WO2011151488A1 - Receptor cóncavo para disco stirling y método de fabricación - Google Patents

Receptor cóncavo para disco stirling y método de fabricación Download PDF

Info

Publication number
WO2011151488A1
WO2011151488A1 PCT/ES2011/000179 ES2011000179W WO2011151488A1 WO 2011151488 A1 WO2011151488 A1 WO 2011151488A1 ES 2011000179 W ES2011000179 W ES 2011000179W WO 2011151488 A1 WO2011151488 A1 WO 2011151488A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
concave
stirling
receiver
collectors
Prior art date
Application number
PCT/ES2011/000179
Other languages
English (en)
French (fr)
Inventor
Juan Pablo NUÑEZ BOOTELLO
Cristina Sosa Naranjo
Carlos Miguel Monne Bailo
Francisco Moreno Gomez
Mariano MUÑOZ RODRIGUEZ
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Priority to EP11789294.3A priority Critical patent/EP2578961A1/en
Priority to US13/701,160 priority patent/US9080790B2/en
Publication of WO2011151488A1 publication Critical patent/WO2011151488A1/es
Priority to ZA2012/08956A priority patent/ZA201208956B/en
Priority to IL223322A priority patent/IL223322A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/068Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/748Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being otherwise bent, e.g. zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/30Heat inputs using solar radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49355Solar energy device making

Definitions

  • the invention falls within the technology of solar collectors and more specifically focuses on the design of solar receivers for Stirling disk.
  • Stirling disk systems are electricity generating units that use solar radiation as a source of energy.
  • the capacity of a single unit is between 3 and 50 kWe.
  • the operating mode of a Stirling disk system is as follows: the concentrator reflects solar radiation towards the receiver that is located at the focal point of the concentrator. Solar radiation is absorbed into the receiver and it heats the gas (helium or hydrogen) of the Stirling engine at temperatures around 650 ° C. This heat is converted into mechanical energy in the Stirling engine. An electric generator converts this mechanical energy into electricity. To ensure that the reflected radiation affects the focal point throughout the day, a solar tracking system moves the concentrator continuously to follow the sun's path.
  • the technology of solar receivers is developed based on the type of process in which it will be used, that is, the type of plant and the cycle used.
  • the invention presented refers to the solar reception plant with disk and the cycle is that of Stirling.
  • the technologies used for solar tower receiver plants are an application reference.
  • External receivers have absorption surfaces in direct view with the concentrators and depend on the direct absorption of the radiation. Recipients of Instead, they have an opening through which the concentrated radiation passes until it reaches the surface of the receiver. The cavity ensures that most of the incoming radiation is absorbed by the internal surface of the receiver.
  • the most used receivers for Stirling disk systems are cavity receptors.
  • the receiver is located behind the opening to reduce the amount of heat lost and to decrease the intensity of the concentrated flow on its surface.
  • the concentrated radiation that enters through the opening of the receiver diffuses into the cavity. Most of the energy is absorbed directly by the receiver, and virtually all of the rest is reflected or re-irradiated within the cavity to be subsequently absorbed.
  • the first method consists in using a receiver of directly illuminated tubes where small tubes, through which the working fluid of the motor circulates, are located directly in the region where the concentrated solar flow affects.
  • the tubes form the surface of the receiver. In this way, the working gas is heated as it passes through the tubes heated by solar radiation.
  • the second method that of reflux, uses a liquid metal as an intermediate heat transfer fluid.
  • the liquid metal vaporizes on the rear surface of the receiver and condenses in the tubes through which the working fluid of the motor circulates. That is, it absorbs heat from the material that forms the receiver (which is hot from exposure to solar radiation) and then transfers it to the tubes through which the working gas of the engine circulates.
  • This second type of receiver is called reflux because the vapor condenses and returns to be evaporated again.
  • HTC Solar Solar heater head for generation of electric current from solar energy Absorber with highly conductive and blackened (oxidized) material to homogenize the concentration of hot.
  • copper material which is welded to the exchanger tubes with high performance stainless steel (such as a tube jacket).
  • the object of the invention is to provide a heating head in which the regenerators are connected to the cylinders by tubes surrounding those same cylinders.
  • US4602614 1986 United Stirling, Inc. Hybrid solar / combustion powered receiver It is an enhanced receiver that includes a heat exchanger inside the cavity with tangentially spaced tubes. There are multiple burners to provide a flue gas path and a window to seal the opening and there are no gas leaks outside the receiver.
  • the solar receiver includes a heat pipe that has a fluid inside.
  • the heat pipe has two condenser portions arranged at two ends.
  • an evaporator is included between both ends.
  • An air manifold is coupled to one of the ends. This manifold has an air inlet and outlet.
  • a liquid collector is coupled to the other end, with its respective inlet and outlet.
  • the invention is a receiver with an internal cavity that reflects radiation.
  • the receiver is contained in a reducing or inert atmosphere to maintain the properties of the reflective surfaces of the cavity.
  • Heat absorption occurs in tubes arranged symmetrically with respect to the main axis of the receiver.
  • quartz window at the entrance of the device to reduce convection losses.
  • the tubes (8) being identical to each other and loop-shaped geometry.
  • the present invention aims to provide a solar receiver that, overcoming the deficiencies found in the previous designs:
  • the new design thus increases the efficiency of the disk and reduces manufacturing, operation and maintenance costs. It also offers the possibility of:
  • the invention consists of a new stirling disk receiver that meets the previously defined requirements.
  • the designed receiver comprises the following components: tubes, manifolds, tanks and domes.
  • the tubes form the surface where the concentrated sunlight beam strikes. They are arranged very close to each other so that the surface has few holes and the incident radiation can be used to the maximum.
  • collectors are the areas where the pipes are welded, so that the flow that flows through the pipes communicates with the tanks.
  • Deposits The deposits are the interior areas of the collectors, from here the working gas is distributed to each of the tubes.
  • Domes There are two domes: the one in charge of housing inside the regenerator (or heat exchanger capable of absorbing heat from the working gas, storing it and transferring it to close the cycle being, of the intercarriators that contains the engine, which greater volume of thermal energy handles) and the expansion dome (or dome), which is the area where the working gas is at a higher temperature.
  • the receiver design claimed in this invention is composed of a series of tubes that leave perpendicularly from one collector and arrive perpendicularly to the other.
  • this model there are two types of tubes slightly different from each other. Both types have a straight part from the inside of each collector to the place where the curvature of the tube begins. The central part of each tube is an arc of circumference. The only difference between the two types of tubes lies in the value of the radius of this arc of circumference.
  • the curvature of the tubes allows radiation from the solar concentrator to be distributed better throughout the entire surface of the tubes. According to the radiation maps taken on a plane, the highest radiation intensity occurs in the center of that plane. This model has the characteristic that the central part of the tubes is the furthest from the plane of the collectors. As a consequence, the radiation peaks that occurred in the central part of the receiver are reduced. When radiation is better distributed, the temperature will also be better distributed along the tubes.
  • the curved shape of the tubes allows them to expand without creating excessive stresses in the material, with the receiver having a certain flexibility and making the tubes simple.
  • the collectors are positioned so that the joint surface with the tubes is perpendicular to them. If you look at the surface formed by the tubes from the direction in which the solar radiation affects, the gap between one tube and the next is the one necessary so that the distance between welding points of the collectors is large enough to allow its manufacture .
  • the tubes of one type are welded in a column forming a vertical row of welding points in the collector, this row being parallel to the row in which the tubes of the second type are located. Welding the pipes to the manifolds does not pose a problem since the distance between the holes or weld points of the manifolds is sufficient to perform this operation with ease.
  • the receiver model presented as well as its manufacturing procedure comply with the design restrictions and improve the overall thermo-mechanical behavior of the receivers known in the state of the art.
  • FIG 1 Solar receiver of the prior art. DE19527272 patent.
  • Figure 2 Concave solar receiver. Plan, elevation and profile.
  • FIG. 3 Perspective view of the concave receiver
  • Figure 1 shows the design of a state-of-the-art receiver, corresponding to the DE19527272 patent, in which it can be seen that said receiver is formed by the tubes (1), the collectors (2), the dome of expansion or dome (3) and the dome that houses the regenerator (4).
  • the tubes (1) are identical to each other and have a loop-shaped geometry.
  • the claimed receiver represented in Figures 2-5, has a considerably different design from the previous one and complies with the following general characteristics:
  • Nickel-chromium based alloys (Inconel ® 625 or Multimet ®).
  • FIG. 2 The different views of the receiver are shown in Figures 2 and 3. It consists of a series of concave tubes (1) that leave perpendicularly from a collector (2) and arrive perpendicularly to the other manifold (2). In this model there are two types of tubes (10, 11) slightly different from each other.
  • the collectors (2) are rotated with respect to the vertical one such that the faces on which the welding of the tubes (10, 11) are carried out are not facing each other.
  • Both types of tubes (10, 11) have a straight part (12) of about 40 mm from the inside of each collector to the place where the curvature of the tube begins.
  • the central part (13) of each tube is an arc of circumference of 40 °.
  • the only difference between the two types of tubes (10, 11) lies in the value of the radius of this circumference (315 mm, 319 mm).
  • the collectors (2) such as the one detailed in Figure 5, are positioned so that the joint surface with the tubes (1) is perpendicular to these (2).
  • the angle formed by the pipes (1) with the horizontal (horizontal ground lines shown in Figure 2, elevation and plan) at the height of the weld It is 20 °.
  • the angle formed by the collectors (2) and the horizontal will also be 20 °.
  • the gap between one tube and the next is 1.15 mm. These holes have had to be included in the design so that the distance between welding points (22) of the collectors (2) is large enough to facilitate the welding operation.
  • Figure 5 shows the connection points (22) of the pipes (1) to the manifolds (2) and it is checked how the tubes of type 1 (10) are placed in the same vertical row (20) of the collector (2), this row (20) being parallel to the row (21) formed by the tubes of type 2 (11), the tubes of both rows not coming into contact.
  • this embodiment meets all the established design requirements and improves the efficiency of the system without increasing the cost.

Abstract

Receptor cóncavo para disco Stirling cuyos componentes principales son tubos (los cuales forman la superficie donde incide el haz de luz solar concentrada), colectores (se sueldan a los tubos y comunican el fluido que discurre por los tubos con los depósitos), depósitos (son las zonas interiores de los colectores desde donde se distribuye el gas de trabajo a cada uno de los tubos) y cúpulas (hay de dos tipos, la encargada de alojar en su interior el regenerador y la cúpula de expansión que es la zona donde el gas de trabajo se encuentra a una mayor temperatura) que comprende una serie de tubos (10, 11) que salen perpendicularmente de un colector (2) y llegan perpendicularmente al otro (2) y tienen una parte recta (12) desde el interior de cada colector (2) hasta el lugar donde comienza la curvatura del tubo y una parte central (13) en forma de arco de circunferencia.

Description

RECEPTOR CÓNCAVO PARA DISCO STIRLING Y MÉTODO DE FABRICACIÓN
Sector técnico de la invención
La invención se encuadra dentro la tecnología de los colectores solares y más concretamente se centra en el diseño de receptores solares para disco Stirling.
Antecedentes de la invención
Los sistemas disco Stirling son unidades de generación de electricidad que usan la radiación solar como fuente de energía. La capacidad de una sola unidad está entre 3 y 50 kWe.
Los sistemas disco Stirling transforman con alta eficiencia la radiación solar concentrada en energía eléctrica. Los componentes esenciales del sistema son:
• Concentrador solar parabólico.
• Intercambiador de calor solar (receptor solar).
• Motor Stirling con generador eléctrico.
· Sistema de seguimiento.
El modo de funcionamiento de un sistema de disco Stirling es el siguiente: el concentrador refleja la radiación solar hacia el receptor que está situado en el punto focal del concentrador. La radiación solar se absorbe en el receptor y este calienta el gas (helio o hidrógeno) del motor Stirling a temperaturas que rondan los 650°C. Este calor se convierte en energía mecánica en el motor Stirling. Un generador eléctrico convierte esta energía mecánica en electricidad. Para conseguir que la radiación reflejada incida en el punto focal durante todo el día, un sistema de seguimiento solar mueve el concentrador continuamente para seguir la trayectoria del sol.
La tecnología de los receptores solares se desarrolla en función del tipo de proceso en el que se vaya a utilizar, es decir, el tipo de planta y el ciclo utilizado. La invención que se presenta se refiere a la planta de recepción solar con disco y el ciclo es el de Stirling. Por supuesto, es interesante conocer los antecedentes y desarrollos previos utilizados en aplicaciones solares. Las tecnologías utilizadas para plantas solares de receptores de torre suponen un referente de aplicación.
En particular, para el disco parabólico Stirling se utilizan dos tipologías de sistemas receptores:
• Sistemas receptores externos.
• Sistemas receptores de cavidad.
Los receptores externos tienen superficies de absorción en vista directa con los concentradores y dependen de la absorción directa de la radiación. Los receptores de cavidad tienen, en cambio, una apertura a través de la cual pasa la radiación concentrada hasta alcanzar la superficie del receptor. La cavidad asegura que la mayor parte de la radiación que entra sea absorbida por la superficie interna del receptor.
Los receptores más usados para los sistemas disco Stirling son los receptores de cavidad. El receptor se sitúa detrás de la apertura para reducir la cantidad de calor perdido y para disminuir la intensidad del flujo concentrado en su superficie. La radiación concentrada que entra a través de la apertura del receptor se difunde dentro de la cavidad. La mayor parte de la energía es absorbida directamente por el receptor, y prácticamente la totalidad de la restante es reflejada o re-irradiada dentro de la cavidad para ser posteriormente absorbida.
En un receptor de cavidad, se han identificado dos métodos para transferir la radiación solar absorbida al fluido de trabajo del motor Stirling.
El primer método consiste en utilizar un receptor de tubos directamente iluminados donde pequeños tubos, a través de los cuales circula el fluido de trabajo del motor, son situados directamente en la región donde incide el flujo solar concentrado. Los tubos forman la superficie del receptor. De este modo el gas de trabajo se calienta a su paso por el interior de los tubos calentados por la radiación solar.
El segundo método, el de reflujo, usa un metal líquido como fluido intermedio de transferencia de calor. El metal líquido se vaporiza en la superficie posterior del receptor y se condensa en los tubos por los que circula el fluido de trabajo del motor. Es decir, absorbe el calor del material que forma el receptor (que está caliente por la exposición a la radiación solar) y después lo cede a los tubos por los que circula el gas de trabajo del motor. Este segundo tipo de receptor se llama de reflujo porque el vapor se condensa y vuelve para ser evaporado de nuevo.
Un factor importante del diseño del receptor es la exposición a condiciones severas de funcionamiento unido a condiciones cíclicas. La alta temperatura es el factor más importante el cual, unido al funcionamiento en ciclos, da lugar a la fatiga térmica de los componentes. La fatiga térmica está causada por los ciclos de temperatura, desde la temperatura ambiente a la de operación, tanto en los arranques y paradas como durante los momentos de nubosidad. Este tipo de ciclo puede causar fallos prematuros del receptor. Dentro del sistema receptor-cavidad, es especialmente sensible el componente receptor. El diseño de receptor de tubos, que incorpora paredes finas y opera a temperaturas uniformes durante los transitorios, suele tener menos problemas con la fatiga térmica. La fluencia a largo plazo de los materiales del receptor y la oxidación son consideraciones importantes para elegir los materiales. Se suelen utilizar superaleaciones de níquel y cromo (Inconel ®), aceros inoxidables, aleaciones de níquel y titanio, níquel y cobalto, etcétera.
Existen en el estado de la técnica numerosos documentos que desarrollan distintos receptores o aspectos de los mismos. A continuación se destacan algunos de ellos: - DE4433203 1996 HTC Solar Solar heater head for generation of electric current from solar energy (Intercambiador de calor solar para generación de corriente eléctrica) Absorbedor con material altamente conductivo y ennegrecido (oxidado) para homogeneizar la concentración de calor. Material preferiblemente de cobre, que es soldado a los tubos del intercambiador con acero inoxidable de altas prestaciones (como una camisa del tubo).
- US2002059798 2002 Midwest Research Institute Dish/stirling hybrid-receiver (Receptor híbrido para disco Stirling) Sistema híbrido de receptor con "heat pipe" de sodio. Estructura del elemento de polvo de níquel. Describe integración con sistema de quemador (híbrido).
- US6735946 2004 Boeing Direct illumination free pistón stirling engine solar cavity (Cavidad de motor Stirling con pistón directamente iluminado). Pistón directamente iluminado. Sin intercambiador de tubos. Disposición de pequeños pistones de forma concéntrica al haz solar. El receptor es un elemento metálico de material altamente conductor, como cobre, níquel o grafito. Alternativa al diseño es utilizar "heat pipes". - US6739136 2003 Boulder, CO Arvada, CO Combustión system for hybrid solar fossil fuel receiver Sistema de combustión para un receptor solar híbrido que comprende un premezclador que combina aire y combustible para formar la mezcla a quemar. Hay un intercambiador de calor asociado y en contacto con la cámara de combustión. Este intercambiador de calor proporciona el calor para el receptor híbrido cuando no se puede utilizar el calor del sol como fuente de energía.
- US6818818 2004 Plano, TX Concentrating solar energy receiver. Describe un sistema compuesto por un concentrador parabólico de alta reflectividad para reflejar los rayos del sol en su lado cóncavo y un módulo de conversión al cual llega la radiación solar concentrada. En este módulo de conversión hay dos receptores distintos; un receptor fotovoltaico y una superficie de recepción acoplada a un motor térmico para producir electricidad.
- EP0996821 2000 STM Corporation Heat engine heater assembly. Se describe un equipo diseñado para utilizar tanto la radiación solar como el calor producido por la combustión de gas natural, como fuente de energía para un motor térmico. Una carcasa que forma el receptor permite la entrada de radiación solar hasta llegar al absorbedor. Series de tubos exteriores e interiores a la cámara del receptor absorben la radiación solar y transmiten calor al fluido que circula por su interior. Un quemador dentro de la cámara produce gases de combustión que también calientan estos tubos.
US4665700 1987 STM United Stirling AB Hot gas engine heater head. El objetivo del invento es proporcionar una cabeza calentadora en la cual los regeneradores estén conectados a los cilindros por tubos que rodean a esos mismos cilindros. US4602614 1986 United Stirling, Inc. Hybrid solar/combustion powered receiver Es un receptor mejorado que incluye un intercambiador de calor dentro de la cavidad con los tubos espaciados tangencialmente. Hay múltiples quemadores para proporcionar un camino de los gases de combustión y una ventana para sellar la apertura y no existan fugas de gas fuera del receptor.
US6668555 2003 Boeing Company Solar receiver-based power generation system Este invento proporciona un diseño de receptor solar mejorado que reduce el coste de dichos mecanismos. El receptor solar incluye un heat pipe que tiene un fluido en su interior. El heat pipe tiene dos porciones de condensador dispuestas en dos extremos. Además se incluye un evaporador entre ambos extremos. Un colector de aire se acopla a uno de los extremos. Este colector tiene una entrada y una salida de aire. Un colector de líquido se acopla al otro extremo, con su respectiva entrada y salida.
US4911144 1990 Stirling Thermal Motor, Inc Spherical solar energy collector Invento relativo a un colector de energía solar y en particular a uno que comprende un evaporador de un sistema de transferencia de calor de tipo heat pipe
US4475538 1984 United Stirling AB Window for solar receiver for a solar-powered hot gas engine. Receptor solar que incluye una ventana para la entrada de la radiación solar como una mejora.
CA2490207A1 2004 Shecs Labs- Solar Hydrogen Solar energy collector. El invento es un receptor con una cavidad interna que refleja la radiación. El receptor está contenido en una atmósfera reductora o inerte para mantener las propiedades de las superficies reflexivas de la cavidad. La absorción de calor se produce en unos tubos dispuestos simétricamente respecto al eje principal del receptor. Además hay una ventana de cuarzo en la entrada del dispositivo para disminuir las pérdidas por convección. - DE19527272: Solarer Erhitzer für Stirling-Motoren. Calentador solar (1) para motor Stirling con un campo de absorción (2) de tubos paralelos (8), que se conectan a sendos colectores (4, 5) a través de los cuales circula el gas de trabajo. Siendo los tubos (8) idénticos entre ellos y de geometría en forma de lazo.
A la vista del estado de la técnica existente, la presente invención tiene como objetivo proporcionar un receptor solar que, superando las deficiencias encontradas en los anteriores diseños:
- aumente la resistencia a fatiga térmica,
- minimice las sombras entre tubos,
- que sea de tubos directamente iluminados, para simplificar el sistema evitando la inclusión de un fluido caloportador intermedio y de un intercambiador de calor adicional así como para flexibilizar el diseño óptico del concentrador y que el motor pueda funcionar en otras posiciones que no sea de espaldas al sol,
- no deje huecos entre los tubos al deformarse por dilataciones , escapándose la radiación solar concentrada por dichos huecos,
- fácilmente soldable,
- que reduzca las pérdidas de carga.
El nuevo diseño permite pues aumentar la eficiencia del disco y reducir los costes de fabricación, de operación y mantenimiento. Además ofrece la posibilidad de:
- refrigerar fácilmente ante sobretemperaturas (ventilador),
- independizar el receptor de la cavidad y de la carcasa del aislante que lo pueda cubrir, para hacerlo más versátil y facilitar el mantenimiento,
- tener la posibilidad de integrar un posible quemador de gas para hibridación,
- simplificar los procesos de fabricación y facilitar la construcción.
Descripción de la invención
La invención consiste en un nuevo receptor para disco stirling que cumpla con los requisitos anteriormente definidos.
El receptor diseñado comprende los siguientes componentes: tubos, colectores, depósitos y cúpulas.
- Tubos: Los tubos forman la superficie donde incide el haz de luz solar concentrada. Se disponen muy próximos unos a otros para que la superficie presente pocos huecos y se pueda aprovechar al máximo la radiación incidente.
Colectores: Los colectores son las zonas donde se sueldan los tubos, de forma que el flujo que discurre por los tubos se comunica con los depósitos. Depósitos: Los depósitos son las zonas interiores de los colectores, desde aquí se distribuye el gas de trabajo a cada uno de los tubos.
Cúpulas: Existen dos cúpulas: la encargada de alojar en su interior el regenerador (o intercambiador de calor capaz de absorber calor del gas de trabajo, almacenarlo y transferirlo al mismo para cerrar el ciclo siendo, de los intercarmbiadores que contiene el motor, el que mayor volumen de energía térmica maneja) y la cúpula de expansión (o del domo), que es la zona donde el gas de trabajo se encuentra a una mayor temperatura.
El diseño de receptor reivindicado en esta invención, denominado modelo cóncavo, está compuesto por una serie de tubos que salen perpendicularmente de un colector y llegan perpendicularmente al otro. En este modelo existen dos tipos de tubos ligeramente diferentes entre si. Ambos tipos tienen una parte recta desde el interior de cada colector hasta el lugar donde comienza la curvatura del tubo. La parte central de cada tubo es un arco de circunferencia. La única diferencia entre los dos tipos de tubos radica en el valor del radio de este arco de circunferencia.
La curvatura de los tubos permite que la radiación que incide desde el concentrador solar se distribuya mejor a lo largo de toda la superficie de los tubos. Según los mapas de radiación tomados sobre un plano, la mayor intensidad de radiación se da en el centro de dicho plano. Este modelo tiene la característica de que la parte central de los tubos es la más alejada respecto al plano de los colectores. Como consecuencia, los picos de radiación que se producían en la parte central del receptor se ven reducidos. Al distribuirse mejor la radiación, la temperatura también se distribuirá mejor a lo largo de los tubos.
La forma curvada de los tubos permite la dilatación de estos sin crear excesivas tensiones en el material, contando el receptor con una cierta flexibilidad y siendo la fabricación de los tubos sencilla.
Los colectores se sitúan de forma que la superficie de unión con los tubos sea perpendicular a estos. Si se mira la superficie formada por los tubos desde la dirección en la que incide la radiación solar, el hueco entre un tubo y el siguiente es el necesario para que la distancia entre puntos de soldadura de los colectores sea lo suficientemente grande para permitir su fabricación.
Los tubos de un tipo se sueldan en columna formando una hilera vertical de puntos de soldadura en el colector, siendo esta hilera paralela a la hilera en la que se sitúan los tubos del segundo tipo. La soldadura de los tubos a los colectores no plantea ningún problema ya que la distancia entre los agujeros o puntos de soldadura de los colectores es suficiente para realizar esta operación con facilidad.
Con este diseño, no existe ninguna zona de los tubos que esté sombreada por otros tubos.
Por todo ello y a la vista de las simulaciones realizadas, se puede concluir que el comportamiento general de este modelo es mucho mejor que el de los conocidos del estado de la técnica, pues distribuye de modo eficiente las tensiones y deformaciones provocadas por la temperatura teniendo los tubos una flexibilidad mayor que lo conocido hasta el momento.
Otro aspecto que cabe destacar es que la contribución de la presión del gas a las tensiones que debe de soportar el receptor es despreciable respecto a las tensiones causadas por las altas temperaturas. Se puede decir que el modelo diseñado se comporta mejor que los antiguos frente a las cargas térmicas.
Sin embargo, existen puntos críticos a la fatiga en la zona de conexión de los tubos al colector debido a que se encuentra una zona flexible (el tubo) con una zona mucho más rígida (el colector). Esto presenta un problema, ya que cuando el tubo se dilata está restringido por la rigidez del colector y se crea un punto donde puede aparecer la fractura debido a la fatiga.
Para solucionar este problema localizado hay varias soluciones:
- Reducir el espesor de la zona de conexión de los tubos para aumentar la flexibilidad del colector en esa zona.
- Colocar un casquillo o segmento de tubo (por soldadura, sinterizado u otros métodos) en cada uno de los tubos del receptor en la zona de unión a los colectores, lo que conlleva un aumento del espesor de los tubos en la zona más débil, así como a una rigidización local de la unión, sirviendo como transición entre las dos zonas de rigideces distintas.
A la vista de los resultados obtenidos para cada una de las dos soluciones adoptadas para mejorar la vida a fatiga se puede ver que la mejor solución a priori es la de la colocación del casquillo ya que el número de ciclos que resiste se multiplica por cinco con respecto al caso sin casquillo.
En cuanto al proceso de fabricación de los receptores así diseñados, comprende las siguientes etapas:
- Recepción de tubos
- Doblado de tubos - Ensamblaje de tubos a colector con soldadura por horno
- Soldadura TIG / plasma / láser para soldar los depósitos (realizados como unión de chapas) a los colectores
- Soldadura TIG / plasma / láser para soldar las cúpulas (realizadas a partir de un bloque de material) a los depósitos.
Así pues, el modelo de receptor presentado así como su procedimiento de fabricación, cumplen con las restricciones de diseño y mejoran el comportamiento termo-mecánico global de los receptores conocidos del estado de la técnica.
Descripción de los dibujos
Para completar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de la invención, se acompaña un juego de dibujos donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 : Receptor solar del estado de la técnica. Patente DE19527272.
Figura 2: Receptor solar cóncavo. Planta, alzado y perfil.
Figura 3: Vista en perspectiva del receptor cóncavo
Figura 4: Detalle de los tubos
Figura 5: Colector del receptor cóncavo
Siendo los elementos a los que hacen alusión las referencias:
I . Tubos
2. Colectores
3. Cúpula de expansión o del domo
4. Cúpula del regenerador
10. Tubos tipo 1
I I . Tubos tipo 2
12. Parte recta de los tubos
13. Parte central curvada del tubo
20. Hilera de puntos de unión de tubos tipo 1 al colector
2 . Hilera de puntos de unión de tubos tipo 2 al colector
22. Punto de unión o soldadura tubo-colector
Realización preferente de la invención
Para lograr una mayor comprensión de la invención a continuación se va a describir el nuevo diseño de receptor para disco Stirling, según una realización preferente.
En la figura 1 se muestra el diseño de un receptor del estado de la técnica, correspondiente a la patente DE19527272, en el que se puede ver que dicho receptor está formado por los tubos (1), los colectores (2), la cúpula de expansión o del domo (3) y la cúpula que alberga el regenerador (4). En este caso los tubos (1) son idénticos entre ellos y de geometría en forma de lazo.
El receptor reivindicado, representado en las figuras 2-5, cuenta con un diseño considerablemente distinto del anterior y cumple con las siguientes características generales:
- Materiales comerciales utilizados: aleaciones a base de níquel-cromo (Inconel ® 625 o Multimet ®).
- Tubos a utilizar: diámetro exterior 3 mm. y espesor 0.5 mm.
- Colectores en chapa de 3 mm.
En las figuras 2 y 3 se muestran las diferentes vistas del receptor. Está compuesto por una serie de tubos cóncavos (1) que salen perpendicularmente de un colector (2) y llegan perpendicularmente al otro colector (2). En este modelo existen dos tipos de tubos (10, 11) ligeramente diferentes entre si.
Como se aprecia en la figura 3, los colectores (2) están girados respecto de la vertical de tal modo que las caras en las que se efectúa la soldadura de los tubos (10, 11) no están enfrentadas.
En la figura 4 se observan los detalles. Ambos tipos de tubos (10, 11) tienen una parte recta (12) de unos 40 mm desde el interior de cada colector hasta el lugar donde comienza la curvatura del tubo. La parte central (13) de cada tubo es un arco de circunferencia de 40°. La única diferencia entre los dos tipos de tubos (10, 11) radica en el valor del radio de esta circunferencia (315 mm, 319 mm).
Los colectores (2), como el que se detalla en la figura 5, se sitúan de forma que la superficie de unión con los tubos (1) sea perpendicular a estos (2). De esta forma, en la vista en planta de la figura 2 se observa que el ángulo que forman los tubos (1) con la horizontal (líneas horizontales de suelo representadas en la figura 2, alzado y planta) a la altura de la soldadura, es de 20°. Del mismo modo, el ángulo que forman los colectores (2) y la horizontal será también 20°.
Si se mira la superficie formada por los tubos (1) desde la dirección en la que incide la radiación solar, el hueco entre un tubo y el siguiente es de 1.15 mm. Estos huecos se han tenido que incluir en el diseño para que la distancia entre puntos de soldadura (22) de los colectores (2) sea lo suficientemente grande como para facilitar la operación de soldadura.
En la figura 5 se detallan los puntos de unión (22) de los tubos (1) a los colectores (2) y se comprueba como los tubos del tipo 1 (10) se sitúan en una misma hilera vertical (20) del colector (2), siendo esta hilera (20) paralela a la hilera (21) que forman los tubos del tipo 2 (11), no llegando a entrar en contacto los tubos de una y otra hilera.
Como se explicó anteriormente, existen puntos críticos a la fatiga, debido a que al tener los tubos (10, ) una geometría tan flexible en la zona de conexión de los tubos se encuentra una zona flexible (el tubo, 1) con una zona mucho más rígida (el colector, 2). Esto presenta un problema, ya que cuando el tubo (1) se dilata está restringido por la rigidez del colector (2) y se crea un punto donde puede aparecer la fractura debido a la fatiga.
Para solucionar este problema localizado se coloca un caequillo en el punto crítico que sirva como transición entre las dos zonas de rigideces distintas (no aparece en las figuras).
Así pues, está realización cumple con todos los requisitos de diseño establecidos y mejora la eficiencia del sistema sin incrementar el coste.
Aunque este sistema está especialmente diseñado para su aplicación en receptores de disco Stirling no se descarta su extensión a otros campos de la industria que requieran características similares.

Claims

REIVINDICACIONES
1. Receptor cóncavo para disco Stirling cuyos componentes principales son los tubos (1), en cuya superficie incide el haz de luz solar concentrada, los colectores (2) en los cuales se sueldan los extremos de los tubos (1) y comunican el fluido que discurre por los tubos con los depósitos, los depósitos que son las zonas interiores de los colectores (2) y desde donde se distribuye el fluido de trabajo a cada uno de los tubos (1) y las cúpulas, tanto la cúpula (4) encargada de alojar en su interior el regenerador como la cúpula de expansión (3) que es la zona donde el fluido de trabajo se encuentra a una mayor temperatura, caracterizado porque los tubos (1) salen perpendicularmente de un colector (2) y llegan perpendicularmente al otro (2) y tienen una parte recta (12) que discurre desde el interior de cada colector (2) hasta el lugar donde comienza la curvatura del tubo y una parte central (13) en forma de arco de circunferencia.
2. Receptor cóncavo para disco Stirling según reivindicación 1 caracterizado porque los tubos (1) no tienen ninguna zona sombreada por otros tubos.
3. Receptor cóncavo para disco Stirling según reivindicación 1 caracterizado porque la parte recta (12) de los tubos (1) es de unos 40mm y la parte central (13) de cada tubo es un arco de circunferencia de 40°.
4. Receptor cóncavo para disco Stirling según reivindicación 1 caracterizado porque los tubos (1) se unen a los colectores (2) mediante puntos de soldadura.
5. Receptor cóncavo para disco Stirling según reivindicación 4 caracterizado porque el ángulo que forman los tubos (1) con la horizontal, a la altura de la soldadura, es de 20° y el ángulo que forman los colectores (2) y la horizontal será también 20°.
6. Receptor cóncavo para disco Stirling según reivindicación 4 caracterizado porque si se mira la superficie formada por los tubos (1) desde la dirección en la que incide la radiación solar, el hueco entre un tubo y el siguiente es tal que la distancia entre puntos de soldadura (22) de los colectores (2) es lo suficientemente grande como para facilitar la operación de soldadura.
7. Receptor cóncavo para disco Stirling según reivindicación 6 caracterizado porque el hueco entre un tubo y el siguiente es de 1.15mm.
8. Receptor cóncavo para disco Stirling según reivindicación 1 caracterizado porque existen dos tipos de tubos (10, 11) siendo la única diferencia entre los dos tipos el valor del radio del arco de circunferencia central (13).
9. Receptor cóncavo para disco Stirling según reivindicación 8 caracterizado porque el primer tipo de tubos (10) tienen un radio del arco de la circunferencia de 315 mm y el segundo tipo (11 ) de 319 mm.
10. Receptor cóncavo para disco Stirling según reivindicación 8 caracterizado porque los tubos de un tipo (10) se sueldan al colector (2) en columna formando una hilera vertical (20) de puntos de soldadura (22), siendo esta hilera (20) paralela a la hilera (21) de puntos de soldadura (22) en la que se sueldan los tubos del segundo tipo (11) al colector (2).
11. Receptor cóncavo para disco Stirling según reivindicación 1 caracterizado porque los materiales utilizados son aleaciones a base de níquel-cromo (como los comercializados Inconel ® 625 o Multimet ®).
12. Receptor cóncavo para disco Stirling según reivindicación 1 caracterizado porque los tubos (1) a utilizar tienen un diámetro exterior de 3 mm. y un espesor 0.5 mm y los colectores (2) son de chapa de 3 mm.
13. Receptor cóncavo para disco Stirling según reivindicación 1 caracterizado porque un caequillo o segmento de tubo va unido por soldadura, sinterizado u otros métodos, a cada uno de los tubos (1) del receptor en la zona de unión con los colectores (2), sirviendo como transición entre las dos zonas de rigideces distintas.
14. Método de fabricación del receptor cóncavo para disco Stirling descrito en las reivindicaciones anteriores que comprende las siguientes etapas:
Recepción de tubos
Doblado de tubos
Ensamblaje de tubos a colector con soldadura por horno
Soldadura TIG / plasma / láser para soldar los depósitos (realizados como unión de chapas) a los colectores
Soldadura TIG / plasma / láser para soldar las cúpulas (realizadas a partir de un bloque de material) a los depósitos.
PCT/ES2011/000179 2010-06-02 2011-06-01 Receptor cóncavo para disco stirling y método de fabricación WO2011151488A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11789294.3A EP2578961A1 (en) 2010-06-02 2011-06-01 Concave receiver for stirling dish and manufacturing method therefor
US13/701,160 US9080790B2 (en) 2010-06-02 2011-06-01 Concave receiver for stirling dish and method for manufacturing the same
ZA2012/08956A ZA201208956B (en) 2010-06-02 2012-11-27 Concave receiver for stirling dish and manufacturing method therefor
IL223322A IL223322A (en) 2010-06-02 2012-11-28 Cylindrical solar receiver for Stirling disk and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000730 2010-06-02
ES201000730A ES2370731B1 (es) 2010-06-02 2010-06-02 Receptor cóncavo para disco stirling y método de fabricación.

Publications (1)

Publication Number Publication Date
WO2011151488A1 true WO2011151488A1 (es) 2011-12-08

Family

ID=45066216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000179 WO2011151488A1 (es) 2010-06-02 2011-06-01 Receptor cóncavo para disco stirling y método de fabricación

Country Status (7)

Country Link
US (1) US9080790B2 (es)
EP (1) EP2578961A1 (es)
CL (1) CL2012003370A1 (es)
ES (1) ES2370731B1 (es)
IL (1) IL223322A (es)
WO (1) WO2011151488A1 (es)
ZA (1) ZA201208956B (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108005810B (zh) * 2017-12-29 2024-05-07 天津绿能通汇科技发展有限公司 太阳能斯特林发动机的整体式加热器组件
CN109945513B (zh) * 2018-08-05 2020-02-21 青岛鑫众合贸易有限公司 一种加热药液的槽式太阳能集热系统
CN109945517B (zh) * 2018-08-05 2020-04-07 青岛鑫众合贸易有限公司 一种用于加热药液的槽式太阳能集热系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475538A (en) 1983-11-30 1984-10-09 United Stirling Ab Window for solar receiver for a solar-powered hot gas engine
US4485803A (en) * 1982-10-14 1984-12-04 The Babcock & Wilcox Company Solar receiver with interspersed panels
US4602614A (en) 1983-11-30 1986-07-29 United Stirling, Inc. Hybrid solar/combustion powered receiver
US4665700A (en) 1984-01-18 1987-05-19 United Stirling Ab Hot gas engine heater head
US4911144A (en) 1989-05-01 1990-03-27 Stirling Thermal Motors, Inc. Spherical solar energy collector
DE4433203A1 (de) 1994-09-17 1996-03-21 Htc Solar Forschung Solarerhitzerkopf
DE19527272A1 (de) 1995-07-26 1997-01-30 Solo Kleinmotoren Gmbh Solarer Erhitzer für Stirling-Motoren
EP0996821A1 (en) 1997-07-14 2000-05-03 Stm Corporation Heat engine heater assembly
US20020059798A1 (en) 2000-08-03 2002-05-23 Mehos Mark S. Dish/stirling hybrid-receiver
US6668555B1 (en) 2002-12-09 2003-12-30 The Boeing Company Solar receiver-based power generation system
US6735946B1 (en) 2002-12-20 2004-05-18 The Boeing Company Direct illumination free piston stirling engine solar cavity
US6818818B2 (en) 2002-08-13 2004-11-16 Esmond T. Goei Concentrating solar energy receiver
CA2490207A1 (en) 2004-12-15 2006-06-15 Shec Labs - Solar Hydrogen Energy Corporation Solar energy collector
EP2218978A1 (fr) * 2009-02-17 2010-08-18 Cockerill Maintenance & Ingéniérie Echangeur de chaleur en drapeau.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233957A (en) * 1978-02-16 1980-11-18 Corning Glass Works Solar energy collector
US5404723A (en) * 1991-03-12 1995-04-11 Solar Reactor Technologies, Inc. Fluid absorption receiver for solar radiation to power a Stirling cycle engine
US6485152B2 (en) * 2000-05-05 2002-11-26 Doug Wood Matrix solar dish
US7263992B2 (en) * 2005-02-10 2007-09-04 Yaoming Zhang Volumetric solar receiver
WO2009146215A2 (en) * 2008-04-18 2009-12-03 Sopogy, Inc. Parabolic trough solar energy collection system
US20100258112A1 (en) * 2009-04-10 2010-10-14 Victory Energy Operations LLC Generation of steam from solar energy

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485803A (en) * 1982-10-14 1984-12-04 The Babcock & Wilcox Company Solar receiver with interspersed panels
US4475538A (en) 1983-11-30 1984-10-09 United Stirling Ab Window for solar receiver for a solar-powered hot gas engine
US4602614A (en) 1983-11-30 1986-07-29 United Stirling, Inc. Hybrid solar/combustion powered receiver
US4665700A (en) 1984-01-18 1987-05-19 United Stirling Ab Hot gas engine heater head
US4911144A (en) 1989-05-01 1990-03-27 Stirling Thermal Motors, Inc. Spherical solar energy collector
DE4433203A1 (de) 1994-09-17 1996-03-21 Htc Solar Forschung Solarerhitzerkopf
DE19527272A1 (de) 1995-07-26 1997-01-30 Solo Kleinmotoren Gmbh Solarer Erhitzer für Stirling-Motoren
EP0996821A1 (en) 1997-07-14 2000-05-03 Stm Corporation Heat engine heater assembly
US20020059798A1 (en) 2000-08-03 2002-05-23 Mehos Mark S. Dish/stirling hybrid-receiver
US6739136B2 (en) 2000-08-03 2004-05-25 Midwest Research Institute Combustion system for hybrid solar fossil fuel receiver
US6818818B2 (en) 2002-08-13 2004-11-16 Esmond T. Goei Concentrating solar energy receiver
US6668555B1 (en) 2002-12-09 2003-12-30 The Boeing Company Solar receiver-based power generation system
US6735946B1 (en) 2002-12-20 2004-05-18 The Boeing Company Direct illumination free piston stirling engine solar cavity
CA2490207A1 (en) 2004-12-15 2006-06-15 Shec Labs - Solar Hydrogen Energy Corporation Solar energy collector
EP2218978A1 (fr) * 2009-02-17 2010-08-18 Cockerill Maintenance & Ingéniérie Echangeur de chaleur en drapeau.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199710, Derwent World Patents Index; AN 1997-100879, XP003030231, RETRIEVED *

Also Published As

Publication number Publication date
CL2012003370A1 (es) 2013-08-09
US9080790B2 (en) 2015-07-14
ZA201208956B (en) 2013-07-31
IL223322A (en) 2015-09-24
EP2578961A1 (en) 2013-04-10
IL223322A0 (en) 2013-02-03
ES2370731B1 (es) 2012-08-06
US20130125875A1 (en) 2013-05-23
ES2370731A1 (es) 2011-12-22

Similar Documents

Publication Publication Date Title
US8613278B2 (en) Solar thermal receiver for medium- and high-temperature applications
JP5145461B2 (ja) 太陽熱受熱器
ES2375389B1 (es) Planta de concentración solar tipo fresnel con reconcentrador secundario optimizado.
ES2711835T3 (es) Módulo para absorbedor térmico de receptor solar, absorbedor que consta de al menos tal módulo y receptor que consta de al menos tal absorbedor
ES2646926T3 (es) Colector solar para caldera de calor solar, y caldera de calor solar de tipo torre equipada con el mismo
CN113776203A (zh) 用于太阳能接收器的集中器
CN103282728B (zh) 特别是用于抛物线日光集中器等的类型的日光接收器
ES2302485B1 (es) Colectores cilindro-parabolicos de energia solar termica con tubo fijo no rotativo.
WO2013068607A1 (es) Captador solar con turbina solar o con turbocompresor
ES2441848T3 (es) Sistema de producción y de almacenamiento de energía eléctrica y térmica a partir de una cicloturbina
WO2011151488A1 (es) Receptor cóncavo para disco stirling y método de fabricación
US20160327312A1 (en) Linear receivers for solar collectors
ES2370730B1 (es) Receptor solar de serpentín para disco stirling y el método de fabricación.
CN102422098B (zh) 用于太阳能热电设施的吸气剂支撑结构
EP4045855B1 (en) Heat receiver for urban concentrated solar power
WO2013168074A1 (en) Concentration solar thermodynamic plant
WO2013098453A1 (es) Concentrador solar
US20120160232A1 (en) Solar concentrating heat receiver and system thereof
US20210088255A1 (en) Concentrating solar power module
JP2011007150A (ja) 受熱器
US20140238386A1 (en) Radiation absorbing metal pipe
WO2012059605A1 (es) Colector solar con receptor multitubular, plantas termosolares que contienen dicho colector y método de operación de dichas plantas
GOUTAM Experimental Investigation of Glass-Metal Evacuated Tube for Solar Water Heating Application
Khokhar et al. A Research: High Efficiency Solar Thermal Power Plant
CN102486343B (zh) 内聚光真空太阳能集热管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 223322

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011789294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011789294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13701160

Country of ref document: US