WO2011152239A1 - Method for manufacturing glass gob and method for manufacturing glass molding - Google Patents

Method for manufacturing glass gob and method for manufacturing glass molding Download PDF

Info

Publication number
WO2011152239A1
WO2011152239A1 PCT/JP2011/061763 JP2011061763W WO2011152239A1 WO 2011152239 A1 WO2011152239 A1 WO 2011152239A1 JP 2011061763 W JP2011061763 W JP 2011061763W WO 2011152239 A1 WO2011152239 A1 WO 2011152239A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten glass
nozzle
lower mold
gob
Prior art date
Application number
PCT/JP2011/061763
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 今嶋
俊也 富阪
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011152239A1 publication Critical patent/WO2011152239A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • C03B7/12Cutting-off or severing a free-hanging glass stream, e.g. by the combination of gravity and surface tension forces

Definitions

  • the present invention relates to a glass gob manufacturing method and a glass molded body manufacturing method.
  • glass optical elements are widely used as digital camera lenses, optical pickup lenses such as DVDs, mobile phone camera lenses, optical communication coupling lenses, and various mirrors.
  • Such glass optical elements are often manufactured by a press molding method in which a glass material is pressure-molded with a molding die.
  • a method of manufacturing a glass gob that becomes a glass lens by dropping a molten glass droplet from its nozzle tip into its lower die by its own weight and press-molding it (hereinafter referred to as a droplet method) is disclosed in Japanese Patent Application Laid-Open No. 61-146721 ( This is disclosed in Patent Document 1) and Japanese Patent Application Laid-Open No. 7-330343 (hereinafter, Patent Document 2). Further, a method for forming a non-abrasive glass lens having a large center thickness while expanding the range of application of the droplet method is disclosed in Japanese Patent Application Laid-Open No. 62-292635 (hereinafter referred to as Patent Document 3).
  • JP-A 61-146721 JP 7-330343 A Japanese Patent Laid-Open No. 62-292635
  • the present invention has been made in view of the above technical problems, and a first object of the present invention is to provide a glass gob manufacturing method and glass molding capable of suppressing the occurrence of air accumulation in the glass gob. It is in providing the manufacturing method of a body.
  • the second object of the present invention is to provide a glass gob manufacturing method and a glass molded body manufacturing method capable of easily obtaining an optical element having an arbitrary total weight.
  • the lower mold includes a bottom surface and a side wall surrounding the bottom surface.
  • the nozzle has an upper nozzle and a lower nozzle, and the temperature of the upper nozzle is lower than the temperature of the lower nozzle.
  • a glass gob is produced by the above-described glass gob production method, and the glass gob is pressure-molded with the lower mold and the upper mold before the glass gob is solidified.
  • an optical element manufacturing method capable of suppressing the occurrence of air accumulation. Further, it is possible to provide a glass gob manufacturing method and a glass molded body manufacturing method capable of easily obtaining an optical element having an arbitrary total weight.
  • FIG. 1 shows schematic structure of the glass dripping apparatus employ
  • FIG. 1 shows schematic structure of the glass dripping apparatus employ
  • FIG. 1 shows schematic diagram which shows the 1st manufacturing process of the manufacturing method of the glass forming body in embodiment.
  • a glass gob manufacturing method and a glass molded body manufacturing method according to an embodiment of the present invention will be described below with reference to the drawings. Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
  • FIG. 1 is a figure which shows schematic structure of the glass dripping apparatus employ
  • the glass dropping device 100 includes a crucible 1 for melting glass, an upper nozzle 3a for guiding the molten glass to the outside, a lower nozzle 3b, and a lower mold 10 for receiving a molten glass droplet 6a formed at the tip of the lower nozzle 3b. have.
  • the crucible 1 includes a stirring rod 4 for homogenizing the molten glass 2, and the temperatures of the crucible 1, the upper nozzle 3 a, and the lower nozzle 3 b are the heaters 5 a to 5 d whose temperature is controlled by the control unit 9. Is maintained at a predetermined temperature.
  • the temperature of the crucible 1, the upper nozzle 3a, and the lower nozzle 3b may be set according to the properties of the glass and the size of the molten glass droplet 6a to be obtained, and is usually in the range of 500 to 1400 ° C.
  • the temperature of the upper nozzle 3a is set lower than the temperature of the lower nozzle 3b, the dropping of the molten glass droplet 6a can be facilitated.
  • the temperature of the lower nozzle 3b is preferably 50 to 200 ° C. higher than that of the upper nozzle 3a.
  • the glass dropping interval is generally constant, a more accurate dropping interval control can be achieved by feeding back a signal from a dropping sensor including the light emitting unit 7 and the light receiving unit 8 from the control unit 9 to the heaters 5a to 5d. It becomes possible.
  • the dropping interval can be arbitrarily set according to the balance of the heaters 5a to 5b. An interval of about 1 to 20 seconds is desirable for stable dripping.
  • the weight of one glass drop is determined by the shape of the tip of the lower nozzle 3b.
  • the inner diameter of the tip of the lower nozzle 3b is ⁇ 0.5 mm to ⁇ 7 mm and the outer diameter is ⁇ 2 mm to ⁇ 20 mm.
  • the nozzle diameter is within this range, 0.2 to 1.5 g of glass droplets are obtained. If the nozzle diameter is too small, the glass droplets obtained are small, and the residence time in the lower mold 10 becomes long, which is not preferable.
  • a heater is used to heat the crucible 1, the upper nozzle 3a, and the lower nozzle 3b
  • another heating means such as a high-frequency coil or an IR lamp may be used.
  • high-frequency heating is effective at high temperatures (1000 ° C. or higher).
  • the molten glass droplet 6a is formed at the tip of the lower nozzle 3b under the condition in which the temperature is strictly controlled, and this is dropped on the lower mold 10 by its own weight.
  • FIGS. 2-8 are schematic diagrams showing first to seventh manufacturing steps of the glass molded body manufacturing method according to the present embodiment. More specifically, FIGS. 2 to 7 show a glass gob manufacturing method, and FIG. 8 shows a glass molded body manufacturing method using the glass gob.
  • a lower mold 10 is prepared at a position below the lower nozzle 3b.
  • the lower mold 10 is provided with a bottom surface 10b and side walls 10s surrounding the bottom surface 10b.
  • the distance (L1) between the bottom surface 10b and the tip of the lower nozzle 3b is about 50 mm to 100 mm.
  • the lower mold 10 having the side wall 10s is adopted, but the shape of the lower mold 10 is not limited to this. It is also possible to adopt a lower mold having no side wall.
  • molten glass droplet 6a is directly dropped onto bottom surface 10b of lower mold 10 by its own weight from the tip of lower nozzle 3b.
  • the reason why the molten glass droplet 6a is dropped on the bottom surface 10b of the lower mold 10 is to obtain an excellent mirror surface.
  • FIG. 4 by bringing the lower nozzle 3 b and the lower mold 10 relatively close to each other, the molten glass 6 b that flows out from the lower nozzle 3 b next and the molten glass droplet 6 a that has dropped onto the lower mold 10 Contact.
  • the lower mold 10 is raised toward the lower nozzle 3b.
  • the time until the next molten glass 6b comes into contact with the molten glass droplet 6a is about 0.1 second to about 1 second.
  • a predetermined amount of molten glass is supplied from the lower nozzle 3b to the lower mold 10 while the molten glass droplet 6a and the molten glass 6b are in contact with each other.
  • the molten glass in the case where a predetermined amount of molten glass 6b is supplied from the lower nozzle 3b to the lower mold 10 while the molten glass droplet 6a and the molten glass 6b are in contact with each other.
  • the supply state will be described.
  • the molten glass 6b supplied from the lower nozzle 3b is supplied to the lower mold 10 while always in contact with the molten glass droplet 6a.
  • FIG. 6A and 6 (B) show a method for manufacturing an optical element in the background art.
  • the molten glass 6b When the molten glass 6b is dropped into the molten glass droplet 6a positioned below (see FIG. 6A), the molten glass 6b embeds the surrounding air, and air is introduced into the molten glass droplet 6a positioned in the lower mold. The pool a1 is generated.
  • the molten glass 6b is continuously supplied from the lower nozzle 3b to the lower mold 10 while the molten glass droplet 6a and the molten glass 6b are in contact with each other. Since the molten glass 6 b can be continuously supplied from the lower nozzle 3 b, an arbitrary amount of the molten glass 6 b can be supplied to the lower mold 10. As a result, an arbitrary amount of glass gob 6 c can be formed on the lower mold 10.
  • the upper mold 20 is used to cooperate with the upper mold 20 and the lower mold 10, and the glass gob 6 c is applied to the glass gob 6 c. Then, pressure molding is performed to form a glass molded body.
  • the molten glass at the tip of the lower nozzle 3b It is also possible to separate the molten glass staying in the lower mold 10.
  • the molten glass staying in the lower mold 10 is cooled to become a glass gob 6c.
  • the upper mold 20 and the lower mold 10 cooperate to perform pressure molding on the glass gob 6c. Then, a glass molded body is formed.
  • lower mold 10 in the present embodiment includes a bottom surface 10b and a side wall 10s surrounding this bottom surface 10b, a glass molded body having specularity with respect to the upper and lower surfaces and the side surfaces by pressure molding on glass gob 6c. Can be formed.
  • the molten glass 6b supplied from the lower nozzle 3b is always kept in contact with the molten glass droplet 6a. Supplied to the mold 10.
  • the molten glass 6b is continuously supplied from the lower nozzle 3b, an arbitrary amount of the molten glass 6b can be supplied to the lower mold 10. As a result, since an arbitrary amount of the glass gob 6c can be formed on the lower mold 10, a glass molded body having an arbitrary total weight can be easily obtained.
  • the lower mold 10 having the bottom surface 10b and the side wall 10s surrounding the bottom surface 10b, it is possible to mold a glass molded body having specularity with respect to the top and bottom surfaces and the side surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A method for manufacturing a glass gob comprises: a step for dropping by gravity a molten glass droplet (6a) from a lower nozzle (3b) directly into a lower die (10); a step for making the lower nozzle (3b) and the lower die (10) approach each other to cause molten glass (6b) which flows out next from the lower nozzle (3b) and the molten glass droplet (6a), which has dropped in the lower die (10), to make contact with each other; and a step for supplying a predetermined amount of the molten glass (6b) to the lower die (10) from the nozzle (3b) with the molten glass droplet (6a) and the molten glass (6b) maintained in contact with each other.

Description

ガラスゴブの製造方法およびガラス成形体の製造方法Method for producing glass gob and method for producing glass molded body
 本発明は、ガラスゴブの製造方法およびガラス成形体の製造方法に関する。 The present invention relates to a glass gob manufacturing method and a glass molded body manufacturing method.
 今日、ガラス製の光学素子は、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズ、各種ミラーなどとして広範にわたって利用されている。かかるガラス製の光学素子は、ガラス素材を成形金型で加圧成形するプレス成形法により製造されることが多くなってきている。 Today, glass optical elements are widely used as digital camera lenses, optical pickup lenses such as DVDs, mobile phone camera lenses, optical communication coupling lenses, and various mirrors. Such glass optical elements are often manufactured by a press molding method in which a glass material is pressure-molded with a molding die.
 ノズル先端から溶融ガラス滴を自重により下型に滴下させて、プレス成形することによりガラスレンズとなるガラスゴブを製造する方法(以下、液滴法と称する)が、特開昭61-146721号公報(以下、特許文献1)および特開平7-330343号公報(以下、特許文献2)に開示されている。また、液滴法の応用の幅を広げるとともに、中心厚の大きな無研摩ガラスレンズの成形方法が、特開昭62-292635号公報(以下、特許文献3)に開示されている。 A method of manufacturing a glass gob that becomes a glass lens by dropping a molten glass droplet from its nozzle tip into its lower die by its own weight and press-molding it (hereinafter referred to as a droplet method) is disclosed in Japanese Patent Application Laid-Open No. 61-146721 ( This is disclosed in Patent Document 1) and Japanese Patent Application Laid-Open No. 7-330343 (hereinafter, Patent Document 2). Further, a method for forming a non-abrasive glass lens having a large center thickness while expanding the range of application of the droplet method is disclosed in Japanese Patent Application Laid-Open No. 62-292635 (hereinafter referred to as Patent Document 3).
 特許文献3に開示される液滴法によれば、2滴以上の溶融ガラス滴を自重により下型に滴下させて、中心厚の大きなガラスレンズを得ている。 According to the droplet method disclosed in Patent Document 3, two or more molten glass droplets are dropped on the lower mold by their own weights to obtain a glass lens having a large center thickness.
特開昭61-146721号公報JP-A 61-146721 特開平7-330343号公報JP 7-330343 A 特開昭62-292635号公報Japanese Patent Laid-Open No. 62-292635
 しかし、特許文献2に開示される液滴法によれば、2滴目以降の下型に位置するガラスゴブの中心部にエアー溜まりが発生する。また、ガラスゴブの総重量が、1滴の溶融ガラス滴の重量の整数倍となるため、任意の総重量のガラスゴブを得ることが困難である。さらに、ガラスゴブの側面に、1滴目と2滴目との境界面に筋状の凹部が形成されるため、側面を光学面として用いることができない等の課題があった。 However, according to the droplet method disclosed in Patent Document 2, an air pool is generated at the center of the glass gob located in the lower mold after the second droplet. In addition, since the total weight of the glass gob is an integral multiple of the weight of one drop of molten glass droplet, it is difficult to obtain a glass gob having an arbitrary total weight. Furthermore, since a streak-like concave portion is formed on the side surface of the glass gob at the boundary surface between the first and second drops, there is a problem that the side surface cannot be used as an optical surface.
 本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の第1の目的は、ガラスゴブへのエアー溜まりの発生を抑制することが可能な、ガラスゴブの製造方法およびガラス成形体の製造方法を提供することにある。本発明の第2の目的は、任意の総重量の光学素子を容易に得ることが可能なガラスゴブの製造方法およびガラス成形体の製造方法を提供することにある。 The present invention has been made in view of the above technical problems, and a first object of the present invention is to provide a glass gob manufacturing method and glass molding capable of suppressing the occurrence of air accumulation in the glass gob. It is in providing the manufacturing method of a body. The second object of the present invention is to provide a glass gob manufacturing method and a glass molded body manufacturing method capable of easily obtaining an optical element having an arbitrary total weight.
 この発明に基づいたガラスゴブの製造方法においては、ノズルから溶融ガラス滴を自重により下型に直接滴下させる工程と、上記ノズルと上記下型とを相対的に近接させることにより、上記ノズルから次に流出する溶融ガラスと上記下型に滴下した上記溶融ガラス滴とを接触させる工程と、上記溶融ガラス滴と上記溶融ガラスとを接触させた状態のまま、上記ノズルから所定量の上記溶融ガラスを上記下型に供給する工程と、を備える。 In the glass gob manufacturing method according to the present invention, the step of dropping the molten glass droplet directly from the nozzle onto the lower mold by its own weight, and the nozzle and the lower mold are relatively close to each other, A step of bringing the molten glass flowing out and the molten glass droplet dropped onto the lower mold into contact with each other, and a predetermined amount of the molten glass from the nozzle while the molten glass droplet and the molten glass are in contact with each other. Supplying to the lower mold.
 上記ガラスゴブの製造方法の他の形態においては、上記下型は底面と、上記底面を取囲む側壁とを含む。 In another form of the glass gob manufacturing method, the lower mold includes a bottom surface and a side wall surrounding the bottom surface.
 上記ガラスゴブの製造方法の他の形態においては、上記ノズルは、上部ノズルと下部ノズルとを有し、上記上部ノズルの温度は上記下部ノズルの温度より低い。 In another form of the glass gob manufacturing method, the nozzle has an upper nozzle and a lower nozzle, and the temperature of the upper nozzle is lower than the temperature of the lower nozzle.
 この発明に基づいたガラス成形体の製造方法においては、上述のガラスゴブの製造方法によりガラスゴブを製造し、上記ガラスゴブが固化する前に、上記ガラスゴブを上記下型と上型とで加圧成形する。 In the method for producing a glass molded body according to the present invention, a glass gob is produced by the above-described glass gob production method, and the glass gob is pressure-molded with the lower mold and the upper mold before the glass gob is solidified.
 本発明によれば、エアー溜まりの発生を抑制することが可能な、光学素子の製造方法を提供することが可能となる。また、任意の総重量の光学素子を容易に得ることが可能なガラスゴブの製造方法およびガラス成形体の製造方法を提供することが可能となる。 According to the present invention, it is possible to provide an optical element manufacturing method capable of suppressing the occurrence of air accumulation. Further, it is possible to provide a glass gob manufacturing method and a glass molded body manufacturing method capable of easily obtaining an optical element having an arbitrary total weight.
実施の形態において用いるガラス成形体の製造方法に採用されるガラス滴下装置の概略構成を示す図である。It is a figure which shows schematic structure of the glass dripping apparatus employ | adopted as the manufacturing method of the glass forming body used in embodiment. 実施の形態におけるガラス成形体の製造方法の、第1製造工程を示す模式図である。It is a schematic diagram which shows the 1st manufacturing process of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の、第2製造工程を示す模式図である。It is a schematic diagram which shows the 2nd manufacturing process of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の、第3製造工程を示す模式図である。It is a schematic diagram which shows the 3rd manufacturing process of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の、第4製造工程を示す模式図である。It is a schematic diagram which shows the 4th manufacturing process of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の、第5製造工程を示す模式図である。It is a schematic diagram which shows the 5th manufacturing process of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の、第6製造工程を示す模式図である。It is a schematic diagram which shows the 6th manufacturing process of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の、第7製造工程を示す模式図である。It is a schematic diagram which shows the 7th manufacturing process of the manufacturing method of the glass molded object in embodiment.
 本発明に基づいた実施の形態におけるガラスゴブの製造方法およびガラス成形体の製造方法について、以下、図を参照しながら説明する。なお、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。また、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 A glass gob manufacturing method and a glass molded body manufacturing method according to an embodiment of the present invention will be described below with reference to the drawings. Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 (ガラス滴下装置100)
 図1を参照して、実施の形態におけるガラスゴブの製造方法およびガラス成形体の製造方法に用いるガラス滴下装置100について説明する。なお、図1は、本実施の形態において用いるガラス成形体の製造方法に採用されるガラス滴下装置の概略構成を示す図である。
(Glass dropping device 100)
With reference to FIG. 1, the glass dripping apparatus 100 used for the manufacturing method of the glass gob and the manufacturing method of a glass forming body in embodiment is demonstrated. In addition, FIG. 1 is a figure which shows schematic structure of the glass dripping apparatus employ | adopted as the manufacturing method of the glass forming body used in this Embodiment.
 このガラス滴下装置100は、ガラスを溶融するルツボ1、溶融したガラスを外部に導く上部ノズル3a、下部ノズル3b、および、下部ノズル3bの先端部で形成される溶融ガラス滴6aを受ける下型10を有している。 The glass dropping device 100 includes a crucible 1 for melting glass, an upper nozzle 3a for guiding the molten glass to the outside, a lower nozzle 3b, and a lower mold 10 for receiving a molten glass droplet 6a formed at the tip of the lower nozzle 3b. have.
 ルツボ1は、溶融ガラス2を均質化するための撹拌棒4を備えており、ルツボ1、上部ノズル3a、および、下部ノズル3bの温度は、制御部9により温度管理された加熱ヒータ5a~5dにより所定の温度に保持される。ルツボ1、上部ノズル3a、および、下部ノズル3bの温度は、ガラスの性質および得ようとする溶融ガラス滴6aの大きさに応じて設定すればよく、通常500~1400℃の範囲内である。 The crucible 1 includes a stirring rod 4 for homogenizing the molten glass 2, and the temperatures of the crucible 1, the upper nozzle 3 a, and the lower nozzle 3 b are the heaters 5 a to 5 d whose temperature is controlled by the control unit 9. Is maintained at a predetermined temperature. The temperature of the crucible 1, the upper nozzle 3a, and the lower nozzle 3b may be set according to the properties of the glass and the size of the molten glass droplet 6a to be obtained, and is usually in the range of 500 to 1400 ° C.
 特に,上部ノズル3aの温度を下部ノズル3bの温度よりも低く設定すると、溶融ガラス滴6aの滴下を容易にすることができる。好ましくは下部ノズル3bの温度を上部ノズル3aより50~200℃高くするとよい。 Particularly, when the temperature of the upper nozzle 3a is set lower than the temperature of the lower nozzle 3b, the dropping of the molten glass droplet 6a can be facilitated. The temperature of the lower nozzle 3b is preferably 50 to 200 ° C. higher than that of the upper nozzle 3a.
 ガラスの滴下間隔は概ね一定であるが、発光部7と受光部8とを備えた滴下センサからの信号を制御部9から加熱ヒータ5a~5dにフィードバックさせることにより、さらに正確な滴下間隔制御が可能となる。なお、滴下間隔は加熱ヒータ5a~5bのバランスにより任意に設定できる。安定な滴下のためには1~20秒間隔程度が望ましい。 Although the glass dropping interval is generally constant, a more accurate dropping interval control can be achieved by feeding back a signal from a dropping sensor including the light emitting unit 7 and the light receiving unit 8 from the control unit 9 to the heaters 5a to 5d. It becomes possible. The dropping interval can be arbitrarily set according to the balance of the heaters 5a to 5b. An interval of about 1 to 20 seconds is desirable for stable dripping.
 1個のガラス滴の重量は下部ノズル3bの先端部の形状により決定される。安定した重量のガラス滴を得るためには、下部ノズル3bの先端部の内径がφ0.5mm~φ7mm、外径がφ2mm~φ20mmであることが望ましい。この範囲のノズル径とした場合、0.2~1.5gのガラス滴が得られる。ノズル径が小さすぎると得られるガラス滴が小さくなり、下型10での滞留時間が長くなり好ましくない。 The weight of one glass drop is determined by the shape of the tip of the lower nozzle 3b. In order to obtain a glass drop having a stable weight, it is desirable that the inner diameter of the tip of the lower nozzle 3b is φ0.5 mm to φ7 mm and the outer diameter is φ2 mm to φ20 mm. When the nozzle diameter is within this range, 0.2 to 1.5 g of glass droplets are obtained. If the nozzle diameter is too small, the glass droplets obtained are small, and the residence time in the lower mold 10 becomes long, which is not preferable.
 ここでは、ルツボ1、上部ノズル3a、および、下部ノズル3bの加熱にヒータを用いた例を説明したが、別の加熱手段、たとえば、高周波コイルあるいはIRランプ等を用いてもかまわない。特に、高温(1000℃以上)の場合には高周波加熱が有効である。 Here, an example in which a heater is used to heat the crucible 1, the upper nozzle 3a, and the lower nozzle 3b has been described, but another heating means such as a high-frequency coil or an IR lamp may be used. In particular, high-frequency heating is effective at high temperatures (1000 ° C. or higher).
 以上のように厳密に温度制御された条件下で下部ノズル3bの先端部に溶融ガラス滴6aを形成させ、これを自重により下型10に滴下させる。 As described above, the molten glass droplet 6a is formed at the tip of the lower nozzle 3b under the condition in which the temperature is strictly controlled, and this is dropped on the lower mold 10 by its own weight.
 (ガラス成形体の製造方法)
 次に、図2から図8を参照して、上記ガラス滴下装置100を用いたガラス成形体の製造方法について説明する。なお、図2から図8は、本実施の形態におけるガラス成形体の製造方法の、第1から第7製造工程を示す模式図である。より具体的には、図2から図7は、ガラスゴブの製造方法を示し、図8は、そのガラスゴブを用いたガラス成形体の製造方法を示す。
(Manufacturing method of glass molding)
Next, with reference to FIGS. 2-8, the manufacturing method of the glass forming body using the said glass dripping apparatus 100 is demonstrated. 2 to 8 are schematic diagrams showing first to seventh manufacturing steps of the glass molded body manufacturing method according to the present embodiment. More specifically, FIGS. 2 to 7 show a glass gob manufacturing method, and FIG. 8 shows a glass molded body manufacturing method using the glass gob.
 図2を参照して、下部ノズル3bの下方位置に下型10を準備する。下型10には、底面10bと、この底面10bを取囲む側壁10sが設けられている。底面10bと下部ノズル3bの先端部分との間の距離(L1)は、50mmから100mm程度である。本実施の形態では、側壁10sを有する下型10を採用しているが、下型10の形状はこれに限定されない。側壁を有さない下型の採用も可能である。 Referring to FIG. 2, a lower mold 10 is prepared at a position below the lower nozzle 3b. The lower mold 10 is provided with a bottom surface 10b and side walls 10s surrounding the bottom surface 10b. The distance (L1) between the bottom surface 10b and the tip of the lower nozzle 3b is about 50 mm to 100 mm. In the present embodiment, the lower mold 10 having the side wall 10s is adopted, but the shape of the lower mold 10 is not limited to this. It is also possible to adopt a lower mold having no side wall.
 図3を参照して、下部ノズル3bの先端部から溶融ガラス滴6aを自重により下型10の底面10bに直接滴下させる。下型10の底面10bに溶融ガラス滴6aを滴下させるのは、優れた鏡面を得るためである。次に、図4を参照して、下部ノズル3bと下型10とを相対的に近接させることにより、下部ノズル3bから次に流出する溶融ガラス6bと下型10に滴下した溶融ガラス滴6aとを接触させる。 Referring to FIG. 3, molten glass droplet 6a is directly dropped onto bottom surface 10b of lower mold 10 by its own weight from the tip of lower nozzle 3b. The reason why the molten glass droplet 6a is dropped on the bottom surface 10b of the lower mold 10 is to obtain an excellent mirror surface. Next, referring to FIG. 4, by bringing the lower nozzle 3 b and the lower mold 10 relatively close to each other, the molten glass 6 b that flows out from the lower nozzle 3 b next and the molten glass droplet 6 a that has dropped onto the lower mold 10 Contact.
 本実施の形態では、下型10を下部ノズル3bに向けて上昇させている。次の溶融ガラス6bが溶融ガラス滴6aに接触するまでの時間は、約0.1秒から約1秒程度である。その後、溶融ガラス滴6aと溶融ガラス6bとを接触させた状態のまま、下部ノズル3bから所定量の溶融ガラスを下型10に供給する。 In the present embodiment, the lower mold 10 is raised toward the lower nozzle 3b. The time until the next molten glass 6b comes into contact with the molten glass droplet 6a is about 0.1 second to about 1 second. Thereafter, a predetermined amount of molten glass is supplied from the lower nozzle 3b to the lower mold 10 while the molten glass droplet 6a and the molten glass 6b are in contact with each other.
 なお、下部ノズル3bと下型10とを相対的に近接させる構成であれば、下部ノズル3bのみを下降させる方法、下型10を上昇させながら下部ノズル3bを下降させる方法のいずれの方法の採用も可能である。 As long as the lower nozzle 3b and the lower die 10 are relatively close to each other, either a method of lowering only the lower nozzle 3b or a method of lowering the lower nozzle 3b while raising the lower die 10 is employed. Is also possible.
 ここで、図5を参照して、溶融ガラス滴6aと溶融ガラス6bとを接触させた状態のまま、下部ノズル3bから所定量の溶融ガラス6bを下型10に供給する場合の、溶融ガラスの供給状態について説明する。下部ノズル3bから供給される溶融ガラス6bは、常に溶融ガラス滴6aに接触した状態のまま下型10に供給される。 Here, referring to FIG. 5, the molten glass in the case where a predetermined amount of molten glass 6b is supplied from the lower nozzle 3b to the lower mold 10 while the molten glass droplet 6a and the molten glass 6b are in contact with each other. The supply state will be described. The molten glass 6b supplied from the lower nozzle 3b is supplied to the lower mold 10 while always in contact with the molten glass droplet 6a.
 これにより、溶融ガラス6bの周りに存在する空気は、溶融ガラス6bの周縁部への拡がりに応じて外側に押し広げられる。その結果、溶融ガラス滴6aと溶融ガラス6bとの間に空気が混入することがなく、エアー溜まりの発生を抑制することが可能となる。 Thereby, the air existing around the molten glass 6b is pushed outward according to the spread to the peripheral edge of the molten glass 6b. As a result, air is not mixed between the molten glass droplet 6a and the molten glass 6b, and it is possible to suppress the occurrence of air accumulation.
 図6(A),(B)は、背景技術における光学素子の製造方法を示している。下方に位置する溶融ガラス滴6aに、溶融ガラス6bを落下させると(図6(A)参照)、溶融ガラス6bが周囲の空気を抱き込み、下型に位置する溶融ガラス滴6aの内部にエアー溜まりa1を発生させることとなる。 6 (A) and 6 (B) show a method for manufacturing an optical element in the background art. When the molten glass 6b is dropped into the molten glass droplet 6a positioned below (see FIG. 6A), the molten glass 6b embeds the surrounding air, and air is introduced into the molten glass droplet 6a positioned in the lower mold. The pool a1 is generated.
 次に、図7を参照して、溶融ガラス滴6aと溶融ガラス6bとを接触させた状態のまま、下部ノズル3bから連続的に溶融ガラス6bを下型10に供給する。下部ノズル3bからは、溶融ガラス6bを連続的に供給することができるため、任意量の溶融ガラス6bを下型10に供給することができる。その結果、下型10に任意量のガラスゴブ6cを形成することができる。 Next, referring to FIG. 7, the molten glass 6b is continuously supplied from the lower nozzle 3b to the lower mold 10 while the molten glass droplet 6a and the molten glass 6b are in contact with each other. Since the molten glass 6 b can be continuously supplied from the lower nozzle 3 b, an arbitrary amount of the molten glass 6 b can be supplied to the lower mold 10. As a result, an arbitrary amount of glass gob 6 c can be formed on the lower mold 10.
 次に、図8を参照して、溶融ガラス6bの下型10への供給を停止した後、上型20を用いて、上型20と下型10とにより協働して、ガラスゴブ6cに対して加圧成形を行ない、ガラス成形体を成形する。 Next, referring to FIG. 8, after the supply to the lower mold 10 of the molten glass 6 b is stopped, the upper mold 20 is used to cooperate with the upper mold 20 and the lower mold 10, and the glass gob 6 c is applied to the glass gob 6 c. Then, pressure molding is performed to form a glass molded body.
 なお、溶融ガラス6bの下型10への供給を停止させる場合だけでなく、下部ノズル3bから溶融ガラス6bを供給した状態のまま下型10を引き下げることで、下部ノズル3bの先端の溶融ガラスと下型10に滞留している溶融ガラスとを分離することも可能である。下型10に滞留した溶融ガラスが冷却することでガラスゴブ6cとなり、ガラスゴブ6cが固まる前に、上型20と下型10とにより協働して、ガラスゴブ6cに対して加圧成形を行なうことで、ガラス成形体を成形する。 Not only when the supply to the lower mold 10 of the molten glass 6b is stopped, but by lowering the lower mold 10 while the molten glass 6b is supplied from the lower nozzle 3b, the molten glass at the tip of the lower nozzle 3b It is also possible to separate the molten glass staying in the lower mold 10. The molten glass staying in the lower mold 10 is cooled to become a glass gob 6c. Before the glass gob 6c is solidified, the upper mold 20 and the lower mold 10 cooperate to perform pressure molding on the glass gob 6c. Then, a glass molded body is formed.
 本実施の形態における下型10は、底面10bと、この底面10bを取囲む側壁10sとを含むことから、ガラスゴブ6cに対する加圧成形により、上下面および側面に対して鏡面性を有するガラス成形体の成形が可能となる。 Since lower mold 10 in the present embodiment includes a bottom surface 10b and a side wall 10s surrounding this bottom surface 10b, a glass molded body having specularity with respect to the upper and lower surfaces and the side surfaces by pressure molding on glass gob 6c. Can be formed.
 (作用・効果)
 以上、本発明に基づいた実施の形態おけるガラスゴブの製造方法およびガラス成形体の製造方法によれば、下部ノズル3bから供給される溶融ガラス6bは、常に溶融ガラス滴6aに接触した状態のまま下型10に供給される。
(Action / Effect)
As described above, according to the glass gob manufacturing method and the glass molded body manufacturing method according to the embodiment of the present invention, the molten glass 6b supplied from the lower nozzle 3b is always kept in contact with the molten glass droplet 6a. Supplied to the mold 10.
 これにより、溶融ガラス6bの周りに存在する空気は、溶融ガラス6bの周縁部への拡がりに応じて外側に押し広げられる。その結果、溶融ガラス滴6aと溶融ガラス6bとの間に空気が混入することがなく、ガラスゴブ6cへのエアー溜まりの発生を抑制することが可能となる。 Thereby, the air existing around the molten glass 6b is pushed outward according to the spread to the peripheral edge of the molten glass 6b. As a result, air is not mixed between the molten glass droplet 6a and the molten glass 6b, and it is possible to suppress the occurrence of air accumulation in the glass gob 6c.
 また、下部ノズル3bからは、溶融ガラス6bを連続的に供給しているため、任意量の溶融ガラス6bを下型10に供給することができる。その結果、下型10に任意量のガラスゴブ6cを形成することができることから、任意の総重量のガラス成形体を容易に得ることが可能となる。 Moreover, since the molten glass 6b is continuously supplied from the lower nozzle 3b, an arbitrary amount of the molten glass 6b can be supplied to the lower mold 10. As a result, since an arbitrary amount of the glass gob 6c can be formed on the lower mold 10, a glass molded body having an arbitrary total weight can be easily obtained.
 さらに、底面10bと、この底面10bを取囲む側壁10sとを有する下型10を用いることで、上下面および側面に対して鏡面性を有するガラス成形体の成形が可能となる。 Furthermore, by using the lower mold 10 having the bottom surface 10b and the side wall 10s surrounding the bottom surface 10b, it is possible to mold a glass molded body having specularity with respect to the top and bottom surfaces and the side surface.
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 As mentioned above, although embodiment of this invention was described, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ルツボ、2 溶融ガラス、3a 上部ノズル、3b 下部ノズル、4 攪拌棒、5a~5d 加熱ヒータ、6a 溶融ガラス滴、6b 溶融ガラス、6c ガラスゴブ、7 発光部、8 受光部、9 制御部、10 下型、10b 底面、10s 側壁、100 ガラス滴下装置、a1 エアー溜まり。 1 crucible, 2 molten glass, 3a upper nozzle, 3b lower nozzle, 4 stir bar, 5a-5d heater, 6a molten glass droplet, 6b molten glass, 6c glass gob, 7 light emitting part, 8 light receiving part, 9 control part, 10 Lower mold, 10b bottom, 10s side wall, 100 glass dropping device, a1 air reservoir.

Claims (4)

  1.  ノズルから溶融ガラス滴を自重により下型に直接滴下させる工程と、
     前記ノズルと前記下型とを相対的に近接させることにより、前記ノズルから次に流出する溶融ガラスと前記下型に滴下した前記溶融ガラス滴とを接触させる工程と、
     前記溶融ガラス滴と前記溶融ガラスとを接触させた状態のまま、前記ノズルから所定量の前記溶融ガラスを前記下型に供給する工程と、
    を備える、ガラスゴブの製造方法。
    A step of dropping a molten glass droplet directly from the nozzle onto the lower mold by its own weight;
    Bringing the molten glass that flows out next from the nozzle and the molten glass droplet dropped onto the lower mold by bringing the nozzle and the lower mold relatively close to each other; and
    Supplying the predetermined amount of the molten glass from the nozzle to the lower mold while keeping the molten glass droplet and the molten glass in contact with each other;
    A method for producing a glass gob.
  2.  前記下型は底面と、前記底面を取囲む側壁とを含む、請求項1に記載のガラスゴブの製造方法。 The method for producing a glass gob according to claim 1, wherein the lower mold includes a bottom surface and a side wall surrounding the bottom surface.
  3.  前記ノズルは、上部ノズルと下部ノズルとを有し、前記上部ノズルの温度は前記下部ノズルの温度より低い、請求項1に記載のガラスゴブの製造方法。 The method for producing a glass gob according to claim 1, wherein the nozzle has an upper nozzle and a lower nozzle, and the temperature of the upper nozzle is lower than the temperature of the lower nozzle.
  4.  ガラスゴブの製造方法によりガラスゴブを製造し、
     前記ガラスゴブが固化する前に、前記ガラスゴブを前記下型と上型とで加圧成形する、ガラス成形体の製造方法であって、
     前記ガラスゴブの製造方法は、
     ノズルから溶融ガラス滴を自重により下型に直接滴下させる工程と、
     前記ノズルと前記下型とを相対的に近接させることにより、前記ノズルから次に流出する溶融ガラスと前記下型に滴下した前記溶融ガラス滴とを接触させる工程と、
     前記溶融ガラス滴と前記溶融ガラスとを接触させた状態のまま、前記ノズルから所定量の前記溶融ガラスを前記下型に供給する工程と、を備える。
    The glass gob is manufactured by the glass gob manufacturing method,
    Before the glass gob is solidified, the glass gob is pressure-formed with the lower mold and the upper mold, and a method for producing a glass molded body,
    The method for producing the glass gob is as follows:
    A step of dropping a molten glass droplet directly from the nozzle onto the lower mold by its own weight;
    Bringing the molten glass that flows out next from the nozzle and the molten glass droplet dropped onto the lower mold by bringing the nozzle and the lower mold relatively close to each other; and
    Supplying a predetermined amount of the molten glass from the nozzle to the lower mold while the molten glass droplet and the molten glass are in contact with each other.
PCT/JP2011/061763 2010-06-02 2011-05-23 Method for manufacturing glass gob and method for manufacturing glass molding WO2011152239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010127026A JP2013166655A (en) 2010-06-02 2010-06-02 Method for manufacturing glass gob and method for manufacturing glass molding
JP2010-127026 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011152239A1 true WO2011152239A1 (en) 2011-12-08

Family

ID=45066617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061763 WO2011152239A1 (en) 2010-06-02 2011-05-23 Method for manufacturing glass gob and method for manufacturing glass molding

Country Status (2)

Country Link
JP (1) JP2013166655A (en)
WO (1) WO2011152239A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589831A (en) * 1981-07-10 1983-01-20 Toyo Glass Kk Method and apparatus for press forming of glass article having colored pattern
JPS59116128A (en) * 1982-12-20 1984-07-04 Nippon Electric Glass Co Ltd Method for feeding molten glass
JPS62292635A (en) * 1986-06-09 1987-12-19 Minolta Camera Co Ltd Molding method for glass lens
JPH0940429A (en) * 1995-07-28 1997-02-10 Ishizuka Glass Co Ltd Sandwich glass product and its forming method
JP2002173329A (en) * 2000-12-06 2002-06-21 Toyo Glass Co Ltd Method of manufacturing glass product and glass product containing a plurality of color streak patterns or bubble streak patterns
JP2002179428A (en) * 2000-12-08 2002-06-26 Toyo Glass Co Ltd Method for manufacturing patterned glassware article
JP2002220236A (en) * 2001-01-23 2002-08-09 Toyo Glass Co Ltd Glass product having colored pattern and method of producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589831A (en) * 1981-07-10 1983-01-20 Toyo Glass Kk Method and apparatus for press forming of glass article having colored pattern
JPS59116128A (en) * 1982-12-20 1984-07-04 Nippon Electric Glass Co Ltd Method for feeding molten glass
JPS62292635A (en) * 1986-06-09 1987-12-19 Minolta Camera Co Ltd Molding method for glass lens
JPH0940429A (en) * 1995-07-28 1997-02-10 Ishizuka Glass Co Ltd Sandwich glass product and its forming method
JP2002173329A (en) * 2000-12-06 2002-06-21 Toyo Glass Co Ltd Method of manufacturing glass product and glass product containing a plurality of color streak patterns or bubble streak patterns
JP2002179428A (en) * 2000-12-08 2002-06-26 Toyo Glass Co Ltd Method for manufacturing patterned glassware article
JP2002220236A (en) * 2001-01-23 2002-08-09 Toyo Glass Co Ltd Glass product having colored pattern and method of producing the same

Also Published As

Publication number Publication date
JP2013166655A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5382276B1 (en) Method for manufacturing lens barrel-integrated lens
JP3849669B2 (en) Optical element manufacturing method
JP2012106895A (en) Glass optical element and method for manufacturing the same
JP4313753B2 (en) Glass molded body, optical element manufacturing method, molten glass outflow apparatus, and glass molded body manufacturing apparatus
JP5333437B2 (en) Glass gob manufacturing apparatus and method, and glass forming apparatus and method
JP3637178B2 (en) Quartz member molding apparatus and molding method
WO2011152239A1 (en) Method for manufacturing glass gob and method for manufacturing glass molding
US5738701A (en) Glass gob production device and production method
JP2006248873A (en) Method for manufacturing preform for press molding, method for manufacturing optical element and apparatus for flowing molten glass
JP2010083724A (en) Manufacturing method of lens and lens
JP2003292327A (en) Method for producing optical element
JP5263163B2 (en) Method for producing glass molded body
JP4448078B2 (en) Method for producing glass preform, method for producing glass molded body, and method for producing optical element
TW200829522A (en) A group of glass preforms and processes for the production of a group of glass preforms and optical elements
JP4563942B2 (en) Molding method of thermoplastic material
JP2015063436A (en) Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element
WO2009122949A1 (en) Optical element manufacturing apparatus and optical element manufacturing method
JP2008297159A (en) Molten glass dropping nozzle, and method and apparatus for manufacturing shaped glass
JP2003146673A (en) Method of forming lens thick in core thickness
WO2015137457A1 (en) Optical element manufacturing method
JP4957623B2 (en) Method for miniaturizing molten glass droplet, method for producing glass gob, and method for producing glass molded body
JPH06206730A (en) Production of glass gob
JP5555199B2 (en) Nozzle for supplying molten glass and manufacturing method thereof
JP2011057515A (en) Glass gob and method for manufacturing glass molding
JPH07291634A (en) Production of glass gob and molding of glass gob

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP