WO2011152332A1 - Gasket for pressure vessel, and method for producing said gasket - Google Patents

Gasket for pressure vessel, and method for producing said gasket Download PDF

Info

Publication number
WO2011152332A1
WO2011152332A1 PCT/JP2011/062325 JP2011062325W WO2011152332A1 WO 2011152332 A1 WO2011152332 A1 WO 2011152332A1 JP 2011062325 W JP2011062325 W JP 2011062325W WO 2011152332 A1 WO2011152332 A1 WO 2011152332A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
pressure vessel
iridium
coating
layer
Prior art date
Application number
PCT/JP2011/062325
Other languages
French (fr)
Japanese (ja)
Inventor
孝之 島宗
重治 赤塚
桂一郎 松下
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Priority to JP2012518370A priority Critical patent/JPWO2011152332A1/en
Publication of WO2011152332A1 publication Critical patent/WO2011152332A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0806Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/03Pressure vessels, or vacuum vessels, having closure members or seals specially adapted therefor

Definitions

  • the present invention relates to a gasket used for a pressure vessel, and in particular, a pressure that is provided at an opening of the pressure vessel, and a sealing portion is in contact with a flange having a surface of iridium or an iridium base alloy to seal the pressure vessel.
  • the present invention relates to a gasket for containers.
  • the hydrothermal synthesis method and the thermal synthesis method are methods in which chemical reactions such as dissolution, decomposition, and crystal growth are performed in a high-temperature and high-pressure solvent.
  • the hydrothermal synthesis method uses water as a solvent.
  • the low temperature synthesis method uses ammonia (ammonium chloride) as a solvent. In these methods, a pressure vessel called an autoclave is used.
  • the hydrothermal synthesis method and the low-temperature synthesis method are sometimes carried out at about 100 to 400 ° C. and about 100 to 300 atm in the vicinity of the critical point for the purpose of improving reaction efficiency and reacting a hardly decomposed substance or a hardly soluble substance.
  • hydrothermal synthesis methods and low-temperature synthesis methods have been used in ultra-high temperature and ultra-high pressure conditions far beyond the critical point for the purpose of further improving the reaction efficiency and reacting substances that could not be decomposed or dissolved near the critical point.
  • experiments at 800 ° C. and 4000 atmospheres have been conducted, and the conditions are expected to become more severe. Under such conditions, the pressure vessel is required to withstand use at, for example, an ultra-high temperature from room temperature to 1000 ° C. and an ultra-high pressure of 1 to 5000 atmospheres.
  • the metals that can be used are limited, and as a physical material that retains physical strength and can withstand practical use, for example, nickel sold under the trade names INCONEL and HASTELLOY Base alloys and other equivalent metals are used. These metals are known to have high temperature resistance and extremely excellent physical strength at high temperatures.
  • the nickel-based alloy is said to be chemically resistant, for example, a hydrothermal synthesis method or a low-temperature synthesis method in the vicinity of critical points performed at 100 to 400 ° C. and 100 to 300 atm. Under these conditions, its chemical resistance is not sufficient. Furthermore, since the melting point of the nickel-based alloy is about 1300 ° C., the service temperature varies depending on the use conditions, but is about 800 ° C. from the viewpoint of physical strength, and in a supercritical state exceeding 800 ° C. It is not suitable for use under the conditions of hydrothermal synthesis or low-temperature synthesis. Therefore, a noble metal such as a platinum group metal or gold is often used in a portion of the pressure vessel that comes into contact with a chemical solution or a chemical atmosphere.
  • a noble metal such as a platinum group metal or gold is often used in a portion of the pressure vessel that comes into contact with a chemical solution or a chemical atmosphere.
  • the main body and the lid are fixed by a nut or a clamp.
  • the main body has a bottomed cylindrical shape with one end opened, and a flange (hereinafter sometimes referred to as a lower flange) is provided on the periphery of the opening.
  • the lid is also provided with a flange (hereinafter sometimes referred to as an upper flange), and the pressure vessel is structured to seal between the upper flange and the lower flange via a gasket. Therefore, since a large pressure is applied to the flange, it is necessary to have a sufficient pressure resistance.
  • the upper flange, the gasket, and the lower flange are in contact with each other by a line or a surface to form a seal portion (hereinafter, the corresponding contact portion is referred to as a seal portion).
  • a seal portion a seal portion
  • a high surface hardness is required for the seal portion.
  • the gasket needs to be softer than the flange. With this configuration, the flange is not deformed and the gasket is deformed. Therefore, only the deformed gasket is replaced, and the inner cylinder can be used repeatedly.
  • platinum group metals having high surface hardness even at high temperatures or alloys thereof are often used.
  • a heat-resistant and corrosion-resistant alloy is usually used, and a nickel-based alloy is mainly used.
  • the nickel base alloy has a problem that softening occurs much more severely than the platinum group metal under a very high temperature condition such as a supercritical state exceeding 800 ° C., so that it cannot be applied as a gasket as it is.
  • the gasket since the gasket has a portion exposed directly in the pressure vessel, it is desirable that at least the exposed surface be a platinum group metal surface having corrosion resistance.
  • a method of forming a platinum group metal layer on the surface of the base material the use is different, but a titanium nitride layer is formed on the surface of the titanium base material in advance for use as an electrode, and platinum group metal and / or platinum group metal oxidation is performed on the surface.
  • a technique for coating an electrode material including an object is disclosed (for example, see Patent Document 2).
  • Patent Document 1 proposes to use a platinum group metal or an alloy thereof as a material of the gasket.
  • a platinum group metal or an alloy thereof is suitable for use as a consumable part such as a gasket. There is no problem.
  • the material of the flange and gasket it is preferable to select the material of the flange and gasket relatively. As described above, it is preferable to make the surface hardness of the gasket smaller than the surface hardness of the flange. Furthermore, if the same material is selected from platinum group metals for the flange and gasket, the flange seal and gasket may adhere to each other due to mutual diffusion while the pressure vessel is operated at high temperature and high pressure. It is preferable to do.
  • some proposals have been made regarding the shape of the gasket there is almost no knowledge and literature regarding the material of the gasket, it has corrosion resistance, and has an appropriate surface hardness in relation to the material of the flange. At present, there is no gasket that protects the body.
  • Patent Document 2 proposes a technique for forming a platinum group metal layer and / or a platinum group metal oxide layer on the surface of a base material.
  • this technique is only an electrode technique, and the surface strength is appropriately set. It's not about handling.
  • an object of the present invention is a gasket for a pressure vessel that is provided in an opening of a pressure vessel and a sealing portion abuts on a flange having a surface of iridium or an iridium base alloy to seal the pressure vessel. It is suitable for use as a consumable part, has sufficient strength, sealability and corrosion resistance even in high-temperature and high-pressure conditions, and has an appropriate surface hardness in relation to the material of the flange of the pressure vessel. It is to provide a gasket for a pressure vessel that does not cause diffusion.
  • the present inventors have made a nickel-base alloy usable as a consumable part as a base material, and nitriding the surface of the base material to improve surface hardness and surface corrosion resistance.
  • a nickel-base alloy usable as a consumable part as a base material
  • nitriding the surface of the base material to improve surface hardness and surface corrosion resistance.
  • the gasket for a pressure vessel is for a pressure vessel that seals the pressure vessel by being provided at the opening of the pressure vessel and having a seal portion in contact with a flange having a surface of iridium or an iridium-based alloy.
  • a coating layer comprising a nickel-base alloy as a base material, a nitride layer of the nickel-base alloy formed on the surface of the base material, and a platinum group metal oxide on the surface of the nitride layer Is formed.
  • the platinum group metal is preferably iridium, ruthenium, rhodium, or a base alloy thereof.
  • the surface of the gasket can have a more appropriate surface hardness.
  • the nitride layer has a thickness of 1 to 10 ⁇ m, and the coating layer has a thickness of 0.01 to 3 ⁇ m.
  • the surface of the gasket can have an appropriate surface hardness. Moreover, it is possible to prevent the nickel-base alloy of the base material from being exposed and to further improve the corrosion resistance.
  • the Vickers hardness of the surface of the sealing portion measured according to JIS Z 2244: 2009 is preferably 300 Hv to 400 Hv.
  • the platinum group metal is diffused from the coating layer into the nitride layer. Adhesion between each layer can be made more reliable, and a gasket with higher pressure resistance can be obtained. Further, the surface hardness of the gasket can be optimized and the corrosion resistance can be further improved.
  • the method for manufacturing a pressure vessel gasket according to the present invention includes: a pressure vessel that seals the pressure vessel by being in contact with a flange having a surface of iridium or an iridium-based alloy provided at an opening of the pressure vessel.
  • a method for manufacturing a gasket for use in a process comprising: nitriding treatment using a nickel-based alloy as a base material and nitriding the surface of the base material to form a nitride layer; and a platinum group metal on the surface of the nitride layer.
  • the nitriding treatment step is preferably performed by heating in an atmosphere containing nitrogen gas, ammonia gas, or a nitrogen-hydrogen mixed gas. Nitriding can be performed more efficiently.
  • the coating step and the thermal decomposition step are repeated a plurality of times so that the thickness of the coating layer is 0.01 to 3 ⁇ m. It is possible to obtain a uniform coating layer with less pores, and as a result, the surface of the gasket can be more reliably coated with the platinum group metal oxide.
  • the present invention is a gasket for a pressure vessel which is provided at an opening of a pressure vessel and seals the pressure vessel by contacting a flange having a seal portion having a surface of iridium or an iridium base alloy, and is a consumable part Suitable for use as a material, has sufficient strength, sealability and corrosion resistance even in high-temperature and high-pressure conditions, and has an appropriate surface hardness in relation to the flange material of the pressure vessel, and does not cause mutual diffusion with the flange.
  • a gasket for a pressure vessel can be provided.
  • FIG. 1 It is a schematic diagram which shows one form of the cross-sectional structure of the gasket for pressure vessels which concerns on this embodiment. It is sectional drawing which shows an example of a pressure vessel. It is a figure for demonstrating the example of a form of the gasket in a medium-sized pressure vessel, (a) is a cross-sectional partial enlarged view which shows one form of a flange and a gasket, (b) is a top view which shows one form of a gasket It is.
  • FIG. 1 is a schematic diagram showing an embodiment of a cross-sectional structure of a pressure-resistant container gasket according to the present embodiment.
  • the gasket 100 for a pressure vessel according to the present embodiment is provided for an opening of a pressure vessel, and a seal portion is in contact with a flange having a surface of iridium or an iridium base alloy to seal the pressure vessel.
  • a gasket comprising a nickel-base alloy as a base material 1, a nickel-base alloy nitride layer 2 formed on the surface of the base material 1, and a coating layer containing a platinum group metal oxide on the surface of the nitride layer 2 3 is formed.
  • FIG. 2 is a cross-sectional view showing an example of a pressure vessel.
  • the pressure vessel 900 has a main body 81 and a lid 91.
  • the main body 81 and the lid 91 are fixed by a fixing jig 72 such as a nut or a clamp.
  • An intermediate layer 82 is disposed on the inner surface of the main body 81, and an inner cylinder 83 is disposed on the inner surface of the intermediate layer 82.
  • an intermediate layer 92 is disposed on the inner surface of the lid 91, and an innermost layer 93 is disposed on the inner surface of the intermediate layer 92.
  • the main body 81 and the lid 91 are made of a heat-resistant alloy such as low alloy steel or nickel chrome alloy.
  • the intermediate layer 82 and the intermediate layer 92 are made of a nickel-based alloy having excellent heat and corrosion resistance such as trade names Inconel and Hastelloy.
  • the inner cylinder 83 and the innermost layer 93 are made of a platinum group metal or a platinum group metal base alloy.
  • the platinum group metal or platinum group metal base alloy is, for example, platinum, platinum base alloy, iridium, iridium base alloy, ruthenium, ruthenium base alloy, rhodium, rhodium base alloy, and platinum is often used among them. .
  • Examples of the platinum-based alloy include a platinum-iridium alloy, a platinum-ruthenium alloy, a platinum-rhodium alloy, a platinum-gold alloy, and a platinum-rhenium alloy.
  • Examples of iridium based alloys include iridium-ruthenium alloys, iridium-platinum alloys, iridium-rhodium alloys, iridium-gold alloys, and iridium-rhenium alloys.
  • Examples of the ruthenium-based alloy include a ruthenium-iridium alloy, a ruthenium-platinum alloy, a ruthenium-rhodium alloy, a ruthenium-gold alloy, and a ruthenium-rhenium alloy.
  • rhodium-based alloys examples include rhodium-iridium alloys, rhodium-platinum alloys, rhodium-ruthenium alloys, rhodium-gold alloys, and rhodium-rhenium alloys.
  • the pressure vessel 900 has a structure in which a lower flange 84 provided in the opening of the main body 81 and an upper flange 94 provided in the lid 91 are sealed via a gasket 71.
  • the lower flange 84, the gasket 71, and the upper flange 94 are in contact with each other at a linear or planar seal portion to form a seal portion.
  • the sealing part of the lower flange 84 and the upper flange 94 has the surface of iridium or an iridium base alloy.
  • the iridium-based alloy examples include an iridium-platinum alloy, an iridium-ruthenium alloy, an iridium-rhodium alloy, an iridium-gold alloy, and an iridium-rhenium alloy.
  • the pressure vessel 900 is suitably used for producing a single crystal by a hydrothermal synthesis method or a low temperature synthesis method. Since the surface of the seal portion is iridium or an iridium-based alloy having a higher hardness among the platinum group metals, it is particularly suitable when used under supercritical high-temperature and high-pressure conditions.
  • the pressure vessel 900 is a sealing method in which the lower flange 84 and the upper flange 94 of the main body 81 and the lid 91 are sealed via the gasket 71, and the sealing portions of the lower flange 84 and the upper flange 94 are sealed. If it has the surface of iridium or an iridium base alloy, it will not restrict
  • FIG. 3 is a view for explaining an example of a gasket in a medium-sized pressure vessel
  • (a) is an enlarged sectional view showing one embodiment of a flange and a gasket
  • (b) is one embodiment of the gasket.
  • FIG. 4A and 4B are views for explaining an example of a gasket in a large pressure vessel.
  • FIG. 4A is an enlarged cross-sectional view showing an embodiment of a flange and a gasket
  • FIG. 4B is an embodiment of the gasket.
  • the medium-sized pressure vessel is a pressure vessel having an inner cylinder with an inner diameter of 20 to 70 mm and a capacity of 0.0001 to 0.008 m 3
  • the large pressure vessel is a pressure vessel having an inner cylinder with an inner diameter of 70 to 150 mm and a capacity of 0.008 to 0.05 m 3 .
  • the inner cylinder 83 and the lower flange 84 may be integrally formed of iridium or an iridium-based alloy, or may be formed of different materials. In the case of molding with different materials, the present embodiment is not limited to the method of joining the inner cylinder 83 and the lower flange 84.
  • a method for joining for example, as shown in FIGS. 3 and 4, there is a method in which a flange-like attachment portion 83 a is provided on the periphery of the opening of the inner cylinder 83 and a lower flange 84 is attached thereon by welding.
  • the lower flange 84 is preferably formed integrally with iridium or an iridium base alloy, but the outermost layer of iridium or iridium base alloy and another platinum group so that at least the surface of the seal portion is iridium or iridium base alloy. It is good also as a form which the lower layer which consists of metals made
  • the form of the laminated body is, for example, a form in which the outermost layer is iridium and the lower layer is any one of platinum, ruthenium, rhodium or a base alloy thereof, the outermost layer is iridium based alloy, and the lower layer is platinum, ruthenium, rhodium or Any form of the base alloy, the outermost layer is iridium, an intermediate layer is provided between the outermost layer and the lower layer, the intermediate layer is an iridium alloy, and the lower layer is platinum, ruthenium, rhodium, or any of its base alloys It is a form.
  • the gasket has various shapes depending on conditions such as the shape of the flange of the pressure vessel used and the pressure.
  • a gasket 71a called a lens ring is used which has a tapered shape that maximizes the thickness of the inner peripheral side of the ring and decreases toward the outer periphery.
  • the thickness is made thinner than the ring portion on the outer peripheral side of the ring 77 called the gray lock seal ring with the structure as shown in FIG.
  • a gasket 71b having a shape in which an outer ring 78 is formed is used.
  • the lens ring type gasket 71a and the gray lock seal ring type gasket 71b, and the upper flange 94 and the lower flange 84 are in contact with each other at the seal location S.
  • sticker location S has contact
  • the gray lock seal ring type gasket is referred to as a self-tightening gasket, and when the pressure in the pressure vessel increases, the diameter of the gasket expands and enters the gap between the upper flange 94 and the lower flange 84. The airtightness between the pressure vessel main body and the lid can be made extremely high.
  • the size of the gasket differs depending on the specifications of the pressure vessel to be applied.
  • the inner dimension e is 20 to 70 mm
  • the outer dimension f is 30.
  • the wall thickness is 10 to 30 mm at the thickest part.
  • the inner dimension g of the ring 77 is generally 70 to 150 mm
  • the outer dimension h of the outer ring 78 is 100 to 200 mm
  • the thickness is 10 to 30 mm at the thickest part.
  • the gasket for a pressure vessel has a configuration in which a nitride layer 2 and a coating layer 3 are sequentially coated on the surface of a substrate 1 as shown in FIG.
  • the base material 1 is a nickel base alloy.
  • the nickel-base alloy for example, those sold under the trade names Inconel, Hastelloy, and equivalents thereof can be used. Further, stainless steel such as SUS316L mainly composed of chromium and nickel can be used.
  • the nickel content in the substrate 1 is preferably 8 to 80% by mass. More preferably, it is 8 to 70% by mass.
  • the nitride layer 2 contains a nickel-based alloy nitride.
  • nickel-base alloys are said to have high-temperature resistance and corrosion resistance, but their physical strength and corrosion resistance are not sufficient under the conditions of hydrothermal synthesis or low-temperature synthesis in supercritical conditions.
  • the nitride layer 2 is formed on the surface to improve the physical strength and corrosion resistance of the surface at high temperatures. Further, in the low temperature synthesis method, it is preferable that oxygen does not exist, and therefore it is preferable that no oxide is formed on the surface of the substrate 1. By forming the surface of the substrate 1 as the nitride layer 2, it is possible to prevent oxides from being formed on the surface of the substrate 1.
  • the nitride layer 2 only needs to be formed on the surface of at least the portion of the base material 1 exposed in the pressure vessel, but is more preferably formed on the entire surface of the gasket.
  • the nitride content of the nitride layer 2 has a distribution in which the surface is the largest and gradually decreases toward the inside of the substrate.
  • the coating layer 3 contains a platinum group metal oxide.
  • the platinum group metal is preferably iridium, ruthenium, rhodium, or a base alloy thereof. Since these platinum group metals and their base alloys have higher hardness among platinum group metals, the surface hardness of the gasket can be set within a predetermined range.
  • the oxides of the platinum group metals and their base alloys are, for example, iridium oxide, ruthenium oxide, rhodium oxide, iridium oxide / platinum, iridium ruthenium oxide, iridium rhodium oxide, iridium rhenium oxide, iridium oxide / gold.
  • the covering layer 3 only needs to be formed at least in a portion of the gasket that is exposed in the pressure vessel. Particularly preferably, the covering layer 3 covers the entire surface of the gasket. By forming it on the entire surface of the gasket, the durability of the gasket can be improved. Moreover, even when used at high temperature and high pressure under supercritical conditions, appropriate surface hardness and corrosion resistance can be further improved.
  • the content of the platinum group metal oxide in the coating layer 3 is preferably 90% by mass or more. More preferably, it is 80% by mass or more, and particularly preferably 100% by mass, that is, a form in which all is an oxide of a platinum group metal and an unoxidized platinum group metal is not exposed. If it is less than 90% by mass, the surface of the gasket and the surface of the sealing portion of the flange may be mutually diffused and bonded during operation of the pressure vessel. In the low temperature synthesis method, it is preferable that no oxide is formed. However, an oxide of a platinum group metal is chemically extremely stable, and its oxide layer is dense. Therefore, since the influence on the synthesis reaction is extremely small, it can be used in the low-temperature synthesis method.
  • the thickness of the nitride layer 2 is 1 to 10 ⁇ m. More preferably, it is 3 to 5 ⁇ m. If it is less than 1 ⁇ m, the surface hardness and corrosion resistance are insufficient. When it exceeds 10 ⁇ m, the surface hardness becomes higher than that of the flange, and the flange is deformed.
  • the thickness of the coating layer 3 is preferably 0.01 to 3 ⁇ m. More preferably, it is 0.1 to 3 ⁇ m. If the thickness is less than 0.01 ⁇ m, the surface of the gasket cannot be sufficiently covered. If it exceeds 3 ⁇ m, it will be easy to peel depending on handling conditions such as rapid heating and quenching. Moreover, the usage-amount of a platinum group metal increases and it is economically unpreferable. Platinum group metal oxides are chemically very stable and have a very low impact on low-temperature synthesis.However, by reducing the amount of platinum group metal oxides, the impact on low-temperature synthesis is reduced. It can be further reduced. In the present embodiment, by providing the nitride layer 2 between the base material 1 and the coating layer 3, the thickness of the coating layer 3 containing an oxide can be made as thin as possible.
  • the Vickers hardness of the surface of the seal portion measured according to JIS Z 2244: 2009 is 300 Hv to 400 Hv (300 Hv or more and 400 Hv or less). More preferably, it is 315Hv to 385Hv. If the Vickers hardness is less than 300 Hv, a large deformation (crushing) occurs due to tightening, and a sufficient seal cannot be obtained. When the Vickers hardness exceeds 400 Hv, the surface hardness becomes higher than that of the flange, and the flange is deformed. As a result, the life of the pressure vessel is shortened.
  • the surface hardness of the flange and gasket that can withstand use under a pressure condition of 1000 atm or higher is assumed to be 300 Hv or more in terms of Vickers hardness.
  • the seal portion of the flange of the pressure vessel has a surface made of iridium or an iridium-based alloy, and the surface hardness is 350 Hv to 450 Hv in terms of Vickers hardness.
  • the surface hardness of the seal location of the gasket since the surface hardness of the seal location of the gasket is in the above range, the surface hardness of the seal location of the gasket can be made smaller than the surface hardness of the seal location of the flange.
  • the nickel-base alloy has a Vickers hardness of about 200 Hv.
  • the Vickers hardness at the gasket seal portion can be obtained by forming the nitride layer 2 on the surface of the base material 1 so that the surface hardness is within a predetermined range, for example, The Vickers hardness can be 300Hv to 400Hv.
  • a platinum group metal is diffused from the coating layer 3 in the nitride layer 2. Adhesion between each layer can be made more reliable, and a gasket with higher pressure resistance can be obtained. In addition, the hardness of the gasket surface can be optimized.
  • the method for manufacturing a gasket for a pressure vessel includes a nitriding process in which a nickel-based alloy is used as a base material and the surface of the base material is nitrided to form a nitride layer, and the surface of the nitride layer is formed.
  • the surface of the substrate 1 is nitrided by heating in a gas containing nitrogen or a nitrogen compound.
  • the nitriding treatment may be performed on at least the surface of the portion of the substrate 1 that is exposed in the pressure vessel, but more preferably on the entire surface.
  • the nitride layer 2 may be formed on the surface of the substrate 1 and is not limited by the type of atmospheric gas in the nitriding treatment, but more preferably nitrogen gas, ammonia gas or nitrogen-hydrogen mixed
  • the atmosphere includes gas.
  • the atmospheric temperature and processing time vary depending on the material of the base material 1, the atmospheric gas, the shape of the gasket, and the like, but it is preferable to select conditions under which the thickness and surface hardness of the nitride layer 2 are within a predetermined range.
  • the atmospheric temperature is preferably 500 to 1200 ° C.
  • the treatment time is preferably 1 to 3 hours.
  • the thickness of the nitride layer may be 1 to 10 ⁇ m by setting the atmospheric temperature to 700 to 1200 ° C. and the processing time to 1 to 3 hours.
  • the surface hardness can be within a predetermined range.
  • ammonia gas is used as the atmospheric gas
  • the thickness of the nitride layer can be reduced to 1 to 10 ⁇ m by setting the atmospheric temperature to 500 to 900 ° C. and the processing time to 1 to 3 hours.
  • the hardness can be within a predetermined range.
  • the thickness of the nitride layer is set to 1 to 10 ⁇ m by setting the atmospheric temperature to 500 to 900 ° C. and the processing time to 1 to 3 hours. And the surface hardness can be within a predetermined range.
  • a nickel-base alloy As a pretreatment of the nitriding treatment step, it is preferable to process a nickel-base alloy into a gasket shape and perform surface polishing and cleaning.
  • a coating solution containing a platinum group metal compound is coated on the surface of the nitride layer obtained in the nitriding step, and dried to form a coating layer.
  • the coating solution is not particularly limited in the present embodiment as long as a layer containing a platinum group metal can be formed by thermal decomposition performed later.
  • it is a solution in which a platinum group metal salt as a platinum group metal compound, water or alcohol as a solvent, and turpentine oil as a reducing agent are blended.
  • platinum group metal salt examples include iridium chloride, ruthenium chloride, rhodium chloride, iridium nitrate, ruthenium nitrate, rhodium nitrate, chloroplatinic acid, and dinitrodiammine platinum.
  • a platinum group metal-based alloy may be formed by thermal decomposition using a combination of a plurality of types of platinum group metal compounds.
  • platinum group metal-based alloy include ruthenium-platinum alloy, iridium-platinum alloy, iridium-ruthenium alloy, ruthenium-gold alloy, iridium-gold alloy, and iridium-rhenium alloy.
  • ruthenium-platinum alloy is ruthenium chloride.
  • a coating solution containing chloroplatinic acid can be applied and thermally decomposed.
  • the blending ratio of ruthenium chloride and chloroplatinic acid is preferably 60:40 to 90:10, and more preferably 70:30 to 80:20.
  • the coating layer obtained in the coating step is subjected to thermal decomposition to form a coating precursor layer containing a platinum group metal.
  • the thickness of the coating precursor layer is preferably 0.01 to 3 ⁇ m when the coating layer is formed, and it is preferable to repeat the coating step and the thermal decomposition step several times until the thickness reaches the thickness. A uniform coating layer with few pores can be obtained, and the surface of the gasket can be more reliably coated with an oxide of a platinum group metal by an oxidation treatment performed later.
  • the coating amount per coating step is preferably 0.008 to 0.2 ⁇ m. More preferably, it is 0.01 to 0.1 ⁇ m.
  • Thermal decomposition can be performed in a heating furnace such as a muffle furnace.
  • the temperature is preferably 300 to 700 ° C. More preferably, it is performed at 500 to 600 ° C.
  • the treatment time varies depending on the temperature and the components of the coating solution, but is preferably 5 to 15 minutes.
  • the thermal decomposition is preferably performed in an air atmosphere.
  • the coating precursor layer obtained in the thermal decomposition step is oxidized to form a coating layer containing a platinum group metal oxide.
  • the stabilization treatment can be performed by heating at a temperature higher than the heating temperature in the thermal decomposition step in an atmosphere containing 10 to 25% by mass of oxygen.
  • an atmosphere containing oxygen can be obtained by flowing air through a heating furnace such as a muffle furnace.
  • the heating temperature for the stabilization treatment is a temperature at which the platinum group metal diffuses, and is specifically preferably 650 to 900 ° C. More preferably, it is 700 to 800 ° C.
  • the treatment time varies depending on the temperature and the components of the coating precursor layer, but is preferably 1 to 5 hours.
  • the platinum group metal does not diffuse, the interlayer strength between the nitride layer 2 and the coating layer 3 is insufficient, and the coating layer 3 may peel off when used under high temperature and high pressure conditions. If it exceeds 900 ° C., a lot of energy is required for heating, which is uneconomical in balance with the degree of diffusion.
  • the coating layer is formed by thermal decomposition, the coating layer may crack and become porous, but a nitride layer is formed on the surface of the substrate. Therefore, the nickel-based alloy of the base material is not exposed, and appropriate hardness and corrosion resistance can be ensured even in a high temperature and high pressure state.
  • Example 1 The product name Inconel 625, which is a nickel-based alloy, was processed into a lens ring type pressure vessel gasket shape having an inner dimension of 30 mm, an outer dimension of 50 mm, a maximum thickness of 10 mm, and a minimum thickness of 5 mm as a base material, and surface polishing was performed. . Thereafter, the surface was nitrided in pure nitrogen gas at 1100 ° C. for 3 hours. Here, a nitride layer mainly composed of nickel nitride having a thickness of about 10 ⁇ m was formed.
  • iridium chloride was dissolved in amyl alcohol, turpentine oil was further added, and a 0.5 mol-Ir / l solution having a molar concentration in terms of iridium was used as a coating solution.
  • This coating solution was applied on the surface of the obtained nitride layer, and allowed to stand in a dryer at 60 ° C. for 10 minutes to be dried.
  • the coating amount per one time was 10 ml / m 2 . This was put into a muffle furnace and heated at 600 ° C. for 10 minutes to perform a thermal decomposition treatment.
  • a coating of a coating precursor layer having an apparent thickness of 2.9 ⁇ m made of iridium oxide and iridium metal corresponding to 20 g-Ir / m 2 in terms of iridium mass was repeated 10 times from coating of the coating solution to thermal decomposition treatment. Obtained. Furthermore, it put into the muffle furnace which flowed air, it heated at 800 degreeC for 5 hours, the oxidation process and the diffusion process were performed, and the gasket for pressure vessels was produced. The surface of the coating layer was iridium oxide. The apparent thickness of the coating layer was 2.5 ⁇ m. In addition, after processing, it was taken out after standing to cool in a furnace. The Vickers hardness of the portion to be a seal portion of the obtained pressure vessel gasket was 350 Hv.
  • the obtained pressure vessel gasket of Example 1 was brought into close contact with an iridium plate having a thickness of 2 mm, which was assumed to be a flange of the pressure vessel, and was adjusted to 100 t / cm 2 using a bolt-nut with a spring washer. Fixed to. When this was held at 700 ° C. and atmospheric pressure for 10 hours and the presence or absence of adhesion due to diffusion was confirmed, adhesion due to diffusion was not recognized.
  • Example 2 As a base material, SUS316L, which is a nickel-based alloy, was processed into a lens ring type pressure vessel gasket shape in the same manner as in Example 1, and surface polishing was performed. Thereafter, the surface was nitrided in ammonia gas at 700 ° C. for 5 hours. Here, a nitride layer mainly composed of nickel nitride and chromium nitride having a thickness of about 10 ⁇ m was formed.
  • ruthenium chloride and chloroplatinic acid were prepared in a molar ratio of 3: 1, dissolved in n-butanol, and a solution having a total molar concentration of ruthenium and platinum of 0.3 mol-Ru ⁇ Pt / l was prepared.
  • a coating solution was obtained. This coating solution was applied on the surface of the obtained nitride layer, allowed to stand at room temperature (24 ° C.) for 10 minutes, and dried. The coating amount per one time was 0.08 ⁇ m. This was put into a muffle furnace and heated at 500 ° C. for 10 minutes to perform a thermal decomposition treatment.
  • the coating precursor having a thickness of 0.8 ⁇ m consisting of a mixture of ruthenium platinum oxide corresponding to 12 g-Ru ⁇ Pt / m 2 in terms of the total mass of ruthenium and platinum is repeated 10 times from coating of the coating solution to thermal decomposition treatment.
  • a layer stack was obtained. Furthermore, it put into the muffle furnace which flowed air, it heated at 750 degreeC for 5 hours, the oxidation process and the diffusion process were performed, and the gasket for pressure vessels was produced.
  • the surface of the coating layer was ruthenium platinum oxide.
  • the thickness of the coating layer was 0.8 ⁇ m.
  • after processing it was taken out after standing to cool in a furnace.
  • the Vickers hardness of the portion to be a sealed portion of the obtained pressure vessel gasket was 320 Hv.
  • Example 1 when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was not confirmed.
  • Example 3 Inconel 625, which is a nickel-based alloy as a base material, is processed into a lens ring type pressure vessel gasket shape in the same manner as in Example 1, polished on the surface, washed with a neutral detergent, and further washed with alcohol. did. Thereafter, the surface was nitrided in a nitrogen-hydrogen mixed gas (80% N 2 + 20% H 2 ) under low temperature plasma conditions. The low temperature plasma conditions were maintained at a temperature of 100 ° C. and a gas pressure of 1000 Pa for 3 hours.
  • a nitride layer mainly composed of nickel nitride having a thickness of about 10 ⁇ m was formed.
  • iridium nitrate was dissolved in water, and an aqueous solution having a molar concentration in terms of iridium of 0.06 to 0.07 mol-Ir / l was used as a coating solution.
  • This coating solution was applied on the surface of the obtained nitride layer, allowed to stand at room temperature (24 ° C.) for 10 minutes, and dried.
  • the coating amount per one time was 12 to 14 ml / m 2 . This was put into a muffle furnace and heated at 500 ° C. for 10 minutes to perform a thermal decomposition treatment.
  • the coating solution coating and thermal decomposition treatment were repeated 12 times to obtain a laminate of a coating precursor layer made of iridium oxide corresponding to 18 g-Ir / m 2 in terms of iridium mass and having an apparent thickness of 2.5 ⁇ m. Furthermore, it put into the muffle furnace which flowed air, it heated at 700 degreeC for 1 hour, the oxidation process and the diffusion process were performed, and the gasket for pressure vessels was produced. The surface of the coating layer was iridium oxide. The thickness of the coating layer was 2.2 ⁇ m. In addition, after processing, it was taken out after standing to cool in a furnace. The Vickers hardness of the portion to be a seal portion of the obtained pressure vessel gasket was 380 Hv. As in Example 1, when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was not confirmed.
  • Example 4 In Example 1, rhodium chloride was dissolved in amyl alcohol as a coating solution, turpentine oil was added, and a solution having a molar concentration of rhodium of 0.4 mol-Rh / l was used. A gasket for a pressure vessel was produced. The surface of the coating layer was rhodium oxide (Rh 2 O 3 ). The Vickers hardness of the portion to be a sealed portion of the obtained pressure vessel gasket was 380 Hv. As in Example 1, when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was not confirmed.
  • Example 5 In Example 1, except that chloroplatinic acid and rhodium chloride were dissolved in amyl alcohol as a coating solution, turpentine oil was further added, and a solution of 0.4 mol-Pt + Rh / l in terms of the combined molar concentration of platinum and rhodium was used.
  • a pressure vessel gasket was prepared according to Example 1. The ratio of platinum to rhodium was 80% by mass of rhodium: 20% by mass of platinum. The surface of the coating layer was platinum and rhodium oxide (Rh 2 O 3 ). The Vickers hardness of the portion to be a seal portion of the obtained pressure vessel gasket was 350 Hv. As in Example 1, when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was not confirmed.
  • Example 1 As a pyrolysis treatment condition, an iridium metal layer containing no oxide was formed as a butane gas burner flame, and a pressure vessel gasket was produced without further oxidation treatment.
  • the surface of the pressure vessel gasket was iridium metal.
  • the thickness of the iridium metal layer was 1 ⁇ m.
  • the Vickers hardness of the portion to be a sealed portion of the obtained pressure vessel gasket was 450 Hv.
  • Example 1 when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was observed and peeling was difficult.
  • the gasket for a pressure vessel according to the present invention is suitable as a gasket for sealing a pressure vessel provided with a flange having an opening having a surface of iridium or an iridium base alloy at the opening.
  • it can be effectively used as a gasket for a pressure vessel used in a hydrothermal synthesis method or a low temperature synthesis method in a supercritical state.

Abstract

Provided is a gasket for a pressure vessel, wherein the gasket is suitable for use as a consumable part, exerts sufficient strength, sealing properties and corrosion resistance even in a high-temperature and high-pressure state, has adequate surface hardness in relation to the material of the flange of the pressure vessel, and does not cause mutual diffusion with the flange. Specifically provided is a gasket (100) for a pressure vessel, wherein the gasket is disposed on the opening section of the pressure vessel and hermetically seals the aforementioned pressure vessel as a consequence of the sealing section of the gasket coming into contact with a flange having a surface formed from iridium or an iridium-based alloy. Additionally, the gasket is characterized in that a nickel-based alloy is used as a base (1), a nitride layer (2) formed from the nitride of a nickel-based alloy is formed on the surface of the base (1), and a coating layer (3) containing the oxide of a platinum-group metal is formed on the surface of the nitride layer (2).

Description

圧力容器用ガスケット及びその製造方法Gasket for pressure vessel and manufacturing method thereof
 本発明は、圧力容器に使用するガスケットに関し、特には、圧力容器の開口部に設けられ、シール箇所が、イリジウム又はイリジウム基合金の表面を有するフランジと当接して、前記圧力容器を密封する圧力容器用のガスケットに関する。 The present invention relates to a gasket used for a pressure vessel, and in particular, a pressure that is provided at an opening of the pressure vessel, and a sealing portion is in contact with a flange having a surface of iridium or an iridium base alloy to seal the pressure vessel. The present invention relates to a gasket for containers.
 水熱合成法(hydrothermal synthesis method)及び安熱合成法(ammonothermal synthesis method)は、高温高圧の溶媒中で溶解、分解、結晶成長などの化学反応を行なう方法である。水熱合成法は、溶媒として水を用いる方法である。安熱合成法は、溶媒としてアンモニア(塩化アンモニウム)を用いる方法である。これらの方法には、オートクレーブと呼ばれる圧力容器が使用される。 The hydrothermal synthesis method and the thermal synthesis method are methods in which chemical reactions such as dissolution, decomposition, and crystal growth are performed in a high-temperature and high-pressure solvent. The hydrothermal synthesis method uses water as a solvent. The low temperature synthesis method uses ammonia (ammonium chloride) as a solvent. In these methods, a pressure vessel called an autoclave is used.
 水熱合成法及び安熱合成法は、反応効率の向上、難分解物質又は難溶解物質の反応を目的として、臨界点近傍の100~400℃及び100~300気圧程度で行なわれることがある。近年、水熱合成法及び安熱合成法は、更なる反応効率の向上、臨界点近傍では分解又は溶解ができなかった物質の反応を目的として、臨界点を遥かに超えた超高温超高圧条件、例えば、800℃及び4000気圧での実験が行なわれており、その条件は更に過酷になることが予想される。このような条件においては、圧力容器には、例えば、室温から1000℃の超高温及び1~5000気圧の超高圧での使用に耐えることが求められる。 The hydrothermal synthesis method and the low-temperature synthesis method are sometimes carried out at about 100 to 400 ° C. and about 100 to 300 atm in the vicinity of the critical point for the purpose of improving reaction efficiency and reacting a hardly decomposed substance or a hardly soluble substance. In recent years, hydrothermal synthesis methods and low-temperature synthesis methods have been used in ultra-high temperature and ultra-high pressure conditions far beyond the critical point for the purpose of further improving the reaction efficiency and reacting substances that could not be decomposed or dissolved near the critical point. For example, experiments at 800 ° C. and 4000 atmospheres have been conducted, and the conditions are expected to become more severe. Under such conditions, the pressure vessel is required to withstand use at, for example, an ultra-high temperature from room temperature to 1000 ° C. and an ultra-high pressure of 1 to 5000 atmospheres.
 このような条件で、使用可能な金属は限られており、物理強度を保持するとともに、実用に耐える物理材料としては、例えば、商品名インコネル(INCONEL)、ハステロイ(HASTELLOY)として販売されているニッケル基合金、その他同等の金属が使用されている。これらの金属は、高温耐性を有し、高温時における極めて優れた物理強度を有することが知られている。 Under such conditions, the metals that can be used are limited, and as a physical material that retains physical strength and can withstand practical use, for example, nickel sold under the trade names INCONEL and HASTELLOY Base alloys and other equivalent metals are used. These metals are known to have high temperature resistance and extremely excellent physical strength at high temperatures.
 ところが、前記のニッケル基合金は、化学的にも耐性があるとされているものの、例えば、100~400℃及び100~300気圧で行なわれる臨界点近傍での水熱合成法又は安熱合成法の条件下では、その化学的耐性は十分ではない。さらに、ニッケル基合金は、その融点が1300℃程度であるところから、耐用温度は、使用条件によって異なるが、物理的強度の観点から800℃程度とされており、800℃を超える超臨界状態における水熱合成法又は安熱合成法の条件下では使用に適さない。したがって、圧力容器のうち、薬液、薬品雰囲気に接触する部分は、白金族金属又は金などの貴金属が使用されている場合が多い。 However, although the nickel-based alloy is said to be chemically resistant, for example, a hydrothermal synthesis method or a low-temperature synthesis method in the vicinity of critical points performed at 100 to 400 ° C. and 100 to 300 atm. Under these conditions, its chemical resistance is not sufficient. Furthermore, since the melting point of the nickel-based alloy is about 1300 ° C., the service temperature varies depending on the use conditions, but is about 800 ° C. from the viewpoint of physical strength, and in a supercritical state exceeding 800 ° C. It is not suitable for use under the conditions of hydrothermal synthesis or low-temperature synthesis. Therefore, a noble metal such as a platinum group metal or gold is often used in a portion of the pressure vessel that comes into contact with a chemical solution or a chemical atmosphere.
 しかし、白金族金属は、極めて高価であるため、圧力容器をバルク金属で形成すると非常に高額となること、加工性が悪く、物理強度が不十分であることなどの問題を有する。このため、通常は、物理強度を前記のようなニッケル基合金で保持し、その内部に内筒として化学的耐性を目的として白金族金属又は白金族金属基合金を用いた2層構造のオートクレーブが使用されている(例えば、特許文献1を参照。)。 However, since platinum group metals are extremely expensive, there are problems such as a very high price when the pressure vessel is formed of a bulk metal, poor workability, and insufficient physical strength. For this reason, usually, a two-layered autoclave using a platinum group metal or a platinum group metal base alloy for the purpose of chemical resistance is used as an inner cylinder in which the physical strength is held by the nickel base alloy as described above. (For example, refer to Patent Document 1).
 特許文献1をはじめとする圧力容器では、本体と蓋とが、ナット又はクランプによって固定されている。本体は、一端が開口した有底筒状であり、その開口部の周縁にはフランジ(以下、下フランジということもある。)が設けられている。蓋にもフランジ(以下、上フランジということもある。)が設けられており、圧力容器は、上フランジと下フランジとの間を、ガスケットを介して密封する構造になっている。したがって、フランジには大きな圧力がかかるため、十分な耐圧を有することが必要である。また、圧力容器の密封時には、上フランジと、ガスケットと、下フランジとは、線又は面で当接してシール部を形成している(以下、該当接部分をシール箇所という。)。特に、シール箇所には、高い表面硬度が求められる。 In the pressure vessel including Patent Document 1, the main body and the lid are fixed by a nut or a clamp. The main body has a bottomed cylindrical shape with one end opened, and a flange (hereinafter sometimes referred to as a lower flange) is provided on the periphery of the opening. The lid is also provided with a flange (hereinafter sometimes referred to as an upper flange), and the pressure vessel is structured to seal between the upper flange and the lower flange via a gasket. Therefore, since a large pressure is applied to the flange, it is necessary to have a sufficient pressure resistance. Further, when the pressure vessel is sealed, the upper flange, the gasket, and the lower flange are in contact with each other by a line or a surface to form a seal portion (hereinafter, the corresponding contact portion is referred to as a seal portion). In particular, a high surface hardness is required for the seal portion.
 フランジに十分な耐圧を付与するために、種々の形が提案されている。例えば、熱膨張に差があっても、それが耐圧に影響しないようにする形状が挙げられる。フランジ及びガスケットは、表面硬度が小さいと、締め付けによって変形が起こり、それに伴い、フランジとガスケットとの間の接触面積が大きくなる。そうすると、シール箇所にかかる圧力が相対的に小さくなるため、十分なシールができなくなるという問題がある。また、ガスケットよりフランジの方が硬いと、締め付け時に内筒に属するフランジに変形が起こり、内筒の寿命を縮め、ひいては装置寿命を縮めるという問題がある。よって、ガスケットは、フランジより柔らかくする必要がある。このように構成することで、フランジは変形せず、ガスケットが変形するため、変形したガスケットだけを交換し、内筒は繰り返し使用できる。 Various forms have been proposed in order to give a sufficient pressure resistance to the flange. For example, even if there is a difference in thermal expansion, there is a shape that prevents it from affecting the pressure resistance. When the surface hardness of the flange and the gasket is small, the flange and the gasket are deformed by tightening, and accordingly, the contact area between the flange and the gasket is increased. Then, since the pressure applied to the seal portion is relatively small, there is a problem that sufficient sealing cannot be performed. Further, if the flange is harder than the gasket, there is a problem that the flange belonging to the inner cylinder is deformed at the time of tightening, shortening the life of the inner cylinder, and thus shortening the life of the apparatus. Therefore, the gasket needs to be softer than the flange. With this configuration, the flange is not deformed and the gasket is deformed. Therefore, only the deformed gasket is replaced, and the inner cylinder can be used repeatedly.
 フランジには、高温時にも高い表面硬度を有する白金族金属又はこれらの合金が用いられることが多い。ガスケットには、通常は、耐熱耐食合金が用いられ、主にニッケル基合金が用いられる。しかし、ニッケル基合金は、800℃を超える超臨界状態などの非常に高い温度条件では、軟化が白金族金属よりもはるかに激しく起こるため、そのままではガスケットとして適用できないという問題がある。さらに、ガスケットは、圧力容器内に直接暴露する部分があるため、少なくとも暴露する面は耐食性を有する白金族金属表面とすることが望ましい。 For the flange, platinum group metals having high surface hardness even at high temperatures or alloys thereof are often used. For the gasket, a heat-resistant and corrosion-resistant alloy is usually used, and a nickel-based alloy is mainly used. However, the nickel base alloy has a problem that softening occurs much more severely than the platinum group metal under a very high temperature condition such as a supercritical state exceeding 800 ° C., so that it cannot be applied as a gasket as it is. Further, since the gasket has a portion exposed directly in the pressure vessel, it is desirable that at least the exposed surface be a platinum group metal surface having corrosion resistance.
 基材の表面に白金族金属層を形成する方法として、用途は異なるが、電極用としてチタン基材の表面に予め窒化チタン層を形成し、その表面に白金族金属及び/又は白金族金属酸化物を含む電極物質のコーティングを行なう技術が開示されている(例えば、特許文献2を参照。)。 As a method of forming a platinum group metal layer on the surface of the base material, the use is different, but a titanium nitride layer is formed on the surface of the titanium base material in advance for use as an electrode, and platinum group metal and / or platinum group metal oxidation is performed on the surface. A technique for coating an electrode material including an object is disclosed (for example, see Patent Document 2).
特開2006-193355号公報JP 2006-193355 A 特開2006-130486号公報JP 2006-130486 A
 前記のように、圧力容器用のガスケットには、高温高圧状態での適度な表面硬度及び耐食性が必要とされる。特許文献1には、ガスケットの材質として白金族金属又はそれらの合金を用いることが提案されているが、高価な白金族金属又はそれらの合金は、ガスケットのような消耗部品としての使用には適さないという問題がある。 As described above, an appropriate surface hardness and corrosion resistance in a high temperature and high pressure state are required for a gasket for a pressure vessel. Patent Document 1 proposes to use a platinum group metal or an alloy thereof as a material of the gasket. However, an expensive platinum group metal or an alloy thereof is suitable for use as a consumable part such as a gasket. There is no problem.
 フランジ及びガスケットの材質は、相対的に選定することが好ましい。前述のとおり、フランジの表面硬度よりガスケットの表面硬度を小さくすることが好ましい。さらに、フランジ及びガスケットの材質を白金族金属から同質のものを選定すると、圧力容器を高温高圧で運転中にフランジのシール箇所とガスケットとが相互拡散によって、接着するおそれがあるため、異なる材質とすることが好ましい。しかしながら、ガスケットの形状については幾つか提案されているものの、ガスケットの材質に関する知見、文献はほとんど無く、耐食性を有し、かつ、フランジの材質との関係で適度な表面硬度を有し、圧力容器本体を保護するようなガスケットは無いのが現状である。 It is preferable to select the material of the flange and gasket relatively. As described above, it is preferable to make the surface hardness of the gasket smaller than the surface hardness of the flange. Furthermore, if the same material is selected from platinum group metals for the flange and gasket, the flange seal and gasket may adhere to each other due to mutual diffusion while the pressure vessel is operated at high temperature and high pressure. It is preferable to do. However, although some proposals have been made regarding the shape of the gasket, there is almost no knowledge and literature regarding the material of the gasket, it has corrosion resistance, and has an appropriate surface hardness in relation to the material of the flange. At present, there is no gasket that protects the body.
 特許文献2には、基材の表面に白金族金属層及び/又は白金族金属酸化物層を形成する技術が提案されているが、この技術はあくまでも電極の技術であり、表面強度を適切に取り扱うというものではない。 Patent Document 2 proposes a technique for forming a platinum group metal layer and / or a platinum group metal oxide layer on the surface of a base material. However, this technique is only an electrode technique, and the surface strength is appropriately set. It's not about handling.
 本発明は、前記のような従来の課題を解決するためになされたものである。つまり、本発明の目的は、圧力容器の開口部に設けられ、かつ、シール箇所がイリジウム又はイリジウム基合金の表面を有するフランジと当接して、前記圧力容器を密封する圧力容器用のガスケットであって、消耗部品としての使用に適し、高温高圧状態においても十分な強度、シール性及び耐食性を有し、かつ、圧力容器のフランジの材質との関係で適度な表面硬度を有し、フランジと相互拡散を起こさない、圧力容器用ガスケットを提供することである。 The present invention has been made to solve the conventional problems as described above. That is, an object of the present invention is a gasket for a pressure vessel that is provided in an opening of a pressure vessel and a sealing portion abuts on a flange having a surface of iridium or an iridium base alloy to seal the pressure vessel. It is suitable for use as a consumable part, has sufficient strength, sealability and corrosion resistance even in high-temperature and high-pressure conditions, and has an appropriate surface hardness in relation to the material of the flange of the pressure vessel. It is to provide a gasket for a pressure vessel that does not cause diffusion.
 本発明者らは、上記の課題を解決するために、鋭意検討した結果、消耗部品として使用可能なニッケル基合金を基材とし、この基材の表面を窒化処理して表面硬度及び表面耐食性を向上させ、更に窒化処理した表面を白金族金属又は白金族金属基合金で被覆して表面酸化処理及び拡散処理をすることで、例えば、800℃及び4000気圧の超高温超高圧状態においても十分な耐圧性及び耐食性を付与できることを見出し、本発明を完成させた。すなわち、本発明に係る圧力容器用ガスケットは、圧力容器の開口部に設けられ、かつ、シール箇所がイリジウム又はイリジウム基合金の表面を有するフランジに当接して、前記圧力容器を密封する圧力容器用のガスケットであって、ニッケル基合金を基材とし、該基材の表面に前記ニッケル基合金の窒化物層を形成し、該窒化物層の表面に白金族金属の酸化物を含有する被覆層を形成したことを特徴とする。 As a result of intensive investigations to solve the above problems, the present inventors have made a nickel-base alloy usable as a consumable part as a base material, and nitriding the surface of the base material to improve surface hardness and surface corrosion resistance. By improving and further nitriding the surface with a platinum group metal or a platinum group metal base alloy and performing surface oxidation treatment and diffusion treatment, for example, it is sufficient even in an ultrahigh temperature and high pressure state of 800 ° C. and 4000 atm. The inventors have found that pressure resistance and corrosion resistance can be imparted, and have completed the present invention. That is, the gasket for a pressure vessel according to the present invention is for a pressure vessel that seals the pressure vessel by being provided at the opening of the pressure vessel and having a seal portion in contact with a flange having a surface of iridium or an iridium-based alloy. A coating layer comprising a nickel-base alloy as a base material, a nitride layer of the nickel-base alloy formed on the surface of the base material, and a platinum group metal oxide on the surface of the nitride layer Is formed.
 本発明に係る圧力容器用ガスケットでは、前記白金族金属は、イリジウム、ルテニウム、ロジウム又はそれらの基合金であることが好ましい。ガスケットの表面をより適切な表面硬度とすることができる。 In the pressure vessel gasket according to the present invention, the platinum group metal is preferably iridium, ruthenium, rhodium, or a base alloy thereof. The surface of the gasket can have a more appropriate surface hardness.
 本発明に係る圧力容器用ガスケットでは、前記窒化物層の厚さは、1~10μmであり、かつ、前記被覆層の厚さは、0.01~3μmであることが好ましい。ガスケットの表面を適度な表面硬度にすることができる。また、基材のニッケル基合金が露出するのを防止し、耐食性をより向上することができる。 In the pressure vessel gasket according to the present invention, it is preferable that the nitride layer has a thickness of 1 to 10 μm, and the coating layer has a thickness of 0.01 to 3 μm. The surface of the gasket can have an appropriate surface hardness. Moreover, it is possible to prevent the nickel-base alloy of the base material from being exposed and to further improve the corrosion resistance.
 本発明に係る圧力容器用ガスケットでは、JIS Z 2244:2009に準じて測定した前記シール箇所の表面のビッカース硬度が、300Hv~400Hvであることが好ましい。フランジのシール箇所よりも硬度を小さくすることによって、フランジの変形を防止し、圧力容器の寿命をより長く保持することができる。 In the pressure vessel gasket according to the present invention, the Vickers hardness of the surface of the sealing portion measured according to JIS Z 2244: 2009 is preferably 300 Hv to 400 Hv. By making the hardness smaller than that of the sealing portion of the flange, the deformation of the flange can be prevented and the life of the pressure vessel can be kept longer.
 本発明に係る圧力容器用ガスケットでは、前記窒化物層には、前記被覆層から前記白金族金属が拡散していることが好ましい。各層間の密着をより確実にすることができ、より耐圧に優れたガスケットとすることができる。また、ガスケットの表面硬度を最適化できると共に耐食性をより向上させることができる。 In the gasket for a pressure vessel according to the present invention, it is preferable that the platinum group metal is diffused from the coating layer into the nitride layer. Adhesion between each layer can be made more reliable, and a gasket with higher pressure resistance can be obtained. Further, the surface hardness of the gasket can be optimized and the corrosion resistance can be further improved.
 本発明に係る圧力容器用ガスケットの製造方法は、圧力容器の開口部に設けられ、かつ、シール箇所がイリジウム又はイリジウム基合金の表面を有するフランジと当接して、前記圧力容器を密封する圧力容器用のガスケットの製造方法であって、ニッケル基合金を基材とし、該基材の表面を窒化処理して窒化物層を形成する窒化処理工程と、該窒化物層の表面に白金族金属の化合物を含有する塗布液を塗布して塗布層を形成する塗布工程と、該塗布層を熱分解して被覆前駆層を形成する熱分解工程と、酸素を含む雰囲気中で、該熱分解工程の加熱温度よりも高い温度で加熱して、前記被覆前駆層を前記白金族金属の酸化物を含有する被覆層とする安定化工程と、を有することを特徴とする。 The method for manufacturing a pressure vessel gasket according to the present invention includes: a pressure vessel that seals the pressure vessel by being in contact with a flange having a surface of iridium or an iridium-based alloy provided at an opening of the pressure vessel. A method for manufacturing a gasket for use in a process comprising: nitriding treatment using a nickel-based alloy as a base material and nitriding the surface of the base material to form a nitride layer; and a platinum group metal on the surface of the nitride layer. A coating step in which a coating solution containing the compound is applied to form a coating layer; a thermal decomposition step in which the coating layer is thermally decomposed to form a coating precursor layer; and a thermal decomposition step in an atmosphere containing oxygen. And a stabilization step of heating the coating precursor layer to a coating layer containing the platinum group metal oxide by heating at a temperature higher than the heating temperature.
 本発明に係る圧力容器用ガスケットの製造方法では、前記窒化処理工程は、窒素ガス、アンモニアガス又は窒素-水素混合ガスを含む雰囲気中で加熱することによって行なうことが好ましい。窒化処理をより効率的に行なうことができる。 In the method for manufacturing a pressure vessel gasket according to the present invention, the nitriding treatment step is preferably performed by heating in an atmosphere containing nitrogen gas, ammonia gas, or a nitrogen-hydrogen mixed gas. Nitriding can be performed more efficiently.
 本発明に係る圧力容器用ガスケットの製造方法では、前記塗布工程及び前記熱分解工程を複数回繰り返して、前記被覆層の厚さを0.01~3μmとすることが好ましい。ポアが少なく、均一な塗布層を得ることができ、結果としてガスケットの表面を白金族金属の酸化物でより確実に被覆することができる。 In the method for manufacturing a pressure vessel gasket according to the present invention, it is preferable that the coating step and the thermal decomposition step are repeated a plurality of times so that the thickness of the coating layer is 0.01 to 3 μm. It is possible to obtain a uniform coating layer with less pores, and as a result, the surface of the gasket can be more reliably coated with the platinum group metal oxide.
 本発明は、圧力容器の開口部に設けられ、かつ、シール箇所がイリジウム又はイリジウム基合金の表面を有するフランジと当接して、前記圧力容器を密封する圧力容器用のガスケットであって、消耗部品としての使用に適し、高温高圧状態においても十分な強度、シール性及び耐食性を有し、かつ、圧力容器のフランジの材質との関係で適度な表面硬度を有し、フランジと相互拡散を起こさない、圧力容器用ガスケットを提供することができる。 The present invention is a gasket for a pressure vessel which is provided at an opening of a pressure vessel and seals the pressure vessel by contacting a flange having a seal portion having a surface of iridium or an iridium base alloy, and is a consumable part Suitable for use as a material, has sufficient strength, sealability and corrosion resistance even in high-temperature and high-pressure conditions, and has an appropriate surface hardness in relation to the flange material of the pressure vessel, and does not cause mutual diffusion with the flange. A gasket for a pressure vessel can be provided.
本実施形態に係る圧力容器用ガスケットの断面構造の一形態を示す模式図である。It is a schematic diagram which shows one form of the cross-sectional structure of the gasket for pressure vessels which concerns on this embodiment. 圧力容器の一例を示す断面図である。It is sectional drawing which shows an example of a pressure vessel. 中型圧力容器におけるガスケットの形態例を説明するための図であり、(a)は、フランジ及びガスケットの一形態を示す断面部分拡大図であり、(b)は、ガスケットの一形態を示す平面図である。It is a figure for demonstrating the example of a form of the gasket in a medium-sized pressure vessel, (a) is a cross-sectional partial enlarged view which shows one form of a flange and a gasket, (b) is a top view which shows one form of a gasket It is. 大型圧力容器におけるガスケットの形態例を説明するための図であり、(a)は、フランジ及びガスケットの一形態を示す断面部分拡大図であり、(b)は、ガスケットの一形態を示す平面図である。It is a figure for demonstrating the form example of the gasket in a large sized pressure vessel, (a) is a cross-sectional partial enlarged view which shows one form of a flange and a gasket, (b) is a top view which shows one form of a gasket It is.
 以下、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not construed as being limited to these descriptions. As long as the effect of the present invention is exhibited, the embodiment may be variously modified.
 図1は、本実施形態に係る耐圧容器用ガスケットの断面構造の一形態を示す模式図である。本実施形態に係る圧力容器用ガスケット100は、圧力容器の開口部に設けられ、かつ、シール箇所がイリジウム又はイリジウム基合金の表面を有するフランジに当接して、圧力容器を密封する圧力容器用のガスケットであって、ニッケル基合金を基材1とし、基材1の表面にニッケル基合金の窒化物層2を形成し、窒化物層2の表面に白金族金属の酸化物を含有する被覆層3を形成している。 FIG. 1 is a schematic diagram showing an embodiment of a cross-sectional structure of a pressure-resistant container gasket according to the present embodiment. The gasket 100 for a pressure vessel according to the present embodiment is provided for an opening of a pressure vessel, and a seal portion is in contact with a flange having a surface of iridium or an iridium base alloy to seal the pressure vessel. A gasket comprising a nickel-base alloy as a base material 1, a nickel-base alloy nitride layer 2 formed on the surface of the base material 1, and a coating layer containing a platinum group metal oxide on the surface of the nitride layer 2 3 is formed.
 図2は、圧力容器の一例を示す断面図である。圧力容器900は、本体81と蓋91とを有する。本体81と蓋91とは、ナット、クランプなどの固定冶具72で固定されている。本体81の内面には、中間層82が配置され、中間層82の内面には内筒83が配置されている。一方、蓋91の内面には、中間層92が配置され、中間層92の内面には最内層93が配置されている。 FIG. 2 is a cross-sectional view showing an example of a pressure vessel. The pressure vessel 900 has a main body 81 and a lid 91. The main body 81 and the lid 91 are fixed by a fixing jig 72 such as a nut or a clamp. An intermediate layer 82 is disposed on the inner surface of the main body 81, and an inner cylinder 83 is disposed on the inner surface of the intermediate layer 82. On the other hand, an intermediate layer 92 is disposed on the inner surface of the lid 91, and an innermost layer 93 is disposed on the inner surface of the intermediate layer 92.
 本体81及び蓋91は、低合金鋼、ニッケルクロム合金などの耐熱合金で構成されている。中間層82及び中間層92は、商品名インコネル、ハステロイなどの耐熱耐食性に優れたニッケル基合金で構成されている。内筒83及び最内層93は、白金族金属又は白金族金属基合金で構成されている。白金族金属又は白金族金属基合金は、例えば、白金、白金基合金、イリジウム、イリジウム基合金、ルテニウム、ルテニウム基合金、ロジウム、ロジウム基合金であり、この中で、白金が用いられることが多い。白金基合金としては、白金-イリジウム合金、白金-ルテニウム合金、白金-ロジウム合金、白金-金合金、白金-レニウム合金が例示できる。イリジウム基合金としては、イリジウム-ルテニウム合金、イリジウム-白金合金、イリジウム-ロジウム合金、イリジウム-金合金、イリジウム-レニウム合金が例示できる。ルテニウム基合金としては、ルテニウム-イリジウム合金、ルテニウム-白金合金、ルテニウム-ロジウム合金、ルテニウム-金合金、ルテニウム-レニウム合金が例示できる。ロジウム基合金としては、ロジウム-イリジウム合金、ロジウム-白金合金、ロジウム-ルテニウム合金、ロジウム-金合金、ロジウム-レニウム合金が例示できる。 The main body 81 and the lid 91 are made of a heat-resistant alloy such as low alloy steel or nickel chrome alloy. The intermediate layer 82 and the intermediate layer 92 are made of a nickel-based alloy having excellent heat and corrosion resistance such as trade names Inconel and Hastelloy. The inner cylinder 83 and the innermost layer 93 are made of a platinum group metal or a platinum group metal base alloy. The platinum group metal or platinum group metal base alloy is, for example, platinum, platinum base alloy, iridium, iridium base alloy, ruthenium, ruthenium base alloy, rhodium, rhodium base alloy, and platinum is often used among them. . Examples of the platinum-based alloy include a platinum-iridium alloy, a platinum-ruthenium alloy, a platinum-rhodium alloy, a platinum-gold alloy, and a platinum-rhenium alloy. Examples of iridium based alloys include iridium-ruthenium alloys, iridium-platinum alloys, iridium-rhodium alloys, iridium-gold alloys, and iridium-rhenium alloys. Examples of the ruthenium-based alloy include a ruthenium-iridium alloy, a ruthenium-platinum alloy, a ruthenium-rhodium alloy, a ruthenium-gold alloy, and a ruthenium-rhenium alloy. Examples of rhodium-based alloys include rhodium-iridium alloys, rhodium-platinum alloys, rhodium-ruthenium alloys, rhodium-gold alloys, and rhodium-rhenium alloys.
 圧力容器900は、本体81の開口部に設けられた下フランジ84と蓋91に設けられた上フランジ94とが、ガスケット71を介して密封する構造になっている。下フランジ84、ガスケット71及び上フランジ94は、線又は面状のシール箇所で当接してシール部を形成している。下フランジ84及び上フランジ94のシール箇所は、イリジウム又はイリジウム基合金の表面を有している。イリジウム基合金は、例えば、イリジウム-白金合金、イリジウム-ルテニウム合金、イリジウム-ロジウム合金、イリジウム-金合金、イリジウム-レニウム合金である。圧力容器900は、水熱合成法又は安熱合成法による単結晶作製に好適に使用される。シール箇所の表面が、白金族金属の中でもより硬度の高いイリジウム又はイリジウム基合金であるため、特に、超臨界状態の高温高圧条件で使用する場合に好適である。なお、本実施形態では、圧力容器900は、本体81及び蓋91の下フランジ84と上フランジ94とがガスケット71を介してシールする密封方式であり、下フランジ84及び上フランジ94のシール箇所がイリジウム又はイリジウム基合金の表面を有していれば、圧力容器の種類に制限されるものではない。 The pressure vessel 900 has a structure in which a lower flange 84 provided in the opening of the main body 81 and an upper flange 94 provided in the lid 91 are sealed via a gasket 71. The lower flange 84, the gasket 71, and the upper flange 94 are in contact with each other at a linear or planar seal portion to form a seal portion. The sealing part of the lower flange 84 and the upper flange 94 has the surface of iridium or an iridium base alloy. Examples of the iridium-based alloy include an iridium-platinum alloy, an iridium-ruthenium alloy, an iridium-rhodium alloy, an iridium-gold alloy, and an iridium-rhenium alloy. The pressure vessel 900 is suitably used for producing a single crystal by a hydrothermal synthesis method or a low temperature synthesis method. Since the surface of the seal portion is iridium or an iridium-based alloy having a higher hardness among the platinum group metals, it is particularly suitable when used under supercritical high-temperature and high-pressure conditions. In the present embodiment, the pressure vessel 900 is a sealing method in which the lower flange 84 and the upper flange 94 of the main body 81 and the lid 91 are sealed via the gasket 71, and the sealing portions of the lower flange 84 and the upper flange 94 are sealed. If it has the surface of iridium or an iridium base alloy, it will not restrict | limit to the kind of pressure vessel.
 図3は、中型圧力容器におけるガスケットの形態例を説明するための図であり、(a)は、フランジ及びガスケットの一形態を示す断面部分拡大図であり、(b)は、ガスケットの一形態を示す平面図である。図4は、大型圧力容器におけるガスケットの形態例を説明するための図であり、(a)は、フランジ及びガスケットの一形態を示す断面部分拡大図であり、(b)は、ガスケットの一形態を示す平面図である。ここで、中型圧力容器は、内筒の内径が20~70mmであり、容量が0.0001~0.008mの圧力容器である。また、大型圧力容器は、内筒の内径が70~150mmであり、容量が0.008~0.05mの圧力容器である。 FIG. 3 is a view for explaining an example of a gasket in a medium-sized pressure vessel, (a) is an enlarged sectional view showing one embodiment of a flange and a gasket, and (b) is one embodiment of the gasket. FIG. 4A and 4B are views for explaining an example of a gasket in a large pressure vessel. FIG. 4A is an enlarged cross-sectional view showing an embodiment of a flange and a gasket, and FIG. 4B is an embodiment of the gasket. FIG. Here, the medium-sized pressure vessel is a pressure vessel having an inner cylinder with an inner diameter of 20 to 70 mm and a capacity of 0.0001 to 0.008 m 3 . The large pressure vessel is a pressure vessel having an inner cylinder with an inner diameter of 70 to 150 mm and a capacity of 0.008 to 0.05 m 3 .
 内筒83と下フランジ84とは、イリジウム又はイリジウム基合金で一体として成形してもよいし、それぞれ異なる材料で成形してもよい。異なる材料で成形する場合には、本実施形態では内筒83と下フランジ84とを接合する方法に制限されない。接合する方法は、例えば、図3及び図4に示すように、内筒83の開口周縁にフランジ状の取付部83aを設け、その上に下フランジ84を溶接によって取り付ける方法が挙げられる。下フランジ84は、イリジウム又はイリジウム基合金で一体に成形された形態が好ましいが、少なくともシール箇所の表面がイリジウム又はイリジウム基合金となるように、イリジウム又はイリジウム基合金の最表層と他の白金族金属からなる下層とが積層体をなした形態としてもよい。積層体をなした形態とは、例えば、最表層をイリジウムとし、下層を白金、ルテニウム、ロジウム又はその基合金のいずれかとした形態、最表層をイリジウム基合金とし、下層を白金、ルテニウム、ロジウム又はその基合金のいずれかとした形態、最表層をイリジウムとし、最表層と下層との間に中間層を設け、該中間層をイリジウム合金とし、下層を白金、ルテニウム、ロジウム又はその基合金のいずれかとした形態である。 The inner cylinder 83 and the lower flange 84 may be integrally formed of iridium or an iridium-based alloy, or may be formed of different materials. In the case of molding with different materials, the present embodiment is not limited to the method of joining the inner cylinder 83 and the lower flange 84. As a method for joining, for example, as shown in FIGS. 3 and 4, there is a method in which a flange-like attachment portion 83 a is provided on the periphery of the opening of the inner cylinder 83 and a lower flange 84 is attached thereon by welding. The lower flange 84 is preferably formed integrally with iridium or an iridium base alloy, but the outermost layer of iridium or iridium base alloy and another platinum group so that at least the surface of the seal portion is iridium or iridium base alloy. It is good also as a form which the lower layer which consists of metals made | formed the laminated body. The form of the laminated body is, for example, a form in which the outermost layer is iridium and the lower layer is any one of platinum, ruthenium, rhodium or a base alloy thereof, the outermost layer is iridium based alloy, and the lower layer is platinum, ruthenium, rhodium or Any form of the base alloy, the outermost layer is iridium, an intermediate layer is provided between the outermost layer and the lower layer, the intermediate layer is an iridium alloy, and the lower layer is platinum, ruthenium, rhodium, or any of its base alloys It is a form.
 ガスケットの形状は、使用する圧力容器のフランジの形状、圧力などの条件に応じて、種々の形状がある。例えば、図3に示すような中型の圧力容器では、レンズリングと呼ばれる、リングの内周側の肉厚を最も厚くし、外周に向かうに従って肉厚が小さくなるテーパー形状を有するガスケット71aが使用される。また、図2に示すような大型の圧力容器900では、図4に示すような構造でグレイロックシールリング(grayloc seal ring)と呼ばれる、リング77の外周側にリング部分よりも肉厚を薄くした外輪78を形成した形状を有するガスケット71bが使用される。レンズリングタイプのガスケット71a及びグレイロックシールリングタイプのガスケット71bと、上フランジ94及び下フランジ84とは、それぞれシール箇所Sで当接している。なお、シール箇所Sは、当接面積が非常に小さい線状で当接しているため、高いシール性を確保することができる。さらに、グレイロックシールリングタイプのガスケットは、自締式ガスケットと呼ばれ、圧力容器内の圧力が高まるとガスケットの直径が拡大し、上フランジ94と下フランジ84との間の間隙に侵入するため、圧力容器本体と蓋との気密性を極めて高くすることができる。 The gasket has various shapes depending on conditions such as the shape of the flange of the pressure vessel used and the pressure. For example, in a medium-sized pressure vessel as shown in FIG. 3, a gasket 71a called a lens ring is used which has a tapered shape that maximizes the thickness of the inner peripheral side of the ring and decreases toward the outer periphery. The Moreover, in the large pressure vessel 900 as shown in FIG. 2, the thickness is made thinner than the ring portion on the outer peripheral side of the ring 77 called the gray lock seal ring with the structure as shown in FIG. A gasket 71b having a shape in which an outer ring 78 is formed is used. The lens ring type gasket 71a and the gray lock seal ring type gasket 71b, and the upper flange 94 and the lower flange 84 are in contact with each other at the seal location S. In addition, since the seal | sticker location S has contact | abutted by the linear form with a very small contact area, high sealing performance can be ensured. Further, the gray lock seal ring type gasket is referred to as a self-tightening gasket, and when the pressure in the pressure vessel increases, the diameter of the gasket expands and enters the gap between the upper flange 94 and the lower flange 84. The airtightness between the pressure vessel main body and the lid can be made extremely high.
 ガスケットの大きさは、適用する圧力容器の仕様によって異なるが、図3に示すようなレンズリングタイプのガスケット71aでは、一般的には、内寸eが20~70mmであり、外寸fが30~100mmであり、肉厚は、最も厚い部分で10~30mmである。図4に示すようなグレイロックシールリングタイプのガスケット71bでは、一般的には、リング77の内寸gが、70~150mmであり、外輪78の外寸hが、100~200mmであり、肉厚は、最も厚い部分で10~30mmである。 The size of the gasket differs depending on the specifications of the pressure vessel to be applied. However, in the lens ring type gasket 71a as shown in FIG. 3, generally, the inner dimension e is 20 to 70 mm, and the outer dimension f is 30. The wall thickness is 10 to 30 mm at the thickest part. In the gray rock seal ring type gasket 71b as shown in FIG. 4, the inner dimension g of the ring 77 is generally 70 to 150 mm, the outer dimension h of the outer ring 78 is 100 to 200 mm, The thickness is 10 to 30 mm at the thickest part.
 本実施形態に係る圧力容器用ガスケットは、図1に示すように、基材1の表面上に窒化物層2と被覆層3とが順に被覆する構成を有する。基材1は、ニッケル基合金である。ニッケル基合金は、例えば、商品名インコネル、ハステロイとして販売されているもの及びその相当品を使用可能である。また、SUS316Lなどのクロム及びニッケルを主成分としたステンレス鋼も使用可能である。基材1中のニッケルの含有量は、8~80質量%であることが好ましい。より好ましくは、8~70質量%である。 The gasket for a pressure vessel according to the present embodiment has a configuration in which a nitride layer 2 and a coating layer 3 are sequentially coated on the surface of a substrate 1 as shown in FIG. The base material 1 is a nickel base alloy. As the nickel-base alloy, for example, those sold under the trade names Inconel, Hastelloy, and equivalents thereof can be used. Further, stainless steel such as SUS316L mainly composed of chromium and nickel can be used. The nickel content in the substrate 1 is preferably 8 to 80% by mass. More preferably, it is 8 to 70% by mass.
 窒化物層2は、ニッケル基合金の窒化物を含有している。ニッケル基合金は、前述のとおり、高温耐性、耐食性があるとされているものの、超臨界条件における水熱合成法又は安熱合成法の条件下では、その物理的強度及び耐食性は十分ではないため、本実施形態では、表面に窒化物層2を形成し、高温時での表面の物理的強度及び耐食性を向上させている。また、安熱合成法では、酸素が存在しないことが好ましいため、基材1の表面には酸化物が形成されていないことが好ましい。基材1の表面を窒化物層2とすることによって、基材1の表面に酸化物が形成されることを防止することができる。 The nitride layer 2 contains a nickel-based alloy nitride. As mentioned above, nickel-base alloys are said to have high-temperature resistance and corrosion resistance, but their physical strength and corrosion resistance are not sufficient under the conditions of hydrothermal synthesis or low-temperature synthesis in supercritical conditions. In this embodiment, the nitride layer 2 is formed on the surface to improve the physical strength and corrosion resistance of the surface at high temperatures. Further, in the low temperature synthesis method, it is preferable that oxygen does not exist, and therefore it is preferable that no oxide is formed on the surface of the substrate 1. By forming the surface of the substrate 1 as the nitride layer 2, it is possible to prevent oxides from being formed on the surface of the substrate 1.
 窒化物層2は、少なくとも基材1のうち、圧力容器内に露出する部分の表面に形成されていればよいが、より好ましくは、ガスケットの全表面に形成する形態である。窒化物層2の窒化物の含有量は、表面が最も多く、基材の内部に向かうにつれて、次第に少なくなる分布となっている。 The nitride layer 2 only needs to be formed on the surface of at least the portion of the base material 1 exposed in the pressure vessel, but is more preferably formed on the entire surface of the gasket. The nitride content of the nitride layer 2 has a distribution in which the surface is the largest and gradually decreases toward the inside of the substrate.
 被覆層3は、白金族金属の酸化物を含有している。本実施形態に係る圧力容器用ガスケットでは、白金族金属は、イリジウム、ルテニウム、ロジウム又はそれらの基合金であることが好ましい。これらの白金族金属及びそれらの基合金は、白金族金属の中でもより硬度が高いため、ガスケットの表面硬度を所定の範囲にすることができる。白金族金属及びそれらの基合金の酸化物は、例えば、酸化イリジウム、酸化ルテニウム、酸化ロジウム、酸化イリジウム/白金、酸化イリジウムルテニウム、酸化イリジウムロジウム、酸化イリジウムレニウム、酸化イリジウム/金である。 The coating layer 3 contains a platinum group metal oxide. In the pressure vessel gasket according to the present embodiment, the platinum group metal is preferably iridium, ruthenium, rhodium, or a base alloy thereof. Since these platinum group metals and their base alloys have higher hardness among platinum group metals, the surface hardness of the gasket can be set within a predetermined range. The oxides of the platinum group metals and their base alloys are, for example, iridium oxide, ruthenium oxide, rhodium oxide, iridium oxide / platinum, iridium ruthenium oxide, iridium rhodium oxide, iridium rhenium oxide, iridium oxide / gold.
 被覆層3は、ガスケットのうち少なくとも圧力容器内に露出する部分のみ形成されていればよいが、特に好ましくは、ガスケットの全表面を被覆する形態である。ガスケットの全表面に形成することで、ガスケットの耐久性を向上させることができる。また、超臨界条件の高温高圧での使用でも、適度な表面硬度及び耐食性をより向上させることができる。 The covering layer 3 only needs to be formed at least in a portion of the gasket that is exposed in the pressure vessel. Particularly preferably, the covering layer 3 covers the entire surface of the gasket. By forming it on the entire surface of the gasket, the durability of the gasket can be improved. Moreover, even when used at high temperature and high pressure under supercritical conditions, appropriate surface hardness and corrosion resistance can be further improved.
 被覆層3における白金族金属の酸化物の含有量は、90質量%以上であることが好ましい。より好ましくは、80質量%以上であり、特に好ましくは、100質量%、すなわち、全てが白金族金属の酸化物であり、未酸化の白金族金属が露出していない形態である。90質量%未満では、圧力容器を運転中に、ガスケットの表面とフランジのシール箇所の表面とが相互拡散を起こして、接着してしまうことがある。なお、安熱合成法では、酸化物が形成されていないことが好ましいが、白金族金属の酸化物は、化学的に極めて安定であり、またその酸化物層は緻密である。したがって、合成反応に及ぼす影響が極めて小さいため、安熱合成法に使用可能である。 The content of the platinum group metal oxide in the coating layer 3 is preferably 90% by mass or more. More preferably, it is 80% by mass or more, and particularly preferably 100% by mass, that is, a form in which all is an oxide of a platinum group metal and an unoxidized platinum group metal is not exposed. If it is less than 90% by mass, the surface of the gasket and the surface of the sealing portion of the flange may be mutually diffused and bonded during operation of the pressure vessel. In the low temperature synthesis method, it is preferable that no oxide is formed. However, an oxide of a platinum group metal is chemically extremely stable, and its oxide layer is dense. Therefore, since the influence on the synthesis reaction is extremely small, it can be used in the low-temperature synthesis method.
 本実施形態に係る圧力容器用ガスケット100では、窒化物層2の厚さは、1~10μmである。より好ましくは、3~5μmである。1μm未満では、表面硬度及び耐食性が不足する。10μmを超えると、表面硬度が、フランジよりも高くなり、フランジを変形させてしまう。 In the pressure vessel gasket 100 according to this embodiment, the thickness of the nitride layer 2 is 1 to 10 μm. More preferably, it is 3 to 5 μm. If it is less than 1 μm, the surface hardness and corrosion resistance are insufficient. When it exceeds 10 μm, the surface hardness becomes higher than that of the flange, and the flange is deformed.
 本実施形態に係る圧力容器用ガスケットでは、被覆層3の厚さは、0.01~3μmであることが好ましい。より好ましくは、0.1~3μmである。0.01μm未満では、ガスケットの表面を十分に被覆することができない。3μmを超えると、急熱急冷など取り扱い条件によっては、剥離しやすくなる。また、白金族金属の使用量が増え、経済的に好ましくない。白金族金属の酸化物は、化学的に非常に安定であり、安熱合成への影響は極めて小さいが、白金族金属の酸化物の量をより少なくすることで、安熱合成への影響を更に小さくすることができる。本実施形態では、基材1と被覆層3との間に窒化物層2を設けることによって、酸化物を含有する被覆層3の厚さを極力薄くすることを可能としている。 In the pressure vessel gasket according to the present embodiment, the thickness of the coating layer 3 is preferably 0.01 to 3 μm. More preferably, it is 0.1 to 3 μm. If the thickness is less than 0.01 μm, the surface of the gasket cannot be sufficiently covered. If it exceeds 3 μm, it will be easy to peel depending on handling conditions such as rapid heating and quenching. Moreover, the usage-amount of a platinum group metal increases and it is economically unpreferable. Platinum group metal oxides are chemically very stable and have a very low impact on low-temperature synthesis.However, by reducing the amount of platinum group metal oxides, the impact on low-temperature synthesis is reduced. It can be further reduced. In the present embodiment, by providing the nitride layer 2 between the base material 1 and the coating layer 3, the thickness of the coating layer 3 containing an oxide can be made as thin as possible.
 本実施形態に係る圧力容器用ガスケットでは、JIS Z 2244:2009に準じて測定した前記シール箇所の表面のビッカース硬度が、300Hv~400Hv(300Hv以上400Hv以下)であることが好ましい。より好ましくは、315Hv~385Hvである。ビッカース硬度が300Hv未満では、締め付けによって、大きな変形(つぶれ)が起こり、十分なシールができなくなる。ビッカース硬度が400Hvを超えると、フランジよりも表面硬度が高くなり、フランジが変形するため、結果として圧力容器の寿命を縮めてしまう。通常、1000気圧以上の圧力条件での使用に耐えるフランジ及びガスケットの表面硬度は、ビッカース硬度で300Hv以上であるとされている。本実施形態では、圧力容器のフランジのシール箇所は、表面がイリジウム又はイリジウム基合金であり、その表面硬度はビッカース硬度で350Hv~450Hvである。本実施形態では、ガスケットのシール箇所の表面硬度を、前記の範囲としているため、ガスケットのシール箇所の表面硬度を、フランジのシール箇所の表面硬度よりも小さくすることができる。なお、ニッケル基合金のビッカース硬度は、200Hv程度であるが、ガスケットのシール箇所のビッカース硬度は、基材1の表面に窒化物層2を形成することによって、表面硬度を所定の範囲、例えば、ビッカース硬度300Hv~400Hvにすることができる。 In the pressure vessel gasket according to the present embodiment, it is preferable that the Vickers hardness of the surface of the seal portion measured according to JIS Z 2244: 2009 is 300 Hv to 400 Hv (300 Hv or more and 400 Hv or less). More preferably, it is 315Hv to 385Hv. If the Vickers hardness is less than 300 Hv, a large deformation (crushing) occurs due to tightening, and a sufficient seal cannot be obtained. When the Vickers hardness exceeds 400 Hv, the surface hardness becomes higher than that of the flange, and the flange is deformed. As a result, the life of the pressure vessel is shortened. Usually, the surface hardness of the flange and gasket that can withstand use under a pressure condition of 1000 atm or higher is assumed to be 300 Hv or more in terms of Vickers hardness. In this embodiment, the seal portion of the flange of the pressure vessel has a surface made of iridium or an iridium-based alloy, and the surface hardness is 350 Hv to 450 Hv in terms of Vickers hardness. In this embodiment, since the surface hardness of the seal location of the gasket is in the above range, the surface hardness of the seal location of the gasket can be made smaller than the surface hardness of the seal location of the flange. The nickel-base alloy has a Vickers hardness of about 200 Hv. However, the Vickers hardness at the gasket seal portion can be obtained by forming the nitride layer 2 on the surface of the base material 1 so that the surface hardness is within a predetermined range, for example, The Vickers hardness can be 300Hv to 400Hv.
 本実施形態に係る圧力容器用ガスケットでは、窒化物層2には、被覆層3から白金族金属が拡散していることが好ましい。各層間の密着をより確実にすることができ、より耐圧に優れたガスケットとすることができる。またガスケット表面の硬度の最適化が行なえる。 In the pressure vessel gasket according to the present embodiment, it is preferable that a platinum group metal is diffused from the coating layer 3 in the nitride layer 2. Adhesion between each layer can be made more reliable, and a gasket with higher pressure resistance can be obtained. In addition, the hardness of the gasket surface can be optimized.
 本実施形態に係る圧力容器用ガスケットの製造方法は、ニッケル基合金を基材とし、該基材の表面を窒化処理して窒化物層を形成する窒化処理工程と、該窒化物層の表面に白金族金属の化合物を含有する塗布液を塗布して塗布層を形成する塗布工程と、該塗布層を熱分解して被覆前駆層を形成する熱分解工程と、酸素を含む雰囲気中で、該熱分解工程の加熱温度よりも高い温度で加熱して、前記被覆前駆層を前記白金族金属の酸化物を含有する被覆層とする安定化工程と、を有する。 The method for manufacturing a gasket for a pressure vessel according to the present embodiment includes a nitriding process in which a nickel-based alloy is used as a base material and the surface of the base material is nitrided to form a nitride layer, and the surface of the nitride layer is formed. A coating step of applying a coating solution containing a platinum group metal compound to form a coating layer; a thermal decomposition step of thermally decomposing the coating layer to form a coating precursor layer; and an atmosphere containing oxygen, And a stabilization step of heating the coating precursor layer to a coating layer containing the platinum group metal oxide by heating at a temperature higher than the heating temperature of the pyrolysis step.
 窒化処理工程では、窒素又は窒素化合物を含有するガス中で加熱することで、基材1の表面を窒化する。窒化処理は、少なくとも基材1のうち、圧力容器内に露出する部分の表面に施されていればよいが、より好ましくは、全表面に施すことである。本実施形態では、基材1の表面に窒化物層2を形成できればよく、窒化処理における雰囲気ガスの種類によって制限されるものではないが、より好ましくは、窒素ガス、アンモニアガス又は窒素-水素混合ガスを含む雰囲気とすることである。雰囲気温度及び処理時間は、基材1の材質、雰囲気ガス、ガスケットの形状などによって異なるが、窒化物層2の厚さ及び表面硬度が所定の範囲内になる条件を選定することが好ましい。 In the nitriding treatment step, the surface of the substrate 1 is nitrided by heating in a gas containing nitrogen or a nitrogen compound. The nitriding treatment may be performed on at least the surface of the portion of the substrate 1 that is exposed in the pressure vessel, but more preferably on the entire surface. In the present embodiment, the nitride layer 2 may be formed on the surface of the substrate 1 and is not limited by the type of atmospheric gas in the nitriding treatment, but more preferably nitrogen gas, ammonia gas or nitrogen-hydrogen mixed The atmosphere includes gas. The atmospheric temperature and processing time vary depending on the material of the base material 1, the atmospheric gas, the shape of the gasket, and the like, but it is preferable to select conditions under which the thickness and surface hardness of the nitride layer 2 are within a predetermined range.
 雰囲気温度は500~1200℃、処理時間は1~3時間で行なうことが好ましい。例えば、雰囲気ガスに純窒素ガスを用いた場合には、雰囲気温度を700~1200℃とし、処理時間を1~3時間とすることで、窒化物層の厚さを1~10μmとすることができ、表面硬度を所定の範囲内にすることができる。雰囲気ガスにアンモニアガスを用いた場合には、雰囲気温度を500~900℃とし、処理時間を1~3時間とすることで、窒化物層の厚さを1~10μmとすることができ、表面硬度を所定の範囲内にすることができる。また、雰囲気ガスに窒素-水素混合ガスを用いた場合には、雰囲気温度を500~900℃とし、処理時間を1~3時間とすることで、窒化物層の厚さを1~10μmとすることができ、表面硬度を所定の範囲内にすることができる。窒素-水素混合ガスは、窒素と水素との割合は、窒素:水素=60:40~90:10とすることが好ましい。より好ましくは、窒素:水素=80:20~85:15である。 The atmospheric temperature is preferably 500 to 1200 ° C., and the treatment time is preferably 1 to 3 hours. For example, when pure nitrogen gas is used as the atmospheric gas, the thickness of the nitride layer may be 1 to 10 μm by setting the atmospheric temperature to 700 to 1200 ° C. and the processing time to 1 to 3 hours. And the surface hardness can be within a predetermined range. When ammonia gas is used as the atmospheric gas, the thickness of the nitride layer can be reduced to 1 to 10 μm by setting the atmospheric temperature to 500 to 900 ° C. and the processing time to 1 to 3 hours. The hardness can be within a predetermined range. Further, when a nitrogen-hydrogen mixed gas is used as the atmospheric gas, the thickness of the nitride layer is set to 1 to 10 μm by setting the atmospheric temperature to 500 to 900 ° C. and the processing time to 1 to 3 hours. And the surface hardness can be within a predetermined range. In the nitrogen-hydrogen mixed gas, the ratio of nitrogen to hydrogen is preferably nitrogen: hydrogen = 60: 40 to 90:10. More preferably, nitrogen: hydrogen = 80: 20 to 85:15.
 なお、窒化処理工程の前処理として、ニッケル基合金をガスケットの形状に加工し、表面研磨、清浄化を行なうことが好ましい。 In addition, as a pretreatment of the nitriding treatment step, it is preferable to process a nickel-base alloy into a gasket shape and perform surface polishing and cleaning.
 塗布工程では、窒化処理工程で得られた窒化物層の表面上に、白金族金属の化合物を含有する塗布液を塗布し、乾燥させて塗布層を形成する。塗布液は、後に行なわれる熱分解によって白金族金属を含有する層を形成できればよく、本実施形態では特に限定されない。例えば、白金族金属の化合物として白金族金属の塩と、溶媒として水又はアルコールと、還元剤としてテレビン油と、を配合した溶液である。白金族金属の塩は、例えば、塩化イリジウム、塩化ルテニウム、塩化ロジウム、硝酸イリジウム、硝酸ルテニウム、硝酸ロジウム、塩化白金酸、ジニトロジアンミン白金などが挙げられる。また、複数種の白金族金属の化合物を併用して、熱分解によって白金族金属基合金を形成してもよい。白金族金属基合金は、ルテニウム-白金合金、イリジウム-白金合金、イリジウム-ルテニウム合金、ルテニウム-金合金、イリジウム-金合金、イリジウム-レニウム合金が例示でき、例えば、ルテニウム-白金合金は、塩化ルテニウムと塩化白金酸とを配合した塗布液を塗布して熱分解によって得ることができる。塩化ルテニウムと塩化白金酸との配合割合は、60:40~90:10であることが好ましく、より好ましくは、70:30~80:20である。 In the coating step, a coating solution containing a platinum group metal compound is coated on the surface of the nitride layer obtained in the nitriding step, and dried to form a coating layer. The coating solution is not particularly limited in the present embodiment as long as a layer containing a platinum group metal can be formed by thermal decomposition performed later. For example, it is a solution in which a platinum group metal salt as a platinum group metal compound, water or alcohol as a solvent, and turpentine oil as a reducing agent are blended. Examples of the platinum group metal salt include iridium chloride, ruthenium chloride, rhodium chloride, iridium nitrate, ruthenium nitrate, rhodium nitrate, chloroplatinic acid, and dinitrodiammine platinum. Further, a platinum group metal-based alloy may be formed by thermal decomposition using a combination of a plurality of types of platinum group metal compounds. Examples of the platinum group metal-based alloy include ruthenium-platinum alloy, iridium-platinum alloy, iridium-ruthenium alloy, ruthenium-gold alloy, iridium-gold alloy, and iridium-rhenium alloy. For example, ruthenium-platinum alloy is ruthenium chloride. And a coating solution containing chloroplatinic acid can be applied and thermally decomposed. The blending ratio of ruthenium chloride and chloroplatinic acid is preferably 60:40 to 90:10, and more preferably 70:30 to 80:20.
 熱分解工程では、熱分解することによって、塗布工程で得られた塗布層を白金族金属を含有する被覆前駆層とする。被覆前駆層の厚さは、被覆層を形成した時に0.01~3μmになる厚さであることが好ましく、当該厚さになるまで塗布工程及び熱分解工程を複数回繰り返すことが好ましい。ポアが少なく、均一な塗布層を得ることができ、後に行なう酸化処理によってガスケットの表面を白金族金属の酸化物でより確実に被覆することができる。塗布工程1回あたりの塗布量は、0.008~0.2μmとすることが好ましい。より好ましくは、0.01~0.1μmである。 In the thermal decomposition step, the coating layer obtained in the coating step is subjected to thermal decomposition to form a coating precursor layer containing a platinum group metal. The thickness of the coating precursor layer is preferably 0.01 to 3 μm when the coating layer is formed, and it is preferable to repeat the coating step and the thermal decomposition step several times until the thickness reaches the thickness. A uniform coating layer with few pores can be obtained, and the surface of the gasket can be more reliably coated with an oxide of a platinum group metal by an oxidation treatment performed later. The coating amount per coating step is preferably 0.008 to 0.2 μm. More preferably, it is 0.01 to 0.1 μm.
 熱分解は、マッフル炉などの加熱炉で行なうことができる。温度は、300~700℃で行なうことが好ましい。より好ましくは、500~600℃で行なうことである。処理時間は、温度、塗布液の成分によって異なるが、5~15分であることが好ましい。熱分解は、大気雰囲気中で行なうことが好ましい。 Thermal decomposition can be performed in a heating furnace such as a muffle furnace. The temperature is preferably 300 to 700 ° C. More preferably, it is performed at 500 to 600 ° C. The treatment time varies depending on the temperature and the components of the coating solution, but is preferably 5 to 15 minutes. The thermal decomposition is preferably performed in an air atmosphere.
 安定化工程では、熱分解工程で得られた被覆前駆層を酸化して白金族金属の酸化物を含有する被覆層とする。安定化処理は、酸素を10~25質量%含む雰囲気中で、熱分解工程の加熱温度よりも高い温度で加熱することによって行なうことができる。例えば、マッフル炉などの加熱炉中に空気を流すことで酸素を含む雰囲気とすることができる。 In the stabilization step, the coating precursor layer obtained in the thermal decomposition step is oxidized to form a coating layer containing a platinum group metal oxide. The stabilization treatment can be performed by heating at a temperature higher than the heating temperature in the thermal decomposition step in an atmosphere containing 10 to 25% by mass of oxygen. For example, an atmosphere containing oxygen can be obtained by flowing air through a heating furnace such as a muffle furnace.
 安定化工程では、白金族金属を酸化して被覆層を形成する酸化処理と同時に、白金族金属が窒化物層に拡散する拡散処理が行われることが好ましい。したがって、安定化処理の加熱温度は、白金族金属が拡散する温度とし、具体的には650~900℃であることが好ましい。より好ましくは、700~800℃である。処理時間は、温度、被覆前駆層の成分によって異なるが、1~5時間であることが好ましい。650℃未満では、白金族金属の拡散が起こらず、窒化物層2と被覆層3との層間強度が不足し、高温高圧条件で使用することによって被覆層3が剥離する場合がある。900℃を超えると、加熱に多くのエネルギーが必要となり、拡散の度合いとのバランスで不経済である。 In the stabilization step, it is preferable that a diffusion treatment in which the platinum group metal diffuses into the nitride layer is performed simultaneously with an oxidation treatment in which the platinum group metal is oxidized to form a coating layer. Therefore, the heating temperature for the stabilization treatment is a temperature at which the platinum group metal diffuses, and is specifically preferably 650 to 900 ° C. More preferably, it is 700 to 800 ° C. The treatment time varies depending on the temperature and the components of the coating precursor layer, but is preferably 1 to 5 hours. When the temperature is lower than 650 ° C., the platinum group metal does not diffuse, the interlayer strength between the nitride layer 2 and the coating layer 3 is insufficient, and the coating layer 3 may peel off when used under high temperature and high pressure conditions. If it exceeds 900 ° C., a lot of energy is required for heating, which is uneconomical in balance with the degree of diffusion.
 本実施形態に係る圧力容器用ガスケットの製造方法では、被覆層の形成を熱分解によって行なうため、被覆層には、クラックが入り、ポーラスになりうるが、基材の表面に窒化物層を形成しているため、基材のニッケル基合金が露出することが無く、高温高圧状態でも適度な硬度及び耐食性を確保することができる。 In the method for manufacturing a pressure vessel gasket according to the present embodiment, since the coating layer is formed by thermal decomposition, the coating layer may crack and become porous, but a nitride layer is formed on the surface of the substrate. Therefore, the nickel-based alloy of the base material is not exposed, and appropriate hardness and corrosion resistance can be ensured even in a high temperature and high pressure state.
 以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not construed as being limited to the examples.
(実施例1)
 基材として、ニッケル基合金である商品名インコネル625を内寸30mm、外寸50mm、最大肉厚10mm、最小肉厚5mmのレンズリングタイプの圧力容器用ガスケット形状に加工し、表面研磨を行なった。その後、純窒素ガス中で、1100℃で3時間保持して表面を窒化処理した。ここで、厚さ約10μmのニッケル窒化物を主成分とする窒化物層が形成された。次いで、塩化イリジウムをアミルアルコールに溶解し、さらにテレビン油を添加し、イリジウム換算のモル濃度で0.5mol-Ir/lの溶液を塗布液とした。この塗布液を得られた窒化物層の表面上に塗布して、60℃の乾燥器中で10分間静置し、乾燥させた。1回あたりの塗布量は、10ml/mであった。これをマッフル炉に入れて、600℃で10分間加熱し、熱分解処理を行なった。塗布液の塗布から熱分解処理までを10回繰り返し、イリジウム質量換算で、20g-Ir/mに相当する酸化イリジウム及びイリジウム金属からなる見かけ厚さが2.9μmの被覆前駆層の積層体を得た。さらに、空気を流したマッフル炉に入れて、800℃で5時間加熱し、酸化処理及び拡散処理を行ない、圧力容器用ガスケットを作製した。被覆層の表面は、酸化イリジウムとなっていた。被覆層の見かけ厚さは、2.5μmであった。なお、処理後は、炉中で放冷してから取り出した。得られた圧力容器用ガスケットのシール箇所となる部分のビッカース硬度は、350Hvであった。
Example 1
The product name Inconel 625, which is a nickel-based alloy, was processed into a lens ring type pressure vessel gasket shape having an inner dimension of 30 mm, an outer dimension of 50 mm, a maximum thickness of 10 mm, and a minimum thickness of 5 mm as a base material, and surface polishing was performed. . Thereafter, the surface was nitrided in pure nitrogen gas at 1100 ° C. for 3 hours. Here, a nitride layer mainly composed of nickel nitride having a thickness of about 10 μm was formed. Next, iridium chloride was dissolved in amyl alcohol, turpentine oil was further added, and a 0.5 mol-Ir / l solution having a molar concentration in terms of iridium was used as a coating solution. This coating solution was applied on the surface of the obtained nitride layer, and allowed to stand in a dryer at 60 ° C. for 10 minutes to be dried. The coating amount per one time was 10 ml / m 2 . This was put into a muffle furnace and heated at 600 ° C. for 10 minutes to perform a thermal decomposition treatment. A coating of a coating precursor layer having an apparent thickness of 2.9 μm made of iridium oxide and iridium metal corresponding to 20 g-Ir / m 2 in terms of iridium mass was repeated 10 times from coating of the coating solution to thermal decomposition treatment. Obtained. Furthermore, it put into the muffle furnace which flowed air, it heated at 800 degreeC for 5 hours, the oxidation process and the diffusion process were performed, and the gasket for pressure vessels was produced. The surface of the coating layer was iridium oxide. The apparent thickness of the coating layer was 2.5 μm. In addition, after processing, it was taken out after standing to cool in a furnace. The Vickers hardness of the portion to be a seal portion of the obtained pressure vessel gasket was 350 Hv.
 得られた実施例1の圧力容器用ガスケットを、圧力容器のフランジに見立てた厚さが2mmのイリジウム板と密着させ、バネワッシャーを入れたボルト-ナットを用いて、100t/cmとなるように固定した。これを700℃、大気圧で10時間保持し、拡散による接着の有無を確認したところ、拡散による接着は認められなかった。 The obtained pressure vessel gasket of Example 1 was brought into close contact with an iridium plate having a thickness of 2 mm, which was assumed to be a flange of the pressure vessel, and was adjusted to 100 t / cm 2 using a bolt-nut with a spring washer. Fixed to. When this was held at 700 ° C. and atmospheric pressure for 10 hours and the presence or absence of adhesion due to diffusion was confirmed, adhesion due to diffusion was not recognized.
(実施例2)
 基材として、ニッケル基合金であるSUS316Lを実施例1と同様にしてレンズリングタイプの圧力容器用ガスケット形状に加工し、表面研磨を行なった。その後、アンモニアガス中で、700℃で5時間保持して表面を窒化処理した。ここで、厚さ約10μmのニッケル窒化物及びクロム窒化物を主成分とする窒化物層が形成された。次いで、塩化ルテニウムと塩化白金酸とをモル比で3:1となるように調製し、n-ブタノールに溶解し、ルテニウム及び白金の合計mol濃度で0.3mol-Ru・Pt/lの溶液を塗布液とした。この塗布液を得られた窒化物層の表面上に塗布して、室温(24℃)で10分間静置し、乾燥させた。1回あたりの塗布量は、0.08μmであった。これをマッフル炉に入れて、500℃で10分間加熱し、熱分解処理を行なった。塗布液の塗布から熱分解処理までを10回繰り返し、ルテニウム及び白金の合計質量換算で、12g-Ru・Pt/mに相当する酸化ルテニウム白金の混合物からなる厚さが0.8μmの被覆前駆層の積層体を得た。さらに、空気を流したマッフル炉に入れて、750℃で5時間加熱し、酸化処理及び拡散処理を行ない、圧力容器用ガスケットを作製した。被覆層の表面は、酸化ルテニウム白金となっていた。被覆層の厚さは、0.8μmであった。なお、処理後は、炉中で放冷してから取り出した。得られた圧力容器用ガスケットのシール箇所となる部分のビッカース硬度は、320Hvであった。実施例1と同様に、イリジウム板との拡散による接着の有無を確認したところ、接着は確認されなかった。
(Example 2)
As a base material, SUS316L, which is a nickel-based alloy, was processed into a lens ring type pressure vessel gasket shape in the same manner as in Example 1, and surface polishing was performed. Thereafter, the surface was nitrided in ammonia gas at 700 ° C. for 5 hours. Here, a nitride layer mainly composed of nickel nitride and chromium nitride having a thickness of about 10 μm was formed. Next, ruthenium chloride and chloroplatinic acid were prepared in a molar ratio of 3: 1, dissolved in n-butanol, and a solution having a total molar concentration of ruthenium and platinum of 0.3 mol-Ru · Pt / l was prepared. A coating solution was obtained. This coating solution was applied on the surface of the obtained nitride layer, allowed to stand at room temperature (24 ° C.) for 10 minutes, and dried. The coating amount per one time was 0.08 μm. This was put into a muffle furnace and heated at 500 ° C. for 10 minutes to perform a thermal decomposition treatment. The coating precursor having a thickness of 0.8 μm consisting of a mixture of ruthenium platinum oxide corresponding to 12 g-Ru · Pt / m 2 in terms of the total mass of ruthenium and platinum is repeated 10 times from coating of the coating solution to thermal decomposition treatment. A layer stack was obtained. Furthermore, it put into the muffle furnace which flowed air, it heated at 750 degreeC for 5 hours, the oxidation process and the diffusion process were performed, and the gasket for pressure vessels was produced. The surface of the coating layer was ruthenium platinum oxide. The thickness of the coating layer was 0.8 μm. In addition, after processing, it was taken out after standing to cool in a furnace. The Vickers hardness of the portion to be a sealed portion of the obtained pressure vessel gasket was 320 Hv. As in Example 1, when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was not confirmed.
(実施例3)
 基材として、ニッケル基合金である商品名インコネル625を実施例1と同様にしてレンズリングタイプの圧力容器用ガスケット形状に加工し、表面研磨を行ない、中性洗剤で洗浄し、更にアルコールで洗浄した。その後、窒素-水素混合ガス(80%N+20%H)中で、低温プラズマ条件で表面を窒化処理した。低温プラズマ条件は、温度100℃、ガス圧力1000Paで3時間保持した。ここで、厚さ約10μmのニッケル窒化物を主成分とする窒化物層が形成された。次いで、硝酸イリジウムを、水に溶解し、イリジウム換算のモル濃度で0.06~0.07mol-Ir/lの水溶液を塗布液とした。この塗布液を得られた窒化物層の表面上に塗布して、室温(24℃)で10分間静置し、乾燥させた。1回あたりの塗布量は12~14ml/mであった。これをマッフル炉に入れて、500℃で10分間加熱し、熱分解処理を行なった。塗布液の塗布から熱分解処理までを12回繰り返し、イリジウム質量換算で、18g-Ir/mに相当する酸化イリジウムからなる見かけ厚さが2.5μmの被覆前駆層の積層体を得た。さらに、空気を流したマッフル炉に入れて、700℃で1時間加熱し、酸化処理及び拡散処理を行ない、圧力容器用ガスケットを作製した。被覆層の表面は、酸化イリジウムとなっていた。被覆層の厚さは、2.2μmであった。なお、処理後は、炉中で放冷してから取り出した。得られた圧力容器用ガスケットのシール箇所となる部分のビッカース硬度は、380Hvであった。実施例1と同様に、イリジウム板との拡散による接着の有無を確認したところ、接着は確認されなかった。
(Example 3)
Inconel 625, which is a nickel-based alloy as a base material, is processed into a lens ring type pressure vessel gasket shape in the same manner as in Example 1, polished on the surface, washed with a neutral detergent, and further washed with alcohol. did. Thereafter, the surface was nitrided in a nitrogen-hydrogen mixed gas (80% N 2 + 20% H 2 ) under low temperature plasma conditions. The low temperature plasma conditions were maintained at a temperature of 100 ° C. and a gas pressure of 1000 Pa for 3 hours. Here, a nitride layer mainly composed of nickel nitride having a thickness of about 10 μm was formed. Next, iridium nitrate was dissolved in water, and an aqueous solution having a molar concentration in terms of iridium of 0.06 to 0.07 mol-Ir / l was used as a coating solution. This coating solution was applied on the surface of the obtained nitride layer, allowed to stand at room temperature (24 ° C.) for 10 minutes, and dried. The coating amount per one time was 12 to 14 ml / m 2 . This was put into a muffle furnace and heated at 500 ° C. for 10 minutes to perform a thermal decomposition treatment. The coating solution coating and thermal decomposition treatment were repeated 12 times to obtain a laminate of a coating precursor layer made of iridium oxide corresponding to 18 g-Ir / m 2 in terms of iridium mass and having an apparent thickness of 2.5 μm. Furthermore, it put into the muffle furnace which flowed air, it heated at 700 degreeC for 1 hour, the oxidation process and the diffusion process were performed, and the gasket for pressure vessels was produced. The surface of the coating layer was iridium oxide. The thickness of the coating layer was 2.2 μm. In addition, after processing, it was taken out after standing to cool in a furnace. The Vickers hardness of the portion to be a seal portion of the obtained pressure vessel gasket was 380 Hv. As in Example 1, when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was not confirmed.
(実施例4)
 実施例1において、塗布液として塩化ロジウムをアミルアルコールに溶解し、さらにテレビン油を添加し、ロジウム換算のモル濃度で0.4mol-Rh/lの溶液を用いた以外は、実施例1に準じて圧力容器用ガスケットを作製した。被覆層の表面は、酸化ロジウム(Rh)となっていた。得られた圧力容器用ガスケットのシール箇所となる部分のビッカース硬度は、380Hvであった。実施例1と同様に、イリジウム板との拡散による接着の有無を確認したところ、接着は確認されなかった。
Example 4
In Example 1, rhodium chloride was dissolved in amyl alcohol as a coating solution, turpentine oil was added, and a solution having a molar concentration of rhodium of 0.4 mol-Rh / l was used. A gasket for a pressure vessel was produced. The surface of the coating layer was rhodium oxide (Rh 2 O 3 ). The Vickers hardness of the portion to be a sealed portion of the obtained pressure vessel gasket was 380 Hv. As in Example 1, when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was not confirmed.
(実施例5)
 実施例1において、塗布液として塩化白金酸と塩化ロジウムとをアミルアルコールに溶解し、さらにテレビン油を添加し、白金とロジウム合算のモル濃度で0.4mol-Pt+Rh/lの溶液を用いた以外は、実施例1に準じて圧力容器用ガスケットを作製した。なお白金とロジウムの比率はロジウム80質量%:白金20質量%であった。被覆層の表面は、白金と酸化ロジウム(Rh)となっていた。得られた圧力容器用ガスケットのシール箇所となる部分のビッカース硬度は、350Hvであった。実施例1と同様に、イリジウム板との拡散による接着の有無を確認したところ、接着は確認されなかった。
(Example 5)
In Example 1, except that chloroplatinic acid and rhodium chloride were dissolved in amyl alcohol as a coating solution, turpentine oil was further added, and a solution of 0.4 mol-Pt + Rh / l in terms of the combined molar concentration of platinum and rhodium was used. A pressure vessel gasket was prepared according to Example 1. The ratio of platinum to rhodium was 80% by mass of rhodium: 20% by mass of platinum. The surface of the coating layer was platinum and rhodium oxide (Rh 2 O 3 ). The Vickers hardness of the portion to be a seal portion of the obtained pressure vessel gasket was 350 Hv. As in Example 1, when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was not confirmed.
(比較例1)
 実施例1において、熱分解処理の条件を、ブタンガスバーナー火炎として酸化物を含まないイリジウム金属層を形成し、更に酸化処理を行なわず、圧力容器用ガスケットを作製した。圧力容器用ガスケットの表面は、イリジウム金属となっていた。イリジウム金属層の厚さは、1μmであった。得られた圧力容器用ガスケットのシール箇所となる部分のビッカース硬度は、450Hvであった。実施例1と同様に、イリジウム板との拡散による接着の有無を確認したところ、接着が認められ、剥離が困難であった。
(Comparative Example 1)
In Example 1, as a pyrolysis treatment condition, an iridium metal layer containing no oxide was formed as a butane gas burner flame, and a pressure vessel gasket was produced without further oxidation treatment. The surface of the pressure vessel gasket was iridium metal. The thickness of the iridium metal layer was 1 μm. The Vickers hardness of the portion to be a sealed portion of the obtained pressure vessel gasket was 450 Hv. As in Example 1, when the presence or absence of adhesion due to diffusion with the iridium plate was confirmed, adhesion was observed and peeling was difficult.
 本発明に係る圧力容器用ガスケットは、シール箇所がイリジウム又はイリジウム基合金の表面を有するフランジを開口部に備えた圧力容器を密封するガスケットとして好適である。特に、超臨界状態での水熱合成法又は安熱合成法に使用される圧力容器のガスケットとして有効に使用できる。 The gasket for a pressure vessel according to the present invention is suitable as a gasket for sealing a pressure vessel provided with a flange having an opening having a surface of iridium or an iridium base alloy at the opening. In particular, it can be effectively used as a gasket for a pressure vessel used in a hydrothermal synthesis method or a low temperature synthesis method in a supercritical state.
100 圧力容器用ガスケット
1 基材
2 窒化物層
3 被覆層
71,71a,71b ガスケット
72 固定冶具
77 リング
78 外輪
81 本体
82 中間層
83 内筒
83a フランジ取付部
84 下フランジ
91 蓋
92 中間層
93 最内層
94 上フランジ
900 圧力容器
S シール箇所 
100 Gasket for pressure vessel 1 Base material 2 Nitride layer 3 Cover layer 71, 71a, 71b Gasket 72 Fixing jig 77 Ring 78 Outer ring 81 Body 82 Intermediate layer 83 Inner cylinder 83a Flange mounting portion 84 Lower flange 91 Lid 92 Intermediate layer 93 Inner layer 94 Upper flange 900 Pressure vessel S Seal location

Claims (8)

  1.  圧力容器の開口部に設けられ、かつ、シール箇所がイリジウム又はイリジウム基合金の表面を有するフランジに当接して、前記圧力容器を密封する圧力容器用のガスケットであって、
     ニッケル基合金を基材とし、該基材の表面に前記ニッケル基合金の窒化物層を形成し、該窒化物層の表面に白金族金属の酸化物を含有する被覆層を形成したことを特徴とする圧力容器用ガスケット。
    A gasket for a pressure vessel that is provided in an opening of the pressure vessel and seals the pressure vessel in contact with a flange having a surface of iridium or an iridium-based alloy,
    A nickel-base alloy is used as a base material, a nitride layer of the nickel-base alloy is formed on the surface of the base material, and a coating layer containing a platinum group metal oxide is formed on the surface of the nitride layer. Gasket for pressure vessel.
  2.  前記白金族金属は、イリジウム、ルテニウム、ロジウム又はそれらの基合金であることを特徴とする請求項1に記載の圧力容器用ガスケット。 The pressure vessel gasket according to claim 1, wherein the platinum group metal is iridium, ruthenium, rhodium or a base alloy thereof.
  3.  前記窒化物層の厚さは、1~10μmであり、かつ、前記被覆層の厚さは、0.01~3μmであることを特徴とする請求項1又は2のいずれか一つに記載の圧力容器用ガスケット。 3. The thickness of the nitride layer is 1 to 10 μm, and the thickness of the coating layer is 0.01 to 3 μm. Gasket for pressure vessel.
  4.  JIS Z 2244:2009に準じて測定した前記シール箇所の表面のビッカース硬度が、300Hv~400Hvであることを特徴とする請求項1~3のいずれか一つに記載の圧力容器用ガスケット。 The pressure vessel gasket according to any one of claims 1 to 3, wherein the surface of the seal portion measured according to JIS Z 2244: 2009 has a Vickers hardness of 300 Hv to 400 Hv.
  5.  前記窒化物層には、前記被覆層から前記白金族金属が拡散していることを特徴とする請求項1~4のいずれか一つに記載の圧力容器用ガスケット。 The pressure vessel gasket according to any one of claims 1 to 4, wherein the platinum group metal is diffused from the coating layer into the nitride layer.
  6.  圧力容器の開口部に設けられ、かつ、シール箇所がイリジウム又はイリジウム基合金の表面を有するフランジと当接して、前記圧力容器を密封する圧力容器用のガスケットの製造方法であって、
     ニッケル基合金を基材とし、該基材の表面を窒化処理して窒化物層を形成する窒化処理工程と、
     該窒化物層の表面に白金族金属の化合物を含有する塗布液を塗布して塗布層を形成する塗布工程と、
     該塗布層を熱分解して被覆前駆層を形成する熱分解工程と、
     酸素を含む雰囲気中で、該熱分解工程の加熱温度よりも高い温度で加熱して、前記被覆前駆層を前記白金族金属の酸化物を含有する被覆層とする安定化工程と、
     を有することを特徴とする圧力容器用ガスケットの製造方法。
    A method for producing a gasket for a pressure vessel, which is provided in an opening of the pressure vessel, and a sealing portion is in contact with a flange having a surface of iridium or an iridium base alloy, and seals the pressure vessel,
    A nitriding step in which a nickel-based alloy is used as a base material and the surface of the base material is nitrided to form a nitride layer;
    A coating step of coating a coating solution containing a platinum group metal compound on the surface of the nitride layer to form a coating layer;
    A thermal decomposition step of thermally decomposing the coating layer to form a coating precursor layer;
    A stabilization step of heating the coating precursor layer to a coating layer containing an oxide of the platinum group metal in an atmosphere containing oxygen at a temperature higher than the heating temperature of the pyrolysis step;
    A method for producing a gasket for a pressure vessel, comprising:
  7.  前記窒化処理工程は、窒素ガス、アンモニアガス又は窒素-水素混合ガスを含む雰囲気中で加熱することによって行なうことを特徴とする請求項6に記載の圧力容器用ガスケットの製造方法。 The method of manufacturing a gasket for a pressure vessel according to claim 6, wherein the nitriding step is performed by heating in an atmosphere containing nitrogen gas, ammonia gas or nitrogen-hydrogen mixed gas.
  8.  前記塗布工程及び前記熱分解工程を複数回繰り返して、前記被覆層の厚さを0.01~3μmとすることを特徴とする請求項6又は7に記載の圧力容器用ガスケットの製造方法。 The method for producing a gasket for a pressure vessel according to claim 6 or 7, wherein the coating step and the thermal decomposition step are repeated a plurality of times so that the thickness of the coating layer is 0.01 to 3 µm.
PCT/JP2011/062325 2010-06-03 2011-05-30 Gasket for pressure vessel, and method for producing said gasket WO2011152332A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012518370A JPWO2011152332A1 (en) 2010-06-03 2011-05-30 Gasket for pressure vessel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010128235 2010-06-03
JP2010-128235 2010-06-03

Publications (1)

Publication Number Publication Date
WO2011152332A1 true WO2011152332A1 (en) 2011-12-08

Family

ID=45066699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062325 WO2011152332A1 (en) 2010-06-03 2011-05-30 Gasket for pressure vessel, and method for producing said gasket

Country Status (2)

Country Link
JP (1) JPWO2011152332A1 (en)
WO (1) WO2011152332A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275391A1 (en) * 2006-04-07 2015-10-01 Sixpoint Materials, Inc. High pressure reactor for supercritical ammonia
WO2015153737A1 (en) * 2014-04-01 2015-10-08 Sixpoint Materials, Inc. High pressure reactor for supercritical ammonia and method for producing crystalline group iii nitride
JP2019173771A (en) * 2018-03-27 2019-10-10 日本精線株式会社 Gas filter and gas supply device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276970A (en) * 1988-09-12 1990-03-16 Arai Pump Mfg Co Ltd Metallic gasket
JPH0356691A (en) * 1989-05-09 1991-03-12 Dow Chem Co:The Preventing gap of titanium from corrosion
JP2002102671A (en) * 2000-09-29 2002-04-09 Toshiba Corp High pressure corrosion resistant reaction vessel, treatment apparatus, and method for corrosion resistant treatment of the apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276970A (en) * 1988-09-12 1990-03-16 Arai Pump Mfg Co Ltd Metallic gasket
JPH0356691A (en) * 1989-05-09 1991-03-12 Dow Chem Co:The Preventing gap of titanium from corrosion
JP2002102671A (en) * 2000-09-29 2002-04-09 Toshiba Corp High pressure corrosion resistant reaction vessel, treatment apparatus, and method for corrosion resistant treatment of the apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275391A1 (en) * 2006-04-07 2015-10-01 Sixpoint Materials, Inc. High pressure reactor for supercritical ammonia
WO2015153737A1 (en) * 2014-04-01 2015-10-08 Sixpoint Materials, Inc. High pressure reactor for supercritical ammonia and method for producing crystalline group iii nitride
JP2019173771A (en) * 2018-03-27 2019-10-10 日本精線株式会社 Gas filter and gas supply device including the same
JP7011509B2 (en) 2018-03-27 2022-01-26 日本精線株式会社 Gas filter and gas supply device equipped with it

Also Published As

Publication number Publication date
JPWO2011152332A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US9926642B2 (en) Method of manufacturing a pressure vessel for growing single crystals
US10053756B2 (en) Nickel chromium alloy
US8133595B2 (en) Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
EP1132499B1 (en) Alloy coating, method for forming the same, and member for high temperature apparatuses
TWI477654B (en) Cathode for electrolytic processes
WO2011152332A1 (en) Gasket for pressure vessel, and method for producing said gasket
JP2005533185A (en) Stainless steel surface hardening
WO2002000546A1 (en) Fuel reforming reactor and method for manufacture thereof
JP2002102671A (en) High pressure corrosion resistant reaction vessel, treatment apparatus, and method for corrosion resistant treatment of the apparatus
JP5710901B2 (en) Surface hardening method for platinum moldings
WO2012020641A1 (en) Inner cylinder for pressure container and process for production thereof
KR20060095590A (en) Surface treating method of heat-resist superalloy, and heat-resist superalloy material thereused
TWI246940B (en) Method for forming platinum coating catalyst layer in reaction furnace for generating water gas
JP3163902U (en) Pressure vessel
JP4539907B2 (en) Components for hydrocarbon reformers
JP2012020888A (en) Reformer and method for manufacturing the same
JP2000208431A (en) Metallic material wherein chromium oxide passivation film is formed, its manufacture and corrosive fluid contacting part and fluid supply/discharge system
JP2009030644A (en) Seal connecting construction, structure, and covering method
JPS5852029B2 (en) Sukimafushiyoku Okosanai Kagakusouchi
JP4615909B2 (en) Corrosion resistant material and method for producing the same
JP2000169108A (en) Reaction furnace for generating water
JPS58159426A (en) Improved methanization
Sah et al. Characterization of Corrosion Behaviors of Candidate Materials in Sulfuric Acid Environment
JP3212529B2 (en) Corrosion resistant surface treated alloy and method for producing the same
JPS58126971A (en) Iron-nickel composite covering method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518370

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789735

Country of ref document: EP

Kind code of ref document: A1