている。ここで、第1散気装置20と第2散気装置21とが積層された状態における散気管13および散気管14の配置構成を説明すると、本発明では、複数段に積層して配置された第1散気装置20と第2散気装置21(散気管群13Gと散気管群14G)を水平方向から散気管13、14の軸方向(図4の矢印H方向)に見た場合に隣接する、散気管13と散気管14との間の軸間(中心間)距離(第1散気管軸間距離)をd1、散気管13の軸線と、散気管14の軸線を前記散気管13の軸線を含む水平面上に射影した直線との距離(第2散気管軸間距離ということがある、図4、図6参照)をd2、散気管13および散気管14の外径をDとしたときに、d1=1.1×d2~5.0×d2、d1>1.3Dの関係を満足するように、散気管13および散気管14が配置されることが好ましい。さらにd1とd2との関係については、d1=1.2d2~2.5d2とすることがより好ましい。 FIG. 4 shows an enlarged view of the arrangement portion of the diffuser tube 13 and the diffuser tube 14 in the perspective view of the diffuser device, and FIG. 5 shows the arrangement portion of the diffuser tube 13 and the diffuser tube 14 in the perspective view of the diffuser device. The figure seen in the horizontal direction (axial direction) is shown. Here, the arrangement configuration of the air diffuser 13 and the air diffuser 14 in a state where the first air diffuser 20 and the second air diffuser 21 are laminated will be described. Adjacent when the first air diffuser 20 and the second air diffuser 21 (air diffuser tube group 13G and air diffuser tube group 14G) are viewed from the horizontal direction in the axial direction of the air diffusers 13 and 14 (in the direction of arrow H in FIG. 4). The distance between the axes (center distance) between the air diffuser 13 and the air diffuser 14 (first air diffuser axis distance) is d1, the axis of the air diffuser 13 and the axis of the air diffuser 14 are When d2 is the distance from the straight line projected onto the horizontal plane including the axis (sometimes referred to as the distance between the second air diffuser axes, see FIGS. 4 and 6), and D is the outer diameter of the air diffuser 13 and the air diffuser 14. In order to satisfy the relationship of d1 = 1.1 × d2 to 5.0 × d2, d1> 1.3D, 3 and the diffuser 14 are preferably arranged. Further, regarding the relationship between d1 and d2, it is more preferable that d1 = 1.2d2 to 2.5d2.
 なお、第2散気管距離は、複数段に積層して配置された第1散気装置20と第2散気装置21(散気管群13Gと散気管群14G)を鉛直方向(図5の矢印V方向)から見た場合に隣接する、散気管13と散気管14との間の軸間(中心間)距離と言い換えることもできる。
また、本発明においてはすべての散気管の組においてd1およびd2は、同じである必要はなく、例えば、散気管のピッチが異なる散気装置を用いてもよい。   
このとき、d1及びd2はすべての散気装置においてd1=1.1×d2~5.0×d2、d1>1.3Dの関係を満足することが好ましい。
さらに、散気装置を3段以上配する場合などにおける「隣接する散気管」とは、ある散気管から見て、当該散気管を含む散気装置と隣接する段の散気装置に設けられた散気管のうち、水平方向から見た場合に隣接している、すなわち、d2が最も小さくなる散気管をいう。
d1=1.1d2より小さくなる場合、隣接する散気管の隙間がなくなり散気管間を流れる流路が狭くなり均一な散気ができなくなる。また、d1=5.0d2より大きくなると隣接する散気管間の隙間が大きくなり、均一な散気ができなくなる。また、d1<1.3Dとなる場合、散気管間の隙間が小さくなり、散気管間を流れる流路が狭くなり均一な散気ができなくなる。
In addition, the 2nd air diffuser distance is the vertical direction (arrow of FIG. 5) of the 1st air diffuser 20 and the 2nd air diffuser 21 (air diffuser tube group 13G and air diffuser tube group 14G) which are arrange | positioned in multiple steps. It can be paraphrased as the inter-axis (center-to-center) distance between the air diffuser 13 and the air diffuser 14 adjacent when viewed from the (V direction).
Further, in the present invention, d1 and d2 do not have to be the same in all sets of air diffusers, and for example, air diffusers having different air diffuser pitches may be used.
At this time, it is preferable that d1 and d2 satisfy the relationship of d1 = 1.1 × d2 to 5.0 × d2 and d1> 1.3D in all the diffusers.
Further, the “adjacent diffuser tube” in the case of arranging three or more stages of diffusers is provided in the diffuser of the stage adjacent to the diffuser including the diffuser tube when viewed from a certain diffuser tube. Among the diffusing tubes, the diffusing tubes that are adjacent when viewed from the horizontal direction, that is, d2 is the smallest.
When d1 = 1.1d2 or less, there is no gap between adjacent diffuser tubes, the flow path between the diffuser tubes becomes narrow, and uniform aeration cannot be performed. On the other hand, when d1 is larger than 5.0d2, a gap between adjacent diffuser tubes becomes large, and uniform aeration cannot be performed. Further, when d1 <1.3D, the gap between the diffuser tubes becomes small, the flow path flowing between the diffuser tubes becomes narrow, and uniform aeration cannot be performed.
 散気管13および散気管14に使用する管の外径としては、5<D<100mmとすることが好ましく、散気装置4の上部へ配置するエレメントクリアランスを考慮すると、20<D<50mmとするのがより好ましい。また、図2又は図3を再度参照し、散気管13および散気管14における気体吐出口16および気体吐出口17の穴径としては、1~15mmが好ましく、均一曝気及び穴閉塞の観点を考慮すると、4~6mmとするのがより好ましい。 The outer diameters of the tubes used for the diffuser tube 13 and the diffuser tube 14 are preferably 5 <D <100 mm, and 20 <D <50 mm in consideration of the element clearance arranged at the top of the diffuser 4. Is more preferable. 2 or 3 again, the hole diameter of the gas discharge port 16 and the gas discharge port 17 in the diffuser tube 13 and the diffuser tube 14 is preferably 1 to 15 mm, considering the viewpoint of uniform aeration and hole blockage. In this case, the thickness is more preferably 4 to 6 mm.
 また、隣接する気体吐出口16の穴ピッチおよび隣接する気体吐出口17の穴ピッチとしては、10~500mmにすることが好ましく、均一曝気の観点を考慮すると、50~200mmとするのがより好ましい。さらに、散気管13および散気管14における汚泥流排出穴18の形状としては丸穴、長穴等任意に設定することができるが、丸穴を開ける場合には、その穴径としては使用する散気管13および散気管14の管径をDとした場合に、穴径=0.1D~0.9Dとし、汚泥流入、排出が確実に行うことを考慮した場合には、0.4D~0.6Dとするのより好ましい。 Further, the hole pitch of the adjacent gas discharge ports 16 and the hole pitch of the adjacent gas discharge ports 17 are preferably 10 to 500 mm, and more preferably 50 to 200 mm in view of uniform aeration. . Further, the shape of the sludge flow discharge hole 18 in the air diffuser 13 and the air diffuser 14 can be arbitrarily set, such as a round hole or a long hole. When the diameters of the trachea 13 and the diffuser 14 are D, the hole diameter is 0.1D to 0.9D, and when sludge inflow and discharge are taken into account, 0.4D to 0. 6D is more preferable.
 次に、上記のように構成された本実施形態に係る膜分離活性汚泥処理装置1の運転方法について説明する。 Next, an operation method of the membrane separation activated sludge treatment apparatus 1 according to this embodiment configured as described above will be described.
 先ず、膜分離槽2に供給された被処理水7中に存在する有機物等の汚濁物質の生物分解に必要な酸素供給のために、ブロワー5に接続された散気装置4から酸素を被処理水7へ供給する。次に、吸引ポンプ6を運転させることにより被処理水7を膜分離装置3に搭載した中空糸膜9を透過する透過水と、透過しない活性汚泥とに固液分離する。ここで、膜分離装置3の透過流速(LV)としては膜分離活性汚泥処理では0.01~1.5m/m・日で行うことが好ましい。この透過流速は、1日当たり、かつ1m当たりの透過流速(m/m・日)を示す指標である。 First, in order to supply oxygen necessary for biodegradation of pollutants such as organic substances present in the water to be treated 7 supplied to the membrane separation tank 2, oxygen is treated from the air diffuser 4 connected to the blower 5. Supply to water 7. Next, the water to be treated 7 is solid-liquid separated into permeated water that permeates the hollow fiber membrane 9 mounted on the membrane separation device 3 and activated sludge that does not permeate by operating the suction pump 6. Here, the permeation flow rate (LV) of the membrane separation device 3 is preferably 0.01 to 1.5 m 3 / m 2 · day in the membrane separation activated sludge treatment. This permeation flow rate is an index indicating the permeation flow rate per day and per m 2 (m 3 / m 2 · day).
 そして、この際、散気装置4では、第1散気装置20および第2散気装置21のうち、一つの散気装置に空気を供給し、所定時間経過後に空気を供給した散気装置への空気供給を停止し、その後、空気供給を停止した散気装置とは異なる他の散気装置に空気を供給する工程を一定期間毎に繰り返すことで、酸素を被処理水7へ供給する。つまり、散気装置4では、散気管群13Gと散気管群14Gとを交互に稼働させるようにする。 At this time, in the air diffuser 4, the air is supplied to one of the first air diffuser 20 and the second air diffuser 21, and the air diffuser supplied with air after a predetermined time has passed. Then, oxygen is supplied to the water to be treated 7 by repeating the step of supplying air to another air diffuser different from the air diffuser that stopped the air supply at regular intervals. That is, in the air diffuser 4, the air diffuser group 13G and the air diffuser group 14G are operated alternately.
 ここで、散気装置4からの酸素による気泡は、被処理水7中を通って水面まで上方に移動するため、被処理水7と気泡からなる上向する気液混合流が発生する。これにより、膜分離活性汚泥処理装置1では、この気液混合流が、分離膜モジュール11の膜面をスクラビングすることにより固形分の膜面への付着が防止され、膜面の急速な目詰まりを防止することができるようになっている。
 そして、ここで、上記のように、第1散気装置20と第2散気装置21を交互に稼働し、第1散気装置20と第2散気装置21とで異なった位置から継続的な散気を行なうことにより、分離膜モジュール11に対して密度が高く均一に酸素を供給できるようになっている。
 なお、散気装置4の散気条件としては、曝気線速度で50~300m/m/hrの範囲で散気することが好ましい。この曝気線速度は、散気装置4から散気する空気量の膜分離装置投影面積1m当たりに散気する空気量(m/hr.)を示す指標である。なお、本実施形態では、第1散気装置20と第2散気装置21を交互に稼働するが双方を稼働して酸素供給を行ってもよい。
Here, the bubbles due to oxygen from the diffuser 4 move upward to the water surface through the water 7 to be treated, so that an upward gas-liquid mixed flow composed of the water 7 to be treated and bubbles is generated. Thereby, in the membrane separation activated sludge treatment apparatus 1, the gas-liquid mixed flow is prevented from adhering to the membrane surface of the solid content by scrubbing the membrane surface of the separation membrane module 11, and the membrane surface is rapidly clogged. Can be prevented.
Then, as described above, the first air diffuser 20 and the second air diffuser 21 are operated alternately, and the first air diffuser 20 and the second air diffuser 21 are continuously operated from different positions. By performing a good aeration, it is possible to supply oxygen uniformly to the separation membrane module 11 with a high density.
The aeration condition of the aeration device 4 is preferably aeration in the range of 50 to 300 m 3 / m 2 / hr at the aeration linear velocity. This aeration linear velocity is an index indicating the amount of air (m 3 / hr.) Diffused per 1 m 2 of the membrane separation device projection area of the amount of air diffused from the diffuser 4. In addition, in this embodiment, although the 1st air diffuser 20 and the 2nd air diffuser 21 operate | move alternately, you may operate both and may supply oxygen.
 また、膜分離槽2内の被処理水7のMLSS(生物反応槽内浮遊固形物)濃度は3000~15000mg/Lに設定することが好ましい。MLSS濃度は微生物濃度の代替指標である。MLSS濃度を3000mg/L以上とすることによって微生物の生物分解が充分に進行し未分解有機物による膜ファウリングの進行を抑制する効果が高くなる。また、MLSS濃度を15000mg/L以下にすることによって、被処理水7の粘度上昇に起因する膜ファウリングを抑制する効果が高くなる。MLSS濃度は7000~12000mg/Lにすることがより好ましい。 Further, the MLSS (biological reaction tank suspended solids) concentration of the water to be treated 7 in the membrane separation tank 2 is preferably set to 3000 to 15000 mg / L. MLSS concentration is an alternative indicator of microbial concentration. By setting the MLSS concentration to 3000 mg / L or more, the biodegradation of microorganisms proceeds sufficiently, and the effect of suppressing the progress of membrane fouling by undegraded organic substances is enhanced. Moreover, the effect which suppresses the membrane fouling resulting from the viscosity raise of the to-be-processed water 7 becomes high by making MLSS density | concentration into 15000 mg / L or less. The MLSS concentration is more preferably 7000 to 12000 mg / L.
 このように本実施形態では、膜分離槽2内に膜分離装置3とブロワー5に接続された散気装置4とを設け、膜分離装置3が吸引ポンプ6により被処理水7を吸引濾過することにより被処理水7の固液分離を行い、この際、膜分離装置3と吸引ポンプ6の間に設置した圧力計8により膜間差圧を測定し、この圧力計8の値を監視することで膜分離装置3の運転管理が可能となっている。
 そして、本実施形態では、第1散気装置20と第2散気装置21を2段に積層して配置する、つまり、散気管群13Gと散気管群14Gを2段に積層して、隣接する段の散気管同士(13,14)が鉛直線上に並ばないように配置している。つまり、隣接する散気装置の散気管における気体噴出口が、鉛直方向からみた場合に重ならないように配置されている。これによれば、散気管群13G及び散気管群14Gにおいて散気管13、14の数が過剰に多くなり散気管13、14の径が狭くなるのを防ぎつつ、気体吐出口16、17の数も確保できるので、曝気の不均一性を解消でき、かつ、長期にわたる濾過を行っても散気管の気体吐出口の閉塞を少なく抑えることができ、その結果、懸濁物による膜面の細孔の閉塞を少なく抑え、安定した濾過が長期間継続可能となる。
As described above, in this embodiment, the membrane separation device 3 and the air diffuser 4 connected to the blower 5 are provided in the membrane separation tank 2, and the membrane separation device 3 sucks and filters the water 7 to be treated by the suction pump 6. Thus, the water 7 to be treated is subjected to solid-liquid separation. At this time, the transmembrane pressure difference is measured by the pressure gauge 8 installed between the membrane separation device 3 and the suction pump 6, and the value of the pressure gauge 8 is monitored. Thus, the operation management of the membrane separation device 3 is possible.
In the present embodiment, the first air diffuser 20 and the second air diffuser 21 are stacked in two stages, that is, the air diffuser group 13G and the air diffuser group 14G are stacked in two stages and adjacent to each other. It arrange | positions so that the diffuser pipes (13, 14) of the stage to line up may not line up on a perpendicular line. That is, it arrange | positions so that the gas jet nozzle in the diffuser pipe | tube of an adjacent diffuser may not overlap, when it sees from a perpendicular direction. According to this, the number of the gas discharge ports 16 and 17 is prevented while preventing the number of the diffusion tubes 13 and 14 from being excessively increased in the diffusion tube group 13G and the diffusion tube group 14G and reducing the diameter of the diffusion tubes 13 and 14. As a result, the non-uniformity of aeration can be eliminated, and even if filtration is performed over a long period of time, the gas outlet of the air diffuser can be kept from clogging. Therefore, stable filtration can be continued for a long time.
 なお、上記実施形態では、第1散気装置20と第2散気装置21を2段に積層して配置する態様を説明したが、さらに散気装置を用意し、3段以上積層する態様であってもよい。この場合の散気装置の運転方法としては、複数の散気装置のうち、一つの散気装置に空気を供給し、所定時間の経過後に空気を供給した散気装置への空気供給を停止し、その後、空気供給を停止した散気装置とは異なる他の散気装置のうちの一つの散気装置に空気を供給する工程を一定期間毎に繰り返すようにすることができる。このように複数の散気装置を一つずつ使用することにより、分離膜モジュール11に対して密度が高く均一に酸素を供給できる。 In the above-described embodiment, the mode in which the first air diffuser 20 and the second air diffuser 21 are stacked and arranged in two stages has been described. There may be. As a method of operating the air diffuser in this case, air is supplied to one of the air diffusers, and the air supply to the air diffuser that has supplied air after a predetermined time has elapsed is stopped. Thereafter, the step of supplying air to one of the other air diffusers different from the air diffuser that has stopped supplying air can be repeated at regular intervals. Thus, by using a plurality of diffusers one by one, oxygen can be uniformly supplied to the separation membrane module 11 with high density.
 また、上記実施形態では、第1散気装置20に散気管群13Gを設け、第2散気装置21に散気管群14Gを設け、散気管群13Gと散気管群14Gを積層して配置するようにしたが、単一の散気装置に複数の散気管群を上下方向に複数段に、隣接する段の散気管同士が鉛直線上に並ばないように積層して配置、例えば千鳥配置としてもよい。つまり、気体供給管ヘッダーの同一平面上において、複数の散気管を水平方向に複数並べて配置し、かつ、該水平方向に並べて配置された複数の散気管からなる散気管群を上下方向に複数段に積層して配置し、気体供給管ヘッダーの単一の給気口から各散気管に気体を供給する態様であっても構わない。なお、この場合には、内部に仕切りを設けるとともに、バルブ等の気体供給管ヘッダー内に供給される気体の流路を切り替える手段を設ける等して、上下方向に積層された散気管群で散気を切り替え可能に構成するようにしてもよい。 Moreover, in the said embodiment, the diffuser tube group 13G is provided in the 1st diffuser 20, and the diffuser tube group 14G is provided in the 2nd diffuser 21, and the diffuser tube group 13G and the diffuser tube group 14G are laminated | stacked and arrange | positioned. However, a plurality of air diffuser groups are stacked in a single air diffuser in a plurality of stages in the vertical direction so that adjacent air diffuser tubes are not aligned on the vertical line, for example, a staggered arrangement Good. In other words, on the same plane of the gas supply pipe header, a plurality of diffuser tubes are arranged side by side in the horizontal direction, and a plurality of diffuser tube groups composed of the plurality of diffuser tubes arranged in the horizontal direction are arranged in a plurality of stages in the vertical direction. The gas supply pipe header may be arranged so as to supply gas to each air diffuser through a single air supply port of the gas supply pipe header. In this case, in addition to providing a partition inside, a means for switching the flow path of the gas supplied into the gas supply pipe header such as a valve is provided, so that the air is diffused by a group of diffused pipes stacked vertically. You may make it comprise so that change is possible.
 また、上記実施形態では、気体供給管ヘッダー12A、12B間に散気管13を複数配設するとともに、気体供給管ヘッダー12C、12D間に散気管14を複数配設し、第1散気装置20および第2散気装置21を構成する態様を説明したが、第1散気装置20および第2散気装置21の散気管13および散気管14の片側のみに気体供給管ヘッダーを設ける態様であっても構わない。 In the above-described embodiment, a plurality of air diffusers 13 are disposed between the gas supply pipe headers 12A and 12B, and a plurality of air diffusers 14 are disposed between the gas supply pipe headers 12C and 12D. Although the aspect which comprises the 2nd air diffuser 21 was demonstrated, it is the aspect which provides a gas supply pipe header only in the one side of the air diffuser 13 and the air diffuser 14 of the 1st air diffuser 20 and the 2nd air diffuser 21. It doesn't matter.
 以下、本発明の実施例について説明する。
 <実施例1>
 実施例1では、上述した膜分離活性汚泥処理装置1に具体的な寸法を設定し、所定の条件で運転を実施した。
Examples of the present invention will be described below.
<Example 1>
In Example 1, specific dimensions were set in the membrane separation activated sludge treatment apparatus 1 described above, and operation was performed under predetermined conditions.
 分離膜として平均孔径0.1μmの精密濾過用ポリエチレン中空糸膜をスクリーン状に展開固定した、分離膜モジュール11としての中空糸膜モジュール(商品名:SADF膜、三菱レイヨン(株)製:中空糸膜の繊維軸方向のモジュール長さ125cm;膜面積25m2)11本を、隣り合うモジュール同士の中心間隔が4.5cmとなるように横方向に並べて、長さ130cm、幅75cm、高さ210cmのフレーム内に納めて配置してなる膜分離装置3を被処理水7に浸漬した。 A hollow fiber membrane module as a separation membrane module 11 (trade name: SADF membrane, manufactured by Mitsubishi Rayon Co., Ltd .: hollow fiber) in which a polyethylene hollow fiber membrane for microfiltration with an average pore size of 0.1 μm is developed and fixed as a separation membrane in a screen shape. The module length in the fiber axis direction of the membrane is 125 cm; the membrane area is 25 m 2, and the 11 modules are arranged in the horizontal direction so that the center distance between adjacent modules is 4.5 cm, and the length is 130 cm, the width is 75 cm, and the height is 210 cm. The membrane separation device 3 placed in a frame was immersed in the water 7 to be treated.
 膜分離装置3下方に配置される散気装置4においては、4箇所の給気口15A~15Dを有する4本の気体供給管ヘッダー12A~12Dを用意し、気体供給管ヘッダー12A、12Bそれぞれから分岐して、気体供給管ヘッダー12A、12Bの同一平面上に設置される散気管13を6本設けて第1散気装置20を構成した(なお、水平方向に複数並べて配置される6本の散気管13で散気管群13Gが構成される)。また、気体供給管ヘッダー12C、12Dそれぞれから分岐して、気体供給管ヘッダー12C、12Dの同一平面上に設置される散気管14を6本設けて第2散気装置21を構成した(なお、水平方向に複数並べて配置される6本の散気管14で散気管群14Gが構成される)。
 給気口15A~15Dの口径は32mmとし、気体供給管ヘッダー12A~12Dへそれぞれ均等に空気を送気するようにした。気体供給管ヘッダー12A~12Dは外径50mm角パイプを使用し、向かい合う気体供給管ヘッダーを散気管で接続した。
In the air diffuser 4 disposed below the membrane separator 3, four gas supply pipe headers 12A to 12D having four air supply ports 15A to 15D are prepared, and the gas supply pipe headers 12A and 12B are respectively provided. The first air diffuser 20 is formed by branching and providing six air diffuser tubes 13 installed on the same plane of the gas supply pipe headers 12A and 12B (in addition, a plurality of gas diffuser tubes arranged in the horizontal direction are arranged in six lines). A diffuser tube group 13G is constituted by the diffuser tube 13). Moreover, the 2nd air diffuser 21 was comprised by branching from each of the gas supply pipe headers 12C and 12D, and providing the six air diffusion pipes 14 installed on the same plane of the gas supply pipe headers 12C and 12D. A diffuser tube group 14G is composed of six diffuser tubes 14 arranged side by side in the horizontal direction).
The diameters of the air supply ports 15A to 15D were 32 mm, and air was supplied evenly to the gas supply pipe headers 12A to 12D, respectively. As the gas supply pipe headers 12A to 12D, square pipes having an outer diameter of 50 mm were used, and the gas supply pipe headers facing each other were connected by a diffuser pipe.
 そして、図6を参照し、第1散気装置20と第2散気装置21を積層して設置したときの水平方向から見て隣接する散気管13と散気管14との間の第1散気管軸間距離d1を4.8cmに設定し、第1散気装置20と第2散気装置21を積層して設置したときの鉛直方向から見て隣接する散気管13と散気管14との間の第2散気管軸間距離d2を2.7cmとなるように設定し、散気管13および散気管14としては、外径2.7cm、内径2.4cm、長さ114.5cmのステンレス製パイプ12本を使用し、その長手方向が、中空糸膜の長手方向と平行をなすように並べた。散気管13および散気管14には、最上面にφ0.4cmの円形の気体吐出口16および気体吐出口17をそれぞれ22個、吐出口同士の間隔5cmとし、最下面には汚泥流排出穴18として、幅1.5cm、長さ5cmの長穴を中央部に1個設けた。 Then, referring to FIG. 6, the first diffuser between the adjacent diffuser tubes 13 and 14 when viewed from the horizontal direction when the first diffuser 20 and the second diffuser 21 are stacked and installed. The distance d1 between the trachea axes is set to 4.8 cm, and when the first air diffuser 20 and the second air diffuser 21 are stacked and installed, the air diffuser 13 and the air diffuser 14 adjacent to each other when viewed from the vertical direction are set. The distance between the second air diffuser tubes is set to 2.7 cm, and the air diffuser 13 and the air diffuser 14 are made of stainless steel having an outer diameter of 2.7 cm, an inner diameter of 2.4 cm, and a length of 114.5 cm. Twelve pipes were used and arranged so that the longitudinal direction thereof was parallel to the longitudinal direction of the hollow fiber membrane. The diffuser pipe 13 and the diffuser pipe 14 each have 22 circular gas discharge ports 16 and 17 each having a diameter of 0.4 cm on the uppermost surface and an interval of 5 cm between the discharge ports, and a sludge flow discharge hole 18 on the lowermost surface. As described above, one elongated hole having a width of 1.5 cm and a length of 5 cm was provided in the central portion.
 このときの散気管13および散気管14の外径Dと、第1散気管軸間距離d1と、第2散気管軸間距離d2との間では、d1=1.78Dであり、d1>1.3Dを満足し、かつ、d1=1.78d2であり、d1=1.1×d2~5.0×d2を満足している。 At this time, d1 = 1.78D between the outer diameter D of the air diffuser 13 and the air diffuser 14, the distance d1 between the first air diffuser axes, and the distance d2 between the second air diffuser axes, and d1> 1 .3D, d1 = 1.78d2, and d1 = 1.1 × d2 to 5.0 × d2.
 散気条件としては、ブロワー5を用いて散気管13および散気管14、1本あたり140L/min、曝気線速度150m/m/hrとなるように供給した。濾過条件は、MLSS濃度8000~12000mg/Lの活性汚泥を、膜透過流速LV=0.8m/m/dにて、吸引ポンプ6を用いて、濾過時間/停止時間=7分/1分の間欠運転にて、1ヶ月間継続して濾過処理を実施した。そして、膜分離装置3と吸引ポンプ6の間に設置した圧力計8により、吸引濾過時の膜間差圧を測定しながら1ヶ月連続運転を行った。 As the aeration conditions, the blower 5 was used to supply the aeration tube 13 and the aeration tube 14 at 140 L / min and aeration linear velocity of 150 m 3 / m 2 / hr. Filtration conditions were as follows: activated sludge having an MLSS concentration of 8000 to 12000 mg / L, using a suction pump 6 at a membrane permeation flow rate LV = 0.8 m 3 / m 2 / d, and filtration time / stop time = 7 minutes / 1. The filtration process was continued for one month with intermittent operation for 1 minute. And the continuous operation was performed for one month, measuring the transmembrane differential pressure at the time of suction filtration with the pressure gauge 8 installed between the membrane separator 3 and the suction pump 6.
 この実施例1に係る膜分離活性汚泥処理装置1の運転結果を図9に示す。図中の菱形印のプロットが実施例1の運転結果を示している。同図に明らかなように、実施例1に係る膜分離活性汚泥処理装置1では、膜間差圧の上昇は観察されず、初期差圧の6kPaを維持し安定した運転が可能であった。また膜分離装置3を引き上げて目視確認したところ、膜分離装置3が搭載の分離膜は汚泥付着もなく初期レベルを維持していた。 FIG. 9 shows the operation results of the membrane separation activated sludge treatment apparatus 1 according to Example 1. The diamond-shaped plots in the figure show the operation results of Example 1. As is clear from the figure, in the membrane separation activated sludge treatment apparatus 1 according to Example 1, no increase in transmembrane pressure difference was observed, and stable operation was possible while maintaining the initial differential pressure of 6 kPa. Further, when the membrane separation device 3 was pulled up and visually confirmed, the separation membrane mounted on the membrane separation device 3 was maintained at the initial level without adhesion of sludge.
 <実施例2>
 次に、実施例2では、上記実施例1から各部の寸法設定を変更し、散気条件、ろ過条件については実施例1と同様の条件にて膜分離装置3を活性汚泥に浸漬し吸引ポンプ6を使用して運転を行った。膜分離装置3で使用する分離膜モジュール11を実施例1と同様のものを使用した。
<Example 2>
Next, in Example 2, the dimension setting of each part is changed from Example 1 above, and the membrane separation device 3 is immersed in activated sludge under the same conditions as in Example 1 for the aeration condition and filtration condition, and the suction pump 6 was used for driving. The separation membrane module 11 used in the membrane separation device 3 was the same as that used in Example 1.
 散気装置4においては、4箇所の給気口15A~15Dを有する4本の気体供給管ヘッダー12A~12Dを用意し、気体供給管ヘッダー12A、12Bそれぞれから分岐して、気体供給管ヘッダー12A、12Bの同一平面上に設置される散気管13を6本設けて第1散気装置20を構成した(なお、水平方向に複数並べて配置される6本の散気管13で散気管群13Gが構成される)。また、気体供給管ヘッダー12C、12Dそれぞれから分岐して、気体供給管ヘッダー12C、12Dの同一平面上に設置される散気管14を6本設けて第2散気装置21を構成した(なお、水平方向に複数並べて配置される6本の散気管14で散気管群14Gが構成される)。
 給気口15A~15Dの口径は32mmとし、気体供給管ヘッダー12A~12Dへそれぞれ均等に空気を送気するようにした。気体供給管ヘッダー12A~12Dは外径50mm角パイプを使用し、向かい合う気体供給管ヘッダーを散気管で接続した。
In the air diffuser 4, four gas supply pipe headers 12A to 12D having four air supply ports 15A to 15D are prepared and branched from the gas supply pipe headers 12A and 12B, respectively. The first diffuser 20 is configured by providing six diffuser tubes 13 installed on the same plane of 12B (in addition, the diffuser tube group 13G is composed of six diffuser tubes 13 arranged side by side in the horizontal direction. Configured). Moreover, the 2nd air diffuser 21 was comprised by branching from each of the gas supply pipe headers 12C and 12D, and providing the six air diffusion pipes 14 installed on the same plane of the gas supply pipe headers 12C and 12D. A diffuser tube group 14G is composed of six diffuser tubes 14 arranged side by side in the horizontal direction).
The diameters of the air supply ports 15A to 15D were 32 mm, and air was supplied evenly to the gas supply pipe headers 12A to 12D, respectively. As the gas supply pipe headers 12A to 12D, square pipes having an outer diameter of 50 mm were used, and the gas supply pipe headers facing each other were connected by a diffuser pipe.
 図7を参照し、第1散気装置20と第2散気装置21を積層して設置したときの水平方向から見て隣接する散気管13と散気管14との間の第1散気管軸間距離d1を11cmに設定し、第1散気装置20と第2散気装置21を積層して設置したときの鉛直方向から見て隣接する散気管13と散気管14との間の第2散気管軸間距離d2を4.5cmとなるように設定し、散気管13および散気管14としては、外径2.7cm、内径2.4cm、長さ114.5cmのステンレス製パイプ12本を使用し、その長手方向が、中空糸膜の長手方向と平行をなすように並べた。散気管13および散気管14には、最上面にφ0.4cmの円形の気体吐出口16および気体吐出口17をそれぞれ22個、吐出口同士の間隔5cmとし、最下面には汚泥流排出穴18として、幅1.5cm、長さ5cmの長穴を中央部に1個設けた。 Referring to FIG. 7, the first diffuser tube axis between the diffuser tubes 13 and 14 adjacent to each other when viewed from the horizontal direction when the first diffuser device 20 and the second diffuser device 21 are stacked and installed. When the distance d1 is set to 11 cm and the first air diffuser 20 and the second air diffuser 21 are stacked and installed, the second distance between the adjacent air diffuser 13 and the air diffuser 14 seen from the vertical direction is shown. The distance d2 between the diffuser tubes is set to 4.5 cm, and the diffuser tube 13 and diffuser tube 14 are 12 stainless steel pipes having an outer diameter of 2.7 cm, an inner diameter of 2.4 cm, and a length of 114.5 cm. They were used so that their longitudinal directions were parallel to the longitudinal direction of the hollow fiber membrane. The diffuser pipe 13 and the diffuser pipe 14 each have 22 circular gas discharge ports 16 and 17 each having a diameter of 0.4 cm on the uppermost surface and an interval of 5 cm between the discharge ports, and a sludge flow discharge hole 18 on the lowermost surface. As described above, one elongated hole having a width of 1.5 cm and a length of 5 cm was provided in the central portion.
 このときの散気管13および散気管14の外径Dと、散気管軸間距離d1と、散気管軸間距離d2との間では、d1=4.07Dであり、d1>1.3Dを満足し、かつ、d1=2.44d2であり、d1=1.1×d2~5.0×d2を満足している。 At this time, between the outer diameter D of the diffusion tube 13 and the diffusion tube 14, the distance d1 between the diffusion tube axes, and the distance d2 between the diffusion tube axes, d1 = 4.07D, and d1> 1.3D is satisfied. D1 = 2.44d2 and d1 = 1.1 × d2 to 5.0 × d2.
 この実施例2に係る膜分離活性汚泥処理装置1の運転結果を図9に示す。図中の四角印のプロットが実施例2の運転結果を示している。同図に明らかなように、実施例2に係る膜分離活性汚泥処理装置1では、膜間差圧の上昇は観察されず、初期差圧の6kPaを維持し安定した運転が可能であった。また膜分離装置3を引き上げて目視確認したところ、膜分離装置3の搭載の分離膜は汚泥付着もなく初期レベルを維持していた。 FIG. 9 shows the operation results of the membrane separation activated sludge treatment apparatus 1 according to Example 2. The plots with square marks in the figure show the operation results of Example 2. As is clear from the figure, in the membrane separation activated sludge treatment apparatus 1 according to Example 2, no increase in transmembrane pressure difference was observed, and stable operation was possible while maintaining the initial pressure difference of 6 kPa. Further, when the membrane separation device 3 was pulled up and visually confirmed, the separation membrane mounted on the membrane separation device 3 was maintained at the initial level without adhesion of sludge.
<実施例3>
次に、実施例3では、上記実施例1から各部の寸法設定を変更し、散気条件、ろ過条件を実施例1と同様の条件にて膜分離装置3を活性汚泥に浸漬し吸引ポンプを使用して運転を行った。
<Example 3>
Next, in Example 3, the dimension setting of each part was changed from the said Example 1, the membrane separation apparatus 3 was immersed in activated sludge on the conditions similar to Example 1 for aeration conditions and filtration conditions, and a suction pump was used. Used to drive.
散気装置4においては、4箇所の給気口15A~15Dを有する4本の気体供給管ヘッダー12A~12Dを用意し、気体供給管ヘッダー12A、12Bそれぞれから分岐して、気体供給管ヘッダー12A、12Bの同一平面上に設置される散気管13を6本設けて第1散気装置20を構成した(なお、水平方向に複数並べて配置される6本の散気管13で散気管群13Gが構成される)。また、気体供給管ヘッダー12C、12Dそれぞれから分岐して、気体供給管ヘッダー12C、12Dの同一平面上に設置される散気管14を6本設けて第2散気装置21を構成した(なお、水平方向に複数並べて配置される6本の散気管14で散気管群14Gが構成される)。
 給気口15A~15Dの口径は32mmとし、気体供給管ヘッダー12A~12Dへそれぞれ均等に空気を送気するようにした。気体供給管ヘッダー12A~12Dは外径50mm角パイプを使用し、向かい合う気体供給管ヘッダーを散気管で接続した。
In the air diffuser 4, four gas supply pipe headers 12A to 12D having four air supply ports 15A to 15D are prepared and branched from the gas supply pipe headers 12A and 12B, respectively. The first diffuser 20 is configured by providing six diffuser tubes 13 installed on the same plane of 12B (in addition, the diffuser tube group 13G is composed of six diffuser tubes 13 arranged side by side in the horizontal direction. Configured). Moreover, the 2nd air diffuser 21 was comprised by branching from each of the gas supply pipe headers 12C and 12D, and providing the six air diffusion pipes 14 installed on the same plane of the gas supply pipe headers 12C and 12D. A diffuser tube group 14G is composed of six diffuser tubes 14 arranged side by side in the horizontal direction).
The diameters of the air supply ports 15A to 15D were 32 mm, and air was supplied evenly to the gas supply pipe headers 12A to 12D, respectively. As the gas supply pipe headers 12A to 12D, square pipes having an outer diameter of 50 mm were used, and the gas supply pipe headers facing each other were connected by a diffuser pipe.
図7を参照し、第1散気装置20と第2散気装置21を積層して設置したときの水平方向から見て隣接する散気管13と散気管14との間の第1散気管軸管距離d1を5.1cmに設定し、第1散気装置20と第2散気装置21を積層して設置したときの鉛直方向から見て隣接する散気管13と散気管14との間の第2散気管軸間距離d2を1.2cmとなるように設定し、散気管13および散気管14としては、外径2.7cm、内径2.4cm、長さ114.5cmのステンレス製パイプ12本を使用し、その長手方向が、中空糸膜の長手方向と平行をなすように並べた。散気管13および散気管14には、最上面にφ0.4cmの円形の気体吐出口16および気体吐出口17をそれぞれ22個、吐出口同士の間隔5cmとし、最下面には汚泥流排出穴18として、幅1.5cm、長さ5cmの長穴を中央部に1個設けた。 Referring to FIG. 7, the first diffuser tube axis between the diffuser tubes 13 and 14 adjacent to each other when viewed from the horizontal direction when the first diffuser device 20 and the second diffuser device 21 are stacked and installed. When the tube distance d1 is set to 5.1 cm and the first air diffuser 20 and the second air diffuser 21 are stacked and installed, the distance between the adjacent air diffuser 13 and the air diffuser 14 seen from the vertical direction is set. The distance d2 between the second air diffuser tubes is set to 1.2 cm. As the air diffuser 13 and the air diffuser 14, the stainless steel pipe 12 having an outer diameter of 2.7 cm, an inner diameter of 2.4 cm, and a length of 114.5 cm is used. The books were used and arranged so that the longitudinal direction thereof was parallel to the longitudinal direction of the hollow fiber membrane. The diffuser pipe 13 and the diffuser pipe 14 each have 22 circular gas discharge ports 16 and 17 each having a diameter of 0.4 cm on the uppermost surface and an interval of 5 cm between the discharge ports, and a sludge flow discharge hole 18 on the lowermost surface. As described above, one elongated hole having a width of 1.5 cm and a length of 5 cm was provided in the central portion.
 このときの散気管13および散気管14の外径Dと、散気管軸間距離d1と、散気管軸間距離d2との間では、d1=1.89Dであり、d1>1.3Dを満足し、かつ、d1=4.25d2であり、d1=1.1×d2~5.0×d2を満足している。 At this time, between the outer diameter D of the diffusion tube 13 and the diffusion tube 14, the distance d1 between the diffusion tube axes, and the distance d2 between the diffusion tube axes, d1 = 1.89D, and d1> 1.3D is satisfied. D1 = 4.25d2 and d1 = 1.1 × d2 to 5.0 × d2.
この実施例3に係る膜分離活性汚泥処理装置1の運転結果を図9に示す。図中の三角印のプロットが実施例3の運転結果を示している。同図で明らかなように、実施例3に係る膜分離活性汚泥処理装置1では、わずかな膜間差圧の上昇が観察され、30日後には初期差圧より3kPaの上昇が観察されたが、安定した運転が可能であった。また、膜分離装置3を引き上げて目視確認したところ、膜分離装置3に搭載した分離膜は汚泥付着もなく、初期レベルを維持していた。 The operation result of the membrane separation activated sludge treatment apparatus 1 according to Example 3 is shown in FIG. The triangle marks in the figure show the operation results of Example 3. As is clear from the figure, in the membrane separation activated sludge treatment apparatus 1 according to Example 3, a slight increase in the transmembrane pressure difference was observed, and after 30 days, a 3 kPa increase was observed from the initial pressure difference. Stable operation was possible. Further, when the membrane separation device 3 was pulled up and visually confirmed, the separation membrane mounted on the membrane separation device 3 did not adhere to sludge and maintained the initial level.
 <実施例4>
 次に、実施例4では、上記実施例1から各部の寸法設定を変更し、散気条件、ろ過条件を実施例1と同様の条件にて膜分離装置3を活性汚泥に浸漬し吸引ポンプ6を使用して運転を行った。
<Example 4>
Next, in Example 4, the dimension setting of each part was changed from Example 1 above, and the membrane separation device 3 was immersed in activated sludge under the same conditions as in Example 1 for the aeration condition and filtration condition, and the suction pump 6 Driving was performed using.
 膜分離装置3の下方に散気装置4を配置し、4箇所の給気口15A~15Dを有する4本の気体供給管ヘッダー12A~12Dを用意し、気体供給管ヘッダー12A、12Bそれぞれから分岐して、気体供給管ヘッダー12A、12Bの同一平面上に設置される散気管13を6本設けて第1散気装置20を構成した(なお、水平方向に複数並べて配置される6本の散気管13で散気管群13Gが構成される)。また、気体供給管ヘッダー12C、12Dそれぞれから分岐して、気体供給管ヘッダー12C、12Dの同一平面上に設置される散気管14を6本設けて第2散気装置21を構成した(なお、水平方向に複数並べて配置される6本の散気管14で散気管群14Gが構成される)。
 給気口15A~15Dの口径は32mmとし、気体供給管ヘッダー12A~12Dへそれぞれ均等に空気を送気するようにした。気体供給管ヘッダー12A~12Dは外径50mm角パイプを使用し、向かい合う気体供給管ヘッダーを散気管で接続した。
The air diffuser 4 is arranged below the membrane separation device 3, and four gas supply pipe headers 12A to 12D having four air supply ports 15A to 15D are prepared and branched from the gas supply pipe headers 12A and 12B, respectively. Thus, the six air diffusers 13 installed on the same plane of the gas supply pipe headers 12A and 12B are provided to form the first air diffuser 20 (note that a plurality of diffusers arranged in the horizontal direction are arranged in parallel. The trachea 13 constitutes a diffuser tube group 13G). Moreover, the 2nd air diffuser 21 was comprised by branching from each of the gas supply pipe headers 12C and 12D, and providing the six air diffusion pipes 14 installed on the same plane of the gas supply pipe headers 12C and 12D. A diffuser tube group 14G is composed of six diffuser tubes 14 arranged side by side in the horizontal direction).
The diameters of the air supply ports 15A to 15D were 32 mm, and air was supplied evenly to the gas supply pipe headers 12A to 12D, respectively. As the gas supply pipe headers 12A to 12D, square pipes having an outer diameter of 50 mm were used, and the gas supply pipe headers facing each other were connected by a diffuser pipe.
 そして、図8を参照し、第1散気装置20と第2散気装置21を積層して設置したときの水平方向から見て隣接する第1散気装置20の散気管13と第2散気装置21の散気管14との間の第1散気管軸間距離d1を3.8cmに設定し、第1散気装置20と第2散気装置21を積層して設置したときの鉛直方向から見て隣接する第1散気装置20の散気管13と第2散気装置21の散気管14との間の第2散気管軸間距離d2を2.7cmとなるように設定し、散気管としては、外径3.0cm、内径2.4cm、長さ114.5cmのステンレス製パイプ12本を使用し、その長手方向が、中空糸膜の長手方向と平行をなすように並べた。各散気管には、最上面にφ0.4cmの円形の気体吐出口をそれぞれ22個、吐出口同士の間隔5cmとし、最下面には汚泥流排出穴18として、幅1.5cm、長さ5cmの長穴を中央部に1個設けた。 And with reference to FIG. 8, when the 1st air diffuser 20 and the 2nd air diffuser 21 are laminated | stacked and installed, the air diffuser 13 and the 2nd air diffuser of the 1st air diffuser 20 which adjoins seeing from the horizontal direction. The vertical distance when the first air diffuser axis distance d1 between the air diffuser 14 and the air diffuser 14 is set to 3.8 cm and the first air diffuser 20 and the second air diffuser 21 are stacked and installed. The distance d2 between the second air diffuser axes between the air diffuser 13 of the first air diffuser 20 and the air diffuser 14 adjacent to the second air diffuser 21 is set to be 2.7 cm. As the trachea, twelve stainless steel pipes having an outer diameter of 3.0 cm, an inner diameter of 2.4 cm, and a length of 114.5 cm were used and arranged such that the longitudinal direction thereof was parallel to the longitudinal direction of the hollow fiber membrane. Each air diffuser has 22 circular gas outlets with a diameter of φ0.4 cm on the uppermost surface, the interval between the outlets is 5 cm, and the lowermost surface is a sludge flow discharge hole 18 with a width of 1.5 cm and a length of 5 cm. One long hole was provided at the center.
 このときの散気管の外径Dと、第1散気管軸間距離d1と、第2散気管軸間距離d2との間では、d1=1.27Dであり、d1>1.3Dを満足していない。一方、d1=1.41d2であり、d1=1.1×d2~5.0×d2は満足している。膜分離装置と吸引ポンプの間には圧力計を設置し、吸引濾過時の膜間差圧を測定しながら1ヶ月連続運転を行った。 At this time, d1 = 1.27D and d1> 1.3D are satisfied between the outer diameter D of the air diffuser, the first air diffuser axis distance d1, and the second air diffuser axis distance d2. Not. On the other hand, d1 = 1.41d2, and d1 = 1.1 × d2 to 5.0 × d2 is satisfied. A pressure gauge was installed between the membrane separator and the suction pump, and continuous operation was performed for one month while measuring the transmembrane pressure difference during suction filtration.
 この実施例4に係る膜分離活性汚泥処理装置の運転結果を図9に示す。図中の×印のプロットが実施例4の運転結果を示している。同図に明らかなように、実施例3に係る膜分離活性汚泥処理装置では、膜間差圧が20日を過ぎたところから徐々に上昇し、30日後には初期差圧より30kPaの上昇が観察された。また膜分離装置を引き上げて目視確認したところ、膜分離装置に搭載した分離膜には多少の汚泥付着が観察された。 FIG. 9 shows the operation result of the membrane separation activated sludge treatment apparatus according to Example 4. The x-marked plot in the figure shows the operation result of Example 4. As is clear from the figure, in the membrane separation activated sludge treatment apparatus according to Example 3, the transmembrane pressure difference gradually increased from the past 20 days, and after 30 days, the pressure difference increased by 30 kPa from the initial pressure difference. Observed. Further, when the membrane separator was pulled up and visually confirmed, some sludge was observed on the separation membrane mounted on the membrane separator.
 以上で説明した実施例1~実施例4の運転結果及び観察結果では、実施例3に関しては比較的長い期間で膜間差圧の上昇を抑えることが確認できたものの、実施例1、2及び3は、実施例4よりも長い期間で膜間差圧の上昇を抑えることが可能であることが確認できた。
 この結果から、複数段に積層して配置された第1散気装置20と第2散気装置21を水平方向から散気管13、14の軸方向に見た場合に隣接する、散気管13と散気管14との間の軸間距離(第1散気管距離)をd1、前記一対の散気管群のうちの一方の散気管の軸線と、前記他方の散気管の軸線を前記一方の散気管の軸線を含む水平面上に射影した直線との距離(第2散気管距離)をd2、散気管13および散気管14の外径をDとしたときに、d1=1.1×d2~5.0×d2、d1>1.3Dの関係を満足するように、散気管13および散気管14が配置するようにした場合には、より長期にわたる安定した濾過が継続できることが確認できた。
In the operation results and observation results of Examples 1 to 4 described above, it was confirmed that the increase in the transmembrane pressure difference was suppressed over a relatively long period for Example 3, but Examples 1 and 2 and 3 confirmed that it was possible to suppress the increase in the transmembrane pressure difference over a longer period than in Example 4.
From this result, when the first air diffuser 20 and the second air diffuser 21 arranged in a plurality of stages are viewed from the horizontal direction in the axial direction of the air diffusers 13 and 14, The inter-axis distance between the diffuser tube 14 (first diffuser tube distance) is d1, the axis of one of the pair of diffuser tubes and the axis of the other diffuser tube are the one diffuser tube. D1 = 1.1 × d2-5. Where d2 is the distance from the straight line projected onto the horizontal plane including the axis of (diffusion tube distance) d2 and the outer diameters of the diffusion tube 13 and the diffusion tube 14 are D. It was confirmed that stable filtration can be continued for a longer period when the diffuser 13 and the diffuser 14 are arranged so as to satisfy the relationship of 0 × d2, d1> 1.3D.
本発明の固液分離装置は、長期にわたる濾過を行っても散気管の気体吐出口の閉塞が少なく、その結果、懸濁物による膜面の細孔の閉塞が少なく、安定した濾過が長期間継続可能であるため、例えば、膜分離活性汚泥処理装置として有用である。 The solid-liquid separation device of the present invention has less obstruction of the gas discharge port of the air diffuser even after long-term filtration. Since it can be continued, it is useful, for example, as a membrane separation activated sludge treatment apparatus.
 1 膜分離活性汚泥処理装置(固液分離装置)
 3 膜分離装置
 4 散気装置
 9 中空糸膜
 10 濾過膜シート
 11 分離膜モジュール
 12 気体供給管ヘッダー
 13,14 散気管
 13G、14G 散気管群
 16,17 気体吐出口
 20 第1散気装置(散気装置)
 21 第2散気装置(散気装置)
1 Membrane separation activated sludge treatment equipment (solid-liquid separation equipment)
DESCRIPTION OF SYMBOLS 3 Membrane separator 4 Air diffuser 9 Hollow fiber membrane 10 Filtration membrane sheet 11 Separation membrane module 12 Gas supply pipe header 13, 14 Air diffuser 13G, 14G Air diffuser group 16, 17 Gas outlet 20 First air diffuser (diffuse Qi device)
21 2nd air diffuser (air diffuser)

Claims (5)

  1.  濾過膜シートを複数枚並列して配置した分離膜モジュールを間隔を隔てて複数配置した膜分離装置の前記分離膜モジュールの下方に、気体吐出口を有する散気管を複数備えるとともに該複数の散気管をそれぞれ平行に設ける散気装置を設け、前記散気管に気体を供給し、前記気体吐出口から前記分離膜モジュールに対して散気を行なう固液分離装置において、
     前記散気管を水平方向に複数並べて配置し、該水平方向に並べて配置された複数の散気管からなる散気管群を上下方向に複数段、かつ、隣接する段の散気管同士が鉛直線上に並ばないように積層して配置し、それぞれの散気管群に対して給気を切り替える手段を有する固液分離装置。
    A plurality of diffusion tubes having gas discharge ports are provided below the separation membrane module of the membrane separation device in which a plurality of separation membrane modules in which a plurality of filtration membrane sheets are arranged in parallel are arranged at intervals. In a solid-liquid separation device that provides an air diffuser provided in parallel with each other, supplies gas to the air diffuser, and diffuses air from the gas discharge port to the separation membrane module,
    A plurality of the diffuser tubes are arranged side by side in the horizontal direction, a plurality of diffuser tube groups composed of a plurality of diffuser tubes arranged in the horizontal direction are arranged in a plurality of levels in the vertical direction, and the diffuser tubes in adjacent stages are arranged on the vertical line. A solid-liquid separation device having means arranged so as to be stacked so as to switch the air supply to each of the diffuser tube groups.
  2.  前記散気装置を、複数の前記散気管群のうちの少なくとも一つの散気管群と、該散気管群の各散気管に同一平面上で連通し各散気管に気体を供給する少なくとも一本の気体供給管ヘッダーとで構成される複数の散気装置で構成し、
     前記複数の散気装置を上下方向に複数段に積層して設置することで、前記散気管群を上下方向に、隣接する段の散気管同士が鉛直線上に並ばないように積層して配置したことを特徴とする請求項1に記載の固液分離装置。
    The air diffuser is connected to at least one air diffuser group of the plurality of air diffuser tube groups and the air diffuser tubes of the air diffuser tube group on the same plane, and supplies at least one gas to each air diffuser tube. Consists of a plurality of air diffusers composed of a gas supply pipe header,
    By arranging the plurality of air diffusers in a plurality of stages in the vertical direction, the air diffuser groups are arranged in a vertical direction so that adjacent stages of the air diffusers do not line up on the vertical line. The solid-liquid separator according to claim 1.
  3.  前記濾過膜シートが、多数の中空糸膜を平行に並べてなる濾過膜シートである請求項1又は2に記載の固液分離装置。 The solid-liquid separation device according to claim 1 or 2, wherein the filtration membrane sheet is a filtration membrane sheet in which a large number of hollow fiber membranes are arranged in parallel.
  4.  複数段に積層して配置された前記散気管群を水平方向から前記散気管の軸方向に見た場合に隣接する、一対の散気管群の散気管の軸間距離である散気管軸間距離をd1、
     前記一対の散気管群のうちの一方の散気管の軸線と、前記他方の散気管の軸線を前記一方の散気管の軸線を含む水平面上に射影した直線との距離をd2、
     前記散気管の外径をD、としたときに、
     d1=1.1×d2~5.0×d2を満足し、かつ、d1>1.3Dを満足するように前記散気管が配置されている請求項1~3のいずれか1項に記載の固液分離装置。
    When the diffuser tube group arranged in a plurality of stages is viewed from the horizontal direction in the axial direction of the diffuser tube, the adjacent distance between the diffuser tubes is the interaxial distance between the diffuser tubes of the pair of diffuser tube groups D1,
    A distance between an axis of one of the pair of air diffuser groups and a straight line obtained by projecting an axis of the other air diffuser onto a horizontal plane including the axis of the one air diffuser;
    When the outer diameter of the air diffuser is D,
    4. The air diffuser according to claim 1, wherein the air diffuser is arranged so as to satisfy d1 = 1.1 × d2 to 5.0 × d2 and satisfy d1> 1.3D. Solid-liquid separator.
  5.  請求項1~4のいずれか1項に記載の固液分離装置を用いた固液分離装置の運転方法であって、
     前記複数の散気管群のうち、一つの散気管群に空気を供給する工程と、
     前記空気を供給した散気管群への空気供給を停止する工程と、
     前記空気供給を停止した散気管群とは異なる他の散気管群のうちの一つの散気管群に空気を供給する工程と、
    を一定期間毎に繰り返す固液分離装置の運転方法。
    A method for operating a solid-liquid separator using the solid-liquid separator according to any one of claims 1 to 4,
    Supplying air to one of the plurality of air diffuser groups;
    Stopping air supply to the group of air diffusers that supplied the air;
    Supplying air to one of the other diffusing tube groups different from the diffusing tube group that has stopped the air supply;
    The operation method of the solid-liquid separator which repeats every fixed period.
PCT/JP2011/062610 2010-06-01 2011-06-01 Solid-liquid separator device and operation method thereof WO2011152461A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201190000639.XU CN203379815U (en) 2010-06-01 2011-06-01 Solid-liquid separating device
JP2011526314A JP5982822B2 (en) 2010-06-01 2011-06-01 Solid-liquid separator and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-125927 2010-06-01
JP2010125927 2010-06-01

Publications (1)

Publication Number Publication Date
WO2011152461A1 true WO2011152461A1 (en) 2011-12-08

Family

ID=45066819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062610 WO2011152461A1 (en) 2010-06-01 2011-06-01 Solid-liquid separator device and operation method thereof

Country Status (4)

Country Link
JP (1) JP5982822B2 (en)
CN (1) CN203379815U (en)
TW (1) TWI462881B (en)
WO (1) WO2011152461A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178321A (en) * 1993-11-12 1995-07-18 Mitsubishi Rayon Co Ltd Hollow-fiber membrane module assembly
JPH07185271A (en) * 1993-12-24 1995-07-25 Kurita Water Ind Ltd Immersion membrane apparatus
JPH07185270A (en) * 1993-12-24 1995-07-25 Kurita Water Ind Ltd Immersion membrane apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322206B2 (en) * 1998-03-06 2002-09-09 栗田工業株式会社 Immersion type membrane separation device
JP2000126558A (en) * 1998-10-28 2000-05-09 Nitto Denko Corp Immersion-type film separation device and method for cleaning fouled water
JP4361432B2 (en) * 2004-07-02 2009-11-11 株式会社西原 Water treatment equipment
TWI284119B (en) * 2004-12-22 2007-07-21 Ind Tech Res Inst Biological membrane filtration system for water treatment and water treatment process using the same
JP5330658B2 (en) * 2007-07-24 2013-10-30 三菱重工業株式会社 Aeration equipment
JP2010104932A (en) * 2008-10-31 2010-05-13 Suido Kiko Kaisha Ltd Air diffuser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178321A (en) * 1993-11-12 1995-07-18 Mitsubishi Rayon Co Ltd Hollow-fiber membrane module assembly
JPH07185271A (en) * 1993-12-24 1995-07-25 Kurita Water Ind Ltd Immersion membrane apparatus
JPH07185270A (en) * 1993-12-24 1995-07-25 Kurita Water Ind Ltd Immersion membrane apparatus

Also Published As

Publication number Publication date
JPWO2011152461A1 (en) 2013-08-01
CN203379815U (en) 2014-01-08
JP5982822B2 (en) 2016-08-31
TWI462881B (en) 2014-12-01
TW201210948A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
US8557112B2 (en) Fine bubble diffusing pipe, fine bubble diffusing apparatus, and submerged membrane separation apparatus
US20070151916A1 (en) Network for supporting spiral wound membrane cartridges for submerged operation
US7713413B2 (en) Aerated anoxic membrane bioreactor
WO2005070524A1 (en) Filtration with low-fouling, high-flow, low-energy spiral wound membrane cartridges
KR101495375B1 (en) Method of cleaning air diffuser apparatus
JP5803293B2 (en) Air diffuser
US20100213124A1 (en) Submerged membrane separation apparatus and method for operation thereof
JP5073076B2 (en) Membrane separation unit
JP2004008981A (en) Membrane separation apparatus
WO2011132497A1 (en) Membrane unit and membrane separation device
CA2889867A1 (en) Filtration module and filtration apparatus
JP5845673B2 (en) Air diffuser
TWI498151B (en) Filtering method of water to be treated
JP5823489B2 (en) Membrane separator
JP2010247086A (en) Flat membrane module and water treatment apparatus using the same
AU2009310485A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP2010194434A (en) Hollow fiber membrane module and water treatment apparatus
JP5982822B2 (en) Solid-liquid separator and operation method thereof
JP5094022B2 (en) Aeration device and membrane filtration unit applied when collecting filtrate of solid-liquid mixed processing liquid
EP1676817A1 (en) Submergible membrane filtration module
JP2005138103A (en) Separation membrane module and membrane separation device
JP2011005361A (en) Membrane filtration apparatus
JPH08323165A (en) Membrane device and membrane treating device
JP2003175319A (en) Membrane element, membrane module, water making apparatus and water making method
CN114025869A (en) Tubular membrane comprising longitudinal ridges, device provided with such a membrane and method for manufacturing such a membrane

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000639.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011526314

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789863

Country of ref document: EP

Kind code of ref document: A1