WO2011151883A1 - Power recovery device of liquid treatment apparatus - Google Patents

Power recovery device of liquid treatment apparatus Download PDF

Info

Publication number
WO2011151883A1
WO2011151883A1 PCT/JP2010/059220 JP2010059220W WO2011151883A1 WO 2011151883 A1 WO2011151883 A1 WO 2011151883A1 JP 2010059220 W JP2010059220 W JP 2010059220W WO 2011151883 A1 WO2011151883 A1 WO 2011151883A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
peripheral surface
central axis
raw water
chambers
Prior art date
Application number
PCT/JP2010/059220
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 良一
公一 松井
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2010/059220 priority Critical patent/WO2011151883A1/en
Priority to AU2010354672A priority patent/AU2010354672B2/en
Priority to CN2010800658995A priority patent/CN102822449A/en
Priority to JP2012518165A priority patent/JP5337301B2/en
Publication of WO2011151883A1 publication Critical patent/WO2011151883A1/en
Priority to US13/687,017 priority patent/US20130094949A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • F05B2220/602Application making use of surplus or waste energy with energy recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings

Definitions

  • Embodiments of the present invention relate to a power recovery apparatus for a liquid processing apparatus.
  • a liquid processing apparatus that processes water containing a plurality of components (hereinafter referred to as raw water) using a reverse osmosis membrane called an RO membrane is known.
  • Raw water is supplied to the reverse osmosis membrane at high pressure, and water is extracted from the raw water in the reverse osmosis membrane. Meanwhile, the ratio of water extracted by the reverse osmosis membrane tends to increase as the pressure value of the raw water supplied to the reverse osmosis membrane increases.
  • the strength of the raw water pressure raising device necessary to increase the pressure value of the raw water must be increased, and the amount of energy required for improving the pressure of the raw water also increases.
  • the configuration of the raw water pressure raising device is also complicated.
  • the raw water after the water is extracted at a certain rate in the reverse osmosis membrane (herein, the high concentration raw water) loses some of its pressure due to the extraction of the water in the reverse osmosis membrane.
  • the raw water maintains most of the high pressure that was loaded on the raw water when it was supplied to the reverse osmosis membrane.
  • the high-pressure energy maintained by the high-concentration raw water is recovered with high efficiency and the pressure of new raw water supplied to the reverse osmosis membrane is increased with a simple configuration, and the high-pressure raw water is supplied to the reverse osmosis membrane at high pressure.
  • a power recovery device for a liquid processing apparatus that can reduce the amount of new external energy required for increasing the pressure of new raw water, and thus can reduce the amount of energy required for operation of the liquid processing apparatus, that is, the power. Is to provide.
  • a power recovery device for a liquid processing apparatus sends raw water, which is water supplied from the outside and contains a plurality of components, to a reverse osmosis membrane via a pressure increase unit, and then water from the raw water in the reverse osmosis membrane. Used in a liquid processing apparatus for extracting a part of the raw water, and the raw water whose pressure has been increased by using the pressure of the remaining raw water after the water is partially extracted in the reverse osmosis membrane is added to the raw water from the pressure increasing unit. Power recovery device that feeds the reverse osmosis membrane.
  • the power recovery apparatus includes: a housing having an internal space; a central shaft having an outer peripheral surface fixed to the internal space of the housing and projecting to the outside of the housing; and a center in the internal space of the housing An inner peripheral surface that is rotatably accommodated around the outer peripheral surface of the shaft and that faces the outer peripheral surface of the central shaft, and an outer peripheral surface that is located radially outward of the central shaft, and so on in the circumferential direction of the central shaft A rotating member including a plurality of passages arranged at intervals and each extending between an inner peripheral surface and an outer peripheral surface.
  • At least one set of two-to-one set chambers facing the outer peripheral surface of the rotating member and partitioned from each other is provided.
  • the central axis is formed on the outer peripheral surface of the central axis and faces at least one pair of chambers in the internal space of the housing via a rotating member, and has at least one pair of two-to-one sets equal to the number of the chambers, and at least one A two-to-one pair of passages extending from the pair of openings in the central axis and opening at the at least one end of the central axis are formed.
  • One pair of chambers arranged symmetrically with respect to the central axis in the pair of chambers in the internal space of the housing is introduced with the raw water introduced from the outside by introducing the raw water supplied from the outside.
  • the rotating member is configured to rotate by pressing against a plurality of passages on the outer peripheral surface of the rotating member exposed in the pair of chambers in a predetermined circumferential direction of the outer peripheral surface.
  • the other pair of chambers arranged symmetrically with respect to the central axis in the pair of chambers are connected to the raw water passage between the pressure raising unit and the reverse osmosis membrane.
  • One pair of openings opposed to the one pair of chambers through the rotating member in the pair of openings on the outer peripheral surface of the central axis is connected to the outside through one pair of passages corresponding to the central axis. It is communicated to.
  • the other pair of openings facing the other pair of chambers through the rotating member in the pair of openings on the outer peripheral surface of the central axis is connected to the other pair of passages corresponding to the central axis via the other pair of passages.
  • the remaining raw water is introduced.
  • FIG. 1 is a diagram schematically showing an entire example of a liquid processing apparatus in which a power recovery apparatus according to the first embodiment of the present invention is used.
  • FIG. 2 is a perspective view schematically showing the external appearance of the power recovery apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a schematic exploded perspective view of the power recovery device of FIG. 2.
  • FIG. 4 is a schematic perspective view from below of the case with the central axis of the power recovery device of FIG.
  • FIG. 5 is a perspective view schematically showing a horizontal cross section of the rotating member of the power recovery apparatus of FIG. 3.
  • FIG. 6 is a schematic perspective view of the central axis of the power recovery apparatus of FIG.
  • FIG. 7 is a schematic perspective view of a lower portion after the central axis of FIG.
  • FIG. 6 is cut along line IV-IV.
  • 8 is an exploded perspective view similar to FIG. 3 for explaining the operation of the power recovery apparatus of FIG.
  • FIG. 9 is a schematic plan view of a combination of the case of FIG. 8, the central shaft, and the rotating member for explaining the operation of the power recovery apparatus of FIG.
  • FIG. 10 is a schematic exploded perspective view of a power recovery apparatus according to the second embodiment of the present invention.
  • FIG. 11 is a perspective view showing a half of the rotating member of the power recovery device of FIG. 10 in a horizontal section.
  • FIG. 12 is a perspective view of the central axis of FIG.
  • FIG. 13 is a schematic perspective view of the lower part after the central axis of FIG. 12 is cut along the line XIII-XIII.
  • FIG. 14 is a schematic perspective view of the lower end portion after further cutting the lower portion of the central axis in FIG. 13 along the line XIV-XIV.
  • An example of a liquid processing apparatus is a seawater desalination apparatus.
  • the raw water that is supplied from the outside and contains a plurality of components is seawater.
  • Seawater SW pumped up from the sea is supplied to the pretreatment unit 10.
  • the pretreatment unit 10 performs pretreatment by adding, for example, a bactericide 10a, a flocculant 10b, a scale inhibitor 10c, a dechlorinating agent 10d, and the like to the seawater SW supplied thereto.
  • the pretreated seawater (pretreated seawater) PSW is guided by a pipe so as to pass through the water pump 12 and the security filter 14.
  • the pretreated seawater PSW after passing through the security filter 14 is branched into two by a branch pipe.
  • One branch pipe is connected to the reverse osmosis membrane unit 18 storing the reverse osmosis membrane 18a through the pressure raising unit 16.
  • the pressure raising unit 16 is provided by a high pressure pump.
  • the pretreated seawater PSW loaded with a predetermined high pressure by the pressure raising unit 16 is sent to the reverse osmosis membrane unit 18 through one branch pipe.
  • a part of the water (fresh water) FW is extracted from the high-pressure pretreated seawater HPSW by the reverse osmosis membrane unit 18 in the reverse osmosis membrane unit 18.
  • Extracted water FW is guided to the water purification tank 20 by piping.
  • a hardness adjusting agent 20 a, a ph adjusting agent 20 b, a disinfecting agent 20 c, and the like are added to the water FW to create the purified water CW.
  • the purified water CW created in the purified water tank 20 is supplied to the water pipe 23 via the purified water supply pump 22.
  • the other branch pipe is connected to the power recovery device 24 according to the first embodiment.
  • the low-pressure pretreatment seawater PSW sent to the power recovery device 24 via the other branch pipe is called a low-pressure feed LPF.
  • Seawater (high-concentration seawater) in which a part of the water FW is extracted in the reverse osmosis membrane unit 18 and the concentration of various components including salt is increased and the pressure is somewhat reduced is led to the power recovery device 24 by piping. ing.
  • High-concentration seawater sent from the reverse osmosis membrane unit 18 to the power recovery device 24 is called high-pressure brine HPB.
  • the power recovery device 24 increases the pressure of the low-pressure feed LPF by increasing the pressure of the high-pressure brine HPB with the energy of the low-pressure feed LPF and then the high-pressure brine HPB having the increased pressure pushes out the low-pressure feed LPF. And discharged as a high-pressure feed HPF. That is, the energy of the high pressure feed HPF is generated by using a part of the energy of the low pressure feed LPF in addition to using most of the energy of the high pressure brine HPB. ing.
  • the high-pressure feed HPF is led from the power recovery device 24 to a pipe between the pressure raising unit 16 and the reverse osmosis membrane unit 18 by a pipe.
  • the high-pressure feed HPF is added to the high-pressure pretreated seawater HPSW from the pressure increasing unit 16 toward the reverse osmosis membrane unit 18 in this pipe, and goes to the reverse osmosis membrane unit 18 together with the high-pressure pretreated seawater HPSW.
  • the low-pressure feed LPF after being used to increase the pressure of the high-pressure brine HPB in the power recovery device 24 further increased the pressure using a part of the energy of the low-pressure feed LPF in the next cycle.
  • the pressure is increased by the high-pressure brine HPB to become a high-pressure feed HPF.
  • the high-pressure brine HPB increases the pressure of the low-pressure feed LPF, then loses the pressure, and is discharged from the power recovery device 24 to the outside as the low-pressure brine LPB.
  • the power recovery device 24 includes a housing 32 having an internal space 30 as shown in FIGS.
  • the housing 32 includes a case 32a having a substantially circular recess that provides the internal space 30, and a lid 32b that liquid-tightly covers an opening on one side of the recess of the case 32a.
  • the lid 32b is detachably fixed to the case 32a by known fixing means (not shown).
  • the power recovery device 24 further includes a central shaft 34 that is fixed to the internal space 30 of the housing 32 and has an outer peripheral surface and at least one end protruding outside the housing 32.
  • the central shaft 34 is elongated, and a part of the outer peripheral surface thereof is liquid-tightly fixed to a through hole 32c formed at the center of the bottom surface of the recess of the case 32a.
  • One end portion of the central shaft 34 located on one side along the longitudinal center line of the central shaft 34 projects from the through hole 32c into the external space below the case 32a.
  • the other end portion of the central axis 34 located on the other side along the longitudinal center line projects from the through hole 32d at the center of the lid 32b into the external space above the lid 32b.
  • the power recovery device 24 also includes a rotating member 36 that is housed in the inner space 30 of the housing 32 so as to be rotatable around the outer peripheral surface of the central shaft 34.
  • the rotating member 36 has an inner peripheral surface 36a facing the outer peripheral surface of the central shaft 34 and an outer peripheral surface 36b positioned radially outward of the central shaft 34, as shown in FIG. It includes a plurality of passages 36c that are arranged at equal intervals in the circumferential direction of the shaft 34 and each extend between the inner peripheral surface 36a and the outer peripheral surface 36b.
  • the internal space 30 of the housing 32 is provided with at least one pair of chambers 38 a and 38 b that are two-to-one and face each other and face the outer peripheral surface 36 b of the rotating member 36. It has been.
  • a pair of chambers 38a and 38b are provided.
  • a pair of chambers 38a disposed symmetrically with respect to the central axis 34 are provided with power as shown in FIG.
  • the low pressure feed LPF supplied to the recovery device 24 is introduced as shown in FIG.
  • One pair of chambers 38a has a predetermined circumferential direction of the outer peripheral surface 36b with respect to the outer peripheral surface 36b of the rotating member 36 exposing the introduced low-pressure feed LPF in the one pair of chambers 38a (in FIG. 3). It is shaped to follow (counterclockwise direction).
  • the other pair of chambers 38b arranged symmetrically with respect to the central axis 34 is supplied with pressure from the power recovery device 24 as shown in FIGS. It is connected to a pipe for high pressure feed HPF that goes to the pipe between the ascending unit 16 and the reverse osmosis membrane unit 18.
  • the central shaft 34 is formed on the outer peripheral surface of the central shaft 34, and at least one pair of chambers 38 a and 38 b in the inner space 30 of the housing 32 is interposed via a rotating member 36. At least one pair of openings 40a and 40b, which are the same number as the chambers 38a and 38b. In this embodiment, two-to-one sets of openings 40 a and 40 b are formed on the outer peripheral surface of the central shaft 34 at equal intervals in the circumferential direction of the outer peripheral surface.
  • a pair of passages 42a extend to the portion, and the pair of passages 42a open to the end face of the other end.
  • the pair of passages 42a can be integrated into the central shaft 34 before reaching the other end as shown in FIGS.
  • the opening of the integrated passage 42a at the end face of the other end of the central shaft 34 is connected to a conduit for the low pressure brine LPB extending from the power recovery device 24 as shown in FIGS. Has been.
  • a pair of passages 42b extends to the end, and the pair of passages 42b opens at the end face of the one end.
  • the pair of passages 42b can be integrated into the central shaft 34 before reaching the one end as shown in FIG.
  • the opening of the integrated passage 42b at the end face of one end of the central shaft 34 is made of high-pressure brine HPB extending from the reverse osmosis membrane unit 18 toward the power recovery device 24 as shown in FIGS. Is connected to the pipeline.
  • the high-pressure brine HPB fed from the reverse osmosis membrane unit 18 shown in FIG. 1 toward the power recovery device 24 is connected to the central shaft 34 of the power recovery device 24 as shown in FIGS.
  • the other pair of openings 40b on the outer peripheral surface of the central shaft 34 is reached via a passage 42b (see FIG. 4) that opens to the end face of the lower end portion, and the other one of the plurality of passages 36c of the rotating member 36 It flows into some of the passages 36c with the inner ends exposed at the pair of openings 40b.
  • the low pressure feed LPF sent from the pretreatment unit 10 shown in FIG. 1 to the power recovery device 24 via the water pump 12 and the safety filter 14 is shown in FIGS.
  • the air flows into the pair of chambers 38 a of the case 32 a of the housing 32 of the power recovery device 24.
  • the low-pressure feed LPF that has flowed into the pair of chambers 38a has a predetermined circumference on the outer circumferential surface of the rotating member 36 with respect to the portion of the outer circumferential surface of the rotating member 36 exposed in the pair of chambers 38a. Pressed along the direction.
  • the low-pressure feed LPF in one pair of chambers 38a has the side surfaces of several passages 36c that expose the outer ends in one pair of chambers 38a in the plurality of passages 36c of the rotating member 36. It flows into these several passages 36c while pushing. A part of the energy of the low-pressure feed LPF is consumed to rotate the rotating member 36 in the predetermined direction R.
  • the low pressure feed LPF in the passage 36c is located between one pair of chambers 38a and the other pair of chambers 38b, and one pair of openings 40a and the other opening 40b of the central shaft 34.
  • the high-pressure brine HPB flowing into the passage 36c from the other opening 40b are pushed into a pair of chambers 38b.
  • the pressure energy of the high-pressure brine HPB that has flowed into the passage 36c from the opening 40b is applied to the low-pressure feed LPF in the passage 36c, and the low-pressure feed LPF in the passage 36c becomes the high-pressure feed HPF. Extruded.
  • the high-pressure brine HPB that has flowed into the passage 36c from the other opening 40b gives pressure energy to the low-pressure feed LPF in the passage 36c, and the pressure energy is greatly reduced or eliminated to become the low-pressure brine LPB.
  • the central shaft is driven by the low-pressure feed LPF that is confined to the pair of chambers 38a and the pair of openings 40a of the central shaft 34 and then flows into the passage 36c from the pair of chambers 38a.
  • 34 is discharged to the outside of the power recovery device 24 through one pair of passages 42a corresponding to one pair of openings 40a.
  • the high-pressure feed HPF in the other pair of chambers 38b is led from the power recovery device 24 to the piping between the pressure increasing unit 16 and the reverse osmosis membrane unit 18 by piping as shown in FIG.
  • the high-pressure feed HPF is added to the high-pressure pretreated seawater HPSW from the pressure increasing unit 16 toward the reverse osmosis membrane unit 18 in this pipe, and goes to the reverse osmosis membrane unit 18 together with the high-pressure pretreated seawater HPSW.
  • the amount of fresh water FW extracted in the reverse osmosis membrane unit 18 per unit time is constant, the high pressure that must be sent from the pressure increase unit 16 toward the reverse osmosis membrane unit 18 per unit time.
  • the amount of pretreated seawater HPSW can be reduced. This can reduce the amount of energy required for the operation of the seawater desalination apparatus, which is a kind of liquid processing apparatus using the power recovery device 24, that is, the power.
  • the two-to-one set of chambers 38a and 38b provided in the internal space 30 of the case 32a of the housing 32 are mutually separated with the central shaft 34 interposed therebetween.
  • the same low-pressure feed LPF is introduced into one pair of chambers 38a arranged symmetrically with respect to each other, and at the same time, the same with the other pair of chambers 38b arranged symmetrically with respect to each other across the central axis 34.
  • High pressure brine HPB has been introduced.
  • the low pressure feed LPF in one pair of chambers 38a and the rotating member 36 rotatably accommodated in the case 32a of the housing 32 and the inner space 30 of the case 32a with respect to the outer peripheral surface of the central shaft 34
  • the force applied by the high pressure brine HPB in the other pair of chambers 38 b is canceled in the radial direction of the central shaft 34.
  • the mixture of the low-pressure brine LPB and the high-pressure brine HPB that have entered the gap between the outer peripheral surface of the central shaft 34 and the inner peripheral surface 36 a of the rotating member 36 causes the rotation of the rotating member 36 on the outer peripheral surface of the central shaft 34. Accordingly, it functions as a radial dynamic pressure bearing between the outer peripheral surface of the central shaft 34 and the inner peripheral surface 36 a of the rotating member 36. Further, the area excluding the two-to-one pair of chambers 38a and 38b on the inner peripheral surface facing the outer peripheral surface 36b of the rotating member 36 in the inner space 30 of the case 32a of the housing 32 and the outer peripheral surface 36b of the rotating member 36.
  • an independent radial bearing is not required between the outer peripheral surface of the central shaft 34 and the inner peripheral surface 36a of the rotating member 36, and the configuration of the power recovery device 24 of this embodiment can be simplified and the manufacturing cost can be reduced. I can do it.
  • the low-pressure brine LPB that has entered a gap between the inner surface of the lid 32b of the housing 32 and one side surface of the rotating member 36 in the inner space 30 of the case 32a of the housing 32 that faces the inner surface.
  • the mixture of the high-pressure brine HPB and the mixture of the low-pressure feed LPF and the high-pressure feed HPF is formed between the inner surface of the lid 32b and the one side surface of the rotary member 36 as the rotary member 36 rotates on the outer peripheral surface of the central shaft 34. It functions as a thrust bearing.
  • the low pressure brine that has entered the gap between the lower surface of the internal space 30 of the case 32a of the housing 32 and the other side surface of the rotating member 36 in the internal space 30 of the case 32a of the housing 32 facing the bottom surface A mixture of LPB and high-pressure brine HPB and a mixture of low-pressure feed LPF and high-pressure feed HPF are produced by the rotation of the rotary member 36 on the outer peripheral surface of the central shaft 34 and the other surface of the internal space 30 of the case 32a and the other side of the rotary member 36. Acts as a thrust bearing between the sides.
  • an independent thrust bearing is not required between the inner surface of the lid 32b and the one side surface of the rotating member 36 and between the lower surface of the internal space 30 of the case 32a and the other side surface of the rotating member 36.
  • the configuration of the power recovery device 24 of this embodiment can be simplified and the manufacturing cost can be reduced.
  • the power recovery device 24 ′ includes a housing 43 having an internal space 41 as shown in FIGS. 10 to 14.
  • the housing 43 includes a case 43a having a substantially circular recess that provides the internal space 41, and a lid 43b that liquid-tightly covers the opening on one side of the recess of the case 43a.
  • the lid 43b is detachably fixed to the case 43a by known fixing means (not shown).
  • the power recovery device 24 ′ includes a central shaft 44 that protrudes from the center of the inner space 41 of the housing 43 to the outer space above the lid 43 b through the central through-hole 43 c of the lid 43 b.
  • the central shaft 44 is elongated, and a part of the outer peripheral surface thereof is liquid-tightly fixed to the central through hole 43c of the lid 43b.
  • One end of the central shaft 44 located on one side along the longitudinal center line of the central shaft 44 protrudes from the through hole 43c of the lid 43b to the external space above the lid 32b.
  • the other end of the central shaft 44 located on the other side along the longitudinal center line is located slightly above the center of the bottom surface of the internal space 41 of the housing 43.
  • the power recovery device 24 ′ also includes a rotating member 46 that is rotatably accommodated in the inner space 41 of the housing 43 around the outer peripheral surface of the other end portion of the central shaft 44.
  • a bottomed hole 46 a that receives the other end of the central shaft 44 is formed in the center of the rotating member 46.
  • the inner peripheral surface 46b and the bottom surface of the bottomed hole 46a face the outer peripheral surface and the end surface of the other end of the central shaft 44 received in the bottomed hole 46a so as to be rotatable relative to each other.
  • the rotating members 46 are arranged at equal intervals in the circumferential direction of the bottom hole 46a as shown in FIG. 11 and the outer peripheral surface 46c positioned radially outward of the bottom hole 46a.
  • a plurality of passages 46d extending between the surface 46b and the outer peripheral surface 46c are included.
  • the internal space 41 of the housing 43 is provided with at least one pair of chambers 48a and 48b that are two-to-one and face each other and face the outer peripheral surface 46c of the rotating member 46. It has been.
  • a two-to-one set of chambers 48a, 48b is provided.
  • one pair of chambers 48a disposed symmetrically with respect to the central axis 44 is connected to the power recovery device 24 'in FIG.
  • the low pressure feed LPF being supplied is introduced as shown in FIG.
  • One pair of chambers 48a has a predetermined circumferential direction of the outer peripheral surface 46c (in FIG. 10) with respect to the outer peripheral surface 46c of the rotating member 46 exposing the introduced low-pressure feed LPF in the one pair of chambers 48a. It is shaped to follow (counterclockwise direction).
  • the other pair of chambers 48b arranged symmetrically with respect to the central axis 44 is connected to the power recovery device 24 'as shown in FIGS. It is connected to a pipe for high pressure feed HPF that goes to the pipe between the pressure raising unit 16 and the reverse osmosis membrane unit 18.
  • the center shaft 44 has at least one set of chambers in the inner space 41 of the housing 43 formed on the outer peripheral surface of the other end portion of the center shaft 44 as well shown in FIGS. 10 and 12 to 14.
  • 48a and 48b are opposed to each other with the rotation member 46 therebetween, and at least one pair of openings 50a and 50b of the same number as the chambers 48a and 48b is formed.
  • two-to-one sets of openings 50a and 50b are formed on the outer peripheral surface of the other end portion of the central shaft 44 at equal intervals in the circumferential direction of the outer peripheral surface.
  • the center axis 44 is located above the central axis 44 toward the one end.
  • a pair of passages 52a extends, and the pair of passages 52a are open at the end face of the one end.
  • the pair of passages 52a can be integrated into the central shaft 44 until reaching the one end as shown in FIGS.
  • the opening of the integrated passage 52a at the end face of the one end of the central shaft 44 is a low-pressure brine extending from the power recovery device 24 (24 'in this embodiment) as shown in FIGS. It is connected to the pipeline for LPB.
  • the inside of the central shaft 44 is directed to the one end located above the central shaft 44.
  • a pair of passages 52b extends, and the pair of passages 52b open to the end face of the one end.
  • the pair of passages 52b can be integrated into one in the central shaft 44 before reaching the one end as shown in FIGS.
  • the pair of passages 52b are concentrically integrated with the integrated passage 52a as described above on the end face of the one end portion of the central shaft 44.
  • the opening of the integrated passage 52b at the end face of the one end portion of the central shaft 44 extends from the reverse osmosis membrane unit 18 to the power recovery device 24 (24 ′ in this embodiment) as shown in FIGS. Is connected to the line for the high-pressure brine HPB extending to
  • a through hole 43d is formed in the center of the bottom surface of the internal space 41 of the housing 43 of this embodiment (ie, the bottom surface of the case 42a), and the output shaft 54a of the motor 54 is rotatable and liquid-tight in the through hole 43d. Has been inserted.
  • Such a rotatable and liquid-tight insertion of the output shaft 54a of the motor 54 is, for example, an O-ring or an oil seal between the inner peripheral surface of the through hole 43d and the outer peripheral surface of the output shaft 54a of the motor 54. This is possible by interposing a known annular sealing member.
  • the protruding end of the output shaft 54 a of the motor 54 inserted into the through hole 43 d is concentrically fixed from the outside to the bottom wall of the bottom hole 46 a in the center of the rotating member 46 in the internal space 41 of the housing 43.
  • the high pressure brine HPB sent out from the reverse osmosis membrane unit 18 shown in FIG. 1 toward the power recovery device 24 (24 ′ in this embodiment) is a power recovery device 24 as shown in FIG.
  • the other pair of openings 50b flows into some of the passages 46d in which the inner ends are exposed.
  • the low-pressure feed LPF that has flowed into the pair of chambers 48a has a predetermined circumference on the outer peripheral surface of the rotating member 46 with respect to the portion of the outer peripheral surface of the rotating member 46 exposed in the pair of chambers 48a. Pressed along the direction.
  • the low-pressure feed LPF in one pair of chambers 48a has the side surfaces of several passages 46d exposing the outer ends in one pair of chambers 48a in the plurality of passages 46d of the rotating member 46. It flows into these several passages 46d while pushing. A part of the energy of the low pressure feed LPF is consumed to rotate the rotating member 46 in the predetermined direction R.
  • the low pressure feed LPF in the passage 46d is between one pair of chambers 48a and the other pair of chambers 48b, and one pair of openings 50a and the other opening 50b of the central shaft 44. Between the passage 46d and the other pair of chambers 48b and the other opening 50b of the central shaft 44 by the high-pressure brine HPB flowing into the passage 46d from the other opening 50b. Into a pair of chambers 48b.
  • the high-pressure brine HPB that has flowed into the passage 46d from the other opening 50b gives pressure energy to the low-pressure feed LPF in the passage 46d so that the pressure energy is greatly reduced or eliminated to become the low-pressure brine LPB.
  • 36 further rotation in the passage 46d between the other pair of chambers 48b and one pair of chambers 48a and between the other pair of openings 50b and one pair of openings 50a in the central shaft 44. And then the central shaft by the low-pressure feed LPF that flows from one pair of chambers 58a into the passage 56d when corresponding to one pair of chambers 48a and one pair of openings 50a of the central shaft 44.
  • One pair of openings 50a of 44 is discharged to the outside of the power recovery device 24 (24 ′ in this embodiment) through one pair of corresponding passages 52a.
  • the high pressure feed HPF in the other pair of chambers 48b is connected to the pressure raising unit 16 and the reverse osmosis membrane unit by piping from the power recovery device 24 (24 'in this embodiment) as shown in FIGS. 18 to the pipe between the two.
  • the high-pressure feed HPF is added to the high-pressure pretreated seawater HPSW from the pressure increasing unit 16 toward the reverse osmosis membrane unit 18 in this pipe, and goes to the reverse osmosis membrane unit 18 together with the high-pressure pretreated seawater HPSW.
  • the amount of fresh water FW extracted in the reverse osmosis membrane unit 18 per unit time is constant, the high pressure that must be sent from the pressure increase unit 16 toward the reverse osmosis membrane unit 18 per unit time.
  • the amount of pretreated seawater HPSW can be reduced. This can reduce the amount of energy required for the operation of the seawater desalination apparatus, which is a kind of liquid processing apparatus using the power recovery apparatus 24 (24 ′ in this embodiment), that is, power.
  • the rotation of the rotating member 46 in the inner space 41 of the housing 43 can be controlled using the motor 54.
  • the power recovery device 24 ′ provides the high pressure feed HPF that is led from the power recovery device 24 ′ to the piping between the pressure increasing unit 16 and the reverse osmosis membrane unit 18 by the rotation of the rotating member 46.
  • the amount of energy applied can be controlled independently of the value of the rotational force applied to the rotating member 46 by the low pressure feed LPF supplied to the power recovery device 24 '.
  • the same low-pressure feed LPF is introduced into one pair of chambers 48a arranged symmetrically with respect to each other, and at the same time, the other pair of chambers 48b arranged symmetrically with respect to each other with the central axis 44 interposed therebetween.
  • the same high pressure brine HPB is introduced.
  • the mixture of the low-pressure brine LPB and the high-pressure brine HPB that have entered the gap between the outer peripheral surface of the other end of the central shaft 44 and the inner peripheral surface 46 b of the bottomed hole 46 a of the rotating member 46 is the outer periphery of the central shaft 44. Along with the rotation of the rotating member 46 on the surface, it functions as a radial dynamic pressure bearing between the outer peripheral surface of the other end of the central shaft 44 and the inner peripheral surface 46b of the bottomed hole 46a of the rotating member 46.
  • the low-pressure brine LPB that has entered a gap between the inner surface of the lid 43b of the housing 43 and the one side surface facing the inner surface in the rotating member 46 in the inner space 41 of the case 42a of the housing 43, and
  • the mixture of the high-pressure brine HPB and the mixture of the low-pressure feed LPF and the high-pressure feed HPF are rotated on the outer peripheral surface of the other end of the central shaft 44 and the inner surface of the lid 43b and the one side surface of the rotary member 46 are rotated. It functions as a thrust bearing between.
  • the mixture of the low-pressure brine LPB and the high-pressure brine HPB entering the gap between the end surface of the other end portion of the central shaft 44 and the bottom surface of the bottomed hole 46 a of the rotating member 46 is the outer periphery of the other end portion of the central shaft 44.
  • the rotating member 46 functions as a thrust bearing between the end surface of the other end portion of the central shaft 44 and the bottom surface of the bottomed hole 46 a of the rotating member 46.
  • the low pressure feed that has entered the gap between the lower surface of the inner space 41 of the case 42a of the housing 43 and the other side surface of the rotating member 46 in the inner space 41 of the case 42a of the housing 43 facing the bottom surface.
  • the mixture of the LPF and the high pressure feed HPF is formed between the lower surface of the internal space 41 of the case 42 a and the other side surface of the rotating member 46 as the rotating member 46 rotates on the outer peripheral surface of the other end portion of the central shaft 44. It functions as a thrust bearing.

Abstract

Disclosed is a power recovery device (24) used for a liquid treatment apparatus which feeds raw water composed of a plurality of components to a reverse osmosis membrane via a pressure increase unit, to extract water by the reverse osmosis membrane. The power recovery device (24) adds the high-density raw water from which water has been extracted, to another raw water supplied from the pressure increase unit using the pressure of the high-density raw water, and feeds the mixed raw water to the reverse osmosis membrane. A fixed center shaft (34) and a rotation member (36) which can rotate about the center shaft are contained in an inner space (30) of a housing (32). The rotation member is comprised of a plurality of passages (36c) which are arranged at regular intervals in the circumferential direction and which extend from the inner peripheral surface to the outer peripheral surface of the rotation member. Raw water (LPF) introduced to a section (38a) of the inner space impinges on the outer peripheral surface of the rotation member, to rotate the rotation member. After that, the raw water is discharged to the outside via the inner ends of the passages and a raw water discharge passage (42a) of the center shaft. A centrifugal force generated by the rotation of the rotation member is applied to high-density raw water (HPB) introduced to the inner ends of the passages via a high-density raw water passage of the center shaft, and the high-density raw water is added via the outer ends of the passages and another section (38b) of the inner space, as described above.

Description

液体処理装置の動力回収装置Power recovery device for liquid processing equipment
 本発明の実施形態は、液体処理装置の動力回収装置に関する。 Embodiments of the present invention relate to a power recovery apparatus for a liquid processing apparatus.
 例えばRO膜と呼ばれている逆浸透膜を使用して複数の成分を含む水(ここでは以下、原水という)を処理する液体処理装置が知られている。 For example, a liquid processing apparatus that processes water containing a plurality of components (hereinafter referred to as raw water) using a reverse osmosis membrane called an RO membrane is known.
 原水が高圧で逆浸透膜に供給され、逆浸透膜において原水から水が抽出される。その間に逆浸透膜により抽出される水の割合は、逆浸透膜に供給される原水の圧力の値が高くなれば高くなる傾向がある。しかしながら、原水の圧力の値を高めるには原水の圧力の値を高めるのに必要な原水圧力上昇装置の強度も高くしなければならず、原水の圧力向上に必要なエネルギー量も大きくなる。また通常は、原水圧力上昇装置の構成も複雑化する。 Raw water is supplied to the reverse osmosis membrane at high pressure, and water is extracted from the raw water in the reverse osmosis membrane. Meanwhile, the ratio of water extracted by the reverse osmosis membrane tends to increase as the pressure value of the raw water supplied to the reverse osmosis membrane increases. However, in order to increase the pressure value of the raw water, the strength of the raw water pressure raising device necessary to increase the pressure value of the raw water must be increased, and the amount of energy required for improving the pressure of the raw water also increases. Usually, the configuration of the raw water pressure raising device is also complicated.
 逆浸透膜においてある割合で水が抽出された後の原水(ここでは以下、高濃度原水)は逆浸透膜における水の抽出の為にその圧力の幾分かが失われてしまうが、高濃度原水は逆浸透膜に供給された時に原水に負荷されていた高圧力の大部分を維持している。 The raw water after the water is extracted at a certain rate in the reverse osmosis membrane (herein, the high concentration raw water) loses some of its pressure due to the extraction of the water in the reverse osmosis membrane. The raw water maintains most of the high pressure that was loaded on the raw water when it was supplied to the reverse osmosis membrane.
特開2009-103109号公報JP 2009-103109 A
[発明が解決しようとする課題]
 高濃度原水が維持している高圧力のエネルギーを簡易な構成でありながら高い効率で回収して逆浸透膜に供給される新たな原水の圧力を上昇させ、高圧で逆浸透膜に供給される新たな原水の圧力上昇のために必要な新たな外部エネルギーの量を削減でき、ひいては液体処理装置の運転に必要なエネルギー量、即ち動力、を少なくすることが出来る、液体処理装置の動力回収装置を提供することである。
[Problems to be solved by the invention]
The high-pressure energy maintained by the high-concentration raw water is recovered with high efficiency and the pressure of new raw water supplied to the reverse osmosis membrane is increased with a simple configuration, and the high-pressure raw water is supplied to the reverse osmosis membrane at high pressure. A power recovery device for a liquid processing apparatus that can reduce the amount of new external energy required for increasing the pressure of new raw water, and thus can reduce the amount of energy required for operation of the liquid processing apparatus, that is, the power. Is to provide.
[課題を解決するための手段]
 この発明の一実施形態に従った、液体処理装置の動力回収装置は、外部から供給され複数の成分を含む水である原水を圧力上昇ユニットを介し逆浸透膜に送り逆浸透膜において原水から水の一部を抽出する液体処理装置において使用され、逆浸透膜において水の一部が抽出された後の残りの原水の圧力を利用して圧力上昇させた原水を圧力上昇ユニットからの原水に加えて逆浸透膜に送る動力回収装置である。
[Means for solving problems]
According to one embodiment of the present invention, a power recovery device for a liquid processing apparatus sends raw water, which is water supplied from the outside and contains a plurality of components, to a reverse osmosis membrane via a pressure increase unit, and then water from the raw water in the reverse osmosis membrane. Used in a liquid processing apparatus for extracting a part of the raw water, and the raw water whose pressure has been increased by using the pressure of the remaining raw water after the water is partially extracted in the reverse osmosis membrane is added to the raw water from the pressure increasing unit. Power recovery device that feeds the reverse osmosis membrane.
 この動力回収装置は:内部空間を有するハウジングと;ハウジングの内部空間に固定され外周面とハウジングの外部に突出した少なくとも1つの端部とを有した中心軸と;そして、ハウジングの内部空間に中心軸の外周面の周りに回転自在に収容され、中心軸の外周面に対面した内周面と中心軸の半径方向の外方に位置した外周面とを有し、中心軸の周方向に等間隔に配置され夫々が内周面と外周面との間を延出している複数の通路を含む回転部材と、を備えている。 The power recovery apparatus includes: a housing having an internal space; a central shaft having an outer peripheral surface fixed to the internal space of the housing and projecting to the outside of the housing; and a center in the internal space of the housing An inner peripheral surface that is rotatably accommodated around the outer peripheral surface of the shaft and that faces the outer peripheral surface of the central shaft, and an outer peripheral surface that is located radially outward of the central shaft, and so on in the circumferential direction of the central shaft A rotating member including a plurality of passages arranged at intervals and each extending between an inner peripheral surface and an outer peripheral surface.
 ハウジングの内部空間には、回転部材の外周面に対面し相互に区画された2対1組の少なくとも1組の室が設けられている。 In the internal space of the housing, at least one set of two-to-one set chambers facing the outer peripheral surface of the rotating member and partitioned from each other is provided.
 中心軸には、中心軸の外周面に形成されハウジングの内部空間の少なくとも1組の室に回転部材を介して対向し前記室と同数の2対1組の少なくとも1組の開口と、少なくとも1組の開口から中心軸中を延出し中心軸の前記少なくとも1つの端部に開口した2対1組の少なくとも1組の通路と、が形成されている。 The central axis is formed on the outer peripheral surface of the central axis and faces at least one pair of chambers in the internal space of the housing via a rotating member, and has at least one pair of two-to-one sets equal to the number of the chambers, and at least one A two-to-one pair of passages extending from the pair of openings in the central axis and opening at the at least one end of the central axis are formed.
 ハウジングの内部空間の前記1組の室において中心軸を挟んで相互に対称に配置されている一方の1対の室は、外部から供給される原水が導入され導入された原水を前記一方の1対の室中に露出している回転部材の外周面の複数の通路に対し前記外周面の所定の周方向に押し当てて回転部材を回転させるよう構成されている。 One pair of chambers arranged symmetrically with respect to the central axis in the pair of chambers in the internal space of the housing is introduced with the raw water introduced from the outside by introducing the raw water supplied from the outside. The rotating member is configured to rotate by pressing against a plurality of passages on the outer peripheral surface of the rotating member exposed in the pair of chambers in a predetermined circumferential direction of the outer peripheral surface.
 前記1組の室において中心軸を挟んで相互に対称に配置されている他方の1対の室は、圧力上昇ユニットと逆浸透膜との間の原水の通路に接続されている。 The other pair of chambers arranged symmetrically with respect to the central axis in the pair of chambers are connected to the raw water passage between the pressure raising unit and the reverse osmosis membrane.
 中心軸の外周面の前記1組の開口において回転部材を介し前記一方の1対の室に対向している一方の1対の開口は中心軸の対応する一方の1対の通路を介して外部に連通されている。 One pair of openings opposed to the one pair of chambers through the rotating member in the pair of openings on the outer peripheral surface of the central axis is connected to the outside through one pair of passages corresponding to the central axis. It is communicated to.
 中心軸の外周面の前記1組の開口において回転部材を介し前記他方の1対の室に対向している他方の1対の開口には中心軸の対応する他方の1対の通路を介して前記残りの原水が導入される。 The other pair of openings facing the other pair of chambers through the rotating member in the pair of openings on the outer peripheral surface of the central axis is connected to the other pair of passages corresponding to the central axis via the other pair of passages. The remaining raw water is introduced.
図1は、この発明の第1実施形態に従った動力回収装置が使用される液体処理装置の一例の全体を概略的に示す図である。FIG. 1 is a diagram schematically showing an entire example of a liquid processing apparatus in which a power recovery apparatus according to the first embodiment of the present invention is used. 図2は、この発明の第1実施形態に従った動力回収装置の外観を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing the external appearance of the power recovery apparatus according to the first embodiment of the present invention. 図3は、図2の動力回収装置の概略的な分解斜視図である。FIG. 3 is a schematic exploded perspective view of the power recovery device of FIG. 2. 図4は、図3の動力回収装置の中心軸を伴ったケースの下方からの概略的な斜視図である。FIG. 4 is a schematic perspective view from below of the case with the central axis of the power recovery device of FIG. 図5は、図3の動力回収装置の回転部材の水平断面を概略的に示す斜視図である。FIG. 5 is a perspective view schematically showing a horizontal cross section of the rotating member of the power recovery apparatus of FIG. 3. 図6は、図3の動力回収装置の中心軸の概略的な斜視図である。FIG. 6 is a schematic perspective view of the central axis of the power recovery apparatus of FIG. 図7は、図6の中心軸をIV―IV線に沿って切断した後の下方部分の概略的な斜視図である。FIG. 7 is a schematic perspective view of a lower portion after the central axis of FIG. 6 is cut along line IV-IV. 図8は、図2の動力回収装置の動作を説明する為の図3と同様な分解斜視図である。8 is an exploded perspective view similar to FIG. 3 for explaining the operation of the power recovery apparatus of FIG. 図9は、図2の動力回収装置の動作を説明する為の図8のケースと中心軸と回転部材との組み合わせの概略的な平面図である。FIG. 9 is a schematic plan view of a combination of the case of FIG. 8, the central shaft, and the rotating member for explaining the operation of the power recovery apparatus of FIG. 図10は、この発明の第2実施形態に従った動力回収装置の概略的な分解斜視図である。FIG. 10 is a schematic exploded perspective view of a power recovery apparatus according to the second embodiment of the present invention. 図11は、図10の動力回収装置の回転部材を半分を水平断面にして示す斜視図である。FIG. 11 is a perspective view showing a half of the rotating member of the power recovery device of FIG. 10 in a horizontal section. 図12は、図10の中心軸の斜視図である。FIG. 12 is a perspective view of the central axis of FIG. 図13は、図12の中心軸をXIII-XIII線に沿って切断した後の下方部分の概略的な斜視図である。FIG. 13 is a schematic perspective view of the lower part after the central axis of FIG. 12 is cut along the line XIII-XIII. 図14は、図13の中心軸の下方部分をXIV-XIV線に沿ってさらに切断した後の下方末端部の概略的な斜視図である。FIG. 14 is a schematic perspective view of the lower end portion after further cutting the lower portion of the central axis in FIG. 13 along the line XIV-XIV.
 最初に、図1を参照しながら、この発明の第1実施形態に従った動力回収装置が使用される液体処理装置の一例の全体の概略的な構成を説明する。 First, an overall schematic configuration of an example of a liquid processing apparatus in which the power recovery apparatus according to the first embodiment of the present invention is used will be described with reference to FIG.
 一例の液体処理装置は、海水淡水化装置である。この海水淡水化装置では、外部から供給され複数の成分を含む水である原水は海水である。海からポンプにより汲み上げられた海水SWは前処理ユニット10に供給される。前処理ユニット10は、そこに供給された海水SWに例えば殺菌剤10a,凝集剤10b,スケール抑制剤10c,脱塩素剤10d等を添加し前処理する。前処理された海水(前処理海水)PSWは配管により送水ポンプ12及び保安フィルター14を通過するよう導かれる。保安フィルター14を通過した後の前処理海水PSWは分岐配管により2つに分岐される。 An example of a liquid processing apparatus is a seawater desalination apparatus. In this seawater desalination apparatus, the raw water that is supplied from the outside and contains a plurality of components is seawater. Seawater SW pumped up from the sea is supplied to the pretreatment unit 10. The pretreatment unit 10 performs pretreatment by adding, for example, a bactericide 10a, a flocculant 10b, a scale inhibitor 10c, a dechlorinating agent 10d, and the like to the seawater SW supplied thereto. The pretreated seawater (pretreated seawater) PSW is guided by a pipe so as to pass through the water pump 12 and the security filter 14. The pretreated seawater PSW after passing through the security filter 14 is branched into two by a branch pipe.
 一方の分岐配管は圧力上昇ユニット16を介して逆浸透膜18aを格納した逆浸透膜ユニット18に接続されている。この実施形態では圧力上昇ユニット16は高圧ポンプにより提供されている。圧力上昇ユニット16により所定の高圧力が負荷された前処理海水PSWは一方の分岐配管により逆浸透膜ユニット18に送られる。高圧力の前処理海水HPSWからは逆浸透膜ユニット18において逆浸透膜18aにより水(淡水)FWの一部が抽出される。 One branch pipe is connected to the reverse osmosis membrane unit 18 storing the reverse osmosis membrane 18a through the pressure raising unit 16. In this embodiment, the pressure raising unit 16 is provided by a high pressure pump. The pretreated seawater PSW loaded with a predetermined high pressure by the pressure raising unit 16 is sent to the reverse osmosis membrane unit 18 through one branch pipe. A part of the water (fresh water) FW is extracted from the high-pressure pretreated seawater HPSW by the reverse osmosis membrane unit 18 in the reverse osmosis membrane unit 18.
 抽出された水FWは配管により浄水槽20に導かれる。浄水槽20では、水FWに例えば硬度調整剤20a,ph調整剤20b,消毒剤20c等が添加されることにより浄水CWが作成される。浄水槽20で作成された浄水CWは浄水供給ポンプ22を介し水道管23に供給される。 Extracted water FW is guided to the water purification tank 20 by piping. In the water purification tank 20, for example, a hardness adjusting agent 20 a, a ph adjusting agent 20 b, a disinfecting agent 20 c, and the like are added to the water FW to create the purified water CW. The purified water CW created in the purified water tank 20 is supplied to the water pipe 23 via the purified water supply pump 22.
 他方の分岐配管は前記第1実施形態に従った動力回収装置24に接続されている。他方の分岐管を介し動力回収装置24に送られる低圧の前処理海水PSWは、低圧フィードLPFと呼ばれる。逆浸透膜ユニット18において水FWの一部が抽出され塩を含む種々の成分濃度が濃くなっているとともに圧力が幾分か低下した海水(高濃度海水)は配管により動力回収装置24に導かれている。逆浸透膜ユニット18から動力回収装置24に送られる高濃度海水は高圧ブラインHPBと呼ばれる。 The other branch pipe is connected to the power recovery device 24 according to the first embodiment. The low-pressure pretreatment seawater PSW sent to the power recovery device 24 via the other branch pipe is called a low-pressure feed LPF. Seawater (high-concentration seawater) in which a part of the water FW is extracted in the reverse osmosis membrane unit 18 and the concentration of various components including salt is increased and the pressure is somewhat reduced is led to the power recovery device 24 by piping. ing. High-concentration seawater sent from the reverse osmosis membrane unit 18 to the power recovery device 24 is called high-pressure brine HPB.
 動力回収装置24は、低圧フィードLPFの有しているエネルギーにより高圧ブラインHPBの圧力を高めた後、圧力が高められた高圧ブラインHPBが低圧フィードLPFを押し出すことで,低圧フィードLPFの圧力を高めて高圧フィードHPFとして排出する。即ち、高圧フィードHPFの有しているエネルギーは、高圧ブラインHPBの有しているエネルギーの大部分を利用することに加えて低圧フィードLPFの有しているエネルギーの一部を追加して発生されている。 The power recovery device 24 increases the pressure of the low-pressure feed LPF by increasing the pressure of the high-pressure brine HPB with the energy of the low-pressure feed LPF and then the high-pressure brine HPB having the increased pressure pushes out the low-pressure feed LPF. And discharged as a high-pressure feed HPF. That is, the energy of the high pressure feed HPF is generated by using a part of the energy of the low pressure feed LPF in addition to using most of the energy of the high pressure brine HPB. ing.
 高圧フィードHPFは、配管により動力回収装置24から圧力上昇ユニット16と逆浸透膜ユニット18との間の配管に導かれる。高圧フィードHPFは、この配管において、圧力上昇ユニット16から逆浸透膜ユニット18に向かう高圧力の前処理海水HPSWに追加され、高圧力の前処理海水HPSWとともに逆浸透膜ユニット18に向かう。 The high-pressure feed HPF is led from the power recovery device 24 to a pipe between the pressure raising unit 16 and the reverse osmosis membrane unit 18 by a pipe. The high-pressure feed HPF is added to the high-pressure pretreated seawater HPSW from the pressure increasing unit 16 toward the reverse osmosis membrane unit 18 in this pipe, and goes to the reverse osmosis membrane unit 18 together with the high-pressure pretreated seawater HPSW.
 動力回収装置24において高圧ブラインHPBの圧力を高めるのに利用された後の低圧フィードLPFは、次のサイクルでは、低圧フィードLPFの有しているエネルギーの一部を使って圧力をさらに上昇させた高圧ブラインHPBにより、昇圧されて高圧フィードHPFとなる。このとき、高圧ブラインHPBは低圧フィードLPFの圧力を上昇させた後、その圧力を失い、低圧ブラインLPBとして動力回収装置24から外部に排出される。 The low-pressure feed LPF after being used to increase the pressure of the high-pressure brine HPB in the power recovery device 24 further increased the pressure using a part of the energy of the low-pressure feed LPF in the next cycle. The pressure is increased by the high-pressure brine HPB to become a high-pressure feed HPF. At this time, the high-pressure brine HPB increases the pressure of the low-pressure feed LPF, then loses the pressure, and is discharged from the power recovery device 24 to the outside as the low-pressure brine LPB.
[第1実施形態]
 次に、図2乃至図7を参照しながら、第1実施形態の動力回収装置24の構成について説明する。
[First Embodiment]
Next, the configuration of the power recovery device 24 of the first embodiment will be described with reference to FIGS. 2 to 7.
 動力回収装置24は、図2乃至図4中に図示されている如く、内部空間30を有するハウジング32を備えている。この実施形態においてハウジング32は、内部空間30を提供する略円形状の凹所を有するケース32aと、ケース32aの凹所の一方の側の開口を液密に覆う蓋32bと、を含んでいる。蓋32bはケース32aに対し図示しない公知の固定手段により着脱可能に固定されている。 The power recovery device 24 includes a housing 32 having an internal space 30 as shown in FIGS. In this embodiment, the housing 32 includes a case 32a having a substantially circular recess that provides the internal space 30, and a lid 32b that liquid-tightly covers an opening on one side of the recess of the case 32a. . The lid 32b is detachably fixed to the case 32a by known fixing means (not shown).
 動力回収装置24は、ハウジング32の内部空間30に固定され外周面とハウジング32の外部に突出した少なくとも1つの端部とを有した中心軸34をさらに備えている。詳細には、中心軸34は細長く、その外周面の一部がケース32aの凹所の底面の中央に形成されている貫通孔32cに液密に固定されている。中心軸34において中心軸34の長手方向中心線に沿った一方に位置する一端部は、上記貫通孔32cからケース32aの下方の外部空間中に突出している。中心軸34において上記長手方向中心線に沿った他方に位置する他端部は、蓋32bの中央の貫通孔32dから蓋32bの上方の外部空間に突出している。 The power recovery device 24 further includes a central shaft 34 that is fixed to the internal space 30 of the housing 32 and has an outer peripheral surface and at least one end protruding outside the housing 32. Specifically, the central shaft 34 is elongated, and a part of the outer peripheral surface thereof is liquid-tightly fixed to a through hole 32c formed at the center of the bottom surface of the recess of the case 32a. One end portion of the central shaft 34 located on one side along the longitudinal center line of the central shaft 34 projects from the through hole 32c into the external space below the case 32a. The other end portion of the central axis 34 located on the other side along the longitudinal center line projects from the through hole 32d at the center of the lid 32b into the external space above the lid 32b.
 動力回収装置24はまた、ハウジング32の内部空間30に中心軸34の外周面の周りに回転自在に収容された回転部材36を備えている。回転部材36は、中心軸34の外周面に対面した内周面36aと中心軸34の半径方向の外方に位置した外周面36bとを有し、図5中に良く示されている如く中心軸34の周方向に等間隔に配置され夫々が内周面36aと外周面36bとの間を延出している複数の通路36cを含む。 The power recovery device 24 also includes a rotating member 36 that is housed in the inner space 30 of the housing 32 so as to be rotatable around the outer peripheral surface of the central shaft 34. The rotating member 36 has an inner peripheral surface 36a facing the outer peripheral surface of the central shaft 34 and an outer peripheral surface 36b positioned radially outward of the central shaft 34, as shown in FIG. It includes a plurality of passages 36c that are arranged at equal intervals in the circumferential direction of the shaft 34 and each extend between the inner peripheral surface 36a and the outer peripheral surface 36b.
 図3中に良く示されている如く、ハウジング32の内部空間30には、回転部材36の外周面36bに対面し相互に区画された2対1組の少なくとも1組の室38a,38bが設けられている。この実施形態では、2対1組の室38a,38bが設けられている。 As shown well in FIG. 3, the internal space 30 of the housing 32 is provided with at least one pair of chambers 38 a and 38 b that are two-to-one and face each other and face the outer peripheral surface 36 b of the rotating member 36. It has been. In this embodiment, a pair of chambers 38a and 38b are provided.
 ハウジング32の内部空間30の前記1組の室38a,38bにおいて中心軸34を挟んで相互に対称に配置されている一方の1対の室38aには、図1中に図示されている如く動力回収装置24に供給されている低圧フィードLPFが図2中に示されている如く導入される。一方の1対の室38aは、導入された低圧フィードLPFを一方の1対の室38a中に露出している回転部材36の外周面36bに対し外周面36bの所定の周方向(図3では反時計回り方向)に沿わせるよう形作られている。 In the pair of chambers 38a and 38b of the internal space 30 of the housing 32, a pair of chambers 38a disposed symmetrically with respect to the central axis 34 are provided with power as shown in FIG. The low pressure feed LPF supplied to the recovery device 24 is introduced as shown in FIG. One pair of chambers 38a has a predetermined circumferential direction of the outer peripheral surface 36b with respect to the outer peripheral surface 36b of the rotating member 36 exposing the introduced low-pressure feed LPF in the one pair of chambers 38a (in FIG. 3). It is shaped to follow (counterclockwise direction).
 前記1組の室38a,38bにおいて中心軸34を挟んで相互に対称に配置されている他方の1対の室38bは、図1及び図2中に図示されている如く動力回収装置24から圧力上昇ユニット16と逆浸透膜ユニット18との間の配管に向かう高圧フィードHPFの為の配管に接続されている。 In the pair of chambers 38a and 38b, the other pair of chambers 38b arranged symmetrically with respect to the central axis 34 is supplied with pressure from the power recovery device 24 as shown in FIGS. It is connected to a pipe for high pressure feed HPF that goes to the pipe between the ascending unit 16 and the reverse osmosis membrane unit 18.
 中心軸34には、図6及び図7中に良く示されている如く、中心軸34の外周面に形成されハウジング32の内部空間30の少なくとも1組の室38a,38bに回転部材36を介して対向し前記室38a,38bと同数の2対1組の少なくとも1組の開口40a,40bが形成されている。そしてこの実施形態では、中心軸34の外周面に、この外周面の周方向に等間隔に2対1組の開口40a,40bが形成されている。 6 and 7, the central shaft 34 is formed on the outer peripheral surface of the central shaft 34, and at least one pair of chambers 38 a and 38 b in the inner space 30 of the housing 32 is interposed via a rotating member 36. At least one pair of openings 40a and 40b, which are the same number as the chambers 38a and 38b. In this embodiment, two-to-one sets of openings 40 a and 40 b are formed on the outer peripheral surface of the central shaft 34 at equal intervals in the circumferential direction of the outer peripheral surface.
 ハウジング32の内部空間30の一方の1対の室38aに対応している一方の1対の開口40aからは、中心軸34中を中心軸34の図6中で上方に位置している他端部まで1対の通路42a(図7参照)が延出していて、1対の通路42aは上記他端部の端面に開口している。1対の通路42aは、図2,図3,そして図6中に図示されている如く上記他端部に到達するまでに中心軸34中で1つに統合されていることが出来る。中心軸34の他端部の端面における統合されている通路42aの開口は、図1及び図2中に図示されている如く動力回収装置24から延びている低圧ブラインLPBの為の管路に接続されている。 From one pair of openings 40a corresponding to one pair of chambers 38a of the internal space 30 of the housing 32, the other end located above the center axis 34 in FIG. A pair of passages 42a (see FIG. 7) extend to the portion, and the pair of passages 42a open to the end face of the other end. The pair of passages 42a can be integrated into the central shaft 34 before reaching the other end as shown in FIGS. The opening of the integrated passage 42a at the end face of the other end of the central shaft 34 is connected to a conduit for the low pressure brine LPB extending from the power recovery device 24 as shown in FIGS. Has been.
 ハウジング32の内部空間30の他方の1対の室38bに対応している他方の1対の開口40bからは、中心軸34中を中心軸34の図6中で下方に位置している一端部まで1対の通路42b(図7参照)が延出していて、1対の通路42bは上記一端部の端面に開口している。1対の通路42bは、図4中に図示されている如く上記一端部に到達するまでに中心軸34中で1つに統合されていることが出来る。中心軸34の一端部の端面の統合されている通路42bの開口は、図1及び図2中に図示されている如く逆浸透膜ユニット18から動力回収装置24に向かい延びている高圧ブラインHPBの為の管路に接続されている。 From the other pair of openings 40b corresponding to the other pair of chambers 38b of the internal space 30 of the housing 32, one end portion of the center shaft 34 located below the center shaft 34 in FIG. A pair of passages 42b (see FIG. 7) extends to the end, and the pair of passages 42b opens at the end face of the one end. The pair of passages 42b can be integrated into the central shaft 34 before reaching the one end as shown in FIG. The opening of the integrated passage 42b at the end face of one end of the central shaft 34 is made of high-pressure brine HPB extending from the reverse osmosis membrane unit 18 toward the power recovery device 24 as shown in FIGS. Is connected to the pipeline.
 次に、図2乃至図7を参照しながら前述した動力回収装置24の動作について、図8及び図9を参照しながら説明する。 Next, the operation of the power recovery device 24 described above with reference to FIGS. 2 to 7 will be described with reference to FIGS.
 図1中に示されている逆浸透膜ユニット18から動力回収装置24に向かい送り出されている高圧ブラインHPBは、図8及び図9中に示されている如く動力回収装置24の中心軸34の下方の一端部分の端面に開口している通路42b(図4参照)を介し中心軸34の外周面の他方の1対の開口40bに到達し、回転部材36の複数の通路36cにおいて他方の1対の開口40bに内端を露出させている幾つかの通路中36cに流入する。この間に、図1中に示されている前処理ユニット10から送水ポンプ12及び保安フィルター14を介して動力回収装置24に送られてくる低圧フィードLPFは、図8及び図9中に示されている如く動力回収装置24のハウジング32のケース32aの一方の1対の室38a中に流入される。一方の1対の室38a中に流入された低圧フィードLPFは、回転部材36の外周面において一方の1対の室38a中に露出させている部分に対し回転部材36の外周面の所定の周方向に沿い押し当てられる。この結果として、一方の1対の室38a中の低圧フィードLPFは、回転部材36の複数の通路36cにおいて一方の1対の室38a中に外端を露出させている幾つかの通路36cの側面を押しながらこれら幾つかの通路36c中に流入する。そして、回転部材36を所定の方向Rに回転させるために低圧フィードLPFのエネルギーの一部は消費される。 The high-pressure brine HPB fed from the reverse osmosis membrane unit 18 shown in FIG. 1 toward the power recovery device 24 is connected to the central shaft 34 of the power recovery device 24 as shown in FIGS. The other pair of openings 40b on the outer peripheral surface of the central shaft 34 is reached via a passage 42b (see FIG. 4) that opens to the end face of the lower end portion, and the other one of the plurality of passages 36c of the rotating member 36 It flows into some of the passages 36c with the inner ends exposed at the pair of openings 40b. During this time, the low pressure feed LPF sent from the pretreatment unit 10 shown in FIG. 1 to the power recovery device 24 via the water pump 12 and the safety filter 14 is shown in FIGS. As shown in the figure, the air flows into the pair of chambers 38 a of the case 32 a of the housing 32 of the power recovery device 24. The low-pressure feed LPF that has flowed into the pair of chambers 38a has a predetermined circumference on the outer circumferential surface of the rotating member 36 with respect to the portion of the outer circumferential surface of the rotating member 36 exposed in the pair of chambers 38a. Pressed along the direction. As a result, the low-pressure feed LPF in one pair of chambers 38a has the side surfaces of several passages 36c that expose the outer ends in one pair of chambers 38a in the plurality of passages 36c of the rotating member 36. It flows into these several passages 36c while pushing. A part of the energy of the low-pressure feed LPF is consumed to rotate the rotating member 36 in the predetermined direction R.
 通路36c中の低圧フィードLPFは回転部材36の回転に伴い一方の1対の室38aと他方の1対の室38bとの間及び中心軸34の一方の一対の開口40aと他方の開口40bとの間で通路36c中に閉じ込められ、他方の1対の室38b及び中心軸34の他方の開口40bに対応した時に他方の開口40bから通路中36c中に流入した高圧ブラインHPBにより通路36cから他方の1対の室38b中に押し出される。この間に、開口40bから通路中36c中に流入した高圧ブラインHPBの圧力エネルギーが通路36c中の低圧フィードLPFに付与され通路36c中の低圧フィードLPFは高圧フィードHPFとなり他方の1対の室38b中に押し出される。 As the rotary member 36 rotates, the low pressure feed LPF in the passage 36c is located between one pair of chambers 38a and the other pair of chambers 38b, and one pair of openings 40a and the other opening 40b of the central shaft 34. Between the passage 36c and the other pair of chambers 38b and the other opening 40b of the central shaft 34 by the high-pressure brine HPB flowing into the passage 36c from the other opening 40b. Are pushed into a pair of chambers 38b. During this time, the pressure energy of the high-pressure brine HPB that has flowed into the passage 36c from the opening 40b is applied to the low-pressure feed LPF in the passage 36c, and the low-pressure feed LPF in the passage 36c becomes the high-pressure feed HPF. Extruded.
 他方の開口40bから通路中36c中に流入した高圧ブラインHPBは、通路36c中の低圧フィードLPFに圧力エネルギーを付与して圧力エネルギーが大きく低下又は無くされて低圧ブラインLPBになり、その後、回転部材36のさらなる回転により他方の1対の室38bと一方の1対の室38aとの間及び中心軸34の他方の1対の開口40bと一方の1対の開口40aとの間で通路36c中に閉じ込められ、次に一方の1対の室38a及び中心軸34の一方の1対の開口40aに対応した時に一方の1対の室38aから通路中36c中に流入した低圧フィードLPFにより中心軸34の一方の1対の開口40aから対応している一方の1対の通路42aを介し動力回収装置24の外部に排出される。 The high-pressure brine HPB that has flowed into the passage 36c from the other opening 40b gives pressure energy to the low-pressure feed LPF in the passage 36c, and the pressure energy is greatly reduced or eliminated to become the low-pressure brine LPB. Further rotation of 36 in the passage 36c between the other pair of chambers 38b and one pair of chambers 38a and between the other pair of openings 40b and one pair of openings 40a of the central shaft 34. The central shaft is driven by the low-pressure feed LPF that is confined to the pair of chambers 38a and the pair of openings 40a of the central shaft 34 and then flows into the passage 36c from the pair of chambers 38a. 34 is discharged to the outside of the power recovery device 24 through one pair of passages 42a corresponding to one pair of openings 40a.
 他方の1対の室38b中の高圧フィードHPFは、図1中に示されている如く動力回収装置24から配管により圧力上昇ユニット16と逆浸透膜ユニット18との間の配管に導かれる。高圧フィードHPFは、この配管において、圧力上昇ユニット16から逆浸透膜ユニット18に向かう高圧力の前処理海水HPSWに追加され、高圧力の前処理海水HPSWとともに逆浸透膜ユニット18に向かう。 The high-pressure feed HPF in the other pair of chambers 38b is led from the power recovery device 24 to the piping between the pressure increasing unit 16 and the reverse osmosis membrane unit 18 by piping as shown in FIG. The high-pressure feed HPF is added to the high-pressure pretreated seawater HPSW from the pressure increasing unit 16 toward the reverse osmosis membrane unit 18 in this pipe, and goes to the reverse osmosis membrane unit 18 together with the high-pressure pretreated seawater HPSW.
 この結果として、逆浸透膜ユニット18において抽出する淡水FWの単位時間当たりの量が一定であるならば、圧力上昇ユニット16から逆浸透膜ユニット18に向かい単位時間当たりに送り出さなければならない高圧力の前処理海水HPSWの量を減らすことができる。このことは、動力回収装置24を使用した液体処理装置の一種である海水淡水化装置の運転に必要なエネルギー量、即ち動力、を少なくすることが出来る。 As a result, if the amount of fresh water FW extracted in the reverse osmosis membrane unit 18 per unit time is constant, the high pressure that must be sent from the pressure increase unit 16 toward the reverse osmosis membrane unit 18 per unit time. The amount of pretreated seawater HPSW can be reduced. This can reduce the amount of energy required for the operation of the seawater desalination apparatus, which is a kind of liquid processing apparatus using the power recovery device 24, that is, the power.
 また、この実施形態の動力回収装置24では、ハウジング32のケース32aの内部空間30中に相互に区画されて設けられている2対1組の室38a,38bは、中心軸34を挟んで相互に対称に配置されている一方の1対の室38aには同じ低圧フィードLPFが導入され、また同時に中心軸34を挟んで相互に対称に配置されている他方の1対の室38bには同じ高圧ブラインHPBが導入されている。従って、ハウジング32のケース32aやケース32aの内部空間30中に中心軸34の外周面に対し回転自在に収容されている回転部材36に対し、一方の1対の室38a中の低圧フィードLPF及び他方の1対の室38b中の高圧ブラインHPBにより負荷される力は中心軸34の半径方向において相殺される。 Further, in the power recovery device 24 of this embodiment, the two-to-one set of chambers 38a and 38b provided in the internal space 30 of the case 32a of the housing 32 are mutually separated with the central shaft 34 interposed therebetween. The same low-pressure feed LPF is introduced into one pair of chambers 38a arranged symmetrically with respect to each other, and at the same time, the same with the other pair of chambers 38b arranged symmetrically with respect to each other across the central axis 34. High pressure brine HPB has been introduced. Accordingly, the low pressure feed LPF in one pair of chambers 38a and the rotating member 36 rotatably accommodated in the case 32a of the housing 32 and the inner space 30 of the case 32a with respect to the outer peripheral surface of the central shaft 34 The force applied by the high pressure brine HPB in the other pair of chambers 38 b is canceled in the radial direction of the central shaft 34.
 さらに、中心軸34の外周面と回転部材36の内周面36aとの間の隙間に入り込んだ低圧ブラインLPB及び高圧ブラインHPBの混合物が、中心軸34の外周面上における回転部材36の回転に伴い中心軸34の外周面と回転部材36の内周面36aとの間のラジアル動圧軸受として機能する。また、回転部材36の外周面36bとハウジング32のケース32aの内部空間30における回転部材36の外周面36bと対面している内周面上で2対1組の室38a,38bを除いた領域との間の隙間に入り込んだ低圧フィードLPF及び高圧フィードHPFの混合物が、中心軸34の外周面上における回転部材36の回転に伴い回転部材36の外周面36bとハウジング32のケース32aの内部空間30の内周面の上記領域との間のラジアル動圧軸受として機能する。 Further, the mixture of the low-pressure brine LPB and the high-pressure brine HPB that have entered the gap between the outer peripheral surface of the central shaft 34 and the inner peripheral surface 36 a of the rotating member 36 causes the rotation of the rotating member 36 on the outer peripheral surface of the central shaft 34. Accordingly, it functions as a radial dynamic pressure bearing between the outer peripheral surface of the central shaft 34 and the inner peripheral surface 36 a of the rotating member 36. Further, the area excluding the two-to-one pair of chambers 38a and 38b on the inner peripheral surface facing the outer peripheral surface 36b of the rotating member 36 in the inner space 30 of the case 32a of the housing 32 and the outer peripheral surface 36b of the rotating member 36. The mixture of the low-pressure feed LPF and the high-pressure feed HPF entering the gap between the outer peripheral surface of the central shaft 34 and the inner space of the outer peripheral surface 36b of the rotating member 36 and the case 32a of the housing 32 as the rotating member 36 rotates on the outer peripheral surface of the central shaft 34. It functions as a radial dynamic pressure bearing between the above-described regions on the inner peripheral surface of 30.
 従って、中心軸34の外周面と回転部材36の内周面36aとの間に独立したラジアル軸受を必要とせず、この実施形態の動力回収装置24の構成を簡易にし製造コストを低くすることが出来る。 Therefore, an independent radial bearing is not required between the outer peripheral surface of the central shaft 34 and the inner peripheral surface 36a of the rotating member 36, and the configuration of the power recovery device 24 of this embodiment can be simplified and the manufacturing cost can be reduced. I can do it.
 またさらに、ハウジング32の蓋32bの内表面とハウジング32のケース32aの内部空間30中の回転部材36において上記内表面と対面している一方の側面との間の隙間に入り込んだ低圧ブラインLPB及び高圧ブラインHPBの混合物及び低圧フィードLPF及び高圧フィードHPFの混合物が、中心軸34の外周面上における回転部材36の回転に伴い蓋32bの内表面と回転部材36の上記一方の側面との間のスラスト軸受として機能する。同時に、ハウジング32のケース32aの内部空間30の低面とハウジング32のケース32aの内部空間30中の回転部材36において上記底面と対面している他方の側面との間の隙間に入り込んだ低圧ブラインLPB及び高圧ブラインHPBの混合物及び低圧フィードLPF及び高圧フィードHPFの混合物が、中心軸34の外周面上における回転部材36の回転に伴いケース32aの内部空間30の低面と回転部材36の上記他方の側面との間のスラスト軸受として機能する。 Furthermore, the low-pressure brine LPB that has entered a gap between the inner surface of the lid 32b of the housing 32 and one side surface of the rotating member 36 in the inner space 30 of the case 32a of the housing 32 that faces the inner surface. The mixture of the high-pressure brine HPB and the mixture of the low-pressure feed LPF and the high-pressure feed HPF is formed between the inner surface of the lid 32b and the one side surface of the rotary member 36 as the rotary member 36 rotates on the outer peripheral surface of the central shaft 34. It functions as a thrust bearing. At the same time, the low pressure brine that has entered the gap between the lower surface of the internal space 30 of the case 32a of the housing 32 and the other side surface of the rotating member 36 in the internal space 30 of the case 32a of the housing 32 facing the bottom surface. A mixture of LPB and high-pressure brine HPB and a mixture of low-pressure feed LPF and high-pressure feed HPF are produced by the rotation of the rotary member 36 on the outer peripheral surface of the central shaft 34 and the other surface of the internal space 30 of the case 32a and the other side of the rotary member 36. Acts as a thrust bearing between the sides.
 従って、蓋32bの内表面と回転部材36の上記一方の側面との間及びケース32aの内部空間30の低面と回転部材36の上記他方の側面との間に独立したスラスト軸受を必要とせず、この実施形態の動力回収装置24の構成を簡易にし、製造コストを低くすることが出来る。 Therefore, an independent thrust bearing is not required between the inner surface of the lid 32b and the one side surface of the rotating member 36 and between the lower surface of the internal space 30 of the case 32a and the other side surface of the rotating member 36. The configuration of the power recovery device 24 of this embodiment can be simplified and the manufacturing cost can be reduced.
[第2実施形態]
 次に、図10乃至図14を参照しながら、図2乃至図9を参照しながら前述した第1実施形態の動力回収装置24に代わり、図1を参照しながら前述した一例の液体処理装置において使用可能なこの発明の第2実施形態に従った動力回収装置24´の構成について説明する。
[Second Embodiment]
Next, instead of the power recovery device 24 of the first embodiment described above with reference to FIGS. 2 to 9 with reference to FIGS. 10 to 14, in the liquid processing apparatus of the example described with reference to FIG. A configuration of a power recovery device 24 'according to the second embodiment of the present invention that can be used will be described.
 動力回収装置24´は、図10乃至図14中に図示されている如く、内部空間41を有するハウジング43を備えている。この実施形態においてハウジング43は、内部空間41を提供する略円形状の凹所を有するケース43aと、ケース43aの凹所の一方の側の開口を液密に覆う蓋43bと、を含んでいる。蓋43bはケース43aに対し図示しない公知の固定手段により着脱可能に固定されている。 The power recovery device 24 ′ includes a housing 43 having an internal space 41 as shown in FIGS. 10 to 14. In this embodiment, the housing 43 includes a case 43a having a substantially circular recess that provides the internal space 41, and a lid 43b that liquid-tightly covers the opening on one side of the recess of the case 43a. . The lid 43b is detachably fixed to the case 43a by known fixing means (not shown).
 動力回収装置24´は、ハウジング43の内部空間41の中央から蓋43bの中央の貫通孔43cを介し蓋43bの上方の外部空間に突出している中心軸44を備えている。詳細には、中心軸44は細長く、その外周面の一部が蓋43bの中央の貫通孔43cに液密に固定されている。中心軸44において中心軸44の長手方向中心線に沿った一方に位置する一端部は、蓋43bの貫通孔43cから蓋32bの上方の外部空間に突出している。中心軸44において上記長手方向中心線に沿った他方に位置する他端部は、ハウジング43の内部空間41の底面の中央から少し離れた上方に位置している。 The power recovery device 24 ′ includes a central shaft 44 that protrudes from the center of the inner space 41 of the housing 43 to the outer space above the lid 43 b through the central through-hole 43 c of the lid 43 b. Specifically, the central shaft 44 is elongated, and a part of the outer peripheral surface thereof is liquid-tightly fixed to the central through hole 43c of the lid 43b. One end of the central shaft 44 located on one side along the longitudinal center line of the central shaft 44 protrudes from the through hole 43c of the lid 43b to the external space above the lid 32b. The other end of the central shaft 44 located on the other side along the longitudinal center line is located slightly above the center of the bottom surface of the internal space 41 of the housing 43.
 動力回収装置24´はまた、ハウジング43の内部空間41に中心軸44の上記他端部の外周面の周りに回転自在に収容された回転部材46を備えている。詳細には、回転部材46の中央には、中心軸44の上記他端部を受け入れる底付き孔46aが形成されている。底付き孔46aの内周面46b及び底面は、底付き孔46aに受け入れられた中心軸44の上記他端部の外周面及び端面に対し相対的に回転自在に対面している。回転部材46は、底付き孔46aの半径方向の外方に位置した外周面46cと、図11中に良く示されている如く底付き孔46aの周方向に等間隔に配置され夫々が内周面46bと外周面46cとの間を延出している複数の通路46dを含む。 The power recovery device 24 ′ also includes a rotating member 46 that is rotatably accommodated in the inner space 41 of the housing 43 around the outer peripheral surface of the other end portion of the central shaft 44. Specifically, a bottomed hole 46 a that receives the other end of the central shaft 44 is formed in the center of the rotating member 46. The inner peripheral surface 46b and the bottom surface of the bottomed hole 46a face the outer peripheral surface and the end surface of the other end of the central shaft 44 received in the bottomed hole 46a so as to be rotatable relative to each other. The rotating members 46 are arranged at equal intervals in the circumferential direction of the bottom hole 46a as shown in FIG. 11 and the outer peripheral surface 46c positioned radially outward of the bottom hole 46a. A plurality of passages 46d extending between the surface 46b and the outer peripheral surface 46c are included.
 図10中に良く示されている如く、ハウジング43の内部空間41には、回転部材46の外周面46cに対面し相互に区画された2対1組の少なくとも1組の室48a,48bが設けられている。この実施形態では、2対1組の室48a,48bが設けられている。 As is well shown in FIG. 10, the internal space 41 of the housing 43 is provided with at least one pair of chambers 48a and 48b that are two-to-one and face each other and face the outer peripheral surface 46c of the rotating member 46. It has been. In this embodiment, a two-to-one set of chambers 48a, 48b is provided.
 ハウジング43の内部空間41の前記1組の室48a,48bにおいて中心軸44を挟んで相互に対称に配置されている一方の1対の室48aには、図1中において動力回収装置24´に供給されている低圧フィードLPFが図10中に図示されている如く導入される。一方の1対の室48aは、導入された低圧フィードLPFを一方の1対の室48a中に露出している回転部材46の外周面46cに対し外周面46cの所定の周方向(図10では反時計回り方向)に沿わせるよう形作られている。 In the pair of chambers 48a and 48b of the internal space 41 of the housing 43, one pair of chambers 48a disposed symmetrically with respect to the central axis 44 is connected to the power recovery device 24 'in FIG. The low pressure feed LPF being supplied is introduced as shown in FIG. One pair of chambers 48a has a predetermined circumferential direction of the outer peripheral surface 46c (in FIG. 10) with respect to the outer peripheral surface 46c of the rotating member 46 exposing the introduced low-pressure feed LPF in the one pair of chambers 48a. It is shaped to follow (counterclockwise direction).
 前記1組の室48a,48bにおいて中心軸44を挟んで相互に対称に配置されている他方の1対の室48bは、図1及び図10中に図示されている如く動力回収装置24´から圧力上昇ユニット16と逆浸透膜ユニット18との間の配管に向かう高圧フィードHPFの為の配管に接続されている。 In the pair of chambers 48a and 48b, the other pair of chambers 48b arranged symmetrically with respect to the central axis 44 is connected to the power recovery device 24 'as shown in FIGS. It is connected to a pipe for high pressure feed HPF that goes to the pipe between the pressure raising unit 16 and the reverse osmosis membrane unit 18.
 中心軸44には、図10,及び図12乃至図14中に良く示されている如く、中心軸44の前記他端部の外周面に形成されハウジング43の内部空間41の少なくとも1組の室48a,48bに回転部材46を介して対向し前記室48a,48bと同数の2対1組の少なくとも1組の開口50a,50bが形成されている。そしてこの実施形態では、中心軸44の前記他端部の外周面に、この外周面の周方向に等間隔に2対1組の開口50a,50bが形成されている。 The center shaft 44 has at least one set of chambers in the inner space 41 of the housing 43 formed on the outer peripheral surface of the other end portion of the center shaft 44 as well shown in FIGS. 10 and 12 to 14. 48a and 48b are opposed to each other with the rotation member 46 therebetween, and at least one pair of openings 50a and 50b of the same number as the chambers 48a and 48b is formed. In this embodiment, two-to-one sets of openings 50a and 50b are formed on the outer peripheral surface of the other end portion of the central shaft 44 at equal intervals in the circumferential direction of the outer peripheral surface.
 ハウジング43の内部空間41の一方の1対の室48aに対応している一方の1対の開口50aからは、中心軸44中を中心軸44の上方に位置している上記一端部に向かい1対の通路52a(図14参照)が延出していて、1対の通路52aは上記一端部の端面に開口している。1対の通路52aは、図10,図12及び図13中に図示されている如く上記一端部に到達するまでに中心軸44中で1つに統合されていることが出来る。中心軸44の上記一端部の端面における統合されている通路52aの開口は、図1及び図12中に図示されている如く動力回収装置24(この実施形態では24´)から延びている低圧ブラインLPBの為の管路に接続されている。 From one pair of openings 50a corresponding to one pair of chambers 48a in the internal space 41 of the housing 43, the center axis 44 is located above the central axis 44 toward the one end. A pair of passages 52a (see FIG. 14) extends, and the pair of passages 52a are open at the end face of the one end. The pair of passages 52a can be integrated into the central shaft 44 until reaching the one end as shown in FIGS. The opening of the integrated passage 52a at the end face of the one end of the central shaft 44 is a low-pressure brine extending from the power recovery device 24 (24 'in this embodiment) as shown in FIGS. It is connected to the pipeline for LPB.
 ハウジング43の内部空間41の他方の1対の室48bに対応している他方の1対の開口50bからは、中心軸44中を中心軸44の上方に位置している上記一端部に向かい1対の通路52b(図14参照)が延出していて、1対の通路52bは上記一端部の端面に開口している。1対の通路52bは、図10,図12及び図13中に図示されている如く上記一端部に到達するまでに中心軸44中で1つに統合されていることが出来る。この実施形態では、中心軸44の上記一端部の端面において、1対の通路52bは、前述した如く統合された通路52aに対し同心円状に統合されている。中心軸44の上記一端部の端面における統合されている通路52bの開口は、図1及び図12中に図示されている如く逆浸透膜ユニット18から動力回収装置24(この実施形態では24´)に向かい延びている高圧ブラインHPBの為の管路に接続されている。 From the other pair of openings 50b corresponding to the other pair of chambers 48b of the internal space 41 of the housing 43, the inside of the central shaft 44 is directed to the one end located above the central shaft 44. A pair of passages 52b (see FIG. 14) extends, and the pair of passages 52b open to the end face of the one end. The pair of passages 52b can be integrated into one in the central shaft 44 before reaching the one end as shown in FIGS. In this embodiment, the pair of passages 52b are concentrically integrated with the integrated passage 52a as described above on the end face of the one end portion of the central shaft 44. The opening of the integrated passage 52b at the end face of the one end portion of the central shaft 44 extends from the reverse osmosis membrane unit 18 to the power recovery device 24 (24 ′ in this embodiment) as shown in FIGS. Is connected to the line for the high-pressure brine HPB extending to
 この実施形態のハウジング43の内部空間41の底面(即ち、ケース42aの底面)の中央には貫通孔43dが形成されていて、貫通孔43dにはモータ54の出力軸54aが回転自在かつ液密に挿入されている。モータ54の出力軸54aのこの様な回転自在かつ液密な挿入は、例えば、貫通孔43dの内周面とモータ54の出力軸54aの外周面との間にO-リングやオイルシールの如き公知の環状の密封部材を介在させることにより可能である。 A through hole 43d is formed in the center of the bottom surface of the internal space 41 of the housing 43 of this embodiment (ie, the bottom surface of the case 42a), and the output shaft 54a of the motor 54 is rotatable and liquid-tight in the through hole 43d. Has been inserted. Such a rotatable and liquid-tight insertion of the output shaft 54a of the motor 54 is, for example, an O-ring or an oil seal between the inner peripheral surface of the through hole 43d and the outer peripheral surface of the output shaft 54a of the motor 54. This is possible by interposing a known annular sealing member.
 貫通孔43dに挿入されたモータ54の出力軸54aの突出端は、ハウジング43の内部空間41中の回転部材46の中央の底付き孔46aの底壁に外側から同心的に固定されている。 The protruding end of the output shaft 54 a of the motor 54 inserted into the through hole 43 d is concentrically fixed from the outside to the bottom wall of the bottom hole 46 a in the center of the rotating member 46 in the internal space 41 of the housing 43.
 次に、図10乃至図14を参照しながら前述した動力回収装置24´の動作について、図10を参照しながら説明する。 Next, the operation of the power recovery device 24 ′ described above with reference to FIGS. 10 to 14 will be described with reference to FIG.
 図1中に示されている逆浸透膜ユニット18から動力回収装置24(この実施形態では24´)に向かい送り出されている高圧ブラインHPBは、図12中に示されている如く動力回収装置24´の中心軸44の上方の一端部分の端面に開口している通路52bを介し中心軸44の他端部の外周面の他方の1対の開口50bに到達し、回転部材46の複数の通路46dにおいて他方の1対の開口50bに内端を露出させている幾つかの通路中46dに流入する。この間に、図1中に示されている前処理ユニット10から送水ポンプ12及び保安フィルター14を介して動力回収装置24(この実施形態では24´)に送られてくる低圧フィードLPFは、図10中に示されている如く動力回収装置24´のハウジング43のケース42aの一方の1対の室48a中に流入される。一方の1対の室48a中に流入された低圧フィードLPFは、回転部材46の外周面において一方の1対の室48a中に露出させている部分に対し回転部材46の外周面の所定の周方向に沿い押し当てられる。この結果として、一方の1対の室48a中の低圧フィードLPFは、回転部材46の複数の通路46dにおいて一方の1対の室48a中に外端を露出させている幾つかの通路46dの側面を押しながらこれら幾つかの通路46d中に流入する。そして、回転部材46を所定の方向Rに回転させるために低圧フィードLPFのエネルギーの一部は消費される。 The high pressure brine HPB sent out from the reverse osmosis membrane unit 18 shown in FIG. 1 toward the power recovery device 24 (24 ′ in this embodiment) is a power recovery device 24 as shown in FIG. A plurality of passages of the rotating member 46, reaching the other pair of openings 50 b on the outer peripheral surface of the other end portion of the central shaft 44 via a passage 52 b opened on the end face of one end portion above the central shaft 44 ′. In 46d, the other pair of openings 50b flows into some of the passages 46d in which the inner ends are exposed. During this time, the low-pressure feed LPF sent from the pretreatment unit 10 shown in FIG. 1 to the power recovery device 24 (24 ′ in this embodiment) via the water pump 12 and the security filter 14 is shown in FIG. As shown in the figure, it flows into one pair of chambers 48a of the case 42a of the housing 43 of the power recovery device 24 '. The low-pressure feed LPF that has flowed into the pair of chambers 48a has a predetermined circumference on the outer peripheral surface of the rotating member 46 with respect to the portion of the outer peripheral surface of the rotating member 46 exposed in the pair of chambers 48a. Pressed along the direction. As a result, the low-pressure feed LPF in one pair of chambers 48a has the side surfaces of several passages 46d exposing the outer ends in one pair of chambers 48a in the plurality of passages 46d of the rotating member 46. It flows into these several passages 46d while pushing. A part of the energy of the low pressure feed LPF is consumed to rotate the rotating member 46 in the predetermined direction R.
 通路46d中の低圧フィードLPFは回転部材46の回転に伴い一方の1対の室48aと他方の1対の室48bとの間及び中心軸44の一方の一対の開口50aと他方の開口50bとの間で通路46d中に閉じ込められ、他方の1対の室48b及び中心軸44の他方の開口50bに対応した時に他方の開口50bから通路中46d中に流入した高圧ブラインHPBにより通路46dから他方の1対の室48b中に押し出される。この間に、開口50bから通路中46d中に流入した高圧ブラインHPBの圧力エネルギーが通路46d中の低圧フィードLPFに付与され通路46d中の低圧フィードLPFは高圧フィードHPFとなり他方の1対の室48b中に押し出される。 As the rotary member 46 rotates, the low pressure feed LPF in the passage 46d is between one pair of chambers 48a and the other pair of chambers 48b, and one pair of openings 50a and the other opening 50b of the central shaft 44. Between the passage 46d and the other pair of chambers 48b and the other opening 50b of the central shaft 44 by the high-pressure brine HPB flowing into the passage 46d from the other opening 50b. Into a pair of chambers 48b. During this time, the pressure energy of the high-pressure brine HPB flowing into the passage 46d from the opening 50b is applied to the low-pressure feed LPF in the passage 46d, so that the low-pressure feed LPF in the passage 46d becomes the high-pressure feed HPF in the other pair of chambers 48b. Extruded.
 他方の開口50bから通路中46d中に流入した高圧ブラインHPBは、通路46d中の低圧フィードLPFに圧力エネルギーを付与して圧力エネルギーが大きく低下又は無くされて低圧ブラインLPBになり、その後、回転部材36のさらなる回転により他方の1対の室48bと一方の1対の室48aとの間及び中心軸44の他方の1対の開口50bと一方の1対の開口50aとの間で通路46d中に閉じ込められ、次に一方の1対の室48a及び中心軸44の一方の1対の開口50aに対応した時に一方の1対の室58aから通路中56d中に流入した低圧フィードLPFにより中心軸44の一方の1対の開口50aから対応している一方の1対の通路52aを介し動力回収装置24(この実施形態では24´)の外部に排出される。 The high-pressure brine HPB that has flowed into the passage 46d from the other opening 50b gives pressure energy to the low-pressure feed LPF in the passage 46d so that the pressure energy is greatly reduced or eliminated to become the low-pressure brine LPB. 36 further rotation in the passage 46d between the other pair of chambers 48b and one pair of chambers 48a and between the other pair of openings 50b and one pair of openings 50a in the central shaft 44. And then the central shaft by the low-pressure feed LPF that flows from one pair of chambers 58a into the passage 56d when corresponding to one pair of chambers 48a and one pair of openings 50a of the central shaft 44. One pair of openings 50a of 44 is discharged to the outside of the power recovery device 24 (24 ′ in this embodiment) through one pair of corresponding passages 52a.
 他方の1対の室48b中の高圧フィードHPFは、図10及び図1中に示されている如く動力回収装置24(この実施形態では24´)から配管により圧力上昇ユニット16と逆浸透膜ユニット18との間の配管に導かれる。高圧フィードHPFは、この配管において、圧力上昇ユニット16から逆浸透膜ユニット18に向かう高圧力の前処理海水HPSWに追加され、高圧力の前処理海水HPSWとともに逆浸透膜ユニット18に向かう。 The high pressure feed HPF in the other pair of chambers 48b is connected to the pressure raising unit 16 and the reverse osmosis membrane unit by piping from the power recovery device 24 (24 'in this embodiment) as shown in FIGS. 18 to the pipe between the two. The high-pressure feed HPF is added to the high-pressure pretreated seawater HPSW from the pressure increasing unit 16 toward the reverse osmosis membrane unit 18 in this pipe, and goes to the reverse osmosis membrane unit 18 together with the high-pressure pretreated seawater HPSW.
 この結果として、逆浸透膜ユニット18において抽出する淡水FWの単位時間当たりの量が一定であるならば、圧力上昇ユニット16から逆浸透膜ユニット18に向かい単位時間当たりに送り出さなければならない高圧力の前処理海水HPSWの量を減らすことができる。このことは、動力回収装置24(この実施形態では24´)を使用した液体処理装置の一種である海水淡水化装置の運転に必要なエネルギー量、即ち動力、を少なくすることが出来る。 As a result, if the amount of fresh water FW extracted in the reverse osmosis membrane unit 18 per unit time is constant, the high pressure that must be sent from the pressure increase unit 16 toward the reverse osmosis membrane unit 18 per unit time. The amount of pretreated seawater HPSW can be reduced. This can reduce the amount of energy required for the operation of the seawater desalination apparatus, which is a kind of liquid processing apparatus using the power recovery apparatus 24 (24 ′ in this embodiment), that is, power.
 なお、この実施形態では、モータ54を使用してハウジング43の内部空間41中の回転部材46の回転を制御することが出来る。即ち、この実施形態の動力回収装置24´から配管により圧力上昇ユニット16と逆浸透膜ユニット18との間の配管に導かれる高圧フィードHPFに対し動力回収装置24´において回転部材46の回転により与えられるエネルギー量を、動力回収装置24´に供給される低圧フィードLPFにより回転部材46に与えられる回転力の値とは無関係に制御することが出来る。 In this embodiment, the rotation of the rotating member 46 in the inner space 41 of the housing 43 can be controlled using the motor 54. In other words, the power recovery device 24 ′ provides the high pressure feed HPF that is led from the power recovery device 24 ′ to the piping between the pressure increasing unit 16 and the reverse osmosis membrane unit 18 by the rotation of the rotating member 46. The amount of energy applied can be controlled independently of the value of the rotational force applied to the rotating member 46 by the low pressure feed LPF supplied to the power recovery device 24 '.
 また、この実施形態の動力回収装置24´では、ハウジング43のケース42aの内部空間41中に相互に区画されて設けられている2対1組の室48a,48bは、中心軸44を挟んで相互に対称に配置されている一方の1対の室48aには同じ低圧フィードLPFが導入され、また同時に中心軸44を挟んで相互に対称に配置されている他方の1対の室48bには同じ高圧ブラインHPBが導入されている。従って、ハウジング43のケース42aやケース42aの内部空間41中に中心軸44の外周面に対し回転自在に収容されている回転部材46に対し、一方の1対の室48a中の低圧フィードLPF及び他方の1対の室48b中の高圧ブラインHPBにより負荷される力は中心軸44の半径方向において相殺される。 Further, in the power recovery device 24 ′ of this embodiment, the two-to-one set of chambers 48 a and 48 b provided to be mutually partitioned in the internal space 41 of the case 42 a of the housing 43 sandwich the central shaft 44. The same low-pressure feed LPF is introduced into one pair of chambers 48a arranged symmetrically with respect to each other, and at the same time, the other pair of chambers 48b arranged symmetrically with respect to each other with the central axis 44 interposed therebetween. The same high pressure brine HPB is introduced. Therefore, the low pressure feed LPF in one pair of chambers 48a and the rotating member 46 rotatably accommodated in the case 42a of the housing 43 and the inner space 41 of the case 42a with respect to the outer peripheral surface of the central shaft 44 and The force applied by the high pressure brine HPB in the other pair of chambers 48 b is canceled in the radial direction of the central shaft 44.
 さらに、中心軸44の他端部の外周面と回転部材46の底付き孔46aの内周面46bとの間の隙間に入り込んだ低圧ブラインLPB及び高圧ブラインHPBの混合物が、中心軸44の外周面上における回転部材46の回転に伴い中心軸44の他端部の外周面と回転部材46の底付き孔46aの内周面46bとの間のラジアル動圧軸受として機能する。また、回転部材46の外周面46cとハウジング43のケース42aの内部空間41における回転部材46の外周面46cと対面している内周面上で2対1組の室48a,48bを除いた領域との間の隙間に入り込んだ低圧フィードLPF及び高圧フィードHPFの混合物が、中心軸44の他端部の外周面上における回転部材46の回転に伴い回転部材46の外周面46cとハウジング43のケース42aの内部空間41の内周面の上記領域との間のラジアル動圧軸受として機能する。 Further, the mixture of the low-pressure brine LPB and the high-pressure brine HPB that have entered the gap between the outer peripheral surface of the other end of the central shaft 44 and the inner peripheral surface 46 b of the bottomed hole 46 a of the rotating member 46 is the outer periphery of the central shaft 44. Along with the rotation of the rotating member 46 on the surface, it functions as a radial dynamic pressure bearing between the outer peripheral surface of the other end of the central shaft 44 and the inner peripheral surface 46b of the bottomed hole 46a of the rotating member 46. Further, the area excluding the two-to-one pair of chambers 48a and 48b on the inner peripheral surface facing the outer peripheral surface 46c of the rotating member 46 in the inner space 41 of the case 42a of the housing 43 and the outer peripheral surface 46c of the rotating member 46. The mixture of the low pressure feed LPF and the high pressure feed HPF that has entered the gap between the outer peripheral surface of the central shaft 44 and the outer peripheral surface 46c of the rotating member 46 and the case of the housing 43 along with the rotation of the rotating member 46 on the outer peripheral surface of the other end portion of the central shaft 44. It functions as a radial dynamic pressure bearing between the above-mentioned area | region of the internal peripheral surface of the internal space 41 of 42a.
 従って、中心軸44の他端部の外周面と回転部材46の底付き孔46aの内周面46bとの間に独立したラジアル軸受を必要とせず、この実施形態の動力回収装置24´の構成を簡易にし、製造コストを低くすることが出来る。 Therefore, an independent radial bearing is not required between the outer peripheral surface of the other end of the central shaft 44 and the inner peripheral surface 46b of the bottomed hole 46a of the rotating member 46, and the configuration of the power recovery device 24 'of this embodiment. The manufacturing cost can be reduced.
 またさらに、ハウジング43の蓋43bの内表面とハウジング43のケース42aの内部空間41中の回転部材46において上記内表面と対面している一方の側面との間の隙間に入り込んだ低圧ブラインLPB及び高圧ブラインHPBの混合物及び低圧フィードLPF及び高圧フィードHPFの混合物が、中心軸44の他端部の外周面上における回転部材46の回転に伴い蓋43bの内表面と回転部材46の上記一方の側面との間のスラスト軸受として機能する。同時に、中心軸44の他端部の端面と回転部材46の底付き孔46aの底面との間の隙間に入り込んだ低圧ブラインLPB及び高圧ブラインHPBの混合物が、中心軸44の他端部の外周面上における回転部材46の回転に伴い中心軸44の他端部の端面と回転部材46の底付き孔46aの底面との間のスラスト軸受として機能する。さらに、ハウジング43のケース42aの内部空間41の低面とハウジング43のケース42aの内部空間41中の回転部材46において上記底面と対面している他方の側面との間の隙間に入り込んだ低圧フィードLPF及び高圧フィードHPFの混合物が、中心軸44の他端部の外周面上における回転部材46の回転に伴いケース42aの内部空間41の低面と回転部材46の上記他方の側面との間のスラスト軸受として機能する。 Furthermore, the low-pressure brine LPB that has entered a gap between the inner surface of the lid 43b of the housing 43 and the one side surface facing the inner surface in the rotating member 46 in the inner space 41 of the case 42a of the housing 43, and The mixture of the high-pressure brine HPB and the mixture of the low-pressure feed LPF and the high-pressure feed HPF are rotated on the outer peripheral surface of the other end of the central shaft 44 and the inner surface of the lid 43b and the one side surface of the rotary member 46 are rotated. It functions as a thrust bearing between. At the same time, the mixture of the low-pressure brine LPB and the high-pressure brine HPB entering the gap between the end surface of the other end portion of the central shaft 44 and the bottom surface of the bottomed hole 46 a of the rotating member 46 is the outer periphery of the other end portion of the central shaft 44. Along with the rotation of the rotating member 46 on the surface, it functions as a thrust bearing between the end surface of the other end portion of the central shaft 44 and the bottom surface of the bottomed hole 46 a of the rotating member 46. Further, the low pressure feed that has entered the gap between the lower surface of the inner space 41 of the case 42a of the housing 43 and the other side surface of the rotating member 46 in the inner space 41 of the case 42a of the housing 43 facing the bottom surface. The mixture of the LPF and the high pressure feed HPF is formed between the lower surface of the internal space 41 of the case 42 a and the other side surface of the rotating member 46 as the rotating member 46 rotates on the outer peripheral surface of the other end portion of the central shaft 44. It functions as a thrust bearing.
 従って、蓋43bの内表面と回転部材46の上記一方の側面との間,中心軸44の他端部の端面と回転部材46の底付き孔46aの底面との間,そしてケース42aの内部空間41の低面と回転部材46の上記他方の側面との間に独立したスラスト軸受を必要とせず、この実施形態の動力回収装置24´の構成を簡易にし製造コストを低くすることが出来る。 Therefore, between the inner surface of the lid 43b and the one side surface of the rotating member 46, between the end surface of the other end of the central shaft 44 and the bottom surface of the bottomed hole 46a of the rotating member 46, and the internal space of the case 42a. An independent thrust bearing is not required between the lower surface of 41 and the other side surface of the rotating member 46, and the configuration of the power recovery device 24 'of this embodiment can be simplified and the manufacturing cost can be reduced.

Claims (5)

  1.  外部から供給され複数の成分を含む水である原水(SW)を圧力上昇ユニット(16)を介し逆浸透膜(18a)に送り逆浸透膜において原水(HPSW)から水の一部(FW)を抽出する液体処理装置において使用され、逆浸透膜において水の一部が抽出された後の残りの原水(HPB)の圧力を利用して圧力上昇させた原水(HPF)を圧力上昇ユニットからの原水(HPSW)に加えて逆浸透膜に送る動力回収装置であって:
     内部空間(30,41)を有するハウジング(32,43)と;ハウジングの内部空間に固定され外周面(36b,46c)とハウジングの外部に突出した少なくとも1つの端部とを有した中心軸(34,44)と;そして、ハウジングの内部空間に中心軸の外周面の周りに回転自在に収容され、中心軸の外周面に対面した内周面(36a,46b)と中心軸の半径方向の外方に位置した外周面(36b,46c)とを有し、中心軸の周方向に等間隔に配置され夫々が内周面と外周面との間を延出している複数の通路(36c,46d)を含む回転部材(36,46)と、を備え、
     ハウジングの内部空間には、回転部材の外周面に対面し相互に区画された2対1組の少なくとも1組の室(38a,38b;48a,48b)が設けられ、
     中心軸には、中心軸の外周面に形成されハウジングの内部空間の少なくとも1組の室に回転部材を介して対向し前記室と同数の2対1組の少なくとも1組の開口(40a,40b:50a,50b)と、少なくとも1組の開口から中心軸中を延出し中心軸の前記少なくとも1つの端部に開口した2対1組の少なくとも1組の通路(42a,42b:52a,52b)と、が形成され、
     ハウジングの内部空間の前記1組の室において中心軸を挟んで相互に対称に配置されている一方の1対の室(38a;48a)は、外部から供給される原水(LPF)が導入され導入された原水を前記一方の1対の室中に露出している回転部材の外周面の複数の通路に対し前記外周面の所定の周方向に押し当てて回転部材を回転させるよう構成され、
     前記1組の室において中心軸を挟んで相互に対称に配置されている他方の1対の室(38b;48b)は、圧力上昇ユニット(16)と逆浸透膜(18a)との間の原水(HPSW)の通路に接続されており、
     中心軸の外周面の前記1組の開口において回転部材を介し前記一方の1対の室(38a;48a)に対向している一方の1対の開口(40a;50a)は中心軸の対応する一方の1対の通路(42a;52a)を介して外部に連通されており、
     中心軸の外周面の前記1組の開口において回転部材を介し前記他方の1対の室(38b;48b)に対向している他方の1対の開口(40b;50b)には中心軸の対応する他方の1対の通路(42b;52b)を介して前記残りの原水(HPB)が導入される、
     ことを特徴とする液体処理装置の動力回収装置。
    Raw water (SW), which is water supplied from the outside and containing a plurality of components, is sent to the reverse osmosis membrane (18a) via the pressure increase unit (16), and part of the water (HPSW) from the raw water (HPSW) in the reverse osmosis membrane. Raw water (HPF) that is used in the liquid processing apparatus to be extracted and is pressure-enhanced using the pressure of the remaining raw water (HPB) after a part of the water is extracted in the reverse osmosis membrane is supplied from the pressure increasing unit. In addition to (HPSW), a power recovery device that sends to a reverse osmosis membrane:
    A housing (32, 43) having an internal space (30, 41); a central shaft having an outer peripheral surface (36b, 46c) fixed to the internal space of the housing and at least one end projecting to the outside of the housing ( 34, 44); and an inner peripheral surface (36a, 46b) which is rotatably accommodated around the outer peripheral surface of the central axis in the inner space of the housing and faces the outer peripheral surface of the central axis, and the radial direction of the central axis A plurality of passages (36c, 46c, 36b, 46c) having outer peripheral surfaces (36b, 46c) located on the outer sides and arranged at equal intervals in the circumferential direction of the central axis, each extending between the inner peripheral surface and the outer peripheral surface. A rotating member (36, 46) including 46d),
    The interior space of the housing is provided with at least one pair of chambers (38a, 38b; 48a, 48b) which are two-to-one pairs facing the outer peripheral surface of the rotating member and partitioned from each other.
    The central axis is formed on the outer peripheral surface of the central axis and faces at least one pair of chambers in the inner space of the housing through a rotating member, and has at least one pair of openings (40a, 40b) of the same number as the chambers. : 50a, 50b) and at least one pair of passages (42a, 42b: 52a, 52b) extending from the at least one set of openings into the central axis and opening at the at least one end of the central axis And formed,
    One pair of chambers (38a; 48a) arranged symmetrically with respect to the central axis in the pair of chambers in the internal space of the housing is introduced with the introduction of raw water (LPF) supplied from the outside. Configured to rotate the rotating member by pressing the raw water in a predetermined circumferential direction of the outer peripheral surface against a plurality of passages on the outer peripheral surface of the rotating member exposed in the one pair of chambers,
    The other pair of chambers (38b; 48b) disposed symmetrically with respect to the central axis in the pair of chambers is the raw water between the pressure raising unit (16) and the reverse osmosis membrane (18a). (HPSW) is connected to the passage,
    One pair of openings (40a; 50a) facing the one pair of chambers (38a; 48a) through the rotating member in the pair of openings on the outer peripheral surface of the central axis corresponds to the central axis. Communicated to the outside through one pair of passages (42a; 52a),
    The pair of openings (40b; 50b) facing the other pair of chambers (38b; 48b) through the rotating member in the pair of openings on the outer peripheral surface of the center axis corresponds to the center axis. The remaining raw water (HPB) is introduced through the other pair of passages (42b; 52b).
    A power recovery device for a liquid processing apparatus.
  2.  前記中心軸(34)は細長く前記中心軸の長手方向中心線に沿って前記1つの端部とは反対側において前記ハウジング(32)の外部に突出したもう1つの端部を有しており、
     前記中心軸(34)の前記一方の1対の通路(42a)は前記中心軸の前記1つの端部に開口し、
     前記中心軸の前記他方の1対の通路(42b)は前記中心軸の前記もう1つの端部に開口している、
     ことを特徴とする請求項1記載の液体処理装置の動力回収装置。
    The central axis (34) is elongated and has another end projecting out of the housing (32) on the opposite side of the central axis along the longitudinal centerline of the central axis;
    The one pair of passages (42a) of the central axis (34) open to the one end of the central axis;
    The other pair of passages (42b) of the central axis is open to the other end of the central axis;
    The power recovery apparatus for a liquid processing apparatus according to claim 1.
  3.  前記中心軸(44)は細長く、前記中心軸の長手方向中心線に沿って前記1つの端部とは反対側に位置し前記ハウジング(43)の内部空間(41)に収容されているもう1つの端部を有している、
     ことを特徴とする請求項1記載の液体処理装置の動力回収装置。
    The central axis (44) is elongated and is located on the opposite side of the one end along the longitudinal center line of the central axis and is accommodated in the internal space (41) of the housing (43). Has two ends,
    The power recovery apparatus for a liquid processing apparatus according to claim 1.
  4.  前記回転部材(46)に連結され前記回転部材とともに回転する出力軸(54a)を有する電動モータ(54)をさらに備えている、ことを特徴とする請求項1記載の液体処理装置の動力回収装置。 The power recovery apparatus for a liquid processing apparatus according to claim 1, further comprising an electric motor (54) connected to the rotating member (46) and having an output shaft (54a) that rotates together with the rotating member. .
  5.  前記原水(SW)は塩水である、ことを特徴とする請求項1乃至4のいずれか1項に記載の液体処理装置の動力回収装置。 The power recovery apparatus for a liquid processing apparatus according to any one of claims 1 to 4, wherein the raw water (SW) is salt water.
PCT/JP2010/059220 2010-05-31 2010-05-31 Power recovery device of liquid treatment apparatus WO2011151883A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/059220 WO2011151883A1 (en) 2010-05-31 2010-05-31 Power recovery device of liquid treatment apparatus
AU2010354672A AU2010354672B2 (en) 2010-05-31 2010-05-31 Power recovery device of liquid treatment apparatus
CN2010800658995A CN102822449A (en) 2010-05-31 2010-05-31 Power recovery device of liquid treatment apparatus
JP2012518165A JP5337301B2 (en) 2010-05-31 2010-05-31 Power recovery device for liquid processing equipment
US13/687,017 US20130094949A1 (en) 2010-05-31 2012-11-28 Power recovery device of liquid processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059220 WO2011151883A1 (en) 2010-05-31 2010-05-31 Power recovery device of liquid treatment apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/687,017 Continuation US20130094949A1 (en) 2010-05-31 2012-11-28 Power recovery device of liquid processing apparatus

Publications (1)

Publication Number Publication Date
WO2011151883A1 true WO2011151883A1 (en) 2011-12-08

Family

ID=45066282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059220 WO2011151883A1 (en) 2010-05-31 2010-05-31 Power recovery device of liquid treatment apparatus

Country Status (5)

Country Link
US (1) US20130094949A1 (en)
JP (1) JP5337301B2 (en)
CN (1) CN102822449A (en)
AU (1) AU2010354672B2 (en)
WO (1) WO2011151883A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120061300A1 (en) 2010-09-15 2012-03-15 Takeshi Matsushiro Membrane filtration system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294903A (en) * 1988-02-26 1989-11-28 Robert A Oklejas Power recovery pump turbine
JPH10205301A (en) * 1997-01-17 1998-08-04 Unyusho Kowan Gijutsu Kenkyusho Turbine device
JP2001050001A (en) * 1999-08-07 2001-02-23 Obara Flora:Kk Steam turbine device
US6713028B1 (en) * 1999-01-26 2004-03-30 Fluid Equipment Development Company, Llc Rotating process chamber with integral pump and energy recovery turbine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637783A (en) * 1980-10-20 1987-01-20 Sri International Fluid motor-pumping apparatus and method for energy recovery
JPS6193274A (en) * 1984-10-11 1986-05-12 Honda Kiko Kk Energy recovery device in seawater desalting apparatus
CN1184081A (en) * 1996-11-28 1998-06-10 马登杰 Energy recovering device for sea water and bitter salt water desalting equipment based on reverse osmosis technology
JP4138470B2 (en) * 2002-12-12 2008-08-27 日本フイルター株式会社 Filter
CN200985289Y (en) * 2006-11-22 2007-12-05 天津大学 Rotating pressure converter for sea water or bitter-salt-water reverse osmosis desalination system
CN101125693A (en) * 2007-07-10 2008-02-20 浙江大学 Hydraulic pressure type double-piston single-cylinder pressure exchange energy reclaiming device
JP4870648B2 (en) * 2007-10-25 2012-02-08 株式会社荏原製作所 Power recovery system
CN101225750A (en) * 2008-02-03 2008-07-23 朱崇胜 Energy converter
CN101660429A (en) * 2008-08-29 2010-03-03 成怀岭 Circulating air power machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294903A (en) * 1988-02-26 1989-11-28 Robert A Oklejas Power recovery pump turbine
JPH10205301A (en) * 1997-01-17 1998-08-04 Unyusho Kowan Gijutsu Kenkyusho Turbine device
US6713028B1 (en) * 1999-01-26 2004-03-30 Fluid Equipment Development Company, Llc Rotating process chamber with integral pump and energy recovery turbine
JP2001050001A (en) * 1999-08-07 2001-02-23 Obara Flora:Kk Steam turbine device

Also Published As

Publication number Publication date
JP5337301B2 (en) 2013-11-06
AU2010354672A1 (en) 2013-01-10
AU2010354672B2 (en) 2014-04-10
JPWO2011151883A1 (en) 2013-07-25
US20130094949A1 (en) 2013-04-18
CN102822449A (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US7201557B2 (en) Rotary pressure exchanger
US8529425B2 (en) Horizontal centrifugal separator in which the hermeticity of a casing is improved by using a sealing element having a simple structure
EA022232B1 (en) Spiral wound membrane module for forward osmotic use
JP5337301B2 (en) Power recovery device for liquid processing equipment
Dudziak et al. A study of selected phytoestrogens retention by reverse osmosis and nanofiltration membranes-the role of fouling and scaling
CN102725538B (en) Pressure exchanger
JP2015213891A (en) Chemical supply device
US20210363041A1 (en) Apparatus for producing potable water
JP2007044671A (en) Seal structure for rotation part and screw decanter type centrifugal separator
US11498860B2 (en) Reverse osmosis apparatus and seawater desalination system having the same
CN113316476B (en) Separation membrane module and liquid treatment system using the same
JP4715308B2 (en) Seal structure and method for discharging intrusion water
CN107917087B (en) Supercharging device for water purification system
CN207647797U (en) A kind of supercharging device for water cleaning systems
JP2014210230A (en) Power recovery device
WO2014203924A1 (en) Power generation facility and power generation method
CN207121511U (en) A kind of pure water making machine
KR101660285B1 (en) Water treatment apparatus using fluid shear stress
US20130082001A1 (en) Fresh Water Generating Apparatus and Fresh Water Generating Method
JP2018047406A (en) Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method
KR20120087445A (en) Booster pump for water purifier
JP7065723B2 (en) Water treatment system, its operation method, and protection device
CN106517614A (en) Aluminum-alloy clamp saline wastewater treatment device with disk type thrust motor
Ahmad et al. Experimental study of a cellulose triacetate spiral wound forward osmosis membrane for desalination process integration
CN106242127A (en) Application aluminium alloy disc type thrust motor device for hooping processes brine waste method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065899.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518165

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010354672

Country of ref document: AU

Date of ref document: 20100531

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10852491

Country of ref document: EP

Kind code of ref document: A1