WO2011150763A1 - 微小区创建方法及基站 - Google Patents

微小区创建方法及基站 Download PDF

Info

Publication number
WO2011150763A1
WO2011150763A1 PCT/CN2011/074714 CN2011074714W WO2011150763A1 WO 2011150763 A1 WO2011150763 A1 WO 2011150763A1 CN 2011074714 W CN2011074714 W CN 2011074714W WO 2011150763 A1 WO2011150763 A1 WO 2011150763A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
base station
directional antenna
cell
micro cell
Prior art date
Application number
PCT/CN2011/074714
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011150763A1 publication Critical patent/WO2011150763A1/zh
Priority to US13/717,155 priority Critical patent/US8750890B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • Microcell creation method and base station The present application claims priority to Chinese Patent Application No. 201010254366.3, entitled “Microcell Creation Method and Base Station”, filed on August 13, 2010, the entire contents of which are incorporated by reference. Combined in this application. Technical field
  • the present invention relates to the field of mobile communications technologies, and in particular, to a micro cell creation method and a base station.
  • Mobile communication networks typically employ a cellular system, i.e., different base stations are erected at different locations, each base station forming a cell responsible for the communication of mobile users at that location.
  • a cellular system i.e., different base stations are erected at different locations, each base station forming a cell responsible for the communication of mobile users at that location.
  • microcells are usually set up in hotspots, and micro-zones provide services to mobile users in hotspots.
  • the mobile communication network in the prior art is usually a multi-layer cell structure (Heterogeneous Network, HetNet).
  • the macro base station is used to create a macro cell (Macro-Cell) to implement a wide range of continuous network coverage, and then the micro base station is used to create a micro cell in the hot spot area for overlapping coverage, and the micro cell provides a higher system capacity.
  • a macro cell Micro-Cell
  • the micro base station is used to create a micro cell in the hot spot area for overlapping coverage, and the micro cell provides a higher system capacity.
  • the inventor found that the micro cell in the hot spot is created by the micro base station, and it is necessary to find a suitable site in the hot spot to set up the micro base station. If the hotspot area changes, the micro-base station needs to be relocated to form a network coverage for the hotspot area, resulting in inflexible networking mode and increased network maintenance cost. Summary of the invention
  • the invention provides a micro cell creation method and a base station, which can create a micro cell covering a hot spot area without re-selecting a suitable site when a hot spot changes.
  • a method for creating a micro cell according to an embodiment of the present invention includes:
  • An embodiment of the present invention further provides a method for creating a micro cell, including:
  • the embodiment of the present invention further provides a base station, including:
  • a first macro cell communication unit configured to form a macro cell coverage
  • micro cell communication unit includes:
  • a first beamforming module configured to set a beam width and a beam direction of the high directional antenna according to the location information of the hot spot area
  • a first micro cell communication processing module configured to form a micro cell coverage on the hot spot area by using a beam formed by the high directional antenna.
  • the embodiment of the invention further provides a base station, including:
  • a second macro cell communication unit configured to form a macro cell coverage
  • micro cell communication unit includes:
  • a second beamforming module configured to set a beamwidth and a beam direction of the high directional antenna according to the location information of the relay station;
  • the second micro cell communication processing module provides a relay link between the relay station and the base station by using a beam formed by the high directional antenna.
  • the beam width and beam pointing of the high directional antenna are set according to the location information of the hot spot area, and the beam formed by the high directional antenna directly forms a micro area coverage for the hot spot area.
  • the location of the base station device can be kept unchanged, and the beam width and beam pointing of the high directional antenna can be adjusted by adjusting the site address of the micro eNB.
  • the coverage of micro-zones in hotspots is realized, the networking mode is flexible, and the network maintenance costs are relatively low.
  • Embodiment 1 is a flowchart of a method for creating a micro cell according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of an array antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing spatial coordinates of array elements in an array antenna according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for forming a micro cell coverage in a hotspot area by using a beam formed by a highly directional antenna according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of an equivalent MIMO channel between a micro cell and a macro cell according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of eliminating a downlink interference signal in a cell creation method according to an embodiment of the present invention
  • 8 is a flowchart of a cell creation method according to Embodiment 2 of the present invention
  • FIG. 9 is a flowchart of a method for providing a relay link between a relay station and a micro base station by using a beam formed by a high directional antenna in Embodiment 2 of the present invention
  • FIG. 10 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural diagram of a micro cell communication processing module in a base station according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
  • FIG. 13 is a schematic structural diagram of a second micro cell communication processing module in a base station according to Embodiment 4 of the present invention. detailed description
  • Embodiments of the present invention provide a method for creating a micro cell and a base station.
  • the technical solutions in the embodiments of the present invention will be clearly and completely described in conjunction with the drawings in the embodiments of the present invention. Some embodiments, rather than all of the embodiments, are invented. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a flowchart of a method for creating a micro cell according to Embodiment 1 of the present invention.
  • the macro base station provides a seamless continuous coverage of the macro cell in the area
  • the method for creating the micro area based on the coverage of the macro cell network may include:
  • the embodiment of the present invention can obtain location information of a hotspot area in a macro cell network, and then A beamforming algorithm is used to set the beamwidth and beam pointing of the highly directional antenna based on the location information of the hotspot area.
  • the hotspot area in the macro cell network can be obtained in a pre-obtained manner.
  • the hotspot area in the macro cell network can also be learned by counting the traffic distribution in the entire macro cell.
  • the beam corresponding to the beam width and the beam direction may cover the hot spot area.
  • the location information of the hotspot area may include the area and shape of the hotspot area, the azimuth of the hotspot area relative to the location of the base station, and the like.
  • the executor of the method in the first embodiment of the present invention may be a micro base station.
  • the location of the micro base station is referred to as the site address of the base station, and the site address of the base station may be the same as the site address of the macro base station.
  • the foregoing functions of the micro base station may be implemented by the macro base station adding a corresponding device, that is, the macro base station.
  • the macro-cell coverage of the area is provided, and the newly added device in the macro base station also provides the micro-area coverage of the hotspot area.
  • the executor of the present invention may be a macro base station, and the newly added equipment in the macro base station may be equivalent to Base station. Therefore, the execution subject of the embodiments of the present invention does not constitute a limitation of the embodiments of the present invention.
  • a beam formed by a highly directional antenna forms a microcell coverage for a hot spot.
  • the embodiment of the present invention can form a micro-area coverage for a hotspot area by using a highly directional beam formed by a highly directional antenna.
  • the beam formed by the high directional antenna provides multiple physical channels such as a common control channel, a dedicated control channel, and a traffic channel of the micro cell, and the beam is also used to transmit data between the user equipment and the micro base station in the hot spot.
  • the type of micro cell can be a pico cell (Pico-Cell) and milli! ⁇ Cell (Femto-Cell).
  • the wave of the high directional antenna is set according to the location information of the hot spot area. Beam width and beam pointing, and the beam formed by the highly directional antenna directly forms microcell coverage for the hot spot.
  • the location of the micro cell base station device remains unchanged, and the micro area of the hot spot area can be realized by adjusting the beam width and beam pointing of the high directional antenna. Coverage, flexible networking, and low network maintenance costs.
  • FIG. 2 is a schematic diagram of an array antenna according to an embodiment of the present invention.
  • the high directional antenna for creating the micro cell may be an array antenna, and may of course be other types of antennas.
  • the high directional antenna may be a parabolic antenna.
  • a linear array is employed, a sector cell can be formed since no beam is formed in the vertical direction.
  • the 32-element 8 x4 uniform planar array can form a narrow beam simultaneously in both horizontal and vertical directions, that is, 3D beamforming, that is, horizontally Beams are formed with the vertical scheme so that microcells can be better generated.
  • the circular array shown in Figure 2 (b) and the three-dimensional grid array antenna shown in Figure 2 (c) can also achieve 3D beamforming.
  • FIG. 3 is a schematic diagram showing spatial coordinates of array elements in an array antenna according to an embodiment of the present invention.
  • the origin of the coordinates is the array element numbered 1, and the mth array element is located, ⁇ , ⁇ » if the far-field signal is reached
  • the direction is ⁇ , ⁇ , then the signal can be expressed as the following vector form:
  • phase difference ⁇ ⁇ ⁇ ⁇ , indicating the phase difference between the signals of the array elements
  • the phase difference It is determined by the function of the element position and the direction of arrival, ⁇ , ⁇ , ⁇ , Z J .
  • the phase difference of each array element signal can be expressed as the following direction vector form: ⁇ 2 ⁇ , ⁇ ) by weighting and summing the complex element vectors, ⁇ ⁇ ⁇ , w ') for each array element signal, can
  • the useful signal from the direction of arrival ( ⁇ ) can be maximized and the interference signals in other directions can be suppressed.
  • This process is equivalent to generating a specific direction for the entire array antenna.
  • Beam This weighted summation operation can be implemented either on the RF signal or on the baseband, where implementation on the baseband is commonly referred to as digital beamforming. Beamforming can be achieved in both directions.
  • the beamforming algorithm i.e., the calculation method of the weight vector w, is now available in a number of well-established algorithms, and the present invention is not limited to a particular beamforming algorithm.
  • the beam in the present invention is not tracking the user, but merely forms a relatively fixed beam pointing to certain hotspots, due to a period of time (hours, days or For several months, etc.) Hotspots are relatively fixed, and there is no need to dynamically change the beam dynamically every radio frame. Therefore, the embodiment of the present invention can directly implement beamforming on the radio frequency without performing digital beamforming on the baseband, so the cost is low, and each beam only needs to perform one baseband processing, and the complexity is small.
  • the transmitted signal vector is:
  • the received signal of the user equipment in the direction of arrival ( , ) can be expressed as:
  • the uplink reception direction can also be implemented in a similar manner.
  • the uplink and downlink direction that is, the transmission and reception direction
  • the same or different beamforming vectors can be used.
  • the beam pointing and beam width can be completed by adjusting the beamforming weight coefficient (generally phase).
  • the beam pointing can also be accomplished by means of the downtilt angle, horizontal direction, etc. of the ESD antenna.
  • FIG. 4 is a flowchart of a method for forming micro-area coverage in a hotspot area by using a beam formed by a highly directional antenna according to Embodiment 1 of the present invention.
  • the downlink data signal of the micro cell and the downlink data signal of the macro cell may have interference
  • the step of forming the micro cell coverage by using the beam formed by the high directional antenna to the hot spot area may specifically include:
  • B1 Perform multi-user multiple input and multiple output precoding on the downlink data signal of the micro cell and the downlink data signal of the macro cell.
  • the embodiment of the present invention can perform multiple user-multiple input multiple output (MU-MIMO) precoding on the downlink data signal of the micro cell and the downlink data signal of the macro cell.
  • MU-MIMO multiple user-multiple input multiple output
  • the downlink data signal of the precoded micro cell is transmitted to the user equipment of the hot spot area by using the beam formed by the high directional antenna.
  • the embodiment of the present invention uses the beam formed by the high-directional antenna to transmit the downlink data signal of the pre-coded micro area to the user equipment of the hot spot area.
  • the interference of the downlink data signal of the macro cell to the downlink data signal of the micro cell can be eliminated, and the system capacity can be further improved.
  • interference may occur between the uplink signal of the macro cell and the uplink signal of the micro cell.
  • step A2 may further include:
  • step B3 Perform multi-input and multi-output detection on the uplink received signal of the macro cell and the uplink received signal of the micro-region received by the beam formed by the high-directional antenna to acquire the uplink data signal of the micro cell.
  • the uplink data received by the macro cell and the uplink received signal of the micro cell received by the beam formed by the high directional antenna may be subjected to multiple input and multiple detection to obtain the uplink data signal of the micro cell. It should be noted that there is no strict execution order between step B3 and steps B1 and B2 in the embodiment of the present invention, that is, step B3 may be performed before step B1 or may be performed between steps B1 and B2.
  • the interference of the uplink signal of the macro cell to the uplink signal of the micro cell can be eliminated, and the system capacity can be further improved.
  • FIG. 5 is a schematic diagram of an equivalent MIMO channel between a micro cell and a macro cell in an embodiment of the present invention.
  • the macro base station and the micro base station can share the same address and use different antennas, and the macro base station and the micro base station and their corresponding user equipments form an equivalent multiple input multiple (Multiple Input Multiple) Output, MIMO) channel.
  • MIMO Multiple Input Multiple
  • are the macro cell to the macro cell user equipment (Macro User Equipment, Macro-UE), and the channel coefficient of the Pico User Equipment (Pico-UE), respectively
  • are the macro base station to Pi C0 -UE, and channel coefficients of the micro base station to the Macro-UE.
  • the signals from the macro base station to the Macro-UE and the micro base station to the Pico-UE are useful signals
  • the signals from the macro base station to the Pico-UE and the micro base station to the Macro-UE are interference signals
  • the coding technique by designing a suitable precoding vector, can suppress or even eliminate interference signals.
  • FIG. 6 is a schematic diagram of eliminating downlink interference signals in a cell creation method according to an embodiment of the present invention.
  • the downlink processing of interference cancellation is performed by using MU-MIMO precoding.
  • the downlink data signal of the micro cell and the downlink data signal of the macro cell are first pre-coded by the MU-MIMO precoding unit, and then the downlink data signal of the precoded micro cell is beamformed to form a micro cell downlink transmission signal.
  • the downlink data signal of the pre-coded macro cell is transmitted by the antenna of the macro base station to form a macro cell downlink transmission signal and transmitted.
  • FIG. 7 is a schematic diagram of eliminating an uplink interference signal in a cell creation method according to an embodiment of the present invention.
  • the uplink direction and the downlink direction have duality.
  • the signals of the Macro-UE to the macro base station and the Pico-UE to the micro base station are useful signals
  • the Pico-UE to the macro base station and the Macro-UE are
  • the signal of the micro base station is an interference signal
  • the MIMO detection technology can suppress or even eliminate the interference signal on the base station side.
  • the MIMO detecting unit eliminates interference and separates the respective useful signals.
  • FIG. 8 is a flowchart of a method for creating a cell according to Embodiment 2 of the present invention.
  • the macro cell provides a seamless continuous coverage of the area
  • the method for creating the micro area based on the macro cell network coverage provided by the embodiment of the present invention may include:
  • the embodiment of the present invention can obtain location information of a relay station in a macro cell network, and then use a beamforming algorithm to set a beamwidth and beam direction of the high directional antenna according to the location information of the relay station.
  • the relay station is located in the hotspot area, and the location of the base station is the address of the base station, where the address of the base station can be the same as the address of the macro base station. Additionally, a beam corresponding to the beamwidth and beam pointing can be directed to the relay station.
  • the location information of the relay station may include the location of the relay station relative to the base station Azimuth and so on.
  • the hotspot area in the macro cell network can be obtained in a pre-obtained manner; in an embodiment, the hotspot area in the macro cell network can also be learned by counting the traffic distribution in the entire macro cell.
  • a beam formed by a highly directional antenna provides a relay link between the relay station and the micro base station.
  • embodiments of the present invention may utilize a highly directional beam formed by a highly directional antenna to provide a relay link between the relay station and the micro base station.
  • the relay station provides microcell coverage in the hotspot area according to the relay link.
  • the relay link between the relay station and the micro base station provides multiple physical channels such as a common control channel, a dedicated control channel, and a traffic channel of the micro cell, and the relay link is also used to transmit user equipment and the micro base station in the hot spot area. Between the data.
  • the type of the micro cell may be a pico cell and a femto cell.
  • the executor of the method in the second embodiment of the present invention may be a micro base station.
  • the location of the micro base station is referred to as the site address of the base station, and the site address of the base station may be the same as the site address of the macro base station.
  • the foregoing functions of the micro base station may be implemented by the macro base station adding a corresponding device, that is, the macro base station.
  • the macro-cell coverage of the area is provided, and the newly added device in the macro base station also provides the micro-area coverage of the hotspot area.
  • the executor of the present invention may be a macro base station, and the newly added equipment in the macro base station may be equivalent to Base station. Therefore, the execution subject of the embodiments of the present invention does not constitute a limitation of the embodiments of the present invention.
  • the beamwidth and beam pointing of the high directional antenna are set according to the location information of the relay station, and the beam formed by the high directional antenna is used to provide a relay link between the relay station and the micro base station, and the relay station is configured according to The relay link provides microcell coverage for hotspots.
  • the location of the micro-cell base station device remains unchanged.
  • the high directional antenna may be an array antenna, and of course, other types of antennas.
  • the method for creating a micro cell according to the second embodiment of the present invention may be applicable to when a hotspot area is located at a macro cell edge, and the Pico cell may be provided by a relay station.
  • the embodiment of the present invention directly forms an orientation by using a beam forming antenna that the base station has. The beam communicates with the relay station.
  • an array antenna directly forms a micro cell.
  • the micro cell creation method provided by the second embodiment of the present invention has better applicability when the hot spot is at the edge of the macro cell, and can provide a micro cell to the hot spot more stably. service.
  • FIG. 9 is a flowchart of a method for providing a relay link between a relay station and a base station by using a beam formed by a highly directional antenna in Embodiment 2 of the present invention.
  • the downlink data signal of the micro cell and the downlink data signal of the macro cell may have interference, and the step of using the beam formed by the high directional antenna to provide a relay link between the relay station and the micro base station (step C2) Specifically, it may include:
  • D1 Perform multi-user multiple input and multiple output precoding on the downlink data signal of the micro cell and the downlink data signal of the macro cell.
  • the embodiment of the present invention can perform multi-user multiple input and multiple output precoding on the downlink data signal of the micro cell and the downlink data signal of the macro cell.
  • the link transmits the downlink data signal of the precoded micro cell to the user equipment in the hot spot area.
  • the embodiment of the present invention transmits the pre-relay link between the relay station and the micro base station provided by the beam formed by the high-directional antenna to the user equipment in the hot spot area.
  • the downlink data signal of the encoded micro cell is transmitted.
  • the interference of the downlink data signal of the macro base station to the downlink data signal of the micro base station can be eliminated, and the system capacity can be further improved.
  • interference may occur between the uplink signal of the macro base station and the uplink signal of the micro base station.
  • step C2 may further include:
  • D3. Perform multiple input and multiple detection on the uplink received signal of the macro cell and the uplink received signal of the micro cell received by the beam formed by the high directional antenna to acquire the uplink data signal of the micro cell.
  • the uplink received signal of the macro cell and the uplink received signal of the micro cell received by the beam formed by the highly directional antenna may be subjected to multiple input and multiple detection to obtain the uplink data signal of the micro cell. It should be noted that there is no strict execution order between step D3 and steps D1 and D2 in the embodiment of the present invention, that is, step D3 may be performed before step D1 or may be performed between steps D1 and D2.
  • FIG. 10 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • the base station provided by the third embodiment of the present invention includes: a first macro cell communication unit 110 and a first micro cell communication unit 120, where the first macro cell communication unit 110 is configured to create a macro cell; the first micro cell communication unit 120 includes:
  • a first beamforming module 121 configured to set a beamwidth and a beam direction of the high directional antenna according to the hot spot location information
  • the first micro cell communication processing module 122 is configured to form a micro cell coverage for the hot spot region by using a beam formed by the high directional antenna.
  • the base station provided in Embodiment 3 of the present invention can be used in the foregoing corresponding Embodiment 1.
  • the base station provided in the third embodiment of the present invention can set the beamwidth and beam direction of the high-directional antenna according to the location information of the hotspot area, and directly form the micro-area coverage for the hotspot area by using the beam formed by the high-directional antenna.
  • the location of the micro cell base station device remains unchanged, and the micro cell of the hot spot area can be realized by adjusting the beam width and beam pointing of the high directional antenna. Coverage, flexible networking, and low network maintenance costs.
  • FIG. 11 is a schematic structural diagram of a micro cell communication processing module in a base station according to Embodiment 3 of the present invention.
  • the first micro cell communication processing module 122 in the base station provided by the third embodiment of the present invention may include:
  • the first pre-coding sub-module 125 is configured to use multi-user multiple input and multiple output precoding for the downlink data signal of the micro cell and the downlink data signal of the hot spot region;
  • a first data transmission sub-module 126 configured to use a beam formed by a highly directional antenna to a hotspot area
  • the user equipment transmits the downlink data signal of the pre-coded micro cell.
  • micro cell communication processing module may further include:
  • the first uplink signal detecting sub-module 127 is configured to perform multi-input and multi-output detection on the uplink received signal of the micro-cell received by the beam formed by the high-directional antenna and the uplink received signal of the macro-cell to acquire the uplink data signal of the micro-cell.
  • the first micro cell communication unit 120 and the first macro cell communication unit 110 may have high speed link mutual access, so as to implement joint resources between the macro cell and the micro cell. Scheduling and interference management.
  • the base station improved in the third embodiment of the present invention includes a first micro cell communication unit 120 and a first macro cell communication unit 110, and the first micro cell communication unit 120 can be directly integrated as an enhancement unit in the macro base station.
  • the micro base station shares part of the hardware unit of the macro base station, and the system integration is higher, thereby reducing equipment cost and reducing system failure rate and maintenance cost.
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
  • the base station provided by the fourth embodiment of the present invention includes: a second macro cell communication unit 210 and a second micro cell communication unit 220, where the second macro cell communication unit 210 is used to create a macro cell; and the second micro cell communication unit 220 includes:
  • a second beamforming module 221, configured to set a beamwidth and a beam direction of the high directional antenna according to the location information of the relay station;
  • the second microcell communication processing module 222 provides a relay link between the relay station and the micro base station using a beam formed by the highly directional antenna.
  • the base station provided in the fourth embodiment of the present invention can be used in the foregoing corresponding embodiment 2.
  • the base station provided in Embodiment 4 of the present invention sets the beamwidth and beam direction of the high directional antenna according to the location information of the relay station, and provides the relay link between the relay station and the micro base station by using the beam formed by the high directional antenna, and the relay station According to the relay link, micro cell coverage is provided in the hotspot area.
  • the location of the micro cell base station device remains unchanged, and the beam width and beam direction of the highly directional antenna are adjusted, and
  • the location of the relay station can cover the micro-area coverage of the hotspot area, the networking mode is flexible, and the network maintenance cost is low.
  • the base station provided in Embodiment 4 of the present invention can be erected as a separate part.
  • the macro base station equipment can be installed first.
  • the macro base station equipment The foundation stone is added, and the micro base station equipment is added, which can reduce the initial network construction cost of the operator.
  • FIG. 13 is a schematic structural diagram of a second micro cell communication processing module in a base station according to Embodiment 4 of the present invention.
  • the second micro cell communication processing module 222 in the base station provided in Embodiment 4 of the present invention may include:
  • the second pre-coding sub-module 225 is configured to perform multi-user multiple input and multiple output precoding on the downlink data signal of the micro cell and the downlink data signal of the macro cell.
  • the second data transmission sub-module 226 is configured to transmit, by using a relay link between the relay station and the micro base station provided by the beam formed by the high-directional antenna, to transmit downlink data signals of the pre-coded micro area to the user equipment in the hot spot area.
  • the second micro cell communication processing module provided by the embodiment of the present invention further includes: a second uplink signal detecting submodule 227, configured to receive uplink signals and high orientation of the macro cell.
  • the uplink received signal of the micro cell received by the beam formed by the antenna performs multi-input and multi-detection to acquire the uplink data signal of the micro cell.
  • the second micro cell communication unit 220 and the second macro cell communication unit 210 may have high speed link mutual access, so as to realize the joint resource between the macro cell and the micro cell. Scheduling and interference management.
  • the storage medium can be a disk, a CD, a read-only memory (ROM) or a random memory! ⁇ Random Access Memory (RAM), etc.

Description

微小区创建方法及基站 本申请要求于 2010 年 8 月 13 日提交中国专利局, 申请号为 201010254366.3 , 发明名称为"微小区创建方法及基站"的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及移动通信技术领域, 具体涉及一种微小区创建方法和基站。
背景技术
移动通信网络通常采用蜂窝系统, 即在不同的地点架设不同的基站,每个 基站形成一个小区,负责该地方的移动用户的通信。在现有的移动通信网络中, 存在一些通信业务量较大的热点地区。 为实现对热点地区提供较高的系统容 量,通常在热点地区架设微小区,通过微小区对热点地区的移动用户提供业务。 现有技术中的移动通信网络通常为多层小区结构 ( Heterogeneous Network, HetNet )。 首先使用宏基站创建宏小区 (Macro-Cell ) 实现大范围的 连续网络覆盖,然后在热点地区使用微基站创建微小区进行重叠覆盖,微小区 提供较高的系统容量。
发明人在研究现有技术的过程中发现, 热点地区的微小区由微基站创建, 需要在热点地区寻找合适的站址来架设微基站。如果热点地区发生变化,则需 要重新选址架设微基站形成对热点地区的网络覆盖,导致组网方式不灵活,增 加了网络维护成本。 发明内容
本发明提供一种微小区创建方法和基站, 可以在热点地区发生变化时, 不 需要重新选择合适的站址即可创建覆盖热点地区的微小区。
一方面, 本发明实施例提供的微小区创建方法, 包括:
根据热点地区的位置信息设置高定向性天线的波束宽度和波束指向; 利用所述高定向性天线形成的波束对所述热点地区形成微小区覆盖。 本发明实施例还提供一种微小区创建方法, 包括:
根据所述中继站的位置信息设置高定向性天线的波束宽度和波束指向; 利用所述高定向性天线形成的波束提供所述中继站和微基站之间的中继 链路
另一方面, 本发明实施例还提供一种基站, 包括:
第一宏小区通信单元, 用于形成宏小区覆盖;
第一微小区通信单元, 所述微小区通信单元包括:
第一波束成型模块,用于根据热点地区的位置信息设置高定向性天线的波 束宽度和波束指向;
第一微小区通信处理模块,用于利用所述高定向性天线形成的波束对所述 热点地区形成微小区覆盖。
本发明实施例还提供一种基站, 包括:
第二宏小区通信单元, 用于形成宏小区覆盖;
第二微小区通信单元, 所述微小区通信单元包括:
第二波束成型模块,根据中继站的位置信息设置高定向性天线的波束宽度 和波束指向; 第二微小区通信处理模块,利用所述高定向性天线形成的波束提供所述中 继站和 基站之间的中继链路。
在本发明实施例中 ,根据热点地区的位置信息来设置高定向性天线的波束 宽度和波束指向,并利用高定向性天线形成的波束直接对热点地区形成微小区 覆盖。 与现有技术需要重新选择微基站的站址相比, 本发明实施例可以在热点 地区发生变化时, 基站设备的位置可以保持不变,通过调整高定向性天线的 波束宽度和波束指向即可实现对热点地区的微小区覆盖,组网方式灵活, 网络 维护成本较氐。 附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描 述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的微小区创建方法的流程图;
图 2是本发明实施例提供的阵列天线的示意图;
图 3是本发明实施例提供的阵列天线中阵元的空间坐标示意图;
图 4是本发明实施例一中利用高定向性天线形成的波束对热点地区形成 微小区覆盖的方法流程图;
图 5是本发明实施例中微小区和宏小区之间的等效 MIMO信道的示意图; 图 6是本发明实施例提供的小区创建方法中消除下行干扰信号的示意图; 图 Ί是本发明实施例提供的小区创建方法中消除上行干扰信号的示意图; 图 8是本发明实施例二提供的小区创建方法的流程图;
图 9是本发明实施例二中利用高定向性天线形成的波束提供中继站和微 基站之间的中继链路的方法流程图;
图 10是本发明实施例三提供的基站的结构示意图;
图 11 是本发明实施例三提供的基站中微小区通信处理模块的结构示意 图;
图 12是本发明实施例四提供的基站的结构示意图;
图 13是本发明实施例四提供的基站中第二微小区通信处理模块的结构示 意图。 具体实施方式
本发明实施例提供了一种微小区创建方法以及基站。为了更好的理解本发 明实施例的技术方案, 下面将结合本发明实施例中的附图,对本发明实施例中 的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人 员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护 的范围。
参见图 1 , 图 1是本发明实施例一提供的微小区创建方法的流程图。
在本发明实施例中,宏基站提供区域内的宏小区无缝连续覆盖, 本发明实 施例提供的基于宏小区网络覆盖下的微小区创建方法可以包括:
Al、 根据热点地区的位置信息设置高定向性天线的波束宽度和波束指向。 具体的, 本发明实施例可以获取宏小区网络中热点地区的位置信息, 然后 根据该热点地区的位置信息使用波束成性算法来设置高定向性天线的波束宽 度和波束指向。在一个实施例中, 可以通过预先获得的方式获知宏小区网络中 的热点地区; 在一个实施例中,也可以通过对整个宏小区内业务量分布进行统 计, 获知宏小区网络中的热点地区。
其中, 与波束宽度和波束指向对应的波束可以覆盖该热点地区。 热点地区 的位置信息可以包括热点地区的面积、形状、热点地区相对于 基站所在位置 的方位角等。
本发明实施例一中方法的执行主体可以为微基站,此时微基站所在位置称 为 基站的站址, 基站的站址可以和宏基站的站址相同。
需要指出的是,由于本发明实施例一中方法的执行主体微基站和区域中的 宏基站共站址 ,微基站的上述功能在实际中可以由宏基站增加相应的设备来实 现, 即宏基站不仅提供区域的宏小区覆盖,宏基站中新增的设备还提供热点地 区的微小区覆盖, 则此时本发明的执行主体则可以为宏基站,宏基站中新增的 设备可以等效为微基站。 因此, 本发明实施例的执行主体不构成对本发明实施 例的限制。
A2、 利用高定向性天线形成的波束对热点地区形成微小区覆盖。
具体的,本发明实施例可以利用高定向性天线形成的高定向性波束对热点 地区形成微小区覆盖。其中, 高定向性天线形成的波束中提供微小区的公共控 制信道、 专用控制信道、 业务信道等多个物理信道, 该波束还用于传输热点地 区的用户设备和微基站之间的数据。微小区的类型可以为微微小区(Pico-Cell ) 和毫! ^敖小区 ( Femto-Cell )。
在本发明实施例一中,根据热点地区的位置信息来设置高定向性天线的波 束宽度和波束指向,并利用高定向性天线形成的波束直接对热点地区形成微小 区覆盖。 与现有技术相比, 本发明实施例可以在热点地区发生变化时, 微小区 基站设备的位置保持不变,通过调整高定向性天线的波束宽度和波束指向即可 实现对热点地区的微小区覆盖, 组网方式灵活, 网络维护成本较低。
参见图 2, 图 2是本发明实施例提供的阵列天线的示意图。
在本发明实施例中,创建微小区的高定向性天线可以为阵列天线, 当然还 可以为其它类型的天线, 例如在信号频率较高时, 例如微波频段, 则高定向性 天线可以为抛物面天线。当采用线性阵列时,由于在垂直方向上没有形成波束, 则可以形成扇形 小区。 当采用平面阵列时, 如图 2 (a)所示 32阵元的 8 x4 均匀平面阵列, 则可以在水平和垂直两个方向同时形成较窄的波束, 即 3D波 束成型,也就是同时在水平和垂直方案形成波束,从而可以更好地生成微小区。 另外, 图 2 (b) 所示的圓形阵列和图 2 (c)所示的三维网格阵列天线也能实 现 3D波束成型。
参见图 3,图 3是本发明实施例提供的阵列天线中阵元的空间坐标示意图。 如图 3所示, 对任意阵列几何的具有 M个阵元的阵列天线, 坐标原点为 编号为 1的阵元, 第 m个阵元的位于 ,^,Ζ» 若某远场信号的波达方向为 、Φ,Θ、 则该信号可以表示为如下向量形式:
u(t)= [w1(t),M2(t),---,M (t)]
其中, = Ι,2,···,Μ为第 m和阵元的接收(或发射)信号, 则各个阵 元的信号具有如下关系:
m{t)-ux{t)am (φ,θ)
其中, αφ,θ、 = ε ] Λφ^ ,表示各个阵元信号之间的相位差, 该相位差 由阵元位置和波达方向的函数 ^^,^,^,ZJ决定。 为表述方便, 可将各个阵 元信号相位差表示为如下方向向量形式: α2 {φ, θ) 通过对各个阵元信号, 用复数权向量 , · · · , w ')进行加权求和, 可以
Figure imgf000009_0001
不难看出,通过选择合适的权向量 w , 就可以最大化来自波达方向(^ )的 有用信号, 并且抑制其它方向的干扰信号, 这个过程对整个阵列天线而言等效 于产生特定方向的波束。这个加权求和操作既可以在射频信号上实现,也可以 在基带上实现, 其中, 在基带上实现通常称为数字波束成型。 波束成型在收发 两个方向上都可以实现。 波束成型算法, 也就是权向量 w的计算方法, 现在已 经有大量成熟的算法可以利用, 本发明并不局限于特定的波束成型算法。
与通常的自适应阵列天线系统中波束需要跟踪每个用户不同,本发明中波 束不是跟踪用户, 而仅仅是形成相对固定的波束指向某些热点地区, 由于一段 时间内 (数小时、 数天或数月等)热点地区是比较固定的, 不需要动态地、 每 个无线帧地快速改变波束。 因此, 本发明实施例可以直接在射频上实现波束成 型, 而无需在基带上进行数字波束成型, 因而成本较低, 每个波束只需进行一 路基带处理, 复杂性较小。
另外, 当某个 Macro-cell中有两个或两个以上 小区采用本发明实施例 提供的方式实现时, 不同的微小区可以共用一组阵列天线, 总的波束成型权向 量是各个微小区波束成型权向量之和。 以下行方向发射波束成型为例, 若有两 个处于不同位置的微小区, 对应 ( , )、 两个不同的方向, 发射信号分别 为" ^)和" ), 分别采用权向量^和^加权, 则发射信号向量为:
Figure imgf000010_0001
则在波达方向( , )上的用户设备的接收信号可以表示为:
γγ{ή = Ά{φ θγ)Τ ^{ή + ηγ{ή = Ά{φ θγ)Τ (t) + α(^, Ί)Γ w 2 (t) + ^ (t)
" )为噪声信号。 若采用合适的波束成型算法, 使得干扰分量功率
Figure imgf000010_0002
尽可能小而有用信号分量功率 l"w "Ί尽可能大,则在波达方向 (^ )上的用户设备只接收到其有用信号, 而不受其它微小区信号的干扰。 相 似地, 对另外一个微小区也采用同样的方式。 也就是说, 设计权向量 ^和^, 最大化如下信号与干扰 /噪声功率比 ( Signal Interference Noise Ratio, SINR ):
Figure imgf000010_0003
其中 σ1 , 2为噪声功率。 由于接收和发送具有对偶性, 采用相似的方式 在上行接收方向也可以实现, 其中, 上下行方向, 也就是收发方向, 可以采用 相同或不同的波束成型向量。 其中, 波束指向和波束宽度可以通过调节波束成 型权系数(一般是相位)来完成。 另外, 波束指向还可以通过电调阵列天线的 下倾角、 水平方向等方式来完成。
在本发明实施例中,通过对整个宏小区内业务量分布进行长期统计,得出 该宏小区内的热点区域, 包括位置、 范围等, 本发明实施例可以通过调节阵列 天线的波束(指向、 波束宽度、 发射功率等), 就能方便得完成系统组网的优 化, 具有灵活的业务适应性。 参见图 4, 图 4是本发明实施例一中利用高定向性天线形成的波束对热点 地区形成微小区覆盖的方法流程图。
在本发明实施例中,微小区的下行数据信号和宏小区的下行数据信号可能 存在干扰,上述利用高定向性天线形成的波束对热点地区形成微小区覆盖的步 骤 (步骤 A2 )具体可以包括:
B1、 对微小区的下行数据信号和宏小区的下行数据信号进行多用户多入 多出预编码。
具体的,本发明实施例可以对微小区的下行数据信号和宏小区的下行数据 信号进行多用户多入多出 (Multiple User-Multiple Input Multiple Output , MU-MIMO )预编码。
B2、 利用高定向性天线形成的波束向热点地区的用户设备传输预编码后 的微小区的下行数据信号。
具体的, 本发明实施例在进行多用户多入多出预编码之后, 利用高定向天 线形成的波束向热点地区的用户设备传输预编码后的微小区的下行数据信号。
本发明实施例中,通过设置合适的预编码向量, 可以消除宏小区的下行数 据信号对微小区的下行数据信号的干扰, 可以进一步提高系统容量。
在本发明实施例中,宏小区的上行信号和微小区的上行信号之间可能产生 干扰。
进一步的,上述利用高定向性天线形成的波束对热点地区形成微小区覆盖 的步骤 (步骤 A2 )具体还可以包括:
B3、 对宏小区的上行接收信号以及高定向性天线形成的波束接收到的微 小区的上行接收信号进行多入多出检测获取微小区的上行数据信号。 具体的,在本发明实施例还可以对宏小区的上行接收信号以及高定向性天 线形成的波束接收到的微小区的上行接收信号进行多入多出检测获取微小区 的上行数据信号。 需要说明的是, 本发明实施例中步骤 B3和步骤 Bl、 B2之 间并没有严格的执行顺序, 即步骤 B3可以在步骤 B1之前执行, 也可以在步 骤 B1和 B2之间执行。
本发明实施例通过使用多入多出检测方法,可以消除宏小区的上行信号对 微小区的上行信号的干扰, 可以进一步提高系统容量。
参见图 5,图 5是本发明实施例中微小区和宏小区之间的等效 MIMO信道 的示意图。
在本发明实施例中, 宏基站和微基站可以共站址, 分别使用不同的天线, 则宏基站和微基站以及它们对应的用户设备之间构成了等效的多入多出 ( Multiple Input Multiple Output, MIMO )信道。
其中, 、 ^分别为宏基站到宏小区用户设备( Macro Cell User Equipment, Macro-UE ), 以及 基站到 小区用户设备 ( Pico User Equipment, Pico-UE ) 的信道系数, 、 ^分别为宏基站到 PiC0-UE, 以及微基站到 Macro-UE的信 道系数。 在下行方向, 宏基站到 Macro-UE以及微基站到 Pico-UE的信号为有 用信号, 宏基站到 Pico-UE以及微基站到 Macro-UE的信号为干扰信号, 利用 多用户 MU-MIMO的预编码技术, 通过设计合适的预编码向量, 可以抑制甚 至消除干扰信号。
参见图 6, 图 6是本发明实施例提供的小区创建方法中消除下行干扰信号 的示意图。
在本发明实施例中, 利用 MU-MIMO预编码进行干扰消除的下行处理过 程如图 6 所示, 微小区下行数据信号和宏小区的下行数据信号首先经过 MU-MIMO预编码单元, 进行预编码, 然后, 预编码后的微小区的下行数据信 号经过波束成型形成微小区下行发射信号发射出去。预编码后的宏小区的下行 数据信号经过宏基站的天线发射后形成宏小区下行发射信号发射出去。
参见图 7, 图 7是本发明实施例提供的小区创建方法中消除上行干扰信号 的示意图。
在本发明实施例中, 上行方向与下行方向具有对偶性, 在上行方向, Macro-UE到宏基站以及 Pico-UE到微基站的信号为有用信号, Pico-UE到宏 基站以及 Macro-UE到微基站的信号为干扰信号,利用 MIMO检测技术,可以 在基站侧抑制甚至消除干扰信号。如图所示, 首先将来自高定向性天线的接收 信号经过波束成型形成后, 与来自 Macro天线的接收信号一起, 经 MIMO检 测单元, 消除干扰并分离出各自的有用信号。
参见图 8, 图 8是本发明实施例二提供的小区创建方法的流程图。
在本发明实施例中,宏小区提供区域的无缝连续覆盖, 本发明实施例提供 的基于宏小区网络覆盖下的微小区创建方法可以包括:
Cl、 根据中继站的位置信息设置高定向性天线的波束宽度和波束指向。 具体的, 本发明实施例可以获取宏小区网络中的中继站的位置信息, 然后 根据该中继站的位置信息使用波束成性算法来设置高定向性天线的波束宽度 和波束指向。
其中, 中继站位于热点地区, 基站所在位置为 基站的站址, 其中 基 站的站址可以和宏基站的站址相同。 另外, 与波束宽度和波束指向对应的波束 可以指向该中继站。中继站的位置信息可以包括中继站相对于 基站所在位置 的方位角等。在一个实施例中, 可以通过预先获得的方式获知宏小区网络中的 热点地区;在一个实施例中 ,也可以通过对整个宏小区内业务量分布进行统计, 获知宏小区网络中的热点地区。
C2、 利用高定向性天线形成的波束提供中继站和微基站之间的中继链路。 具体的,本发明实施例可以利用高定向性天线形成的高定向性波束来提供 中继站和微基站之间的中继链路。中继站根据该中继链路对热点地区内提供微 小区覆盖。
其中, 中继站和微基站之间的中继链路提供微小区的公共控制信道、 专用 控制信道、业务信道等多个物理信道, 该中继链路还用于传输热点地区的用户 设备和微基站之间的数据。 微小区的类型可以为微微小区 (Pico cell )和毫微 小区 (Femto cell )。
本发明实施例二中方法的执行主体可以为微基站,此时微基站所在位置称 为 基站的站址, 基站的站址可以和宏基站的站址相同。
需要指出的是,由于本发明实施例二中方法的执行主体微基站和区域中的 宏基站共站址 ,微基站的上述功能在实际中可以由宏基站增加相应的设备来实 现, 即宏基站不仅提供区域的宏小区覆盖,宏基站中新增的设备还提供热点地 区的微小区覆盖, 则此时本发明的执行主体则可以为宏基站,宏基站中新增的 设备可以等效为微基站。 因此, 本发明实施例的执行主体不构成对本发明实施 例的限制。
在本发明实施例二中,根据中继站的位置信息来设置高定向性天线的波束 宽度和波束指向,并利用高定向性天线形成的波束提供中继站和微基站之间的 中继链路, 中继站根据该中继链路对热点地区内提供微小区覆盖。 与现有技术 需要重新选择微基站的站址相比, 本发明实施例可以在热点地区发生变化时, 微小区基站设备的位置保持不变,通过调整高定向性天线的波束宽度和波束指 向以及中继站的位置即可实现对热点地区的微小区覆盖,组网方式灵活, 网络 维护成本较氐。
在本发明实施例二提供的微小区创建方法, 高定向性天线可以为阵列天 线, 当然还可以为其它类型的天线。
在本发明实施例二提供的微小区创建方法可以适用于当热点地区处于宏 小区边缘时, Pico cell可以由中继站(Relay Station )提供, 本发明实施例利 用基站具有的波束成型天线, 直接形成定向波束与中继站通信。相对于实施例 一种阵列天线直接形成微小区的情况,本发明实施例二提供的微小区创建方法 在热点地区处于宏小区边缘时,适用性更好, 可以更稳定的对热点地区提供微 小区服务。
参见图 9, 图 9是本发明实施例二中利用高定向性天线形成的波束提供中 继站和 基站之间的中继链路的方法流程图。
在本发明实施例中,微小区的下行数据信号和宏小区的下行数据信号可能 存在干扰,上述利用高定向性天线形成的波束提供中继站和微基站之间的中继 链路的步骤 (步骤 C2 )具体可以包括:
D1、 对微小区的下行数据信号和宏小区的下行数据信号进行多用户多入 多出预编码。
具体的,本发明实施例可以对微小区的下行数据信号和宏小区的下行数据 信号进行多用户多入多出预编码。
D2、 利用高定向性天线形成的波束所提供的中继站和微基站之间的中继 链路, 向热点地区的用户设备传输预编码后的微小区的下行数据信号。
具体的, 本发明实施例在进行多用户多入多出预编码之后, 利用高定向性 天线形成的波束所提供的中继站和微基站之间的中继链路,向热点地区的用户 设备传输预编码后的微小区的下行数据信号。
本发明实施例中,通过设置合适的预编码向量, 可以消除宏基站的下行数 据信号对微基站的下行数据信号的干扰, 可以进一步提高系统容量。
在本发明实施例中,宏基站的上行信号和微基站的上行信号之间可能产生 干扰。
进一步的,上述利利用高定向性天线形成的波束提供中继站和微基站之间 的中继链路的步骤 (步骤 C2 )具体还可以包括:
D3、 对宏小区的上行接收信号以及高定向性天线形成的波束接收到的微 小区的上行接收信号进行多入多出检测获取微小区的上行数据信号。
具体的,在本发明实施例还可以对宏小区的上行接收信号以及高定向性天 线形成的波束接收到的微小区的上行接收信号进行多入多出检测获取微小区 的上行数据信号。 需要说明的是, 本发明实施例中步骤 D3和步骤 Dl、 D2之 间并没有严格的执行顺序, 即步骤 D3可以在步骤 D1之前执行, 也可以在步 骤 D1和 D2之间执行。
本发明实施例通过使用多入多出检测方法,可以消除宏小区的上行信号对 微小区的上行信号的干扰, 可以进一步提高系统容量。 以上对本发明实施例提供的微小区创建方法进行了详细描述,下面再描述 本发明实施例提供的基站。 参见图 10, 图 10是本发明实施例三提供的基站的结构示意图。 本发明实施例三提供的基站包括:第一宏小区通信单元 110和第一微小区 通信单元 120, 其中第一宏小区通信单元 110用于创建宏小区; 第一微小区通 信单元 120包括:
第一波束成型模块 121 , 用于根据热点地区位置信息设置高定向性天线的 波束宽度和波束指向;
第一微小区通信处理模块 122, 用于利用高定向性天线形成的波束对热点 地区形成微小区覆盖。
本发明实施例三提供的基站可以使用在前述对应的实施例一中,详情参见 上述实施例一。本发明实施例三提供的基站可以根据热点地区的位置信息来设 置高定向性天线的波束宽度和波束指向,并利用高定向性天线形成的波束直接 对热点地区形成微小区覆盖。 与现有技术相比, 本发明实施例可以在热点地区 发生变化时,微小区基站设备的位置保持不变, 通过调整高定向性天线的波束 宽度和波束指向即可实现对热点地区的微小区覆盖,组网方式灵活, 网络维护 成本较低。
参见图 11 , 图 11是本发明实施例三提供的基站中微小区通信处理模块的 结构示意图。
其中,本发明实施例三提供的基站中第一微小区通信处理模块 122可以包 括:
第一预编码子模块 125 , 用于对微小区的下行数据信号和热点地区的下行 数据信号使用多用户多入多出预编码;
第一数据传输子模块 126, 用于利用高定向性天线形成的波束向热点地区 的用户设备传输预编码后的微小区的下行数据信号。
进一步的, 上述微小区通信处理模块还可以包括:
第一上行信号检测子模块 127, 用于对高定向性天线形成的波束接收到的 微小区的上行接收信号以及宏小区的上行接收信号进行多入多出检测获取微 小区的上行数据信号。
本发明实施例提供的基站在具体应用时,第一微小区通信单元 120和第一 宏小区通信单元 110之间可以具有高速链路互访,以便于实现宏小区和微小区 之间的联合资源调度和干扰管理。
本发明实施例三提高的基站中包括第一微小区通信单元 120 和第一宏小 区通信单元 110, 第一微小区通信单元 120可以作为增强单元直接集成在宏基 站中。 在实际的基站设备中, 微基站共用宏基站的部分硬件单元, 系统集成度 更高, 从而减少设备成本, 并减少系统故障率和维护成本。
参见图 12, 图 12是本发明实施例四提供的基站的结构示意图。
本发明实施例四提供的基站包括:第二宏小区通信单元 210和第二微小区 通信单元 220, 其中第二宏小区通信单元 210用于创建宏小区; 第二微小区通 信单元 220包括:
第二波束成型模块 221, 根据中继站的位置信息设置高定向性天线的波束 宽度和波束指向;
第二微小区通信处理模块 222, 利用高定向性天线形成的波束提供中继站 和微基站之间的中继链路。
本发明实施例四提供的基站可以使用在前述对应的实施例二中,详情参见 上述方法实施例。 在本发明实施例四提供的基站根据中继站的位置信息来设置高定向性天 线的波束宽度和波束指向,并利用高定向性天线形成的波束提供中继站和微基 站之间的中继链路, 中继站根据该中继链路对热点地区内提供微小区覆盖。 与 现有技术需要重新选择微基站的站址相比,本发明实施例可以在热点地区发生 变化时,微小区基站设备的位置保持不变,通过调整高定向性天线的波束宽度 和波束指向以及中继站的位置即可实现对热点地区的微小区覆盖,组网方式灵 活, 网络维护成本较低。
本发明实施例四提供的基站可以作为单独的部分进行架设。在建网初期还 没有出现容量需求较大的热点地区时, 可以先安装宏基站设备, 随着用户的增 加,当某个宏小区出现容量需求较大的热点地区时,再在宏基站设备的基石出上, 增加微基站设备, 可以减少运营商的初始建网成本。
参见图 13 , 图 13是本发明实施例四提供的基站中第二微小区通信处理模 块的结构示意图。
其中,本发明实施例四提供的基站中第二微小区通信处理模块 222可以包 括:
第二预编码子模块 225 , 用于对微小区的下行数据信号和宏小区的下行数 据信号进行多用户多入多出预编码;
第二数据传输子模块 226, 用于利用高定向性天线形成的波束所提供的中 继站和微基站之间的中继链路,向热点地区的用户设备传输预编码后的微小区 的下行数据信号。
进一步的, 本发明实施例提供的第二微小区通信处理模块还包括: 第二上行信号检测子模块 227, 用于对宏小区的上行接收信号以及高定向 性天线形成的波束接收到的微小区的上行接收信号进行多入多出检测获取微 小区的上行数据信号。
本发明实施例提供的基站在具体应用时,第二微小区通信单元 220和第二 宏小区通信单元 210之间可以具有高速链路互访,以便于实现宏小区和微小区 之间的联合资源调度和干扰管理。
需要说明的是, 上述装置和系统内的各单元之间的信息交互、执行过程等 内容, 由于与本发明方法实施例基于同一构思, 具体内容可参见本发明方法实 施例中的叙述, 此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,的程序可存储于计算机可读 取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中, 的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM ) 或随机存! ^己忆体 ( Random Access Memory, RAM )等。
以上对本发明实施例提供的微小区创建方法以及基站进行了详细介绍,对 于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用 范围上均会有改变之处, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种基于宏小区网络覆盖下的微小区创建方法, 其特征在于, 包括: 根据热点地区的位置信息设置高定向性天线的波束宽度和波束指向; 利用所述高定向性天线形成的波束对所述热点地区形成微小区覆盖。
2、 根据权利要求 1所述的方法, 其特征在于, 所述利用高定向性天线形 成的波束对热点地区形成微小区覆盖包括:
对微小区的下行数据信号和所述宏小区的下行数据信号进行多用户多入 多出预编码;
利用高定向性天线形成的波束向所述热点地区的用户设备传输所述预编 码后的微小区的下行数据信号。
3、 根据权利要求 2所述的方法, 其特征在于, 所述利用高定向性天线形 成的波束对热点地区形成微小区覆盖还包括:
对所述宏小区的上行接收信号以及所述高定向性天线形成的波束接收到 的微小区的上行接收信号进行多入多出检测获取所述微小区的上行数据信号。
4、 根据权利要求 1到 3任一项所述的方法, 其特征在于,
所述高定向性天线为阵列天线。
5、 一种基于宏小区网络覆盖下的微小区创建方法, 其特征在于, 包括: 根据所述中继站的位置信息设置高定向性天线的波束宽度和波束指向; 利用所述高定向性天线形成的波束提供所述中继站和微基站之间的中继 链路。
6、 根据权利要求 5所述的方法, 其特征在于,
所述高定向性天线为阵列天线。
7、 根据权利要求 5所述的方法, 其特征在于, 所述利用高定向性天线形 成的波束提供中继站和微基站之间的中继链路, 包括:
对微小区的下行数据信号和所述宏小区的下行数据信号进行多用户多入 多出预编码;
利用高定向性天线形成的波束所提供的中继站和微基站之间的中继链路, 向所述热点地区的用户设备传输所述预编码后的微小区的下行数据信号。
8、 根据权利要求 7所述的方法, 其特征在于, 述利用高定向性天线形成 的波束提供中继站和微基站之间的中继链路还包括:
对所述宏小区的上行接收信号以及所述高定向性天线形成的波束接收到 的微小区的上行接收信号进行多入多出检测获取所述微小区的上行数据信号。
9、 一种基站, 包括:
第一宏小区通信单元, 用于形成宏小区覆盖;
其特征在于, 还包括微小区通信单元, 所述微小区通信单元包括: 第一波束成型模块,用于根据热点地区的位置信息设置高定向性天线的波 束宽度和波束指向;
第一微小区通信处理模块,用于利用所述高定向性天线形成的波束对所述 热点地区形成微小区覆盖。
10、 根据权利要求 9所述的基站, 其特征在于, 所述第一微小区通信处理 模块包括:
第一预编码子模块,用于对微小区的下行数据信号和所述热点地区的下行 数据信号使用多用户多入多出预编码;
第一数据传输子模块,用于利用高定向性天线形成的波束向所述热点地区 的用户设备传输所述预编码后的微小区的下行数据信号。
11、 根据权利要求 10所述的基站, 其特征在于, 所述微小区通信处理模 块还包括:
第一上行信号检测子模块,用于对所述高定向性天线形成的波束接收到的 微小区的上行接收信号以及所述宏小区的上行接收信号进行多入多出检测获 取所述微小区的上行数据信号。
12、 一种基站, 包括:
第二宏小区通信单元, 用于形成宏小区覆盖;
其特征在于, 还包括微小区通信单元, 所述微小区通信单元包括: 第二波束成型模块,根据中继站的位置信息设置高定向性天线的波束宽度 和波束指向;
第二微小区通信处理模块,利用所述高定向性天线形成的波束提供所述中 继站和 基站之间的中继链路。
13、 根据权利要求 12所述的基站, 其特征在于, 所述第二微小区通信处 理模块包括:
第二预编码子模块,用于对微小区的下行数据信号和所述宏小区的下行数 据信号进行多用户多入多出预编码;
第二数据传输子模块,用于利用所述高定向性天线形成的波束所提供的中 继站和微基站之间的中继链路,向所述热点地区的用户设备传输所述预编码后 的微小区的下行数据信号。
14、 根据权利要求 13所述的基站, 其特征在于, 所述第二微小区通信处 理模块还包括: 第二上行信号检测子模块,用于对所述宏小区的上行接收信号以及所述高 定向性天线形成的波束接收到的微小区的上行接收信号进行多入多出检测获 取所述微小区的上行数据信号。
PCT/CN2011/074714 2010-08-13 2011-05-26 微小区创建方法及基站 WO2011150763A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/717,155 US8750890B2 (en) 2010-08-13 2012-12-17 Microcell creating method based on macrocell network coverage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010254366.3 2010-08-13
CN201010254366.3A CN102378205B (zh) 2010-08-13 2010-08-13 微小区创建方法及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/717,155 Continuation US8750890B2 (en) 2010-08-13 2012-12-17 Microcell creating method based on macrocell network coverage

Publications (1)

Publication Number Publication Date
WO2011150763A1 true WO2011150763A1 (zh) 2011-12-08

Family

ID=45066156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074714 WO2011150763A1 (zh) 2010-08-13 2011-05-26 微小区创建方法及基站

Country Status (3)

Country Link
US (1) US8750890B2 (zh)
CN (1) CN102378205B (zh)
WO (1) WO2011150763A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220026A (zh) * 2012-01-19 2013-07-24 中国移动通信集团公司 码本反馈方法及信号接收装置、信号发送方法及装置
US20150263797A1 (en) * 2012-11-28 2015-09-17 Sony Corporation Communication control device, communication control method, and terminal device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003860A1 (en) * 2010-07-06 2012-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for reducing interference and enhancing coverage
CN102724684A (zh) * 2012-07-02 2012-10-10 中国科学技术大学 一种采用垂直覆盖的同频组网方法
EP2936866B1 (en) * 2012-12-18 2018-10-03 Telefonaktiebolaget LM Ericsson (publ) Base station and method thereof
US9094814B1 (en) * 2013-03-14 2015-07-28 Sprint Communications Company L.P. Provision of relay operation information to a wireless communication network
CN105247917B (zh) * 2013-07-05 2019-04-05 富士通互联科技有限公司 参数获取方法、参数优化方法及其装置、系统
CN103442409B (zh) * 2013-08-20 2016-08-24 浙江大学 宏蜂窝与小蜂窝异构网络下的用户接入方法
CN103731900B (zh) * 2013-12-10 2017-02-01 浙江大学 一种蜂窝异构网络下的用户接入模式选择方法
EP3145241A4 (en) * 2014-06-03 2017-06-07 Huawei Technologies Co. Ltd. Communication method in heterogeneous network, macro base station, micro base station, and user equipment
CN106688264B (zh) 2014-06-13 2019-11-22 瑞典爱立信有限公司 自适应信标传送
JP6900311B2 (ja) * 2014-07-17 2021-07-07 ブルー ダニューブ システムズ, インク.Blue Danube Systems, Inc. ワイヤレスシステムにおける適応型ビーム配置のための方法
EP3185629B1 (en) * 2014-08-20 2019-08-07 Huawei Technologies Co., Ltd. Wireless communication method, device and base station
CN106688265B (zh) * 2014-09-11 2020-10-16 瑞典爱立信有限公司 基于组的下行链路传送
WO2016146163A1 (en) * 2015-03-16 2016-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Multipoint transmission and reception in a radio communication network
CN106304107B (zh) * 2015-06-29 2020-06-23 深圳市中兴微电子技术有限公司 一种基站布局方法及系统
CN109587706B (zh) * 2017-09-28 2022-04-15 中国移动通信集团浙江有限公司 一种小区覆盖方向自适应调整方法和装置
CN108964736B (zh) * 2018-10-15 2021-01-19 西安交通大学 一种基于毫米波系统中用户发现阶段波束优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325241A (zh) * 2000-05-24 2001-12-05 朗迅科技公司 用于通信系统的控制技术
WO2009084904A2 (en) * 2007-12-31 2009-07-09 Lg Electronics Inc. Method for reducing inter-cell interference
CN101557249A (zh) * 2008-04-07 2009-10-14 上海贝尔阿尔卡特股份有限公司 无线通信系统中控制协作传输下行信号的方法和装置
CN101562817A (zh) * 2009-05-25 2009-10-21 北京理工大学 一种基于天线波束交叠的中继传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325241A (zh) * 2000-05-24 2001-12-05 朗迅科技公司 用于通信系统的控制技术
WO2009084904A2 (en) * 2007-12-31 2009-07-09 Lg Electronics Inc. Method for reducing inter-cell interference
CN101557249A (zh) * 2008-04-07 2009-10-14 上海贝尔阿尔卡特股份有限公司 无线通信系统中控制协作传输下行信号的方法和装置
CN101562817A (zh) * 2009-05-25 2009-10-21 北京理工大学 一种基于天线波束交叠的中继传输方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220026A (zh) * 2012-01-19 2013-07-24 中国移动通信集团公司 码本反馈方法及信号接收装置、信号发送方法及装置
CN103220026B (zh) * 2012-01-19 2016-06-29 中国移动通信集团公司 码本反馈方法及信号接收装置、信号发送方法及装置
US20150263797A1 (en) * 2012-11-28 2015-09-17 Sony Corporation Communication control device, communication control method, and terminal device
US9614596B2 (en) * 2012-11-28 2017-04-04 Sony Corporation Communication control device, communication control method, and terminal device

Also Published As

Publication number Publication date
US8750890B2 (en) 2014-06-10
CN102378205B (zh) 2015-04-08
CN102378205A (zh) 2012-03-14
US20130109400A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2011150763A1 (zh) 微小区创建方法及基站
Mumtaz et al. MmWave massive MIMO: a paradigm for 5G
Muirhead et al. A survey of the challenges, opportunities and use of multiple antennas in current and future 5G small cell base stations
Zheng et al. Survey of large-scale MIMO systems
Razavizadeh et al. Three-dimensional beamforming: A new enabling technology for 5G wireless networks
Koppenborg et al. 3D beamforming trials with an active antenna array
WO2011150790A1 (zh) 微小区创建方法、微基站和通信系统
EP2679058B1 (en) Configuring power distribution within cooperation areas of cellular communication networks
US20160315680A1 (en) Beamforming apparatus, method and computer program for a transceiver
US20140293803A1 (en) Coordinated Multi-Point Transmission and Multi-User MIMO
GB2479378A (en) Using SDMA to transmit from a base station to a first UE directly and from the base station to a second UE via a relay station
KR20160062731A (ko) 분산 어레이 매시브 mimo 시스템의 신호 송수신 방법 및 장치
Mennerich et al. Reporting effort for cooperative systems applying interference floor shaping
CN114450895A (zh) 使用多个接入点的同时上行链路和下行链路传输
EP3226437B1 (en) Apparatuses, methods, and computer programs for a base station transceiver and a mobile transceiver
US20140248888A1 (en) Method and Apparatuses for Configuring a Communication Channel
CN103780301B (zh) 一种多波束卫星移动通信系统联合发送接收方法
Thiele et al. Interference-floor shaping for liquid coverage zones in coordinated 5G networks
KR20140104014A (ko) 무선 통신 시스템, 중계 시스템 및 데이터를 중계하는 방법
Wei et al. Optimization of downtilts adjustment combining joint transmission and 3D beamforming in 3D MIMO
Maruta et al. Massive antenna systems for wireless entrance (MAS-WE): Practical application of massive MIMO with simplified space division multiplexing schemes
Zirwas et al. Cooperative feeder links for relay enhanced networks
Sugihara et al. mmWave massive analog relay MIMO for improvement of channel capacity
Noh et al. System evaluation for millimeter-wave radio access network
Shen et al. Downlink Rate Maximization with Reconfigurable Intelligent Surface Assisted Full-Duplex Transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789142

Country of ref document: EP

Kind code of ref document: A1